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Time series clustering has attracted increasing interest in the last decade, particularly for long time series
such as those arising in the bioinformatics and financial domains. The widely known curse of dimension-
ality problem indicates that high dimensionality not only slows the clustering process, but also degrades
it. Many feature extraction techniques have been proposed to attack this problem and have shown that the
performance and speed of the mining algorithm can be improved at several feature dimensions. However,
how to choose the appropriate dimension is a challenging task especially for clustering problem in the
absence of data labels that has not been well studied in the literature.
In this paper we propose an unsupervised feature extraction algorithm using orthogonal wavelet transform
for automatically choosing the dimensionality of features. The feature extraction algorithm selects the
feature dimensionality by leveraging two conflicting requirements, i.e., lower dimensionality and lower
sum of squared errors between the features and the original time series. The proposed feature extraction
algorithm is efficient with time complexity O(mn) when using Haar wavelet. Encouraging experimental
results are obtained on several synthetic and real-world time series datasets.

Povzetek: Članek analizira pomembnost atributov pri grupiranju časovnih vrst.

1 Introduction
Time series data are widely existed in various domains,
such as financial, gene expression, medical and science.
Recently there has been an increasing interest in mining
this sort of data. Clustering is one of the most frequently
used data mining techniques, which is an unsupervised
learning process for partitioning a dataset into sub-groups
so that the instances within a group are similar to each other
and are very dissimilar to the instances of other groups.
Time series clustering has been successfully applied to var-
ious domains such as stock market value analysis and gene
function prediction [17, 22]. When handling long time se-
ries, the time required to perform the clustering algorithm
becomes expensive. Moreover, the curse of dimensional-
ity, which affects any problem in high dimensions, causes
highly biased estimates [5]. Clustering algorithms depend
on a meaningful distance measure to group data that are
close to each other and separate them from others that are

far away. But in high dimensional spaces the contrast be-
tween the nearest and the farthest neighbor gets increas-
ingly smaller, making it difficult to find meaningful groups
[6]. Thus high dimensionality normally decreases the per-
formance of clustering algorithms.

Data Dimensionality Reduction aims at mapping high-
dimensional patterns onto lower-dimensional patterns.
Techniques for dimensionality reduction can be classified
into two groups: feature extraction and feature selection
[34]. Feature selection is a process that selects a subset
of original attributes. Feature extraction techniques extract
a set of new features from the original attributes through
some functional mapping [43]. The attributes that are im-
portant to maintain the concepts in the original data are se-
lected from the entire attribute sets. For time series data,
the extracted features can be ordered in importance by us-
ing a suitable mapping function. Thus feature extraction is
much popular than feature selection in time series mining
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community.
Many feature extraction algorithms have been proposed

for time series mining, such as Singular Value Decom-
position (SVD), Discrete Fourier Transform (DFT), and
Discrete Wavelet Transform (DWT). Among the proposed
feature extraction techniques, SVD is the most effective
algorithm with minimal reconstruction error. The entire
time-series dataset is transformed into an orthogonal fea-
ture space in that each variable are orthogonal to each
other. The time-series dataset can be approximated by a
low-rank approximation matrix by discarding the variables
with lower energy. Korn et al. have successfully applied
SVD for time-series indexing [31]. It is well known that
SVD is time-consuming in computation with time com-
plexity O(mn2), where m is the number of time series in a
dataset and n is the length of each time series in the dataset.
DWT and DFT are powerful signal processing techniques,
and both of them have fast computational algorithms. DFT
maps the time series data from the time domain to the fre-
quency domain, and there exists a fast algorithm called Fast
Fourier Transform (FFT) that can compute the DFT coeffi-
cients in O(mnlogn) time. DFT has been widely used in
time series indexing [4, 37, 42]. Unlike DFT, which takes
the original time series from the time domain and trans-
forms it into the frequency domain, DWT transforms the
time series from time domain into time-frequency domain.

Since the wavelet transform has the property of time-
frequency localization of the time series, it means most of
the energy of the time series can be represented by only
a few wavelet coefficients. Moreover, if we use a spe-
cial type of wavelet called Haar wavelet, we can achieve
O(mn) time complexity that is much efficient than DFT.
Chan and Fu used the Haar wavelet for time-series classifi-
cation, and showed performance improvement over DFT
[9]. Popivanov and Miller proposed an algorithm us-
ing the Daubechies wavelet for time series classification
[36]. Many other time series dimensionality reduction
techniques also have been proposed in recent years, such
as Piecewise Linear Representation [28], Piecewise Aggre-
gate Approximation [25, 45], Regression Tree [18], Sym-
bolic Representation [32]. These feature extraction algo-
rithms keep the features with lower reconstruction error,
the feature dimensionality is decided by the user given ap-
proximation error. All the proposed algorithms work well
for time series with some dimensions because the high cor-
relation among time series data makes it possible to re-
move huge amount of redundant information. Moreover,
since time series data are normally embedded by noise, one
byproduct of dimensionality reduction is noise shrinkage,
which can improve the mining quality.

However, how to choose the appropriate dimension of
the features is a challenging problem. When using feature
extraction for classification with labeled data, this prob-
lem can be circumvented by the wrapper approach. The
wrapper approach uses the accuracy of the classification
algorithm as the evaluation criterion. It searches for fea-
tures better suited to the classification algorithm aiming to

improve classification accuracy [30]. For clustering algo-
rithms with unlabeled data, determining the feature dimen-
sionality becomes more difficult. To our knowledge, auto-
matically determining the appropriate feature dimension-
ality has not been well studied in the literature, most of
the proposed feature extraction algorithms need the users
to decide the dimensionality or give the approximation er-
ror. Zhang et al. [46] proposed an algorithm to automat-
ically extract features from wavelet coefficients using en-
tropy. Nevertheless, the length of the extracted features is
the same with the length of the original time series that
can’t take the advantage of dimensionality reduction. Lin
et al. [33] proposed an iterative clustering algorithm ex-
ploring the multi-scale property of wavelets. The clustering
centers at each approximation level are initialized by using
the final centers returned from the coarser representation.
The algorithm can be stopped at any level but the stopping
level should be decided by the user. There are several fea-
ture selection techniques for clustering have been proposed
[12, 15, 41]. However, these techniques just order the fea-
tures in the absence of data labels, the appropriate dimen-
sionality of features still need to be given by the user.

