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Decision analysis can be defined as a set of systematic procedures for analysing complex decision 
problems. Differences between the desired and the actual state of real world geographical system is a 
spatial decision problem, which can be approached systematically by means of multi-criteria decision 
making. Many real-world spatially related problems give rise to geographical information system based 
multi-criteria decision making. Geographical information systems and multi-criteria decision making 
have developed largely independently, but a trend towards the exploration of their synergies is now 
emerging. This paper discusses the synergistic role of multi-criteria decisions in geographical 
information systems and the use of geographical information systems in multi-attribute decision 
analysis. An example is provided of analysis of land use suitability by use of either weighted linear 
combination methods or ordered weighting averages.

Povzetek: V prispevku predstavljamo porabo tehnologije GIS pri večkriterijskih odločitvenih postopkih.

1 Introduction
Decision making is based on numerous data concerning
the problem at hand. It has been estimated that 80% of 
data used by managers and decision makers are
geographical in nature [37]. Decision problems that 
involve geographical data are referred to as geographical
or spatial decision problems [21].

Informed decision making and problem solving rely 
on the effective communication and exchange of ideas 
and information, the type and amount of information 
available and necessary to tackle a particular decision 
problem being related to the complexity of the situation. 
Spatial decision problems often require that a large 
number of feasible alternatives be evaluated on the basis 
of multiple criteria. Spatial decisions are multi-criteria in 
nature [4, 26, 28]. 

The types of decision problems that are referred to as 
geographical involve a large set of feasible alternatives 
and multiple conflicting and incommensurate evaluation 
criteria. Accordingly, many real world spatial problems 
give rise to multi-criteria decision making (MCDM) 
based on geographical information system (GIS). These 
two distinct areas of research, GIS and MCDM, can 
benefit from each other. GIS techniques and procedures 
have assumed an important position in decision making 
in the sense that they offer unique capabilities for 
automating, managing, and analysing a variety of spatial 
data for decision making. On the other hand, MCDM and 
a wide range of related methodologies, such as multi-
objective decision making (MODM), multi-attribute 

decision making (MADM), multi-attribute utility theory 
(MAUT), public choice theory, and collaborative 
decision making, offer a rich collection of techniques and 
procedures with which to reveal decision makers' 
preferences and allowing their incorporation into GIS-
based decision making [21].

Spatial multi-criteria decision analysis can be 
thought of as a process that combines and transforms 
geographical data (input) into a resultant decision 
(output). Geographical information can be defined as 
georeferenced data that has been processed into a form 
meaningful to the recipient. The data in geographical 
information systems are most commonly organized by 
separate thematic maps or sets of data, referred to as a 
map layer, coverage or level. The alternative to the layer 
approach is object-oriented GIS, where the objects are 
intended to closely represent real world elements. 
Irrespective of spatial data organisation, the ultimate aim 
of GIS is to provide support for spatial decisions. The 
multi-criteria decision-making procedures define a 
relationship between “input maps” and “output maps” 
[21]. 

Maps have a long history of use in support of 
decision making. Ever since they first appeared as a 
means of navigation, they were also used as a form of 
decision support tool. Good maps often meant the 
differences between success and failure and it is not 
unusual to find that maps have played a very important 
role in modern decision making. The GIS environment 
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allows aggregation of qualitative and quantitative geo-
referenced data [14]. In this paper, the GIS capabilities 
for supporting spatial decisions are analyzed in the 
context of the major phases of the decision-making 
process, each stage of which requires different types of 
information. Tools such as GIS offer a unique 
opportunity to tackle spatial problems traditionally 
associated with more efficient and effective data 
collection, analysis, and alternative evaluation. 

Two methods of multi-criteria evaluation (MCE) in 
GIS, the Weighted Linear Combination (WLC) and the 
Ordered Weighted Average (OWA) methods are 
discussed. A generalised framework of GIS-based spatial 
decision-making procedure is defined and following the 
procedure proposed, an example of multi-attribute 
decision analysis (MADA) in GIS is performed using 
both WLC and OWA. A comparison of these two 
different approaches has been made, based on results of 
land-use suitability analysis for the study area, the 
municipality of Ig, Slovenia.

2 Multi-criteria decision making and 
GIS

2.1 Multi-criteria decision making
It is generally assumed that multi-criteria decision 
analysis (MCDA) originated at the beginning of 1960s. 
Most of practitioners of MCDA consider that their field 
stems largely from the early work on goal programming
and research of Simon [35]. He suggests a structure for 
analyzing human decision-making processes by 
distinguishing between the intelligence, design, and 
choice phases. 

Any decision-making process begins with the 
recognition of the problem to be decided. In the 
intelligence phase, a situation is examined for conditions 
calling for a decision. In the design phase, decision 
makers develop alternative solutions to the decision 
problem already identified. Typically, a formal model is 
used to support a decision maker in determining the set 
of alternatives. In the choice phase, decision makers 
evaluate the decisions and choose the best alternative. In 
the context of decision problems with a spatial 
connotation, the potential for application of spatially 
enabled methods in Simon’s decision phases has already 
been examined [21]. While the intelligence and design 
activities can mostly be covered by multi-purpose spatial 
analysis methods, the choice phase requires specific 
methods still absent from most GIS [2, 21, 24, 25, 32].

The choice phase requires formal methods (decision 
rules) to select feasible alternatives and to rank them with 
respect to the decision-makers’ preferences. As humans 
tend to base rational decisions on an assessment of 
multiple decision criteria, MCDA methods have become 
important tools in management sciences and operations 
research. By incorporating quantifiers (i.e. the relative 
importance of different criteria) for the decision-maker’s 
preferences, these types of decision rules are capable of 
solving semi-structured decision problems.

2.2 Geographical information and GIS
Most of definitions of GIS focus on two aspects: 
technology and/or problem solving. The technological 
approach defines GIS as a set of tools for the input, 
storage and retrieval, manipulation, analysis and output 
of spatial data. This approach however ignores the 
problem solving aspects of GIS and it has been argued 
that GIS functionality can play a crucial role in a 
comprehensive decision-making process [11, 12, 13, 20, 
21].

GIS have the ability to perform numerous tasks 
utilizing spatial and attribute data. Such functions 
distinguish GIS from other management information 
systems. Furthermore, GIS as an integrated technology 
allows for integration of a variety of geographical 
technologies (such as remote sensing, global positioning 
systems, computer-aided design, automated mapping and 
facilities management) that can be in turn integrated with 
analytical and decision-making techniques. The way in 
which data are entered, stored and analyzed must mirror 
the way in which information will be used for analysis or 
decision-making tasks. GIS should therefore be viewed 
as a process rather than as merely software or hardware. 
The system possesses a set of procedures that facilitate 
the data input, data storage, data manipulation and 
analysis, and data output to support decision-making 
activities [13].

