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ABSTRACT

Periodic spatial grids can be used for unbiased estimafitength and surface area of objects by counting
or measuring intersections of the objects with the gridse &htimators are theoretically based on discrete
approximation of well established integral geometric falas. The variance of the estimates depends on
properties of both the grid and the measured objects. Mainlteeof the theory of variance of the isotropic
uniform random (IUR) volume estimation by spatial gridspessially a formula relating the variance of the
volume estimator with the object surface area and the gndtemt, are recapitulated. To identify main features
of length and surface area IUR estimates the variance dudtian and simple asymptotic formulas for the
residual variance of estimates of selected model objectdsilated. Surface area estimates by multiple grids
of parallel lines in 3D and of the variance of length estimatg periodic grids of planes or spheresdn
dimensional space are studied.

Keywords: stereology, variance, 3D.

INTRODUCTION objectK in d—dimensional space can be estimated
by a point counting method using regular point lattice
Basic geometrical characteristics of 2D or 3DT = AZY in RY, whereZ is the set of integers arflis a
objects can be estimated by counting or measuringegular matrix. The number of points of the randomly
intersections of the objects with randomized periodighifted point lattice inside the object multiplied by the
patterns of manifolds (Barbier, 1860; Santal specific volume of the point is an unbiased estimate
1976; Cruz-Orive, 1997). Estimation of geometricalof the volume. Under mild regularity conditions on
characteristics by measuring the objects intersectiorthe objectK the variance of the estimator with the
with the randomized probes can be regarded as rmandomly rotated lattice scaled by the faatar 0 is
generalization of the classical topic of stereology d—1 1y de1
— estimation of the characteristics measuring lower CrH (0K)d>(u )u ’
dimensional randomized sections of the objects. Th&lar&Cek, 2008), wher€r is a constant of the lattice,
formulas for unbiased estimators using intersectionsi®~* (dK) is the surface measure of the objabt> 0
with randomized spatial grids follow from well is a function which ergodic average tends to 1:
established general formulas of integral geometry 1 (X
(Baddeley and Vedel-Jensen, 2005). On the other xL'Toox/ eMd=1.
hand the variance of the estimates may depend on 0

properties of both the grid and the measured objects in  The constant of the lattice can be expressed as

a complicated way. Cr = (2”2de)712§§)* |E|—d—1 whereT* = A-17d

The variance of volume estimation by measuringy,q k4 is the volume of the unit ball irRY. The
intersection of the object with arbitrary periodic grid in y51ye of the coefficient is approximately0F2 837 for
random position is already well understood. A usefulhe quadratic lattice and.@71701 for the hexagonal
approximate formula (Eq. 1) for the variance usingjattice normalized to unit intensity in plane,0B6 649
only simple characteristic of the measured object i$or the cubic lattice, @64 350 for the normalized body

available. The formula for variance df-dimensional centered cubic lattice and@b4 390 for the normalized

(Hlawka, 1950) for strictly convex sets witlil6-times . .

differentiable support function, the proof for convex  1h€ result can be easily generalized from the
sets or sets witlC1®> smooth boundary can be found €ounting measure of latticd to an arbitraryT—

in (Jarééek, 2008) and it can be easily generalized td*€rodic measurg with constant of the measu@, =

an arbitrary periodic grid. The volume of a bounded(Z#de)flzgﬁ* ﬁ5\2|€|_d_1whereﬁ5 are Fourier
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coefficients of the measure (&&ek, 2006). Software Variance of the projection area depends on the object
package pgs for calculation of coefficients of variousanisotropy, i.e., on the distribution of the angles
grids is available (k¢u and Mora, 2006). between the normals to the body. It is well known

For the purpose of the variance estimation thethat the variance of the surface area estimators can be

function @ oscillating around 1 is neglected and thedecreased by using average of areas of projections into

. . ) a set of directions (with fixed mutual positioa,g,
variance can be expressed approximately: perpendicular) instead of one direction. The decrease

