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1 Introduction

For any graph T, let V(T") and £(T") be the vertex-set and the edge-set of T", respectively,
and A" be the graph I" with each of its edges replicated A times. Throughout the paper K,
will denote the complete graph on v vertices, while K, \ K} will denote the graph with
V(K,,) as vertex-set and £(K,) \ E(K},) as edge-set (this graph is sometimes referred to

,,,,, n, Will denote the
complete multipartite graph with ¢-parts of sizes ny, na, ..., n;.

Let G and H be simple finite graphs. A A-fold G-design of H ((AH, G)-design in
short) is a pair (X, B) where X is the vertex-set of H and B is a collection of isomorphic
copies (called blocks) of the graph GG, whose edges partition the edges of AH. If A = 1, we
drop the term “1-fold”. If H = K, we refer to such a A-fold G-design as one of order v.
A (AH, G)-design is balanced if for every vertex « of H the number of blocks containing
x is a costant r.

A (AH, G)-design is said to be a-resolvable if it is possible to partition the blocks
into classes (often referred to as a-parallel classes) such that every vertex of H appears
in exactly « blocks of each class. When a@ = 1, we simply speak of resolvable design
and parallel classes. The existence problem of resolvable G-decompositions has been the
subject of an extensive research (see [1,4,5,7, 8,9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 24]).
The a-resolvability, with o > 1, has been studied for: G = K3 by D. Jungnickel, R. C.
Mullin, S. A. Vanstone [13], Y. Zhang and B. Du [25]; G = K, by M. J. Vasiga, S. Furino
and A.C.H. Ling [22]; G = C4 by M.X. Wen and T.Z. Hong [17].

In this paper we investigate the existence of an «-resolvable A-fold (K, — e)-design
(where K4 — e is the complete graph K, with one edge removed). In what follows, by
(a, b, c; d) we will denote the graph K, — e having {a, b, ¢,d} as vertex-set and {{a, b},
{a,c},{b,c},{a,d},{b,d}} as edge-set. Basing on the definitions given above, we can
derive the following necessary conditions:

(1) Aw(v—1)=0 (mod 10);
(2) av =0 (mod 4);
(3) 2A(v—1) =0 (mod 5«).

Note that, since the number of a-parallel classes of an a-resolvable A-fold (K4 — e)-

design of order v is M{;l)

have the following theorem.

and every vertex appears exactly « times in each of them, we

Theorem 1.1. Any a-resolvable \-fold (K4 — e)-design is balanced.

From Conditions (1) — (3) we can desume minimum values for « and )\, say o and
Ao, respectively. Similarly to Lemmas 2.1, 2.2 in [22], we have the following lemmas.

Lemma 1.2. If an a-resolvable A\-fold (K, — e)-design of order v exists, then ag| o and
Aol A

Lemma 1.3. If an a-resolvable \-fold (K, — e)-design of order v exists, then a ta-
resolvable nA-fold (K4 — e)-design of order v exists for any positive integers n and t

with t | %

The above two lemmas imply the following theorem (for the proof see Theorem 2.3 in
[22]).
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Theorem 1.4. If an «g-resolvable \o-fold (K4 — e)-design of order v exists and o and A
satisfy Conditions (1) — (3), then an a-resolvable \-fold (K4 — e)-design of order v exists.

Therefore, in order to show that the necessary conditions for a-resolvable designs are
also sufficient, we simply need to prove the existence of an «p-resolvable \p-fold (K4 —e)-
design of order v, for any given v.

2 Auxiliary definitions

A (AKp, ns,....n.» G)-design is known as a A-fold group divisible design, G-GDD in short,
of type {n1,na,...,n:} (the parts are called the groups of the design). We usually use an
“exponential” notation to describe group-types: the group-type 1°273 ... denotes i occur-
rences of 1, j occurrences of 2, etc. When G = K, we will call it an n-GDD.