In this paper we propose a time-series feature extrac-
tion algorithm using orthogonal wavelet for automatically
choosing feature dimensionality for clustering. The prob-
lem of determining the feature dimensionality is circum-
vented by choosing the appropriate scale of the wavelet
transform. An ideal feature extraction technique has
the ability to efficiently reduce the data into a lower-
dimensional model, while preserving the properties of the
original data. In practice, however, information is lost as
the dimensionality is reduced. It is therefore desirable to
formulate a method that reduces the dimensionality effi-
ciently, while preserving as much information from the
original data as possible. The proposed feature extraction
algorithm leverages the lower dimensionality and lower er-
rors by selecting the scale within which the detail coeffi-
cients have lower energy than that within the nearest lower
scale. The proposed feature extraction algorithm is effi-
cient that can achieve time complexity O(mn) with Haar
wavelet.

The rest of this paper is organized as follows. Section 2
gives the basis for supporting our feature extraction algo-
rithm. The feature extraction algorithm and its time com-
plexity analysis are introduced in Section 3. Section 4 con-
tains a comprehensive experimental evaluation of the pro-
posed algorithm. We conclude the paper by summarizing
the main contributions in Section 5.

2 The basis of the wavelet-based
feature extraction algorithm

Section 2.1 briefly introduces the basic concepts of wavelet
transform. The properties of wavelet transform supporting
our feature extraction algorithm are given in Section 2.2.
Section 2.3 presents the Haar wavelet transform algorithm
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used in our experiments.

2.1 Orthogonal Wavelet Transform
Background

Wavelet transform is a domain transform technique for hi-
erarchically decomposing sequences. It allows a sequence
to be described in terms of an approximation of the original
sequence, plus a set of details that range from coarse to fine.
The property of wavelets is that the broad trend of the input
sequence is preserved in the approximation part, while the
localized changes are kept in the detail parts. No informa-
tion will be gained or lost during the decomposition pro-
cess. The original signal can be fully reconstructed from
the approximation part and the detail parts. The detailed
description of wavelet transform can be found in [13, 10].

The wavelet is a smooth and quickly vanishing oscillat-
ing function with good localization in both frequency and
time. A wavelet family ψj,k is the set of functions generated
by dilations and translations of a unique mother wavelet

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z

A function ψ ∈ L2(R) is an orthogonal wavelet if the fam-
ily ψj,k is an orthogonal basis of L2(R), that is

< ψj,k, ψl,m >= δj,l · δk,m, j, k, l, m ∈ Z

where < ψj,k, ψl,m > is the inner product of ψj,k and ψl,m,
and δi,j is the Kronecker delta defined by

δi,j =
{

0, for i 6= j
1, for i = j

Any function f(t) ∈ L2(R) can be represented in terms
of this orthogonal basis as

f(t) =
∑

j,k

cj,kψj,k(t) (1)

and the cj,k =< ψj,k(t), f(t) > are called the wavelet
coefficients of f(t).

Parsevel’s theorem states that the energy is preserved un-
der the orthogonal wavelet transform, that is,

∑

j,k∈Z
| < f(t), ψj,k > |2 = ‖f(t)‖2, f(t) ∈ L2(R) (2)

(Chui 1992, p. 226 [10]). If f(t) be the Euclidean dis-
tance function, Parsevel’s theorem also indicates that f(t)
will not change by the orthogonal wavelet transform. The
distance preserved property makes sure no false dismissal
will occur with distance based learning algorithms [29].

To efficiently calculate the wavelet transform for signal
processing, Mallat introduced the Multiresolution Analysis
(MRA) and designed a family of fast algorithms based on it
[35]. The advantage of MRA is that a signal can be viewed
as composed of a smooth background and fluctuations or
details on top of it. The distinction between the smooth

part and the details is determined by the resolution, that
is, by the scale below which the details of a signal cannot
be discerned. At a given resolution, a signal is approxi-
mated by ignoring all fluctuations below that scale. We can
progressively increase the resolution; at each stage of the
increase in resolution finer details are added to the coarser
description, providing a successively better approximation
to the signal.

A MBA of L2(R) is a chain of subspace {Vj : j ∈ Z}
satisfying the following conditions [35]:

(i) . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 . . . ⊂ L2(R)
(ii)

⋂
j∈Z Vj = {0}, ⋃j∈Z Vj = L2(R)

(iii) f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1;∀j ∈ Z
(iv) ∃φ(t), called scaling function, such that

{φ(t− k) : k ∈ Z} is an orthogonal basis
of V0.

Thus φj,k(t) = 2j/2φ(2jt−k) is the orthogonal basis of
Vj . Consider the space Wj−1, which is an orthogonal com-
plement of Vj−1 in Vj : Vj = Vj−1

⊕
Wj−1. By defining

the ψj,k form the orthogonal basis of Wj , the basis

{φj,k, ψj,k; j ∈ Z, k ∈ Z}

spans the space Vj :

V0

⊕
W0︸ ︷︷ ︸

V1

⊕
W1

⊕
. . .

⊕
Wj−1 = Vj (3)

Notice that because Wj−1 is orthogonal to Vj−1, the ψ is
orthogonal to φ.

For a given signal f(t) ∈ L2(R) one can find a scale j
such that fj ∈ Vj approximates f(t) up to predefined pre-
cision. If dj−1 ∈ Wj−1, fj−1 ∈ Vj−1, then fj is decom-
posed into {fj−1, dj−1}, where fj−1 is the approximation
part of fj in the scale j− 1 and dj−1 is the detail part of fj

in the scale j − 1. The wavelet decomposition can be re-
peated up to scale 0. Thus fj can be represented as a series
{f0, d0, d1, . . . , dj−1} in scale 0.

2.2 The Properties of Orthogonal Wavelets
for Supporting the Feature Extraction
Algorithm

Assume a time series
−→
X (

−→
X ∈ Rn) is located in the

scale J . After decomposing
−→
X at a specific scale j

(j ∈ [0, 1, . . . , J − 1]), the coefficients Hj(
−→
X ) cor-

responding to the scale j can be represented by a se-
ries {−→Aj ,

−→
Dj , . . . ,

−−−→
DJ−1}. The

−→
Aj are called approx-

imation coefficients which are the projection of
−→
X in

Vj and the
−→
Dj , . . . ,

−−−→
DJ−1 are the wavelet coefficients in

Wj , . . . ,WJ−1 representing the detail information of
−→
X .

