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Fitting Directed Graphical Gaussian

Models with One Hidden Variable

Fulvia Pennoni1

Abstract

We discuss directed acyclic graph (DAG) models to represent the indepen-
dence structure of linear Gaussian systems with continuous variables: such
models can be interpreted as a set of recursive univariate regressions. Then
we consider Gaussian models in which one of the variables is not observed
and we show how the incomplete log-likelihood of the observed data can be
maximized using the EM. As the EM algorithm does not provide the matrix
of the second derivatives we show how to get an explicit formula for the ob-
served information matrix. We illustrate the utility of the models with two
examples.

1 Introduction

The analysis of multivariate data typically deals with complex association structures
due to various direct and indirect relations among variables. The idea of graphical
Markov models is to represent the independence structure of a multivariate random
vector by a graph where the vertices correspond to variables and the absence of
an edge between vertices stands for conditional or marginal independencies. In
many applications some dependency structure between observed variables can be
explained by supposing that their distribution arises after marginalizing over, and
or conditioning on latent variables.

Such models are particularly of interest in the context in which one variable is not
observed and some knowledge about the generating process of the data is available
as for example for data collected in the social sciences. In such context appropriate
estimation procedures have to be found to estimate the parameters of interest. We
focus on maximum likelihood estimation of DAG models with one latent variable
which can act as an intermediate, source or collision node. The estimation requires
iterative solutions and thus appropriate algorithms.

The outline of the paper is as follows. In the first section we interpret a DAG
for a Gaussian system as a set of recursive univariate regressions and we give some
matrix notation. In Section 3 we show the observed data log-likelihood and briefly
we discuss some identifiability problems. We also illustrate the steps of the EM
algorithm for maximum likelihood estimation. Following Kiiveri (1987) we report
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the explicit form for the second derivatives of observed log-likelihood and in the Ap-
pendix we show how to derive it. In Section 4 we give some examples of identifiable
DAG’s with one hidden variable using real data sets. Computations are carried out
in R with the package ggm (Marchetti and Drton, 2003).

2 Gaussian directed acyclic graph models

Suppose X = (X1, X2, ..., Xk) is a finite set of substantive variables of interest
ordered in certain way, such that there exist a subset of indices pa(i) ⊆ {i+1, ..., k},
i = 1, ..., k, some independent random variables ǫ1, ǫ2, ..., ǫk and linear functions
f1, f2, ..., fk such that

Xi = fi(Xpa(i), ǫi), i = 1, ..., k [Xpa(i) ≡ {Xj : j ∈ pa(i)}].

The set of equations Xi = fi(Xpa(i), ǫi) prescribes a stepwise process for generating
the distribution where a proper dependence of Xi is to be only on its potentially
explanatory variables. The system is called recursive or a univariate recursive re-

gression system or a triangular system.
This system can be represented by a directed acyclic graph (DAG) denoted

by G = (V, E) which consists of non empty finite set of vertices V ≡ {1, ..., k}
representing X = (X1, X2, ..., Xk) and a set E ⊆ V × V of arrows i ← j ∈ E iff
j ∈ pa(i) such that there are no direct path that start and end at the same variable.
The multivariate distribution of Xv is called G−Markovian if it fulfils the so called
pairwise Markov property

Xa ⊥⊥Xc|Xc for all (a, b) /∈ E, a 6= b.

For Gaussian distribution this is equivalent to the global Markov property (Lauritzen
and Wermuth, 1989). An important property of a distribution satisfying the global
directed Markov property associated with a DAG is that its joint density can be
decomposed into conditional probabilities involving only variables and their parents
according to the structure of the graph in the following way

p(x1, ..., xk) =
k
∏

i=1

p(xi|xpa(i)).

Assuming that X is a vector of k mean centered random variables with Gaussian
joint distribution with covariance matrix Σ, the recursive system can be written as

AX = ǫ cov(ǫ) = ∆ (2.1)

where A = {−ars} is upper triangular matrix with ones along the diagonals and
with off-diagonal elements corresponding to partial regression coefficients between
two variables given the parents, −ars = βrs.pa(r)\s associated with a directed edge
between Xs ← Xr; ∆ = cov(ǫ) is a nonsingular diagonal covariance matrix of
the residuals with elements of partial variances δrr = σrr.pa(r) along the diagonal,
representing the unexplained proportion of the variance of the dependent variable.
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The arguments we are dealing with apply also to the very much broader family of
problems that are called quasi linear (Cox and Wermuth, 1996). It means that any
dependence present has a linear component and like linear least square regression
equations in a multivariate normal framework, any curvature and higher-order inter-
actions present are such that a vanishing linear least-squares regression coefficient
implies that no dependence of substantive importance is present.