In general, a GIS has three main components and is a 
computer system that includes hardware, software and 
appropriate procedures (or techniques and orders for task 
implementation). In addition, GIS are distinguished by 
their use of spatially (geographically) referenced data, 
and for carrying out various management and analysis 
tasks on these data. By allowing data to be organised,
presented and analyzed efficiently, by integrating them 
with other data and by the creation of new data that can 
be operated on in turn, GIS creates useful information t
which can help decision making [14]. Geographical 
information can be defined as georeferenced data that has 
been processed into a form that is meaningful to the 
recipient decision-maker and which is of real or 
perceived value in the decision-making process. In 
general, the MCDA in GIS should be viewed as a process 
of conversion of data to information that adds extra value 
to the original data [21, 22]. 

2.3 Multi-criteria decision problems
Multi-criteria decision-making problems can be 

classified on the basis of the major components of multi-
criteria decision analysis: multi-objective decision 
making (MODM) versus multi-attribute decision making
(MADM), individual versus group decision-maker 
problems, and decision under certainty versus decision 
under uncertainty. The distinction between MODM and 
MADM is based on the classification of evaluation
criteria into attributes and objectives. 

A criterion is the basis for a decision and can be 
measured and evaluated. In case of the spatial decision 
problem, attributes are the properties of geographical 
entities. More specifically, an attribute is a measurable 
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quantity or quality of a geographical entity or a 
relationship between geographical entities. In the context 
of a decision-making problem, the entities and the 
relationships are referred to as the objects of decisions.

Multi-attribute decision making methods are data-
oriented. An attribute is a concrete descriptive value, a 
measurable characteristic of an entity, including inter-
entity relationships. Multi-attribute techniques are 
referred to as discrete methods because they assume that 
the number of alternatives is explicit. Multi-attribute 
decision problems require that choices be made among 
alternatives described by their attributes. This implies 
that attribute-objective relationships are specified in such 
a form that attributes can be regarded as both objectives 
and decision variables. Attributes are used as both 
decision variables and decision criteria [21].

An objective is a more abstract variable with a 
specification of a relative desirability of the levels of that 
variable. The multi-objective methods are mathematical 
programming model-oriented, where the alternatives, 
identified by solving a multi-objective mathematical 
programming problem, must be generated [16]. Multi-
objective methods define the set of alternatives in terms 
of a decision model consisting of two or more objective 
functions and a set of constraints imposed upon the 
decision variables. The model implicitly defines the 
alternatives in terms of decision variables. Multi-
objective models are often approached by converting 
them to a single objective problem solvable by standard 
linear/integer programming methods [33]. It is significant 
however, that the definition of “objective” is somewhat 
broader than is typically encountered in the mathematical 
programming literature. In mathematical programming, 
the term objective is often used to refer to a specific 
objective function. An objective is a statement about the 
desired state of the system under consideration and 
includes purposes and perspectives of a decision making. 
It serves as the defining role as to how the decision is 
structured. Purposes define the number of alternatives to 
be considered and the nature of decision set; perspective 
determines the decision rule: what criteria will be chosen, 
how they are evaluated, and how the final decision is 
made [8].

Objectives are functionally related to, or derived 
from, a set of attributes. An objective indicates the 
directions of improvement (change) of one or more 
attributes. For a given objective, several different 
attributes might be necessary to provide a complete 
assessment of the degree to which the objective might be 
achieved. If there is a direct correspondence between 
attributes and objectives, the multi-objective problem 
becomes a multi-attribute problem. In multi-attribute 
decision analysis, attributes are used both as decision 
variables and decision criteria. Generally speaking, 
MADM approaches are searched-based approaches and 
in GIS they use raster-based data structure, while 
MODM are choice-based approaches and use vector-
based data structure [21, 23].

2.4 Framework for spatial decision making
Decision making is a sequence of activities starting with 
decision problem recognition and ending with a 
recommendation, and eventually with a final choice of 
alternative. As the storage and processing capacity of 
human memory is limited, humans develop simplifying 
cognitive shortcuts or processing rules to solve complex 
problem [5]. There being a number of alternative ways to 
organize the sequence of activities in the decision-
making process, the quality of the decision making 
arguably depends on the sequence in which the activities 
are undertaken [21]. 

According to Kenney [19], two major approaches 
include the alternative-focus approach, which focuses on 
generating decision alternatives, and the value-focus 
approach, which uses the values (evaluation criteria) as a
fundamental element of the decision analysis. The 
differences between these two approaches are related to 
the question of whether alternatives should be generated 
first followed by specification of the value structure, or 
conversely, the alternatives should be derived from the 
value structure (Figure 1). The general principle for 
structuring the decision-making process is that decision 
alternatives should be generated in such a way that the 
values specified for the decision situation are best 
achieved [19].

Any decision-making process begins with the 
recognition and definition of the decision problem, which 
is the perceived difference between the desired and 
existing states of a system. The intelligence phase of 
decision-making involves searching the decision 
environment for conditions requiring a decision: raw data 
are obtained, processed, and examined for clues that may 
identify opportunities or problems (Figure 1).

Figure 1: The sequences of alternative- and value-
focused approaches (based on Kenney [19]).

A significant proportion of human problems have a
geographical component. Decision making as a scientific 
discipline has a much longer history than GIS. Within the 



462 Informatica 33 (2009) 459–474 S. Drobne et al.

wider field of decision research, computers have been 
used to develop decision-support systems (DSS). GIS has 
been referred to as a specific kind of decision-support 
system dealing with problems which involve a high 
degree of spatiality [14] and which can provide a 
framework for the development of spatial decision-

support system (SDSS), particularly when coupled either 
loosely or tightly coupled with other model software. 
Spatial decision-support system and decision-support 
system share the same characteristics but the former 
(SDSS) presents in fact an extension of DSS (Figure 2). 

Figure 2: Classic and GIS-based spatial decision-making procedures.
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One of the most important rules governing the use of 
GIS for SDSS is that GIS themselves do not make 
decisions – people do. In SDSS the emphasis is on the 
use of spatial data and in GIS it is on supporting decision 
makers in the decision-making process to choose the 
alternative (decision) which is the best solution to the 
problem that needs to be solved. Multi-criteria spatial 
decision support systems (MC-SDSS) integrate GIS-
based data processing and analysis techniques and multi-
criteria decision analysis. MC-SDSS, which is discussed 
more in detail below, can be viewed as a part of a 
broader field of spatial decision support systems.

Figure 2 shows the sequence of actions in classic 
spatial decision making and in GIS-based spatial decision 
making. Although the alternative-focused approach is 
mentioned in connection with the generation of
alternatives, values are in general more fundamental than 
alternatives with respect to a decision problem. In other 
words, alternatives are the means to achieving the more 
fundamental values. Once the decision problem is 
defined, the spatial multi-criteria analysis focuses on 
evaluation criteria, which means specifying a 
comprehensive set of objectives that reflects all concerns 
relevant to the decision problem, and measures for 
achieving those objectives. Such measures are called 
attributes. A measurement scale must be established for 
each attribute. The degree, to which the objectives are 
met, as determined by the attributes, is the basis for 
comparing alternatives. The evaluation criteria are 
associated with geographical entities and relationships 
between entities and therefore can be represented in the 
forms of maps (a raster or a vector model). GIS data-
handling and analysis capabilities are used to generate 
inputs to spatial multi-criteria decision analysis [21].

