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Abstract. It might be expected that only global symmetries are fundamental symmetries
of Nature, whereas local symmetries and associated massless gauge fields could solely
emerge due to spontaneous breaking of underlying spacetime symmetries involved, such
as relativistic invariance and supersymmetry. This breaking, taken in the form of the
nonlinear σ-model type pattern for vector fields or superfields, puts essential restrictions
on geometrical degrees of freedom of a physical field system that makes it to adjust itself
in such a way that its global internal symmetry G turns into the local symmetry Gloc.
Remarkably, this emergence process may naturally be triggered by spontaneously broken
supersymmetry, as is illustrated in detail by an example of a general supersymmetric QED
model which is then extended to electroweak models and grand unified theories. Among
others, the U(1) × SU(2) symmetrical Standard Model and flipped SU(5) GUT appear
preferable to emerge at high energies.

Povzetek. Avtor dokazuje, da so samo globalne simetrije temeljne simetrije narave, lokalne
simetrije in njim pridružena umeritvena polja pa se pojavljajo samo zaradi spontane
zlomitve simetrije prostora-časa, kot sta relativistična invarianca in supersimetrija. Avtor
uporabi nelinearni model σ za obravnavo sistema z relativistično simetrijo in supersimetrijo.
Ugotavlja, da zlomitev relativistične invariance ter supersimetrije bistveno zoži geometrij-
ske prostostne stopnje vektorskih in superpolja, zato se ta odzove s spremembo globalne
notranje simetrije G v lokalno simetrijo Gloc. Spontano zlomljena supersimetrija lahko
naravno sproži ta proces porajanja. Avtor ta spontani prehod ilustrira na primeru splošnega
modela supersimetrične kvantne elektordinamike. Ta model razširi tudi na elektrošibki
standardni model ter na teorije, imenovane ”velike teorije poenotenja” (GUT). Pri visokih
energijah se pri takih zlomitvah simetrij pojavita prav standardni model in ,,prekucnjen”
(flipped) model SU(5).

4.1 Introduction

We all believe that internal gauge symmetries form the basis of modern particle
physics being most successfully realized within the celebrated Standard Model
(SM) of quarks and leptons and their fundamental strong, weak and electromag-
netic interactions. At the same time, local gauge invariance, contrary to a global
symmetry case, may look like a cumbersome geometrical input rather than a ”true”
physical principle, especially in the framework of an effective quantum field theory
(QFT) becoming, presumably, irrelevant at very high energies. In this connection,
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4 Emergent SUSY Theories: QED, SM & GUT 47

one could wonder whether there is any basic dynamical reason that necessitates
gauge invariance and the associated masslessness of gauge fields as some emer-
gent phenomenon arising from a more profound level of dynamics. By analogy
with a dynamical origin of massless scalar particle excitations, which is very well
understood in terms of spontaneously broken global internal symmetries [1], one
could think that the origin of massless gauge fields as vector Nambu-Goldstone
(NG) bosons are related to the spontaneous Lorentz invariance violation (SLIV)
that is the minimal spacetime global symmetry underlying particle physics. This
well-known approach providing a viable alternative to quantum electrodynamics
[2], gravity [3] and Yang-Mills theories [4] has a long history started over fifty
years ago, though has been significantly revised in the recent years [5–8].

4.1.1 An emergence conjecture

Directly or indirectly, the approach mentioned includes several key points which
in a conventional QFT framework may be formulated nowadays in the following
way (see [9] and comprehensive references therein):

• Only global symmetries are fundamental symmetries of Nature. Local sym-
metries and associated massless gauge vector (tensor) fields could only emerge
due to some phase transition producing them as appropriate Nambu-Goldstone
modes,

• The underlying Lorentz invariance is proposed to be spontaneously broken
since only spacetime symmetry breaking could basically provide an existence
of vector (tensor) emerging modes which mediate all interactions involved,

• The theory itself is proposed to be ”physically” viable in the sense that any
appropriate initial value condition (IVC), which determines the subsequent dy-
namical evolution of a physical field system, is uniquely satisfied. This means
in turn that an interacting field system can not be superfluously restricted in
the number of physical degrees of freedom in order to remain physical,

• Together, they naturally lead to the gauge symmetry emergence (GSE) conjec-
ture which I will follow throughout the paper: Let there be given an interacting
field system containing some vector field (or vector field multiplet) Aµ together with
fermion (ψ), scalar (φ) and other matter fields in an arbitrary relativistically invari-
ant Lagrangian L(Aµ, ψ,φ, ...) which possesses only global Abelian or non-Abelian
internal symmetry G. Suppose that an underlying relativistic invariance of this field
system is spontaneously broken in terms of the ”length-fixing” covariant constraint
put on vector fields,

AµA
µ = n2M2 (4.1)

(where M stands for the proposed SLIV scale, while nµ is a properly-oriented unit
Lorentz vector, n2 = nµn

µ = ±1). If this constraint is preserved under the time
development given by the field equations of motion, then in order to be protected from
further reduction in degrees of freedom this system will modify its global symmetry
G into a local symmetry Gloc, that will in turn convert the vector field constraint
itself into a gauge condition thus virtually resulting in gauge invariant and Lorentz
invariant theory.
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48 J.L. Chkareuli

To see how technically a global internal symmetry may be converted into
a local one, let us consider in some detail the question of consistency of a pos-
sible constraint for a general 4-vector field Aµ with its equation of motion in
an Abelian symmetry case, G = U(1). In the presence of the SLIV constraint
C(A) = AµA

µ − n2M2 = 0 (4.1), it follows that the equations of motion can
no longer be independent. The important point is that, in general, the time de-
velopment would not preserve the constraint. So the parameters in the starting
Lagrangian have to be adjusted in such a way that effectively we have one less
equation of motion for the vector field Aµ not to be superfluously restricted. This
means that there should be some relationship given by a functional equation
F(C = 0; EA, Eψ, ...) = 0 between all the vector and matter field Eulerians in-
volved1 which are individually satisfied on the mass shell. According to Noether’s
second theorem [10] such a relationship gives rise to an emergence of local sym-
metry for the field system considered provided that the functional F satisfies the
same symmetry requirements of Lorentz and translational invariance, as well as
all the global internal symmetry requirements, as the general starting Lagrangian
does.