N d—1 _did of the variance is due to a negative covariances of the
Var (estv) = CsH™~ (OK) N, (1) projections areas (Mattfelet al, 1985).

whereNy = |A| L is the grid points intensity and the The formula for coefficient of variationQV) of
lattice S is the homothetic copy of the point lattice Surface estimator from multiple weighted projection
T with unit intensity. Similar simple approximations 2'€@s of a body (Jabek, 1999) is:

for estimators of length or surface area are not

yet known. The aim of this paper is to study the (:V2_/2 /2 Ka (¢, x)dF (@)dG(x) ., (2)
behavior of variance of selected estimators of length 0 Jo

or surface area, design of the expressions for thgnerer s the distribution function of angles between
estimators variance similar to Eq. 1 and evaluation of,5ymals to the object surfac& is the distribution

the coefficients in the expressions. function of angles between projections directions and

The length of a fibre-like structure iR® can be the kerneKy is defined as

measured with a randomly rotated and shifted (IUR) 2
periodic grid of surfaces. The surface area of objecth (@, x) = ( dKqg ) / (9y,%) (gu,v)|dg—1 | .
in RY can be estimated by counting intersections with ’ 2k4-1) Jsq ’
a grid of lines. The variances of the estimators can be
decomposed into the variance due to the orientation of ¢

: ) . d
the grid and to the residual component of variance:

(Y,x) can be evaluated either by direct
integration or using convolution formula and Parseval
equality for harmonic analysis d&_ ;. For details and
Var (estQ) = examples see Appendix A.

Var gesq (E (estQ|9)) + Egesq (Var (estQg)) ,

whereQ is either lengthl() or surface aree§) andSQy LENGTH ESTIMATION BY THE
is the group of rotations iiRY.
. , . GRID OF SURFACES
The variances of length or surface area estimates in

RY using spatial grids due to orientation are calculated The length of a curve ilRY can be estimated from

in the same way as the variance of the surface ar@fle number of intersection of the curve with a spatial
estimators using combined projection, treated in thgyid of planes

following section.

de N
1 = —_
e 2Kg-1Sy
VARIANCE OF SURFACE AREA whereN is the number of intersections as] is the
ESTIMATE IN RY USING TOTAL surface area of the grid per unit volume. The variance
PROJECTION of the estimator of the length due to orientation can be

calculated by Eq. 2 substituting fér the distribution

Crofton formula relates the suface area of a convefunction of angle; bef[ween the tangents to the curve
body to the mean area of its isotropic projection.and for G the distribution function of angles between
Surface area of a convex bodyR is average area of the normals to the grid surfaces. The simplest of
its projection multiplied bydky/kq_1 Wherekq is the grids of surfaces is the grid composed of parallel
volume of the unit ball inRY and using this equality planes. The grids with different directions of normals
we can construct an estimator of the surface area frof@n Pe combined obtaining decreased variance due to
the object total projection area (area weighted by EulePrientation. The variance is decreased due to negative

characteristics of projection inverse, see Serra, 1982)covariances as in the case of surface estimation
by projections. The residual component of variance,

dkg Egesq, (Var (est|g)), is the mean over all orientations

estS= Kd_lAmt of variance of an estimate by equidistant point samples
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of an integral of total projection of the space curvepoints (Fig. 1), and so the grid of touching spheres
to a line of given orientation. The total projection of shall be effective for the length estimation in 3D.

the space curve to a line is a step function and the

variance of integral estimate of such step function is ¢,

well known (Moran, 1950). An approximation of the ,_
residual component of variance of estimate of lerigth
of the objecK composed of space curves by applying
grids of parallel hyperplanes iR® then follows from 3r
differential geometry:

Egesq, (Var (estL|g)) = C(EKABS(K) $2 )

