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Abstract

A λ-fold G-design is said to be α-resolvable if its blocks can be partitioned into classes
such that every class contains each vertex exactly α times. In this paper we study the α-
resolvability for λ-fold (K4 − e)-designs and prove that the necessary conditions for their
existence are also sufficient, without any exception.
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1 Introduction
For any graph Γ, let V (Γ) and E(Γ) be the vertex-set and the edge-set of Γ, respectively,
and λΓ be the graph Γ with each of its edges replicated λ times. Throughout the paper Kv

will denote the complete graph on v vertices, while Kn \ Kh will denote the graph with
V (Kn) as vertex-set and E(Kn) \ E(Kh) as edge-set (this graph is sometimes referred to
as a complete graph of order n with a hole of size h); finally, Kn1,n2,...,nt

will denote the
complete multipartite graph with t-parts of sizes n1, n2, . . . , nt.

Let G and H be simple finite graphs. A λ-fold G-design of H ((λH,G)-design in
short) is a pair (X,B) where X is the vertex-set of H and B is a collection of isomorphic
copies (called blocks) of the graph G, whose edges partition the edges of λH . If λ = 1, we
drop the term “1-fold”. If H = Kv , we refer to such a λ-fold G-design as one of order v.
A (λH,G)-design is balanced if for every vertex x of H the number of blocks containing
x is a costant r.

A (λH,G)-design is said to be α-resolvable if it is possible to partition the blocks
into classes (often referred to as α-parallel classes) such that every vertex of H appears
in exactly α blocks of each class. When α = 1, we simply speak of resolvable design
and parallel classes. The existence problem of resolvable G-decompositions has been the
subject of an extensive research (see [1, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 24]).
The α-resolvability, with α > 1, has been studied for: G = K3 by D. Jungnickel, R. C.
Mullin, S. A. Vanstone [13], Y. Zhang and B. Du [25]; G = K4 by M. J. Vasiga, S. Furino
and A.C.H. Ling [22]; G = C4 by M.X. Wen and T.Z. Hong [17].

In this paper we investigate the existence of an α-resolvable λ-fold (K4 − e)-design
(where K4 − e is the complete graph K4 with one edge removed). In what follows, by
(a, b, c; d) we will denote the graph K4 − e having {a, b, c, d} as vertex-set and {{a, b},
{a, c}, {b, c}, {a, d}, {b, d}} as edge-set. Basing on the definitions given above, we can
derive the following necessary conditions:

(1) λv(v − 1) ≡ 0 (mod 10);

(2) αv ≡ 0 (mod 4);

(3) 2λ(v − 1) ≡ 0 (mod 5α).

Note that, since the number of α-parallel classes of an α-resolvable λ-fold (K4 − e)-
design of order v is 2λ(v−1)

5α and every vertex appears exactly α times in each of them, we
have the following theorem.

Theorem 1.1. Any α-resolvable λ-fold (K4 − e)-design is balanced.

From Conditions (1) − (3) we can desume minimum values for α and λ, say α0 and
λ0, respectively. Similarly to Lemmas 2.1, 2.2 in [22], we have the following lemmas.

Lemma 1.2. If an α-resolvable λ-fold (K4 − e)-design of order v exists, then α0|α and
λ0|λ.

Lemma 1.3. If an α-resolvable λ-fold (K4 − e)-design of order v exists, then a tα-
resolvable nλ-fold (K4 − e)-design of order v exists for any positive integers n and t

with t | 2λ(v−1)5α .

The above two lemmas imply the following theorem (for the proof see Theorem 2.3 in
[22]).
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Theorem 1.4. If an α0-resolvable λ0-fold (K4 − e)-design of order v exists and α and λ
satisfy Conditions (1)− (3), then an α-resolvable λ-fold (K4− e)-design of order v exists.

Therefore, in order to show that the necessary conditions for α-resolvable designs are
also sufficient, we simply need to prove the existence of an α0-resolvable λ0-fold (K4−e)-
design of order v, for any given v.