In this way, the nonlinear SLIV condition (4.1), due to which true vacuum
in the theory is chosen and massless gauge fields are generated, may provide a
dynamical setting for all underlying internal symmetries involved through the
GSE conjecture [9]. One might think that the length-fixing vector field constraint
(4.1) itself first introduced by Nambu in a conventional QED framework [11]
(for some extensions and generalizations, see also [12–17]) does not especially
stand out in the present context. Actually, it seems that the GSE conjecture might
be equally formulated for any type of covariant constraint, say for the spin-1
vector field condition, ∂µAµ = 0 [18]. However, as is generally argued in [9], the
SLIV constraint (4.1) appears to be the only one whose application leads to a full
conversion of an internal global symmetry G into a local symmetry Gloc that
forces a given field system to remain always physical. Other constraints could
only lead to partial gauge invariance being broken by some terms in an emerging
theory.

Based upon the SLIV constraint (4.1), the starting vector field Aµ may be
expanded around the true vacuum configuration in the theory,

Aµ = aµ + nµ
√

M2 − n2a2 , nµaµ = 0 (a2 ≡ aµaµ) , (4.2)

which means that it develops the vacuum expectation value (VEV) 〈Aµ〉 = nµM.
Meanwhile, its aµ components which are orthogonal to the Lorentz violating
direction nµ describe a massless vector NG boson being an eventual gauge field
(photon) candidate.

4.1.2 Gauge invariance versus spontaneous Lorentz violation

One can see that the gauge theory framework, be it taken from the outset or
emerged, makes in turn spontaneous Lorentz violation to be physically unobserv-

1 The field Eulerians (EA, Eψ, ...) are determined, as usual, (EA)
µ ≡ ∂L/∂Aµ −

∂ν[∂L/∂(∂νAµ)], and so forth.
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able both in Abelian and non-Abelian symmetry case. In substance, the essential
part of the SLIV pattern (4.2), due to which the vector field Aµ(x) develops the
VEV M, may itself be treated as a pure gauge transformation with a gauge function
linear in coordinates,ω(x) = nµx

µM. This is what one could refer to as the generic
non-observability of SLIV in gauge invariant theories. I shall call it the ”inactive”
SLIV in contrast to the ”active” SLIV case where physical Lorentz invariance could
effectively occur. From the present standpoint, the only way for an active SLIV
to occur would be if emergent gauge symmetries presented above were slightly
broken at small distances. This could inevitably happen, for example, in a par-
tially gauge invariant theory which might appear if the considered field system
could become ”a little unphysical” at distances being presumably controlled by
quantum gravity [19]. One may think that quantum gravity could in principle
hinder the setting of the required IVC in the appropriate Cauchy problem (thus
admitting a superfluous restriction of vector fields) due to the occurrence of some
gauge-noninvariant high-order operators near the Planck scale. As a consequence,
through special dispersion relations appearing for matter and gauge fields, one
is led a new class of phenomena which could be of distinctive observational in-
terest in particle physics and astrophysics. They include a significant change in
the Greizen-Zatsepin-Kouzmin cutoff for ultra-high energy cosmic-ray nucleons,
stability of high-energy pions andW bosons, modification of nucleon beta decays,
and some others just in the presently accessible energy area in cosmic ray physics
[19] (for many phenomenological aspects, see pioneering works [20,21]).

4.1.3 SUSY profile of emergent theories

The role of Lorentz invariance may change, and its spontaneous violation may not
be the only reason why massless photons and other gauge fields could dynamically
appear, if spacetime symmetry is further enlarged. In this connection, special
interest is related to supersymmetry which has made a serious impact on particle
physics in the last decades (though has not been yet discovered). Actually, as we
will see, the situation is changed dramatically in the SUSY inspired emergent gauge
theories. In sharp contrast to non-SUSY analogs, it appears that the spontaneous
Lorentz violation caused by an arbitrary potential of vector superfield V(x, θ, θ)
never goes any further than some nonlinear gauge condition put on its vector field
component Aµ(x) associated with a photon or any other gauge field. Remarkably,
this condition coincides, as we shall see below, with the SLIV constraint (4.1) given
above in the GSE conjecture. This allows to think that physical Lorentz invariance
is somewhat protected by SUSY, thus only requiring the ”condensation” of the
gauge degree of freedom in the vector field Aµ. The point is, however, that even in
the case when SLIV is not physical it inevitably leads to the generation of massless
photons as vector NG bosons provided that SUSY itself is spontaneously broken. In
this sense, a generic trigger for massless photons to dynamically emerge happens
to be spontaneously broken supersymmetry rather than physically manifested
Lorentz noninvariance.

While there are many papers in the literature on Lorentz noninvariant ex-
tensions of supersymmetric models (for some interesting ideas, see [22,23] and
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references therein), an emergent gauge theory in a SUSY context has only recently
been introduced [9,24]. Actually, the situation was shown to be seriously changed
in a SUSY context which certainly disfavors some emergent models considered
above. It appears that, while the constraint-based models of an inactive SLIV suc-
cessfully matches supersymmetry, the composite and potential-based models of an
active SLIV leading to physical Lorentz violation cannot be conceptually realized
in the SUSY context. The reason is that, in contrast to an ordinary vector field
theory where all kinds of polynomial terms (AµAµ)n (n = 1, 2, ...) can be included
into the Lagrangian in a Lorentz invariant way, SUSY theories only admit the
bilinear mass term AµA

µ in the vector field potential energy. As a result, without
a stabilizing high-linear (at least quartic) vector field terms, the potential-based
SLIV never occurs in SUSY theories. The same could be said about composite
models [2–4] as well: a fundamental Lagrangian with multi-fermi current-current
interactions can not be constructed from any matter chiral superfields. So, all the
models mentioned above, but the constraint-based models determined by the GSE
conjecture (4.1), are ruled out in the SUSY framework and, therefore, between the
two basic SLIV versions, active and inactive, SUSY unambiguously chooses the
inactive SLIV case.

4.1.4 Outline of the paper

The paper is organized in the following way. In the next section 2 I consider
supersymmetric QED model extended by an arbitrary polynomial potential of
massive vector superfield that breaks gauge invariance in the SUSY invariant
phase. However, the requirement of vacuum stability in such class of models makes
both supersymmetry and Lorentz invariance to become spontaneously broken.
As a consequence, the massless photino and photon appear as the corresponding
Nambu-Goldstone zero modes in an emergent SUSY QED, and also a special gauge
invariance is simultaneously generated. Due to this invariance all observable
relativistically noninvariant effects appear to be completely cancelled out and
physical Lorentz invariance is recovered. Further in section 3, all basic arguments
developed in SUSY QED are generalized successively to the Standard Model and
Grand Unified Theories (GUTs). For definiteness, I focus on the U(1) × SU(N)

symmetrical theories. Such a split group form is dictated by the fact that in the pure
non-Abelian symmetry case one only has the SUSY invariant phase in the theory
that makes it inappropriate for an outgrowth of an emergence process. As possible
realistic realizations, the Standard Model case with the electroweak U(1)× SU(2)
symmetry and flipped SU(5) GUT including some immediate applications are
briefly discussed. And finally in section 4, I summarize the main results and
conclude.