T :
KBS(K) = /K |K|ds+ 2 (Nends+ Nodd branching » 1

2 L
CG = — s O L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L p
3\ 2K4_1 02 04 06 08 10 12 14

where$S, is the grid surface intensity is curvature F19- 1. Yalues of (E(p) for ind O_f spheres S with
of the curve (e, the reciprocal of the radius of centres in face centered cubic lattice.
the osculating circle)Nengs is number of endings of

curves,NoddbranchingsiS humber of branchings where In estimates of the curve length the grids of flat
an odd number of curves i_s jé)ining together ads  planes yield quite different order of asymptotics than
the volume of the unit ball ifR®. grids of curved surfaces, due to increasing curvatures

Another grid suitable for length estimation is during homothetic downscaling of the curved grids.
composed of identical spheres centered in point§he variance is also controlled by different properties
forming periodic latticeT. The grid is for given of the measured object, namely by the total absolute
lattice type defined by two parameters, the point latticeurvature in estimations using parallel surfaces and by
density and by the spheres diameter. Let us definge length in estimation by application of spheres.
shape parameterof the grid equal to the radius of the
spheres of the grid homothetically transformed in such
a way, that the point lattic€ is transformed to the unit

lattice S. If the grid is randomly rotated the variance
due to orientation of the gridvar gesq, (E (estQ|g)), SURFACE AREA ESTIMATION BY

is obviously zero. GRIDS OF STRAIGHT LINES

The residual component of variance of the estimate
of length of a line segment can be approximated by the ) d
variance of the estimate of volume of a cylinder with ~ The surface area of an object iR” can be
a diameter equal to the diameter of the spheres in thestimated from the number of intersection of the object
original grid by a point latticd. The covariogram of surface with a spatial grid of lines
the cylinder can be approximated by a direct product of
covariogram ofld — 1) — dimensional ball and a line dkg N
segment. An approximate expression for the residual estS=
component of variance of estimate of lendttof the
objectK by the grid of spheres iR is:

2Kg-1Ly ’

whereN is the number of intersections ahg is the

Egesq, (Var (estL|g)) = C('g(p)L (K) $1 , length of the grid per unit volume. The grids composed
g1 &40 from sets of parallel lines can be used for estimation

CcLs(p) .- E-932 , (2mép) , of the surface area of spatial objects. The estimators
Kd-1 ¢z 'z can be optimized by finding optimal mutual position

of the sets (Kumova and Ja&tek, 1998). Parametric
expressions of two simple grids and three multiple
grids in basic and optimized shifted versions (Fig. 2),

The functionC('-;(p) has a local minimum close to are listed below, wherie j € Z are discrete parameters,
the half of the distance between the nearest lattica € R is a continuous parameter.

whereld is the Bessel function of the first kind, follows
from the limit transitionS, — .
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Fig. 2. Spatial grids of lines inR® used for surface

area estimation. (a) grid with quadratic cross-section;

(b) grid with triangular cross-section; (c) 3-fold basic
grid; (d) 3-fold shifted grid; (e) 4-fold basic grid; (f)

4-fold shifted grid; (g) 7-fold basic grid; (h) 7-fold

shifted grid.

e Unit grid with quadratic cross-sectiofi; j,u)

e Grid with triangular cross-sectiofi:+ u, j + u, u)

e 3-fold basic grid:(u,i, j), (i,u,]), (i, j,u),

e 3-fold shifted grid: (u,i,j+3), (i+3.u,j),
(i,j+3.u).

e Unit 3-fold grids — the above grids scaled by the
factor+/3.

e 4-fold basic grid{i+u, j+u,u), (i+u,j+u—u,
(i+U,j—U,U), (I+U7J —U,—U).

e 4-fold shifted grid:(i +u, j +u,u),
(i-f-u,j—l—U—I—%,—U), (|+u+%)1 —U,U),
(i+uj—u-u+3).

e Unit 4-fold grids — the above grids scaled by the
factor 2/3.

e 7-fold grids are combinations of above 4-fold grids
with % homothetic images of 3-fold grids.

e 7-fold basic grid:(u, 3i,3j), (3i,u, 1}),
(3i,3j,u), (i+u,j+uu), (i+uj+u—u),
(i+u,j—uu), (i4+u,j—u,—u).

o 7-fold shifted grid:(u, 2i, 3j+2), (3i+3,u.1j),
(3i,2j+3u), (i+uj+uu),
(i+uj+u+3,—u), (i+u+i,j—uu),
(i+uj—u—u+3).

e Unit 7-fold grids — the above grids scaled by the

factor 2/3+ /3.

