
BLED WORKSHOPS

IN PHYSICS

VOL. 12, NO. 1
p. 39

Proceedings of the Mini-Workshop
Understanding hadronic spectra
Bled, Slovenia, July 3 - 10, 2011

The Schwinger model in point form⋆

D. Kupelwiesera, W. Schweigera, and W. H. Klinkb

a Institut für Physik, Universität Graz, A-8010 Graz, Austria
b Dept. Physics and Astronomy, The University of Iowa, Iowa City, IA 52242-1479, U.S.

Abstract. We attempt to solve the Schwinger model, i.e. massless QED in 1+1 dimensions,

by quantizing it on a space-time hyperboloid xµx
µ = τ2 . The Fock-space representation

of the 2-momentum operator is derived and its algebraic structure is analyzed. We briefly

outline a solution strategy.

1 Introduction

The Schwinger model is quantum electrodynamics of massless fermions in 1

space and 1 time dimension [1] and serves as a popular testing ground for non-
perturbative methods in quantum field theory (QFT). It is an exactly solvable,

super-renormalizable gauge theory that exhibits various interesting phenome-

na [2], such as confinement, which one would like to understand better in 1+3-
dimensional QFTs. Originally it was solved by means of functional methods [1].

Later on also operator solutions were found [3] and spectrum and eigenstates of
the theory were calculated by quantizing it at equal time x0 = const. [4, 5] or at

equal light-cone time x+ = x0 + x1 = const. [6]. We rather attempt to solve the

Schwinger model by means of canonical quantization on the space-time hyper-
boloid x2

0 −x2
1 = τ2. Each of these quantization hypersurfaces is associated with a

particular form of relativistic Hamiltonian dynamics [7], namely the instant form,
the front form and the point form, respectively.

The quantization surface in point form is a space-time hyperboloid which is

invariant under the action of the Lorentz group. The kinematic (interaction in-
dependent) generators of the Poincaré group are therefore those of the Lorentz

subgroup. All the interactions go into the components of the 2-momentum Pµ,

i.e. the generators of space-time translations, which provide the dynamics of the
system. One of the main virtues of point-form dynamics is obviously a simple be-

havior of wave functions and operators under Lorentz transformations. This has
already been exploited in applications to relativistic few-body systems [8], but

corresponding studies of interacting quantum field theories are still very sparse.

The best-known paper is that of Fubini et al. [9], who deal with point-form QFT
in 2-dimensional Euclidean space-time. We rather want to extend equal-τ quan-

tization in Minkowski space-time, as it was worked out in Ref. [10] for free field
theories, to the interacting case. The solution being known, the Schwinger model
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would be an interesting example to test the point-form approach against other

methods. The hope is then that point-form quantum field theory will eventually

represent a useful alternative in the study of 4-dimensional quantum field theo-
ries.

The Lagrangian of the Schwinger model is

L = Lγ + Le + Lint = −
1

4
FµνFµν

︸ ︷︷ ︸
photon part

+
i

2
ψ̄
↔

/∂ ψ
︸ ︷︷ ︸
fermion part

+
1

2
e ψ̄ /Aψ
︸ ︷︷ ︸
interaction part

(1)

with the 2 × 2 Dirac matrices being represented, as usual, in the Weyl basis, i.e.
γ0 = σ1 , γ1 = iσ2 and γ5 = γ0γ1 = −σ3 .

2 The 2-Momentum Operator

2.1 The free part

This exposition follows closely Ref. [10] to which we refer for further details.

Fermions: In order to obtain the Fock-space representation of the free fermion
2-momentum operator, we Fourier-expand the Dirac field ψ(x) in terms of plane

waves using the fermion and antifermion annihilation (creation) operators c(†)(p)

and d(†)(p) and the spinor basis {u(p), v(p)}. In the massless case, the spinors are
(p0 = |p1|):

u(p) =
1

√

2p0

(

p0 − p1

p0 + p1

)

and v(p) =
1

√

2p0

(

p1 − p0

p1 + p0

)

. (2)

The free fermion 2-momentum operator in point-form is then obtained from the
stress-energy tensor Θµν

e by integrating over the space-time hyperboloid xµx
µ =

τ2:

Pµ
e =

∫

R2

2d2x δ
(

x2 − τ2
)

θ(x0) xν
︸ ︷︷ ︸

point-form “surface” element

Θνµ
e , with Θνµ

e =
i

2
ψ̄ γν

↔

∂
µψ . (3)

Inserting now the plain-wave expansion for the fields and interchanging momen-

tum and x integrations we are left with the covariant distribution

Wν(q) = 2

∫

R2

d2x δ(x2 − τ2) θ(x0) xν e
−iqx

= 2πδ(q2)ǫ(q0)qν + 2πθ(q2)δ(q0)J0(τ
√

q2)gν0

−
πτ

√

q2
θ(q2)