If the blocks of a A-fold G-GDD can be partitioned into partial a-parallel classes, each
of which contains all vertices except those of one group, we refer to the decomposition
as a A-fold (o, G)-frame; when o = 1, we simply speak of A-fold G-frame (n-frame if

additionally G = K,,). In a A-fold (o, G)-frame the number of partial a-parallel classes
AglV(G)|

2§\s(a)\ .

An incomplete a-resolvable A-fold G-design of order v + h, h > 1, with a hole of size

his a (A(Ky+n \ Kp), G)-design in which there are two types of classes, %‘(Vagf)l

missing a specified group of size g is

partial classes which cover every vertex o times except those in the hole and QZ‘I‘E/((g)) || Sull
classes which cover every vertex of K, a times.

3 v=0 (mod 4)

In [4, 5, 23] it was showed that there exists a resolvable (K, — e)-design of order v = 16
(mod 20); while, for every v = 0,4,8,12 (mod 20) Gionfriddo et al. ([7]) proved that
there exists a resolvable 5-fold (K4 — e)-design of order v. Hence the necessary conditions
are also sufficient.

4 v=1 (mod 2)
41 v =1 (mod 10)

If v = 1 (mod 10), then Ay = 1 and ap = 4 and so a solution is given by a cyclic
(K4 — e)-design ([2]), where every base block generates a 4-parallel class. If v = 10k + 1,
k > 4, the desired design can be obtained by developing in Z1¢+1 the base blocks listed
below:

(142i,4k+1+4,1;2k+2), i=3,4,....|%5];

(2k+3—2i,5k+2—14,1;2k+2), i=1,2,...,[%]

(1,4k + 1, 3; 6k);

(1,2k + 2,5; 6k + 1);
where |z| (or [z]) denote the greatest (or lower) integer that does not exceed (or that
exceed) . If v = 11, 21, 31, the base blocks are:

v=11: (1,10,2;5) developed in Z;1;

v=21: (1,11,3;15), (1,7,2;10) developed in Zs1;

v=31: (2,13,1;5), (1,27,10;11), (1,7, 3;14) developed in Zs;.
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42 v=3,5,7,9 (mod 10)

If v =3,5,7,9 (mod 10), then A\g = 5 and oy = 4 and so a solution is given by a cyclic
5-fold (K4 — e)-design, where every base block generates a 4-parallel class. The required
design is obtained by developing in Z,, the following blocks:

(1+i,v—1-14,0;1), i=1,2,..., %3

(0,1,2;0 —1).

5 v=2 (mod 4)
51 v =6 (mod 20)

If v = 6 (mod 20), then A\g = 1 and oy = 2. In order to prove the existence of a 2-
resolvable (K, — e)-design of order v for every v = 6 (mod 20), preliminarly we need to
construct one of order 6.

Lemma 5.1. There exists a 2-resolvable (K4 — e)-design of order 6.

Proof. Let V={0,1,2,3,4,5} be the vertex-set and {(0,1,2;3), (2, 3,4;5), (4,5,0;1)}
be the class. O

For constructing a 2-resolvable (K4 — e)-design of any order v = 6 (mod 20) and for
later use, note that starting from a (K4 — e)-frame of type h™ also a A-fold (2, K4 — €)-
frame of type h™ can be obtained for any A > 0, since necessarily & = 0 (mod 5) and so
the number of partial parallel classes missing any group is even.

Lemma 5.2. For every v = 6 (mod 20), there exists a 2-resolvable (K, — e)-design of
order v.

Proof. Let v = 20k + 6. The case k = 0 follows by Lemma 5.1. For k£ > 0, consider
a (2, K4 — e)-frame of type 5***1 ([5]) with groups G, i = 1,2,...,4k + 1 and a new
vertex oo. For each i = 1,2,...,4k + 1, let P; the unique partial 2-parallel class which
misses the group G;. Place on G; U{co} a copy of a 2-resolvable (K4 — e)-design of order
6, which exists by Lemma 5.1, and combine its full class with the partial class P; so to
obtain the desired design. O

52 v=2,10,14,18 (mod 20)

To prove the existence of an a-resolvable A-fold (K4 — e)-design of order v = 2,10, 14, 18
(mod 20), with minimum values Ay = 5 and «g = 2, we will construct some small exam-
ples most of which will be used as ingredients in the constructions given by the following
theorems.

