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Gumbel GARCH Model with Stock Application

Mehrnaz Mohammadpour! Fatemeh Ziaeenejad?

Abstract

The paper proposes a new GARCH model with Gumbel conditional distribu-
tion. Several statistical properties of the model are established, like autocorrelation
function and stationarity. We consider two methods for estimating the unknown pa-
rameters of the model and investigate properties of the estimators. The performances
of the estimators are checked by a simulation study. We investigate the application
of the process using a real stock data.

1 Introduction

The generalized autoregressive conditionally heteroscedastic (GARCH) model has been
found to be useful in many economic and financial studies which captures the tendency
for volatility clustering (Bollerslev, 1986). In the classical GARCH model, normal distri-
bution has been considered as a conditional distribution which is not quite logical consid-
eration in the most financial studies.

Modeling of GARCH time series was first introduced by Bollerslev (1986) based on
the normal conditional distribution. Among the GARCH models, we cite the standardized
t-student model (Bollerslev, 1986), the normal poisson mixture model (Jorion, 1988), the
power exponential model (Baillie and Bollerslev, 1989), the normal-log normal mixture
model (Hsieh, 1988), the generalized exponential model (Nelson, 1990b), the normal
model (Nelson, 1990a, 1992), the threshold GARCH model (Glosten et al., 1993) and the
stable GARCH model (Liu and Brorsen, 1995 and Calzolari et al., 2014).

In this paper, a new GARCH model with Gumbel conditional distribution is intro-
duced. The Gumbel GARCH model is justified by the need to model extreme observa-
tions more realistically than would be possible using the standard normal GARCH. The
Gumbel model is the traditional model in extreme value analysis which has the same sta-
tus as the normal model in other applications. The major advantage of the Gumbel model
is that the distribution can be specified by location and scale parameters as in the Gaussian
case. In the following, we briefly investigate Gumbel distribution and its features.

The Gumbel distribution is referred to the distribution corresponding to extremes. The
Gumbel distribution with the location parameter « and the scale parameter v (denoted by
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Gumbel(a, 7)) has the probability density function

The mean and variance of the distribution are

M=o+,

and
o? = 17T272
6 b

where v is Euler-Mascheroni constant. In this work, we consider o = 0.

The rest of the paper is organized as follows. In Section 2, we construct the Gum-
bel GARCH model and investigate the stationarity condition and some properties of the
model. Section 3 deals with the estimation of the model parameters by the Yule-Walker
and maximum likelihood methods. The performances of the estimators are checked by a
small Monte Carlo simulation. An application of the model for the stock data is given in
Section 4.

2 Gumbel GARCH

Let {X;},., , Z the set of integers, be a discrete time second-order process and JF;_; is a

o field generated by { X, },_,. The process {X;},., defines as Gumbel GARCH model of
orders p, ¢ (Gumbel GARCH(p, q)) if
Xt‘ft,1 ~ Gumbel(O, "}/t), (21)
and -, satisfies the model
1 P q
V(ZT(XA.F%,l) = 671'2’)/? = O'tz = Qo + Z OCZ‘XE,i + Z ﬁjatzfju (22)

i=1 j=1

where oy > 0,0, >0,8; >0, =1,...,p,7=1,...,¢,p>1,¢ > 0.
The conditional probability mass function of { X, } has the following form

1 Tt Tt
x| Fio1) = —exp(—) exp(— exp(——)),
f (@ Feoa) . p(%) p(— exp( %))
where 6
1
Vt (ﬁaf)”
The conditional mean is
(X Fi1) = vy = v(—50d)?

In Proposition 1, we establish a necessary condition on the parameters of the model to
ensure that the process is a second-order stationary process.
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Proposition 1. For a second-order stationary process {X,},., to satisfy (2.1) and (2.2),
it is necessary that y7_ o;(1+125) + 371 6, < 1.

Proof. Let 0? = E(o?). Since

P q
o? = E(o}) = ap + Z%E(Xf—i) + ZBJE(O—?—]')
i=1 j=1

p q
6
= Q) + Zal(l + IJQP)O'2 + Zﬁj0'2,
7=1

i=1

we obtain o
o? = 0 . (2.3)
<1 — 2 im O‘@'(l""ﬁ%) - ?:1 5;)

In (2.3), the parameters must necessarily satisfy the condition

p q
6
1-— E CYZ‘(].‘FVZF)— E ﬂj>0,
=1 =1

which completes the proof. L

The following theorem presents a necessary and sufficient condition for the second
order stationarity of the model. For the simplicity of notation, we assume that p > q.