The present talk is complimentary to my last year talk in Bled [25]. Some more
detail can also be found in the recent extended paper [9].

4.2 Emergent SUSY theories: a QED primer

In contrast to attempts simply probing physical Lorentz noninvariance through
some SM extensions [8,20] with hypothetical external vector (tensor) field back-
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grounds originated around the Planck scale, we will principally focus here on a
spontaneous Lorentz violation in an ordinary Standard Model framework itself.
Particularly, we will try to extend an emergent SM with electroweak bosons ap-
pearing as massless vector NG modes to their supersymmetric analogs [9,24]. Such
theories seem to open a new avenue for exploring the origin of gauge symmetries.
Indeed, as I discussed at the previous workshop [25], the emergent SUSY theories,
in contrast to the non-SUSY ones, could naturally have some clear observational
signature. Actually, we have seen above that ordinary emergent gauge theories are
physically indistinguishable from the conventional ones unless gauge invariance
becomes broken being caused by some high-dimension couplings. Meanwhile,
their SUSY counterparts - supersymmetric QED, SM and GUT - can be experi-
mentally verified in another way. The point is that they generically emerge only
if supersymmetry is spontaneously broken in a visible sector in order to ensure
stability of the underlying theory. Therefore, the verification of emergent theories
is now related to an inevitable emergence of a goldstino-like photino state in the
SUSY particle spectrum at low energies, while physical Lorentz invariance may be
still left intact.

4.2.1 Spontaneous SUSY violation

Since gauge invariance is not generically assumed in an emergent approach, all
possible gauge-noninvariant couplings could in principle occur in the theory in
a pre-emergent phase. The most essential couplings, as I discussed earlier [25],
appear to be the vector field self-interaction terms triggering an emergence process
in non-SUSY theories. Starting from this standpoint, I consider a conventional su-
persymmetric QED being similarly extended by an arbitrary polynomial potential
of a general vector superfield V(x, θ, θ) which in the standard parametrization
[26] has a form

V(x, θ, θ) = C+ iθχ− iθχ+
i

2
θθS−

i

2
θθS∗

−θσµθAµ + iθθθλ′ − iθθθλ′ +
1

2
θθθθD′, (4.3)

where its vector field component Aµ is usually associated with a photon. Note
that, apart from an ordinary photino field λ and an auxiliaryD field, the superfield
(4.3) contains in general some additional degrees of freedom in terms of the
dynamical C and χ fields and nondynamical complex scalar field S (I have used
the brief notations, λ′ = λ + i

2
σµ∂µχ and D′ = D + 1

2
∂2C with σµ = (1,−→σ ) and

σµ = (1,−−→σ )). The corresponding Lagrangian can be written as

L = LSQED +
1

2
D2 +

∑
k=1

bkV
k|D (4.4)

where, besides a standard SUSY QED part, new potential terms are presented in
the sum by corresponding D-term expansions Vk|D of the vector superfield (4.3)
into the component fields (bk are some constants). It can readily be checked that
the first term in this expansion is the known Fayet-Iliopoulos D-term, while other
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terms only contain bilinear, trilinear and quartic combination of the superfield
components Aµ, S, λ and χ, respectively.

Actually, the higher-degree terms only appear for the scalar field component
C(x). Expressing them all in terms of the C field polynomial

P(C) =
∑
k=1

k

2
bkC

k−1(x) (4.5)

and its first three derivatives

P′C ≡
∂P

∂C
, P′′C ≡

∂2P

∂C2
, P′′′C ≡

∂3P

∂C3
(4.6)

one has for the whole Lagrangian L

L = LSQED +
1

2
D2 + P

(
D+

1

2
∂2C

)
+P′C

(
1

2
SS∗ − χλ′ − χλ′ −

1

2
AµA

µ

)
+
1

2
P′′C

(
i

2
χχS−

i

2
χχS∗ − χσµχAµ

)
+
1

8
P′′′C (χχχχ) . (4.7)

As one can see, extra degrees of freedom related to the C and χ component fields
in a general vector superfield V(x, θ, θ) appear through the potential terms in
(4.7) rather than from the properly constructed supersymmetric field strengths, as
appear for the vector field Aµ and its gaugino companion λ.

Note that all terms in the sum in (4.4) except Fayet-IliopoulosD-term explicitly
break gauge invariance. However, as we will see later in this section, the special
gauge invariance constrained by some gauge condition will be recovered in the
Lagrangian in the broken SUSY phase. Furthermore, as is seen from (4.7), the
vector field Aµ may only appear with bilinear mass term in the polynomially
extended superfield Lagrangian (4.4) in sharp contrast to the non-SUSY theory
case where, apart from the vector field mass term, some high-linear stabilizing
terms necessarily appear in a similar polynomially extended Lagrangian. This
means in turn that physical Lorentz invariance is still preserved. Actually, only
supersymmetry appears to be spontaneously broken in the theory.

Indeed, varying the Lagrangian Lwith respect to the D field we come to

D = −P(C) (4.8)

that finally gives the following potential energy for the field system considered

U(C) =
1

2
[P(C)]2 . (4.9)

The potential (4.9) may lead to spontaneous SUSY breaking in the visible sector
provided that the polynomial P (4.5) has no real roots, while its first derivative
has,

P 6= 0 , P′C = 0. (4.10)
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This requires P(C) to be an even degree polynomial with properly chosen co-
efficients bk in (4.5) that will force its derivative P′C to have at least one root,
C = C0, in which the potential (4.9) is minimized. Therefore, supersymmetry is
spontaneously broken and the C field acquires the VEV

〈C〉 = C0 , P′C(C0) = 0 . (4.11)

As an immediate consequence, that one can readily see from the Lagrangian L (4.7),
a massless photino λ being Goldstone fermion in the broken SUSY phase make all
the other component fields in the superfield V(x, θ, θ) including the photon to also
become massless. However, the question then arises whether this masslessness of
the photon will be stable against radiative corrections since gauge invariance is
explicitly broken in the Lagrangian (4.7). I show below that it could be the case if
the vector superfield V(x, θ, θ) would appear properly constrained.