Theorem 5.3. Let v, g, u, and h be positive integers such that v = gu + h. If there exists
i) a5-fold (2, K4 — e)-frame of type g*;
i) a 2-resolvable 5-fold (K, — e)-design of order g;

iii) an incomplete 2-resolvable 5-fold (K4 — e)-design of order g + h with a hole of size
h;

then there exists a 2-resolvable 5-fold (K4 — e)-design of order v = gu + h.
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Proof. Take a 5-fold (2, K4 — e)-frame of type g* with groups G;,7 = 1,2,...,uand a set
H of size h such taht H N (U, G;) = 0. For j = 1,2,...,g, let P, ; be the j-th 2-partial
class which misses the group G;. Place on HUG a copy D; of a 2-resolvable 5-fold (K, —
e)-design of order g + h having g + h — 1 classes Ry 1, R12,...,, R1,g,H11,H12,- -,
H; . Fori = 2,3,...,u, place on H U G; a copy D; of an incomplete 2-resolvable
5-fold (K4 — e)-design of order g + h with H as hole and having h — 1 partial classes
H;i,H;2,...,H;,_1 and g full classes R;1,R;2,...,,R;4. Combine the g partial
classes P, ; with the full classes Ry 1, Ry 2,...,,R1 4 of Dy and for ¢ = 2,3,...,u the
g partial classes P; ; of D; with the full classes I; 1, R;2,...,R; 4 so to obtain gu 2-
parallel classes on H U (U{_;G,;). Combine the classes Hy 1, H12,...,Hi -1 with the
partial classes H; 1, H; 2, ..., H;p—1 soto obtain h — 1 2-parallel classes. The result is a
2-resolvable 5-fold (K4 — e)-design of order gu + h with gu + h — 1 2-parallel classes. [

The following lemma gives an input design in the construction of Theorem5.5.
Lemma 5.4. There exists a 2-resolvable 5-fold (K4 — €)-GDD of type 23.

Proof. Let{0,3}, {1,4} and {2, 5} be the groups and consider the following classes: P, =
{(0,2,1;4),(1,5,0;3),(3,4,2;5)}, P» = {(3,5,1;4),(1,2,0; 3),(0,4,2; 5)}, Ps = {(0,
5,1;4),(2,4,0;3),(1,3,2;5)}, Py = {(2,3,1;4), (4,5,0;3),(0,1,2;5)}. O

Theorem 5.5. Let v, g, m, h and u be positive integers such that v = 2gu + 2m + h. If
there exists

i) a 3-frame of type m'g";
i1) a 2-resolvable 5-fold (K4 — e)-design of order 2m + h;

iit) an incomplete 2-resolvable 5-fold (K, — e)-design of order 2g + h with a hole of
size h;

then there exists a 2-resolvable 5-fold (K, — e)-design of order 2gu + 2m + h.

Proof. Let F be a 3-frame with one group G of cardinality m and w groups G;, i =

1,2,...,uof cardinality g; such a frame has % partial classes which miss G, each contain-
ing % triples, and, for¢ = 1,2,..., u, % partial classes which miss G;, each containing
g(u—1)+m