Theorem 1. A necessary and sufficient condition for the process { X} to be second-order
stationary is that all roots of

q

P
1 — Aoy — Z(Aai + B2 — Z Aa;z" =0, (2.4)

=1 i=q+1
lie inside the unit circle, where A = (1 + 126 /7?%).

Proof. Letv;; = F(X;X;_;),i =1,2,...,p. The conditional second moment is obtained
as

E(X}|Fi) = Var(Xy| Fir) + B (X4 | Fin)
=0} + 1*(6/m%0})
= Aaf.
Then
Yo = E(X}) = E(BE(X]|Fi1) = E(Ad})

=A (ao + Z aE(X2 )+ Z BjE(UtQ—j)>

i=1 j=1

P q
= Aoy + Z Aoiyo—i + Z Biv0,t—;
i=1 Jj=1

q P
= Aoy + Z(Aai + Bi)vo,e—i + Z Ao t—i-

i=1 i=q+1
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The necessary and sufficient condition for a non-homogeneous difference equation
to have a stable solution is that all roots 2, ..., 2, of eqn (2.4) lie inside the unit circle,
(Goldberg, 1958). O]

The following theorem gives the autocorrelation function (ACF) of { X2} which is
used for Yule-Walker estimation.

Theorem 2. Suppose that {X,} following the Gumbel GARCH(p, q) model is second-
order stationary. Then 72(k) := Cov(X?, X7 ) and ~2,(k) := Cov(o}, 07_,,) satisfy the
following equations

p

Ye(k) =) (L+076/7)ai;(li — k)

=1

min(k—1,q) q
+ ) Bmak =)+ Y (1 6/m) Bk — ). k> 1, (25)
j=1 j=1
and
min(k,p)
Vo)=Y (14 %6/m* )i (li — k)
i=1
p q
+ D /(L v6/m)i(k = 3) + ) Bk — ).k >0 (26)
i=k+1 j=1
Proof. See Appendix A for details. [

Corollary 1. Suppose that {X,} following the Gumbel ARCH(p) model is second-order
stationary. Then the autocovariance function v2(-) satisfies the following equation

p

Yo(k) =Y (1 +v°6/m*)ari(k —il), k = 1. (2.7)

=1

The equations of Corollary 1 are obviously nearly identical to the Yule Walker equa-
tions of the standard AR(p) model. As a consequence, the model of order p can be iden-
tified with the help of the partial autocorrelation function (PACF).

3 Estimation and Simulation Comparison

In this section, we will investigate two methods for parameter estimation of the Gumbel
GARCH(p, q) model based on a realization X1, ..., X, of the process. These estimators
are compared via Monte Carlo simulations in terms of their means and standard devia-
tions.
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3.1 Yule-Walker Estimator
n—k .

Let42 (k) =1 <Xt2 — ) <th+k X2> ,0 < k < n, be the sample autocovariance
=1

function of {X?}, where X2 = 1 Z X? is the sample mean. The Yule-Walker (YW)
t=1

estimators of the model are obtained by substituting the sample 2 (k) in eqn (2.7) and
solving them.

Example 1. Consider the Gumbel ARCH (2) as

Xi| Fi1 ~ Gumbel (0, ),

2
Var(X;|Fi1) = (7% /6)7; = o = oo + Z X7,

i=1
The explicit YW estimators of oy and o are

(),
= 0 o)

N 1 R,
(= (2(1)2)2(1 + v%6/7?)
V2 (k)

50 Also note that oy can be estimated from egn (2.3).

where p2(k) =

3.2 Maximum Likelihood

Here we derive the maximum likelihood estimator (MLE) of the unknown parameter 6
where 6 = [ag, a1, ..., Qp, 31,02, ..., 0,]. The MLE of the parameter is obtained by
maximization of the conditional log-likelihood function

th = Z “log + 2t — eap(~24))

=1 Tt Tt
where
Tt = (FUJ%
and
p q
Ut2 = Oy + Z aith_i + Z 5]'03_]-.
i=1 j=1
Solving the system of equations ( ) — 0, the MLE of @ is obtained. This can be done

by using standard nonlinear max1mlzat10n procedures which may be found in most of the
statistical and data analysis packages.
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3.3 Simulation

Here we have carried out two simulation studies. In the first study, we compare the two
method of estimation. To examine the performances of the YW and ML estimators, a
Monte Carlo simulation is conducted for different sample sizes n = 100, 300, 500 with
m = 200 replications for models Gumbel ARCH(1), Gumbel ARCH(2) and Gumbel
GARCH(1,1) for true parameter values:

e Gumbel ARCH(1): (v, 1) = AL(3,0.5); A2(4,0.3);
e Gumbel ARCH(2): («, a1, ) = B1(3,0.4,0.2); B2(4,0.3,0.3);
e Gumbel GARCH(1,1): (ag, a1, 51) = C'1(2,0.4,0.3); C2(4,0.3,0.3).