4.2.2 Instability of superfield polynomial potential

Let us first analyze possible vacuum configurations for the superfield components
in the polynomially extended QED case taken above. In general, besides the
”standard” potential energy expression (4.9) determined solely by the scalar field
component C(x) of the vector superfield (4.3), one also has to consider other
field component contributions into the potential energy. A possible extension
of the potential energy (4.9) seems to appear only due to the pure bosonic field
contributions, namely due to couplings of the vector and auxiliary scalar fields,
Aµ and S, in (4.7)

Utot =
1

2
P2 +

1

2
P′C (AµA

µ − SS∗) (4.12)

rather than due to the potential terms containing the superfield fermionic com-
ponents. It can be immediately seen that these new couplings in (4.12) can make
the potential unstable since the vector and scalar fields mentioned may in general
develop any arbitrary VEVs. This happens, as emphasized above, due the fact that
their bilinear term contributions are not properly compensated by appropriate
four-linear field terms which are generically absent in a SUSY theory context.

4.2.3 Stabilization of vacuum by constraining vector superfield

The only possible way to stabilize the theory seems to seek the proper constraints
on the superfield component fields (C, Aµ, S) themselves rather than on their
expectation values. This will be done again through some invariant Lagrange
multiplier coupling simply adding its D term to the above Lagrangian (4.4, 4.7)

Ltot = L+
1

2
Λ(V − C0)

2|D , (4.13)

where Λ(x, θ, θ) is some auxiliary vector superfield, while C0 is the constant
background value of theC field which minimizes the potentialU (4.9). Accordingly,
the potential vanishes for the supersymmetric minimum or acquires some positive
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value corresponding to the SUSY breaking minimum (4.10) in the visible sector. I
shall consider both cases simultaneously using the same notation C0 for either of
the background values of the C field.

Writing down the Lagrange multiplier D term in (4.13) through the compo-
nent fields

CΛ, χΛ, SΛ, A
µ
Λ, λ

′
Λ = λΛ +

i

2
σµ∂µχΛ, D

′
Λ = DΛ +

1

2
∂2CΛ (4.14)

and varying the whole Lagrangian (4.13) with respect to these fields one finds the
constraints which appear to put on the V superfield components [25]

C = C0, χ = 0, AµA
µ = SS∗. (4.15)

They also determine the corresponding D-term (4.8), D = −P(C0), for the spon-
taneously broken supersymmetry. As usual, I only take a solution with initial
values for all fields (and their momenta) chosen so as to restrict the phase space
to vanishing values of the multiplier component fields (4.14). This will provide a
ghost-free theory with a positive Hamiltonian.

Finally, implementing the constraints (4.15) into the total Lagrangian Ltot
(4.13, 4.7) through the Lagrange multiplier terms for component fields, we come
to the emergent SUSY QED appearing in the broken SUSY phase

Lem = LSQED + P(C)D +
DΛ

4
(C− C0)

2 −
CΛ

4
(AµA

µ − SS∗) . (4.16)

The last two term with the component multiplier functions CΛ and DΛ of the
auxiliary superfield Λ (4.14) provide the vacuum stability condition of the theory.
In essence, one does not need now to postulate from the outset gauge invariance
for the physical SUSY QED Lagrangian LSQED. Rather, one can derive it following
the GSE conjecture (section 1.1) specified for Abelian theory. Indeed, due to the
constraints (4.15), the Lagrangian LSQED is only allowed to have a conventional
gauge invariant form

LSQED = −
1

4
FµνFµν + iλσµ∂µλ+

1

2
D2 (4.17)

Thus, for the constrained vector superfield involved

V̂(x, θ, θ) = C0 +
i

2
θθS−

i

2
θθS∗ − θσµθAµ + iθθθλ− iθθθλ+

1

2
θθθθD, (4.18)

we have the almost standard SUSY QED Lagrangian with the same states - a
photon, a photino and an auxiliary scalar D field - in its gauge supermultiplet,
while another auxiliary complex scalar field S gets only involved in the vector
field constraint in (4.15). The linear (Fayet-Iliopoulos) D-term with the effective
coupling constant P(C0) in (4.16) shows that supersymmetry in the theory is spon-
taneously broken due to which the D field acquires the VEV, D = −P(C0). Taking
the nondynamical S field in the constraint (4.15) to be some constant background
field we come to the SLIV constraint (4.1) underlying the GSE conjecture. As is
seen from this constraint in (4.16), one may only have the time-like SLIV in a SUSY
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framework but never the space-like one. There also may be a light-like SLIV, if
the S field vanishes2. So, any possible choice for the S field corresponds to the
particular gauge choice for the vector field Aµ in an otherwise gauge invariant
theory. So, the massless photon appearing first as a companion of a massless
photino (being a Goldstone fermion in the visible broken SUSY phase) remains
massless due to this recovering gauge invariance in the emergent SUSY QED. At
the same time, the ”built-in” nonlinear gauge condition in (4.16) allows to treat
the photon as a vector Goldstone boson induced by an inactive SLIV.

4.3 On emergent SUSY Standard Models and GUTs

4.3.1 Potential of Abelian and non-Abelian vector superfields

Now, we extend our discussion to the non-Abelian internal symmetry case given
by some group Gwith generators tp

[tp, tq] = ifpqrtr , Tr(tptq) = δpq (p, q, r = 0, 1, ..., Υ− 1) (4.19)

where fpqr stand structure constants, while Υ is a dimension of the G group. This
case may correspond in general to some Grand Unified Theory which includes
the Standard Model and its possible extensions. For definiteness, I will be further
focused on the U(1)× SU(N) symmetrical theories, though any other non-Abelian
group in place of SU(N) is also admissible. Such a split group form is dictated
by the fact that in the pure non-Abelian symmetry case supersymmetry does not
get spontaneously broken in a visible sector that makes it inappropriate for an
outgrowth of an emergence process3. So, the theory now contains the Abelian
vector superfield V , as is given in (4.3), and non-Abelian superfield multiplet Vp

Vp(x, θ, θ) = Cp + iθχp − iθχp +
i

2
θθSp −

i

2
θθS∗p

−θσµθApµ + iθθθλ′
p
− iθθθλ′p +

1

2
θθθθD′p, (4.20)

where its vector field componentsApµ are usually associated with an adjoint gauge
field multiplet, (Aµ)ij ≡ (Apµt

p)ij (i, j, k = 1, 2, ..., N ; p, q, r = 1, 2, ..., N2−1). Note
that, apart from the conventional gaugino multiplet λp and the auxiliary fieldsDp,
the superfield Vp contains in general the additional degrees of freedom in terms
of the dynamical scalar and fermion field multipletsCp and χp and nondynamical
complex scalar field Sp. Note that for the non-Abelian superfield components I use
hereafter the bold symbols and take again the brief notations, λ′p = λp+ i

2
σµ∂µχ

p

andD′p = Dp + 1
2
∂2Cp.