A triangular decomposition of the covariance matrix Σ and of the concentration
matrix Σ−1 is given by

cov(X) = Σ = (A−1)∆(A−1)′, Σ−1 = A′∆−1A.

Here we consider the estimation of the unknown parameter Σ or equivalently
(A, ∆) of a directed graphical Gaussian model based on an n independent and
identically distributed observations X(k) = (X1, ..., Xk) from X, with zero average
constructed from the series of deviates from the mean.

Since our model assumes a zero mean, the empirical covariance matrix is definite
to be

S =
∑

i

X iX i′/n i = 1, ..., k.

We assume n ≥ p such that S is positive definite with probability one. Note that
the case where the model also includes an unknown mean vector µ can be treated
by estimating µ by the empirical mean vector X̄.

The density function of X can be expressed as

f(x) = (2π)np/2|Σ|−n/2exp{−
n

2
tr(Σ−1)S},

see e.g. Edwards (2000). Considered as a function of the unknown parameters for
fixed data x it gives the likelihood function. The log-likelihood of the model, apart
from an additive constant

lX(Σ) =
n

2
[log |Σ−1| − tr(Σ−1S)], (2.2)

has to be maximized respect to Σ.
It can be shown that

ârs = −β̂rs.pa(r)\s δ̂ = σ̂rr.pa(r)

are the maximum likelihood estimates of A and ∆ defined by linear regression esti-
mates in the independent equations.

3 Maximum likelihood estimation with one unob-

served variable

Supposing that we observe only a subset Y p = (Y 1, ..., Y p) of the variables. The
complete data can be seen as X = (Y, Z) where Y denotes the observed compo-
nents of X and Z denotes the unobserved component. When this is the case the
corresponding DAG contains an hidden node.



122 Fulvia Pennoni

The relevant log-likelihood function based on the observed components can be
written as follows

lY (Σ) =
n

2
[log |Σ−1

yy | − tr(Σ−1
yy Syy)], (3.1)

where Σyy denotes the submatrix referring to Y of the conformably partitioned
covariance matrix of X, and Syy is the observed covariance matrix.

The problem of what can be learned from the distribution of the observed vari-
ables about the joint distribution specified by the DAG involves identifiability con-
ditions. If A and ∆ can be uniquely reconstructed from the covariance matrix of
the observed variables the system is said to be globally identified. Stanghellini and
Wermuth (2003) give sufficient conditions for identifiability of DAG Gaussian mod-
els with one hidden node. They are formulated in terms of the joint distribution
of the variables and based on properties of some conditional independence graphs
induced by the model (see e.g Pennoni, 2004). If the sample covariance matrix is
positive definite and the DAG considered satisfy one of the given conditions the
likelihood surface is unimodal and when fitting the corresponding model a unique
global maximum can be achieved.

Maximum likelihood analysis can be conceptualized as maximum likelihood es-
timation in a multivariate normal model with missing data (Dempster et al., 1977).
Following Kiiveri (1987) who first suggested the procedure in a discussion on Jöreskog
paper (1981), we describe the maximum likelihood method for fitting such DAGs
using the EM algorithm (Dempster et al.,1977). This is an iterative algorithm and
each cycle, which consists of an E step followed by and M step, increases the like-
lihood of the parameters. The E step calculates the expected sufficient statistics
given the observed data and the current estimate of the parameters and the M step
determines the conditional expectations of the sufficient statistics as if they were the
observed. For an application of the EM algorithm to estimate the factor analysis
model see Rubin (1982).

In the following we explicitly define the E and the M step of the algorithm and
present a simple matrix expression for carrying out the computations.

The computations required are particularly straightforward: in the E-step we
must compute Q(Σ|Σr) the conditional expected value of the complete data log-
likelihood to the observed data Y and a guessed initial value of complete data
covariance matrix Σr

Q(Σ|Σr) = E[l(Σ, |Y1, ..., Yp, Σr)].

