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A New Strategy to Tackle the Backlog

In 2008 when our journal was first launched, 20 papers were published. Ten years later,
60 papers will be published, producing a threefold increase. Also we started a new sister
journal ADAM, with a somewhat broader scope, featuring 20 papers in 2018. And on top
of this, there are still about 100 papers in the editorial process for AMC. Many of these
papers will be eventually published in 2019, some of them even in 2020.

This year we adopted a strict policy of controlling the number of papers filtered from
the initial quick assessment into the actual refereeing phase. If we want to reduce the
backlog, then only about five papers per month can be processed, and otherwise we will
have no choice but to decline the rest, or divert them to ADAM. This policy should ensure
that there will be no further increase in the backlog.

But actually we would like to significantly reduce the backlog, and so we decided to
increase the number of published papers from 15 to 20 per issue (and 60 to 80 in total)
for the year 2019. In the meantime we expect that ADAM will also gain in reputation and
popularity, and this should help us reduce the large influx of papers to the editorial system
of AMC.

Klavdija Kutnar, Dragan Marušič and Tomaž Pisanski
Editors In Chief
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Marston Conder, Nemanja Poznanović . . . . . . . . . . . . . . . . . . . . 97

Coloring properties of categorical product of general Kneser hypergraphs
Roya Abyazi Sani, Meysam Alishahi, Ali Taherkhani . . . . . . . . . . . . 113

Coordinatizing n3 configurations
William L. Kocay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Maximum cuts of graphs with forbidden cycles
Qinghou Zeng, Jianfeng Hou . . . . . . . . . . . . . . . . . . . . . . . . . 147

Circular chromatic number of induced subgraphs of Kneser graphs
Meysam Alishahi, Ali Taherkhani . . . . . . . . . . . . . . . . . . . . . . 161

Groups of symmetric crosscap number less than or equal to 17
Adrián Bacelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Saturation number of lattice animals
Niko Tratnik, Tomislav Došlić, Petra Žigert Pleteršek . . . . . . . . . . . . 191

Enumerating regular graph coverings whose covering transformation groups
are Z2-extensions of a cyclic group
Jian-Bing Liu, Jaeun Lee, Jin Ho Kwak . . . . . . . . . . . . . . . . . . . 205

Enumeration of hypermaps of a given genus
Alain Giorgetti, Timothy R. S. Walsh . . . . . . . . . . . . . . . . . . . . . 225

Volume 15, Number 1, Fall/Winter 2018, Pages 1–266

v





ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 15 (2018) 1–17
https://doi.org/10.26493/1855-3974.1007.3ec

(Also available at http://amc-journal.eu)

Linking rings structures and semisymmetric
graphs: Combinatorial constructions
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Abstract

This paper considers combinatorial methods of constructing LR structures: two isolated
constructions, RC and SoP, two closely related constructions, CS(Γ,B, 0) and CS(Γ,B, 1)
using cycle decompositions of tetravalent graphs, a generalization of those, CS(Γ,B, k)
for k > 2, and finally a construction LDCS relating to cycle decompositions of graphs of
higher even valence. This last construction is used to classify all LR structures of types
{3, ∗} or {4, ∗}.
Keywords: Graph, automorphism group, symmetry, locally arc-transitive graph, semisymmetric graph,
cycle structure, linking ring structure.

Math. Subj. Class.: 20B25, 05E18

1 Introduction
1.1 History

An LR structure is a finite, simple, connected, tetravalent vertex-transitive graph together
with a decomposition of its edge-set into cycles that satisfies certain symmetry conditions
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(see Section 1.2 for details). It can also be seen as one of the possible symmetry types of
the tetravalent vertex-transitive graphs, namely the one in which the stabiliser of a vertex in
some vertex-transitive group of symmetries acts on the neighbourhood as the Klein 4-group
in its intransitive action on four points (see [10, Section 1] for more on this topic).

This paper is the third in a “trilogy” developing the theory of LR structures. In the first
paper [10], we introduced LR structures and we explained their importance in the search
for semisymetric graphs via the function P which creates a semisymmetric graph from
such a structure. In that paper, we also introduced two related families of LR structures and
discussed certain double covers of LR structures. All definitions from [10] appear in the
next section; please consult [10] for more details.

In the second paper, [9], we showed several purely algebraic constructions for such
structures. We first gave a quite general approach to constructing an LR structure from a
group having certain automorphisms. We then applied these techniques to several families
of abelian groups and to dihedral groups.

We noted in [9] that several of these constructions gave semisymmetric graphs having
large vertex-stabilizers. It has been known for decades that the size of a vertex-stabilizer
in a cubic edge-transitive graph is at most 48 in the dart transitive case (see [12]) and at
most 384 in the semisymmetric case (see [4]). No such absolute bounds exist for tetrava-
lent edge-transitive graphs. However, recently Spiga, Verret and the first mentioned author
of this paper have discovered efficient bounds on the size of the vertex-stabiliser in terms
of the number of the vertices for the case of the tetravalent dart-transitive graphs [7] and
for the case of the tetravalent half-arc transitive graphs [11]. Semisymmetric graphs are
thus the last remaining case of tetravalent edge-transitive graphs for which no good bound-
ing behavior on the size of the vertex stabilizer is known. Perhaps the examples in [9]
and especially the characterisation of the LR structures of type {4, q} in this paper will
yield some insight into the phenomenon of the large vertex stabilizer in LR structures, and
consequently, the tetravalent semisymmetric graphs of girth 4 (see Section 5).

1.2 Definitions

Unless explicitly stated otherwise, all the graphs in this paper are finite, simple and con-
nected. Let Λ be a regular tetravalent graph and C a partition of its edge-set E(Λ) into
cycles. We shall call such a pair (Λ, C) a cycle decomposition.

Two edges of Λ will be called opposite at vertex v, if they are both incident with v and
belong to the same element of C. The partial line graph of a cycle decomposition (Λ, C)
is the graph P(Λ, C) whose vertices are edges of Λ, and two edges of Λ are adjacent as
vertices in P(Λ, C) whenever they share a vertex in Λ and are not opposite at that vertex. A
symmetry of (Λ, C) is any permutation of the vertices of Λ which preserves C. The set of
all such is called Aut(Λ, C).

Because the two edges at v that belong to one cycle are connected to both of the edges
in the other cycle containing v, the edges at each vertex of Λ form a 4-cycle in P(Λ, C).
Thus, the girth of P(Λ, C) is usually 4 and never any larger.

A cycle decomposition (Λ, C) is said to be flexible provided that for every vertex v
and each edge e containing v, there is a symmetry which fixes pointwise the cycle D ∈ C
containing e and interchanges the other two neighbors of v. The edges joining v to those
neighbors are in some other cycle C of C. The symmetry then reverses the cycle C and is
called a C-swapper at v.

A cycle decomposition (Λ, C) is called bipartite if C can be partitioned into two subsets
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G and R so that each vertex of Λ meets one cycle from G and one from R. Especially in
constructions, we will refer to the edges of the cycles in G and those inR as green and red,
respectively. The largest subgroup of Aut(Λ, C) preserving each of the sets G and R will
be denoted by Aut+(Λ, C), and we will think of it as the color-preserving group of (Λ, C).

Definition 1.1. A cycle decomposition (Λ, C) is called a linking rings structure (or briefly,
an LR structure) provided that it is bipartite, flexible and Aut+(Λ, C) is transitive on the
vertices of Λ.

Note that Aut+(Λ, C) acts transitively on the darts of each color class, and that (since
Λ is assumed to be connected) its index in Aut(Λ, C) is at most 2. If there is a symmetry of
Λ which preserves C but interchanges the edge color sets G andR (that is, if Aut+(Λ, C) 6=
Aut(Λ, C)), then we say that (Λ, C) is self-dual.

Since the color preserving group Aut+(Λ, C) of an LR structure (Λ, C) is transitive on
R and on G, all cycles in R must have the same length, say p, and all cycles in G must be
of the same length, say q. We then say that the LR structure (Λ, C) is of type {p, q}. For a
self-dual structure, of course, p = q.

Two LR structures (Λ1, C1) and (Λ2, C2) are isomorphic whenever there is a graph
isomorphism from Λ1 to Λ2 which maps cycles in C1 to cycles in C2.

We define the joining sequences of an LR structure to be Jr = [sr, dr, wr] and Jg =
[sg, dg, wg] where: sr is the least s such that some two red cycles are joined by two green
paths of length s. The number dr is the least d such that two such green paths have starting
points that are d apart on one of the red cycles. If the two paths are j apart on the other
red cycle, a symmetry argument shows that d must divide j, and then we set wr = j

d ; see
Figure 1. In the case that no two red cycles are joined by two green paths of the same
length, we declare Jr to be [0, 0, 0]. The numbers sg, dg, wg are defined similarly, with
colors reversed. If (Λ, C) is self-dual, Jr = Jg . More usefully, if Jr 6= Jg , then the
structure is not self-dual.

a0 a1 ad

b0 b1 bd bj

ss

Figure 1: Green paths of length s joining two red cycles.

If (Λ, C) is a cycle decomposition, then a cycle C in Λ is said to be C-alternating if
no two consecutive edges of C belong to the same element of C. If a C-alternating 4-cycle
exists, then Jr = Jg = [1, 1, 1], and (Λ, C) is the partition of the edges of a toroidal map of
type {4, 4} into horizontal and vertical cycles.

Definition 1.2. An LR structure (Λ, C) is called suitable provided that

(1) (Λ, C) is not self-dual, and

(2) Λ has no C-alternating 4-cycles.

The primary result of [10] is that:
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Theorem 1.3. The partial line graph construction P induces a bijective correspondence
between the set of suitable LR structures and the set of worthy tetravalent semisymmetric
graphs of girth 4.

The word worthy in this statement means that no two vertices of the graph have exactly
the same neighbors. Every new suitable LR structure gives a new semisymmetric graph,
and so we are interested in finding and creating LR structures. In the remainder of this
paper, we show how varied examples can be, concentrating on combinatorial constructions.

We first present two simple but non-trivial constructions to show some of the variety
possible and to illustrate how the properties of LR structures enter into proofs.

2 Two constructions
2.1 Rows and columns

We construct an LR structure RC(n, k) in the following way: the vertices are to be all
ordered pairs (i, (r, j)) and ((i, r), j), where i and j are in Zn, and r is in Zk. Green edges
join (i, (r, j)) to (i±1, (r, j)) and ((i, r), j) to ((i, r), j±1), while red edges join (i, (r, j))
to ((i, r ± 1), j) and so ((i, r), j) to (i, (r ± 1, j)).

The function (i, (r, j)) 7→ (i+ 1, (r, j)) and ((i, r), j) 7→ ((i+ 1, r), j) is a symmetry
of the graph; we abbreviate it by saying i 7→ i + 1. Similarly, each of the functions,
j 7→ j + 1, r 7→ r + 1, i 7→ −i, j 7→ −j, r 7→ −r acts as a symmetry of RC(n, k). These
dihedral symmetries act transitively on the vertices of each kind, and the correspondance
(i, (r, j)) ↔ ((j, r), i) is a symmetry and interchanges the two sets. The green neighbors
of (0, (0, 0)) are (1, (0, 0)) and (−1, (0, 0)), while the red neighbors are ((0, 1), 0) and
((0,−1), 0).

Swappers at (0, (0, 0)), then, are i 7→ −i and r 7→ −r. So RC(n, k) with the given
coloring is an LR structure. It has 2n2k vertices, and its group has order at least 8n2k. The
structure is of type {n,LCM(2, k)}. If k is even, the graph described above is disconnected;
in this case, re-assign the name RC(n, k) to the component containing (0, (0, 0)). Then the
graph has only n2k vertices.

It is easy to check that Jr = [1, 2, 1], while Jg = [2, 1, 1] and so this structure is always
suitable. This LR structure is also described algebraically in [9].

2.2 SoP

In this section, we describe a family of LR structures whose symmetry groups have arbi-
trarily large vertex stabilizers. The structure is SoP(m,n), where m and n are multiples
of 4. Let r = n

2 + 1; then we have that r2 ≡ 1 mod n. Further, if j is even, then rj = j,
while if j is odd, rj = j + n

2 . The vertex-set is Zm × Zn × Z2. Red edges join (i, j, k) to
(i, j ± rk, k); for fixed i and j, green edges join the two vertices (2i, j, 0) and (2i, j, 1) to
the two vertices (2i+ 1, j, 0) and (2i+ 1, j, 1) if j is even, to the two vertices (2i− 1, j, 0)
and (2i− 1, j, 1) if j is odd.

We claim that each of the following mappings ρ, µ, σ, τ, γ and δ is a symmetry of the
structure:

(i, j, k)ρ = (i, j + 2, k)

(i, j, k)µ = (i,−j, k)

(i, j, k)σ = (i+ 1, j + 1, k)
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(i, j, k)τ = (i, rj, 1− k)

(i, j, k)γ = (−i, j + 1, k)

(i, j, k)δ =

{
(i, rj, 1− k) if i ∈ {1, 2}
(i, j, k) if i 6∈ {1, 2}

Together, these symmetries show that the structure is vertex-transitive. The symmetry
µ acts as a red swapper at (0, 0, 0), and δ acts as a green swapper there. Thus SoP(m,n)
is an LR structure of order 2mn and type {4, n}. The conjugates of δ by 〈σ2〉 commute
with each other and so form a subgroup of order 2

m
2 . We can see, then, that the order of a

vertex-stabilizer is at least 2
m−2

2 .
In this case, Jr = [1, 2, 1], while Jg = [2, 2, 1] and so this structure is always suitable.

3 LR structures from cycle structures
3.1 Voltage graphs and 2-coverings

We wish to use the mechanism of voltage graphs to describe a family of LR structures. Let
us first summarize the voltage construction and some related facts in the special case of
2-coverings: Let Γ be any connected graph or multigraph. A Z2-voltage assignment on Γ
is a function ζ : E(Γ)→ Z2. The corresponding 2-fold covering Cov(Γ, ζ) has V (Γ)×Z2

as its vertex-set. The edge-set is {{(u, i), (v, i + ζ(e))} | e = {u, v} ∈ E(Γ), i ∈ Z2}.
Two Z2-voltage assignments ζ and ζ ′ are equivalent provided there is an isomorphism
between Cov(Γ, ζ) and Cov(Γ, ζ ′) which acts trivially on first coordinates. For any vertex
v, define the function µv on the set of all Z2-voltage assignments on Γ by letting ζµv be
the assignment defined by

(ζµv)(e) =

{
1 + ζ(e) v is an endvertex of e
ζ(e) v is not an endvertex of e

We call such a function a “local reversal”. Then ζ is equivalent to ζµv , and any two
equivalent assignments are related by a series of local reversals. It follows that if ζ and ζ ′

are equivalent, then there is a set U ⊆ V (Γ) such that ζ(e) = ζ ′(e) exactly when both ends
of e are in U or both not in U .

Two voltage assignments ζ and ζ ′ are isomorphic provided that some isomorphism γ
of Cov(Γ, ζ) onto Cov(Γ, ζ ′) has the property that for each vertex v, (v, 0)γ and (v, 1)γ
have the same first coordinate. Certainly ζ and ζ ′ are isomorphic if there is a symmetry
β of Γ such that ζ ′(eβ) = ζ(e) for every e. We write ζ ′ = ζβ in this case, and then
the function which sends (v, i) to (vβ, i) is an isomorphism of Cov(Γ, ζ) onto Cov(Γ, ζ ′).
Finally, we say that a symmetry α of Γ lifts to a symmetry ᾱ of Cov(Γ, ζ) provided that for
each vertex of Cov(Γ, ζ), (v, i)ᾱ = (vα, j) for some j. Then, clearly, α lifts if and only if
ζα is equivalent to ζ.

3.2 Voltage description of CS(Γ,B, i)

The construction we wish to present here has to do with a kind of highly symmetric cycle
decomposition called a cycle structure:
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Definition 3.1. A cycle structure in a tetravalent graph Γ is a cycle decomposition B of Γ
such that Aut(Γ,B) acts transitively on the darts of Γ.