The operation of estimation of the area of a surface
by the grid of parallel straight lines can be decomposed
into parallel projection to the plane perpendicular to
the lines, and estimation of the total projection area
by a point lattice. The variance of the estimator can
be decomposed into the variance due to rotation of the
grid and to the residual component of variance.

THE VARIANCE OF SURFACE AREA
ESTIMATES DUE TO ROTATION.

Coefficients of variation of estimate with the grids
of lines due to orientatioB 1, /Var4csq, (E (estSg))
can be calculated by Eq. 2 substituting fer the
distribution function of angles between normals to
surface and foiG the distribution function of angles
between tangents to grid lines. The variances due to
orientation for a flat object, that are also upper bounds
for the variances of the surface area estimates for
arbitrary objects, are shown in Table 1. and the results
for a cylindrical surface are presented in Table 2.

e Unit grid with triangular cross-section — the aboveThe gain in effectivity with respect to independent

grid scaled by the factof/3.
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Table 1.Coefficient of variation of projection of a flat The coefficients of simple grids are independent
object into n directions of line grids i3 calculated of the body. In the multiple grids it is not true as
using Eq. 4 from Appendix A. demonstrated by the examples of the estimates of the
disc and ball surface areas.

0.07523 14.7
0.03822 32.6

n CV  CW/nCV2

1 057735 1

Z 0.10163 10.8 DISCUSSION
;

The study of variances of estimators with
periodic grids is important for the design of efficient
Table 2. Coefficient of variation of projection of a measurement methods. Approximate asymptotic
cylindrical surface into n directions of line grids ®®  results for homothetic images of grids with spatial

calculated using Eq. 5 from Appendix A. density increasing to infinity, as those applied in the
paper to variance of volume estimates or to residual
n CV  CW¥/nCV components of variances of the length and surface
1 0.28418 1 area estimators, use simple properties of the measured
3 0.03706 19.6 objects and yield useful results for model objects under
4 0.02668 28.4 study. We suppose that the formulas are generally
7 0.01196 80.6 valid, and the coefficients of ball and disc in formula

for the residual component of variance of surface area
estimates represent extreme values of coefficients for
arbitrary objects. Using the knowledge on the behavior
8f the estimators we were able to design efficient

estimators of surface area using spatial grids of shifted
Nine probes and estimators of length of fibre like

objects using spatial grids of touching spheres. The
asymptotic results are established rigorously in the
case of volume estimates only, the theory of variance

Table 3. Coefficients € (K) in Eq. 3 for residual
component of variance of estimates of surface are
with unit (Ly = 1) line grids G in R3: namely
simple (1) grids with square point lattice cross-sectio
and with triangular point lattice cross-section (K is
arbitrary) and multiple (3, 4, 7) basic and shifted grids
(K is ball or disc).

G G (K) G CS (K) in more difficult cases — the surface area and length
square 3.661 triangular 3604 estimates —is far from completness yet, however the
basic. ball 9717 basic. disc g 490 Presented study with model objects exhibits some

shifted. ball 3.810 shifted. disc  4.730 Important features of the variance of length and surface

basic, ball 11.920 basic, disc  10.376 areaestimators.

shifted, ball  3.675 shifted, disc 4.832

basic, ball 16.594 Dbasic, disc  14.265 ACKNOWLEDGEMENT
shifted, ball 4.022 shifted, disc 5.769
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set with random position. Comment Math Univ of lengths of projections of a unit segment