triples. Expand each vertex 2 times and add a set H of h new vertices. Place on
HU(G % {1,2}) acopy D of a 2-resolvable 5-fold (K4 —e)-design of order 2m + h having
2m + h — 1 classes Ry, Ra, ..., Roym, H1, Ha, ..., Hp_1. Foreachi = 1,2,... u place
on H U (G; x {1,2}) acopy D; of an incomplete 2-resolvable 5-fold (K, — e)-design of
order 2g 4 h with H as hole and having h — 1 partial classes H; ; with j =1,2,...,h —1
and 2¢ full classes R;;, t = 1,2,...,2g. For each block b = {z,y, 2z} of a given class
of F place on b x {1,2} a copy of a 2-resolvable 5-fold (K, — €)-GDD of type 2 from
Lemma 5.4, having {z1, 22}, {y1,y2} and {21, 22} as groups. This gives 2m partial classes
(whose blocks are copies of K4 — e) which miss G x {1, 2} and 2g partial classes which
miss G; x {1,2},7 = 1,2,...,u. Combine the 2m partial classes which miss the group
G x {1, 2} with the classes R1, Rs, ..., Ray, so to obtain 2m classes. Fori = 1,2,...,u
combine the 2g partial classes which miss the group G; x {1,2} with the full classes of
D; so to obtain 2gu classes. Finally, combine the h — 1 classes Hy, Hs, ..., Hy_1 of D
with the partial classes of D; so to obtain h — 1 classes. This gives a 2-resolvable 5-fold
(K4 — e)-design of order v and v — 1 2-parallel classes. O
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Theorem 5.6. Let v, k and h be non-negative integers. If there exists

i) an incomplete a-resolvable \-fold (K, — e)-design of order v + k + h with a hole
of size k + h;

i1) an incomplete a-resolvable \-fold (K4 — e)-design of order k + h with a hole of size
h,‘

then there exists an incomplete a-resolvable \-fold (K, — e)-design of order v + k + h
with a hole of size h.

Lemma 5.7. There exists a resolvable (K4 — e)-GDD of type 5210

Proof. Let Z19 U {o0p, 001,...,009} be the vertex-set and 2770, 22109 + 1, {00p, 001,
...,009} be the groups. The desired design is obtained by adding 2 (mod 10) to the
following base blocks, including the subscripts of oo: (0,1, 000;001), (2,5, 000;001),
(4,9, 000; 001), (6,3, 000; 001), (8,7, 000; 001 ). The parallel classes are generate by every
base block. [

Lemma 5.8. There exists a 2-resolvable 5-fold (K, — €)-GDD of type 10°.

Proof. Start with the 2-resolvable 5-fold (K4 — €)-GDD G of type 2 of Lemma 5.4 with
groups G;, i = 1,2,3. For each block b = (z,y, 2;t) of a given 2-parallel class of G
consider a copy of a resolvable (K4 — ¢)-GDD of type 510" where {z} x Zs, {y} x Zs,
{z,t} x Zy are the groups. O

Lemma 5.9. There exists an incomplete 2-resolvable 5-fold (K, — e)-design of order 6
with a hole of size 2.

Proof. On'V = Z, U H, where H = {001,002} is the hole, consider the partial class
{(1,3,0;2),(0,2,1;3)} and the four full classes obtained by developing {(0, 2, co1; 002),
(001,1, 0;3), (002,2,3;1)} in Z4, where co; + 1 = oo, fori = 1,2. O

Lemma 5.10. There exists an incomplete 2-resolvable 5-fold (K4 — e)-design of order 10
with a hole of size 2.

Proof. On'V = Zg U H, where H = {001,002} is the hole, consider the partial class
{(0,4,2;6),(1,5,3;7),(2,6,4;0),(3,7,5;1)} and the eight full classes obtained by de-
veloping {(0, 1, 0013 3), (2,3, 002; 7), (001, 5, 6; 2), (002, 6,4;5), (4,7,1;0)} in Zg, where

Lemma 5.11. There exists an incomplete 2-resolvable 5-fold (K4 — e)-design of order 14
with a hole of size 4.

Proof. Let V = Zj9 U H be the vertex-set, where H = {001, 009, 003,004} is the hole.
The partial classes are obtained by adding 2 (mod 10) to the base blocks (2,6,9;5),
(5,9,2;8), (8,7,6;9), each block generating a partial class; while, the full classes are
obtained by adding 2 (mod 10) to the following base blocks partitioned into two full
classes, each class generating five full classes: {(0,8,001;002), (1,5, 003;004), (01,4,
0; 9)» (002; 6, 2; 3)3 (0037 3; 7; 8)7 (0047 97 17 4)7 (23 7; 6; 5)}7 {(17 53 0013 002)» (07 8; 0035
004), (001,3,9;4), (002,9,7;0), (003,2,6;1), (004,6,8;3), (4,7,2;5)}, where co; +
1=o00; fort=1,2,3,4. O
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Lemma 5.12. There exists an incomplete 2-resolvable 5-fold (K4 — e)-design of order 14
with a hole of size 2.