Consider, for example, the graph of the octahedron O, shown in Figure 2. The set B of

1

2

3

4

5

6

Figure 2: The octahedron.

triangles induced by the triples

{{1, 5, 6}, {1, 2, 3}, {2, 4, 6}, {3, 4, 5}}

forms a cycle structure in O. (In what follows, we will refer to each of these triangles
by naming the vertex-triple which induces it rather than specifying its edges.) The group
Aut(O,B) is isomorphic to the symmetric group S4, is dart-transitive and acts as S4 on the
four triangles. In particular, (O,B) is a cycle structure.

Cycle structures were introduced in [5], where it was shown that a vast majority of
dart-transitive 4-valent graphs admit a cycle structures—many have more than one. At the
end of this section we will show all small cycle structures and see how they contribute
semisymmetric graphs.

3.3 The multigraph Γ′ and its symmetries

We construct an LR structure from a cycle structure (Γ,B) in two steps: we form a multi-
graph and then 2-cover it. First form the multigraph Γ′ from Γ by separating each vertex
into a pair of vertices, so that the cycles from B remain cycles but become disjoint. Then
connect the two vertices in each pair with two parallel edges. We will refer to these as
“bridge” edges. In our example of the octahedron with cycles {1, 5, 6}, {1, 2, 3}, {2, 4, 6},
{3, 4, 5}; Figure 3 shows the result.

To be more specific, the vertices of Γ′ are all (C, v) where C ∈ B, and v ∈ C. “Ordi-
nary” edges join (C, u) to (C, v) where {u, v} is an edge in the cycle C. If v belongs to cy-
clesC andD, the corresponding “bridge” edges ev,0 and ev,1 join (C, v) to (D, v). Contin-
uing the example and setting A = {1, 5, 6}, B = {1, 2, 3}, C = {2, 4, 6}, D = {3, 4, 5},
the corresponding labels of vertices in the split graph are shown in Figure 4.

If α is any symmetry in G = Aut(Γ,B), we choose the canonical representative α′

of α to be the permutation which sends the vertex (C, v) to (Cα, vα), the ordinary edge
{(C, u), (C, v)} to the ordinary edge {(Cα, uα), (Cα, vα)}, and the bridge edge ev,i to
evα,i. Then α′ is clearly a symmetry of Γ′. If we let

G′ = {α′ | α ∈ G},
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Figure 3: The octahedron, split.

(A, 1)

(C, 2)

(B, 3)
(C, 4)

(A, 5)

(C, 6)

(B, 1)

(B, 2)

(D, 3)

(D, 4)

(D, 5)

(A, 6)

Figure 4: Labels in the octahedron.

then G′ ∼= G. Also, for each v ∈ V (Γ), let σv interchange ev,0 and ev,1 while fixing every
vertex of Γ′ and every edge other than those two. Clearly, each σv is in Aut(Γ′). If we let

K = 〈σv : v ∈ V (Γ)〉,

then Aut(Γ′) is the inner semidirect product K oG′. For each C ∈ B, define σC to be the
product of all σv for v ∈ C, and let

L = 〈σC : C ∈ B〉 ≤ K.

Since the product of all σC for C ∈ B involves each σv twice, the product is trivial. On
the other hand, if D is a proper non-empty subset of C, then an easy connectivity argument
shows that the product of all σC for C ∈ D is non-trivial. Therefore the group L has
order 2|B|−1.

Now, G′ is transitive on the vertices of Γ′ and is, in fact transitive on the darts of
ordinary edges. So for any (C, v), some α′ ∈ G′ acts as a swapper of ordinary edges there.
And each non-trivial element of L acts as a swapper of bridge edges.

Then L o G′ is transitive on darts in ordinary edges and on darts in bridge edges as
well. Thus the partition C of the edges of Γ′ into cycles covering ordinary edges and cycles
covering bridge edges is an LR coloring of this multigraph.
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In the following sections we will construct two covers of the graph Γ′ and show that in
both cases, LoG′ is the group of symmetries that lifts.

3.4 The coverings of Γ′

We now assign voltages 0, 1 from Z2 to the edges of Γ′ in two different ways; the assign-
ments will be called ζ0 and ζ1. For bridge edges, let ζi(ev,0) = 0 and ζi(ev,1) = 1 for
i = 0, 1. We assign ζ0(e) = 0 for each ordinary edge e. To define ζ1, we choose one edge
in each cycle C ∈ B to receive the voltage 1, and assign 0 to the rest of the edges in C.
The isomorphism class of the resulting 2-cover is independent of which edge in each cycle
is chosen, as we show in the next paragraph. Let Λ(Γ,B, 0) and Λ(Γ,B, 1) be the 2-covers
Cov(Γ′, ζ0) and Cov(Γ′, ζ1) of Γ′ resulting from ζ0 and ζ1, respectively.

Let CS(Γ,B, 0) and CS(Γ,B, 1) be these graphs together with the decompositions into
cycles covering those in C. In Section 3.5 we will show that CS(Γ,B, 0) and CS(Γ,B, 1)
are, in fact, LR structures.

1
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6
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4

5

6

0
1

01 0

1

0

1

0

1

0
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0

00

0
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4
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1
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3

4
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0
1

01 0

1

0

1

0

1

0

1

1
0

1

0

1

0

1

0

0 0

00

(a) ζ0(O′) (b) ζ1(O′)

Figure 5: Voltage assignments.

To support our claim that the isomorphism class of Cov(Γ′, ζ1) does not depend on our
choice of representatives in each cycle, it will suffice to show that for any C ∈ B, two
Z2-assignments which are identical except on two consecutive edges of C are isomorphic
assignments. So suppose that vertices u, v, w are consecutive in C, and that one of the
assignments is ζ such that ζ({(C, u), (C, v)}) = 1, ζ({(C, v), (C,w)}) = 0, as in Figure 6.
Then ζ is isomorphic to ζσv , which in turn is equivalent to ζσvµ(C,v) (where, µ(C,v) is a
local reversal as described in Section 3.1) and this assignment is identical to ζ except on
the edges {u, v}, {v, w}, as required.

Thus, by applying products such as σvµ(C,v) to the assignment at successive vertices v
of C, we can move the edge bearing a 1 from any position in C to any other. By adjusting
each cycle in turn, we can show isomorphism of any two such assignments. This in fact
shows the following useful fact, which we will refer to later.

Remark 3.2. Let ζ be an assignment on Γ′ for which ζ(ev,0) = 0 and ζ(ev,1) = 1 for every
vertex v of Γ, and let C ∈ B. If the sum of all ζ(e) for e ∈ C is 0, then ζ is isomorphic to
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(C, v)

(C, w)
(D, v)

1
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(C, u)

(C, v)

(C, w)
(D, v)

1

0

0

1

Figure 6: Isomorphic voltage assignments.

some assignment ζ ′ with ζ ′(e) = 0 for all e ∈ C. Similarly, if the above sum is 1, then ζ
is isomorphic to some assignment in which every edge of C except one has weight 0, and
that one has weight 1. Consequently, every 2-cover of Γ′ without multiple edges in which
all cycles covering those in B have the same length must be isomorphic to CS(Γ,B, 0) or
CS(Γ,B, 1). ♦

3.5 The groups of CS(Γ,B, 0) and CS(Γ,B, 1)

We will show in this section that the cycle decompositions CS(Γ,B, 0) and CS(Γ,B, 1),
are LR structures, each admitting a group of order 2|B||G|.

Let G = Aut(Γ,B). Since (Γ,B) is a cycle structure, G is transitive on the darts of Γ.
Further, let G′, K and L be the groups of symmetries of Γ′ as defined in Section 3.3, and
recall that Aut(Γ′) = K oG′.

Observe that, since G′ maps a cycle in B to another cycle in B and since L is generated
by all σC , C ∈ B, L is normalised by G′ and hence normal in Aut(Γ′). In particular,
〈L,G′〉 = LoG′.

Fix i ∈ {0, 1} and let T be the group of those symmetries of Γ′ that lift to a symmetry
of CS(Γ,B, i). In view of Section 3.1, a symmetry β of Γ′ is in T if and only if the voltage
assignment ζiβ is equivalent to ζi.

We will prove that T = L o G′ and that the lift of T contains the symmetries needed
to show that CS(Γ,B, i) is an LR structure.

Let us first show that for every α ∈ G (and thus α′ ∈ G′) there exists β ∈ T such
that β ∈ α′K. In other words, we show that G′ ⊆ TK, and since G′K = Aut(Γ′), that
Aut(Γ′) = G′K = TK.

If i = 0, then ζiα′ = ζi, implying that α′ lifts, and we can take β to be α′ itself.
Suppose now that i = 1. Then ζ1α′ also has one edge in each C ∈ B whose voltage is 1.
Then as in Section 3.4, there is a (possibly empty) subpath v1, v2, v3, . . . , vr of C such that
ζ1α
′σv1µ(C,v1) . . . σvkµ(C,vr) coincides with ζ1 on C. Denote

σ(α,C) = σv1σv2 · · ·σvr and µ(α,C) = µ(C,v1)µ(C,v2) · · ·µ(C,vr)

and observe that µ’s and the σ’s commute in their action on voltage assignments. Hence,
by performing this adjustment for each C ∈ B in turn, it follows that

ζ1 = ζ1α
′
k∏
j=1

σ(α,Cj)

k∏
j=1

µ(α,Cj)
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and so, letting

β = α′
k∏
j=1

σ(α,Cj) ∈ α
′K

we see that ζ1β is equivalent to ζ1 and thus that β ∈ T . This completes the proof of the
claim that

Aut(Γ′) = G′K = TK.

Let us now show that T ∩K = L. This will then imply thatG′ ∼= G′K/K = TK/K ∼=
T/(T ∩K) = T/L and hence that T = LoG′, as claimed.

First note that each element of L lifts, and hence L ≤ T . To see this, let σ ∈ L and
thus σ =

∏
C∈D σC for some D ⊆ B. Since (ζiσ)(e) = ζi(eσ) for every edge e of Γ′,

we see that ζi and ζiσ agree on the ordinary edges and differ on exactly those bridge edges
ev,0 and ev,1for which v belongs to exactly one of the cycles in D. In particular,

ζiσ = ζi
∏
C∈D

∏
v∈C

µ(C,v),

showing that ζiσ is equivalent to ζi and thus that σ ∈ T .
Suppose now that σ ∈ K and that σ lifts. Then ζi is equivalent to ζiσ, and in view of

Section 3.1, there is a collection W of vertices of Γ′ such that

ζi
∏

(C,v)∈W

µ(C,v) = ζiσ.

Since ζiσ agrees with ζi on ordinary edges, we see that if a vertex (C, v) is in W , then
every vertex (C, u) for all u in C must also be in W . Letting, as before,

µC =
∏
v∈C

µ(C,v),

for each C ∈ B, we see that there is a D ⊆ B such that

ζi
∏
C∈D

µC = ζiσ.

Now, because σ ∈ K, there is a subset U of V (Γ) such that

σ =
∏
v∈U

σv

and because ζiµ(C,v) and ζiσv agree on bridge edges, U must be the set of those v ∈ V (Γ)
that belong to exactly one of the cycles in D. Then σ must be∏

C∈D
σC ,

and so σ ∈ L. This completes the proof thatK∩T = L, and therefore, that T = LoG′ and
has order 2|B|−1|G|. Then because each CS(Γ,B, i) has a symmetry which interchanges
the two vertices in each fibre, Aut(CS(Γ,B, i)) has order 2|B||G|.
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Finally, we need to show that each CS(Γ,B, i) has the symmetries required of an LR
structure. As L o G′ lifts to a group of color-preserving symmetries and is transitive on
vertices, in each case, it suffices to show that L o G′ contains swappers at each vertex of
Γ′. Consider a vertex (C, v), as in Figure 6, above. The symmetry σC acts as a swapper
for the bridge edges at (C, v). Now G contains a symmetry α which sends the dart (u, v)
to (w, v); then Cα = C. As above, there exists a corresponding β that lifts and such that
β ∈ α′K. This β and βσC both lift, and one of them will swap ordinary edges at (C, v).
Thus, CS(Γ,B, i) is an LR structure of type {4, q} (if i = 0) or {4, 2q} (if i = 1), where
q is the length of a cycle in B. It has no alternating 4-cycles and cannot be self-dual unless
q = 4 and i = 0.

3.6 Wreath graphs and self-dual LR structures

Define the graph W (n, k) (called a wreath graph) to have kn vertices in n groups of k
each, the groups arranged in a circular order. The edges join every vertex in one group to
every vertex in the groups immediately before and after it. For example, Figure 7 shows
the graph W (5, 2).

Figure 7: The wreath graph W (5, 2).

In CS(Γ,B, 0), let the ordinary edges be colored green and the bridge edges, red. Con-
sideration of joining sequences shows that even if i = 0, p = 4, then CS(Γ,B, 0) is
self-dual if and only if Γ is the graph W (n, 2) for some n and B is the set of 4-cycles
induced by two consecutive groups of vertices. To see this, first check that in CS(Γ,B, 0),
Jr = [1, 2, 1]. If CS(Γ,B, 0) is to be self-dual, Jg must be [1, 2, 1] as well. Thus, from
two antipodal vertices in each green cycle, red edges must lead to two antipodal vertices
in another green cycle. As the red cycles in CS(Γ,B, 0) correspond to vertices in Γ, this
implies that each 4-cycle in B must share two vertices with each other that it meets. Since
each 4-cycle meets only two others, they must be arranged in a circle, and the graph must
be W (n, 2) for some n.

Thus, in all other cases, the LR structure CS(Γ,B, i) is suitable.
In our example in which Γ = O, the LR structures CS(O,B, i) for i = 0, 1 are shown

in Figure 8.
We summarize the argument from Sections 3.3, 3.4, 3.5, 3.6 in the following theorem.

Theorem 3.3. If B is a cycle structure for the tetravalent graph Γ, then CS(Γ,B, 0) and
CS(Γ,B, 1) are LR stuctures. These LR structures are suitable with the exception that if B
is the decomposition of W (n, 2) into 4-cycles, then CS(W(n, 2),B, 0) is self-dual and so
not suitable.
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Figure 8: Two LR structures.

3.7 Occurrences of cycle structures

It is a little surprising that nearly every small dart-transitive 4-valent graph has a suitable
system of block cycles and most have several. Consider the smallest dart-transitive 4-
valent graphs (below, Cn(a, b) denotes the circulant graph on n vertices with connection
set {±a,±b} while Rn(a, r) is a rose window graph, defined in [13]):

Graph Cycle structures
K5 two 5-cycles
Octahedron four 3-cycles, three 4-cycles
K4,4 four 4-cycles, two 8-cycles
C3 × C3 six 3-cycles, three 6-cycles
W (5, 2) five 4-cycles
C10(1, 3) two 10-cycles
W (6, 2) six 4-cycles, four 6-cycles (two ways), two 12-cycles
R6(5, 4) eight 3-cycles, six 4-cycles, four 6-cycles

Wreath graphs appear four times in this list: the octahedron is W (3, 2) and K4,4 is
W (4, 2). The graphW (n, 2) always has a cycle structureF in which every cycle has length
4. In these cases, as we have shown, the LR structure CS(Γ,F , 0) is self-dual and thus not
suitable, so only CS(Γ,F , 1) gives a truly semi-symmetric graph. Therefore, applying CS
and then P to these eight graphs and their 16 cycle structures give us 28 semisymmetric
graphs, having 40 to 96 vertices.

SupposeM is a reflexible map. Its medial graph, the graph MG(M), has one vertex
for each edge ofM, and two are joined by an edge in MG(M) if the corresponding edges
inM are consecutive around some face ofM. The symmetry group G = Aut(M) of the
map acts on MG(M) as a group of symmetries. G is transitive on darts, and has at least
three block systems of cycles: those corresponding to faces, those corresponding to vertices
and those corresponding to Petrie paths. While two of these could be isomorphic (ifM is
self-dual, for instance), it will quite often happen that three different cycle structures, and
hence as many as six different semisymmetric graphs, will result from one mapM.