Carolinae 47:473-82. to two lines spannlingn angley in R? (a
Jarétek J (2008). An asymptotics of variance of the latticedouble projection) is 3. [,_ysin|@— g|sing dg =
points count. Czech Math J 58:751-75. 2 (sing+ (5 —y)cosy). In R? we obtain the
Kigu K, Mora M (2006). Precision of stereological planarcorresponding value
area predictors. J Microsc 222:201-11. 2 o
Kubinova L, Jargek J (1998). Estimating surface area by an (smw+ (E - 4/) COSQU) ; 4)
the isotropic fakir method from thick slices cut in an
arbitrary direction. J Microsc 191:201-11. multiplying the value for R? by the value
2 1 \2 _ :
Matheron G (1965). Les variableggionali€es et leur sz(Xl‘FXz) dS(x) = 2/d. Egesg, (L1l2), the mixed
estimations. Paris: Masson et Cie. second order moment of lengths of projections of unit

Mattfeldt T, Mobius H-J, Mall G (1985). Orthogonal triplet segme_nts spanning angje to corresponding lines
probes: an efficient method for unbiased estimation ofPannIng angle is

length and surface of objects with unknown orientation
in space. J Microsc 139:279-89. / |(gy,¥) (gu,v)|dg,
Moran PAP (1950). Numerical integration by systematic S
sampling. Proc Camb Phil Soc 46:111-5. wherex, y,u,v € RY, X =1y =u=|v|]=1, (y,u) =
Santab LA (1976). Integral Geometry and Geometric COSY, (X,Vv) = cosx, SQ is the group of rotations
Probability. Reading: Addison-Wesley. equipped with the probabilistic invariant measure.

Serra J (1982). Image Analysis and MathematicaIFrom_ this formula the kerneKy can be calculatepl.
Morphology. London: Academic Press. Special values oKy can be calculated from preceding

formulas. ThusCV? of the simple projection of

unit segment giveKq (0,0) and CV? of the double

projection of a unit segment givég (¢, 0). It is easy
APPENDIX A to see thaKy (¢, x) = K2 (¢ — x,0).
Let us start with auxiliary computations. Lrt= By Parseval equality for harmonic analysis®n 1
(X1, Xd), @ = (01,...0q), X" = |x|7*...|x|g% |a] =  we obtain the following expression:
34 i, then
2 2 dKy 2
d i+1 - K ,X)dy = X
/ X dS( )—Hi_lr(a2+ ) ”/w—o X <2Kdl>
St i (lalidy . (2n—3)11\2 /(2n—1)11\?
i () Z'10(4'1+1)<(2n+2)!!> ( 2nil > X

where & is surfat.:e measaure. The ezquallt_y can beZm (2n—21 — D)l (2n+2 — 1)1 , .
proved by calculatingpq [X| exp(— [I1| ) dx in two I=-m ™ on 1 20 (2n— 21 cos(2lx)—1,
ways: by Fubini theorem and in spherical coordinates. (5)

The mdentltyfgifl 1dS(x) = dkg can serve as an which enables us to calculate the variance of multiple

example wherey = mor (%+1)_1 is the volume of projections of a cylindrical surface ifR3. It was
the unit ballBy (1) in RY. obtained from Fourier series in spherical harmonics of
absolute value of sine of lattitude, of-Himensional
As Jg, ,xaldS(X) = 2kg-1, the mean of the measure supported by equator and of sum of Dirac
projection length of a unit segment to a line (a simplemeasures locatexl radians apart from each other.
projection) is X41/dkd. AS [, 1|x1]2dS(x) = Kg,
the squared coefficient of variation of the projection

is ) APPENDIX B
cvz— (Gka N1

-\ 2kg_1/ d ) The variance of estimates of surface area of a

convex body by periodic grid of lines can be calculated

The values of the theCV? for d using generalization of isotropic (point) covariogram
1,2,3,4,... are Qm?/8 —1,1/3,91/64 — 1,... of the body (Matheron, 1965): the value of generalized
0,0.23,0.33,0.39... (the limitis 7/2 — 1= 0.57). covariogram for pair of lines is the measure of set

11l
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of such euclidean motions of the lines, that the both ﬁf = 0 otherwise.