From a single processing point of view, the approximation
coefficients within lower scales correspond to the lower fre-
quency part of the signal. As noise often exists in the high
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frequency part of the signal, the first few coefficients of
HJ(

−→
X ), corresponding to the low frequency part of the sig-

nal, can be viewed as a noise-reduced signal. Thus keeping
these coefficients will not lose much information from the
original time series

−→
X . Hence normally the first k coef-

ficients of H0(
−→
X ) are chosen as the features [36, 9]. We

keep all the approximation coefficients within a specific
scale j as the features which are the projection of

−→
X in Vj .

Note that the features retain the entire information of
−→
X at

a particular level of granularity. The task of choosing the
first few wavelet coefficients is circumvented by choosing a
particular scale. The candidate selection of feature dimen-
sions is reduced from [1, 2, . . . , n] to [20, 21, . . . , 2J−1].

Definiton 2.1. Given a time series
−→
X ∈ Rn, the features

are the Haar wavelet approximation coefficients
−→
Aj decom-

posed from
−→
X within a specific scale j, j ∈ [0, 1, . . . , J −

1].

The extracted features should be similar to the orig-
inal data. A measurement for evaluating the similar-
ity/dissimilarity between the features and the data is nec-
essary. We use the widely used sum of squared errors
(square of Euclidean distance) as the dissimilarity measure
between a time-series and its approximation.

Definiton 2.2. Given a time-series
−→
X ∈ Rn, let

−̂→
X ∈ Rn

denote any approximation of
−→
X , the sum of squared errors

(SSE) between
−→
X and

−̂→
X is defined as

SSE(
−→
X,
−̂→
X ) =

n∑

i=1

(xi − x̂i)2 (4)

Since the length of the features corresponding to scale j

is smaller than the length of
−→
X , we can’t calculate the SSE

between
−→
X and

−→
Aj by Eq. (4) directly. One choice is to

reconstruct a sequence
−̂→
X ∈ Rn from

−→
Aj then calculate the

SSE between
−→
X and

−̂→
X . For instance, Kaewpijit et al. [23]

used the correlation function of
−→
X and

−̂→
X to measure the

similarity between
−→
X and

−→
Aj . Actually, SSE(

−→
X,
−̂→
X ) is

the same as energy difference between
−→
Aj and

−→
X with or-

thogonal wavelet transform. This property makes it possi-
ble to design an efficient algorithm without reconstructing
−̂→
X .

Definiton 2.3. Given a time-series
−→
X ∈ Rn, the energy of−→

X is:

E(
−→
X ) =

n∑

i=1

(xi)2 (5)

Definiton 2.4. Given a time-series
−→
X ∈ Rn and its fea-

tures
−→
Aj ∈ Rm, the energy difference (ED) between

−→
X

and
−→
Aj is

ED(
−→
X,
−→
Aj) = E(

−→
X )−E(

−→
Aj) =

n∑

i=1

(xi)2−
m∑

i=1

(ai
j)

2 (6)

The
−̂→
X can be reconstructed by padding zeros to the

end of
−→
Aj to make sure the length of padded series is the

same as that of
−→
X and preforming the reconstruction algo-

rithm with the padded series. The reconstruction algorithm
is the reverse process of decomposition [35]. An exam-

ple of
−→
A5 and the

−̂→
X reconstructed from

−→
A5 using Haar

wavelet transform for a time series located in scale 7 is
shown in Figure 1. From Eq. 2 we know the wavelet trans-
form is energy preserved, thus the energy of approximation
coefficients within the scale j is equal to that of their re-

constructed approximation series, i.e., E(
−̂→
X ) = E(

−→
Aj).

As mentioned in Section 2.1, VJ = VJ−1

⊕
WJ−1, we

have E(
−→
X ) = E(

−−−→
AJ−1) + E(

−−−→
DJ−1). When decompos-

ing the
−→
X to a scale j, from Eq. 3, we have E(

−→
X ) =

E(
−→
Aj) +

∑J−1
i=j E(Dj). Therefore, the energy difference

between the Aj and
−→
X is the sum of the energy of wavelet

coefficients located in the scale j and scales higher than j,
i.e., ED(

−→
X,
−→
Aj) =

∑J−1
i=j E(

−→
Di).

The Hj(
−→
X ) is {−→Aj ,

−→
Dj , . . . ,

−−−→
DJ−1} and Hj(

−̂→
X ) is

{−→Aj , 0, . . . , 0}. Since Euclidean distance also pre-
served with orthogonal wavelet transform, we have

SSE(
−→
X,
−̂→
X ) = SSE(Hj(

−→
X ),Hj(

−̂→
X )) =

∑J−1
i=j E(

−→
Di).

Therefore, the energy difference between
−̂→
X and

−→
X is

equal to that between
−→
Aj and

−→
X , that is

SSE(
−→
X,
−̂→
X ) = ED(

−→
X,
−→
Aj) (7)

Figure 1: An example of approximation coefficients and
their reconstructed approximation series

2.3 Haar Wavelet Transform

We use the Haar wavelet in our experiments which has the
fastest transform algorithm and is the most popularly used
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orthogonal wavelet proposed by Haar. Note that the prop-
erties mentioned in Section 2.2 are hold for all orthogonal
wavelets such as the Daubechies wavelet family. The con-
crete mathematical foundation of the Haar wavelet can be
found in [7]. The length of an input time series is restricted
to an integer power of 2 in the process of wavelet decom-
position. The series will be extended to an integer power
of 2 by padding zeros to the end of the time series if the
length of input time series doesn’t satisfy this requirement.

