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•	 This paper synthesises research from three separate studies, analysing 
how different representations of a mathematical concept may affect 
young children’s engagement with mathematical activities. Children 
between five and seven years old engaged in counting objects, identify-
ing triangles and completing repeating patterns. The implementation of 
three counting principles were investigated: the one-to-one principle, 
the stable-order principle and the cardinal principal. Children’s reason-
ing when identifying triangles was analysed in terms of visual, critical 
and non-critical attribute reasoning. With regard to repeating patterns, 
we analyse children’s references to the minimal unit of repeat of the pat-
tern. Results are discussed in terms of three functions of multiple exter-
nal representations: to complement, to constrain and to construct.
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Vključevanje otrok v matematične aktivnosti, ki 
vključujejo različne reprezentacije: trikotniki, vzorci in 
štetje 

Dina Tirosh, Pessia Tsamir, Ruthi Barkai in Esther Levenson

•	 Prispevek povzema ugotovitve treh ločenih raziskav, v katerih smo 
preučevali, kako različne reprezentacije matematičnih pojmov vpliva-
jo na otrokovo odzivanje v matematičnih aktivnostih. Otroci, stari od 
pet do sedem let, so šteli objekte, prepoznavali trikotnike in nadalje-
vali vzorce. Pri štetju smo ugotavljali otrokovo poznavanje treh ključnih 
načel štetja: prirejanje drug drugemu, konstantnost vrstnega reda pri 
štetju in načelo kardinalnosti. Pri preučevanju otrokovega prepozna-
vanja trikotnikov smo analizirali ugotovitve otrok glede na to, kako so 
jih identificirali: le na osnovi videza ali upoštevajoč ključne karakteris-
tike trikotnika. Pri preučevanju vzorcev smo se osredinili na otrokovo 
prepoznavanje osnovne enote vzorca, ki predstavlja objekt ponavljanja. 
Rezultati so predstavljeni glede na tri načine uporabe zunanje reprezen-
tacije, ki so dopolnitev, interpretacija in konstrukcija.

	 Ključne besede: štetje, multiple reprezentacije, ponavljajoči se vzorci, 
trikotniki, predšolski otroci
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Introduction

Young children begin to learn mathematics by examining their environ-
ment. How many cookies has mom placed on their plate? What shapes are the 
cookies? Does the plate have some kind of pattern around its edge? From these 
interactions, children begin to form concept images. According to Vinner and 
Hershkowitz (1980), visual representations, impressions and experiences make up 
the initial concept image, while formal mathematical definitions are usually added 
at a later stage. The aim of the present study is to explore how different representa-
tions of a concept may affect children’s engagement with mathematical activities. 

Many educators support learning mathematics through multiple repre-
sentations. Beginning with Dienes (1960), it has been suggested that multiple 
representations offer embodiments of abstract entities, which in turn help stu-
dents develop rich understanding and connections to new concepts. External 
representations include concrete manipulatives, visual images and symbols. 
The introduction of touch-screen tablets has added representations that com-
bine the visual and the manipulative; specifically, the need to take into consid-
eration the coordination of eye and hand movements (Sinclair & de Freitas, 
2014). While it is true that the hand may gesture without the eye looking at it, 
with touch-screen technology, gestures involve the eyes. At times, the hand is 
subordinate to the eyes, as when a child holds up his fingers and the eyes count 
the fingers. At other times, neither the hand nor the eye is subordinate. Sinclair 
and de Freitas (2014) describe a child who sees “seven-ness”, which the simulta-
neous touch on the screen has made possible. Add to this scenario sound, such 
as one click each time one dot appears on the screen, and there is an interplay 
between three senses: seeing, hearing, and touch. 

Ainsworth (2006) suggested three functions of multiple external rep-
resentations: to complement, to constrain and to construct. Different repre-
sentations complement each other when they differ in the processes they each 
support, or in the information they contain. Different combinations of repre-
sentations can support learning when one representation constrains (i.e., re-
stricts the scope of) interpretation of a second representation. Finally, a deeper 
understanding is constructed when students integrate information from multi-
ple representations that would be difficult to gain with only one representation. 

For the past several years, we have been investigating young children’s 
(aged 4–7 years) engagement with various mathematical activities within three 
major domains: number concepts, geometry and repeating patterns (e.g., 
Tsamir, Tirosh, & Levenson, 2008; Tsamir, Tirosh, Levenson, Barkai, & Tabach, 
2017). Mathematical activities within these domains often involve different 
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representations of the same mathematical concept. Representations may be 
tangible (such as representing the abstract concept of six with six coloured 
beads) or visual (such as a drawing of a triangle). Even when all representations 
are tangible, they may still vary (such as having six beads in a row or six beads 
bunched up together). The present paper integrates these different studies and 
focuses on three activities – counting, identifying triangles and extending re-
peating patterns – when different representations are encountered by children.