During the process of multi-criteria decision making, 
a decision variable is assigned to each alternative. 
Variables or “attributes” are used by the decision maker 
to measure the performance of alternative decisions. 
With respect to the evaluation criteria, the decision 
maker's preferences are incorporated into the decision 
model. The preferences are typically expressed in terms 
of the weights or relative importance assigned to the 
evaluation criteria under consideration. Given the set of 
alternatives, attributes and associated weights, the input 
data can be organized in the form of decision matrix or 
table. Eventually, the one-dimensional measurements (in 
GIS geographic data layers) and judgments (preferences 
and uncertainty) must be integrated to provide an overall 
assessment of alternatives. This is accomplished by an 
appropriate decision rule or aggregation function. Since a 
decision rule provides an ordering of all alternatives 
according to their performance with respect to the set of 
evaluation criteria, the decision problem depends on the 
selection of the best outcome (or an ordered set of 
outcomes) and the identification of the decision 
alternatives leading to this outcome [21].

After obtaining a ranking of alternatives, sensitivity 
analysis should be performed to determine robustness. 
This is aimed at identifying the effects of changes in the 
inputs (geographical data and the decision makers' 
preferences) on the outputs (ranking of alternatives). It 

helps to learn how the various decision elements interact 
to determine the most preferred alternative and which 
elements are important sources of disagreement among 
decision makers or interest groups. Spatial decision 
making typically involves a large numbers of alternatives 
evaluated on the basis of multiple, possibly conflicting 
criteria, and some systematic method of identifying the 
best alternatives (or classifying or ranking alternatives) is 
required.

The final result of a decision-making process is a 
recommendation for future action. The decision or 
recommendation should be based on the ranking of 
alternatives and the sensitivity analysis. It may include 
the description of the best alternative or a group of 
alternatives considered candidates for implementation. 
Visualisation techniques such as maps are of major 
importance in presenting and communicating the results 
to decision makers and interest groups [21].

3 Multi-attribute decision analysis
GIS-based multi-criteria decision analysis can be thought 
of as a process that combines and transforms spatial data 
into a resultant decision. The MCDM procedures are 
decision rules which define a relationship between the 
input maps and an output map. The procedures use 
geographical data, the decision maker’s preferences, data 
manipulation, and preferences according to decision 
rules. Two considerations of critical importance for 
spatial MCDA are the GIS capabilities of data 
acquisition, storage, retrieval, manipulation and analysis, 
and the MCDM ability to combine the geographical data 
and the decision maker’s preferences into one-
dimensional values of alternative decisions [22].

There are many ways in which decision criteria can 
be combined in MCDA. A Weighted linear combination
(WLC) and its variants [3, 7, 9, 31] requires summation 
of the weighted criteria. The Analytical hierarchical 
process (AHP), an adoption of WLC, can be used in two 
distinctive ways within the GIS environment: first, it can 
be employed to derive the weights associated with 
criteria map layers, and second, the AHP principle can be 
used to aggregate the priority for all hierarchical levels
including the level representing alternatives [1, 34]. 
Concordance-discordance analyses are methods in 
which each pair of alternatives, represented as raster 
pixels or polygons, is analysed for the degree to which 
one outranks the other in the specified criteria [3, 18, 27, 
29, 36]. The ideal point methods avoid some of the 
difficulties associated with the multi-attribute methods 
[15, 30]. These approaches order a set of alternatives on 
the basis of their distance from an ideal point. Recently, 
Malczewski [23] established a very good body of 
literature on GIS-based multi-criteria decision analysis.

Over the last decade, a number of multi-attribute (or 
multi-criteria) evaluation methods have been introduced 
in the GIS environment. Among these procedures, the 
WLC and Boolean overlay operations, such as 
intersection (AND) and union (OR), are considered the 
most straightforward and the most employed in the GIS 
environment [22]. The Ordered Weighted Averaging 
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(OWA) and its variant, Weighted Linear Combination 
(WLC) are discussed in this paper.

3.1 Weighted linear combination (WLC)
Weighted linear combination, or simple additive 
weighting, is based on the concept of a weighted average 
in which continuous criteria are standardized to a 
common numeric range, and then combined by means of 
a weighted average. The decision maker assigns the 
weights of relative importance directly to each attribute 
map layer. The total score for each alternative is obtained 
by multiplying the importance weight assigned to each 
attribute by the scaled value given for that attribute to the 
alternative and then summing the products over all 
attributes. The scores are calculated for all of the 
alternatives and that with the highest overall score is 
chosen. The method can be executed using any GIS 
system with overlay capabilities, and allows the 
evaluation criterion map layers to be combined in order 
to determine the composite map layer which is output. 
The methods can be implemented in both raster and 
vector GIS environments. Some GIS systems, e.g. Idrisi 
[9], have built-in routines for the WLC method, and there 
are available freeware modules or scripts, e.g. for 
ArcGIS [2], to perform that kind of MCDA of this sort.

With the weighted linear combination, factors are 
combined by applying a weight to each followed by a 
summation of the results to yield a suitability map:

 ii xwS (1)

where S is suitability, iw is weight of factor i , and ix
is the criterion score of factor i . In cases, where Boolean 
constraints also apply, the procedure can be modified by 
multiplying the suitability calculated from the factors by 
the product of the constraints:

  jii cxwS (2)

where jc is the criterion score of the constraint j . 

All GIS software systems provide the basic tools for 
evaluation of such a model [9].

3.1.1 Standardization of criterion scores
The first step in this process is digital GIS database 
development. Because criteria are measured on different 
scales, it is necessary that factors be standardized before 
combination, and that they be transformed, if necessary, 
so that all factor maps are positively correlated with 
suitability.

Voogd [36] reviewed a variety of procedures for 
standardization, typically using the minimum and 
maximum values as scaling points. The simplest is a 
linear scaling such as:

SR
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i 
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
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(3)

where iR is the raw score of factor i , minR is the 

minimum score, maxR the maximum score, and SR is 

the standardized range.

The process of standardizing evaluation criteria can 
be seen also as one of recasting values into a statement of 
set membership [7, 9]. If the continuous factors are really 
fuzzy sets, this is easily recognizable as just one of many 
possible set membership functions. Eastmann [7] 
suggested the standardization of factors using a range of 
fuzzy set membership functions to either a 0-1 real 
number scale or a 0-255 byte scale. The latter option is 
recommended because it optimizes the computation. 
Importantly, the higher value of the standardized scale 
must represent the case of being more likely to belong to 
the decision set. Besides this deterministic (linear 
scaling) and fuzzy approach, there are other processes for
standardizing evaluation criteria, such as the value/utility 
function approach, and the probability approach [21]. 

A critical issue in the standardization of factors is the 
choice of the end points at which set membership reaches 
either 0.0 or 1.0 (0 or 255). Blind use of linear scaling (or 
indeed any other scaling) between the minimum and 
maximum values of the image is ill advised. In setting 
these critical points for the set membership function, it is 
important to consider their inherent meaning.