P. Potočnik and S. E. Wilson: Linking rings structures and semisymmetric graphs: Comb. . . 13

3.8 Larger coverings

We can generalize CS(Γ,B, 0) to k-coverings for k > 2 . We describe a k-covering of Γ′,
and we call the covering structure CS(Γ,B, k). Give the weight 0 to each ordinary edge.
Give each pair of bridge edges voltage 1 in opposite directions. Let CSI(Γ,B, k)) be one
component of the resulting k-cover. If (Γ,B) is bipartite and k is even, then the k-covering
has two components, while in all other cases, it has one. Thus if B has m cycles, each
of length n, and so mn/2 vertices, then CSI(Γ,B, k)) is of type {n,LCM(2, k)} and has
mnk or mnk/2 vertices.

It is easy to check that Jr = [2, 1, 1], while Jg = [1, 2, 1] and so this structure is always
suitable.

4 Other constructions
4.1 Locally circular cycle structures

Definition 4.1. Suppose C is a cycle decomposition of a graph Γ of valence 2q and let X
be the set of all (C, v) such that C ∈ C, v ∈ V (Γ) and C passes through v. For a vertex
v of Γ let Xv be the set of pairs with second coordinate v. If P is a permutation on X
such that the orbits of 〈P 〉 are the sets Xv for v ∈ V (Γ), then we will say that (Γ, C, P ) is
locally circular. We will call such a P a locally circular ordering on (Γ, C).

Definition 4.2. If σ is a symmetry of (Γ, C), we will say that σ respects P provided that,
for each (C, v) ∈ X, (C, v)Pσ is either (Cσ, vσ)P or (Cσ, vσ)P−1. Let Aut(Γ, C, P ) be
the group of all symmetries of (Γ, C) which respect P .

Definition 4.3. If (Γ, C, P ) is locally circular and G ≤ Aut(Γ), we will say it is G-locally
dihedral provided that the following hold:

(i) G acts transitively on darts,

(ii) every element of G respects P ,

(iii) for every v ∈ V (Γ), the stabiliser Gv acts dihedrally on the cycles through v and
contains an element which fixes every cycle through v setwise and reverses at least
one of them.

A locally circular (Γ, C, P ) is locally dihedral if it is G-locally dihedral for some
G ≤ Aut(Γ).

While this definition appears to be very restrictive, notice that a large class of examples
arises from reflexible maps: ifM is a reflexible map of type {p, 2q}, we can consider two
edges to be opposite at v provided that those edges are q apart in the cycle of edges incident
to v. IfM is proper (i.e., no two edges have the same endpoints), the edges fall into cycles
in which each edge is joined to the edges opposite it at each end. Then the family of such
cycles is a locally dihedral cycle structure.

Construction 4.4. If (Γ, C, P ) is locally circular, let LDCS(Γ, C, P ) be the bipartite cycle
decomposition (Λ,D) in which vertices of Λ are all (C, v) such that v is a vertex of cycle
C ∈ C, green edges are all {(C, u), (C, v)} such that {u, v} is an edge of cycle C ∈ C,
and red edges are all {(C, v), (C, v)P}.
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Theorem 4.5. If (Γ, C, P ) is a locally dihedral cycle structure, then LDCS(Γ, C, P ) is an
LR structure which has no alternating 4-cycles.

Proof. Every element of G = Aut(Γ, C, P ) acts on LDCS(Γ, C, P ) as a symmetry. Since
G is transitive on darts, Aut(LDCS(Γ, C, P )) is transitive on vertices. To see that it is
flexible, consider a vertex (C, v). Because (Γ, C, P ) is locally dihedral, it has a symmetry
ρ ∈ G which fixes v, fixes each cycle at v setwise and reverses C. Then ρ acts as a green
swapper at (C, v). Also, because Gv acts dihedrally on the cycles at v, it has a µ which
fixes C (setwise) and interchanges the neighboring cycles in the local order. Then µ or µρ
is a red swapper at (C, v). If there were an alternating 4-cycle in LDCS(Γ, C, P ), the green
edges would correspond to distinct edges in Γ with the same endpoints, which is forbidden
in a graph.

Our last results in this paper show that the constructions CS and LDCS generate all LR
structures (Λ, C) for which C contains cycles of length 3 or 4. We begin by showing that
LDCS covers all the cases in which sr ≥ 2.

Theorem 4.6. Let (Λ, C) be an LR structure of type {p, q} in which no two red cycles (of
length p) are joined by more than one green edge (that is, if the joining sequence Jr is not
of the form [1, ∗, ∗]). Then there is a locally dihedral cycle structure (Γ,D, P ), where Γ is
a graph of valence 2p and D is a partition of the edges of Γ into q-cycles, such that (Λ, C)
and LDCS(Γ,D) are isomorphic LR structures.

Proof. Let Γ be the graph with the vertex set being the set of red cycles in (Λ, C) with two
red cycles adjacent in Γ whenever they are joined by a green edge in Λ. For each vertex v
of Λ, let π(v) be the red cycle to which v belongs. We can consider π to be a projection
onto Γ of the subgraph of Λ induced by its green edges. Since two red cycles are joined
by at most one green edge, this projection π induces a bijection between the green edges in
(Λ, C) and the edges of Γ.

Let D be the set of all cycles in Γ of the form π(D) where D is a green cycle in (Λ, C).
Then Γ has valence 2p and D is a cycle decomposition of Γ in which every cycle has
length q.

Let X be the set of all (π(D), C) such that D is a green cycle in (Λ, C) and C is a red
cycle in (Λ, C) contained (as a vertex of Γ) in the cycle π(D).

Let us now define the permutation P on X yielding a locally dihedral (Γ,D, P ). For
each red cycle C in (Λ, C) choose one of the two possible orientations of C. We then let P
map a pair (π(D), C) ∈ X to the pair (π(D′), C) where D′ is the green cycle through the
next vertex (with respect to the chosen orientation of C) on C after the unique vertex of Λ
that belongs to both C and D. Then all of Aut+(Λ, C) respects this P . Since Aut+(Λ, C)
is transitive on green darts, it acts dart-transitively on Γ. The set stabilizer of a red cycle
acts dihedrally on the set of green cycles meeting it. Any green swapper fixes a red cycle
pointwise and so fixes setwise each green cycle meeting it, and reverses at least one cycle.
Thus (Γ,D, P ) is a locally dihedral cycle structure.

Finally, let ϕ be the mapping which maps a vertex v of Λ to the vertex (π(D), C) of
LDCS(Γ,D, P ) where C and D are the red and the green cycle of (Λ, C) containing v, re-
spectively. It is a matter of straightforward computation to verify that ϕ is an isomorphism
of the LR structures (Λ, C) and LDCS(Γ,D).

With Theorem 4.6, we can now easily prove that all LR structures of types {3, q} or
{4, q} without alternating 4-cycle arise by constructions in this paper. (We point out that
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the LR structures with alternating cycles have been characterised in [10, Lemma 6.3].) The
first of the two corollaries below follows directly from Theorem 4.6 after observing that an
alternating 4-cycle implies that two red cycles are joined by two green edges. The second
one requires some additional work.

Corollary 4.7. If (Λ, C) is a LR structure of type {3, q} without alternating 4-cycles, then
there is a locally dihedral cycle structure (Γ,D, P ), where Γ is a graph of valence 6 and
D is a partition of the edges of Γ into q-cycles, such that (Λ, C) and LDCS(Γ,D) are
isomorphic LR structures.

Theorem 4.8. If (Λ, C) is an LR structure of type {4, q} without alternating 4-cycles, then
one of the following happens:

(1) there is a locally dihedral cycle structure (Γ,D, P ), where Γ is a graph of valence 8
andD is a partition of the edges of Γ into q-cycles, such that (Λ, C) ∼= LDCS(Γ,D);
or

(2) there is a cycle structure (Γ,B), where Γ has valence 4 and (Λ, C) ∼= CS(Γ,B, i) for
i = 0 or 1.

Proof. Suppose that (Λ, C) is an LR structure, without alternating 4-cycles, in which the
red cycles have length 4. Consider a green edge and the red cycles through its endvertices.
If no other green edge joins those red cycles then Theorem 4.6 applies, and so (1) holds.

If not, then, because (Λ, C) has no alternating 4-cycles, two green edges join two an-
tipodal vertices on one red cycle with two antipodal vertices on the other red cycle. Call
two green edges which are arranged in this way, mated edges. Then Jr = [1, 2, 1].

Collapsing each red cycle to a single vertex, as in the proof of Theorem 4.6, identifies
all pairs of mated green edge to form a tetravalent dart-transitive graph Γ. The green cycles
of (Λ, C) are projected onto a cycle structure D in Γ. Since the projection is 2-to-1 on
green edges, we see that if mated green edges come from different cycles, those two q-
cycles project to a single q-cycle in Γ. If they are from the same cycle, then q must be even
and that cycle projects onto a q

2 -cycle.
Consider now an intermediate projection in which we identify mated green edges, and

within a red cycle identify antipodal vertices and opposite edges. This projects (Λ, C) onto
a multigraph, in which the red “cycles” are actually 2-gons, i.e., each consists of a pair of
parallel red edges. This is clearly isomorphic to the graph Γ′ formed in the first step of the
construction of CS(Γ,D, i). This presents (Λ, C) as a 2-covering of Γ′.

Remark 3.2 shows that in the case where the green cycles of Γ are of length q, the LR
structure (Λ, C) is isomorphic to CS(Γ,D, 0), and if the green cycles are of length q

2 , then
(Λ, C) is isomorphic to CS(Γ,D, 1).

5 Conclusion
Though this paper and its predecessors [9, 10] have presented a number of constructions
both agebraic and combinatorial, much remains to be done. Every new discovery of an LR
structure gives us a new semisymmetric graph of girth and valence 4. Thus, finding LR
structures and organizing them into parameterized families is important in the search for
semisymmetric graphs. The smallest known LR structure not yet to be seen as part of a
family of such has 36 vertices, and there are seven more with 72 vertices. Examples such
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as SoP, CS(Γ,B, 0) and CS(Γ,B, 1), whose vertex-stabilizers can grow without bound add
to our growing knowledge about the structure of semisymmetric graphs.

Our ultimate goal of the study of the LR structures is to develop the tools that would
enable us to construct a complete list of all “small” LR structures. Such lists exist for
both types of edge-transitive cubic graphs (see [1, 3] for the census of cubic edge-transitive
graph of order at most 768 and [2] for the extension to order up to 10 000 in the case
of dart-transitive graphs) and for cubic vertex-transitive graphs [6] for orders up to 1 280.
Moreover, lists of all dart-transitive and 1

2 -transitive tetravalent graphs of order up to 1 000
have recently been compiled (see [6, 8]). The main ingredient of these results was always a
theoretical result that bounded the order of the vertex-stabiliser in such a graph. While it has
long been known that this order is bounded by a constant in the case of cubic edge-transitive
graphs, this is not the case in the cubic vertex-transitive or tetravalent edge-transitive cases.
What is more, for these cases, families of graphs where the order of the stabiliser grows
exponentially with the order of the graph are known. The crucial point in the enumeration
of these graphs was a result that identified the “problematic” families and proved that the
order of the vertex-stabiliser in the “non-problematic” graphs is bounded by a tame (possi-
bly sublinear) function of the order of the graph. As it happens, all the problematic graphs
contain cycles of girth 4 (and there is a deep group theoretical reason for that). There is
strong evidence that a similar result might hold in the case of the LR structures. This leads
to the following question (we thank Gabriel Verret for a fruitful discussion on this topic):

Question 5.1. Does there exist a polynomial function f such that for every LR struc-
ture (Λ, C) of type other than {4, q}, the symmetry group Aut(Λ, C) has order at most
f(|V (Λ)|).

This question complements Corollary 4.8 which reduces the classification of the LR
structures of type {4, q} to the study of 8-valent locally dihedral cycle structures and cycle
structures in tetravalent dart-transitive graphs.
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Abstract

The Wiener index W (G) of a simple connected graph G is defined as the sum of dis-
tances over all pairs of vertices in a graph. We denote by W [Tn] the set of all values of the
Wiener index for a graph from the class Tn of trees on n vertices. The largest interval of
consecutive integers (consecutive even integers in case of odd n) contained in W [Tn] is de-
noted by W int[Tn]. In this paper we prove that both sets are of cardinality 1

6n
3 + O(n5/2)

in the case of even n, while in the case of odd n we prove that the cardinality of both sets
equals 1

12n
3 + O(n5/2), which essentially solves two conjectures posed in the literature.

Keywords: Wiener index, Wiener inverse interval problem, Tree.

Math. Subj. Class.: 05C05, 05C90

1 Introduction
The Wiener index of a connected graph G is defined as the sum of distances over all pairs
of vertices, i.e.

W (G) =
∑

u,v∈V (G)

d(u, v).

It was first introduced in [13] and it was used for predicting the boiling points of paraffins.
Since the index was very successful many other topological indices were introduced later
which use the distance matrix of a graph. There is a recent survey by Gutman et al. [14] in
which finding extremal values and extremal graphs for the Wiener index and several of its
variations is nicely presented. Given the class of all simple connected graphs on n vertices
it is easy to establish extremal graphs for the Wiener index, those are complete graph Kn

and path Pn. The same holds for the class of tree graphs on n vertices in which the minimal
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tree is the star Sn and the maximal tree is the path Pn. Many other bounds on the Wiener
index are also established in the literature.

In [4] Gutman and Yeh proposed the inverse Wiener index problem, i.e. for a given
value w the problem of finding a graph (or a tree) G for which W (G) = w. The first
attempt at solving the problem was made in [7] where integers up to 1206 were checked and
49 integers were found that are not Wiener indices of trees. In [1] it was computationally
proved that for all integers w between 103 and 108 there exists a tree with Wiener index
w. The problem was finally fully solved in 2006 when two papers were published solving
the problem independently. It was proved in [12] that for every integer w > 108 there is a
caterpillar tree G such that W (G) = w. The other proof is from the paper [9] where it was
proved that all integers except those 49 are Wiener indices of trees with diameter at most 4.
Since the most interesting graphs to be considered are chemical trees (especially those in
which maximum vertex degree is at most 3) and hexagon type graphs, in [11] this problem
was further considered on classes of such graphs.

A related question is to ask what value of the Wiener index can a graph (or a tree) G on
n vertices have? In order to clarify further this problem one may also ask how many such
values are there, how are they distributed along the related interval or how many of them
are consecutive. In [6] this problem is named the Wiener inverse interval problem (see also
a nice recent survey [5] which covers the topic). In that paper the set W [Gn] is defined as
the set of all values of the Wiener index for graphs G ∈ Gn, where Gn is the class of simple
connected graphs on n vertices. Similarly, W [Tn] is defined as the set of values W (T ) for
all trees on n vertices (Tn denotes the class of trees on n vertices). Also, W int[Gn] (or
analogously W int[Tn]) is defined to be the largest interval of consecutive integers such that
W int[Gn] ⊆W [Gn] (or analogously W int[Tn] ⊆W [Tn]).

In [6] the Wiener inverse interval problem on the class Gn was considered. First, the
authors noted that obviously W int[Gn] ⊆W [Gn] ⊆ [W (Kn),W (Pn)] . Since W (Kn) and
W (Pn) are easily computed, the upper bound

∣∣W int[Gn]
∣∣ ≤ |W [Gn]| ≤ n3

6 −
n2

2 + n
3 + 1

easily follows. Introducing dandelion and comet graphs and establishing how the values
between the values of the Wiener index for dandelion and comet graph can be obtained, the
authors obtain the following lower bound |W [Gn]| ≥

∣∣W int[Gn]
∣∣ ≥ n3

6 −
5
2n

2 − 1
3n

3/2 +
19
3 n+ 7

3n
1/2. These bounds sandwich the value of

∣∣W int[Gn]
∣∣ and |W [Gn]| in terms of n3

tightly, therefore the result
∣∣W int[Gn]

∣∣ =
∣∣W int[Gn]

∣∣ = n3

6 + O(n2) easily follows. The
authors further conjecture that |W [Gn]| = n3

6 −
n2

2 + Θ(n). Regarding the same problem
on the class Tn the following two conjectures were made.