Proof. OnV = Zy15 U H, where H = {001,002} is the hole, consider the partial class
{(0,6,3;9),(1,7,4;10), (2,8, 5;11),(3,9,6;0), (4,10,7; 1), (5,11,8;2)} and the twelve
full classes obtained by developing {(0, 1, 001;11), (2,4, 002; 10), (o001, 10, 6; 5), (002, 9,
2:0),(3,7,8;1), (5,8,7;9), (6,11, 3;4)} in Z12, where 00; + 1 = o0 fori =1,2. [

Lemma 5.13. There exists an incomplete 2-resolvable 5-fold (K, — e)-design of order 22
with a hole of size 6.

Proof. Let V = Z145 U H be the vertex-set, where H = {001, 02, . .., 006 } is the hole. In
Z16 develop the full 2-parallel base class {(0, 3, c01; 12), (1,5, 002; 2), (8, 13, 003; 4), (14,
15, 00y4; 11); (67 11, 00s; 006)7 (0017 2,1 3)7 (OOQa 4,13; 8)7 (OOS; 7,0; 14)7 (0047 9, 6; 10)7
(005, 10, 5;15), (006, 12, 7;9)}. Additionally, include the partial 2-parallel class {(0, 8, 2;
10), (1,9,3:11), (2,10,4:12), (3,11, 5;13), (4,12, 6;14), (5,13,7;15), (6, 14,8;0), (7,
15,9;1)} repeated five times. O

As consequence of Lemmas 5.9 and 5.13, by Theorem 5.6 the following lemma follows.

Lemma 5.14. There exists a 2-resolvable 5-fold (K4 — e)-design of order 22 with a hole
of size 2.

Lemma 5.15. There exists a 2-resolvable 5-fold (K4 — e)-design of order 10.

Proof. Let V= Zy U {oo} be the vertex-set. The required design is obtained by developing
the base class {(c0, 0, 6;5), (1,5,4;3),(7,8,1;00),(2,6,7;8),(3,4,2;0)} in Zy. O

Lemma 5.16. There exists an incomplete 2-resolvable 5-fold (K, — e)-design of order 30
with a hole of size 10.

Proof. Start from a 2-resolvable 5-fold (K4 —e)-GDD of type 102 (which exists by Lemma
5.8) having G;, i = 1,2, 3, as groups. Fill in the groups G2 and G5 with a copy of a 2-
resolvable 5-fold (K4 — e)-design of order 10, which exists by Lemma 5.15. This gives an
incomplete 2-resolvable 5-fold (K4 — ¢)-design of order 30 with G as hole. 0

Lemma 5.17. There exists an incomplete 2-resolvable 5-fold (K, — e)-design of order 38
with a hole of size 12.

Proof. Let V. = Zys U H be the vertex-set, where H = {001, 009, ...,0012} is the hole.
The partial classes are: {(4,13+4,2+4;15+14) : 4 =0,1,...,12}, repacated five times;
(20,104 20,3+ 2i;7+2i) 1 =0,1,...,12} and {(1 +2i, 11 + 20,4+ 2058 + 2i) : i =
0,1,...,12}, repeated twice; {(2i, 10+2i, 1+2i;9+2i) 14 =0, 1,...,12}; {(1+24, 11+
20,24 2i;1042i) : 4 =0,1,...,12}. The full classes are obtained by developing in V' =
Zss the full base class {(cor,2,1;7), (002, 12,3;24), (003, 16, 4; 11), (004, 13, 5; 25),
(005» 157 9; 22)7 (0067 177 11; 23)7 (007, 193 187 20)3 (0087 14; 10, 18)7 (OO9> 47 07 8)) (0010,
9,17;19), (0011, 7, 2;12), (0012, 15, 3;24), (1,5, 001; 002), (10, 20, 003; 004), (6,23, 005;
006), (16, 21, Q75 008)7 (22, 25, g, OOu))7 (13, 21, 0115 0012), (O, 14, 6; 8)} O