2 Indeed, this case, first mentioned in [11], may also mean spontaneous Lorentz violation
with a nonzero VEV < Aµ > = (M̃, 0, 0, M̃) and Goldstone modes A1,2 and (A0 +A3)/2

−M̃. The ”effective” Higgs mode (A0 −A3)/2 can be then expressed through Goldstone
modes so as the light-like condition AµAµ = 0 to be satisfied.

3 In principle, SUSY may be spontaneously broken in the visible sector even in the pure
non-Abelian symmetry case provided that the vector superfield potential includes some
essential high-dimension couplings.
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Augmenting the SUSY andU(1)×SU(N) invariant GUT by some polynomial
potential of vector superfields V and Vp one comes to

L = LSGUT +
1

2
D2+

1

2
DpDp+[ξV+b1V

3/3+b2V(VV)+b3(VVV)/3]D (4.21)

where ξ and b1,2,3 stand for coupling constants, and the last term in (4.21) contains
products of the Abelian superfield V and the adjoint SU(N) superfield multiplet
Vi

j ≡ (Vptp)ij. The round brackets denote hereafter traces for the superfield Vi
j

(VV...) ≡ Tr(VV...) (4.22)

and its field components (see below). For simplicity, we restricted ourselves to the
third degree superfield terms in the Lagrangian L to eventually have a theory at
a renormalizible level. Furthermore, I have only taken the odd power superfield
terms that provides, as we see below, an additional discrete symmetry of the
potential with respect to the scalar field components in the V and Vp superfields

C→ − C, Cp → − Cp. (4.23)

Finally, eliminating the auxiliary D andDp fields in the Lagrangian L we come to
the total potential for all superfield bosonic field components written in terms of
traces mentioned above (4.22)

Utot = U(C,C) +
1

2
b1C(AµA

µ − SαSα) +
1

2
b2C[(AµA

µ) − (SαSα)]

+
1

2
b2[Aµ(A

µC) − Sα(SαC)] +
1

2
b3[(AµA

µC) − (SαSαC)] . (4.24)

Note that the potential terms depending only on scalar fields C andCi
j ≡ (Cata)ij

are collected in

U(C,C) = 1

8
[ξ+b1C

2+b2(CC)]
2+

1

2
[b22C

2(CC)+b2b3C(CCC)+
1

4
b23(CCCC)]

(4.25)
and complex scalar fields Sα and Spα (α = 1, 2) are now taken in the real field basis
like as

S1 = (S+ S∗)/2, S2 = (S− S∗)/2i , (4.26)

an so on. One can see that all these terms are invariant under the discrete symmetry
(4.23), whereas the vector field couplings in the total potential Utot (4.24) break it.
However, they vanish when the V and Vp superfields are properly constrained
that we actually confirm in the next section.

Let us consider first the pure scalar field potential U (4.25). The corresponding
extremum conditions for C and Ca fields are,

U ′C = b1(ξ+ b1C
2)C+ b2(b1 − 2b2)C(CC) = 0,

Tr(U ′
Ci

j
) = 3b2C(CC) + b3(CCC) = 0 , (4.27)

respectively. As shows the second partial derivative test, the simplest solution to
the above equations

C0 = 0 , Ci
j = 0 (4.28)
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provides, under conditions put on the potential parameters,

ξ, b1 > 0 , b2 ≥ 0 or ξ, b1 < 0 , b2 ≤ 0 (4.29)

its global minimum

U(C,C)asmin =
1

8
ξ2 . (4.30)

This minimum corresponds to the broken SUSY phase with the unbroken internal
symmetry U(1)×SU(N) that is just what one would want to trigger an emergence
process. This minimum appears in fact due to the Fayet-Iliopoulos linear term in
the superfield polynomial in (4.21). As can easily be confirmed, in absence of this
term, namely, for ξ = 0 and any arbitrary values of all other parameters, there is
only the SUSY symmetrical solution with unbroken internal symmetry

U(C,C)symmin = 0 . (4.31)

Interestingly, the symmetrical solution corresponding to the global minimum (4.31)
may appear for the nonzero parameter ξ as well

C
(±)
0 = ±

√
−ξ/b1, Ci

j = 0 (4.32)

provided that
ξb1 < 0 . (4.33)

However, as we saw in the QED case, in the unbroken SUSY case one comes
to the trivial constant superfield when all factual constraints are included into
consideration [25] and, therefore, this case is in general of little interest.

4.3.2 Constrained vector supermultiplets

Let us now take the vector fields Aµ and Apµ into consideration that immediately
reveals that, in contrast to the pure scalar field part (4.25), U(C,C), the vector
field couplings in the total potential (4.24) make it unstable. This happens, as was
emphasized before, due the fact that bilinear term VEV contributions of the vector
fields Aµ andApµ, as well as the auxiliary scalar fields Sα and Spα, are not properly
compensated by appropriate four-linear field terms which are generically absent
in a supersymmetric theory framework.

Again, as in the supersymmetric QED case considered above, the only pos-
sible way to stabilize the ground state (4.28, 4.29, 4.30) seems to seek the proper
constraints on the superfields component fields (C, Cp; Aµ, Ap; Sα, Spα) them-
selves rather than on their expectation values. Provided that such constraints are
physically realizable, the required vacuum will be automatically stabilized. This
will be done again through some invariant Lagrange multiplier couplings simply
adding their D terms to the above Lagrangian (4.21)

Ltot = L+
1

2
Λ(V − C0)

2|D +
1

2
Π(VV)|D , (4.34)

where Λ(x, θ, θ) and Π(x, θ, θ) are auxiliary vector superfields. Note that C0 pre-
sented in the first multiplier coupling is just the constant background value of the
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C field for which the potential part U(C,C) in (4.24) vanishes as appears for the
supersymmetric minimum (4.31) or has some nonzero value corresponding to the
SUSY breaking minimum (4.30) in the visible sector.

