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ABSTRACT

Volume data, such as 3D reconstructions from histological sections or MRI and CT data, are commonly used in
studies in biology and medicine. The quantification of morphological parameters and changes within a region
of interest is a key concern in such studies. Specifically, itis often required to measure the distance between
two points. These distance measurements have to follow a track through the tissue when measuring in sheet-
like or contorted organs like the developing heart. A tool was developed that enables this kind of distance
measurements. Three existing neighborhood estimators were compared; two of Verwer and one of Kiryati,
all originally designed to compute chamfer distances in data sets with isotropic, cubic voxels. The estimators
were therefore adjusted to handle non-isotropic data sets.Moreover, the shortest path along a track within
a given tissue was calculated. The measurement of known distances, through a simplified model of an early
heart tube, with anisotropic voxels was used decide which ofthe three estimators should be implemented. The
observed Root Mean Square (RMS) errors were similar to the ones reported in literature in the unrestrained
isotropic case. The adjusted Verwer estimator measuring ina 53 neighborhood performed best by far with the
lowest mean and RMS errors.
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INTRODUCTION

In biology and (bio)medicine volume data, such as
3D reconstructions from histological sections or MRI
and CT data, is commonly used and the quantification
of morphological parameters and changes within
a region of interest is a key concern. Geometric
parameters, like volume, length and number of
distinct tissue components can be estimated using
stereological methods (Howard and Reed, 1998), while
morphogenetic parameters like cell proliferation and
cell size can be quantified and 3D visualized using
more recently published methods (Soufanet al., 2001;
2006; 2007).

The latter studies showed that the cells inside
the early developing heart do not proliferate while
the heart itself is growing rapidly. Therefore, a key
question in the study of the embryonic heart is
how this primitive heart grows. We hypothesized
that the addition of cells from surrounding tissue
was responsible for this rapid growth. To test this
hypothesis it was needed to measure the speed
by which cells migrate into the heart and thus to
compute the distance traveled by these cells during
a specified period of time (van den Berget al.,

2009). Such migration of cells between and within
organs and tissues is one of the processes in control
of morphogenesis. The measurement of the length
of migration paths through the tissue is required
for the quantification of this process. These distance
measurements have to follow a track through the
tissue in a non-convex space. This is especially true
when distances are measured in sheet-like or contorted
organs, like the developing heart.

The software currently used for making
reconstructions, such as Amira, only allows the
measurement of Euclidean distances in the convex
space. However, measurement of distances in the
non-convex space, thus taking tissue boundaries into
account, is not possible in any of the available software
packages. To fill this gap we decided to develop a tool
that enables such measurements.

Existing distance estimators form the basis
of our tool. In the past, these algorithms for
distance estimation were thoroughly investigated.
Most published estimators are restricted to 2
dimensional images and are used to compute distance
transformations. Distance computations in volume
data with the purpose to compute a shortest path
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are only dealt with in a few articles (Kiryati and
Szekely, 1993). The 2D and 3D algorithms are mostly
designed to handle data sets with isotropic, cubic,
voxels. Handling of non-isotropic datasets is described
by Coquin and Bolon (1995) for pixels and Sintorn and
Borgefors (2004) and Fouard and Malandain (2005)
for voxels.

Chamfer distances are commonly used to estimate
distances (Borgefors, 1984). Chamfer distances are
based on the principle that the distance from one pixel
or voxel to another can be determined via its neighbors.
The values assigned to each neighbor relation should
be carefully chosen to reach an unbiased estimation
and small estimation errors. Chamfer distances have
been described for the computation of distance
transform images and for estimation of a shortest
path. The difference between these approaches is
the underlying algorithm. For distance transformation
the distance is estimated as the distance from each
position within an image to the nearest object within
it. This estimation can be performed relatively fast
by propagating forward and backward through the
image once (Borgefors, 1984). In contrast to distance
transforms, shortest paths do not follow straight
lines but are restricted by object boundaries. When
estimating such shortest paths, an algorithm should
be used which propagates through the image from
a starting point. Such an algorithm can be based on
Dijkstra’s shortest path algorithm (Dijkstra, 1959).

Verwer (1991) found optimal values to compute
chamfer distance transformations by minimizing the
maximum error as well as the unbiased mean square
error. These optimal values were determined using
a set of Euclidean distances from the origin to an
Euclidean circle or ball, for two and three dimensions,
respectively. Kiryati and Szekely (1993) optimized the
values for estimation of the shortest path using a set
of digitized surfaces. The distance estimation values
found by Kiryati and Verwer are given in Fig. 2.