Conjecture 1.1. The cardinality of W [Tn] equals 1
6n

3 + Θ(n2).

Conjecture 1.2. The cardinality of W int[Tn] equals Θ(n3).

In this paper we will consider these two conjectures. First, we will note that for a
tree T on odd number of vertices n the value W (T ) can be only an even number. That
means that the Wiener inverse interval problem in that case has to be reformulated as the
problem of finding the largest interval W int[Tn] of consecutive even integers such that
W int[Tn] ⊆W [Tn]. Since |W [Tn]| ≤W (Pn)−W (Sn) + 1 = 1

6n
3 − n2 + 11

6 n, we now
conclude that the cardinality of W [Tn] in the case of odd n can be at most 1

12n
3 + O(n2).

Given that reformulation, we will prove both conjectures to be true in terms of n3. Even
more, we will prove the strongest possible version of Conjecture 1.2 in terms of n3 by
proving that

∣∣W int[Tn]
∣∣ also equals 1

6n
3 + O(n5/2) (i.e. 1

12n
3 + O(n5/2) in case of odd
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n) which is the best possible result given the upper bound on |W [Tn]| derived from the
difference between W (Pn) and W (Sn). These results will yield quite a strong result for
the class T 4

n of chemical trees as a direct corollary.
The present paper is organized as follows. In the next section basic definitions and

preliminary results are given. In the third section the problem is solved for trees on even
number of vertices, while in the fourth section the problem is solved for trees on odd
number of vertices. In the fifth section we conclude the paper with several remarks and
possible directions for further research.

2 Preliminaries
Let G = (V (G), E(G)) be a simple connected graph having n = |V (G)| vertices and
m = |E(G)| edges. For a pair of vertices u, v ∈ V (G) we define the distance dG(u, v) as
the length of the shortest path connecting u and v in G. For a vertex u ∈ V (G) the degree
dG(u) is defined as the number of neighbors of vertex u in graph G. When it doesn’t lead
to confusion we will use the abbreviated notation d(u, v) and d(u). Also, for a vertex u ∈
V (G) and a set of vertices A ⊆ V (G) we will denote d(u,A) =

∑
v∈A d(u, v). Similarly,

for two sets of vertices A,B ⊆ V (G) we will denote d(A,B) =
∑

u∈A,v∈B d(u, v). We
say that a vertex u ∈ V (G) is a leaf if dG(u) = 1, otherwise we will say that u is an
interior vertex of a graph G. A graph G which does not contain cycles is called a tree. A
tree graph will usually be denoted by T throughout the rest of the paper. We say that a tree
T is a caterpillar tree if all its interior vertices induce a path. Such a path will be called the
interior path of a caterpillar. Let a and b be positive integers such that a ≤ b. We say that the
interval [a, b] is Wiener p−complete if there is a tree T in Tn such that W (T ) = a+ pi for
every i = 0, . . . ,

⌊
b−a
p

⌋
. We say that the interval [a, b] is Wiener complete if it is Wiener

1−complete.
Let us now note that the value of the Wiener index for a tree T on odd number of

vertices n is an even number. There are various ways to prove this fact, maybe the simplest
one is to recall that for a tree T on n vertices it holds that

W (T ) =
∑

uv∈E(T )

nu · nv

where nu and nv are the number of vertices in the connected component of T\{uv} con-
taining u and v respectively. Obviously, nu +nv = n and therefore in the case of odd n the
product nu · nv must be an even number. I would like here to thank prof. Tomislav Došlić
for suggesting this short proof to me and to the anonymous reviewers for referring me to
the interesting survey [2] in which this fact is already explained and to several interesting
papers ([3], [8] and [10]) in which one can read more on the subject. Before proceeding
further, let us state this fact as a formal theorem which we can reference in further text.

Theorem 2.1. Let T be a tree on odd number of vertices n ≥ 3. Then W (T ) is an even
number.

The main tool for obtaining our results throughout the paper will be a transformation
of a tree which increases the value of the Wiener index by exactly four. We will call it
Transformation A, but let us introduce its formal definition.

Definition 2.2. Let T be a tree and u ∈ V (T ) a vertex of degree 4 such that neighbors v1
and v2 of u are leaves, while neighbors w1 and w2 of u are not leaves. We say that a tree
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T ′ is obtained from T by Transformation A if T ′ is obtained from T by deleting edges uv1
and uv2, while adding edges w1v1 and w2v2.

Theorem 2.3. Let T be a tree and let T ′ be a tree obtained from T by Transformation A.
Then W (T ′) = W (T ) + 4.

Proof. For simplicity’s sake we will use the notation d′(u, v) for dT ′(u, v). Let Twi
=

(Vwi , Ewi) be the connected component of T\{u} which contains vertex wi for i = 1, 2.
Note that the only distances that change in Transformation A are distances from vertices v1
and v2. For every v ∈ Vw1

∪ Vw2
we have

d′(v1, v)− d(v1, v) + d′(v2, v)− d(v2, v) = 0.

For the vertex u we have

d′(v1, u)− d(v1, u) + d′(v2, u)− d(v2, u) = 2.

Finally, we also have d′(v1, v2) − d(v1, v2) = 2. Therefore, W (T ′) −W (T ) = 4 which
proves the theorem.

Although Transformation A can be applied on any tree graph, we will mainly apply
it on caterpillar trees. Moreover, it is critical to find a kind of caterpillar tree on which
Transformation A can be applied repeatedly as many times as possible. For that purpose,
let us prove the following theorem.

Theorem 2.4. Let T be a caterpillar tree and P = u1 . . . ud its interior path. If there is a
vertex ui ∈ P of degree 4 such that ui±j is of degree 3 for every 1 ≤ j ≤ k − 1, then the
interval [W (T ),W (T ) + 4k2] is Wiener 4−complete.

Proof. Let us denote a caterpillar tree T from the statement of the lemma by T k (since 1 ≤
j ≤ k−1). Also, let us denote D = {ui±j : j = 0, . . . , k−1}. To obtain the desired result
we will systematically apply Transformation A to vertices from D until there is no more
vertices in D to which Transformation A can be applied. Let us now explain into greater
detail by what system that is done. First, note that in T k Transformation A can initially be
applied only to ui. By applying transformation A to ui in T k we will obtain a caterpillar
tree in which Transformation A can be applied to vertices ui−1 and ui+1. By applying
Transformation A to ui−1 and ui+1 consecutively we will obtain a caterpillar tree in which
Transformation A can be applied to ui−2 and ui+2 (and ui but we will not further apply
Transformation A to that vertex for the time being). By further applying transformation A
to ui−2 and ui+2 consecutively and repeating this procedure we will reach a caterpillar tree
in which Transformation A can be applied to vertices ui−(k−1) and ui+(k−1) and finally
apply Transformation A to those two vertices. The caterpillar tree obtained after that last
step we can denote by T k−1 because of the following: in that tree vertex ui ∈ P is of
degree 4 and vertices ui±j are of degree 3 for every j = 1, . . . , k − 2. Note that in the
process of transforming T k to T k−1 we will have applied the Transformation A 2k − 1
times. Now, the same process can be repeated on T k−1 to obtain T k−2. The procedure
stops when we reach T 1 in which ui is the only vertex in D having degree greater than 2
(to be more precise, the degree of ui in T 1 equals 4, so Transformation A can be applied to
it one more time). Applying Transformation A on ui in T 1 we finally obtain T 0 in which
Transformation A cannot be further applied to vertices from D. Therefore, in transforming
T k to T 0 Transformation A was used

∑k
j=1(2j − 1) = k2 times and each time the value

of the Wiener index increased by 4.
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Note that the Transformation A in Theorem 2.4 is applied k2 times on a caterpillar in
which interior path is of length d− 1. If we prove that there are Θ(n) different values of d
for which k = Θ(n), we obtain roughly Θ(n3) graphs with different values of the Wiener
index which is exactly the result we aim at (of course, here one has to be careful to avoid
significant overlapping of the values of the Wiener index for caterpillars with different
values of d). So, that is what we are going to do in following sections, but in order to do
that with sufficient mathematical precision we will have to construct four different special
types of caterpillar trees. To easily construct those four types of caterpillar trees we first
introduce two basic types of caterpillars from which those four types will be constructed
by adding one or two vertices.

Definition 2.5. Let n, d and x be positive integers such that n ≥ 18 is even,
⌈
n−2
4

⌉
≤ d ≤

n−8
2 and x ≤ 4+4d−n

2 . Caterpillar B1(n, d, x) is a caterpillar on even number of vertices n
obtained from path P = u−d . . . u−1u0u1 . . . ud by appending a leaf to vertices u−d−1+x

and ud+1−x and by appending a leaf to 2k − 1 consecutive vertices u−(k−1), . . . , uk−1

where k = n−(2d+1)−1
2 .

Caterpillar graph B1(n, d, x) is illustrated by Figure 1 (vertex ui of the interior path is
in the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 1: Caterpillar graphs: a) B1(20, 6, 2), b) B1(20, 5, 1).

Lemma 2.6. Let n, d and x be integers such that B1(n, d, x) is defined. Then

W (B1(n, d, x)) =
n3

4
+ (−3d

2
− 5

4
)n2 + (4d2 + 10d +

13

2
− 2x)n+

+ 2x2 − 8

3
d3 − 12d2 − 46d

3
− 7.

Proof. Let k = n−(2d+1)−1
2 and x′ = −d − 1 + x. Even though the structure of B1 is a

bit complicated it is still regular enough so that the Wiener index can be computed exactly
(as a function in variables n, d and x). Let us divide vertices of B1 into three sets A,B and
C so that set A contains vertices ui for i = −d, . . . , d, set B contains leaves attached to
2k − 1 consecutive vertices u−(k−1), . . . , uk−1 and set C contains two leaves attached to



24 Ars Math. Contemp. 15 (2018) 19–37

vertices u−d−1+x and ud+1−x. Note that we have

d(A,A) =

d∑
i=−d

d∑
j=i+1

(j − i), d(B,B) =

k−1∑
i=−(k−1)

k−1∑
j=i+1

(j − i + 2)

d(C,C) = (2d + 2− 2(x− 1)), d(A,B) =

d∑
i=−d

k−1∑
j=−(k−1)

(|i− j|+ 1)

d(A,C) = 2

d∑
i=−d

(|i− x′|+ 1), d(B,C) = 2

k−1∑
i=−(k−1)

(|i− x′|+ 2)

Noting that

W (B1(n, d, x)) = d(A,A) + d(B,B) + d(C,C) + d(A,B) + d(A,C) + d(B,C)

and simplifying the obtained sum yields the formula from the statement of the lemma.

Note that the caterpillar B1(n, d, x) is a caterpillar with relatively long interior path.
Namely, the value d is roughly half of the length of the interior path and in the definition of
B1(n, d, x) the value of d is relatively large with respect to number of vertices n. We now
introduce the formal definition of the second basic caterpillar which will have relatively
short interior path.

Definition 2.7. Let n, d and x be positive integers such that n ≥ 18 is even, 4 ≤ d ≤
⌊
n
4

⌋
and x ≤ n−4d+2

2 . Caterpillar B2(n, d, x) is a caterpillar on even number of vertices n
obtained from path P = u−d . . . u−1u0u1 . . . ud by appending a leaf to 2k− 1 consecutive
vertices u−(k−1), . . . , uk−1 where k = d−1, by appending x leaves to each of the u−(d−1)
and u(d−1), and by appending r leaves to each of the u−d and ud where r = n−4d−2x+2

2 .

Caterpillar graph B2(n, d, x) is illustrated by Figure 2 (vertex ui of the interior path is
in the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 2: Caterpillar graphs: a) B2(20, 4, 1), b) B2(20, 4, 3).

Lemma 2.8. Let n, d and x be integers such that B2(n, d, x) is defined. Then

W (B2(n, d, x)) = (
d

2
+ 1)n2 + (−2d− 2)n− 8d3

3
+

32d

3
− 5 + 8x− 8dx− 2x2.

Proof. Let k = d−1 and r = n−4d−2x+2
2 . To obtain the exact formula for W (B2(n, d, x))

we divide vertices from B2(n, d, x) into four sets: set A contains vertices ui for i =
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−d, . . . , d, set B contains leaves appended to 2k−1 consecutive vertices u−(k−1), . . . , uk−1,
set C contains x leaves appended to each of the u−(d−1) and u(d−1), while finally set D
contains r leaves appended to each of the u−d and ud. Note that

d(A,A) =

d∑
i=−d

d∑
j=i+1

(j − i), d(B,B) =

k−1∑
i=−(k−1)

k−1∑
j=i+1

(j − i + 2)+

d(C,C) = 4
(
x
2

)
+ x2(2d), d(D,D) = 4

(
r
2

)
+ r2(2d + 2)

Also, we have

d(A,B) =

d∑
i=−d

k−1∑
j=−(k−1)

(|i− j|+ 1), d(A,C) = 2x(3 +

2d+1∑
i=3

(i− 1))

d(A,D) = 2r

2d+1∑
i=1

i, d(B,C) = 2x

k−1∑
i=−(k−1)

(i + d + 1)

d(B,D) = 2r

k−1∑
i=−(k−1)

(i + d + 2), d(C,D) = 2(3xr + xr(2d + 1)).

Noting that

W (B1(n, d, x)) = d(A,A) + d(B,B) + d(C,C) + d(D,D)+

+ d(A,B) + d(A,C) + d(A,D)+

+ d(B,C) + d(B,D) + d(C,D)

and simplifying the obtained sum yields the formula from the statement of the lemma.

Finally, let us denote dmin
1 =

⌈
n−2
4

⌉
and xmax

1 =
4+4dmin

1 −n
2 , while dmax

2 =
⌊
n
4

⌋
. Note

that
B1(n, dmin

1 , xmax
1 ) = B2(n, dmax

2 , 1). (2.1)

This equality will provide us with a nice transition from caterpillars based on B1(n, d, x)
to caterpillars based on B2(n, d, x) in the following sections.

3 Even number of vertices
In this section we will first introduce a special kind of caterpillar based on B1(n, d, x)
which will have a longer interior path, then we will introduce a second special kind of
caterpillar based on B2(n, d, x) which will have a shorter interior path. For each of those
two special kinds of caterpillars we will establish a bound on the value of d for which the
interval between values of the Wiener index for two consecutive values of x and d is Wiener
4−complete. The equality (2.1) will then enable us to ”glue” all those intervals into one
big Wiener 4−complete interval.

Definition 3.1. Let n, d and x be integers for which B1(n − 2, d, x) is defined. For s =
−1, 0, 1, 2 caterpillar T1(n, d, x, s) is a caterpillar on even number of vertices n, obtained
from B1(n− 2, d, x) by appending a leaf to the vertex us and a leaf to the vertex ud of the
path P = u−d . . . u−1u0u1 . . . ud in B1(n− 2, d, x).
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a)

b)

Figure 3: Caterpillar graphs: a) T1(22, 6, 2, 0), b) T1(22, 6, 2, 2).

Caterpillar graph T1(n, d, x, s) is illustrated by Figure 3 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

Lemma 3.2. Let n, d, x and s be integers for which T1(n, d, x, s) is defined. Then

W (T1(n, d, x, s)) = W (B1(n− 2, d, x)) +
n2

4
+

3n

2
+ 2d2 + 3d + 2s2 − s− 2x.

Proof. Let k = (n−2)−(2d+1)−1
2 , x′ = −d− 1 + x. We define a function

f(v) =

d∑
i=−d

(|v − i|+ 1) +

k−1∑
i=−(k−1)

(|v − i|+ 2)+

(|x′ − v|+ 2 + |−x′ − v|+ 2)

Now, the definition of T1(n, d, x, s) implies

W (T1(n, d, x, s)) = W (B1(n− 2, d, x)) + f(s) + f(d) + d− s + 2.

Plugging s and d into the formula for f and simplifying the obtained expression yields the
result.

As a direct consequence of Lemma 3.2 we obtain the following corollary.

Corollary 3.3. It holds that

W (T1(n, d, x, 1)) = W (T1(n, d, x, 0)) + 1,

W (T1(n, d, x, 2)) = W (T1(n, d, x, 0)) + 6,

W (T1(n, d, x,−1)) = W (T1(n, d, x, 0)) + 3.