2 Auxiliary definitions
A (λKn1,n2,...,nt , G)-design is known as a λ-fold group divisible design, G-GDD in short,
of type {n1, n2, . . . , nt} (the parts are called the groups of the design). We usually use an
“exponential” notation to describe group-types: the group-type 1i2j3k... denotes i occur-
rences of 1, j occurrences of 2, etc. When G = Kn we will call it an n-GDD.

If the blocks of a λ-fold G-GDD can be partitioned into partial α-parallel classes, each
of which contains all vertices except those of one group, we refer to the decomposition
as a λ-fold (α,G)-frame; when α = 1, we simply speak of λ-fold G-frame (n-frame if
additionally G = Kn). In a λ-fold (α,G)-frame the number of partial α-parallel classes
missing a specified group of size g is λg|V (G)|

2α|E(G)| .
An incomplete α-resolvable λ-fold G-design of order v + h, h ≥ 1, with a hole of size

h is a (λ(Kv+h \ Kh), G)-design in which there are two types of classes, λ(h−1)|V (G)|
2α|E(G)|

partial classes which cover every vertex α times except those in the hole and λv|V (G)|
2α|E(G)| full

classes which cover every vertex of Kv+h α times.

3 v ≡ 0 (mod 4)

In [4, 5, 23] it was showed that there exists a resolvable (K4 − e)-design of order v ≡ 16
(mod 20); while, for every v ≡ 0, 4, 8, 12 (mod 20) Gionfriddo et al. ([7]) proved that
there exists a resolvable 5-fold (K4− e)-design of order v. Hence the necessary conditions
are also sufficient.

4 v ≡ 1 (mod 2)

4.1 v ≡ 1 (mod 10)

If v ≡ 1 (mod 10), then λ0 = 1 and α0 = 4 and so a solution is given by a cyclic
(K4− e)-design ([2]), where every base block generates a 4-parallel class. If v = 10k+ 1,
k ≥ 4, the desired design can be obtained by developing in Z10k+1 the base blocks listed
below:

(1 + 2i, 4k + 1 + i, 1; 2k + 2), i = 3, 4, . . . ,
⌊
k
2

⌋
;

(2k + 3− 2i, 5k + 2− i, 1; 2k + 2), i = 1, 2, . . . ,
⌈
k
2

⌉
;

(1, 4k + 1, 3; 6k);

(1, 2k + 2, 5; 6k + 1);

where bxc (or dxe) denote the greatest (or lower) integer that does not exceed (or that
exceed) x. If v = 11, 21, 31, the base blocks are:

v = 11: (1, 10, 2; 5) developed in Z11;
v = 21: (1, 11, 3; 15), (1, 7, 2; 10) developed in Z21;
v = 31: (2, 13, 1; 5), (1, 27, 10; 11), (1, 7, 3; 14) developed in Z31.
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4.2 v ≡ 3, 5, 7, 9 (mod 10)

If v ≡ 3, 5, 7, 9 (mod 10), then λ0 = 5 and α0 = 4 and so a solution is given by a cyclic
5-fold (K4 − e)-design, where every base block generates a 4-parallel class. The required
design is obtained by developing in Zv the following blocks:

(1 + i, v − 1− i, 0; 1), i = 1, 2, . . . , v−32 ;
(0, 1, 2; v − 1).

5 v ≡ 2 (mod 4)

5.1 v ≡ 6 (mod 20)

If v ≡ 6 (mod 20), then λ0 = 1 and α0 = 2. In order to prove the existence of a 2-
resolvable (K4 − e)-design of order v for every v ≡ 6 (mod 20), preliminarly we need to
construct one of order 6.

Lemma 5.1. There exists a 2-resolvable (K4 − e)-design of order 6.

Proof. Let V = {0, 1, 2, 3, 4, 5} be the vertex-set and {(0, 1, 2; 3), (2, 3, 4; 5), (4, 5, 0; 1)}
be the class.

For constructing a 2-resolvable (K4 − e)-design of any order v ≡ 6 (mod 20) and for
later use, note that starting from a (K4 − e)-frame of type hn also a λ-fold (2,K4 − e)-
frame of type hn can be obtained for any λ > 0, since necessarily h ≡ 0 (mod 5) and so
the number of partial parallel classes missing any group is even.