3.1.2 Evaluation of criterion weights
MCDM problems involve criteria of varying importance 
to decision makers and information about the relative 
importance of the criteria is required. This is usually
obtained by assigning a weight to each criterion. The 
derivation of weights is a central step in defining the 
decision maker's preferences. A weight can be defined as 
a value assigned to an evaluation criterion indicative of
its importance relative to other criteria under 
consideration. The larger the weight, the more important 
is the criterion in the overall utility [21].

A variety of techniques exist for the development of 
weights. In very simple cases, assignment of criteria 
weights may be accomplished by dividing 1.0 among the 
criteria. When more than a few criteria are involved and 
many considerations apply, it becomes difficult to make 
weight evaluations on the set as a whole. The weights are 
then usually normalized so that they sum to 1. In the case 
of n criteria, a set of weights is defined as follows:

),...,,...,,( 21 nj wwwww  , and 

  1jw .

There are four main groups of techniques for the 
development of weights [21]: 

- ranking methods, which are the simplest 
methods for assessing the importance of 
weights: every criterion under consideration is 
ranked in the order of the decision maker's 
preferences; 

- rating methods, which require the estimation 
of weights on the basis of predetermined scale; 

- pairwise comparison methods, which involve 
pairwise comparison to create a ratio matrix;

- trade-off analysis methods, which make use of 
direct trade-off assessments between pairs of
alternatives.
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In this paper, we focus on a pairwise comparison 
method which has the added advantages of providing an 
organized structure for group discussions, and helping 
the decision making group focus on areas of agreement 
and disagreement when setting criterion weights. 

The technique of pairwise comparisons has been 
developed by Saaty [34] in the context of a decision 
making process known as the Analytical Hierarchy 
Process (AHP). This technique was developed outside 
the GIS software using a variety of analytical resources 
and its first use with a GIS application was in 1991 [31]. 
In Saaty's technique, weights of this nature can be 
derived by taking the principal eigenvector of a square 
reciprocal matrix of pair-wise comparisons between the 
criteria. The comparisons deal with the relative 
importance of the two criteria involved in determining 
suitability for the stated objective. Ratings are provided 
on a nine-point continuous scale (Table 1).

Table 1: Scale for pairwise comparison [34].

Intensity of 
Importance

Definition

1 Equal importance
2 Equal to moderate importance
3 Moderate importance
4 Moderate to strong importance
5 Strong importance
6 Strong to very strong importance
7 Very strong importance
8 Very to extremely strong importance
9 Extreme importance

In developing weights, an individual or group 
compares every possible pairing and enters the ratings 
into a pairwise comparison matrix or ratio matrix. Since 
the matrix is symmetrical, only the lower triangle
actually needs to be filled in. The remaining cells are 
then simply the reciprocals of the lower triangle. 
Eastmann [9] noted that if empirical evidence about the 
relative efficacy of a pair of factors exists, this evidence 
can also be used.

The procedure then requires that the principal 
eigenvector of the pairwise comparison matrix must be 
computed to produce the best fit set of weights. A good 
approximation to this result can be achieved by following 
the operations below [21]: 

- sum the values in each column of the pairwise 
comparison matrix;

- divide each element in the matrix by its 
column total (the resulting matrix is referred to 
as the normalized pairwise comparison 
matrix); and 

- compute the average of the elements in each 
row of the normalized matrix, that is, divide 
the sum of normalized scores for each row by 
the number of criteria.

These averages provide an estimate of the relative 
weights of the relevant criteria. Here, the weights are 
interpreted as the average of all possible ways of 
comparing the criteria.

Since the complete ratio matrix contains multiple 
paths by which the relative importance of criteria can be 
assessed, it is also possible to determine the degree of 
consistency that has been used in developing the ratings. 
Saaty [34] describes a procedure by which an index of 
consistency, and a consistency ratio (CR), can be 
produced. The consistency ratio (CR) defines the 
probability that the matrix ratings were randomly 
generated and Saaty suggests that matrices with CR 
ratings greater than 0.10 should be re-evaluated. In 
addition to the overall consistency ratio, it is also 
possible to analyze the matrix to determine where the 
inconsistencies arise.

Estimation of the consistency ratio involves the 
following operations: 

- determination of the weighted sum vector by 
multiplying the weight for the first criterion 
times the first column of the original pairwise 
comparison matrix, then multiplying the 
second weight times the second column, the 
third criterion times the third column of the
original pairwise matrix, and so on to the last 
weight, and finally summing these values over 
the rows; and 

- determination of the consistency vector by 
dividing the weighted sum vector by the 
criterion weights determined previously. 

The consistency ratio is defined as:

RI

CI
CR  (4)

where RI is the random index, and CI is the 
consistency index which provides a measure of departure 
from consistency. 

The consistency index is calculated as:

1



n

n
CI


(5)

where  is the average value of the consistency vector, 
and n is the number of criteria.

The random index is the consistency index of the 
randomly generated pairwise comparison matrix. and
depends on the number of elements being compared. 
Table 2 shows random inconsistency indices (RI) for 
different numbers of criteria.

Table 2: Random inconsistency indices (RI) for different 
number of criteria [34].

n RI n RI n RI
1 0.00 6 1.24 11 1.51
2 0.00 7 1.32 12 1.54
3 0.58 8 1.41 13 1.56
4 0.90 9 1.45 14 1.57
5 1.12 10 1.49 15 1.59

3.1.3 Evolution using the WLC decision rule
The procedure by which criteria are selected and 
combined to produce a particular evaluation, and by 
which evaluations are compared and acted upon, is 
known as a decision rule. A decision rule might be as 
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simple as a threshold applied to a single criterion or it 
may be as complex as one involving the comparison of 
several multi-criteria evaluations. Decision rules 
typically contain choice function for combining criteria 
into a single composite index and a choice heuristics, 
which is a statement of how alternatives are to be 
compared. Choice functions and heuristics provide a 
mathematical means of comparing alternatives. Since 
they involve some form of optimization such as 
maximizing or minimizing some measurable 
characteristic, they theoretically require that each 
alternative must be evaluated in turn. Choice heuristics
specify a procedure to be followed rather than a function 
to be evaluated and are commonly used because they are 
often simpler to understand and also easier to implement 
[9]. 

Once the criteria maps (factors and constraints) are 
developed, an evaluation (or aggregation) stage is 
undertaken to combine the information from the various 
factors and constraints. The simplest type of aggregation 
is the Boolean intersection or logical AND. This method 
is used only when factor maps have been strictly 
classified into Boolean suitable/unsuitable images with 
values 1 and 0. The evaluation is simply the 
multiplication of all the images.

The weighted linear combination (WLC) aggregation 
method multiplies each standardized factor map (i.e., 
each raster cell within each map) by its factor weight and 
then sums the results. Since the sum of the set of factor 
weights for an evaluation must be one, the resulting 
suitability map will have the same range of values as the 
standardized factor maps that were used. This result is 
then multiplied by each of the constraints in turn to 
“mask out” unsuitable areas.