lines intersect the body, multiplied by the sine of o ] ) ]

angle between the lines, or the limit for parallel ~ Coefficients of unit 3-fold grids arg multiples of
lines. The value for a pair of parallel lines is equalabove coefficients with indiceS scaled by facto%.
to mean isotropic point covariogram of the planar4_foI d basic arid:
projection of the body. For nonparallel lines we grid-

obtained so far a simple result for ball or disc only.e i = /3 for & = (I,m,n) wherel,m,n € Z\ {0},
For ball we obtained moae of covariogram of the | £#4+m#A+n#1,14+m+n=0,+m—n=0,
circle (Matheron, 1965). For disc we obtained nméamt I —-m+n=0o0rl—m—n=0.

of mean covariogram of the disc planar projection . _ _ _
multiplied by 2 (sing+ (X — ) cosy) where g is  * He =2V3for&=(,~1,0), & =(1.0.-1), § =
angle between the lines. Using Poisson summation 0.1,=1),&=(0,1.1), & = (1,0,1) and& = (1.1, 0).
formula yields the following formulas for coefficients o ﬁf = 4/3for & = (0,0, 0).

in Eqg. 3 of the ball (as in Jagek, 1999) and the disc . .
(Table 3). 4-fold shifted grid:

The Fourier coefficient of aZ? — periodic measure ® He = V3 for & = (I,m,n) wherel, mn € Z\ {0},
p with index& € a1Z3,a> 0, is I #+m#+n#l,1+m+n=0.
e [ig=(—1)"V3for& = (l,mn)wherel +m—n=
fe=at [ eetamdime . © O
4 70 5
s -3
Cg(ball) = =) > |He|71E

Eca-173 hd

o [ =(-1)3for& = (I,mn) wherel -m+n=

o

¢ =(—1)"v3for& = (I,mn) wherel —-m—n=
g =2V3 for & = (21,-21,0), & = (2,0,-21),

U
0.
Fourier coeficients of unit grid with quadratic ¢ H
¢
¢

cross-section argl; = 1 for & = (i,j,0), i,j € Z, =(0,2,-2), & =(0,21,21), ¢ = (21,0,2]) and

iz = 0 otherwise. = (21,21,0).

Grid with triangular cross-section: o = 4\/3 for & = (0,0,0).

o [ip=vV3foré=(i,j,—i—j) i jeZ Coefficients of unit 4-fold grids arg% multiples

e [is = 0 otherwise. of1 above coefficients with indice§ scaled by factor

Py ¥
Coefficients of unit grid with triangular cross-section 2V3 o
are J- multiples of above coefficients with indicgs ~ 7-fold basic grid:

v
scaled by facto%. o [z =4 for & = (2,2m,0), & = (2m,0,2l) and
. ¢ =(0,21,2m) wherel, me Z\ {0}, | #m.
3-fold basic grid: N
B e g =8for& =(2,00), & =(0,2,0) and& =
o [y =1foré = (I,m0), & =(m0,l) andé = (0,0,21).
(0,1, m). _
N e [ig =+/3for& = (I,mn) wherel,mn e Z\ {0},
hd HEZZforE:(I,O,O), E:(O7|70) andE: |7é:tm7é:l:n7é|and|+m+n:0,|+m—n:0,
(0,0,). | —m+n=0orl —m—n=0.
e [ =3foré =(0,0,0). o [z =4+2y/3foré=(2,-2,0),&=(2,0,-2),
~ : &=(0,2,-2),& =(0,2,2l),& = (21,0,2l) and
e g = 0 otherwise. £—(2.2.0.
3-fold shifted grid: e e =2/3 for £ = (2+1,-2+10), & =
e [z =(-1)" for & = (0,l,m), & = (m0,l) and (21+1,0,—-2i+1), £ = (0,2i+1,-2i+1), & =
& =(I,mO0). (0,2i+1,2i+1), £ = (2i+1,0,2i+1) and & =
e [g=2for&=(2,00),¢&=(02,0) and§ = (2i +1,2i +1,0) wherei € Z.
(0,0,21). e [z =12+4/3for& =(0,0,0).
e [z =3for&=(0,0,0). 7-fold shifted grid:
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4 1

™ 2\/3+3

fi = (—1)"4 for & = (2,2m,0), & = (2m,0,2!)
andé = (0,2l,2m) wherel, me Z\ {0}, | #m.