The Haar wavelet has the mother function

ψHaar(t) =





1, if 0 < t < 0.5
−1, if 0.5 < t < 1

0, otherwise

and scaling function

φHaar(t) =
{

1, for 0 ≤ t < 1
0, otherwise

A time-series
−→
X = {x1, x2, . . . , xn} located in the scale

J = log2(n) can be decomposed into an approximation
part

−−−→
AJ−1 = {(x1 +x2)/

√
2, (x3 +x4)/

√
2, . . . , (xn−1 +

xn)/
√

2} and a detail part
−−−→
DJ−1 = {(x1−x2)/

√
2, (x3−

x4)/
√

2, . . . , (xn−1 − xn)/
√

2}. The approximation coef-
ficients and wavelet coefficients within a particular scale j,−→
Aj and

−→
Dj , both having length n/2J−j , can be decom-

posed from
−−−→
Aj+1, the approximation coefficients within

scale j + 1 recursively. The ith element of
−→
Aj is calculated

as:

ai
j =

1√
2
(a2i−1

j+1 + a2i
j+1), i ∈ [1, 2, . . . , n/2J−j ] (8)

The ith element of
−→
Dj is calculated as:

di
j =

1√
2
(a2i−1

j+1 − a2i
j+1), i ∈ [1, 2, . . . , n/2J−j ] (9)

−→
A0 has only one element denoting the global average of−→

X . The ith element of
−→
Aj corresponds to the segment in

the series
−→
X starting from position (i−1)∗2J−j +1 to po-

sition i∗2J−j . The ai
j is proportional to the average of this

segment and thus can be viewed as the approximation of
the segment. It’s clear that the approximation coefficients
within different scales provide an understanding of the ma-
jor trends in the data at a particular level of granularity.

The reconstruction algorithm just is the reverse process
of decomposition. The

−−−→
Aj+1 can be reconstructed by for-

mula (10) and (11).

a2i−1
j+1 =

1√
2
(ai

j + di
j), i ∈ [1, 2, . . . , n/2J−j ] (10)

a2i
j+1 =

1√
2
(ai

j − di
j), i ∈ [1, 2, . . . , n/2J−j ] (11)

3 Wavelet-based feature extraction
algorithm

3.1 Algorithm Description
For a time-series, the features corresponding to higher scale
keep more wavelet coefficients and have higher dimen-
sionality than that corresponding to lower scale. Thus the

SSE(
−→
X,
−̂→
X ) corresponding to the features located in dif-

ferent scales will monotonically increase when decreasing
the scale. Ideal features should have lower dimensional-
ity and lower SSE(

−→
X,
−̂→
X ) at the same time. But these

two objectives are in conflict. Rate distortion theory indi-
cates that a tradeoff between them is necessary [11]. The
traditional rate distortion theory determines the level of in-
evitable expected distortion, D, given the desired informa-
tion rate R, in terms of the rate distortion function R(D).

The SSE(
−→
X,
−̂→
X ) can be viewed as the distortion D. How-

ever, we hope to automatically select the scale without any
user set parameters. Thus we don’t have the desired infor-
mation rate R, in this case the rate distortion theory can’t
be used to solve our problem.

As mentioned in the Section 2.2, the SSE(
−→
X,
−̂→
X ) is

equal to the sum of the energy of all removed wavelet co-
efficients. For a time series dataset having m time series,
when decreasing the scale from the highest scale to scale
0, discarding the wavelet coefficients within a scale with
lower energy ratio (

∑
m E(

−→
Dj)/

∑
m

∑0
i=J−1 E(

−→
Di))

will not decrease the
∑

m SSE much. If a scale j satis-
fies

∑
m E(

−→
Dj) <

∑
m E(

−−−→
Dj−1), removing the wavelet

coefficients within this scale and higher scales achieves a
local tradeoff of lower D and lower dimensionality for the
dataset. In addition, from a noise reduction point of view,
the noise normally found in wavelet coefficients within
higher scales (high frequency part), and the energy of that
noise is much smaller than that of the true signal with
wavelet transform [14]. If the energy of the wavelet coeffi-
cients within a scale is small, their will be a lot of noise em-
bedded in the wavelet coefficients; discarding the wavelet
coefficients within this scale can remove more noise.

Based on the above reasoning, we leverage the two con-
flicted objectives by stopping the decomposition process at
the scale j∗ − 1, when

∑
m E(

−−−−→
Dj∗−1) >

∑
m E(

−−→
Dj∗).

The scale j∗ is defined as the appropriate scale and the fea-
tures corresponding to the scale j∗ are kept as the appropri-
ate features. Note that by this process, at least

−−−→
DJ−1 will be

removed, and the length of
−−−→
DJ−1 is n/2 for Haar wavelet.

Hence the dimensionality of the features will smaller than
or equal to n/2. The proposed feature extraction algorithm
is summarized in pseudo-code format in Algorithm 1.

3.2 Time Complexity Analysis
The time complexity of Haar wavelet decomposition for a
time-series is 2(n−1) bound by O(n) [8]. Thus for a time-



310 Informatica 30 (2006) 305–319 H. Zhang et al.

Algorithm 1 The feature extraction algorithm

Input: a set of time-series {−→X1,
−→
X2, . . . ,

−−→
Xm}

for i=1 to m do
calculate

−−−→
AJ−1 and

−−−→
DJ−1 for

−→
Xi

end for
calculate

∑
m E(

−→
D1)

exitFlag = true
for j=J-2 to 0 do

for i=1 to m do
calculate

−→
Aj and

−→
Dj for

−→
Xi

end for
calculate

∑
m E(

−→
Dj)

if
∑

m E(
−→
Dj) >

∑
m E(

−−−→
Dj+1) then

keep all the
−−−→
Aj+1 as the appropriate features for

each time-series
exitFlag = false
break

end if
end for
if exitFlag then

keep all the
−→
A0 as the appropriate features for each

time-series
end if

series dataset having m time-series, the time complexity of
decomposition is m ∗ 2(n − 1). Note that the feature ex-
traction algorithm can break the loop before achieving the
lowest scale. We just analyze the extreme case of the algo-
rithm with highest time complexity (the appropriate scale
j = 0). When j = 0, the algorithm consists of the follow-
ing sub-algorithms:

– Decompose each time-series in the dataset until the
lowest scale with time complexity m ∗ (2n− 1);

– Calculate the energy of wavelet coefficients with time
complexity m ∗ (n− 1);

– Compare the
∑

m E(
−→
Dj) of different scales with time

complexity log2(n).

The time complexity of the algorithm is the sum of the
time complexity of the above sub-algorithms bounded by
O(mn).