It can be shown that

Q(Σ|Σr) =
n

2
[ln |Σ−1| − tr[(Σ−1)E(S|Y, Σr)]] (3.2)

where the expected complete data covariance matrix given Y can be written as

E(S|Y, Σr) =

(

Syy SyyB
′

. BSyyB
′ + (σzz)−1

)

= C(Syy|Σr) (3.3)
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where the element of the concentration matrix Σ−1 corresponding to the missing
data Z are noted σzz and where B = −(Σzz)−1Σzy = ΣzyΣ

−1
yy are the regression

coefficients between Z and Y .
Therefore in the M-step we maximize Q(Σ|Σr) as a function of Σ to produce

an improved estimate Σr+1. This maximization is carried out by fitting the linear
recursive regression equations specified by the DAG.

The generalized likelihood ratio test for directed graphical Gaussian models
against the saturated model, the deviance at convergence is

D = n[tr(SyyΣ̂
−1)− ln |SyyΣ̂

−1| −m],

which has an asymptotic χ2 distribution with df = [m(m+1)/2−m−k] degrees
of freedom, where m is the number observed variables and k is the number of edges
in the DAG.

The EM has the advantage of numerical stability which leads to a steady increase
in the likelihood of the data. A negative feature is that it may require many iterations
to converge, it is characterized by a slow convergence rate in a neighborhood of
the optimal point. It is also sensible to the starting values and it is convenient
to choose multiple random starting values. One major shortcoming is that the
observed information matrix is not obtained as a by-product of the algorithm, which
is useful to get an estimate of the precision of the estimated parameters to construct
confidence intervals and to construct various tests of significance.

As illustrated above the EM finds the value of θ, where θ = (θ1, ..., θh) is the
vector of the unknown parameters, θ̂ that maximizes lY (θ), that is the maximum
likelihood for θ based on the observed data Y . Following Dempster et al. (1977)
the observed log-likelihood lY (θ) can be decomposed as

lY (θ) = Q(θ|θ′)−H(θ|θ′)

which leads to a simple expression for the second derivative matrix of the observed
log-likelihood derived in terms of the criterion function invoked by the EM algorithm.
Minus the second derivative of the log-likelihood is made of two parts

−
∂2lY
∂θ∂θ

= −
∂2Q(θ|θ′)

∂θ∂θ
−
(

−
∂2H(θ|θ′)

∂θ∂θ

)

where Q is as in (3.2) and H is the expected value of the conditional density of the
complete data X given the observed data Y (Tanner, 1996). Referring to −Q as the
complete information and to −H as the missing information it has the following
appealing interpretation: the observed information is equal to the complete informa-
tion minus the missing information due to the unobserved components, which has
been called the “missing information principle” by Orchard and Woodbury (1972).
A basic result due to Louis (1982) is that if the distribution of the complete data is
in a regular exponential family −∂2H/∂θ∂θ = V arX|Y (∂lX/∂θ) the second deriva-
tive of the log-likelihood of the observed data can be expressed entirely in terms of
the complete data log-likelihood

−
∂2lY
∂θ∂θ

= −EX|Y

[ ∂2lX
∂θ∂θ

]

− V arX|Y

(∂lX
∂θ

)

(3.4)
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the amount of information lost by observing only Y is determined by the conditional
variance of the complete data log-likelihood given Y .

It is important to emphasize that the variance-covariance obtained is based on the
first and second derivatives of the observed data log-likelihood and thus is guarantee
to be inferentially valid only asymptotically.

Kiiveri (1982) calculated an explicit form for the above expression

∂2lY
∂θi∂θj

=
1

2
tr
(

Σij(Σ− C)− ΣiΣΣjΣ) +
1

2
tr(ΣiCΣjC − ΣiC̃ΣjC̃)

)

(3.5)

where C = C(Syy|Σ); C̃ = [C(Syy|Σ) − H ], where H =

(

0 0
0 1

σzz

)

; and Σij =

∂Σ−1/∂θi∂θj and Σi = ∂Σ−1/∂θi.
In Appendix it is shown how to get such a result and also the explicit formu-

las for the second derivatives of the observed data log-likelihood for the adopted
decomposition to Σ−1.

4 Examples

We illustrate the fitting of the models described above on same examples. The com-
putations were carried out using the R package ggm (Marchetti and Drton, 2003).
We implemented the R code to add to the existing routines of such package to com-
pute the standard errors for the estimated parameters (cf. Pennoni, 2004).