As consequence of the existence of a 2-resolvable 5-fold (K4 — e)-design of order
v = 4,12 (see Section 3 and Theorem 1.4) and Lemmas 5.1, 5.11, 5.13, 5.16, 5.17, 5.15,
by Theorem 5.6 the following lemma follows.
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Lemma 5.18. There exists a 2-resolvable 5-fold (K y—e)-design of order v = 14,22, 30, 38.
Lemma 5.19. There exists a 2-resolvable 5-fold (K4 — e)-design of order v = 42,234.

Proof. Start with a resolvable 3-GDD of type 3% ([20]). Expand each vertex 2 times and
for each triple b of a given parallel class place on b x {1, 2} a copy of a 2-resolvable 5-fold
(K4 — €)-GDD of type 23, which exists by Lemma 5.4. Finally, fill each group of size 6
with a copy of a 2-resolvable 5-fold (K4 — e)-design of order 6, which exists by Lemma
5.1. O

Lemma 5.20. There exists a 2-resolvable 5-fold (K4 — e)-design of order v = 50, 62.

Proof. Start from a 3-frame of type 6 ([3]) and apply Contruction 5.5 with m = g = 6,
h =2and u = “73* to obtain a 2-resolvable 5-fold (K4 — e)-design of order v = 50, 62
(the input designs are: a 2-resolvable 5-fold (K4 — e)-design of order 14, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K, — e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4 — e)-design of order 14 with a hole of size 2, which

exists by Lemma 5.12). O

Lemma 5.21. There exists a 2-resolvable 5-fold (K4 — e)-design of order v = 34,274.

Proof. Start from a 3-frame of type 45" ([3]) and apply Theorem 5.5 with m = g = 4,
h=2andu = % to obtain a 2-resolvable 5-fold (K4 — e)-design of order v = 34, 274
(the input designs are: a 2-resolvable 5-fold (K4 — e)-design of order 10, which exists by
Lemma 5.15; a 2-resolvable 5-fold (K — e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4 — e)-design of order 10 with a hole of size 2, which
exists by Lemma 5.10). O

Lemma 5.22. There exists a 2-resolvable 5-fold (K4 — e)-design of order 70.

Proof. Start from a 3-frame of type 8* ([3]) and apply Theorem 5.5 with m = ¢ = 8,
h = 6 and u = 3 to obtain a 2-resolvable 5-fold (K, — e)-design of order 70 (the input
designs are; a 2-resolvable 5-fold (K4 — e)-design of order 22, which exists by Lemma
5.18; a 2-resolvable 5-fold (K4 — ¢)-RGDD of type 23, which exists by Lemma 5.4; an
incomplete 2-resolvable 5-fold (K4 — e)-design of order 22 with a hole of size 6, which
exists by Lemma 5.13). O

Lemma 5.23. For every v = 2 (mod 20), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.

Proof. Let v=20k + 2. The case v = 22,42,62 are covered by Lemmas 5.18, 5.19 and
5.20. For k > 4, start from a 5-fold (2, K4 — e)-frame of type 20% ([5]) and apply Theorem
5.3 with h = 2 to obtain a 2-resolvable 5-fold (K, — e)-design of order v (the input designs
are a 2-resolvable 5-fold (K4 — e)-design of order 22, which exists by Lemma 5.18, and
an incomplete 2-resolvable 5-fold (K4 — e)-design of order 22 with a hole of size 2, which
exists by Lemma 5.14). O