Lemma 5.2. For every v ≡ 6 (mod 20), there exists a 2-resolvable (K4 − e)-design of
order v.

Proof. Let v = 20k + 6. The case k = 0 follows by Lemma 5.1. For k > 0, consider
a (2,K4 − e)-frame of type 54k+1 ([5]) with groups Gi, i = 1, 2, . . . , 4k + 1 and a new
vertex ∞. For each i = 1, 2, . . . , 4k + 1, let Pi the unique partial 2-parallel class which
misses the group Gi. Place on Gi∪{∞} a copy of a 2-resolvable (K4−e)-design of order
6, which exists by Lemma 5.1, and combine its full class with the partial class Pi so to
obtain the desired design.

5.2 v ≡ 2, 10, 14, 18 (mod 20)

To prove the existence of an α-resolvable λ-fold (K4−e)-design of order v ≡ 2, 10, 14, 18
(mod 20), with minimum values λ0 = 5 and α0 = 2, we will construct some small exam-
ples most of which will be used as ingredients in the constructions given by the following
theorems.

Theorem 5.3. Let v, g, u, and h be positive integers such that v = gu+ h. If there exists

i) a 5-fold (2,K4 − e)-frame of type gu;

ii) a 2-resolvable 5-fold (K4 − e)-design of order g;

iii) an incomplete 2-resolvable 5-fold (K4− e)-design of order g+ h with a hole of size
h;

then there exists a 2-resolvable 5-fold (K4 − e)-design of order v = gu+ h.
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Proof. Take a 5-fold (2,K4−e)-frame of type gu with groupsGi, i = 1, 2, . . . , u and a set
H of size h such taht H ∩ (∪ui=1Gi) = ∅. For j = 1, 2, . . . , g, let Pi,j be the j-th 2-partial
class which misses the groupGi. Place onH∪G1 a copyD1 of a 2-resolvable 5-fold (K4−
e)-design of order g + h having g + h − 1 classes R1,1, R1,2, . . . , , R1,g, H1,1, H1,2, . . . ,
H1,h−1. For i = 2, 3, . . . , u, place on H ∪ Gi a copy Di of an incomplete 2-resolvable
5-fold (K4 − e)-design of order g + h with H as hole and having h − 1 partial classes
Hi,1, Hi,2, . . . ,Hi,h−1 and g full classes Ri,1, Ri,2, . . . , , Ri,g . Combine the g partial
classes P1,j with the full classes R1,1, R1,2, . . . , , R1,g of D1 and for i = 2, 3, . . . , u the
g partial classes Pi,j of Di with the full classes Ri,1, Ri,2, . . . , Ri,g so to obtain gu 2-
parallel classes on H ∪ (∪ui=1Gi). Combine the classes H1,1, H1,2, . . . ,H1,h−1 with the
partial classes Hi,1, Hi,2, . . . ,Hi,h−1 so to obtain h − 1 2-parallel classes. The result is a
2-resolvable 5-fold (K4−e)-design of order gu+h with gu+h−1 2-parallel classes.

The following lemma gives an input design in the construction of Theorem5.5.

Lemma 5.4. There exists a 2-resolvable 5-fold (K4 − e)-GDD of type 23.

Proof. Let {0, 3}, {1, 4} and {2, 5} be the groups and consider the following classes: P1 =
{(0, 2, 1; 4), (1, 5, 0; 3), (3, 4, 2; 5)}, P2 = {(3, 5, 1; 4), (1, 2, 0; 3), (0, 4, 2; 5)}, P3 = {(0,
5, 1; 4), (2, 4, 0; 3), (1, 3, 2; 5)}, P4 = {(2, 3, 1; 4), (4, 5, 0; 3), (0, 1, 2; 5)}.