Example 1: Criminological research. Let us consider an example from crim-
inological research described by Smith and Patterson (1984). Random samples of
persons in sixty residential neighborhoods were interviewed regarding victimization
experiences, neighborhood safety and evaluation of police performance. The sample
was 1500 people living alone. The seven variables observed were as follows:
- Y4 number of self reported prior victimizations in the last twelve months,
- Y5 respondent’s age,
- Y6 respondent sex,
- Y7 the rate of personal and property victimization per 100 households in the re-
spondent’s neighborhood.

The following variables were responses to three questions asking respondents how
likely they thought it was that they would be victims of
- Y3 vandalism during the next year
- Y2 burglary
- Y1 robbery.

Response categories on these items ranged from “not at all likely’ to “very likely’.
The proposed model was that variables Y1, Y2, Y3 acted as indicators of a latent
variable named perceived risk of victimization.

The estimated residual variances for Y1, Y2, Y3 and Z are shown in Table 1 with
their standard errors and z-values.

Considering a system of linear equations represented with the DAG in Figure 1,
where Z is the latent variable we want to estimate the relevant regression coefficients
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Table 1: Estimated partial residual variances for the model in example 1.

δ s.e z
δ1.Z 0.4691 (0.0303) 15.4818
δ2.Z 0.3611 (0.0132) 27.3560
δ3.Z 0.4390 (0.0161) 27.2671

Table 2: Estimated regression coefficients for the model in the example 1.

Arrows Estimates s.e z

Y1 ← Z 0.6805 0.0486 14.0021
Y2 ← Z 0.7350 0.0503 14.6123
Y3 ← Z 0.6887 0.0480 14.3479
Z ← Y4 0.2541 0.0303 8.3861
Z ← Y5 −0.1343 0.0305 -4.4033
Z ← Y6 −0.0168 0.0305 -0.5508
Z ← Y7 0.2474 0.0299 8.2742
Y1 ← Y5 0.1165 0.0200 5.8250

Deviance 13.76 df 7 p < 0.06

Figure 1: DAG for Criminological example.

involving Z; the arrows between Y4, Y5, Y6 and Y7 are considered as dependencies
of some interest and they do not imply causal relationship. The dag satisfies the
conditions for global identifiability which can be checked in ggm, then the model is
globally identified and the parameters can be uniquely estimated up to the sign of
the coefficients involving the latent variable. Fitting this model with the residual
variance of the latent variable constrained to be one we get a deviance of 43.63
on 8 degrees of freedom. It can be seen from Table 2 that a significant fit can be
achieved by adding a direct edge from age (Y5) to the perceived risk of robbery (Y1).
The results from the new model are similar to those of the previous model with
the addition of a positive effect of the respondent’s age on the robbery indicator of
perceived risk as displayed in Table 2. It can be seen the non significant z-statistic
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for the regression coefficient of sex at the 5% level; it appears that prior victimization
(Y4) and victimization rate (Y7) have the greatest effect on the latent variable.

Table 3 gives the observed correlation matrix (upper triangular) and the esti-
mated correlation matrix (lower triangular) for the last models.

Table 3: Observed (upper diagonal) and Estimated (lower diagonal) covariance matrix.

Y1 − 0.575 0.540 0.169 -0.014 -0.023 0.224
Y2 0.575 − 0.598 0.240 −0.144 −0.088 0.215
Y3 0.539 0.599 − 0.246 −0.128 −0.092 0.182
Y4 0.198 0.237 0.222 − −0.184 −0.148 0.168
Y5 −0.014 −0.141 −0.132 −0.184 − 0.236 −0.027
Y6 −0.048 −0.082 −0.077 −0.148 0.236 − −0.102
Y7 0.198 0.217 0.203 0.168 −0.027 −0.102 −
Z 0.783 0.869 0.814 0.323 −0.191 −0.111 0.295 1.182

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Z

Example 2: Measurement problems. As a further illustration of fitting a
DAG Gaussian model an example from Sewel, Haller & Ohlendorf (1970) and Wiley
(1973) is be used. Most measurements used in behavioral and social sciences contains
sizeable measurements errors which if not taken into account can cause several bias
in results. The following example illustrates the problems with measurement errors
in observed variables. The purpose is to describe how well the observed indicators
serve as measurement instruments for the latent variable. A sample of 3500 was
recorded on the following items:
-MA Mental ability,
-SES Socio-economic status,
-AP Academic performance,
-SO Significant others’influence,
-EA Educational aspiration.
The postulated model includes a measurement error in SO, the graphical model in
Figure 2.