The paths and distances we want to measure in
the developing heart are neither straight lines, nor
are they digitized surfaces. Knowing that the early
primitive heart tube does look like a kind of folded
sheet we expected that the approach of Kiryati and
Szekely might give the best results. They, however,
determined only a set of estimator values for the 33

neighborhood, while Verwer also found a solution for
the 53 neighborhood which had a significantly lower
Root Mean Squared (RMS) error (Verwer, 1991).

The performance of the different estimators, which
we adjusted for anisotropy, was tested. Using test
models having different degrees of anisotropy, we
based our tests on the RMS errors and mean errors

(bias) of the estimators. In all tests the adjusted 53

neighborhood estimator of Verwer performed best. The
distances required to answer the biological question of
van den Berget al. (2009) were measured using this
estimator.

MATERIAL AND METHODS

TEST MODEL

We designed a model with the geometric
characteristics of a primitive heart tube to compare
the performance of the different estimators. Similar
to a real primitive heart tube (Fig. 9A), our model
(Fig. 1) had a height of 600µm, an outer diameter of
309µm and a wall thickness of 18µm. We “unfolded”
the test model to compute the expected distances;
transforming the tube to a plane with a width equal
to the inner circumference of the tube (Fig. 1) and a
height equal to the height of the tube. The expected
distances for lines making an angle of 0◦ to 90◦

with the xy-axis were then easily computed. Relative
to these expected distances the performance of the
different adjusted estimators was tested in terms of
Root Mean Squared (RMS) errors and bias (mean
errors)

Fig. 1. The model, representing the embryonic heart
tube, used to test the performance of the adjusted
distance estimators trough non-convex space with
anisotropic voxels. Its unfolded counterpart is shown
to illustrate the calculation of the expected distances.

ANISOTROPY EFFECT

The effect of different degrees of anisotropy was
determined using a constant voxel size in thexy
direction of 6µm and three different voxel sizes (6,
7.5, and 12µm) in thezdirection.

To test whether it is better to down-sample volume
data when having a voxel size that is much smaller in
the xy direction than in thez direction we also tested
voxel sizes of 3µm in thex andy direction and 6µm
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in thezdirection and compared the results with the test
with the cubic voxels of 6×6×6 µm3.

Down-sampling to reach isotropic voxels is
sometimes hampered by tissue components that are
too thin to avoid their partial loss. The use of models
with anisotropic voxels is then unavoidable. Our
microscopic images have a resolution of 1.22×1.22×
7 µm3. To compare this degree of anisotropy with the
other tests, voxel sizes were used of 3µm in thex and
y direction and 20µm in thez direction.

DISTANCE ESTIMATORS

We tested the performance of the 33 neighborhood
estimator of Kiryati and Szekely (1993), called
Kiryati3 estimator in this text, and the 33 and
53 neighborhood estimators of Verwer (1991),
dubbedVerwer3 andVerwer5 estimator, respectively.
Euclidean chamfer distances in the 33 neighborhood,
Euclidean3, are included for illustrating purposes. All
estimators were adjusted for anisotropy as shown in
Fig. 2.

IMPLEMENTATION

Matlab (The Mathworks, Inc.) was used to
implement most functions, tests, and a user interface.
Only a priority queue was implemented in Java to
enable propagation through the voxels within the
tissue while assigning distance values. To compare
the adjusted distance estimators, each estimator was
implemented using Dijkstra’s shortest path algorithm
(Dijkstra, 1959) to determine the shortest path based
on the values of the studied estimator. Note that
the different estimators will not result by definition
in the same shortest path. The algorithm used was
implemented as follows:

for all positionneighboringstart positiondo
compute distance fromstart position
enqueueposition

end for
currentpos← queue.dequeue
while currentpos6= endposition&& queue6= ∅ do

for all positionneighboringcurrentposdo
compute distance fromcurrentpos
if distance to position was computed &&
distance toposition in queue> distance to
positionthen

deletepositionfrom queue
end if
enqueueposition

end for
currentpos← queue.dequeue

end while
trace back path fromendpositionto start position

BIOLOGICAL APPLICATION

It was recently shown that the early heart tube
does not proliferate (Soufanet al., 2006) and that
growth of this tube is therefore due to addition of
cells from the dorsal mesoderm (van den Berget al.,
2009). Because the newly added cells have recently
divided they can be labeled with BrdU which is
incorporated into nuclei prior to division. To this
end, chicken embryos were exposed to BrdUin ovo.
After predetermined exposure times, these embryos
were harvested, fixed and embedded in paraplast.
Serial sections were stained to enable discrimination
between myocardium, BrdU-labeled nuclei, and all
nuclei (Soufanet al., 2007; van den Berget al., 2009).