I will consider both cases simultaneously using the same notationC0 for either
of the potential minimizing values of the C field. The second multiplier coupling
in (4.34) provides, as we will soon see, the vanishing background value for the
non-Abelian scalar field, Ca = 0, due to which the underlying internal symmetry
U(1)×SU(N) is left intact in both unbroken and broken SUSY phase. The Lagrange
multiplier terms presented in (4.34) have in fact the simplest possible form that
leads to some nontrivial constrained superfields V(x, θ, θ) and Vp(x, θ, θ). Writing
down their invariantD terms through the component fields one finds the precisely
the same expression as in the SUSY QED [25] case for the Abelian superfield V
and the slightly modified one for the non-Abelian superfield Va

Π(VV)|D = CΠ

[
CD′ +

(
1

2
SS∗ − χλ′ − χλ′ −

1

2
AµA

µ

)]
+ χΠ [2Cλ′ + i(χS∗ + iσµχAµ)] + χΠ[2Cλ

′ − i(χS− iχσµAµ)]

+
1

2
SΠ

(
CS∗ +

i

2
χχ

)
+
1

2
S∗Π

(
CS−

i

2
χχ

)
+ 2AµΠ(CAµ − χσµχ) + 2λ

′
Π(Cχ) + 2λ

′
Π(Cχ) +

1

2
D′Π(CC) (4.35)

where the pairly grouped field bold symbols mean hereafter the SU(N) scalar
products of the component field multiplets (for instance, CD′ = CpD′p, and so
forth) and

CΠ, χΠ, SΠ, A
µ
Π, λ

′
Π = λΠ +

i

2
σµ∂µχΠ, D

′
Π = DΠ +

1

2
∂2CΠ (4.36)

are the component fields of the Lagrange multiplier superfield Π(x, θ, θ) in the
standard parametrization (4.20).

Varying the total Lagrangian (4.34) with respect to the component fields of
both multipliers, (4.14) and (4.36), and properly combining their equations of
motion we find the constraints which appear to put on the V and Va superfields
components [9]

C = C0, χ = 0, AµA
µ = SαSα,

Cp = 0, χp = 0, (AµA
µ) = (SαSα) , α = 1, 2 . (4.37)

As before in the SUSY QED case, one may only have the time-like SLIV in a su-
persymmetric U(1)× SU(N) framework but never the space-like one (there also
may be a light-like SLIV, if the S and S fields vanish). Also note that we only take
the solution with initial values for all fields (and their momenta) chosen so as to
restrict the phase space to vanishing values of the multiplier component fields
(4.14) and (4.36) that will provide a ghost-free theory with a positive Hamiltonian.
Again, apart from the constraints (4.37), one has the equations of motion for all
fields involved in the basic superfields V(x, θ, θ) and Vp(x, θ, θ). With vanishing
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multiplier component fields (4.14) and (4.36), as was proposed above, these equa-
tions appear in fact as extra constraints on components of the V andVp superfields.
Indeed, equations of motion for the Sα, χ and C fields, on the one hand hand,
and for the Spα, χp and Cp fields, on the other, are obtained by the corresponding
variations of the total Lagrangian Ltot (4.34) including the potential (4.24).

They are turned out to be, respectively,

SαC0 = 0 , λC0 = 0 , (ξ+ b1C
2
0)C0 = 0 ,

SpαC0 = 0 , λpC0 = 0, b2[AµAµij − SαSα
i
j] + b3[(AµA

µ)ij − (SαSα)
i
j] = 0(4.38)

where the basic constraints (4.37) emerging at the potential U(C,C) extremum
point (C0, Cp0 = 0) have been also used for both broken and unbroken SUSY
case. Note also that the equations for gauginos λ and λp in (4.38) are received by
variation of the potential terms in (4.21) containing fermion field couplings

U = b1C(χλ
′ + χλ′) + b2C[(χλ

′) + (χλ′)]

+
1

2
b2[χ(λ

′C) + χ(λ′C) + λ′(χC) + λ′(χC)]

+b3(χλ
′C) + (χλ′C)] . (4.39)

One can immediately see now that all equations in (4.38) but the last equation
system turn to trivial identities in the broken SUSY case (4.28) in which the corre-
sponding C field value appears to be identically vanished, C0 = 0. In the unbroken
SUSY case (4.32), this field value is definitely nonzero, C0 = ±

√
−ξ/b1, and the

situation is radically changed. Indeed, as follows from the equations (4.38), the
auxiliary fields S(x) and Sp, as well as the gaugino fields λ(x) and λp(x) have
to be identically vanished. This causes in turn that the gauge vector fields field
Aµ and Apµ should also be vanished according to the basic constraints (4.37). So,
we have to conclude, as in the SUSY QED case, that the unbroken SUSY fails to
provide stability of the potential (4.12) even by constraining the superfields V and
Vp and, therefore, only the spontaneously broken SUSY case could in principle
lead to a physically meaningful emergent theory.

4.3.3 Broken SUSY phase: an emergentU(1)× SU(N) theory

With the constraints (4.37) providing vacuum stability for the total Lagrangian
Ltot (4.34) we eventually come to the emergent theory with a local U(1)× SU(N)

symmetry that appears in the broken SUSY phase (4.28). Actually, implementing
these constraints into the Lagrangian through the Lagrange multiplier terms for
component fields one has

Lem = LSGUT +
1

2
ξD +

DΛ

4
(C− C0)

2 −
CΛ

4
(AµA

µ − SS∗)

+
DΠ

4
(CC) −

CΠ

4
(AµA

µ − SS∗) (4.40)

with the multiplier component functions CΛ and DΛ of the auxiliary superfield
Λ (4.14) and component functions CΠ and DΠ of the auxiliary superfield Π (4.36)
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presented in the Lagrangian (4.34). Again, with these constraints and the GSE
conjecture (section 1.1) specified for non-Abelian theories, one does not need to
postulate gauge invariance for the physical SUSY GUT Lagrangian LSGUT from
the outset. Instead, one can derive it starting from an arbitrary relativistically
invariant theory. Indeed, even if the Lagrangian LSGUT is initially taken to only
possess the global U(1) × SU(N) symmetry it will tend to uniquely acquire a
standard gauge invariant form

LSGUT = −
1

4
FµνFµν + iλσµ∂µλ+

1

2
D2

−
1

4
FpµνFpµν + iλpσµDµλ

p
+
1

2
DpDp (4.41)

where the conventional gauge field strengths for both U(1) and SU(N) part and
terms with proper covariant derivatives for gaugino fields λp necessarily appear
[9]. Again as in the pure Abelian case, for the respectively constrained vector su-
perfields V and Vp we come in fact to a conventional SUSY GUT Lagrangian with
a standard gauge supermultiplet containing gauge bosons Aµ andAp, gauginos λ
and λp, and auxiliary scalar D andDp fields, whereas other auxiliary scalar fields
Sα and Spα get solely involved in the Lagrange multiplier terms (4.41). Actually,
the only remnant of the polynomial potential of vector superfields V and Vp (4.21)
survived in the emergent theory (4.40) appears to be the Fayet-Iliopoulos D-term
which shows that supersymmetry in the theory is indeed spontaneously broken
and the D field acquires the VEV, D = −1

2
ξ.