Related background 

Because the paper deals with three different mathematical subjects, this 
section offers a brief review of some definitions, competencies and representa-
tions related to each subject. 

Counting objects 

Object counting refers to counting objects for the purpose of saying 
how many. Gelman and Gallistel (1978) outlined five principles of counting 
objects. The three “how-to-count” principles include the one-to-one principle, 
the stable-order principle and the cardinal principle. The two “what-to-count” 
principles include the abstraction principle and the order-irrelevance princi-
ple. Implementing the stable-order principle is based on being able to count 
verbally. This is more than a rote skill; it includes being able to say the num-
ber words in the proper order and knowing the principles and patterns in the 
number system as coded in one’s natural language (Baroody, 1987). Typically, 
most sequences up to thirty produced by children begin with an accurate por-
tion of the number-word sequence, followed by a stable but incorrect portion 
between two to six words, and then a non-stable incorrect sequence of number 
words (Fuson, 1991). The relationship to language may be seen in the difficul-
ties of English-speaking (and Hebrew-speaking) children when learning the 
number words from 11 to 20, and going from 29 to 30 (Han & Ginsburg, 2001). 
Competence in object counting may be related to the number of objects to be 
counted, as well as how the objects are set up (Gelman & Gallistel, 1978). In ad-
dition, children may show knowledge of one principle while violating another 
principle; for example, erring with regard to the one-to-one correspondence 
principle, but showing understanding of cardinality (Geary et al., 1992). 

During the early years, number concepts are often represented by ma-
nipulatives. “Manipulative materials are objects designed to represent explicitly 
and concretely mathematical ideas that are abstract. They have both visual and 
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tactile appeal and can be manipulated by learners through hands-on experi-
ences” (Moyer, 2001, p. 176). In other words, representations need to be manip-
ulated and actively operated on, in order to develop mental images that can be 
used later in the mental manipulations of abstract concepts. An example of this 
may be seen in one pre-K-2 programme aimed at developing children’s number 
sense (Griffin, 2004). One of the main principles of this programme was to 
expose children to the main ways number is represented and talked about in 
society. Thus, children encounter number represented by dot patterns on a die, 
the distance a pawn moves on a game board, sets of buckets illustrated on play-
ing cards, and written numerals. Children act on these representations (e.g., 
counting the dots, moving their pawn) and with repeated play become capable 
of mentally doing some arithmetic operations, such as successive addition. Ac-
cording to Moyer (2001), manipulatives (and, by extension, perhaps other rep-
resentations) become meaningful in the process of using them within shared 
environments. “The physicality of concrete manipulatives does not carry the 
meaning of the mathematical ideas behind them. Students must reflect on their 
actions with the manipulatives to build meaning” (p. 177). In the present study, 
we focus on counting physical objects, where number is represented as the car-
dinality of a set of objects and the set representation differs from task to task.

Identifying two-dimensional figures

The acquisition of geometrical concepts includes both visual and attri-
butional reasoning. According to the van Hiele theory (e.g., van Hiele & van 
Hiele, 1958), at the most basic level, children use visual reasoning, taking in the 
whole shape without considering that the shape is made up of separate com-
ponents. Students at this level can name shapes and distinguish between simi-
lar looking shapes. At the second level, students begin to notice that different 
shapes have different attributes, but the attributes are not perceived as being 
related. At the third van Hiele level, relationships between attributes are per-
ceived and definitions are meaningful. If the student points out that a figure is a 
quadrilateral because it has four sides and, therefore, it also has four angles and 
vertices, then that child may be operating at the third van Hiele level. 

Attributes may be critical or not-critical (Hershkowitz, 1989). In math-
ematics, critical attributes stem from the concept definition. For example, the 
critical attributes of a quadrilateral include (a) closed figure, (b) four sides, (c) 
four vertices, (d) four angles. Non-critical attributes include the overall size 
of the figure (large or small) and orientation (horizontal base). As educators, 
we aim for students to use only critical attributes as the deciding factor in 
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identifying examples and forming geometrical concepts. In her study of young 
children’s understanding of shapes, Hannibal (1999) found that many children 
reverted to the use of non-critical attributes when trying to differentiate be-
tween examples and non-examples among similar shapes. Burger and Shaugh-
nessy (1986) claimed that an individual’s reference to non-critical attributes has 
an element of visual reasoning. Thus, they further claimed that a child using 
this reasoning may either be at van Hiele level one or at van Hiele level two, as 
s/he is pointing to a specific attribute, and not judging the figure as a whole. 