4 Experimental evaluation
We use subjective observation and five objective criteria on
nine datasets to evaluate the clustering quality of the K-
means and hierarchical clustering algorithm [21]. The ef-
fectiveness of the feature extraction algorithm is evaluated
by comparing the clustering quality of extracted features to
the clustering quality of the original data. We also com-
pared the clustering quality of the extracted appropriate
features with that of the features located in the scale prior
to the appropriate scale (prior scale) and the scale posterior

to the appropriate scale (posterior scale). The efficiency
of the proposed feature extraction algorithm is validated
by comparing the execution time of the chain process that
performs feature extraction firstly then executes clustering
with the extracted features to that of clustering with origi-
nal datasets directly.

4.1 Clustering Quality Evaluation Criteria
Evaluating clustering systems is not a trivial task because
clustering is an unsupervised learning process in the ab-
sence of the information of the actual partitions. We used
classified datasets and compared how good the clustered
results fit with the data labels which is the most popular
clustering evaluation method [20]. Five objective cluster-
ing evaluation criteria were used in our experiments: Jac-
card, Rand and FM [20], CSM used for evaluating time
series clustering algorithms [44, 24, 33], and NMI used re-
cently for validating clustering results [40, 16].

Consider G = G1, G2, . . . , GM as the clusters from a
supervised dataset, and A = A1, A2, . . . , AM as that ob-
tained by a clustering algorithm under evaluations. Denote
D as a dataset of original time series or features. For all
the pairs of series (

−→
Di,

−→
Dj) in D, we count the following

quantities:

– a is the number of pairs, each belongs to one cluster
in G and are clustered together in A.

– b is the number of pairs that are belong to one cluster
in G, but are not clustered together in A.

– c is the number of pairs that are clustered together in
A, but are not belong to one cluster in G.

– d is the number of pairs, each neither clustered to-
gether in A, nor belongs to the same cluster in G.

The used clustering evaluation criteria are defined as be-
low:

1. Jaccard Score (Jaccard):

Jaccard =
a

a + b + c

2. Rand statistic (Rand):

Rand =
a + d

a + b + c + d

3. Folkes and Mallow index (FM):

FM =
√

a

a + b
· a

a + c

4. Cluster Similarity Measure (CSM) :

The cluster similarity measure is defined as:

CSM(G,A) =
1
M

M∑

i=1

max
1≤j≤M

Sim(Gi, Aj)
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where

Sim(Gi, Aj) =
2|Gi ∩Aj |
|Gi|+ |Aj |

5. Normalized Mutual Information (NMI):

NMI =

∑M
i=1

∑M
j=1 Ni,j log( N ·Ni,j

|Gi||Aj | )√
(
∑M

i=1 |Gi|log |Gi|
N )(

∑M
j=1 |Aj |logAj

N )

where N is the number of time series in the dataset,
|Gi| is the number of time series in cluster Gi, |Aj | is
the number of time series in cluster Aj , and Ni,j =
|Gi ∩Aj |.

All the used clustering evaluation criteria have value rang-
ing from 0 to 1, where 1 corresponds to the case when G
and A are identical. A criterion value is the bigger, the
more similar between A and G. Thus, we prefer bigger
criteria values. Each of the above evaluation criterion has
its own benefit and there is no consensus of which crite-
rion is better than other criteria in data mining community.
To avoid biassed evaluation, we count how many times the
evaluation criteria values produced from features are big-
ger/equal/smaller than that obtained from original data and
draw conclusions based on the counted times.

4.2 Data Description
We used five datasets (CBF, CC, Trance, Gun and Real-
ity) from the UCR Time Series Data Mining Archive [26].
(There are six classified datasets in the archive. The Aus-
lan data is a multivariate dataset with which we can’t ap-
ply the clustering algorithm directly. We used all the other
five datasets for our experiments.) Other four datasets are
downloaded from the Internet. The main features of the
used datasets are described as below.

– Cylinder-Bell-Funnel (CBF): Contains three types of
time series: cylinder (c), bell (b) and funnel (f). It
is an artificial dataset original proposed in [38]. The
instances are generated using the following functions:

c(t) = (6 + η) · χ[a,b](t) + ε(t)
b(t) = (6 + η) · χ[a,b](t− a)/(b− a) + ε(t)
f(t) = (6 + η) · χ[a,b](b− t)/(b− a) + ε(t)

where

χ[a,b] =
{

0, if t < a ∨ t > b
1, if a ≤ t ≤ b

η and ε(t) are drawn from a standard normal distribu-
tion N(0, 1), a is an integer drawn uniformly from the
range [16, 32] and b− a is an integer drawn uniformly
from the range [32, 96]. The UCR Archive provides
the source code for generating the samples. We gen-
erated 128 samples for each class with length 128.

– Control Chart Time Series (CC): This dataset has 100
instances for each of the six different classes of control
charts.

– Trace dataset (Trace): The 4-class dataset contains
200 instances, 50 for each class. The dimensionality
of the data is 275.

– Gun Point dataset (Gun): The dataset has two classes,
each contains 100 instances. The dimensionality of
the data is 150.

– Reality dataset (Reality): The dataset consists of data
from Space Shuttle telemetry, Exchange Rates and ar-
tificial sequences. The data is normalized so that the
minimum value is zero and the maximum is one. Each
cluster contains one time series with 1000 datapoints.

– ECG dataset (ECG): The ECG dataset was obtained
from the ECG database at PhysioNet [19]. We used 3
groups of those ECG time-series in our experiments:
Group 1 includs 22 time series representing the 2 sec
ECG recordings of people having malignant ventricu-
lar arrhythmia; Group 2 consists 13 time series that are
2 sec ECG recordings of healthy people representing
the normal sinus rhythm of the heart; Group 3 includes
35 time series representing the 2 sec ECG recordings
of people having supraventricular arrhythmia.

– Personal income dataset (Income): The personal in-
come dataset [1] is a collection of time series rep-
resenting the per capita personal income from 1929-
1999 in 25 states of the USA 1. The 25 states were par-
titioned into two groups based on their growing rate:
group 1 includes the east coast states, CA and IL in
which the personal income grows at a high rate; the
mid-west states form a group in which the personal
income grows at a low rate is called group 2.