The resulting sections were used to generate
quantitative 3D reconstructions of the BrdU positive
nuclear fraction (Soufanet al., 2007). In this timed
series of reconstructions (Fig. 9), a widening zone of
high BrdU-positivity visualizes the migration of newly
divided cells into the heart (van den Berget al., 2009).
The voxels of the reconstructions were down-sampled
to 6.1µm in thexyplane and 7µm in the z direction to
measure the lengths of the paths, from the base to the
top of the migration front.

RESULTS

ADJUSTMENT OF THE ESTIMATOR
VALUES FOR ANISOTROPY

The anisotropic voxel sizes made it necessary
to adjust the estimator values used to compute the
local distances. The optimized local distances in
the published estimators (Dopt) which are based on
voxels of length 1 in thex, y and z direction form
the basis for this compensation (Fig. 2). The actual
Euclidean distances are computed for the anisotropic
voxels in the 33 or 53 neighborhood (DEuclidean), and
divided by the corresponding Euclidean distances of
isotropic voxels of length 1 (DEuclideaniso) to compute
the compensation factor (λ , Eq. 1) for each position
in the 33 or 53 neighborhood. The values ofDopt
are multiplied byλ as in Eq. 2 to determine the
new estimator values (Dadjusted). Fig. 2 tabulates the
published estimator values and illustrates how these
equations are applied.

λ =

DEuclidean

DEuclideaniso

(1)

Dadjusted= λ ·Dopt (2)
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Fig. 2.Distance estimators and anisotropy adjustment. At the leftside the33 and53 neighborhood is shown with
the corresponding values of the published distance estimators which are valid for isotropic data sets. At the right,
an adjustment, that has to be applied to each of the neighboring voxels in the33 neighborhoods of the center
voxel is illustrated. This adjustment factorλ equation(1) for voxel b is computed asλb = bEuclidean/bEuclideaniso =√

5/
√

2 = 1.5811. Subsequently the adjusted value can be determined: badjusted= λb·bKiryati3 = 1.5811·1.289=

2.038.

PERFORMANCE OF THE DIFFERENT
DISTANCE ESTIMATORS

Fig. 3 shows the distances observed when using the
Euclidean3, without any optimization. The distances
were continuously overestimated and a RMS error of
over 9% for the isotropic model and up to 24% for
the model with the highest degree of anisotropy was
found. Only in the case of a straight line, at an angle of
90◦, the estimated distance was correct.
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Fig. 3. Euclidean3 estimator. For each tested
resolution of the reference model the relative error
compared to the expected distances is computed for the
Euclidean3 estimator.

Fig. 4 shows the distances observed when using
the adjustedKiryati3 estimator. For the cubic model
the errors were nicely centered around 0%. In a
model with slightly anisotropic voxels the errors were
somewhat increased. In the test models with voxel
sizes twice as large in thez direction as in thexy
direction the errors increased significantly. Especially
for distances measured at smaller angles, the estimator
gave a large overestimation of the actual length.
Comparison of the results of the two models with a
factor 2 difference inxyzresolution shows that a higher
resolution (smaller voxels) gives slightly lower errors.
A more pronounced difference is seen in the noise
of the errors; the largest voxels result in a saw-tooth
pattern of the error graph. In the model in which thez

size of the voxels was about 7 times larger than thexy
size much higher errors than in all previous tests were
observed. The errors are especially high for angles
between 20◦ and 60◦.

As shown in Fig. 5, the pattern of errors observed
for the adjustedVerwer3 estimator was very similar to
those ofKiryati3, although the RMS errors found were
all slightly higher.
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Fig. 4. Kiryati3 estimator. For each tested resolution
of the reference model the relative error compared to
the expected distances is computed for the adjusted
Kiryati3 estimator.
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Fig. 5.Verwer3 estimator. For each tested resolution
of the reference model the relative error compared to
the expected distances is computed for the adjusted
Verwer3 estimator.
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Fig. 6.Verwer5 estimator. For each tested resolution
of the reference model the relative error compared to
the expected distances is computed for the adjusted
Verwer5 estimator

The 53 neighborhood estimator of Verwer has
much lower errors in all tested models which
is immediately clear from the comparison of the
test results (Fig. 6) to those found with the 33

neighborhood estimators (Figs. 4 and 5). There was
only a minor effect of slightly increasing the level of
anisotropy (an 0.12 percent point higher RMS error
between 6×6×6 µm and 6×6×7.5 µm voxels). Even
with voxel sizes twice as large in thez direction as in
the xy direction, the errors of theVerwer5 estimator
stay below the error levels of both 33 neighborhood
estimators in the case of isotropic voxels. Again, when
comparing the results of the test with a factor 2
difference inxyz resolution it is found that a higher
resolution gives slightly lower errors, and the same
saw-tooth pattern of the error graph is seen in the
lower resolution. In the last model thez size of the
voxels was about 7 times larger than thexy size and
again much higher errors than in the previous tests
with this estimator were seen. However, theVerwer5
estimator still performed somewhat better than the
other estimators in this model.