In the realm of geometry, representations often take the form of figures. In 
his study of figural concepts, Fischbein (1993) referred to an image as a sensorial 
representation. The concept (e.g., triangle) “is the general idea of a class of sub-
stances having in common a number of properties… The image… is the sensorial 
representation of the respective object (including color, magnitude, etc.)” (p. 139). 
Thus, when examining the properties of a triangle, for example, the triangle drawn 
on a piece of paper represents an infinite class of objects; it is a general representa-
tion. Mental operations may be performed on these figures, such as modifying, 
displacing, cutting, etc. The complexity of working with figural representations is 
exemplified in one experiment where children in grades 2–6 were asked to com-
pare the point of intersection between two lines with the point of intersection be-
tween four lines. The findings showed that the younger children’s replies reflected 
their view of the figures as concrete representations, whereas the older children 
had a more abstract-conceptual view. In a related study, Tsamir, Tirosh and Leven-
son (2008) differentiated between intuitive and non-intuitive non-examples and 
also found that children related some figures to concrete objects. In the present 
study, we focus on examples of triangles, that is, different representations of trian-
gles and the reasoning children use when identifying these representations. 

Children’s repeating patterning competencies

Repeating patterns are patterns with a cyclical repetition of an identifi-
able “unit of repeat” (Zazkis & Liljedhal, 2002). For example, the pattern AB-
BABBABB… has a minimal unit of repeat of length three. Educators have noted 
that exploring repeating patterns may promote children’s appreciation of un-
derlying structures (e.g., Starkey, Klein, & Wakeley, 2004). Structure, however, 
is an abstract concept. For young children, recognising structure comes from 
observing and engaging with concrete repeating patterns. For example, studies 
found that children may spontaneously build their own AB and ABC patterns 
with blocks or by painting stripes (Fox, 2005; Seo & Ginsburg, 2004), calling 
out the pattern they are making, such as red, blue, red blue, and so on. 



c e p s  Journal | Vol.8 | No2 | Year 2018 15

Previous studies have investigated children’s engagement with various 
pattern tasks, such as extension, duplication and completion tasks. Papic et al., 
(2011) reported that many children succeed at extension and duplication tasks 
by employing a “matching one item at a time” strategy. This strategy is very 
successful with simple AB patterns, but less so with more complex patterns. 
For example, when asked to replicate a 12-block tower made up of three repeti-
tions of a red–blue–blue–black unit, one child claimed that the tower was not 
a pattern. When asked why it was not a pattern, the child replied “because it 
can’t have two of the same color next to each other… You have to have different 
colours like red, blue, black. Then it’s a pattern” (p. 253). 

Another type of pattern task is when a child is requested to construct or 
draw the same kind of pattern as a given pattern, but with different materials 
(Rittle-Johnson et al., 2013). For example, if an AABB pattern is constructed 
from red and blue cubes, then the child is given triangles and circles to con-
struct a similar pattern. In other words, the child is requested to translate be-
tween different representations of the same pattern. Such a task is considered to 
be more advanced than being able to duplicate, extend or fix a pattern (Sarama 
& Clements, 2009). In the present study, we examine children’s engagement 
with patterns represented by physical materials and patterns represented picto-
rially on a tablet application.

In this paper we review studies of young children engaging with con-
crete, figural and tablet representations of three mathematical concepts: count-
ing objects, identifying triangles and completing repeating patterns. According 
to Ainsworth (2006), there are three functions of multiple external representa-
tions: to complement, to constrain and to construct. The aim of this study is to 
explore these three functions within different mathematical contexts. 

The current study

In this paper, we integrate results from three different investigations, 
each focusing on a different mathematical context with children aged 4–7 years. 
As such, the following sections present the methodology and results separately 
for each mathematical context. The discussion at the end synthesises results.

Counting objects

Problem definition and research questions
Learning to count objects is complex and may require different skills 

depending on the objects to be counted and their physical placement. Previous 
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studies have focused on pictorial number representations, such as counting 
dots on dice (Griffin, 2004), or on children’s counting strategies when asked to 
count a set of concrete objects (Baroody, 1987). The present study focuses on 
two physical attributes of the objects to be counted: their colour and the way 
they are set up. Specifically, we asked: Is there a difference between children’s 
ability to count objects in a row as opposed to objects in a circle? Is there a 
difference between children’s ability to count identical objects as opposed to 
objects that are not identical?

Methodology and data procedure
The participants were 39 children between the ages of 4 and 5, ages when 

children are still developing their counting skills. They were gathered from four 
preschool classes in the same middle-low socioeconomic neighbourhood. All of 
the children were interviewed by the researcher in a quiet corner of the classroom.

The first task involved placing eight different objects in a row on the 
table in front of the child and asking: How many objects are here? The objects 
were a pencil, pen, pencil, eraser, sharpener, pencil, crayon and eraser. These 
objects were each distinct, which we thought would encourage one-to-one cor-
respondence, yet they belong together in a set as they are generally found in a 
pencil case. After the children verbally counted the objects (sometimes correct-
ly and sometimes not) they were asked: So how many are there? Three counting 
skills were assessed: using the correct counting words in the correct order, us-
ing one-to-one correspondence, and the cardinality principle. The cardinality 
principle was assessed based on the children’s responses to the last question. 
In other words, whether they repeated the last number word they had said, or 
whether they started counting the objects again from the beginning. Out of 
the original 39 children, 20 demonstrated knowledge of all three skills, and it 
was these 20 children who engaged in the rest of the tasks. It was thought that 
if the children did not show evidence of these basic counting skills when non-
identical objects were placed in a row, having them cope with situations that are 
more complex might place undue stress on them and would not provide us with 
additional meaningful data.