– Temperature dataset (Temp): This dataset is obtained
from the National Climatic Data Center [2]. It is a
collection of 30 time series of the daily temperature in
year 2000 in various places in Florida, Tennessee and
Cuba. It has temperature recordings from 10 places in
Tennessee, 5 places in Northern Florida, 9 places in
Southern Florida and 6 places in Cuba. The dataset is
grouped basing on geographically distance and similar
temperature trend of the places. Tennessee and North-
ern Florida form group 1. Cuba and South Florida
form group 2.

– Population dataset (Popu): The population dataset is a
collection of time series representing the population
estimates from 1900-1999 in 20 states of USA [3].
The 20 states are partitioned into two groups based
on their trends: group 1 consists of CA, CO, FL, GA,
MD, NC, SC, TN, TX, VA, and WA having the ex-
ponentially increasing trend while group 2 consists of
IL, MA, MI, NJ, NY, OK, PA, ND, and SD having a
stabilizing trend.

1The 25 states included were: CT, DC, DE, FL, MA, ME, MD, NC,
NJ, NY, PA, RI, VA, VT, WV, CA, IL, ID, IA, IN, KS, ND, NE, OK, SD.
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As Gavrilov et al. [17] did experiments showing that
normalization is suitable for time series clustering, each
time series in the datasets downloaded from the Internet
(ECG, Income, Temp, and Popu) are normalized by for-
mula x′i = (xi − µ)/σ, i ∈ [1, 2, . . . , n].

4.3 The Clustering Performance Evaluation

We took the widely used Euclidean distance for K-means
and hierarchical clustering algorithm. As the Reality
dataset only has one time series in each cluster that is not
suitable for K-means algorithm, it was only used for hi-
erarchical clustering. Since the clustering results of K-
means depend on the initial clustering centers that should
be randomly initialized in each run, we run K-means 100
times with random initialized centers for each experiment.
Section 4.3.1 gives the energy ratio of wavelet coefficients
within various scales and the calculated appropriate scale
for each used dataset. The evaluation of K-means clus-
tering algorithm with the proposed feature extraction algo-
rithm is given in Section 4.3.2. Section 4.3.3 describes the
comparative evaluation of hierarchical clustering with the
feature extraction algorithm.

4.3.1 The Energy Ratio and Appropriate Scale

Table 1 provides the energy ratio∑
m E(

−→
Dj)/

∑
m

∑J−1
j=0 E(

−→
Dj) (in proportion to the

energy) of wavelet coefficients within various scales for
all the used datasets. The calculated appropriate scales for
the nine datasets using Algorithm 1 are shown in Table
2. The algorithm stops after the first iteration (scale = 1)
for most of the datasets (Trace, Gun, Reality, ECG, Popu,
and Temp), and stops after the second iteration (scale =
2) for CBF and CC datasets. The algorithm stops after
the third iteration (scale = 3) only for Income dataset. If
the sampling frequency for the time series is f , wavelet
coefficients within scale j correspond to the information
with frequency f/2j. Table 2 shows that most used time
series datasets have important frequency components
beginning from f/2 or f/4.

4.3.2 K-means Clustering with and without Feature
Extraction

The average execution time of the chain process that first
executes feature extraction algorithm then performs K-
means with the extracted features (termed by FE + K-
means) with 100 runs and that of performing K-means di-
rectly on the original data (termed by K-means) with 100
runs are illustrated in Figure 2. The chain process executes
faster than K-means with original data for the used eight
datasets.

Table 3 describes the mean of the evaluation criteria val-
ues of 100 runs for K-means with original data. Table 4
gives the mean of the evaluation criteria values of 100 runs
for K-means with extracted features.
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Popu 
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Figure 2: The average execution time (s) of the K-means +
FE and K-means algorithms for eight datasets

To compare the difference between the mean obtained
from 100 runs of K-means with extracted features and that
obtained from 100 runs of K-means with corresponding
original data, two-sample Z-test or two-sample t-test can
be used. We prefer two-sample t-test because it is robust
with respect to violation of the assumption of equal popu-
lation variances, provided that the number of samples are
equal [39]. We use two-sample t-test with the following
hypothesis:

H0 : µ1 = µ2

H1 : µ1 6= µ2

where µ1 is the mean of the evaluation criteria values corre-
sponding to original datasets and µ2 is that corresponding
to extracted features. The significance level is set as 0.05.
When the null hypothesis (H0) is rejected, we conclude that
the data provide strong evidence that µ1 is different with
µ2, and which item is bigger can be easily gotten by com-
paring the corresponding mean values as shown in Table 3
and Table 4. We list the results of t-tests in Table 5 (If the
mean of the values of a criterion corresponding to extracted
features is significantly bigger than that corresponding to
the original data, we set the character as ’>’; if the mean of
the values of a criterion corresponding to extract features
is significantly smaller than that corresponding to the orig-
inal data, the character is set as ’<’; otherwise we set the
character as ’=’). Table 5 shows that the evaluation criteria
values corresponding to extracted features are bigger than
that corresponding to the original data eleven times, smaller
than that corresponding to the original data five times, and
equal to that corresponding to the original data twenty four
times for eight datasets. Based on the above analysis, we
can conclude that the quality of K-means algorithm with
extracted features is better than that with original data av-
eragely for the used datasets.

Table 6 gives the mean of the evaluation criteria values
of 100 runs of K-means with features in the prior scale.
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Table 1: The energy ratio (%) of the wavelet coefficients within various scales for all the used datasets

scale CBF CC Trace Gun Reality ECG Income Popu Temp
1 8.66 6.34 0.54 0.18 0.03 18.22 5.07 0.12 4.51
2 6.00 5.65 1.31 1.11 0.1 26.70 2.03 0.46 7.72
3 7.67 40.42 2.60 2.20 0.29 19.66 1.49 7.31 5.60
4 11.48 19.73 4.45 7.85 3.13 12.15 26.08 8.10 4.57
5 18.97 9.98 6.75 15.58 3.85 8.97 28.49 13.68 9.92
6 32.25 17.87 14.66 54.81 8.94 7.11 26.39 21.94 4.29
7 15.62 39.66 14.43 21.39 3.55 10.46 48.39 16.60
8 29.56 4.02 20.01 1.80 42.62
9 0.46 19.41 1.83 4.16
10 22.84