RMS errors and mean errors of the 3 adjusted
estimators are summarized in Fig. 7. Up to anisotropy
of 2 times all estimators are almost unbiased but the
Verwer5 estimator was by far the most precise showing
the smallest RMS errors . All estimators fail when they
are applied to models with levels of anisotropy of 7
times.

     6x6x6  m 6x6x7.5  m          6x6x12  m         3x3x6  m   3x3x20  m-10

-5

0

5

10

15

20

25

30
Kiryati 3

Verwer 3

Verwer 5

Fig. 7. The mean errors (bias)± the RMS error for
every adjusted estimator and test.

IMPLEMENTATION AND APPLICATION
OF THE DISTANCE ESTIMATOR

The results prompted us to implement theVerwer5
estimator in an easy to use application dubbed
Distance3D. We used Matlab (The Mathworks Inc.)
to build the graphical user interface (Fig. 8). We
optimized the program to handle data sets from
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Amira (Visage Imaging), a program often used for 3D
reconstruction of biological tissue. 3D volume data
from Amira, exported as multi-page (3D) tiff files,
can be loaded into Distance3D whereby the voxel
size information is preserved. The same holds for the
surface data which is used for visualization. The latter
can be exported as ’*.m’-file, or when preserving color
information as VRML-file. By navigating through the
volume data data the way-points can be placed through
which the shortest path will be determined. The way-
points will be processed in the same order as they were
placed.

The program described above is used to measure
the length of the BrdU-positive zone within a timed
series of developing chicken hearts (Fig. 9). The
growth of the heart tube due to addition of cells from
a dividing precursor pool is reflected by the length of
this zone. From the measurements of these lengths at
different time points it can be inferred that the chicken
heart tube lengthens at a rate of 70µm/h (Fig. 9) as
shown by van den Berget al. (2009).

DISCUSSION

Comparison of published distance estimators
showed that our approach gave slightly higher RMS
errors than Verwer and Kiryati found in their
measurements when measuring in a cubic grid of
voxels; the RMS errors were 1.14 and 0.25 percent
point higher than the 2.33% and 2.88% originally
published by Verwer and Kiryati, respectively (Verwer,
1991; Kiryati and Szekely, 1993). The RMS error of
0.78% that Verwer determined for the 53 estimator
was only 0.3 percent point lower than what we found
in our measurement with theVerwer5 estimator in
isotropic voxels (Verwer, 1991). Our test included a
line exactly in thez-direction, which in a distance
estimator has the maximum possible error, and also
lines close to this angle. This and the limited number of
test directions that we used might have lead to an over-
representation of paths with relatively large errors in
our test set. Additionally we opted for a representative
test and therefor used a test set with limited lengths
which might be another reason for these increased
RMS errors; the limited number of voxels included
in each path could have lead to extra error due to
rounding-off of the pixel locations.

The reason that theKiryati3 estimator performs
slightly better than theVerwer3 estimator is probably
caused by the basic principles of these estimators. The
estimator of Kiryati is optimized for curved paths,
whereas the estimators of Verwer are optimized for
straight lines. The lines in the models that we have

tested are almost all curved, which favors theKiryati3
estimator.

Fig. 8.Screenshot of the user interface of Distance3D.
The user can navigate through the volume data by
handling the sliders (top left). When the desired
position is found, way-points have to be placed on the
cross section (bottom left). When at least two way-
points (a start and end position) are placed the shortest
path can be determined and the distance computed.
When more way-points are placed, the shortest path
follows the way-points in the order in which they are
placed.

Fig. 9. Distance measurements of the length of
the BrdU-positive zone in the developing embryonic
chicken heart. BrdU-negative tissue is shown in blue. A
lengthening of approximately 70µm/h can be derived
from this measurement. (figure adapted from van den
Berget al., 2009)
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An elongation of 25% in thez-direction would be
a reasonable value for reconstructions of microscopic
images resampled to near-cubic voxels. Compared to
cubic voxels the RMS errors increase slightly, although
this is hardly noticeable in theVerwer5 estimator with
an increase of only 0.12 percent point. The estimators
in the 33 neighborhood suffer more from this low
level of anisotropy with an increase of 0.8 percent
point. When measuring within biological tissue such
error rates are still within an acceptable range and
because the mean error stays close to zero (Fig. 7) the
estimators can still be considered unbiased up to this
25% anisotropy.