(4.3%2(A2,3) 1+ 6Z(13,3) +

o [z =8 for&=(4,00), & =(0,4,0) andé = *_3 <4+3\ﬁ+ \@) Z(|1,3)> for basic sevenfold
(0,0,4l). grid and ball,
u 1

o [z =+/3foré =(,mn)wherel,mnez\{0}, o %L1 _ (4.31Z(A;,3)+6Z(l2,3) -
| £4m#£+n#l,1+m+n=0. "2\/3+7\@<

. - 9(4+3v2+16)2(11,3))  for  shifted

ls = (—=1)™/3for& = (I,m,n) wherel + m—n=
SE =D =t ) sevenfold grid and ball.

The Epstein zeta function&(11,3), Z(l2,3)
and Z(Az,3) can be calculated using the following
identities valid between the Epstein zeta functions, the
Riemann zeta functiog and Dirichlet functiori_

fis = (—1)' v/3for & = (I,m,n) wherel —m+n=
0.
i = (—1)"v/3for& = (I,m,n) wherel —-m—n=
0.

00

s = (-1)'4+2v3 for £ = (2,-21,0)

) E — —S L — —S
(21,0,-20), & = (0,2, —21), & = (0,21,2]), & — =2 n" L= (PWN,
(21,0,2l) andé = (21,2l,0).
_ where(p|n) is the Kronecker symbol:
e [ =12+4/3for& =(0,0,0).
Coefficients of unit 7-fold grids are Z(11,8) =2 (),

(4(3+ \/§))_1 multiples of above coefficients with
1
indicesé scaled by facto<2\/ 3+ \/§) .

s
o)
We can see that the shifting caused vanishing of
the coefficients with smallest indices, which explains  The covariances of the simple estimates of the disc
the superior performance of the shifted grids (Table 3)surface area must be multiplied by additional factor

2 . .
Properly grouping the terms in expression for thef (¥) = % (siny/ + (3 — ) cosyp) wherey is angle
coefficients we can use the Epstein zeta function§Panned by tangents to parallel lines of the simple

2ta - ()1 4().
Z(Ag,9) = 24+33l-i¢ (;) L s (

Z (A, 3) defined as
n#0
Z(As)= Y |An"®,
nezd

with matrixA equal tdy, d = 1 or 2, the identity matrix
in RY and

w(19)

43\ 1 :

The values of coefficiensg (ball) are

0

A
2 1

e 5Z(I2,3) for simple grid with quadratic

crossection,
%Z (A2,3) for simple grid with triangular
crossection,

49337 (12,3) + 62 (11,3)) for basic 3-fold grid
and ball,

33 (4~3*%Z(A2,3) -9. 2*%Z(|1,3)> for

4
=
shifted 4-fold grid and ball,

==

52

subgrids.
Thus we obtain the values of coefficie@(disc):

4,92 (37 (12,3) + f (£) 62 (11,3)) for basic 3-fold
grid and disc,

i@ (32(12,3) — f (%) 32 (11,3)) for shifted 3-

2
fold grid and disc,
4133 (4- 3-12(A0,3) +
+ f (arccos}) - 12- 2*%Z(I1,3)>
for basic 4-fold grid and disc.

4133 (4-3*%Z(A2,3) —
— f (arccosj) - 9- 2*%Z(I1,3)>
for shifted 4-fold grid and disc.

4 1
™5\ /31/3

+3 (4f () +3v2f (arccos}) + v/6f (arcco%))

Z(l4,3)) for basic sevenfold grid and disc.

(4.3%Z(A2,3) +62(12,3) +

1 . l J—
N (4 31Z(A2,3) +6Z (12, 3)

9 (4f (%) +3v2f (arccos}) + V/6f (afcco%))

Z(l4,3)) for shifted sevenfold grid and disc.

4
pc