The second task involved placing seven identical bottle caps in a circle 
and asking: How many bottle caps are here? The aim was to see how children 
would cope with counting items in a circle when there is no obvious place to 
begin or end. After the children had answered, the caps were removed from the 
table and a set of nine caps were placed on the table: eight identical bottle caps 
and one additional cap of a different colour. The caps were arranged in a circle 
with the different coloured cap placed on the bottom of the circle, in relation to 
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where the child was sitting. Here, we were interested in seeing whether the chil-
dren would use the different cap as an anchor or a sign of where to begin and 
end their counting. Again, the child was asked: How many bottle caps are here? 
After the child answered, those caps were removed from the table and a third 
set of caps was placed on the table in a circle: seven caps, each of which was 
different from the others. Here we were interested to see whether having all dif-
ferent items would have an effect on children’s counting strategy; in particular, 
whether it would be different from the second task, when all of the items were 
identical. Although the children were not directly told that the objects should 
not be moved, it seemed from their actions that this was implicitly understood, 
as no child moved the caps.

Results
From Table 1 we see that it was easier for children to manage counting 

skills when items were placed in a row, rather than in a circle. When counting in 
a row, all of the children began to count from one end, and continued to count 
in order until they reached the end. Interestingly, when the caps were presented 
in a circle, two of the children simply said “I don’t know”, without even attempt-
ing to count the items. This points to children who may not have experience 
counting objects that are not arranged in a set order. On the other hand, once 
the caps were placed in a circle, it did not seem to make any difference whether 
they were identical or not. 

Table 1
Frequencies (%) of correct answers

Placed in a row Placed in a circle

Task 1
8 items in a pencil 

case

Task 2
7 identical caps

Task 3
9 caps: 1 different 

and 8 identical

Task 4
7 caps of different 

colours

Frequency 20 (100) 11 (55) 8 (40) 10 (50)

In order to examine more closely how the different representations led 
to different counting strategies, we present a few examples of the children’s 
counting strategies, beginning with the children who succeeded in all four 
tasks, proceeding with the children who completed the first two tasks correctly 
but not the last two, and ending with the children who incorrectly counted the 
caps in Task 2, but then had different results in the last two tasks.

Natalie and Nitzan (these and all other names are pseudonyms) correct-
ly counted the objects in all four tasks. For Task 3, Natalie began counting with 
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the different coloured cap; that is, the different coloured cap was “one” and she 
ended when she counted the cap preceding the different coloured cap. Nitzan 
used a different strategy for Task 3. She began counting “one” with the cap that 
came after (in a clockwise rotation) the different coloured cap, and ended when 
she counted the different coloured cap.

Michael correctly counted the caps in Tasks 1 and 2, but then got con-
fused in Tasks 3 and 4. Using the same strategy as Natalie for Task 3, he counted 
“one” as he touched the different coloured cap. However, he also ended with the 
different coloured cap, essentially counting it twice. He made the same mistake 
in Task 4, when he again ended with the cap he had begun counting with, thus 
counting it twice.

Finally, we turn to Lior and Liele. Both counted one extra bottle cap in 
Task 2, claiming that there were eight caps in the circle. In Task 3, Lior began 
counting with the different coloured cap and counted correctly. For the last 
task, he also counted correctly. Liele, on the other hand, did not start counting 
from the different coloured cap in Task 3, and ended up counting one of the 
caps twice, claiming that there were 10 caps. He made the same mistake again 
for Task 4, incorrectly claiming there were 8 caps.

To summarise, four concrete representations of a set were presented to 
the children. It was thought that the circular representation might cause them to 
keep on counting while they went around in circles, counting until they got tired 
or confused. However, none of the children over-counted by more than two. In 
other words, although we cannot say for sure what strategy the children used to 
keep track of their counting, it could be that the circular identical caps represen-
tation caused children to focus or concentrate more on keeping track of their 
actions, knowing that there had to be a beginning and an end. In addition, most 
of the children attempted to use the different coloured cap in the third representa-
tion, again indicating an understanding that they needed to control their actions. 
To conclude, once the children demonstrated competence with the one-to-one 
principle, the stable-order principle and the cardinal principle, different repre-
sentations of sets of objects may be seen to encourage control and reflection.