3.1.4 Limitations of WLC
There are some fundamental limitations, discussed by 
Jiand and Eastman (see [17]) in the use of weighted 
linear combinatorial procedures in a decision making 
process.

The first problem in using WLC as a decision rule 
concerns the different aggregation methods employed in 
decision making. Despite an expectation that the WLC 
method and Boolean method should yield similar results, 
they very often fail to do so because they cause logically 
methods of aggregation. In the WLC method, a low score 
on one criterion can be compensated by a high score on 
another; this is known as trade-off or substitutability and 
is quite different from the Boolean options, which are 
absolute in nature. 

The second problem of the WLC stems from its
standardization of factors. The most common approach
to this is to rescale the range to a common numerical 
basis by simple linear transformation. However, the 
rationale for doing so is unclear [10, 36] and in some 
cases, a non-linear scaling may seem appropriate. 

The third problem concerns decision risk which may 
be considered to be the likelihood that the decision will 
be wrong. For a Boolean procedure, decision risk can be 
estimated by propagating measurement error through the 

decision rule, thereby determining the risk that the 
decision made for a given location is wrong. Continuous 
criteria of weighted linear combination would appear 
however to express a further uncertainty that is not so 
readily estimated with stochastic methods. The 
standardized factors of WLC each express suitability: the 
higher the score, the more suitable the location is for the 
intended land use. There is no real threshold, however, 
that allows definitive allocation of areas to be chosen and 
areas to be excluded. Jiang and Eastmann [17] suggested 
that those kinds of problems could be solved by 
considering decision-making as a set problem and 
through the application of fuzzy measures in multi-
criteria evaluation. They suggested that the ordered 
weighted averaging approach may provide an extension 
to and generalization of the conventional map 
combination methods in GIS.

3.2 Ordered weighted averaging (OWA)
Ordered Weighted Averaging (OWA) uses a class of 
multi-criteria operators [38] and involves two sets of 
weights: criterion, or importance weights and order 
weights [2]. A criterion weight is assigned to a given 
criterion or attribute for all locations in a study area to 
indicate its relative importance, according to the 
decision-maker’s preferences, in the set of criteria under 
consideration. The order weights are associated with the 
criterion values on a location-by-location basis. They are 
assigned to a location’s attribute values in decreasing 
order with no consideration of the attribute source of 
each value. The re-ordering procedure involves 
associating an order weight with a particular ordered 
position of the weighted attribute values. The first order 
weight is assigned to the highest weighted attribute 
values for each location, the second order weight to the 
second highest values, and so on.

Order weights are central to the OWA combination 
procedures. They are associated with the degree of 
ORness, which indicates the degree to which an OWA 
operator is similar to the logical connective OR in terms 
of its combinatorial behaviour. Order weight is also 
associated with a trade-off measure indicating the degree 
of compensation between criteria. The parameters 
associated with the OWA operations serve as a 
mechanism for guiding the GIS-based land-use 
suitability analysis. The ORness measure allows for 
interpreting the results of OWA in the context of the 
behavioural theory of decision making. OWA operations 
for example facilitate the development of a variety of 
land use strategies ranging from an extremity pessimistic 
(the minimum-type strategy based of the logical AND 
combination) through all intermediate neutral-towards-
risk strategise (corresponding to the conventional WLC) 
to an extremely optimistic strategy, the maximum-type 
strategy based on the logical OR combination. 

Thus, OWA can be considered as an extension and a 
generalization of the conventional combination 
procedures in GIS [17]. Indeed, WLC is just one variant 
of the OWA technique [9].
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3.2.1 Order weights, trade-off and risk using 
OWA

In Weighted Linear Combination, factor weights are 
weights that apply to specific factors; all the pixels of a 
particular factor image receive the same factor weight in 
the raster data model. They indicate the relative degree of 
importance of factor in determining the suitability for an 
objective. In the case of WLC, the weight given to each 
factor also determines how it trades-off relative to other 
factors but, as described below, order weights in OWA 
determine the overall level of trade-off allowed. The use 
of order weights allows for aggregation solutions that fall 
anywhere along the risk continuum between AND and 
OR. 

Order weights are quite different from factor weights
because they do not apply to any specific factor. Rather, 
they are applied on a pixel-by-pixel basis to factor scores 
as determined by their rank ordering across factors at 
each location, or pixel. Order weight 1 is assigned to the 
lowest-ranked factor for that pixel (i.e., the factor with 
the lowest score), order weight 2 to the next higher-
ranked factor for that pixel, and so forth. It is possible 
that a single order weight could be applied to pixels from 
any of the various factors depending upon their relative 
rank order.

Boolean approaches are extreme functions that result 
either in very risk-averse solutions when the AND 
operator is used or in risk-taking solutions when the OR 
operator is used. The WLC approach is an averaging 
technique that softens the hard decisions of the Boolean 
approach, avoiding the extremes. In a continuum of risk,
WLC falls exactly in the middle; it is neither risk-averse 
nor risk-taking. But, any assignment of order weights 
results in a decision rule that falls somewhere in a 
triangular decision strategy space that is defined by the 
dimensions of risk and trade-off as shown in Figure 3.

Figure 3: Triangular decision-strategy space defined by 
the dimension of risk and trade-off.

Table 3 shows, how order weights alter MCE results 
by controlling levels of trade-off and risk (see also [9]). 
Consider the case where factor weights are equal for 
three factors A, B, and C. Holding factor weights equal 
will make the effect of the order weights clearer. If a 

single pixel has factor scores A (210), B (197), and C 
(224), the factor weight for each of the factors will be
0.33. Ranking from minimum to maximum value, the 
order of these factors for this pixel is [B, A, C]. For this 
pixel, factor B will be assigned order weight 1, A order 
weight 2 and C order weight 3. In Table 3, there are 
thirteen sets of order weights that have been applied to 
this set of factor scores [197, 210, 224]. Each set yields a 
different MCE result even though the factor scores and 
the factor weights are the same in each case.

Table 3: Example of applied order weights to the set of 
factor scores (197, 210, 224).

Order weights
Result

min (1) (2) max (3)
1.00 0.00 0.00 197
0.90 0.10 0.00 198
0.80 0.20 0.00 200
0.70 0.20 0.10 202
0.50 0.30 0.20 206
0.40 0.30 0.30 209
0.33 0.33 0.33 210
0.30 0.30 0.40 212
0.20 0.30 0.50 214
0.10 0.20 0.70 219
0.00 0.20 0.80 221
0.00 0.10 0.90 223
0.00 0.00 1.00 224

The first set of order weights in Table 3 is [1, 0, 0]. 
The weight of factor B (the factor with the minimum 
value in the set [B, A, C]) will receive all possible weight 
while factors A and C will be given zero weight. Such a 
set of order weights makes the factor weights irrelevant. 
Indeed, the order weights have altered the evaluation 
such that no trade-off is possible. As it can be seen in the 
Table 3, this has the effect of applying a minimum 
operator to the factors, thus producing the traditional 
intersection operator (AND) of fuzzy sets. Similarly, the 
last set of order weights [0, 0, 1] has the effect of a 
maximum operator, the traditional union operator (OR) 
of fuzzy sets. Again, there is no trade-off and the factor 
weights are not employed. Where the order weights are 
equal [0.33, 0.33, 0.33], all ranked positions are assigned
the same weight; this makes trade-off fully possible and 
locates the analysis exactly midway between AND and 
OR. Equal order weights produce the same result as 
WLC. 