The correlation matrix between the observed variables is shown in Table 4.
The model is globally identified because it satisfy some of the sufficient conditions

given in Stanghellini and Wermuth (2003). Fitting the model with Z scaled to have
unit variance we get results shown in Table 5, where the standard errors and the
Wald test are also reported.

Table 4: Correlation matrix for variables in Educational example.

MA 1.00
SES .288 1.00
AP .589 .194 1.00
SO .438 .359 .473 1.00
EA .418 .380 .459 .611 1.00
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Figure 2: Graphical model for Educational example.

Table 5: Estimates for Educational example.

Estimates s.e Z
EA← Z 0.556 0.009 61.682

EA← AP 0.035 0.013 2.660
Z ← AP 0.617 0.021 29.468
Z ←MA 0.303 0.021 14.155
Z ← SES 0.479 0.018 27.100
SO ← Z 0.532 0.007 72.602

SES ←MA −0.288 0.016 -17.192
AP ←MA −0.589 0.014 -43.100

Deviance 7.1459 df 2

Table 6: Estimated partial residual variance in Educational model.

δEA.AP,Z δSO.Z δZ.AP,MA,SES δAP.MA δSES.MA δMA

0.378 0.399 0.474 0.653 0.917 1.00

The estimated residual variances are in Table 6. It can be seen that the residual
variance for SO is 0.399 it means that the reliability of SO is only 0.601.
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Appendix

To simplify the notation we write lX for lX(Σ)/n and lY for lY (Σ)/n. The first and
the second derivatives of (3.2) when Σ is a function of a vector of parameters θ are

∂lX
∂θ

=
1

2
tr(Σi(Σ− S))

∂2lX
∂θi∂θj

= −
1

2
tr(Σij(Σ− S)− ΣiΣΣjΣ)

where Σi = ∂Σ−1/∂θi and Σij = ∂Σ−1/∂θi∂θj . For the parametrization considered
Σ−1 = A′∆−1A the explicit derivatives have the form

∂lX
∂Aji

= [(Σ− S)A∆−1]ji;
∂lX
∂∆ii

=
1

2
[A(Σ− S)A′]ii;

∂2lX
∂Aji∂Aml

= −(AljAim + Sli∆
−1
mj);

∂2lX
∂∆ii∂∆ll

= −
1

4
(∆il∆il + ∆il∆il)

where Aji denotes the (j, i)th element of A−1 and ∆il is the (i, l)th element of ∆−1.
To get the derivatives of the incomplete log-likelihood lY as in (3.1) Dempster et

al. (1977) showed that
∂lY
∂θ

= EX|Y

(∂lX
∂θ

)

the observed score is equal to the expected score of the complete data log-likelihood
conditioned on the observed data. This expression becomes

∂lY
∂θi

=
1

2
tr
(

Σi(Σ− C)
)
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where C = C(Syy|Σ) is defined in (3.3). The first part of the right hand side of (3.4)
is minus the conditional expected value of second derivative of (3.2)

−EX|Y

[ ∂2lX
∂θi∂θj

]

= −
1

2
tr(Σij(Σ− C)− ΣiΣΣjΣ).

The second part of the right hand side of (3.4) can be written

−V arX|Y

(∂lX
∂θ

,
∂lX
∂θ′

)

= −EX|Y

{[∂lX
∂θ
− EX|Y

(∂lX
∂θ

)][∂lX
∂θ
−EX|Y

(∂lX
∂θ

)]′}

=

= −EX|Y

{1

2
tr
[

(Σi(C − S))(Σi(C − S))′
]}

= −
1

2
tr
(

ΣiCΣjC − ΣiC̃ΣjC̃
)

.

So (3.4) is established. In the parameterizations (A, ∆) we get the second derivatives

∂2lY
∂Aji∂Aml

= −(AljAim + Cli∆
−1
mj) + Cli[∆

−1A′CA∆−1]mj+

+[CA∆−1]mi[∆
−1A′C]lj − C̃li[∆

−1A′C̃A∆−1]mj − [C̃A∆−1]mi[∆
−1A′C̃]lj

And the derivatives respect to ∆−1

∂2lY
∂∆ii∂∆ll

= −
1

4

(

∆il∆il + ∆il∆il
)

+
1

4

{

[A′CA]il[A
′CA]il

+[A′CA]il[A
′CA]il − [A′C̃A]il[A

′C̃A]il − [A′C̃A]il[A
′C̃A]il

}

.