Let us show now that this theory is in essence gauge invariant and the con-
straints (4.37) on the field space appearing due to the Lagrange multiplier terms in
(4.34) are consistent with supersymmetry. Namely, as was argued in [25] (see also
[9]), though constrained vector superfield (4.18) in QED is not strictly compatible
with the linear superspace version of SUSY transformations, its supermultiplet
structure can be restored by appropriate supergauge transformations. Following
the same argumentation, one can see that similar transformations keep invariant
the constraints (4.37) put on the vector fields Aµ and Ap. Leaving aside the U(1)
sector considered in [25] in significant details, I will now focus on the SU(N)

symmetry case with the constrained superfield Vp transformed as

Vp → Vp +
i

2
(Ω−Ω∗)p (4.42)

The essential part of this transformation which directly acts on the vector field
constraint

ApµA
pµ = SpS∗p (4.43)

has the form
Vp → Vp +

i

2
θθFp −

i

2
θθF∗p − θσµθ∂µϕ

p (4.44)

where the real and complex scalar field components, ϕp and Fp, in a chiral super-
field parameterΩp are properly activated. As a result, the corresponding vector
and scalar component fields, Apµ and Spα, in the constrained supermultiplet Vp

transform as

Apµ → apµ = Apµ − ∂µϕ
p, Sp → sp = Sp + Fp . (4.45)
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One can readily see that our basic LagrangianLem (4.40) being gauge invariant
and containing no the auxiliary scalar fields Sp is automatically invariant under
either of these two transformations individually. In contrast, the supplementary
vector field constraint (4.43), though it is also turned out to be invariant under
supergauge transformations (4.45), but only if they act jointly. Indeed, for any
choice of the scalar ϕp in (4.45) there can always be found such a scalar Fa (and
vice versa) that the constraint remains invariant. In other words, the vector field
constraint is invariant under supergauge transformations (4.45) but not invariant
under an ordinary gauge transformation. As a result, in contrast to the Wess-
Zumino case, the supergauge fixing in our case will also lead to the ordinary
gauge fixing. We will use this supergauge freedom to reduce the scalar field
bilinear SpS∗p to some constant background value and find a final equation for
the gauge function ϕp(x). It is convenient to come to real field basis (4.26) for
scalar fields Spα and Fpα (α = 1, 2), and choose the parameter fields Faα as

Fpα = rαε
p(M + f), rαs

p
α = 0, r2α = 1, εpεp = 1 (4.46)

so that the old Spα fields in (4.45) are related to the new ones spα in the following
way

Spα = spα − rαε
p(M + f), rαs

p
α = 0, SpαS

p
α = spαs

p
α + (M + f)2. (4.47)

where M is a new mass parameter, f(x) is some Higgs field like function, rα is again
the two-component unit ”vector” chosen to be orthogonal to the scalar spα, while εp

is the unit SU(N) adjoint vector. This parametrization for the old fields Spα formally
looks as if they develop the VEV, 〈Spα〉 = −rαε

pM, due to which the related
SO(2)× SU(N) symmetry would be spontaneously violated and corresponding
zero modes in terms of the new fields spα could be consequently produced (indeed,
they they never appear in the theory). Eventually, for an appropriate choice of the
Higgs field like function f(x) in (4.47)

f = −M +
√

M2 − spαs
p
α (4.48)

we come in (4.43) to the condition

ApµA
pµ = M2 . (4.49)

leading, as in the QED U(1) symmetry case [25], exclusively to the time-like SLIV.
Remarkably, thanks to a generic high symmetry of the constraint (4.49) one

can apply the emergence conjecture with dynamically produced massless gauge
modes to any non-Abelian internal symmetry case as well, though SLIV itself
could produce only one zero vector mode. The point is that although we only
propose Lorentz invariance SO(1, 3) and internal symmetry U(1)× SU(N) of the
Lagrangian Lem (4.40), the emerged constraint (4.49) possesses in fact a much
higher accidental symmetry SO(Υ, 3Υ) determined by the dimension Υ = N2 − 1

of the SU(N) adjoint representation to which the vector fields Apµ belong4. This
4 Actually, a total symmetry even higher if one keeps in mind both constraints (4.1) and

(4.49) put on the vector fields Aµ and Aaµ, respectively. As long as they are independent
the related total symmetry is in fact SO(1, 3)× SO(Υ, 3Υ) until it starts breaking.
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symmetry is indeed spontaneously broken at a scale M leading exclusively to
the time-like SLIV case, as is determined by the positive sign in the SUSY SLIV
constraint (4.49). The emerging pseudo-Goldstone vector bosons may be in fact
considered as candidates for non-Abelian gauge fields which together with the
true vector Goldstone boson entirely complete the adjoint multiplet of the in-
ternal symmetry group SU(N). Remarkably, they remain strictly massless being
protected by the simultaneously generated non-Abelian gauge invariance. When
expressed in these zero modes, the theory look essentially nonlinear and contains
many Lorentz and CPT violating couplings. However, as in the SUSY QED case,
they do not lead to physical SLIV effects which due to simultaneously generated
gauge invariance appear to be strictly cancelled out.

As in the pure QED case, one can calculate the gauge functionsϕp(x) compar-
ing the relation between the old and new vector fields in (4.45) with a conventional
SLIV parametrization for non-Abelian vector fields [9]

Apµ = apµ + npµ
√

M2 − n2a2 , npµa
pµ = 0 (a2 ≡ apµapµ). (4.50)

They are expressed through the non-Abelian Goldstone and pseudo-Goldstone
modes apµ

ϕp = εp
∫x
d(nµx

µ)
√

M2 − n2a2 . (4.51)

Here nµ is the unit Lorentz vector being analogous to the vector introduced in
the Abelian case (4.2), which is now oriented in Minkowskian spacetime so as
to be ”parallel” to the vacuum unit npµ matrix. This matrix can be taken in the
”two-vector” form

npµ = nµε
p , εpεp = 1 (4.52)

where εp is the unit SU(N) group vector belonging to its adjoint representation.