The main tool in proving the results will be Transformation A of the graph, which,
for a given graph, finds another graph whose value of the Wiener index is greater by 4.
Therefore, it is critical to find a graph on which Transformation A can be applied con-
secutively as many times as possible. That was the basic idea behind constructing graph
T1(n, d, x, s) as we did, so that we can use Theorem 2.4 in filling the interval between
values W (T1(n, d, x, s)) for consecutive values of x and d. So, let us first apply Theorem
2.4 (i.e. find the corresponding value of k) to the graph T1(n, d, x, s).

Lemma 3.4. Let n, d, x and s be integers for which T1(n, d, x, s) is defined. For k =
1
2n−d−4 the interval [W (T1(n, d, x, s)),W (T1(n, d, x, s))+4k2] is Wiener 4−complete.
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Proof. Let us denote k1 = (n−2)−(2d+1)−1
2 . Note that k1 is half of the number of leaves

appended to the vertices u±j of the interior path of T1(n, d, x, s) for j = 0, . . . , k − 1.
Since s ≤ 2, note that the definition of T1(n, d, x, s) and Theorem 2.4 imply the result for
k = k1 − 2.

So, let us now establish for which values of d the gap between W (T1(n, d, x, s)) and
W (T1(n, d, x − 1, s)) is smaller than 4k2 which is the width of an interval which can be
filled by repeatedly applying Transformation A on T1(n, d, x, s) (i.e. by using Lemma 3.4).

Lemma 3.5. Let n, d, x ≥ 2 and s be integers for which T1(n, d, x, s) is defined. For
d ≤ 1

2 (n−
√

2n− 8− 8) the interval

[W (T1(n, d, x, s)),W (T1(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that

W (T1(n, d, x− 1, s))−W (T1(n, d, x, s)) ≤W (T1(n, d, 2, s))−W (T1(n, d, 1, s)) =

= 2(n− 5) + 2.

Therefore, Lemma 3.4 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n− 5) + 2 where k = 1

2n− d− 4. By a simple calculation it is easy to establish
that the inequality holds for d ≤ 1

2 (n−
√

2n− 8− 8) so the lemma is proved.

It is easy to show, using Lemma 3.2, that W (T1(n, d, x− 1, s))−W (T1(n, d, x, s)) =
2n−4x which is divisible by 4 since n is even. Therefore, Lemma 3.5 enables us to ”glue”
together Wiener 4−complete intervals

[W (T1(n, d, x, s)),W (T1(n, d, x− 1, s))]

into one bigger Wiener 4−complete interval

[W (T1(n, d, xmax
1 , s)),W (T1(n, d, 1, s))]

where xmax
1 = 4+4d−(n−2)

2 . Corollary 3.3 then implies that roughly the same interval will
be Wiener complete when we take values for every s = −1, 0, 1, 2. We say ”roughly”
because the difference W (T1(n, d, x, 2)) = W (T1(n, d, x, 0)) + 6 makes one point gap at
W (T1(n, d, xmax

1 , 0)) + 2. We now want to ”glue” together such bigger intervals into one
interval on the border between d and d− 1. The problem is that

T1(n, d, xmax
1 , s) 6= T1(n, d− 1, 1, s),

so we have to cover the gap in between. Moreover, it holds that

W (T1(n, d, xmax
1 , s))−W (T1(n, d− 1, 1, s)) = n− 3

which is not divisible by 4. Therefore, we have to find enough graphs whose values of the
Wiener index will cover the gap of n − 3 plus the gap of 6 which arises from the ”rough”
edge of the interval for a given d.



28 Ars Math. Contemp. 15 (2018) 19–37

Lemma 3.6. Let n, d, xmax
1 = 4+4d−(n−2)

2 and s be integers for which T1(n, d, xmax
1 , s)

and T1(n, d− 1, 1, s) are defined. For d ≤ 1
2 (n−

√
n + 3− 6) the interval

[W (T1(n, d− 1, 1, s)),W (T1(n, d, xmax
1 , s)) + 6]

is Wiener 4−complete.

Proof. Since

W (T1(n, d, xmax
1 , s)) + 6−W (T1(n, d− 1, 1, s)) = n− 3 + 6 = n + 3,

Lemma 3.4 implies that it is sufficient to find for which d it holds that 4k2 ≥ n + 3 where
k = 1

2n − (d − 1) − 4. By a simple calculation one obtains that inequality holds for
d ≤ 1

2 (n−
√
n + 3− 6) which proves the theorem.

Note that the restriction on the maximum value of d is stricter in Lemma 3.5 then in
Lemma 3.6 for every n > 4.

Now we have taken out all we could from graph T1, but that covers only caterpillars
with relatively large d. We can further expand the Wiener complete interval to the left side,
i.e. to caterpillars with smaller d, using graph T2 which we will construct from the basic
graph B2.

Definition 3.7. Let n, d and x be integers for which B2(n − 2, d, x) is defined. For s =
−1, 0, 1, 2 caterpillar T2(n, d, x, s) is a caterpillar on even number of vertices n, obtained
from B2(n− 2, d, x) by appending a leaf to the vertex us and a leaf to the vertex ud of the
path P = u−d . . . u−1u0u1 . . . ud in B2(n− 2, d, x).

Caterpillar graph T2(n, d, x, s) is illustrated by Figure 4 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 4: Caterpillar graphs: a) T2(22, 4, 3,−1), b) T2(22, 4, 3, 1).

Lemma 3.8. Let n, d, x and s be integers for which T2(n, d, x, s) is defined. Then

W (T2(n, d, x, s)) = W (B2(n− 2, d, x)) + (2d + 4)n− 2d2 − 7d− 6− 2x + 2s2 − s.

Proof. Let k = d− 1 and r = n−4d−2x
2 . We define a function

f(v) =

d∑
i=−d

(|v − i|+ 1) +

k−1∑
i=−(k−1)

(|v − i|+ 2)+

+ x(|v + (d− 1)|+ 2) + x(|v − (d− 1)|+ 2)+

+ r(|v + d|+ 2) + r(|v − d|+ 2).
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Now, the definition of T2(n, d, x, s) implies

W (T2(n, d, x, s)) = W (B2(n− 2, d, x)) + f(s) + f(d) + d− s + 2.

Plugging s and d into the formula for f and simplifying the obtained expression yields the
result.

Again, as a direct consequence of Lemma 3.8 we obtain the following corollary.

Corollary 3.9. It holds that

W (T2(n, d, x, 1)) = W (T2(n, d, x, 0)) + 1,

W (T2(n, d, x, 2)) = W (T2(n, d, x, 0)) + 6,

W (T2(n, d, x,−1)) = W (T2(n, d, x, 0)) + 3.

As in the case of large d, the main tool in obtaining the results will be the following
lemma.

Lemma 3.10. Let n, d, x and s be integers for which T2(n, d, x, s) is defined. For k = d−3
the interval [W (T2(n, d, x, s)),W (T2(n, d, x, s)) + 4k2] is Wiener 4−complete.

Proof. Let us denote k1 = d− 1. Note that k1 is half of the number of leaves appended to
the vertices u±j of the interior path of T2(n, d, x, s) for j = 0, . . . , k−1. Since s ≤ 2, note
that the definition of T2(n, d, x, s) and Theorem 2.4 imply the result for k = k1 − 2.

We will first use Lemma 3.10 to cover the interval between W (T2(n, d, x, s)) and
W (T2(n, d, x − 1, s)), after that we will use it to cover the gap between W (T2(n, d −
1, 1, s)) and W (T2(n, d, xmax

2 , s)).

Lemma 3.11. Let n, d, x ≥ 2 and s be integers for which T2(n, d, x, s) is defined. For
d ≥ 1

2 (
√

2n− 8 + 6) the interval

[W (T2(n, d, x, s)),W (T2(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that for xmax
2 = (n−2)−4d+2

2 it holds that

W (T2(n, d, x− 1, s))−W (T2(n, d, x, s)) ≤
≤W (T2(n, d, xmax

2 − 1, s))−W (T2(n, d, xmax
2 , s)) =

= 2(n− 5) + 2.

Therefore, Lemma 3.10 implies it is sufficient to find for which n and d it holds that 4k2 ≥
2(n − 5) + 2 where k = d − 3. By a simple calculation it is easy to establish that the
inequality holds for d ≥ 1

2 (
√

2n− 8 + 6) so the theorem is proved.

Again, it is easy to show that W (T2(n, d, x−1, s))−W (T2(n, d, x, s)) = 4d+ 4x−8
which is divisible by 4. Therefore, using Lemma 3.11 we can again ”glue” the interval for
different values of x into one bigger interval which will be ”roughly” Wiener complete
when taking values of W (T2(n, d, x, s)) for every s = −1, 0, 1, 2. The next thing is to
cover the gap between W (T2(n, d−1, 1, s)) and W (T2(n, d, xmax

2 , s)) which equals n−3
plus the gap of 6 which arises from the ”rough” ends of the Wiener complete interval for
given n and d.
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Lemma 3.12. Let n, d, xmax
2 = (n−2)−4d+2

2 and s be integers for which T2(n, d, xmax
2 , s)

and T2(n, d− 1, 1, s) is defined. For d ≥ 1
2 (
√
n + 3 + 8) the interval

[W (T2(n, d− 1, 1, s)),W (T2(n, d, xmax
2 , s)) + 6]

is Wiener 4−complete.

Proof. Since

W (T2(n, d, xmax
2 , s)) + 6−W (T2(n, d− 1, 1, s)) = n + 3,

Lemma 3.10 implies it is sufficient to find n and d for which it holds that 4k2 ≥ n + 3
where k = (d − 1) − 3. By a simple calculation one obtains that the inequality holds for
d ≥ 1

2 (
√
n + 3 + 8) which proves the theorem.

Therefore, using graphs T1(n, d, x, s) and T2(n, d, x, s) we obtained two big Wiener
complete intervals, which it would be nice if we could ”glue” together into one big Wiener
complete interval. In order to do that, note that the equality (2.1) implies

T2(n, dmax
2 , 1, s) = T1(n, dmin

1 , xmax
1 , s)

for dmax
2 =

⌊
n−2
4

⌋
, dmin

1 =
⌈
n−4
4

⌉
and xmax

1 =
4+4dmin

1 −(n−2)
2 . Now we can state the

theorem which gives us the largest Wiener complete interval we have managed to obtain.

Theorem 3.13. Let n ≥ 30, dmin
2 =

⌈
1
2 (
√

2n− 8 + 6)
⌉
, xmax

2 =
(n−2)−4dmin

2 +2
2 and

dmax
1 =

⌊
1
2 (n−

√
2n− 8− 8)

⌋
. The interval

[W (T2(n, dmin
2 , xmax

2 , 2)),W (T1(n, dmax
1 , 1, 0))]

is Wiener complete.

Now that we have obtained very large Wiener complete interval, we can finally prove
the following theorem which is our main result and which proves Conjectures 1.1 and 1.2
in terms of n3.

Theorem 3.14. For even n ≥ 30 it holds that
∣∣W int[Tn]

∣∣ = |W [Tn]| = 1
6n

3 + O(n5/2).

Proof. Theorem 3.13 implies

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥W (T1(n, dmax
1 , 1, 0))−W (T2(n, dmin

2 , xmax
2 , 2))

where dmin
2 = 1

2 (
√

2n− 8+6)+p, xmax
2 =

(n−2)−4dmin
2 +2

2 and dmax
1 = 1

2 (n−
√

2n− 8−
8)− 1 + q for p ∈ [0, 1〉 and q ∈ 〈0, 1] . From Lemmas 3.2 and 3.8 we further obtain that∣∣W int[Tn]

∣∣ ≥ 1

6
n3− 1

2

√
2n5 − 8n4−4n2 +

10

3

√
2n3 − 8n2 +

143

6
n+21

√
2n− 8−51.

On the other hand, recall that
∣∣W int[Tn]

∣∣ ≤ |W [Tn]| ≤ W (Pn) −W (Sn) + 1 = 1
6n

3 −
n2 + 11

6 n, which proves the theorem.
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Note that caterpillar trees T1(n, d, x, s) are chemical trees (i.e. trees in which the de-
gree of every vertex is at most 4) for all possible values of its parameters and they remain
chemical after repeated application of Transformation A. Therefore, half of these results
hold for chemical trees and we obtain the following corollary.

Corollary 3.15. Let T 4
n be a class of chemical trees on n vertices where n ≥ 30 is even.

Then
∣∣W int[T 4

n ]
∣∣ =

∣∣W [T 4
n ]
∣∣ = Θ(n3).

Proof. Note that Lemmas 3.5 and 3.6 imply that∣∣W [T 4
n ]
∣∣ ≥ ∣∣W int[T 4

n ]
∣∣ ≥W (T1(n, dmax

1 , 1, 0))−W (T1(n, dmin
1 , xmax

1 , 2))

where dmax
1 = 1

2 (n−
√

2n− 8− 8)− 1 + p, dmin
1 = n−2

4 + q and xmax
1 =

6+4dmin
1 −n
2 for

p ∈ 〈0, 1] and q ∈ [0, 1〉 . From Lemma 3.2 we obtain∣∣W int[T 4
n ]
∣∣ ≥ 1

12
n3−1

4

√
2n5 − 8n4−15

8
n2+

5

3

√
2n3 − 8n2+

101

12
n+

9

2

√
2n− 8−134

3
.

Note that this result for chemical trees is obtained using only chemical trees with rela-
tively large diameter and the result is still the best possible with regard to the highest power
n3 (just the power, not the coefficient). This means that this result is something that proba-
bly can be significantly improved by considering chemical trees with shorter diameter, but
we leave that as an open problem for future research.

4 Odd number of vertices
The strategy to prove the result in the case of odd number of vertices is the same as in the
case of even number of vertices. The only difference is that in this case the value of the
Wiener index can be only even number so we are aiming at the largest possible interval of
consecutive even numbers which are values of the Wiener index for a tree.

Definition 4.1. Let n, d and x be integers for which B1(n − 1, d, x) is defined. For s =
0, 1 caterpillar T3(n, d, x, s) is a caterpillar on odd number of vertices n, obtained from
B1(n−1, d, x) by appending a leaf to the vertex us of the path P = u−d . . . u−1u0u1 . . . ud

in B1(n− 1, d, x).

Caterpillar tree T3(n, d, x, s) is illustrated by Figure 5 (vertex ui of the path P is in the
images denoted just by i in order to make labels easier to see).

a)

b)

Figure 5: Caterpillar graphs: a) T3(21, 6, 2, 0), b) T3(21, 6, 2, 1).
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Lemma 4.2. Let n, d, x and s be integers for which T3(n, d, x, s) is defined. Then

W (T3(n, d, x, s)) = W (B1(n− 1, d, x)) +
n2

4
− dn + 2d2 + 5d +

11

4
− 2x + 2s2.

Proof. Let k = (n−1)−(2d+1)−1
2 , x′ = −d− 1 +x. The definition of T3(n, d, x, s) implies

W (T3(n, d, x, s)) = W (B1(n− 1, d, x)) +

d∑
i=−d

(|s− i|+ 1)+

+

k−1∑
i=−(k−1)

(|s− i|+ 2) + (s− x′ + 2)+

+ (−x′ − s + 2).

Simplifying this expression yields the result.

As a direct consequence of Lemma 4.2 we obtain the following corollary.

Corollary 4.3. It holds that W (T3(n, d, x, 1)) = W (T3(n, d, x, 0)) + 2.

We now want to apply Theorem 2.4 to T3(n, d, x, s), i.e. we want to establish the value
of k in the case of this special graph.

Lemma 4.4. Let n, d, x and s be integers for which T3(n, d, x, s) is defined. For k =
1
2n−d−

5
2 the interval [W (T3(n, d, x, s)),W (T3(n, d, x, s))+4k2] is Wiener 4−complete.

Proof. Let us denote k1 = (n−1)−(2d+1)−1
2 . Note that k1 is half of the number of leaves

appended to the vertices u±j of the interior path of T3(n, d, x, s) for j = 0, . . . , k − 1.
Since s ≤ 1, note that the definition of T3(n, d, x, s) and Theorem 2.4 imply the result for
k = k1 − 1.