Table 2: The appropriate scales of all nine datasets

CBF CC Trace Gun Reality ECG Income Popu Temp
scale 2 2 1 1 1 1 3 1 1

The difference between the mean of criteria values pro-
duced by K-means algorithm with extracted features and
that of criteria values generated by the features in the pri-
ori scale validated by t-test is described in Table 7. The
mean of the criteria values corresponding to the extracted
features are twelve times bigger, nineteen times equal, and
nine times small than that corresponding to the features lo-
cated in priori scale. The mean of the evaluation criteria
values of 100 runs of K-means with features in the posterior
scale are shown in Table 8. Table 9 provides the t-test re-
sult of the difference between the clustering criteria values
of extracted features and the clustering criteria produced by
the features within posterior scale. The mean of the criteria
values corresponding to the extracted features are ten times
bigger than that corresponding to the features located in the
posterior scale, twenty nine times equal to that correspond-
ing to the features located in the posterior scale, and only
smaller than the features in the posterior scale one time.
Based on the result of hypothesis testing, we can conclude
that the quality of K-means algorithm with extracted appro-
priate features is better than that with features in the prior
scale and posterior scale averagely for the used datasets.

4.3.3 Hierarchical Clustering with and without
Feature Extraction

We used single linkage for the hierarchical clustering algo-
rithm in our experiments. Figure 3 provides the comparison
of the execution time of performing hierarchical clustering
algorithm with original data (termed by HC) and the chain
process of feature extraction plus hierarchical clustering al-
gorithm (termed by HC + FE). For clearly observing the
difference between the execution time of HC and HC + FE,
the execution time is also given in Table 10. The chain pro-
cess executes faster than hierarchical clustering with origi-

nal data for all nine datasets.
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Figure 3: The execution time (s) of the HC + FE and HC

Evaluating the quality of the hierarchial clustering algo-
rithm can be divided into subject way and objective way.
Dendrograms are good for subjectively evaluating hierar-
chical clustering algorithm with time series data [27]. As
only Reality dataset has one time series in each cluster that
is suitable for visual observation, we used it for subjective
evaluation and other datasets are evaluated by objective cri-
teria. Hierarchical clustering with Reality dataset and its
extracted features had the same clustering solution. Note
that this result is fit with the introduction of the dataset as
Euclidean distance produces the intuitively correct clus-
tering [26]. The dendrogram of the clustering solution is
shown in Figure 4.

As each run of hierarchical clustering for the same
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Table 3: The mean of the evaluation criteria values obtained from 100 runs of K-means algorithm with eight datasets

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3490 0.4444 0.3592 0.3289 0.2048 0.6127 0.7142 0.7801
Rand 0.6438 0.8529 0.7501 0.4975 0.5553 0.7350 0.7611 0.8358
FM 0.5201 0.6213 0.5306 0.4949 0.3398 0.7611 0.8145 0.8543
CSM 0.5830 0.6737 0.5536 0.5000 0.4240 0.8288 0.8211 0.8800
NMI 0.3450 0.7041 0.5189 0.0000 0.0325 0.4258 0.5946 0.6933

Table 4: The mean of the evaluation criteria values obtained from 100 runs of K-means algorithm with the extracted
features

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3439 0.4428 0.3672 0.3289 0.2644 0.6344 0.7719 0.8320
Rand 0.6447 0.8514 0.7498 0.4975 0.4919 0.7644 0.8079 0.8758
FM 0.5138 0.6203 0.5400 0.4949 0.4314 0.7770 0.8522 0.8912
CSM 0.5751 0.6681 0.5537 0.5000 0.4526 0.8579 0.8562 0.9117
NMI 0.3459 0.6952 0.5187 0.0000 0.0547 0.4966 0.6441 0.7832

Figure 4: The dendrogram of hierarchical clustering with
extracted features and that with original data for Reality
dataset

dataset always gets the same result, we don’t need multiple
runs, the criteria values obtained from extracted features
are compared to that obtained from original data directly
without hypothesis testing. Table 11 describes the eval-
uation criteria values produced by hierarchical clustering
with eight original datasets. Table 12 gives the evaluation
criteria values obtained from hierarchical clustering with
extracted features. The difference between the items in Ta-
ble 11 and Table 12 is provided in Table 13. The meaning
of the characters in Table 13 is described as below: ’>’
means a criterion value produced by extracted features is
bigger than that produced by original data; ’<’ denotes a
criterion value obtained from extracted features is smaller
than that obtained from original data; Otherwise, we set
the character as ’=’. Hierarchical clustering with extracted
features produces same result as clustering with the orig-
inal data on CBF, Trace, Gun, Popu and Temp datasets.
For other three datasets, the evaluation criteria values pro-

duced by hierarchial clustering with extracted features are
ten times bigger than, four times smaller than, and one
time equal to that obtained from hierarchical clustering
with original data. From the experimental results, we can
conclude that the quality of hierarchical clustering with ex-
tracted features is better than that with original data aver-
agely for the used datasets.

The criteria values produced by hierarchical clustering
algorithm with features in the prior scale are given in Ta-
ble 14. The criteria values corresponding to the extracted
features shown in Table 12 are nine times bigger than, five
times small than, and twenty six times equal to the crite-
ria values corresponding to the features in the prior scale.
Table 15 shows the criteria values obtained by hierarchi-
cal clustering algorithm with features in the posterior scale.
The criteria values produced by the extracted features given
in Table 12 are eleven times bigger than, four times smaller
than, and twenty five times equal to the criteria values cor-
responding to the features in the posterior scale. From the
experimental results, we can conclude that the quality of
hierarchical clustering with extracted features is better than
that of hierarchical clustering with features located in the
priori and posterior scale averagely for the used datasets.