Theorem 5.5. Let v, g, m, h and u be positive integers such that v = 2gu + 2m + h. If
there exists

i) a 3-frame of type m1gu;

ii) a 2-resolvable 5-fold (K4 − e)-design of order 2m+ h;

iii) an incomplete 2-resolvable 5-fold (K4 − e)-design of order 2g + h with a hole of
size h;

then there exists a 2-resolvable 5-fold (K4 − e)-design of order 2gu+ 2m+ h.

Proof. Let F be a 3-frame with one group G of cardinality m and u groups Gi, i =
1, 2, . . . , u of cardinality g; such a frame has m

2 partial classes which missG, each contain-
ing gu

3 triples, and, for i = 1, 2, . . . , u, g2 partial classes which miss Gi, each containing
g(u−1)+m

3 triples. Expand each vertex 2 times and add a set H of h new vertices. Place on
H∪(G×{1, 2}) a copyD of a 2-resolvable 5-fold (K4−e)-design of order 2m+h having
2m + h − 1 classes R1, R2, . . . , R2m, H1, H2, . . . ,Hh−1. For each i = 1, 2, . . . , u place
on H ∪ (Gi × {1, 2}) a copy Di of an incomplete 2-resolvable 5-fold (K4 − e)-design of
order 2g+ h with H as hole and having h− 1 partial classes Hi,j with j = 1, 2, . . . , h− 1
and 2g full classes Ri,t, t = 1, 2, . . . , 2g. For each block b = {x, y, z} of a given class
of F place on b × {1, 2} a copy of a 2-resolvable 5-fold (K4 − e)-GDD of type 23 from
Lemma 5.4, having {x1, x2}, {y1, y2} and {z1, z2} as groups. This gives 2m partial classes
(whose blocks are copies of K4 − e) which miss G × {1, 2} and 2g partial classes which
miss Gi × {1, 2}, i = 1, 2, . . . , u. Combine the 2m partial classes which miss the group
G× {1, 2} with the classes R1, R2, . . . , R2m so to obtain 2m classes. For i = 1, 2, . . . , u
combine the 2g partial classes which miss the group Gi × {1, 2} with the full classes of
Di so to obtain 2gu classes. Finally, combine the h − 1 classes H1, H2, . . . ,Hh−1 of D
with the partial classes of Di so to obtain h − 1 classes. This gives a 2-resolvable 5-fold
(K4 − e)-design of order v and v − 1 2-parallel classes.
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Theorem 5.6. Let v, k and h be non-negative integers. If there exists

i) an incomplete α-resolvable λ-fold (K4 − e)-design of order v + k + h with a hole
of size k + h;

ii) an incomplete α-resolvable λ-fold (K4− e)-design of order k+h with a hole of size
h;

then there exists an incomplete α-resolvable λ-fold (K4 − e)-design of order v + k + h
with a hole of size h.

Lemma 5.7. There exists a resolvable (K4 − e)-GDD of type 52101.

Proof. Let Z10 ∪ {∞0,∞1, . . . ,∞9} be the vertex-set and 2Z10, 2Z10 + 1, {∞0,∞1,
. . . ,∞9} be the groups. The desired design is obtained by adding 2 (mod 10) to the
following base blocks, including the subscripts of ∞: (0, 1,∞0;∞1), (2, 5,∞0;∞1),
(4, 9,∞0;∞1), (6, 3,∞0;∞1), (8, 7,∞0;∞1). The parallel classes are generate by every
base block.

Lemma 5.8. There exists a 2-resolvable 5-fold (K4 − e)-GDD of type 103.

Proof. Start with the 2-resolvable 5-fold (K4 − e)-GDD G of type 23 of Lemma 5.4 with
groups Gi, i = 1, 2, 3. For each block b = (x, y, z; t) of a given 2-parallel class of G
consider a copy of a resolvable (K4 − e)-GDD of type 52101 where {x} × Z5, {y} × Z5,
{z, t} × Z5 are the groups.

Lemma 5.9. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 6
with a hole of size 2.

Proof. On V = Z4 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(1, 3, 0; 2), (0, 2, 1; 3)} and the four full classes obtained by developing {(0, 2,∞1;∞2),
(∞1, 1, 0; 3), (∞2, 2, 3; 1)} in Z4, where∞i + 1 =∞i for i = 1, 2.