So, let us now establish for which values of d the gap between W (T3(n, d, x, s)) and
W (T3(n, d, x− 1, s)) is smaller than 4k2 where k = 1

2n− d− 5
2 .

Lemma 4.5. Let n, d, x ≥ 2 and s be integers for which T3(n, d, x, s) is defined. For
d ≤ 1

2 (n−
√

2n− 6− 5) the interval

[W (T3(n, d, x, s)),W (T3(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that

T3(n, d, x− 1, s)− T3(n, d, x, s) ≤ T3(n, d, 2, s)− T3(n, d, 1, s) =

= 2(n− 4) + 2.

Therefore, Lemma 4.4 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n− 4) + 2 where k = 1

2n− d− 5
2 . By a simple calculation it is easy to establish

that the inequality holds for d ≤ 1
2 (n−

√
2n− 6− 5) so the lemma is proved.
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Using Lemma 4.2 it is easy to establish that

W (T3(n, d, x− 1, s))−W (T3(n, d, x, s)) = 2(n− 2x + 1)

which is divisible by 4 since n is odd. Moreover, note that for xmax
3 = 4+4d−(n−1)

2 it holds
that

T3(n, d, xmax
3 , s) = T3(n, d− 1, 1, s).

Therefore we can use Lemma 4.5 and ”glue” together intervals both on the border between
x and x− 1 and on the border of d and d− 1, so we will obtain one large interval which is
Wiener 2−complete (because of Corollary 4.3).

Again, here we have used T3(n, d, x, s) to the maximum, but we have covered thus
only caterpillars with large d. Let us now use graph B2(n, d, x) to create the fourth special
kind of caterpillars which we will use to widen our interval to caterpillars with small d.

Definition 4.6. Let n, d and x be integers for which B2(n − 1, d, x) is defined. For s =
0, 1 caterpillar T4(n, d, x, s) is a caterpillar on odd number of vertices n, obtained from
B2(n−1, d, x) by appending a leaf to the vertex us of the path P = u−d . . . u−1u0u1 . . . ud

in B2(n− 1, d, x).

Caterpillar graph T3(n, d, x, s) is illustrated by Figure 6 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 6: Caterpillar graphs: a) T4(21, 4, 3, 0), b) T4(21, 4, 3, 1).

Lemma 4.7. Let n, d, x and s be integers for which T4(n, d, x, s) is defined. Then

W (T4(n, d, x, s)) = W (B2(n− 1, d, x)) + (2 + d)n− 2d2 − 3d− 1 + 2s2 − 2x.

Proof. Let k = d− 1 and r = (n−1)−4d−2x+2
2 . The definition of T4(n, d, x, s) implies

W (T4(n, d, x, s)) = W (B2(n− 1, d, x)) +

d∑
i=−d

(|s− i|+ 1)+

+

k−1∑
i=−(k−1)

(|s− i|+ 2) + (s− x′ + 2)+

+ 2x(d + 1) + 2r(d + 2).

Simplifying this expression yields the result.

Corollary 4.8. It holds that W (T4(n, d, x, 1)) = W (T4(n, d, x, 0)) + 2.
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Let us now apply Theorem 2.4 to T4(n, d, x, s).

Lemma 4.9. Let n, d, x and s be integers for which T4(n, d, x, s) is defined. For k = d−2
the interval [W (T4(n, d, x, s)),W (T4(n, d, x, s)) + 4k2] is Wiener 4−complete.

Proof. Let us denote k1 = d− 1. Note that k1 is half of the number of leaves appended to
the vertices u±j of the interior path of T3(n, d, x, s) for j = 0, . . . , k−1. Since s ≤ 1, note
that the definition of T4(n, d, x, s) and Theorem 2.4 imply the result for k = k1 − 1.

Now we can establish the minimum value of d for which the difference between Wiener
index of T4(n, d, x, s) and T4(n, d, x− 1, s) can be ”covered” by Transformation A.

Lemma 4.10. Let n, d, x ≥ 2 and s be integers for which T4(n, d, x, s) is defined. For
d ≥ 1

2 (
√

2n− 6 + 4) the interval

[W (T4(n, d, x, s)),W (T4(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that for xmax
4 = (n−1)−4d+2

2 it holds that

W (T4(n, d, x− 1, s))−W (T4(n, d, x, s))

≤W (T4(n, d, xmax
4 − 1, s))−W (T4(n, d, xmax

4 , s)) =

= 2(n− 4) + 2.

Therefore, Lemma 4.9 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n − 4) + 2 where k = d − 2. By a simple calculation it is easy to establish that
the inequality holds for d ≥ 1

2 (
√

2n− 6 + 4) so the lemma is proved.

Using Lemma 4.7 it is easy to establish that

W (T4(n, d, x− 1, s))−W (T4(n, d, x, s)) = 4(x + 2d− 2)

which is divisible by 4. Moreover, note that for xmax
4 = (n−1)−4d+2

2 it holds that

T4(n, d, xmax
4 , s) = T4(n, d− 1, 1, s).

Therefore we can use Lemma 4.10 and ”glue” together intervals both on the border between
x and x− 1 and on the border of d and d− 1, so we will obtain one large interval which is
Wiener 2−complete (because of Corollary 4.8).

Finally, noting that for dmin
3 =

⌈
n−3
4

⌉
, xmax

3 =
4+4dmin

3 −(n−1)
2 and dmax

4 =
⌊
n−1
4

⌋
it

holds that
T3(n, dmin

3 , xmax
3 , s) = T4(n, dmax

4 , 1, s),

we conclude that we can ”glue” together two large Wiener 2−complete intervals we ob-
tained (one for large values of d and the other for small values of d), and thus we obtain
the following theorem which gives us the largest Wiener 2−complete interval we manage
to obtain.
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Theorem 4.11. Let n ≥ 21, dmax
3 =

⌊
1
2 (n−

√
2n− 6− 5)

⌋
, dmin

4 =
⌈
1
2 (
√

2n− 6 + 4)
⌉

and xmax
4 =

(n−1)−4dmin
4 +2

2 . The interval

[W (T4(n, dmin
4 , xmax

4 , 1)),W (T3(n, dmax
3 , 1, 0))]

is Wiener 2−complete.

Having the largest Wiener 2−complete interval from the previous theorem, we can now
finally prove the following theorem which is our main result and which proves Conjectures
1.1 and 1.2 in terms of n3.

Theorem 4.12. For odd n ≥ 21 it holds that
∣∣W int[Tn]

∣∣ = |W [Tn]| = 1
12n

3 + O(n5/2).

Proof. Using Theorem 3.13 we obtain

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥ (W (T3(n, dmax
3 , 1, 0))−W (T4(n, dmin

4 , xmax
4 , 1)))/2

where dmax
3 = 1

2 (n −
√

2n− 6 − 5) − 1 + p, dmin
4 = 1

2 (
√

2n− 6 + 4) + q and xmax
4 =

(n−1)−4dmin
4 +2

2 for p ∈ 〈0, 1] and q ∈ [0, 1〉 . Now, using Lemmas 4.2 and 4.7 we further
obtain

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥ 1

12
n3 − 1

4

√
2n5 − 6n4 − 3

2
n2 +

5

3

√
2n3 − 6n2 +

+
83

12
n− 13

12

√
2n− 6− 253

12
.

On the other hand, Theorem 2.1 implies
∣∣W int[Tn]

∣∣ ≤ |W [Tn]| ≤ (W (Pn) −W (Sn) +
1)/2 = 1

12n
3 − 1

2n
2 + 11

12n.

Again, since caterpillars T3(n, d, x, s) are chemical trees for all possible values of pa-
rameters, and remain chemical after applying repeatedly Transformation A, half of these
results hold for chemical trees, i.e. we obtain the following corollary.

Corollary 4.13. Let T 4
n be a class of chemical trees on n vertices where n ≥ 21 is odd.

Then
∣∣W int[T 4

n ]
∣∣ =

∣∣W [T 4
n ]
∣∣ = Θ(n3).

Proof. Using Lemma 4.5 we obtain∣∣W [T 4
n ]
∣∣ ≥ ∣∣W int[T 4

n ]
∣∣ ≥ (W (T3(n, dmax

3 , 1, 0))−W (T3(n, dmin
3 , xmax

3 , 1)))/2

where dmin
3 = n−3

4 + p, xmax
3 =

4+4dmin
3 −(n−1)

2 and dmax
3 = 1

2 (n−
√

2n− 6− 5)− 1 + q
for p ∈ [0, 1〉 and q ∈ 〈0, 1] . Using Lemma 4.2 we further obtain∣∣W int[T 4

n ]
∣∣ ≥ 1

24
n3−1

8

√
2n5 − 6n4−11

16
n2+

5

6

√
2n3 − 6n2+

19

12
n−61

24

√
2n− 6−685

48
.

Again, this result for chemical trees is obtained by considering only chemical trees with
large diameter so it probably can be significantly improved, but we leave that as an open
problem for future research.
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5 Conclusion
In this paper we have proved that in the case of even n the cardinality of the largest interval
W int[Tn] of consecutive integers which are values of the Wiener index for a tree graph
on n vertices equals 1

6n
3 + O(n5/2). In the case of odd n the value of the Wiener index

for a tree on n vertices can be only even number, therefore the cardinality of the largest
interval W int[Tn] of consecutive even integers which are values of the Wiener index for a
tree graph on n vertices equals 1

12n
3+O(n5/2). Since the set W int[Tn] is a subset of the set

W [Tn] of all values of the Wiener index for trees on n vertices, this immediately yields the
same result on the cardinality of W [Tn]. The upper bound |W [Tn]| ≤ 1

6n
3−n2 + 11

6 n (i.e.
|W [Tn]| ≤ 1

12n
3− 1

2n
2 + 11

12n for odd n) is easily established by calculating the difference
of the value of the Wiener index for maximal and minimal tree graphs (the path Pn and
the star Sn respectively). Comparing this bound with our results it is readily seen that our
results are best possible with respect to n3. Yet, with respect to n2 the results are not so
good, because we obtained |W [Tn]| =

∣∣W int[Tn]
∣∣ = 1

6n
3 +O(n5/2) (i.e. 1

12n
3 +O(n5/2)

in the case of odd n). This may be due to the fact that in the paper we aimed at the bound
for
∣∣W int[Tn]

∣∣ and we stopped with our search when the interval was interrupted (when
the diameter of a tree became too small or too large). There is the possibility that the same
approach extended to the caterpillars of all diameters would yield sufficient improvement
on |W [Tn]| to reduce O(n5/2) to O(n2). But we leave that for future research.

Furthermore, in our research we focused only on caterpillar trees, so the obvious corol-
lary is that the same results hold in the narrower class of caterpillar trees. Half of the
caterpillars we used are chemical trees, which yields relatively strong result for the class
of chemical trees as a direct corollary. Also, we researched the caterpillars grouped by the
length of the interior path (which is nearly the diameter), so the results for trees with given
diameter would also follow easily though it is questionable how strong those results would
be. Researching the same question in the classes of trees with other given parameters might
also be interesting direction of future research.
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Abstract

We study the class of groups having the property that every non-nilpotent subgroup
is equal to its normalizer. These groups are either soluble or perfect. We describe solu-
ble groups and finite perfect groups with the above property. Furthermore, we give some
structural information in the infinite perfect case.

Keywords: Normalizer, non-nilpotent subgroup, self-normalizing subgroup.
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1 Introduction
A long standing problem posed by Y. Berkovich [3, Problem 9] is to study the finite p-
groups in which every non-abelian subgroup contains its centralizer.

In [6], the finite p-groups which have maximal class or exponent p and satisfy Berko-
vich’s condition are characterized. Furthermore, the infinite supersoluble groups with the
same condition are completely classified. Although it seems unlikely to be able to get a
full classification of finite p-groups in which every non-abelian subgroup contains its cen-
tralizer, Berkovich’s problem has been the starting point for a series of papers investigating
finite and infinite groups in which every subgroup belongs to a certain family or it contains
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its centralizer. For instance, in [7] and [9] locally finite or infinite supersoluble groups in
which every non-cyclic subgroup contains its centralizer are described.

A more accessible version of Berkovich’s problem has been proposed by P. Zalesskii,
who asked to classify the finite groups in which every non-abelian subgroup equals its
normalizer. This problem has been solved in [8].

In this paper we deal with the wider class S of groups in which every non-nilpotent
subgroup equals to its normalizer. All nilpotent groups (and hence all finite p-groups) are
in S. It is also easy to see that groups in S are either soluble or perfect. Further obvious
examples of groups in S include the minimal non-nilpotent groups (that is, non-nilpotent
groups in which every proper subgroup is nilpotent) and groups in which every subgroup
is self-normalizing. Finite minimal non-nilpotent groups are soluble, and their structure is
well known (see [18, 9.1.9]). Infinite minimal non-nilpotent groups have been first studied
in [14] (see also [4] for more recent results). These groups are either finitely generated or
locally finite p-groups (Černikov groups or Heineken-Mohamed groups). Ol’shanskii and
Rips (see [15]) showed that there exist finitely generated infinite simple groups all of whose
proper non-trivial subgroups are cyclic of the same order (the so-called Tarski monsters).
On the other side, groups whose non-trivial subgroups are self-normalizing are periodic
and simple. Furthermore, in the locally finite case they are trivial or of prime order. Again,
infinite examples are the Tarski p-groups.

We describe soluble groups lying in the class S. It turns out that an infinite polycyclic
group lies in the class S if and only if it is nilpotent (Proposition 3.3). We also prove that a
non-periodic soluble group belongs to the class S if and only if it is nilpotent (Theorem 3.4).
Moreover, a periodic soluble group which is not locally nilpotent lies in the class S if and
only if it is a split extension of a nilpotent p′-group by a cyclic p-group whose structure
is described in Theorem 3.5. In particular, this result characterizes non-nilpotent soluble
finite groups in the class S . Furthermore, a locally nilpotent soluble group belongs to the
class S if and only if it is either nilpotent or minimal non-nilpotent (Theorem 3.7).

In the last part of the paper we prove that a finite perfect group lies in the class S if and
only if it is either isomorphic to the group PSL2(2n) where 2n − 1 is a prime number, or
to the group SL2(5) (Theorem 4.8). Finally, we give some information on the structure of
infinite perfect groups lying in the class S .

Our notation is mostly standard (see for instance [3] and [18]). In particular, given any
group G, we will denote by Z(G) the center of G, by Z∞(G) the hypercenter of G, by
Φ(G) the Frattini subgroup ofG, byG′ the commutator subgroup ofG, and, for all integers
i ≥ 1, by γi(G) the i-th term of the lower central series of G.

2 General properties of groups in S
It is very easy to prove that the class S is subgroup and quotient closed. Furthermore,
non-nilpotent groups in S are not products of two proper normal subgroups.

Recall that a group G is said to be perfect if it equals its commutator subgroup G′.
Clearly, if G ∈ S then G is perfect or G′ is nilpotent. Hence the groups in S are either
perfect or soluble.

Suppose now that a cyclic group 〈x〉 acts on a group H by means of an automorphism
x. If a subgroup L of H is invariant with respect to 〈x〉, we will write L ≤x H . Consider
the induced map

ρx : H → H, ρx(h) = [x, h] = h−xh.
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Clearly, if H is abelian then ρx is a homomorphism. We will describe groups belonging to
the class S based on the following property of ρx:

∀K ≤x H, (∃n ≥ 1: ρnx(K) = 1 ∨ 〈ρx(K)〉 = K). (?)

Lemma 2.1. Let x act on H by means of an automorphism. Then for every K ≤x H we
have 〈ρx(K)〉K ′ = ρx(K)K ′.

Proof. Let h1, h2 ∈ K. Then [x, h1h2] = [x, h2][x, h1][x, h1, h2]. It follows that
ρx(h1h2) ≡ ρx(h1) ρx(h2) (mod K ′).

The following easy observations are used in the sequel.

Lemma 2.2. Let x act on H by means of an automorphism.