Identifying triangles

Problem definition and research questions
Triangles are visual representations of formal mathematical objects. Ac-

cording to van Hiele, (e.g., van Hiele & van Hiele, 1958), children can be as-
sisted to move from one level of reasoning to another. Thus, it is important to 
know which examples may promote children’s attribute reasoning and which 
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examples may encourage them to focus on critical rather than non-critical rea-
soning (Hershkowitz, 1989). In the present study we asked: Are some represen-
tations more easily identified as triangles than others? Do children use differ-
ent levels of reasoning (i.e., according to van Hiele) when identifying different 
triangle representations?

Methodology and data procedure
Twenty-five children (called C1 through C25) between the ages of 5–6 

years participated in this study. The children were attending municipal kin-
dergartens, in the same middle-low socioeconomic neighbourhood, the year 
before entering the first grade. According to the Israel National Mathematics 
Preschool Curriculum, at this age, children learn to identify various polygons, 
along with recognising critical attributes (e.g., the number of sides, vertices, 
etc.). All of the children were interviewed by the researcher in a quiet corner of 
the classroom.

The task involved eight different figures – three triangles and five non-
triangles – each of which was printed on a separate card. The figures and the or-
der in which they were given was the same for each child. After presenting each 
card in the same order to each child, two interview questions were asked: Is 
this a triangle? Why? The first question ascertained whether the child correctly 
identified the figure as a triangle or a non-triangle, while the second question 
allowed us to study the child’s reasoning about the identification of a figure and 
whether different representations gave rise to different reasoning. As this study 
focuses on representations of a concept, we focus on the figures that represent 
triangles (see Figure 1; for the full set of figures see Tirosh, Tsamir, Levenson, 
Tabach, & Barkai, 2013).

Figure 1. Equilateral, acute and right triangles.

Two sets of data were analysed, corresponding to the two interview 
questions. The first set of data consisted of the children’s responses to the ques-
tion of identification, i.e., whether the child correctly identified the figure as a 
triangle. The second set of data resulted from the children’s reasoning about the 
identification of a figure (see Table 2). 
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Using the van Hiele levels of geometrical thought, the children’s reasoning 
was first sorted into visual reasoning and reasoning based on the figure’s attrib-
utes. Within the category of visual reasoning were responses based on appearance 
alone, where the figure was perceived as a whole. An example of such reasoning 
was one child, C23, who claimed that the equilateral triangle was a triangle be-
cause “You see it”. Another example was C5, who said that the acute triangle is not 
a triangle “because it’s a thorn”. The second level of van Hiele thought is reasoning 
based on attributes. As discussed in the background, attributes may be further 
divided into critical and non-critical attributes. As in our previous study of non-
triangles (Tsamir, Tirosh, & Levenson, 2008), we consider that a triangle has four 
critical attributes: (a) closed figure, (b) three, (c) vertices, (d) straight sides. Non-
critical attributes are “usually attributes of a prototypical example only” (Her-
shkowitz, 1989, p. 69). These attributes might refer to the length of the sides, the 
measurement of the angles or the orientation of the figure. 

Table 2
Coding reasons after identifying a figure

Category Reasons

Purely visual reference to the 
whole figure 

“It looks (doesn’t look) like a triangle.”
“You see (don’t see) the shape.”
“It’s not a triangle. It’s a thorn (referring to the acute triangle).”

Reference to non-critical 
attributes

“Because this (points to a particular side) is too small (short, big, 
long).” 
“It’s (referring to the figure) too thin (fat, long, sharp).”

Reference to critical attributes “It has three (four, five, many, no) sides (lines, points, corners).”

Although reasoning based on non-critical attributes should fall under 
the second van-Hiele level of attribute reasoning, it might also be considered 
partly visual. Comparing a figure to prototypical examples is what Hershkowitz 
(1990) called prototypical judgment. This may be partly visual judgment, as the 
“prototype’s irrelevant attributes usually have strong visual characteristics” (p. 
83). Thus, we suggest that reasoning based on non-critical attributes may serve 
as a bridge between the first and second van Hiele levels of thought. Our second 
category was reasoning based on non-critical attributes. For example, when 
discussing the acute triangle, C22 claimed that it was not a triangle because “it’s 
too long”. The third category was reasoning based on critical attributes. Some of 
the children correctly used the critical attributes by counting sides or vertices, 
for example. Others referred to critical attributes but applied them incorrectly. 
For example, C15, looking at the acute triangle, said “It’s not a triangle because 
it doesn’t have three sides, only two”. Table 2 lists common examples of the 
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children’s reasoning and their categorisation. The children who gave more than 
one reason in two different categories were given more than one code, in ac-
cordance with the appropriate categories.

Results
Regarding identifications of the triangles, all of the children correctly 

identified the equilateral triangle, 68% correctly identified the right triangle, 
and 16% correctly identified the acute triangle. Table 3 reports on the frequen-
cies of the types of reasoning associated with each triangle representation. Note 
that some of the children gave more than one reason, and thus the total for each 
row is greater than 25; for example, there were 29 reasons given for why the 
equilateral triangle is a triangle. Viewed globally, visual reasoning was the most 
frequent type of reasoning. Specifically, for the equilateral triangle, the children 
most often used visual reasoning or reasoning based on critical attributes. For 
the acute triangle, they used either visual or non-critical attribute reasoning, 
whereas for the right triangle, they used mostly visual reasoning, and to a lesser 
extent, reasoning based on critical attributes.