4.3.4 Some immediate outcomes

Quite remarkably, an obligatory split symmetry form U(1)× SU(N) (or U(1)×G,
in general) of plausible emergent theories which could exist beyond the prototype
QED case, leads us to the standard electroweak theory with an U(1) × SU(2)
symmetry as the simplest possibility. The potential of type (4.21) written for the
corresponding superfields requires spontaneous SUSY breaking in the visible
sector to avoid the vacuum instability in the theory. Eventually, this requires the
SLIV type constraints to be put on the hypercharge and weak isospin vector fields,
respectively,

BµB
µ = M2 , Wp

µW
pµ = M2 (p = 1, 2, 3). (4.53)

These constraints are independent from each other and possess, as was generally
argued above, the total symmetry SO(1, 3)× SO(3, 9) which is much higher than
the actual Lorentz invariance and electroweak U(1) × SU(2) symmetry in the
theory. Thanks to this fact, one Goldstone and three pseudo-Goldstone zero vector
modes bµ and wpµ are generated to eventually complete the gauge multiplet of
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the Standard Model

Bµ = bµ + nµ

√
M2 − bµbµ , nµbµ = 0 ,

Wp
µ = wpµ + nµε

p
√

M2 −wqµwqµ , nµwpµ = 0 (4.54)

where the unit vectors nµ and εp are defined in accordance with a rectangular unit
matrix npµ taken in the two-vector form (4.52). The true vector Goldstone boson
appear to be some superposition of the zero modes bµ andw3µ. This superposition
is in fact determined by the conventional Higgs doublet in the model since just
through the Higgs field couplings these modes are only mixed [19]. Thus, when
the electroweak symmetry gets spontaneously broken an accidental degeneracy
related to the total symmetry of constraints mentioned above is lifted. As a conse-
quence, the vector pseudo-Goldstones acquire masses and only photon, being the
true vector Goldstone boson in the model, is left massless. In this sense, there is
not much difference for a photon in emergent QED and SM: it emerges as a true
vector Goldstone boson in both frameworks.

Going beyond the Standard Model we unavoidably come to the flipped SU(5)
GUT [27] as a minimal and in fact distinguished possibility. Indeed, the U(1)
symmetry part being mandatory for emergent theories now naturally appears
as a linear combination of a conventional electroweak hypercharge and another
hypercharge belonging to the standard SU(5). The flipped SU(5) GUT has several
advantages over the standard SU(5) one: the doublet-triplet splitting problem is
resolved with use of only minimal Higgs representations and protons are naturally
long lived, neutrinos are necessarily massive, and supersymmetric hybrid inflation
can easily be implemented successfully. Also in string theory, the flipped SU(5)
model is of significant interest for a variety of reasons. In essence, the above-
mentioned natural solution to the doublet-triplet splitting problem without using
large GUT representations is in the remarkable conformity with string theories
where such representations are typically unavailable. Also, in weakly coupled
heterotic models, the flipped SU(5) allows to achieve gauge coupling unification
at the string scale 1017 GeV if some extra vector-like particles are added. They
are normally taken to transform in the 10 and 10 representations, that is easy to
engineer in string theory.

So, supersymmetric emergent theories look attractive both theoretically and
phenomenologically whether they are considered at low energies in terms of the
Standard Model or at high energies as the flipped SU(5) GUTs being inspired by
superstrings.

4.4 Summary

As we have seen above, spontaneous Lorentz violation in a vector field theory
framework may be active as in the composite and potential-based models lead-
ing to physical Lorentz violation, or inactive as in the constraint-based models
resulting in the nonlinear gauge choice in an otherwise Lorentz invariant theory.
Remarkably, between these two basic SLIV versions SUSY unambiguously chooses
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the inactive SLIV case. Indeed, SUSY theories only admit the bilinear mass term in
the vector field potential energy. As a result, without a stabilizing quartic vector
field terms, the physical spontaneous Lorentz violation never occurs in SUSY
theories. Hence it follows that the composite and potential-based SLIV models can
in no way be realized in the SUSY context. This may have far-going consequences
in that supergravity and superstring theories could also disfavor such models in
general.

Though, even in the case when SLIV is not physical it inevitably leads to the
generation of massless photons as vector NG bosons provided that SUSY itself
is spontaneously broken. In this sense, a generic trigger for massless photons to
dynamically emerge happens to be spontaneously broken supersymmetry rather
than physically manifested Lorentz noninvariance. To see how this idea might
work we have considered supersymmetric QED model extended by an arbitrary
polynomial potential of a general vector superfield that induces spontaneous
SUSY violation in the visible sector, and gauge invariance gets broken as well.
Nevertheless, the special gauge invariance is in fact recovered in the broken SUSY
phase that universally protects the photon masslessness.

All basic arguments developed in SUSY QED were then generalized to Stan-
dard Model and Grand Unified Theories. Remarkably, thanks to a generic high
symmetry of the length-fixing SLIV constraint (4.49) put on the vector fields the
emergence conjecture with dynamically produced massless gauge modes can be
applied to any non-Abelian global internal symmetry case due to which it gets
converted into to the local one. For definiteness, we have focused above on the
U(1) × SU(N) symmetrical theories. Such a split group form is dictated by the
fact that in the pure non-Abelian symmetry case one only has the SUSY invariant
phase in the theory that would make it inappropriate for an outgrowth of an emer-
gence process. As we briefly discussed, supersymmetric emergent theories look
attractive both theoretically and phenomenologically whether they are considered
at low energies in terms of the Standard Model or at high energies as the flipped
SU(5) GUTs inspired by superstrings.

However, their most generic manifestations, as I discussed here in Bled about
a year ago [25] (for more details, see also [9]), is related to a spontaneous SUSY
violation in the visible sector that seems to open a new avenue for exploring the
origin of gauge symmetries. Indeed, the photino emerging due to this violation
will be then mixed with another goldstino which stems from a spontaneous
SUSY violation in the hidden sector. Eventually, it largely turns into light pseudo-
goldstino whose physics seems to be of special interest. Such pseudo-Goldstone
photinos might appear typically as the eV scale stable LSP or the electroweak scale
long-lived NLSP, being accompanied by a very light gravitinos in both cases. Their
observation could shed some light on an emergence nature of gauge symmetries.
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