The error rates of the 33 neighborhood estimators
double when elongating the voxels to a height twice as
long as thexy-sizes, and their mean error is no longer
close to zero (Fig. 7). On the other hand theVerwer5
estimator still shows error rates that are slightly lower
than the error rates found in cubic voxels with the
33 neighborhood estimators (Fig. 7). TheVerwer5
estimator is still precise at this degree of anisotropy
while it is unbiased with a mean error close to zero
(Fig. 7).

Two observations can be made when comparing
the results of the two tests with the doubledz-size.
Firstly, the relative errors in the test model with the
lower resolution (6×6×12 µm) show saw-tooth-like
variations whereas the graphs of the test model with
higher resolution (3× 3× 6 µm) are much smoother.
The rounding-off error, which is larger when using
larger voxels, easily explains this difference. More
interestingly, the error graphs of the estimators in the
lower resolution model are consistently slightly higher
than those of the higher resolution model. For all
estimators this leads to a higher mean overestimation
of the actual length by approximately 0.5 percent point
in the model with the larger voxel sizes (Fig. 7).

To decide whether the loss of resolution due to
down-sampling data is worse than the error introduced
by the anisotropy of the voxels, it is interesting to
compare the tests with voxel sizes of 3× 3× 6 µm
and 6×6×6 µm (Fig. 7). In the case of cubic voxels
the mean error of all estimators is close to zero while
in the elongated voxels only the error of theVerwer5
estimator is unbiased. The RMS errors of all estimators
are higher in the case of the elongated voxels, although
the RMS error of theVerwer5 estimator stays in
an acceptable range. This leads to the conclusion
that generally the effect of down-sampling to larger
isotropic voxels, and the loss in associated spatial
resolution, is not as bad as the effect of anisotropy.

The performance of all estimators in the test
model with strongly elongated voxels is poor. A large

overestimation of the distance is observed especially
for the lines with an angle between approximately 20◦

to 60◦. Using these elongated voxels would result in
a strongly biased estimation with mean errors around
10% (Fig. 7). Reasonable error rates are only observed
for the Verwer5 estimator above an angle of 65◦.
This shows that measuring in the direction of the
voxel elongation gives lower errors, although this is
associated with a bias to underestimation of the actual
path. It is therefore not recommended, to estimate
distances in such strongly elongated voxels . However,
sometimes it is required to do measurements through
very thin tissues, where down-sampling might lead
to the loss of connectivity. Without this connectivity
the shortest path cannot be computed. In these cases
one could consider to use the highly anisotropic data
set and restrict the measurements to thez-direction.
However, downs-ampling to voxels that are up to twice
as high in thez direction as in thexy direction should
always be attempted because at that level of anisotropy
the adjusted 53 neighborhood estimator of Verwer,
showed errors that are acceptable for all directions.

The tests we performed using a model representing
a simplified early heart tube resulted in length
measurements over curves. Similar tests have to
be performed to test the performance in structures
with other geometric characteristics. We expect that
the Verwer5 estimator will perform even better in
structures with a more solid composition because it
was originally optimized for such straight lines.

The approach we used to adapt the published
optimized values for anisotropic voxels does not by
definition result in the best values for every degree of
anisotropy. However, the results are sufficiently precise
for biological applications as long as voxel sizes in the
zdirection are not longer as twice thexysize.

Using Farey sets, Fouard and Malandain (2005)
computed optimal integer approximations for
anisotropic voxels. These estimators were found by
minimizing the maximum error, without taking the
RMS error and mean error into account. Only when
the application requires a higher precision than usually
required in biology, this computationally expensive
approach would be worth considering.

CONCLUSION

Existing length estimators can be very simply
adjusted for the use within an anisotropic non-convex
space using our approach.

Two conclusions can be drawn from the test
results. Firstly, anisotropy of voxels has a big influence
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on the error of the estimated length of the shortest
path. Secondly, the estimator that performed best in
all tests was the anisotropy-adjusted 53 neighborhood
estimator of Verwer.

Because this estimator performed almost unbiased,
with acceptable RMS errors, within levels of
anisotropy up till voxels that are twice as high as they
are wide it is recommended to re-sample data sets to
such, close to cubic, voxels .
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