Table 3
Frequency of reasoning associated with triangle identification 

Triangles 

Types of reasoning

Visual Non-critical attributes Critical attributes

correct incorrect total correct incorrect total correct incorrect total

Equi-lateral 13 - 13 4 - 4 12 - 12

Acute - 10 10 1 9 10 3 3 6

Right 8 4 12 3 4 7 9 - 9

We now examine some trends in the children’s reasoning more closely. 
Out of the 25 children interviewed, 10 children (40%) gave the same type of rea-
soning for each triangle. Four children consistently used visual reasoning, two 
used non-critical attributes, and four consistently used critical attribute reason-
ing. The rest of the children (60%) seemed to use different reasoning for different 
representations. C3, for example, explained that the equilateral triangle is a trian-
gle because “they made it a triangle”. “Making” a triangle is reminiscent of Fisch-
bein’s (1993) example of children concretising figural representations, and may 
be categorised as visual reasoning. C3 explained that the acute triangle was not 
a triangle because “it’s thin” (a non-critical attribute), and claimed that the right 
triangle was a triangle because “it has a line, a line, a line” (indicating the critical 
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attribute of having three sides, which she calls lines). In other words, C3 went 
from visual reasoning, to reasoning based on a non-critical attribute, to reasoning 
based on a critical attribute. C12’s reasoning went in the opposite direction. He 
explained that the equilateral triangle was a triangle because “a triangle has three 
corners and this has three corners”. This refers to the critical attribute of having 
three vertices or angles. He claimed that the acute triangle was not a triangle be-
cause “it’s long” (a non-critical attribute), and used visual reasoning when he said 
that the right triangle is a triangle because “it has the exact shape of a triangle”. 

To summarise, three visual representations of triangles were presented to 
the children. In accordance with previous studies (e.g., Hershkowitz, 1989), only 
the prototypical triangle was recognised as a triangle by all of the children. Re-
garding reasoning, it seemed that most of the children varied their reasoning with 
the representation. From the above examples, we also see that the children seem 
to be operating at both the first and second levels of van Hiele reasoning. While 
other studies suggested that the van Hiele levels may not be discrete and that a 
child may display different levels of thinking for different contexts or different 
tasks (Burger & Shaughnessy, 1986), the present study showed that children may 
display different levels of reasoning based on different representations. 

Repeating patterns

Problem definition and research questions
Repeating patterns may have various structures, such as AB, ABB, ABC 

and ABA. They may be represented visually with pictures, concretely with physi-
cal items, or a combination of visual and manipulative on tablets. In the present 
study we asked the following questions: Are there pattern structures that chil-
dren complete more easily than others? In addition, taking into consideration the 
rather new form of representation on tablets, we ask: Are patterns represented 
concretely more easily completed than patterns represented on a tablet? 

Methodology and data procedure
In this section, we report on one child – Jubilee, aged seven – who engaged 

with repeating pattern activities using concrete materials, as well as a tablet appli-
cation (app), under the guidance of her uncle, Boris. Boris was a student studying 
for a postgraduate degree in mathematics education. The activity was conducted 
under the guidance of the researcher, but without the researcher present. 

The app had the following attributes: (1) each screen presents two pat-
terns, not necessarily with the same pattern structure, (2) the first unit of repeat 
in each pattern is highlighted, (3) patterns are presented with elements missing 
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in different places, (4) there is a bank of elements on the bottom of the screen 
that the child chooses from, (5) the child must drag an element from the bank 
to a blank spot in the pattern, and (6) if a mistake is made, the picture will fall 
back down to the bank, no hint is given, and the child can try again. If the child 
is correct, the app keeps the picture in place. When the full pattern is complet-
ed, there is a sound of handclapping. In other words, from interpreting the con-
text, without adult intervention, the child can know whether s/he was correct.

At first, Jubilee played with the app freely, becoming familiar with its 
aim and how it responds to her gestures. Boris then used the concrete materi-
als to explain repeating patterns, showing how they are constructed from units 
that repeat themselves. He then engaged Jubilee with completion tasks using 
the concrete materials. Finally, he switched back to the app. The interaction 
between Boris, Jubilee and the tablet app was video-recorded and transcribed. 
Qualitative analysis focused on verbal utterances, and, due to the nature of tab-
let representations, included an analysis of hand gestures. 