Lemma 5.24. For every v = 10 (mod 20), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.
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Proof. Let v=20k + 10. The case v = 10, 30, 50, 70 are covered by Lemmas 5.15, 5.18,
5.20 and 5.22. For k > 4, start from a 5-fold (2, K, — e)-frame of type 20* ([5]) and apply
Theorem 5.3 with g = 20 and h = 10 to obtain a 2-resolvable 5-fold (K4 — e)-design of
order v (the input designs are a 2-resolvable 5-fold (K4 — e)-design of order 10, which
exists by Lemma 5.15, and an incomplete 2-resolvable 5-fold (K4 — e)-design of order 30
with a hole of size 10, which exists by Lemma 5.16). O

Lemma 5.25. For every v = 14 (mod 20), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.

Proof. Let v=20k + 14. The case v = 14, 34, 234, 274 are covered by Lemmas 5.18, 5.19
and 5.21. For k > 2, k ¢ {11,13}, start from a 5-fold (2, K4 — e)-frame of type 10%++1
([5D), apply Theorem 5.3 with h = 4 and proceed as in Lemma 5.24. O

Lemma 5.26. For every v = 18 (mod 60), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.

Proof. Let v=60k +18. Take a resolvable 3-GDD of type 3'°**3 ([6]). Expand each vertex
2 times and for each block b of a parallel class place on b x {1, 2} a copy of a 2-resolvable
5-fold (K4 — €)-GDD of type 2% which exists by Lemma 5.4, so to obtain a 2-resolvable
5-fold (K4 — €)-GDD of type 6'%%+3, Finally, fill in each group of size 6 with a copy of a
2-resolvable 5-fold (K4 — e)-design, which exists by Lemma 5.1. O

Lemma 5.27. For every v = 38 (mod 60), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.

Proof. Let v = 60k + 38. The case v = 38 follows by Lemmas 5.18. For k& > 1, start
from a 3-frame of type 6°*3 ([6]) and apply Theorem 5.5 with m = g = 6, h = 2 and
u = b5k + 2 to obtain a 2-resolvable 5-fold (K4 — e)-design of order v (the input designs
are: a 2-resolvable 5-fold (K4 — e)-design of order 14, which exists by Lemma 5.18; a
2-resolvable 5-fold (K4 — €)-GDD of type 23, which exists by Lemma 5.4; an incomplete
2-resolvable 5-fold (K4 — e)-design of order 14 with a hole of size 2, which exists by
Lemma 5.11) O

Lemma 5.28. For every v = 58 (mod 120), there exists a 2-resolvable 5-fold (K4 — e)-
design of order v.

Proof. Letv = 120k + 58. Start from a 3-frame of type 4'°**7 ([6]) and apply Theorem
55withm = g =4, h = 2 and u = 15k + 6 to obtain a 2-resolvable 5-fold (K4 — e)-
design of order v (the input designs are: a 2-resolvable (K4 — e)-design of order 10, which
exists by Lemma 5.15; a 2-resolvable 5-fold (K, — e)-RGDD of type 22, which exists by
Lemma 5.4; an incomplete 2-resolvable 5-fold (K4 — e)-design of order 10 with a hole of
size 2, which exists by Lemma 5.10). O

Lemma 5.29. Forevery v = 118 (mod 120), there exists a 2-resolvable 5-fold (K, — e)-
design of order v.

Proof. Let v = 120k + 118. Start from a 3-frame of type 10'4'5**12 k > 0, ([6]) and
apply Theorem 5.5 with & = 2 to obtain a 2-resolvable 5-fold (K4 — e)-design of order v
(the input designs are: a 2-resolvable 5-fold (K4 — e)-design of order 22, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K, — €)-RGDD of type 23, which exists by Lemma
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5.4; an incomplete 2-resolvable 5-fold (K4 — e)-design of order 10 with a hole of size 2,
which exists by Lemma 5.10). O

6 Main result

The results obtained in the previous sections can be summarized into the following theorem.

Theorem 6.1. The necessary conditions (1) — (3) for the existence of a-resolvable \-fold
(K4 — e)-designs are also sufficient.
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