In each of these three cases, the order weights have 
determined not only the level of trade-off but have 
situated the analysis on a continuum from (risk-averse, 
minimum, AND) to (risk-taking, maximum, OR). The 
order weights are not restricted to these three options, but 
instead any combination of values that sum to 1.0 can be 
assigned. As already noticed any assignment of order 
weights results in a decision rule that falls somewhere in 
a triangular decision strategy space (see Figure 3).

The degree of trade-off in OWA is governed by the 
relative distribution of order weights between the ranked 
factors. If the sum of the order weights is evenly spread 
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between the factors, there is strong trade-off, whereas if 
all the weight is assigned to a single factor rank, there is 
no trade-off. Order weights of [0.5, 0.3, 0.2] would 
indicate a strong (but not perfect) degree of risk aversion 
and some degree of trade-off. Weights of [0, 1, 0], would 
imply neither risk aversion nor acceptance, and no trade-
off because all the weight is assigned to a single rank [9].

3.2.2 Evolution using OWA decision rule
There have already been several implementations in the 
last decade of OWA in GIS environments. As an 
example, OWA is already included for more than a 
decade in Idrisi GIS software [7]. Eastmann suggested 
the following guidelines for the use of the OWA option 
of MCE: (a) their criteria should be divided into three 
groups: hard constraints, factors that should, or should
not trade-off. For example, factors with monetary 
implications typically trade-off, while those factors 
associated with some safety (or environment) concern 
typically do not; (b) if factors both trade-off and do not 
trade-off, their consideration should be separated into 
two stages of analysis. In the first stage, aggregate the 
factors that trade-off using the OWA option. The degree 
of trade-off can be controlled by manipulation of the 
order weights. In the second, use the result of the first 
stage as a new factor that is included in the analysis of 
those that do not trade-off; (c) if you run an analysis with 
absolutely no trade-off, the factor weights have no real 
meaning and can be set to any value.

Boroushaki and Malczewski have implemented an 
OWA-approach in the ArcGIS environment, pointing out 
that OWA combination operators can be recognized as 
the conventional AHP combination with modified 
criterion weights [2]. The weights are obtained by 
multiplying the criterion weights by order weights. With 
different sets of order weights, one can generate a wide 
range of OWA operators including the three 

aforementioned  ii xwS special cases of the WLC, 

Boolean overlay combination AND and OR.

4 Application of WLC and OWA
To demonstrate the WLC and OWA techniques for 
development of factor weights, let us consider an actual
suitability problem. The objective is to find the suitable 
areas for residential development in the small 
municipality of Ig, which is a semi-rural community 
located near the Slovenian capital Ljubljana. 

The whole procedure of decision rule (the procedure 
by which criteria are selected and combined to arrive at a 
particular evaluation, and by which evaluations are 
compared and acted upon) will not be presented here. 
The evaluation of criterion weights, trade-off and risk 
using OWA as well as WLC techniques of real problem 
is discussed. An example has been implemented in Idrisi 
Andes GIS [9], using MCE and OWA modules.

4.1 Application of WLC
A group of professionals who had developed a 
professional basis for the spatial plan of municipality of 
Ig, identified seven factors as the most important in 
searching for suitable areas for residential development 
in the municipality; those were: (1) distance from an 
existing residential zones, (2) slope, (3) solar 
illumination radiation, (4) distance from state and 
municipal roads, (5) distance from bus stops, (6) distance 
from flowing water, and (7) distance from forest. Table 4 
shows pairwise comparison matrix (or ratio matrix) for 
these seven factors.

One of the advantages of the WLC method is the 
ability to give different relative weights to each of the 
factors by aggregation. Factor weights, sometimes called 
trade-off weights, are assigned to each factor. They 
indicate the importance of a factor relative to all other 
factors and they control how factors will trade-off or 
compensate for each other. In the case of WLC, where 
factors fully trade-off, factors with high suitability can be 
compensated for other factors with low suitability in a 
given location. The degree to which one factor can 
compensate for another is determined by its factor or 
trade-off weight.

Table 4: Ratio (or pairwise) matrix for seven factors.

(1) resid. zones (2) slope (3) solar rad. (4) roads (5) bus stops (6) flow. water (7) forest

(1)
resid. zones

1

(2)
slope

3 1

(3)
solar rad.

1 1/3 1

(4)
roads

3 1/3 4 1

(5)
bus stops

2 1/4 1/3 1/4 1

(6)
flow. water

1/3 1/6 1/3 1/6 1 1

(7)
forest

3 1/6 1/3 1/6 1/3 1 1
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Table 5: Factor weights using the WLC method (A - factor weights derived by the approximation method; B - factor 
weights resulting from eigenvector using module WEIGHT, Idrisi Andes; CR – consistency ratio).

Factor Factor weight - A Factor weight - B

(1) distance from existing residential zones 0.0806 0.0839
(2) slope 0.3375 0.3512
(3) solar illumination radiation 0.1228 0.1204
(4) distance from state and municipal roads 0.2596 0.2653
(5) distance from bus stops 0.0851 0.0953
(6) distance from flowing water 0.0463 0.0457
(7) distance from forest 0.0680 0.0382

CR = 0.06

After entry of the ratio matrix, factor weights were
calculated in two ways: (A) using the approximation 
method described in 3.1.2, or (B) using the module 
WEIGHT in Idrisi Andes GIS, which calculates the 
eigenvector directly. WEIGHT utilizes a pairwise 
comparison technique to develop a set of factor weights 
that will sum to 1.0. Factors are compared two at a time 
in terms of their importance relative to the stated 
objective (locating residential development). When all 
possible combinations of two factors have been 
generated, the module calculates a set of weights and, 
importantly, a consistency ratio. This ratio indicates any 
inconsistencies that may have been arisen during the 
pairwise comparison process. The module allows 
repeated adjustments to the pairwise comparisons and 
reports the new weights and consistency ratio for each 
iteration. Table 5 shows both factor weights as well as 
consistency ratio calculated in Idrisi Andes GIS.

One of the most common procedures for aggregating 
data by WLC method is to multiply each standardized 
factor by its corresponding weight. These data are then 
summed and the sum is divided by the number of factors 
[9]. Once this weighted average is calculated for each 
pixel, the resultant image is multiplied by the relevant 
Boolean constraints to mask out areas that should not be 
considered at all. The final image is a measure of 
aggregate suitability that ranges from 0 to 255 for non-
constrained locations (Figure 5a). The WLC aggregation 
method allows standardization of the criteria in a 
continuous fashion, retaining important information 
about degrees of suitability. It also allows differentially 
weighted criteria to trade-off with each other. In the next 
application, another aggregation technique, ordered 
weighted averaging is explored. This allows control of
the amount of risk and trade-off to be included in the 
result.