Results
The first two patterns on the screen presented to Jubilee were of the form 

A B _ _ _ _ (see Figure 2a). Jubilee explained before acting, 
“You take a chicken because they show you these two here (pointing to 

the highlighted chicken and cow in the beginning) and here there is a cow so 
then you need to put this (pointing to the chicken) and they show us that you 
need these two (uses two fingers to point to the two elements highlighted, one 
finger on the chicken and one finger on the cow).” (See Figure 2b.)

The use of two fingers of one hand to touch the elements of the unit 
hints at Jubilee’s recognition that these two elements are one unit. Jubilee then 
drags the chicken into place and subsequently drags the cow into place, saying, 
“And now again it repeats itself ”. The verbal utterance “it” also indicates that 
Jubilee sees the chicken and cow as one unit: “it”. Jubilee correctly completes 
the second AB pattern, as well as another two AB patterns on a different screen. 

Figures 2a and 2b. Jubilee recognising the unit of repeat in an AB pattern.
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The next screen shows: A B C _ _ _, and underneath that A B A _ _ _ 
(see Figure 3a; the eggs at the end of the first and second patterns are not part of 
the patterns, but merely decorations). Starting with the upper pattern, Jubilee 
correctly places the correct cat and explains, “Because this is a cat and this and 
this (pointing to the duck and pig) and this is the end of it” (Jubilee makes an 
up and down hand motion after the highlighted unit) (see Figure 3b). Jubilee’s 
up and down gesture signifies that the unit ends there. Jubilee then correctly 
completes the first pattern.

Figures 3a and 3b. Jubilee recognising the ABC unit of repeat.

As Jubilee begins to work on the second pattern, Boris asks her to ex-
plain before dragging any of the pictures. (Note that the bank in Figure 2a has 
two cats – one with a tail and one without a tail).

Jubilee: Because here there is a pig (points to the first pig in the highlighted 
unit) and here is a cat (points to the cat-without-a-tail after the pig) so here you 
need again a pig (points to the second pig in the unit) and then again a cat.

Jubilee does not indicate that she is aware of the unit of repeat. She 
points out the first pig, then the cat, and, as if that is the unit, she says “so here 
you need again a pig”. The “again” seems to indicate that this second pig begins 
the next unit. Jubilee drags the cat-without-a-tail into the first empty spot, but 
it drops back down. She then tries the cat-with-a-tail, but that also drops back 
down. She then pauses (five seconds) and says, “I don’t know”. She then drags 
the duck, which also falls back down. Finally, she drags the pig into place, and 
quickly completes the rest of the pattern with a cat and a pig. The last two pat-
terns, an ABB and an ABC pattern, are completed without error.

After a short break, Boris closes the tablet and takes out coins of differ-
ent denominations. Using the coins, he proceeds to construct an AB pattern 
with six repeats of the basic minimal unit, taking the opportunity to explain 
out loud to Jubilee that the coin pattern is made up of units that repeat, and that 
in this case the unit has two elements. He then clears away the AB pattern and 
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constructs an ABC pattern, repeating his explanation and requesting that Ju-
bilee continue the pattern, which she does correctly. After this demonstration, 
he continues by constructing an AAB pattern and asks Jubilee to tell him how 
many coins make up the unit of repeat and how many times the unit repeats 
itself. Jubilee answers correctly each time. Boris then requests Jubilee to close 
her eyes while he removes two elements from the pattern. Opening her eyes, 
Jubilee is requested to fill in the missing elements, which she does correctly. 
This game is repeated, with Boris finally constructing an ABA pattern. Jubilee 
correctly recognises the three elements of the unit repeat (see Figure 4), cor-
rectly acknowledges how many times the unit repeats itself, and correctly fills 
in the missing element, after having closed her eyes when Boris removed it (see 
Figure 5).

Figure 4. Jubilee shows where the unit of repeat ends and a new one begins.

Figure 5. Fill in the missing element.

Once again there is a break, and Boris reintroduces the same tablet app 
as before. This time, however, Boris asks Jubilee to identify the unit of repeat for 
each pattern before filling in the missing elements. He also asks Jubilee to say how 
many times the unit repeats itself in each pattern. Jubilee correctly engages with 
two AB patterns, as well as an ABC pattern (see the bottom pattern of Figure 5). 
She correctly identifies the unit of repeat by saying that it contains a bathing suit, 
a sun umbrella and a ball, and correctly tells Boris that there are two units in the 
pattern. She then encounters the following pattern: A B A _ _ _ .

Jubilee mistakenly drags the wrong beach ball (see Figure 6; the snail-
like figures at the end of the first pattern and the beginning of the second pat-
tern are merely decorations and not part of the pattern), which drops down, 
and the following interaction occurs: 
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Figure 6. Jubilee drags the incorrect ball into place.