1. The action of x is fixed point free if and only if ρx is injective.

2. If ρx is injective and H is abelian, then (?) implies that ρx is an isomorphism.

3. If ρx is injective (or surjective) and H is finite, then ρx satisfies (?).

Proof. (i) Note that ρx is injective if and only if whenever [x, h] = 1 it follows that h = 1.
This is precisely the same as x acting fixed point freely on H .

(ii) Of course we can assume that H is non-trivial. If ρx is injective then there is no
positive integer n with the property that ρnx(K) = 1, and so (?) implies that 〈ρx(H)〉 = H .
If in addition H is abelian then ρx is a homomorphism, and hence 〈ρx(H)〉 = ρx(H).
Therefore ρx is an isomorphism.

(iii) If H is assumed to be finite, then ρx is injective if and only if it is surjective.
In this case ρx is bijective, and we have that ρx(K) = K for all K ≤x H . Thus ρx
satisfies (?).

Lemma 2.3. Let G = 〈x〉H , where H is a nilpotent normal subgroup of G generated by
a set Y . Suppose that there exists n ≥ 1 such that ρnx(y) = 1 for every y ∈ Y . Then G is
nilpotent.

Proof. By a theorem of Hall (see for instance [16, Theorem 2.27]) it suffices to show that
G/H ′ is nilpotent. The group H/H ′ is generated by all yH ′ with y ∈ Y and ρx induces
an endomorphism τ of H/H ′ such that τn(H/H ′) = 1. Now G/H ′ is nilpotent of class
at most n since H/H ′ ⊆ Zn(G/H ′).

Lemma 2.4. Let G = 〈x〉 nH be a non-nilpotent group where x has prime order p and
H is nilpotent. Assume that ρx has property (?) and suppose that there exists a subgroup
1 6= K ≤x H such that ρnx(K) = 1. Then Z(G) 6= 1.

Proof. As 〈x〉nK is nilpotent by Lemma 2.3, it has a non-trivial center. Thus there exists
an element 1 6= h ∈ CK(x). Now consider the group 〈x〉 n Z(H). By property (?), we
either have ρx(Z(H)) = Z(H) or there is a positive integer n such that ρnx(Z(H)) = 1. In
the latter case, we certainly have an element that belongs to Z(H) and commutes with x,
so that Z(G) 6= 1. Suppose now that ρx(Z(H)) = Z(H) holds. By property (?) we have

〈Z(H), h〉 = ρx(〈Z(H), h〉) = ρx(Z(H)) = Z(H),

and hence h ∈ Z(H). Thus we again have Z(G) 6= 1.
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The following proposition shows how property (?) is tightly related to the class S.

Proposition 2.5. Let G = 〈x〉nH be a group in S with xp acting trivially on a nilpotent
subgroup H for some prime p. Then ρx has property (?).

Proof. Let K ≤x H , and suppose 〈ρx(K)〉 ( K. Consider the subgroup

L = 〈x〉n 〈ρx(K)〉K ′

of G. As K is nilpotent, it follows that 〈ρx(K)〉K ′ ( K (see for instance [16, Lem-
ma 2.22]). Therefore L is a proper normal subgroup of 〈x〉 n K. Now, since 〈x〉 n K
belongs to S, it follows that its normal subgroup L must be nilpotent, and so ρnx(K) = 1
for some positive integer n. Therefore ρx has property (?).

Let p be any prime number. An abelian group A is said to be p-divisible if A = pA.

Lemma 2.6. Let x be an automorphism of order p of an abelian groupA. If ρx is surjective,
then A is p-divisible.

Proof. Consider A as a Z[〈x〉]-module. In this sense, the operator ρx corresponds to the
element 1 − x ∈ Z[〈x〉]. We have (1 − x)p ≡ 0 modulo pZ[〈x〉], and so the image of
(ρx)p is a subgroup of pZ[〈x〉]A = pA. As ρx is assumed to be surjective, it follows that
A = pA.

Lemma 2.7. Let G = 〈x〉 n H be a periodic non-nilpotent group with xp = 1 for some
prime p and H a nilpotent p′-group. Assume that ρx has property (?). Then every non-
nilpotent subgroup L ≤ G is conjugate to a subgroup of the form 〈x〉 n K for some
K ≤x H .

Proof. Since H is nilpotent, L is not contained in H . It easily follows that L contains an
element of the form xh for some h ∈ H . As G is non-nilpotent, it follows from property
(?) and Lemma 2.1 that

h ∈ H = 〈ρx(H)〉 ⊆ ρx(H)H ′.

Hence we can write h = ρx(h1)h′ with h1 ∈ H and h′ ∈ H ′. Thus xh = xh1h′.
After possibly replacing L by Lh−1

1 , we can assume that xh′ ∈ L for some h′ ∈ H ′.
As ρx has property (?), we have that either ρnx(H ′) = 1 for some positive integer n, or
〈ρx(H ′)〉 = H ′.

In the first case 〈x〉 n H ′ is nilpotent by Lemma 2.3. The subgroup 〈x, h′〉 is finitely
generated, periodic and nilpotent, therefore it is finite. Let c be its nilpotency class, and let
pk be the largest power of p that divides c!. Setm to be a positive solution to the congruence
system m ≡ 0

(
mod

|h′|c! exp(γ2(〈x, h′〉))
pk

)
m ≡ 1 (mod pk).

Thus m(m − 1) divisible by c!, m is divisible by exp(γ2(〈x, h′〉)) and by |h′|, and m is
coprime to p. In particular,

(
m
i

)
is divisible by exp(γ2(〈x, h′〉)) for all 1 ≤ i ≤ c. By the

Hall-Petrescu formula (see for instance [3, Appendix 1]) we get

(xh′)m = xmh′mg
(m

2 )
2 . . . g

(m
c )

c
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with gi ∈ γi(〈x, h′〉). By the choice of m, it follows that (xh′)m = xm. This element
belongs to L, and since x has p-power order, we conclude that x ∈ L.

Consider now the case when 〈ρx(H ′)〉 = H ′. Thus 〈x〉nH ′ is non-nilpotent, and we
can repeat the argument from above with H replaced by H ′. Since H is nilpotent, after
finitely many steps we find a conjugate of L that contains x. Replacing L by this conjugate
we can thus write L = 〈x〉nK for K = L ∩H ≤x H .

Proposition 2.8. Let G = 〈x〉 n H be a periodic group with xp acting trivially on a
nilpotent p′-group H for some prime p. Then G ∈ S if and only if ρx has property (?).

Proof. If G ∈ S, then ρx has property (?) by Lemma 2.5.
Conversely, assume now that ρx has property (?). To prove that G belongs to the class

S, take any non-nilpotent subgroup L of G. By Lemma 2.7, we can assume that L is of
the form L = 〈x〉 n K for some K ≤x H . Let us now show that L is self-normalizing
in G. To this end, take an element xjc ∈ NG(L). Then xx

jc = xc = x ρx(c), and so we
must have ρx(c) ∈ K. Furthermore, we also have that c = x−j(xjc) ∈ NH(K). Note that
〈ρ−1x (K) ∩NH(K)〉 ≤x H. It follows that

NG(L) = 〈x〉n 〈ρ−1x (K) ∩NH(K)〉.

Now, for any h1, h2 ∈ 〈ρ−1x (K) ∩NH(K)〉, we have that

ρx(h1h2) = ρx(h2) ρx(h1)[x, h1, h2] ∈ K ·K · [K,NH(K)] ⊆ K.

Therefore ρx maps 〈ρ−1x (K) ∩NH(K)〉 into K. Since NG(L) is not nilpotent, it follows
from property (?) that

〈ρ−1x (K) ∩NH(K)〉 = 〈ρx(〈ρ−1x (K) ∩NH(K)〉)〉 ⊆ K.

This implies NG(L) ≤ 〈x〉nK = L, as required.

Remark 2.9. Assume G = 〈x〉 n H with H an abelian finite group and x acting so that
xp acts trivially on H . Then G ∈ S if an only if ρx has property (?), which in this case is
equivalent by Lemma 2.2 to x acting fixed point freely on H . Confer [8, Theorem 2.13].

Remark 2.10. Let G be a periodic group in S with a splitting 〈x〉 n H , and assume that
xp = 1. It might not be the case that x acts fixed point freely on H (see Example 2.11).
In such a situation, we have CG(x) ∩H 6= 1. Therefore CH(x) is a subgroup of H with
ρx(CH(x)) = 1. It follows from Lemma 2.4 that Z(G) 6= 1. Now consider the factor
group 〈x〉nH/Z∞(G). This group is centerless, and so by the above argument x must act
fixed point freely on H/Z∞(G).

Example 2.11. Let x be the automorphism of the quaternion group Q8 given by

i 7→ j, j 7→ −k.

This is an automorphism of order 3. Form the semidirect productG = 〈x〉nQ8
∼= SL2(3).

It is readily verified that all proper subgroups of G are nilpotent, and so G ∈ S . Note that
x has a non-trivial fixed point on Q8, namely (−1)x = −1. So we have Z∞(G) = 〈−1〉
with G/〈−1〉 ∼= Alt(4), and x acts fixed point freely on Q8/〈−1〉 ∼= C2 × C2.
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3 Soluble groups in the class S
In this section, we inspect soluble groups in the class S. It turns out that the non-periodic
case is only possible if the group is nilpotent, whereas the periodic case is more subtle.

A Fitting group is one which equals its Fitting subgroup. Thus a Fitting group is a
product of nilpotent normal subgroups, and therefore it is locally nilpotent. If G ∈ S and
F denote the Fitting subgroup of G, then clearly G is a Fitting group or F is nilpotent.

Lemma 3.1. Let G ∈ S be a soluble group, and F the Fitting subgroup of G. Then the
following hold:

1. G′ ≤ F ;

2. G is a Fitting group or G/F has prime order;

3. if G/G′ is finitely generated then G is a Fitting group or G/G′ is cyclic of prime-
power order.

4. if G is non-nilpotent then the quotient group G/G′ is a locally cyclic p-group for
some prime p, and G′ = γ3(G).

Proof. Because G′ is normal in G and G is assumed to belong to S, it follows that G′ must
be nilpotent. Whence it is contained in the Fitting subgroup of G, proving (i).

Suppose now that G is not a Fitting group. Since G′ ≤ F by (i), the group G/F is
abelian. Let N/F be any proper subgroup of G/F . Then N is a proper normal subgroup
ofG, soN is nilpotent. ThusN ≤ F . ThereforeG/F has no proper non-trivial subgroups,
so it has prime order. Hence (ii) is proved.

In order to prove (iii), suppose that G/G′ is finitely generated and G is not a Fitting
group. Let M1/G

′ and M2/G
′ be maximal subgroups of G/G′. Since M1 and M2 are

proper normal subgroups of G, they are nilpotent and hence contained in F . If M1 6= M2

it follows that G = M1M2 ≤ F , a contradiction. This means that the finitely generated
group G/G′ has an unique maximal subgroup. Therefore G/G′ is cyclic of prime-power
order.

Finally assume G is non-nilpotent, and let H and K be proper normal subgroups of G.
Then H and K are nilpotent, hence HK is nilpotent and so HK 6= G. Thus (iv) follows
by [14, Theorem 2.12].

Proposition 3.2. Let G = 〈x〉 n A where A is non-periodic abelian, x acts fixed point
freely on A and xp acts trivially on A for some prime p. Then G does not lie in the class S.

Proof. Consider W = 〈x, y〉 with y ∈ A and of infinite order. The group W ∩A is abelian
and finitely generated, since there are only finitely many conjugates of y in W . So also the
torsion subgroup T of W ∩A has finite order, m say. Then (W ∩A)m is finitely generated
and torsion-free. By Lemma 2.6, the map ρx restriced to (W ∩A)m is not surjective. Since
x acts fixed point freely on A and therefore also on (W ∩A)m, the group 〈x〉n (W ∩A)m

is not nilpotent, and so ρnx((W ∩ A)m) 6= 1 for all integers n. Whence ρx restricted to
(W ∩ A)m does not have property (?). It follows from Proposition 2.5 that G does not
belong to the class S.

Recall that a group is called just-infinite if it is infinite, but each of its proper quotients
is finite. In particular a just-infinite group has no non-trivial finite normal subgroups. The
Baer radical of a group G is the subgroup generated by all the cyclic subnormal subgroups
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ofG. It has been proved in [19, Theorem 2] that ifG is a just-infinite group with non-trivial
Baer radical A then A is free abelian of finite rank and CG(A) = A.

Proposition 3.3. Every infinite polycyclic group in S is nilpotent.

Proof. Assume by a contradiction that the result is false, and let G ∈ S be an infinite
polycyclic group which is non-nilpotent. Then Lemma 3.1 (iii) ensures that G/G′ is cyclic
of prime-power order. It easily follows (see for instance [14, Corollary 2.11]) that G′ =
γ3(G).

Let consider the set F of all normal subgroups N of G such that G/N is infinite and
non-nilpotent. ThusF is not empty, as it contains the trivial subgroup. SinceG satisfies the
maximal condition on subgroups, there exists a maximal element M ∈ F . Hence G/M is
a non-nilpotent infinite polycyclic group in S. Moreover, if G/N is any infinite quotient of
G/M , then the maximality of M implies that either N = M or G/N is nilpotent. Suppose
the latter holds. Then there exists a positive integer t such that γt(G) ≤ N . Thus G′ ≤ N ,
a contradiction since G/G′ is finite. Therefore, at expense of replacing G by G/M , we
may assume that G is just-infinite.

Let F denote the Fitting subgroup of G. Thus F coincides with the Baer radical of
G. Then F is free abelian of finite rank by [19, Theorem 2]. Furthermore, by Lemma 3.1
(ii) we may assume that G/F has prime order p. Hence, for all x ∈ G \ F we can write
G = 〈x〉F with x /∈ F and xp ∈ F . We claim that F/CF (x) is torsion-free. Indeed,
suppose a ∈ F \ CF (x) with an ∈ CF (x) for some integer n. Thus (an)x = an. Since F
is abelian it follows that (axa−1)n = 1. Hence n = 0 since F is normal and torsion-free.
Therefore F/CF (x) is torsion-free, as claimed. Thus G/CF (x) is infinite, which implies
that CF (x) = 1. Hence x acts fixed point freely on F . By Proposition 3.2, the group G
does not belong to the class S, our final contradiction.

Theorem 3.4. A non-periodic soluble group belongs to the class S if and only if it is
nilpotent.

Proof. Clearly, if G is nilpotent then G ∈ S.
Conversely, let G ∈ S be a non-periodic soluble group, and assume that G is non-

nilpotent. Let us first prove that in this case G is locally nilpotent.
By assumption, there exists a finitely generated infinite subgroup ofG, sayH . LetK be

any finitely generated subgroup of G. Then the subgroup J = 〈K,H〉 is finitely generated
and infinite. Assume that J is non-nilpotent. Then its Fitting subgroup F is nilpotent,
and J/F has prime order by Lemma 3.1 (ii). Hence J is polycyclic, a contradiction by
Proposition 3.3. Thus J is nilpotent, and so is K. Therefore G is locally nilpotent. Then
by Lemma 3.1 (iv) the quotient group G/G′ is a p-group for some prime p.

Assume now that G is torsion-free. Since G′ is nilpotent and G/G′ is periodic, it
follows by [17, Lemma 6.33] that G is nilpotent, again a contradiction.

We are left with the case when the torsion subgroup T ofG is non-trivial. SinceG/T is
a torsion-free soluble group belonging to the class S, it is nilpotent by the above. As G/G′

is a p-group it follows that the quotient group (G/T )/(G/T )′ is a p-group. HenceG/T is a
p-group (see for instance [18, 5.2.6]). Therefore G is periodic, our final contradiction.

Next two results give a complete description of periodic soluble groups in S . In partic-
ular, our next theorem characterizes finite soluble non-nilpotent groups in S.
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Theorem 3.5. Let G be a periodic soluble group, and assume that G is not locally nilpo-
tent. Then G ∈ S if and only if G splits as G = 〈x〉nH , where 〈x〉 is a p-group for some
prime p, H is a nilpotent p′-group, xp acts trivially on H and ρx has property (?).