4.2 Application of OWA
The aggregation method of ordered weighted averaging 
(see 3.2) offers control over the position of the MCE 
along the risk and trade-off continuum. Using OWA, we 
can control the level of risk we wish to assume in our 
MCE, and the degree to which factor (trade-off) weights 
will influence the final suitability map [9]. OWA offers a 
wealth of possible solutions for our residential 

development problem. In our application, seven order 
weights were applied corresponding to the seven factors 
that were rank-ordered for each location after the 
modified factor weights were applied. Table 6, gives six 
typical sets of order weights for the seven factors: (a) 
average level of risk and full trade-off, (b) low level of 
risk and no trade-off, (c) high level of risk and no trade-
off, (d) low level of risk and average trade-off, (e) high 
level of risk and average trade-off, (f) average level of 
risk and no trade-off. Figure 4 shows the locations of 
typical sets of order weights in the decision-support 
space.

Figure 4: Decision-strategy space and typical sets of 
order weights (see Table 6).

It is evident that the set of order weights are in 
accordance with factor weights derived by WLC. The 
weight is distributed evenly among all factors regardless 
of their rank-order position from minimum to maximum 
for any given location. They are not skewed toward the 
minimum (AND operation) or the maximum (OR 
operation). As in the WLC procedure, the result of order 
weights (a) is exactly in the middle in terms of risk. In 
addition, because all rank order positions are given the 
same weight, no rank-order position will have a greater 
influence over another in the final result. Set (a) gives 
full trade-off between factors, allowing the factor 
weights to be fully employed. 
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Table 6: Typical sets of order weights for seven factors.

(a) Average level of risk and full trade-off
order weight 0.1428 0.1428 0.1428 0.1428 0.1428 0.1428 0.1428
rank 1st 2nd 3rd 4th 5th 6th 7th

(b) Low level of risk and no trade-off
order weight 1 0 0 0 0 0 0
rank 1st 2nd 3rd 4th 5th 6th 7th

(c) High level of risk and no trade-off
order weight 0 0 0 0 0 0 1
rank 1st 2nd 3rd 4th 5th 6th 7th

(d) Low level of risk and average trade-off
order weight 0.4455 0.2772 0.1579 0.0789 0.0320 0.0085 0
rank 1st 2nd 3rd 4th 5th 6th 7th

(e) High level of risk and average trade-off
order weight 0 0.0085 0.032 0.0789 0.1579 0.2772 0.4455
rank 1st 2nd 3rd 4th 5th 6th 7th

(f) Average level of risk and no trade-off
order weight 0 0 0 1 0 0 0
rank 1st 2nd 3rd 4th 5th 6th 7th

To produce a low risk result for the residential 
development problem, the one close to AND (minimum) 
on the risk continuum, then greater order weight is given 
to the lower rank-orders (the minimum suitability values) 
– set (b) in Table 6. Such a weighting results in no trade-
off. If a high risk result (OR (maximum)), is sought, then 
greater order weight has to be given to the higher rank-
orders (the maximum suitability values) – set (c).

Using the OWA approach, the order weights can be 
altered in terms of their skew and dispersion. It is 
possible to produce an almost infinite range of possible 
solutions to the problem. In our residential development 
problem, the decision-makers and administrators may be 
interested in a conservative or low-risk solution to the 
identification of suitable areas for development. They 
also know that their estimates for how different factors 
should trade-off with each other are important and 
worthy of consideration. An AND operation will not let 
them consider any trade-off, and the WLC operation, 
where they would have full trade-off, is too liberal in 
terms of risk. They will then want to develop a set of 
order weights that would give them some amount of 
trade-off but would maintain a low level of risk in the 
solution.

There are several sets of order weights that could be 
used to achieve this. Let us consider the set of order 
weights (d). These specify an operation midway between 
the extreme of AND and the average risk position of 
WLC. In addition, they set the level of trade-off to be 
intermediate between the no trade-off situation of the 
AND operation and the full trade-off situation of WLC.

While it is clear that suitability generally increases 
from AND to OR for any given location, the character of 
the increase between any two operations is different for 
each location. The extremes of AND and OR are clearly 
dictated by the minimum and maximum factor values, 
however, the results from the middle trade-off operations 
are determined by an averaging of factors that depends 
upon the combination of factor values, factor weights, 

and order weights [9]. In general, in locations where the 
heavily weighted factors (slopes and roads) have similar 
suitability scores, the three results with trade-off will be 
strikingly similar. At the locations where these factors do 
not have similar suitability scores, the three results with 
trade-off will be more influenced by the difference in 
suitability (toward the minimum, the average, or the 
maximum).

4.2.1 Grouping factors by trade-off
Eastmann [9] suggested that the OWA approach 

could also be used to aggregate the suitability maps of 
groups of factors. Our factors are of two distinct types: 
factors relevant to development cost and factors relevant 
to environmental concerns, which do not necessarily 
have the same level of trade-off. Factors relevant to the 
cost of development clearly can fully trade-off. Where 
financial cost is the common concern, savings in 
development cost in one factor can compensate for a high 
cost in another. Environmentally relevant factors on the 
other hand, do not easily trade-off. To cope with this 
discrepancy, we treated our factors as two distinct sets 
with different levels of trade-off specified by two sets of 
ordered weights. This yields two intermediate suitability 
maps, one the result of combining five financial factors, 
and the other the result of combining both environmental 
factors. We then combined these intermediate results 
using a third MCE operation.

We decided that factors relevant to cost (1-5) could 
fully trade-off and selected an average risk; for this 
reason, the WLC procedure to combine them has been 
used. For the second group of factors, those relevant to 
environmental concerns, we decided to use the same 
procedure as for those relevant to costs – however, 
environmental factors were treated separately. Table 7 
shows the revalued factor weights and the old factor 
weights, when all factors together (1-7) have been 
calculated (see 4.1).
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Table 7: Re-valued factor weights using WLC (relevant to development cost) and OWA (relevant to environmental 
concerns) (B - factor weights as the result of eigenvector using module WEIGHT, Idrisi Andes GIS before grouping).

Factors
Factor weight – B

(from Table 4)
Revalued factor 

weight
Cost factors
(1) distance from existing residential zones 0.0839 0.1040
(2) slope 0.3512 0.3834
(3) solar illumination radiation 0.1204 0.1314
(4) distance from state and municipal roads 0.2653 0.2896
(5) distance from bus stops 0.0953 0.0916
Environmental factors
(6) distance from flowing water 0.0457 0.5447
(7) distance from forest 0.0382 0.4553

The final step in defining the suitable areas for 
residential development was to combine two 
intermediate results using a third MCE operation. In that 
aggregation, factors relevant to costs and factors relevant 
to environment were treated as factors in a separate 
aggregation procedure. There is no clear rule how to 
combine these two results [9] and so we assumed that 
decision-makers would be unwilling to give more weight 
to either the developers' or the environmentalists' factors, 
these factor weights being equal, and they would not 
allow the two new consolidated factors to trade-off with 
each other, nor did they want anything but the lowest 
level of risk when combining the two intermediate 
results. For these reasons, we used an OWA procedure 
that yielded a low risk result with no trade-off (the order 
weights were 1 for the 1st rank and 0 for the 2nd).