For the maximization of the log-likelihood function, the YW estimates were used as
the initial values. Table 1 provides the mean and mean absolute deviation error (MADE)
of the estimators for different values of the parameters and different sample sizes. As
for the stationarity discussed, Y 7 | o;(1 + v*%) + >29_, B; in the models are all less
than one and the stationary condition holds for the fitted models. It can be seen that as
the sample size increases, the estimates seem to converge to the true parameter values.
Two estimation methods seem to perform reasonably well but the MLEs provide better
performance, which was expected.

We compare the two models with respect to their general properties and coherent
forecasting ability. To achieve this, we have simulated 200 series, each of size 100 from
Gumbel GARCH(1,1) process with three sets of parameter values viz.; (a) ag = 2, a; =
0.2, 51 = 03, (b) Qg = 3, o = 03, 61 = 0.4 and (C) Qg = 3, oy = 04, 51 =
0.6. From Table 2 it can be observed that the values of the performance measures mean
square prediction error (MSPE) for the Gumbel GARCH(1,1) model are relatively lower,
supporting the fact that if the actual process is Gumbel GARCH(1,1), then it gives a better
fit (less prediction error) than classic GARCH(1,1). It can be also seen that, as & in k-step
ahead forecasts increases, the values of the measures increases, indicating that the error
in forecast increases as lag increases.

4 Real Example

In this section, we discuss some possible applications of the Gumbel GARCH model for
a real time series of weekly data of Tehran Price Index (TEPIX). The data consist of 152
observation from 11 Nov. 2012 to 9 Sep. 2015. The data are obtained from the website
of http://www.tse.ir. The sample paths, difference of log data, autocorrelation functions
(ACFs) and partial autocorrelation functions (PACFs) of the difference log series are dis-
played in Figure 1. For selecting the model for the data series, we compare the classi-
cal ARCH(1), ARCH(2), ARCH(3), GARCH(1,1), GARCH(1,2), GARCH(1,3), Gum-
bel ARCH(1), Gumbel ARCH(2), Gumbel ARCH(3), Gumbel GARCH(1,1), Gumbel
GARCH(1,2), Gumbel GARCH(1,3) models. For each model, based on MLEs we pro-
vide some well-known measures of goodness-of-fit statistics to check the adequacy of a
time series model among a finite set of models. These statistics are the Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC). The obtained results, for
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the data series, are shown in Table 3. As it can be seen from this table, the values of
the goodness-of-fit statistics are the smallest for the Gumbel GARCH(1,3) model. The
Pearson residual for Gumbel GARCH(1,3) is defined by

X, — E(X,|Fn-1)
VVar(X,|F.-1)

where )
E(Xu|Fnuo1) = vAn; Var(X,|Fu_1) = 6#@3.
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Figure 1: (a) Sample path of the time series, (b) Difference log time series, (c) ACF, (d)
PACF

The residual analysis is shown in Figure 2. Figure 2 shows density and normal Q-Q
plot for Pearson residuals which appear to be almost normally distributed. The Ljung-Box
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statistic is 15.0825 by 15 lags (32 ,5(14) = 23.6848). The results show that the residuals
are independent.
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Figure 2: (a) ACF, (b) Q-Q plot, (c) density of Residuals

5 Conclusion

This article discusses the financial time series modeling with potential extreme obser-
vations. The Gumbel GARCH model, a generalization of the classic GARCH model is
proposed to modeling. Stationarity conditions are given as well as the autocorrelation
function. For estimation, we present two approaches with the focus on the maximum
likelihood method. Simulation results show that two estimation methods are sufficiently
accurate but the MLEs provide better performance. Results on the real stock data indicate
that the proposed method performs better than the classic GARCH model.