5 Conclusions

In this paper, unsupervised feature extraction is carried out
in order to improve the time series clustering quality and
speed the clustering process. We propose an unsupervised
feature extraction algorithm for time series clustering using
orthogonal wavelets. The features are defined as the ap-
proximation coefficients within a specific scale. We show
that the sum of squared errors between the approximation
series reconstructed from the features and the time-series is
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Table 5: The difference between the mean of criteria values produced by K-means algorithm with extracted features and
with original datasets validated by t-test

CBF CC Trace Gun ECG Income Popu Temp
Jaccard < = = = > > = =
Rand > = = = < > = =
FM < = = = > > = =
CSM < = = = > > = =
NMI = < = = > > = >

Table 6: The mean of the evaluation criteria values obtained from 100 runs of K-means algorithm with features in the
prior scale

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3489 0.4531 0.3592 0.3289 0.2048 0.6138 0.7142 0.7801
Rand 0.6438 0.8557 0.7501 0.4975 0.5553 0.7376 0.7611 0.8358
FM 0.5200 0.6299 0.5306 0.4949 0.3398 0.7615 0.8145 0.8543
CSM 0.5829 0.6790 0.5536 0.5000 0.4240 0.8310 0.8211 0.8800
NMI 0.3439 0.7066 0.5189 0.0000 0.0325 0.4433 0.5946 0.6933

Table 7: The difference between the mean of criteria values produced by K-means algorithm with extracted features and
with features in the priori scale validated by t-test

CBF CC Trace Gun ECG Income Popu Temp
Jaccard < < = = > > = =
Rand > < = = < > = =
FM < < = = > > = =
CSM < < = = > > = =
NMI > < = = > > = >

Table 8: The mean of the evaluation criteria values obtained from 100 runs of K-means algorithm with features in the
posterior scale

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3457 0.4337 0.3632 0.3289 0.2688 0.4112 0.7770 0.8507
Rand 0.6455 0.8482 0.7501 0.4975 0.4890 0.5298 0.8141 0.8906
FM 0.5158 0.6114 0.5352 0.4949 0.4388 0.5826 0.8560 0.9031
CSM 0.5771 0.6609 0.5545 0.5000 0.4663 0.6205 0.8611 0.9216
NMI 0.3474 0.6868 0.5190 0.0000 0.0611 0.0703 0.6790 0.8037

Table 9: The difference between the mean of criteria values produced by K-means algorithm with extracted features and
with features in the posterior scale validated by t-test

CBF CC Trace Gun ECG Income Popu Temp
Jaccard = > = = = > = =
Rand = > = = = > = =
FM = > = = = > = =
CSM = > = = < > = =
NMI = > = = = > = =
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Table 10: The execution time (s) of HC + FE and HC

CBF CC Trace Gun ECG Income Popu Temp Reality
HC 13.7479 51.3319 2.7102 2.1256 0.3673 0.0169 0.0136 0.0511 0.0334
HC + FE 12.1269 49.7365 2.6423 2.0322 0.2246 0.0156 0.0133 0.0435 0.0172

Table 11: The evaluation criteria values produced by hierarchical clustering algorithm with the original eight datasets

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3299 0.5594 0.4801 0.3289 0.3259 0.5548 0.4583 0.4497
Rand 0.3369 0.8781 0.7488 0.4975 0.3619 0.5800 0.5211 0.4877
FM 0.5714 0.7378 0.6827 0.4949 0.5535 0.7379 0.6504 0.6472
CSM 0.4990 0.7540 0.6597 0.5000 0.4906 0.6334 0.6386 0.6510
NMI 0.0366 0.8306 0.6538 0.0000 0.0517 0.1460 0.1833 0.1148

Table 12: The evaluation criteria values obtained by hierarchical clustering algorithm with appropriate features extracted
from eight datasests

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3299 0.5933 0.4801 0.3289 0.3355 0.5068 0.4583 0.4497
Rand 0.3369 0.8882 0.7488 0.4975 0.3619 0.5200 0.5211 0.4877
FM 0.5714 0.7682 0.6827 0.4949 0.5696 0.6956 0.6504 0.6472
CSM 0.4990 0.7758 0.6597 0.5000 0.4918 0.6402 0.6386 0.6510
NMI 0.0366 0.8525 0.6538 0.0000 0.0847 0.0487 0.1833 0.1148

Table 13: The difference between the criteria values obtained by hierarchical clustering algorithm with eight datasets and
with features extracted from the datasets

CBF CC Trace Gun ECG Income Popu Temp
Jaccard = > = = > < = =
Rand = > = = = < = =
FM = > = = > < = =
CSM = > = = > > = =
NMI = > = = > < = =

Table 14: The evaluation criteria values obtained by hierarchical clustering algorithm with features in the prior scale

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3299 0.5594 0.4801 0.3289 0.3259 0.5548 0.4583 0.4497
Rand 0.3369 0.8781 0.7488 0.4975 0.3619 0.5800 0.5211 0.4877
FM 0.5714 0.7378 0.6827 0.4949 0.5535 0.7379 0.6504 0.6472
CSM 0.4990 0.7540 0.6597 0.5000 0.4906 0.6334 0.6386 0.6510
NMI 0.0366 0.8306 0.6538 0.0000 0.0517 0.1460 0.1833 0.1148
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Table 15: The evaluation criteria values obtained by hierarchical clustering algorithm with features in the posterior scale

CBF CC Trace Gun ECG Income Popu Temp
Jaccard 0.3299 0.4919 0.4801 0.3289 0.3355 0.5090 0.4583 0.4343
Rand 0.3369 0.8332 0.7488 0.4975 0.3619 0.5467 0.5211 0.5123
FM 0.5714 0.6973 0.6827 0.4949 0.5696 0.6908 0.6504 0.6207
CSM 0.4990 0.6640 0.6597 0.5000 0.4918 0.6258 0.6386 0.6340
NMI 0.0366 0.7676 0.6538 0.0000 0.0847 0.0145 0.1833 0.1921

equal to the energy of the wavelet coefficients within this
scale and lower scales. Based on this property, we leverage
the conflict of taking lower dimensionality and lower sum
of squared errors simultaneously by finding the scale within
which the energy of wavelet coefficients is lower than that
within the nearest lower scale. An efficient feature extrac-
tion algorithm is designed without reconstructing the ap-
proximation series. The time complexity of the feature ex-
traction algorithm can achieve O(mn) with Haar wavelet
transform. The main benefit of the proposed feature ex-
traction algorithm is that dimensionality of the features is
chosen automatically.

We conducted experiments on nine time series datasets
using K-means and hierarchical clustering algorithm. The
clustering results were evaluated by subjective observation
and five objective criteria. The chain process of perform-
ing feature extraction firstly then executing clustering al-
gorithm with extract features executes faster than cluster-
ing directly with original data for all the used datasets.
The quality of clustering with extracted features is better
than that with original data averagely for the used datasets.
The quality of clustering with extracted appropriate fea-
tures is also better than that with features corresponding
to the scale prior and posterior to the appropriate scale.
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