Lemma 5.10. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10
with a hole of size 2.

Proof. On V = Z8 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(0, 4, 2; 6), (1, 5, 3; 7), (2, 6, 4; 0), (3, 7, 5; 1)} and the eight full classes obtained by de-
veloping {(0, 1,∞1; 3), (2, 3,∞2; 7), (∞1, 5, 6; 2), (∞2, 6, 4; 5), (4, 7, 1; 0)} in Z8, where
∞i + 1 =∞i for i = 1, 2.

Lemma 5.11. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 14
with a hole of size 4.

Proof. Let V = Z10 ∪ H be the vertex-set, where H = {∞1,∞2,∞3,∞4} is the hole.
The partial classes are obtained by adding 2 (mod 10) to the base blocks (2, 6, 9; 5),
(5, 9, 2; 8), (8, 7, 6; 9), each block generating a partial class; while, the full classes are
obtained by adding 2 (mod 10) to the following base blocks partitioned into two full
classes, each class generating five full classes: {(0, 8,∞1;∞2), (1, 5,∞3;∞4), (∞1, 4,
0; 9), (∞2, 6, 2; 3), (∞3, 3, 7; 8), (∞4, 9, 1; 4), (2, 7, 6; 5)}, {(1, 5,∞1;∞2), (0, 8,∞3;
∞4), (∞1, 3, 9; 4), (∞2, 9, 7; 0), (∞3, 2, 6; 1), (∞4, 6, 8; 3), (4, 7, 2; 5)}, where ∞i +
1 =∞i for i = 1, 2, 3, 4.
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Lemma 5.12. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 14
with a hole of size 2.

Proof. On V = Z12 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(0, 6, 3; 9), (1, 7, 4; 10), (2, 8, 5; 11), (3, 9, 6; 0), (4, 10, 7; 1), (5, 11, 8; 2)} and the twelve
full classes obtained by developing {(0, 1,∞1; 11), (2, 4,∞2; 10), (∞1, 10, 6; 5), (∞2, 9,
2; 0), (3, 7, 8; 1), (5, 8, 7; 9), (6, 11, 3; 4)} in Z12, where∞i + 1 =∞i for i = 1, 2.

Lemma 5.13. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 22
with a hole of size 6.

Proof. Let V = Z16 ∪H be the vertex-set, where H = {∞1,∞2, . . . ,∞6} is the hole. In
Z16 develop the full 2-parallel base class {(0, 3,∞1; 12), (1, 5,∞2; 2), (8, 13,∞3; 4), (14,
15,∞4; 11), (6, 11,∞5;∞6), (∞1, 2, 1; 3), (∞2, 4, 13; 8), (∞3, 7, 0; 14), (∞4, 9, 6; 10),
(∞5, 10, 5; 15), (∞6, 12, 7; 9)}. Additionally, include the partial 2-parallel class {(0, 8, 2;
10), (1, 9, 3; 11), (2, 10, 4; 12), (3, 11, 5; 13), (4, 12, 6; 14), (5, 13, 7; 15), (6, 14, 8; 0), (7,
15, 9; 1)} repeated five times.

As consequence of Lemmas 5.9 and 5.13, by Theorem 5.6 the following lemma follows.

Lemma 5.14. There exists a 2-resolvable 5-fold (K4 − e)-design of order 22 with a hole
of size 2.

Lemma 5.15. There exists a 2-resolvable 5-fold (K4 − e)-design of order 10.

Proof. Let V = Z9 ∪ {∞} be the vertex-set. The required design is obtained by developing
the base class {(∞, 0, 6; 5), (1, 5, 4; 3), (7, 8, 1;∞), (2, 6, 7; 8), (3, 4, 2; 0)} in Z9.

Lemma 5.16. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 30
with a hole of size 10.