Boris: Tell me first, what is the unit of repeat? Can you identify the unit of 
repeat?
Jubilee ignores his question and correctly completes the pattern. 
Jubilee: But Boris, it can’t be. There are two of these (pointing to the two 
dark blue balls).
Boris: Try to identify the unit that repeats itself here.
Jubilee is quiet while she uses her finger to point to the different elements.
Boris: Try to identify the elements of the unit. What is the unit made up of?
Jubilee: Oh, I understand. If here there was three (circling the highlighted 
unit), if this begins here (pointing to the first ball), then it also has to be 
here (pointing to the fourth ball, essentially the first ball of the second unit 
of repeat).

In this last statement, Jubilee does not answer Boris. Instead, she seems to re-
vert to a “matching one item at a time” strategy (Papic, et al., 2011) in order to resolve 
the problem. After this encounter, Jubilee correctly completes the rest of the patterns.

Summarising the encounter with Jubilee and Boris, we first note the 
complexity of the representations involved in the repeating patterns. First, there 
are different structures, all representing repeating patterns. Then, the same pat-
tern structure may be represented by different elements (e.g., beach objects, 
animals). Finally, there is the difference between concrete representations and 
tablet representations. Regarding structures, Jubilee was able to complete all 
AB, ABB and ABC patterns, regardless of whether they were presented on the 
tablet or with concrete objects. After encountering the language of patterns, 
she was able to identify the unit of repeat in AB and ABC patterns, both when 
engaging with concrete coins and when engaging with the tablet. 

The difference between the coin and tablet representations was only no-
ticeable when engaging with ABA patterns. This is curious, because the tablet 
representation actually highlighted the unit of repeat, and Jubilee’s gestures and 
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utterances hinted at an understanding of what the highlighting represented. 
Yet, despite the highlight, it could be that Jubilee thought that the ABA pattern 
was the beginning of an ABABABAB pattern. In addition, on the tablet, only 
one unit of repeat was represented, while with the manipulatives, four units of 
repeat were placed on the table. It could be that, for identifying structure, it is 
of greater value for the child to see several repeats of the same structure, rather 
than merely telling or showing the child that this is the structure. 

Discussion

Although the three studies reported above were set in different contexts, 
all three focused on young children and the way different representations may 
affect the way children engage mathematically. The first study employed repre-
sentation that varied in colour and set-up, the second study focused on intui-
tive and non-intuitive representations of triangles, and the third study focused 
on concrete versus tablet pattern representations. The reason for reporting on 
the three studies together was to gain knowledge in various contexts of what 
Ainsworth (2006) suggested as the three functions of multiple external repre-
sentations: to complement, to constrain and to construct. 

In the first study (when the children counted objects), the different rep-
resentations complemented each other by offering different information, such as 
where to begin and where to end the counting process. When identifying triangles, 
the information was theoretically the same; however, due to the van Hiele level of 
most children at this age, they pay more attention to visual information than to 
abstract geometrical information. When completing repeating patterns, the con-
crete and tablet representations complemented each other by containing different 
information. Focusing on the ABA patterns, the concrete representation offered an 
expanded pattern with several repeats of the minimal unit of repeat, whereby the 
tablet representation highlighted the unit of repeat, but only showed the one unit.

The constraining function of multiple representations was observed to a 
lesser extent. The different triangle representations did not seem to restrict the 
scope of interpretation of different triangles in any way, nor did the different 
pattern representations. Perhaps when counting objects it might be said that 
the representation of a set of items in a row constrains the interpretation of a set 
of items being placed in a circle, in that the row reminds the child that count-
ing, even in a circle, has a beginning and an end. It might also be that the rep-
resentation of a set by all identical objects except for one of a different colour, 
might have restricted the following set representation, where all objects were of 
a different colour. In other words, the first set might have clarified the necessity 
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of finding a beginning and an end when enumerating all of the sets, regardless 
of how they look. However, it did not seem to impact on the children’s engage-
ment with the last counting task. 

Finally, the third function of using multiple representations is to support 
the construction of a deeper understanding by integrating information from the 
different representations. This is perhaps most obvious when identifying triangles, 
as different representations elicited different types of reasoning. Teachers could 
build on this information to perhaps order the examples, as well as the non-exam-
ples (Tsamir et al., 2008), to support the recognition of critical attributes. Regard-
ing the repeating patterns, it might be that Jubilee was finally able to complete the 
ABA pattern on the tablet by integrating what she had learned from engaging with 
both types of representations: the concrete and the tablet representation. 

In this paper, we reviewed studies of young children engaging with concrete, 
figural and tablet representations of mathematical concepts. Unlike other studies 
(e.g., Griffin, 2004), we did not compare the difference between concrete and figural 
representations in the same context. Instead, we showed that, even when using the 
same physical materials, representations can be varied to support children’s learning. 
Indeed, although we compared tablet representations to concrete representation, in 
the case of the concrete representations of a repeating pattern, the child did not actu-
ally manipulate the items, so in fact, in this sense, it was similar to the tablet repre-
sentation. To conclude, there is still more for us to learn about how various external 
representations, even similar types of representations, can afford young children dif-
ferent opportunities to engage with mathematical learning. 
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