Figure 5 shows both results of MCE: (a) using WLC 
approach, and (b) using OWA approach. Constraints 
including built-up zones, electric mains and water bodies 
have been applied to the final suitability maps to mask 

out unsuitable areas. The darker colours denote more 
suitable areas for residential development in the 
municipality of Ig.

4.3 Discussion
In this paper, two methods for MCE in GIS, 

weighted linear combination (WLC) and ordered 
weighted averaging (OWA), were presented and tested. 
Both techniques are used most effectively with factors 
that have been standardized to a continuous scale of 
suitability and weighted according to their relative 
importance. The relative importance weights of factors 
were estimated using the analytical hierarchy process 
(AHP). Constraints were defined as Boolean masks. The
methods have some similar procedures but, in this paper, 
they were based on different statements about how 
criteria dealing with land use suitability analysis could be 
evaluated. Consequently, they yielded to two different 
results (Figure 5).

Figure 5: Results of aggregation of weighted factors and constraints using WLC and OWA approaches (suitability for 
residential development).

unsuitable
(0.00) 

highly suitable
(250.00)

(a) WLC approach        (b) OWA approach
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The land evaluation was performed on a cell by cell 
basis. WLC allowed us to use the full potential of our 
factors as continuous surfaces of suitability. The 
identified factors were standardized using fuzzy 
functions, and then weighted and combined using an 
averaging technique. The factor weights used expressed 
the relative importance of each criterion to the overall 
objective, and they determined how factors were able to 
trade off with each other. The final map of continuous 
suitability for residential development (image (a) on 
Figure 5) is a result that is neither extremely risk-averse 
nor extremely risk-taking. In WLC, all factors were 
allowed to fully trade-off. Any factor could compensate 
for any other in proportion to its factor weight.

The second aggregation method we used OWA, gave 
us control over the position of the MCE along both the 
risk and trade-off axes (see Figure 4). It allowed control 
of the level of risk we wished to assume in our 
application, and the degree to which factor weights 
(trade-off weights) influenced the final suitability map. 
Control over risk and trade-off was made possible 
through a set of order weights for the different rank-order 
positions of factors at every location (pixel). With order 
weights we combined costs and environmental factors 
with a very low level of risk and no trade-off between 
them. So, the order weights first modified the degree to 
which factor group weights had influence in the 
aggregation procedure, thus they governed the overall 
level of trade-off. After weights were applied to the 
factor groups (to some degree dependent upon the overall 
level of trade-off used), the results were ranked from low 
to high suitability for each location. This had the effect of 
weighting factor groups based on their rank from 
minimum to maximum value for each location. The 
relative skew toward either minimum or maximum of the 
order weights controlled the level of risk in the 
evaluation. Additionally, the degree to which the order 
weights were evenly distributed across all positions 
controlled the level of overall trade-off, i.e., the degree to 
which factor group weights had influence.

In our application of WLC we used factor weights 
defined in Table 5 and Table 7, and in OWA we applied 
the order weights (1 for the 1st rank and 0 for the 2nd) that 
yielded a low risk result with no trade-off. Defined and 
fully traded-off weights in the WLC approach led to a
result in which a larger proportion of the municipality 
area was indicated as highly suitable for residential 
development, as compared to the result of OWA 
approach (see Figure 5). However, with the continuous 
result of WLC, the best locations for residential 
development can be defined by setting the lowest degree 
of suitability; e.g. 200 in Figure 5 (a).

The standardization and aggregation techniques 
discussed here are important in exploration of any multi-
criteria problem and they result in images that show the 
suitability of locations in the entire study area. Multi-
criteria problems often concern eventual site selection for 
some development, land allocation, or land-use change
and there are many techniques for site selection using 
images of suitability. However, the main purpose of this
application was not to suggest the best areas for 

residential development in tested area. It was rather to 
define and apply two methods of MCE (WLC and OWA) 
in GIS as the generalised framework of GIS-based spatial 
decision-making procedure, and to show the policy 
makers and decision makers what kind of tools useful for 
calculations of images of suitability. When our results are 
compared with the professional basis for spatial plan in 
Ig, made by classical approach as defined in Figure 2, the 
most similar result was from the OWA approach with 
low risk and no trade-off between costs and 
environmental factors.

The results of our research indicate that applications 
of decision making in GIS are multifunctional and can 
incorporate different levels of complexity of the decision 
problem. In this case, the choice of weights and 
weighting techniques played a crucial role. It is obvious 
that decision makers with a preference for a subjective 
scale may not arrive at the same weights for the factor 
criteria. This may lead to different results for suitability 
maps and can affect the final decision with regard to the 
overall objective. However, it must be noted that the 
presented methods are only tools to aid decision makers; 
they are not the decision itself.

5 Conclusions
Spatial multi-criteria analysis, with its explicit 

geographic component represents a significant departure 
from the conventional MCDM techniques. In contrast to 
the conventional multi-criteria decision making, spatial 
multi-criteria analysis requires both data on criterion 
values and the geographical location of alternatives. 
Increasing computer power, user-friendly GIS and 
decision support software, and increased access to and 
familiarity with computers among decision makers are a 
few of the reasons for the rapid growth in both research 
and practice in GIS-based multi-criteria spatial decision 
making. GIS technology provides the capabilities of data 
acquisition, storage, retrieval, manipulation, and data 
analysis to develop information that can support 
decisions. MCDM techniques provide the tools with 
which to integrate the geographical data and the decision 
maker's preferences into one-dimensional value array of 
alternative decisions. The use of GIS in SDSS in addition 
provides spatial data models, the means of entering and 
displaying spatial data and additional spatial analysis 
tools. A significant contribution of the SDSS concept to 
geographic information science is that it integrates 
distinct tool sets (data and models) into a unified whole 
more valuable than the sum of the parts.

The results presented in this paper demonstrate the 
application of weighted linear combination (WLC) and 
ordered weighted averaging (OWA) within a GIS for the 
purpose of determining the most suitable locations for 
residential areas in the municipality of Ig (see also [6]). It 
is clear that integrated decision support tools in the GIS 
software system allow exploration of variety of rationales 
and perspectives in suitability evaluation and land 
allocation. The test study of suitability analysis for a 
residential area is a simple case with only seven main 
attributes. In the real world, the situation is much more 
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complex. There are still several topics referring to the 
spatial multi-criteria decision analysis in GIS that must 
be investigated and developed. These include selection of 
attributes, which must take account of their 
completeness, independence and real influence, or 
weight; the scale and methods of aggregation of 
attributes; error assessment and finally, the incorporation 
of database and decision rule uncertainty and sensitivity 
analysis. The tools currently available however, offer 
significant advantages for decision makers in spatial 
decision problem fields. 
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