Table 1: Mean (= MADE) of the estimators for different values of the parameters

Model

n

Method

(%]

aq

a or

i1+ VQ%)%‘ + B

Al

A2

Bl

B2

Cl

100

300

200

100

300

500

100

300

500

100

300

500

100

YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML
YW

3.2348 £ 0.3991
3.1525 £ 0.3580
3.1866 + 0.3272
3.1540 £ 0.2660
3.1475 £ 0.2621
3.0663 £ 0.2171
5.1435 £ 1.1690
4.6023 £ 0.8525
4.7894 £ 0.8179
4.3769 £ 0.6936
4.4469 £ 0.4858
4.1923 £ 0.4759
2.5347 £ 0.6879
2.8489 £+ 0.5592
2.6893 £ 0.5626
2.9035 £ 0.4659
2.8767 £ 0.4542
3.0288 £+ 0.3821
5.6798 £ 2.1657
4.8586 £ 1.6984
5.0924 £ 1.6661
4.9401 £ 1.5831
4.5712 £1.1649
4.4499 £+ 1.1028
3.5619 £ 1.6097

0.4431 £0.1284
0.4773 £0.1209
0.4593 £ 0.1075
0.4834 £ 0.0858
0.4741 £ 0.0863
0.5012 = 0.0512
0.2524 £ 0.0799
0.2660 £ 0.0587
0.2721 £ 0.0612
0.2811 £ 0.0551
0.2920 £ 0.0468
0.2964 £ 0.0436
0.3324 £ 0.1212
0.3756 + 0.1225
0.3466 £ 0.1028
0.3723 £ 0.0838
0.3595 £ 0.0865
0.3902 £ 0.0753
0.2731 £ 0.1643
0.2762 £ 0.1593
0.2794 £ 0.1528
0.2804 £ 0.1468
0.2812 £ 0.1417
0.2827 £ 0.1377
0.2761 £ 0.0634

0.1438 + 0.1233
0.1772 £ 0.1020
0.1621 £ 0.0961
0.1893 £ 0.0768
0.1794 £ 0.0740
0.1988 £ 0.0598
0.2432 £ 0.1905
0.2463 £ 0.1732
0.2653 £ 0.1716
0.2695 £ 0.1690
0.2851 £ 0.1563
0.2876 £ 0.1539
0.1579 £ 0.2611

0.2324

0.2368

0.2455

0.1303

0.1377

0.1452

0.3612

0.3717

0.3899

0.3816

0.4068

0.4261
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...continued

Model

n

Method

(%]

aq

Qg or By

21+ V2%)ai + b

C2

300

200

100

300

500

ML
YW
ML
YW
ML
YW
ML
YW
ML
YW
ML

2.4378 £ 0.3580
2.8406 £ 0.9385
2.2283 £ 0.4981
2.2464 £ 0.3405
2.1563 £0.1184
0.4571 £ 2.7082
4.45564 £2.2111
4.9820 £ 2.2210
4.4697 £ 2.0628
4.5606 = 1.7099
4.0485 £ 1.5657

0.3673 £ 0.0437
0.3022 £ 0.0420
0.3767 = 0.0208
0.3243 £ 0.0299
0.3854 £ 0.0184
0.2785 £ 0.1701
0.2898 £0.1711
0.2876 4+ 0.1518
0.2967 £ 0.1546
0.2898 £ 0.1346
0.2904 £ 0.1365

0.2379 £ 0.1842
0.2029 £+ 0.2138
0.2652 £ 0.1860
0.2571 £0.1746
0.2983 £ 0.1545
0.1376 £ 0.2537
0.2617 £ 0.1796
0.1907 £ 0.1911
0.2778 £ 0.1859
0.2327 £ 0.1339
0.2978 £ 0.1298

0.4178

0.4498

0.4887

0.4037

0.4231

0.4400
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Table 2: MSPE of the data generated from Gumbel GARCH(1,1) model for k-step ahead forecasts

k. GARCH(1,1) Gumbel GARCH(1,1) GARCH(1,1) Gumbel GARCH(1,1) GARCH(1,1) Gumbel GARCH(1,1)

(v, 1, B1) = (2,0.2,0.3)

(v, 1, B1) = (3,0.3,0.4)

(v, 1, B1) = (3,0.4,0.6)