Proof. Start from a 2-resolvable 5-fold (K4−e)-GDD of type 103 (which exists by Lemma
5.8) having Gi, i = 1, 2, 3, as groups. Fill in the groups G2 and G3 with a copy of a 2-
resolvable 5-fold (K4 − e)-design of order 10, which exists by Lemma 5.15. This gives an
incomplete 2-resolvable 5-fold (K4 − e)-design of order 30 with G1 as hole.

Lemma 5.17. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 38
with a hole of size 12.

Proof. Let V = Z26 ∪H be the vertex-set, where H = {∞1,∞2, . . . ,∞12} is the hole.
The partial classes are: {(i, 13 + i, 2 + i; 15 + i) : i = 0, 1, . . . , 12}, repaeated five times;
{(2i, 10 + 2i, 3 + 2i; 7 + 2i) : i = 0, 1, . . . , 12} and {(1 + 2i, 11 + 2i, 4 + 2i; 8 + 2i) : i =
0, 1, . . . , 12}, repeated twice; {(2i, 10+2i, 1+2i; 9+2i) : i = 0, 1, . . . , 12}; {(1+2i, 11+
2i, 2 + 2i; 10 + 2i) : i = 0, 1, . . . , 12}. The full classes are obtained by developing in V =
Z26 the full base class {(∞1, 2, 1; 7), (∞2, 12, 3; 24), (∞3, 16, 4; 11), (∞4, 13, 5; 25),
(∞5, 15, 9; 22), (∞6, 17, 11; 23), (∞7, 19, 18; 20), (∞8, 14, 10; 18), (∞9, 4, 0; 8), (∞10,
9, 17; 19), (∞11, 7, 2; 12), (∞12, 15, 3; 24), (1, 5,∞1;∞2), (10, 20,∞3;∞4), (6, 23,∞5;
∞6), (16, 21,∞7;∞8), (22, 25,∞9;∞10), (13, 21,∞11;∞12), (0, 14, 6; 8)}.

As consequence of the existence of a 2-resolvable 5-fold (K4 − e)-design of order
v = 4, 12 (see Section 3 and Theorem 1.4) and Lemmas 5.1, 5.11, 5.13, 5.16, 5.17, 5.15,
by Theorem 5.6 the following lemma follows.
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Lemma 5.18. There exists a 2-resolvable 5-fold (K4−e)-design of order v = 14, 22, 30, 38.

Lemma 5.19. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 42, 234.

Proof. Start with a resolvable 3-GDD of type 3
v
6 ([20]). Expand each vertex 2 times and

for each triple b of a given parallel class place on b×{1, 2} a copy of a 2-resolvable 5-fold
(K4 − e)-GDD of type 23, which exists by Lemma 5.4. Finally, fill each group of size 6
with a copy of a 2-resolvable 5-fold (K4 − e)-design of order 6, which exists by Lemma
5.1.

Lemma 5.20. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 50, 62.

Proof. Start from a 3-frame of type 6
v−2
12 ([3]) and apply Contruction 5.5 with m = g = 6,

h = 2 and u = v−14
12 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v = 50, 62

(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 14, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K4− e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4− e)-design of order 14 with a hole of size 2, which
exists by Lemma 5.12).

Lemma 5.21. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 34, 274.

Proof. Start from a 3-frame of type 4
v−2
8 ([3]) and apply Theorem 5.5 with m = g = 4,

h = 2 and u = v−10
8 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v = 34, 274

(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 10, which exists by
Lemma 5.15; a 2-resolvable 5-fold (K4− e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4− e)-design of order 10 with a hole of size 2, which
exists by Lemma 5.10).

Lemma 5.22. There exists a 2-resolvable 5-fold (K4 − e)-design of order 70.

Proof. Start from a 3-frame of type 84 ([3]) and apply Theorem 5.5 with m = g = 8,
h = 6 and u = 3 to obtain a 2-resolvable 5-fold (K4 − e)-design of order 70 (the input
designs are; a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by Lemma
5.18; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by Lemma 5.4; an
incomplete 2-resolvable 5-fold (K4 − e)-design of order 22 with a hole of size 6, which
exists by Lemma 5.13).