[

iY1(τ
√

q2) + ǫ(q0)J1(τ
√

q2)
]

qν

−
2iτ

√

−q2
θ(−q2)K1(τ

√

−q2)qν . (4)

When evaluating equation (3) for the free parts of the Lagrangian (1),Wν is con-

tracted with spinor products of the form ūγνu, ūγνv, etc. All the contractions
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with qν vanish and only the term ∝ θ(q2)δ(q0)gν0 survives. The result, as al-

ready shown by Biernat et al. [10] using a different trick to evaluateWν, is (after

normal ordering)

Pµ
e =

∫
dp1

2p0
pµ

(

c†(p) c(p) + d†(p)d(p)
)

, (5)

i.e. the same as in instant form.

Photons: For the free photon 2-momentum operator we proceed in an analogous
way. 1 The Fourier expansion of the vector potential Aµ(x) in terms of plane

waves gives rise to the photon creation- and annihilation operators a†κ(k) and

aκ(k) and to polarization vectors ǫµ
κ(k), with κ = 0, 1 labeling the polarization.

The polarization vectors are orthonormalized according to ǫµ
κ′(k)ǫκµ(k) = gκ′κ.

In order to preserve the nice covariance properties of the point form, we work
within the Lorenz gauge and use the Gupta-Bleuler quantization procedure. As

a consequence there are no physical photons left. The 0- and the 1-component

of the photon field are pure gauge degrees of freedom. Proceeding in analogy
to the fermion part we find for the Fock-space representation of the free photon

2-momentum operator again the same result as for equal-time quantization, i.e.

Pµ
γ =

1∑

κ=0

∫
dk1

2k0
kµ gκκa†κ(k)aκ(k) . (6)

2.2 The interaction part

Since there is no derivative in the interaction part of the Lagrangian (1), the inter-

action part of the stress-energy tensor is simply given by Θ
µν
int = −gµν Lint . The

interaction part of the 2-momentum operator is then

P
µ
int = −

∫

R2

2d2x δ(x2 − τ2)θ(x0) xµ Lint(x) . (7)

One can check explicitly that the corresponding integral for the interaction part

of the boost generator vanishes as expected [10].

To obtain the Fock-space representation of Pµ
int we proceed as before. The

only difference is now that Wν(q) does not provide a momentum conserving δ
function. But this is not surprising. Both components of the momentum operator

are interaction dependent so that one cannot expect momentum conservation at
interaction vertices. But what one can do is to analyze the algebraic structure of

P
µ
int. By appropriately collecting terms it can be cast into the form

P
µ
int = −e

1∑

κ=0

∫
dk1

2k0

(

A(Xµ
κ )(k)aκ(k) + A†(Xµ

κ)(k)a†κ(k)
)

(8)

1 See also Ref. [11] for a detailed derivation of the gluon 2-momentum operator.
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with

A(Xµ
κ)(k) =

∫
dp1

2p0

∫
dp′1

2p′0
(

c†(p ′), d(p)
)

X
µ

(κ)
(k, p ′, p)

(

c(p)

d†(p)

)

(9)

The distribution Wµ for different combinations of the momenta p, p′ and k to-
gether with the different spinor products determines essentially the elements of

the 2× 2matrix Xµ

(κ)
(k, p ′, p).

3 The Eigenvalue Problem

Putting all the pieces together we finally end up with the eigenvalue problem

(

Pµ
e + Pµ

γ + P
µ
int

)
∣

∣Ψ
〉

= A(Eµ)
∣

∣Ψ
〉

+

1∑

κ=0

∫
dk1

2k0

(

kµgκκa†κ(k)aκ(k)

−eA(Xµ
κ)(k)aκ(k) − eA†(Xµ

κ)(k)a†κ(k)
)

∣

∣Ψ
〉

= pµ
∣

∣Ψ
〉

(10)

which we want to solve non-perturbatively. Here we have also expressed the

fermion kinetic energy in terms of the As to emphasize that the fermion creation

and annihilation operators occur only in bilinear combinations. The argument Eµ

is essentially a diagonal matrix containing ±δ(p1′ − p1).

A possible strategy to solve this eigenvalue problemwas proposed in Ref. [12].

The first step is to keep the number of modes finite. This could, e.g., be done with-
out spoiling Lorentz-transformation properties by compactifying the x1 direction

such that one ends up with a deSitter space. A finite number of modes means also
that only a finite number of fermion-antifermion pairs can be created. In order to

keep the number of bosons finite the boson algebra is then considered as a con-

traction limit of another unitary algebra that restricts the number of bosons in any
mode. In this way one ends up with a solvable algebraic problem that involves

only a finite number of modes and a finite number of particles. The interesting
question will be whether the well known results for Schwinger model are recov-

ered upon performing the necessary contractions that restore the original theory.
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