1 0.84 0.69 0.76 0.67 0.72 0.67
2 0.93 0.82 0.90 0.83 0.81 0.77
3 1.04 0.94 1.01 0.90 0.93 0.86
4 1.10 0.97 1.12 1.03 1.07 1.01
5 1.13 1.02 1.18 1.08 1.20 1.10
Table 3: Estimated parameters, AIC and BIC for the TEPIX time series
Model (%)) (03] (6] Qa3 51 52 53 AIC BIC
ARCH(1) 0.4362 0.3748 350.6 356.6
ARCH(2) 0.4213 0.3106 0.2219 339.4 345.5
ARCH(3) 0.4147 0.3216 0.3105 0.2221 335.6  340.7
GARCH(1,1) 0.3927 0.2520 0.1984 350.9 361.3
GARCH(1,2) 0.3524 0.2212 0.1874 0.1523 351.5 363.9
GARCH(1,3) 0.3021 0.1980 0.1722 0.1281 0.1125 347.7 352.2
Gumbel ARCH(1) 0.4993 0.3216 318.2 322.7
Gumbel ARCH(2) 0.4325 0.2992 0.2579 315.3  319.7
Gumbel ARCH(3) 0.4091 0.2537 0.2280 0.1852 3124 317.1
Gumbel GARCH(1,1) 0.3423 0.2758 0.1980 306.4 314.9
Gumbel GARCH(1,2) 0.3219 0.2227 0.1825 0.1653 304.7 311.5
Gumbel GARCH(1,3) 0.3051 0.2113 0.1812 0.1521 0.1210 303.2 307.4
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A Appendix
Let Z; be the o-field generated by {o?, 07 ,, ...}, then we have
B(X{|Fi1, L) = BE(XP|Fio1) = o7 (1 +v26/7%),

and
0= E(X}) = E(E(X?|Fi1)) = E(o7(1 + v%6/7%)).
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For k > 0, since

Cov(X} — o2(1+v%6/7?),072 (1 + 1%6/7?))
= Bl(X} — o7 (1 +v%6/7%))(07_4 (1 + 1?6 /7°) — 0?)]
= Bl(of 1 (1 +v%6/7%) — 0*) E(X{ — 07 (1 +v°6/7%)|11)]
(071 (1+v°6/7%) — o) E(B(X{|Fior, T)|T — of (1 + 176/7°))]
(02 (14 1%6/7%) — 0®)E(c(1 + v*6/7%)|T; — o2 (1 + 1%6/7%))

o
o

E
E

0,
we obtain

Cov(X7, 07 (14 v%6/7%)) = Cov(o? (1 + v26/7%), 07 1. (1 + 1?6 /7%)).
Similarly for & < 0, since

Cov(X?, X7, — ol (1 +1%6/7%))
E[(XQ—U V(XL g — o (1 +°6/77)))]

= E[(X? = 0*) E((X?, — 07, (1 + 126/7%)) | Fix1)]
E[(X2 0?) (o7, (1 +126/7%) — E(o7_, (1 +1v26/7%)| Fix1)]

Il
o

we have
COU(XE, af_k(l + V26/7T2)) = C’OU(XE, Xf_k).

Therefore

(1+v26/72)*Cov(c?, 0?2 ), k>0

Cov(XZ, 02 (1 +1%6/n%)) = |
ou(X7, 07 (1 +v76/77)) Cov(XZ, X2 ), <0

Let us now derive 7(32 (k). For k > 0, since

732(k) COU(Ut’Ot k) ZCOU t— zaUt k +ZBJCOU Ut g7at k)

=1

p
- Z(l +1%6/7%) /(1 4 126/7%);Cov(X2 ;02 ) + Z B;Cov(o7_;, 07 1)

j=1
p
- Z a;/(1+126/7)Cov(XP,, (1+1%6/x%)07 ) + Y B;Cov(o} ;07 ),
i=1 =1
we have

min(k,p)

72 (k) = Z (14 v%6/7%)a;Cov(o? ,, 02 )+

=1

P
Zai/(1+y26/72>0()v( LX) +ZﬁJCOU op j’at k)-
i=1

7=1
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For the case, when k > 1, we obtain 72(k) as

(k) = Cov(X/, XPy) = B(X7, X y) = BE(E(X/, X?,)|Fi)
= E(E(X{|Fie1, Xiy) = E((1+v76/7%)0, X y)

p q
= (1 + 1/26/7T2)E(CY0 + Z Ozin_i + Z ﬂjUtQ—ja XtQ—k)
i=1 Jj=1

= (1+26/7") > aB(X7 X2 ) + > BiE(af ;X[ y))

i=1 j=1
P min(k—1),q

= Z(l +1°6/m*0;Cov(X7 ;, X7 ;) + Z B;Cov(X? ;, X7 1)
i=1 j=1

q
+ ) (1+v%6/n%)?8;Cov(a} ;07 ). O

j=1



	Introduction
	Gumbel GARCH
	Estimation and Simulation Comparison
	Yule-Walker Estimator
	Maximum Likelihood
	Simulation

	Real Example
	Conclusion
	Appendix