Lemma 5.23. For every v ≡ 2 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=20k + 2. The case v = 22, 42, 62 are covered by Lemmas 5.18, 5.19 and
5.20. For k ≥ 4, start from a 5-fold (2,K4−e)-frame of type 20k ([5]) and apply Theorem
5.3 with h = 2 to obtain a 2-resolvable 5-fold (K4−e)-design of order v (the input designs
are a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by Lemma 5.18, and
an incomplete 2-resolvable 5-fold (K4− e)-design of order 22 with a hole of size 2, which
exists by Lemma 5.14).

Lemma 5.24. For every v ≡ 10 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.
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Proof. Let v=20k + 10. The case v = 10, 30, 50, 70 are covered by Lemmas 5.15, 5.18,
5.20 and 5.22. For k ≥ 4, start from a 5-fold (2,K4− e)-frame of type 20k ([5]) and apply
Theorem 5.3 with g = 20 and h = 10 to obtain a 2-resolvable 5-fold (K4 − e)-design of
order v (the input designs are a 2-resolvable 5-fold (K4 − e)-design of order 10, which
exists by Lemma 5.15, and an incomplete 2-resolvable 5-fold (K4 − e)-design of order 30
with a hole of size 10, which exists by Lemma 5.16).

Lemma 5.25. For every v ≡ 14 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=20k + 14. The case v = 14, 34, 234, 274 are covered by Lemmas 5.18, 5.19
and 5.21. For k ≥ 2, k /∈ {11, 13}, start from a 5-fold (2,K4 − e)-frame of type 102k+1

([5]), apply Theorem 5.3 with h = 4 and proceed as in Lemma 5.24.

Lemma 5.26. For every v ≡ 18 (mod 60), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=60k+18. Take a resolvable 3-GDD of type 310k+3 ([6]). Expand each vertex
2 times and for each block b of a parallel class place on b× {1, 2} a copy of a 2-resolvable
5-fold (K4 − e)-GDD of type 23 which exists by Lemma 5.4, so to obtain a 2-resolvable
5-fold (K4 − e)-GDD of type 610k+3. Finally, fill in each group of size 6 with a copy of a
2-resolvable 5-fold (K4 − e)-design, which exists by Lemma 5.1.

Lemma 5.27. For every v ≡ 38 (mod 60), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v = 60k + 38. The case v = 38 follows by Lemmas 5.18. For k ≥ 1, start
from a 3-frame of type 65k+3 ([6]) and apply Theorem 5.5 with m = g = 6, h = 2 and
u = 5k + 2 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v (the input designs
are: a 2-resolvable 5-fold (K4 − e)-design of order 14, which exists by Lemma 5.18; a
2-resolvable 5-fold (K4 − e)-GDD of type 23, which exists by Lemma 5.4; an incomplete
2-resolvable 5-fold (K4 − e)-design of order 14 with a hole of size 2, which exists by
Lemma 5.11)

Lemma 5.28. For every v ≡ 58 (mod 120), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v = 120k + 58. Start from a 3-frame of type 415k+7 ([6]) and apply Theorem
5.5 with m = g = 4, h = 2 and u = 15k + 6 to obtain a 2-resolvable 5-fold (K4 − e)-
design of order v (the input designs are: a 2-resolvable (K4− e)-design of order 10, which
exists by Lemma 5.15; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by
Lemma 5.4; an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10 with a hole of
size 2, which exists by Lemma 5.10).

Lemma 5.29. For every v ≡ 118 (mod 120), there exists a 2-resolvable 5-fold (K4−e)-
design of order v.

Proof. Let v = 120k + 118. Start from a 3-frame of type 101415k+12, k ≥ 0, ([6]) and
apply Theorem 5.5 with h = 2 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v
(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by Lemma



380 Ars Math. Contemp. 10 (2016) 371–381

5.4; an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10 with a hole of size 2,
which exists by Lemma 5.10).

6 Main result
The results obtained in the previous sections can be summarized into the following theorem.

Theorem 6.1. The necessary conditions (1)− (3) for the existence of α-resolvable λ-fold
(K4 − e)-designs are also sufficient.
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