Proof. If G splits according to the above statement, then it follows from Propostion 2.8
that G belongs to the class S.

Assume now that G ∈ S . Let x be an element of G that does not belong to the Fitting
subgroup F . Then xp ∈ F for some prime p, by Lemma 3.1. After possibly replacing x
by one of its powers, we can assume that the order of x is a power pm of p. As G is not a
Fitting group, we have that F is nilpotent. Hence F is a product of its Sylow subgroups, say
F =

∏
q Sq . Note that there is at least one prime q 6= p involved: otherwise F is a p-group,

hence G is a p-group, but this yields that G is locally nilpotent since it is locally finite, a
contradiction. The Sylow subgroups of F are all characteristic in F , so the conjugation
action of x preserves them. Therefore x acts component-wise on F .

Note that xp ∈ Sp. Consider the subgroup P = 〈x, Sp〉. Clearly, P is a p-group.
Assume that P 6= 〈x〉, and choose an element y ∈ P \ 〈x〉. Set

J =
〈
x, y, yx, yx

2

, . . . , yx
pm−1

〉
.

Since J is a finite p-group, and 〈x〉 6= J , it follows that

〈x〉 ( NJ(〈x〉) ⊆ NP (〈x〉).

Hence there exists an element z ∈ NP (〈x〉) \ 〈x〉. Thus G contains the subgroup 〈x〉 n∏
q 6=p Sq that is not self-normalizing. By assumption, this subgroup must be nilpotent.

Since x acts component-wise on F , it follows that G itself should be nilpotent. This is a
contradiction, from which it follows that P = 〈x〉, and so Sp = 〈xp〉. This immediately
implies that G splits as G = 〈x〉nH with x acting component-wise on H =

∏
q 6=p Sq .

Since xp ∈ F , it commutes with all the q-Sylow subgroups of F for q 6= p. As the
p-Sylow subgroup Sp is cyclic, it follows that xp ∈ Z(G).

Finally, letK ≤x H with ρnx(K) 6= 1 for all integers n. Therefore the group 〈x〉nK is
non-nilpotent. Consider the group 〈x〉n 〈ρx(K)〉K ′. It is a normal subgroup of 〈x〉nK,
so it must either be equal to 〈x〉nK, or else it is nilpotent. The latter case implies that the
group 〈x, ρx(K)〉 is nilpotent, which gives that ρnx(K) = 1 for some n, a contradiction.
Hence we get that 〈ρx(K)〉K ′ = K, and sinceK is nilpotent, it follows that 〈ρx(K)〉 = K.
Thus ρx has property (?).

Corollary 3.6. Let n > 2. The dihedral group Dih(n) of order 2n belongs to S if and
only if either n is a power of 2 or n is odd.

Theorem 3.7. A locally nilpotent soluble group lies in the class S if and only if it is either
nilpotent or minimal non-nilpotent.

Proof. Clearly, nilpotent and minimal non-nilpotent groups belong to the class S.
Let G ∈ S be a periodic soluble group which is locally nilpotent, and assume that G is

non-nilpotent. We will prove thatG is minimal non-nilpotent. For the sake of contradiction,
assume that there exists a proper non-nilpotent subgroup H of G. Let B be the last term
of the derived series of G which is not contained in H . Then HB has the proper non-
nilpotent subgroup H . Hence without loss of generality we may assume that G = HB.



C. Delizia et al.: Groups in which every non-nilpotent subgroup is self-normalizing 47

Put L = B∩H . Then B′ ≤ L, so L is normal in B. Obviously L is normal in H , thus L is
normal in G. The normal series L < B < G can be refined to a (general) principal series
of G (see for instance [18, 12.4.1]). Let W/V be any factor of this principal series with
W ≤ B. As G is locally nilpotent, the principal factor W/V is central (see for instance
[18, 12.1.6]). Hence [W,G] ≤ V . This implies that W ≤ NG(HV ) = HV . Therefore

W = W ∩HV = (W ∩H)V ≤ LV = V.

This means L = B, a contradiction, and that proves our result.

Corollary 3.8. A locally nilpotent soluble group lying in the class S is nilpotent or a p-
group for some prime p.

Proof. Let G ∈ S be a locally nilpotent soluble periodic group, and assume that G is
non-nilpotent. Then by Theorem 3.7 the group G is minimal non-nilpotent, and the result
follows by [14, Lemma 4.2].

4 Perfect groups in the class S
Lemma 4.1. Let G ∈ S be a finite perfect group, and let F denote its Fitting subgroup.
Then G/F is a non-abelian simple group.

Proof. If there is a proper normal subgroup F ≤M < G, then M must be nilpotent since
G ∈ S, and so M = F . Thus G/F is simple. As G is also assumed to be perfect, G/F is
non-abelian.

We first classify the finite simple groups in S. This is done with the help of the follow-
ing lemma.

Lemma 4.2. Let G be a finite simple group. Then G belongs to S if and only if all of its
maximal subgroups belong to S .

Proof. Assume that all maximal subgroups of a finite simple group G belong to S, and let
H be a non-nilpotent proper subgroup of G. As G is simple, we have NG(H) < G, and so
there is a maximal subgroup M ≤ G with NG(H) ≤M . Since M belongs to S, it follows
that NG(H) = NM (H) = H , as required.

Lemma 4.3. The group PSL2(q) belongs to S if and only if q = 2n with q− 1 a prime, or
q ≤ 5.

Proof. Suppose that PSL2(q) belongs to S with q > 5, and assume first that q is odd.
This group contains dihedral subgroups of orders (q − 1)/2 and (q + 1)/2 by [10]. Unless
q = 7, at least one of these does not belong to S by Corollary 3.6. Note that PSL2(7) has
a subgroup isomorphic to Sym(4), so it does not belong to S. Whence we can assume that
q = 2n for some n ≥ 3. Now PSL2(q) contains a diagonal torus of order q−1 acting fixed
point freely on the unipotent subgroup of order q. It follows from Lemma 3.1 that the torus
must be simple, and so q−1 is either trivial or a prime, as required. Finally, it follows from
[8, Theorem 2.17] that such groups indeed belong to S.

Proposition 4.4. A finite non-abelian simple group belongs to S if and only if it is isomor-
phic to PSL2(2n), where 2n − 1 is a prime.
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Proof. We reduce the situation to the case of Lemma 4.3 by using Lemma 4.2.

• Alternating groups. It may be verified readily that Alt(n) belongs to S if and only
n = 5, since Sym(4) is contained in Alt(n) for every n ≥ 6.

• Linear groups PSLn(q). If n = 2, this case is covered by Lemma 4.3. If n ≥ 3, then
there is a block embedding of SL2(q) into PSLn(q). The image of this subgroup is
normalized by the class of a diagonal matrix of the form diag(α, β, γ, 1, . . . , 1). As
long as α 6= β, this diagonal matrix does not belong to the image of the embedding
of SL2(q), and so PSLn(q) does not belong to S. The only exceptional case is when
|F×q | = 1, i.e., q = 2, in which case either n = 3 or PSLn(2) contains SL3(2) via a
block diagonal embedding. Both of these groups quotient onto PSL3(2) ∼= PSL2(7),
which does not belong to S.

• Symplectic groups PSp2n(q). If n = 1, then PSp2(q) ∼= PSL2(q) and this is covered
above. Now let n > 1. Letting W be a maximal isotropic subspace of the 2n-
dimensional vector space on which Sp2n(q) acts, the stabilizer of the decomposition
W ⊕W⊥ is GLn(q) o C2, and so PSp2n(q) contains PGLn(q) o C2. Therefore
these groups do not belong to S.

• Unitary groups and orthogonal groups. Their associated root systems contain a
subsystem of type A2, and so they contain subgroups that are isomorphic to either
SL3(q) or PSL3(q). None of these belong to S by above. See [2].

• Exceptional Chevalley groups. We have an inclusion

G2(q) ⊂ F4(q) ⊂ E6(q) ⊂ E7(q) ⊂ E8(q),

and the list of maximal subgroups of G2(q) in [20, p. 127] shows that G2(q), and
hence all of the above groups, does not belong to S.

• Steinberg groups 2E6(q2) and 3D4(q3). By [20, Theorem 4.3], the group 3D4(q3)
has a maximal subgroup which is isomorphic to G2(q3), hence it is not in S by the
above. Similarly, F4(q2) embeds into 2E6(q2) by [20, p. 173], hence the latter is not
in S .

• Suzuki groups Sz(q). By [20, Theorem 4.1], these contain Frobenius groups
Cq+

√
2q+1 n C4 whose Fitting subgroups are of index 4. Such groups do not be-

long to S by Lemma 3.1.

• Ree families. By [20, Theorem 4.2], 2 × PSL3(2n+ 1) is a maximal subgroup
of 2G2(32n+1), and Sz(22n+1) o 2 is a maximal subgroup of 2F4(22n+1) by [20,
Theorem 4.5]. For the remaining case, 2F4(2)′, we use ATLAS [5] to conclude that
this group contains Sym(6).

• Sporadic groups. Inspection of ATLAS reveals that each of 26 sporadic groups has
a maximal subgroup which is clearly not in S.

To deal with perfect finite groups in S, we make use of the theory of Schur covering
groups. In particular, we will require the following.

Theorem 4.5 (Hauptsatz 23.5 of [11]). Let G be a finite group and suppose there is an
extension

1→ K → E → G→ 1

with the property that K ≤ Z(E) ∩ E′. Then K embeds into the Schur multiplier M(G).
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Proposition 4.6. Let G ∈ S be a perfect non-simple finite group, and let F denote its
Fitting subgroup. Assume that the group G/F contains two elements a and b of distinct
prime orders with the additional property that NG/F (〈a〉) ) 〈a〉 and NG/F (〈b〉) ) 〈b〉.
Then the group Sp/Φ(Sp) embeds into the Schur multiplier M(G/F ), for every p-Sylow
subgroup Sp of F .

Remark 4.7. It is easy to find such elements a, b for the simple groups PSL2(2n) that
appear in Proposition 4.4. One can take a to be an involution (normalized by the Sylow
2-subgroup of order 2n) and b a diagonal matrix of order q − 1 (normalized by the class of
the flip ( 0 1

1 0 )).

Proof. The group F is nilpotent, so we can write F =
∏

q Sq where Sq is a q-group. Now
fix a prime p and consider G1 = G/

∏
q 6=p Sq . The Fitting subgroup of G1 is isomorphic

to Sp. Further, consider the group G2 = G1/Φ(Sp). The Fitting subgroup F2 of G2 is an
elementary abelian p-group, and G2 belongs to the class S .

Write S = G/F . Then S is simple by Lemma 4.1. The group G2 acts on its sub-
group F2 by conjugation. There is thus an induced homomorphism G2 → Aut(F2). This
homomorphism factors through F2, so we get a homomorphism

ψ : S ∼= G2/F2 → Aut(F2).

As S is a simple group, we have that either ψ is injective or trivial. Let us show that ψ must
be trivial.

For the sake of contradiction, assume that kerψ = 1. Since F2 is a p-group, at least one
of the elements a, b from the statement of the proposition has order coprime to p. Without
loss of generality, assume this element is a. Now consider the group H = 〈a, F2〉 ≤ G2.
By our assumption on the element a, the group H is not self-normalized in G2. But it is
also not nilpotent. Indeed, the element a acts nontrivially on F2 because ψ is an embedding
of S into Aut(F2). The order of a is coprime to p, so ψ restricted to 〈a〉 is a completely
reducible representation of 〈a〉 on theGF (p)-vector space F2. This representation splits as
a sum of 1-dimensional representations, and so a is a diagonalizable element in the image
of ψ. Being non-trivial, we can not have that ψ(a) − I is a nilpotent matrix, and so the
group H can not be nilpotent. This leads to a contradiciton with the fact that G2 ∈ S.

We therefore have that ψ is trivial, and so S acts trivially on F2. This means that
F2 is central in G2. Since G2 is also assumed to be perfect, the extension 1 → F2 →
G2 → S → 1 has the property that F2 ≤ Z(G2) ∩ G′2. It follows from Theorem 4.5 that
F2
∼= Sp/Φ(Sp) embeds into M(S).

Our next result, together with Proposition 4.4, gives a complete classification of all
finite perfect groups in S.

Theorem 4.8. A finite perfect group G belongs to the class S if and only if it is either
isomorphic to PSL2(2n) where 2n − 1 is a prime, or to SL2(5).

Proof. The Fitting quotient of G is a finite simple group belonging to S, so it must be
one of the PSL’s appearing in Proposition 4.4. Note that we have M(PSL2(4)) ∼= C2

and all the other PSL’s have trivial Schur multipliers. Therefore the only possibility for
a non-simple perfect group G in S is a group whose Fitting quotient is PSL2(4). Such
a group must have F a 2-group with cyclic Frattini quotient, so F itself is cyclic. But
now as G/F acts trivially on the Frattini quotient of F , it follows that the image of the
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homomorphism G/F → Aut(F ) is a p-group [12, Exercise 4.4]. Since G/F is a non-
abelian simple group, this implies that G/F must act trivially even on F . Hence F is
central inG. This implies thatG is a Schur covering extensions ofG/F by F , so it follows
that |F | = |M(PSL2(4))| = 2 and G ∼= SL2(5).

Now we deal with infinite perfect groups in the class S.

Lemma 4.9. Let G be a perfect group lying in the class S. Then G is simple if and only if
its Fitting subgroup is trivial.

Proof. Let F denote the Fitting subgroup of G. First suppose G is simple. If G = F then
G is nilpotent, a contradiction since G is perfect. Therefore F = 1. Now suppose F = 1,
and let N be any proper normal subgroup of G. Since G ∈ S, the subgroup N is nilpotent,
so N ≤ F . Therefore N = 1, and G is simple.

Lemma 4.10. An infinite perfect group lying in the class S cannot be a Fitting group.

Proof. Let G ∈ S be an infinite perfect group, and suppose that G is a Fitting group.
The group G cannot be minimal non-nilpotent by (see [4, Proposition 144] and [1, Corol-
lary 1.4]), so there exists a proper non-nilpotent subgroup H of G. Choose x ∈ G \ H .
Since G is generated by its nilpotent normal subgroups, there exists a normal subgroup N
of G such that N is nilpotent and x ∈ N . Hence N 6⊆ H . Let B be the last term of the
derived series of N which is not contained in H . Put K = HB. Then K ∈ S is locally
nilpotent and non-nilpotent. Put L = B ∩ H . Thus L is normal in K, and the normal
series L < B < K can be refined to a (general) principal series of K. As in the proof of
Theorem 3.7, all factors of this principal series which lie between L and B are trivial. This
means L = B, a contradiction.

Note that the above shows that the finiteness hypothesis in Lemma 4.1 may be omitted.

Proposition 4.11. Let G ∈ S be a perfect group, and let F denote its Fitting subgroup.
Then G/F is a non-abelian simple group.

Proof. By Lemma 4.1 we may assume that G is infinite. Moreover, by Lemmas 4.9 and
4.10 we may assume that F is a non-trivial proper subgroup of G. Clearly F is infinite and
contains all proper normal subgroups of G.

We leave it as an open problem whether or not there exist infinite perfect groups in S
which are not simple. Note that, if such a group G is locally graded and finitely gener-
ated, then G/F is still locally graded (see for instance [13]), and hence it has to be finite.
Therefore, by Proposition 4.4, G/F is isomorphic to PSL2(2n), where 2n − 1 is a prime.
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Abstract

Symmetric graphs of valencies 3, 4 and 5 and square-free order have been classified in
the literature. In this paper, we will present a complete classification of symmetric graphs
of square-free order and any prime valency which admit a soluble arc-transitive group, and
a complete classification of 7-valent symmetric graphs of square-free order.
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1 Introduction
Throughout the paper, graphs considered are assumed to be undirected and simple with
valency at least three.

For a graph Γ , denote by V Γ andAΓ the vertex set and arc set of Γ respectively, denote
by AutΓ the full automorphism group of Γ , and denote by Γ (α) the set of neighbors of a
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vertex α in Γ . Then Γ is calledX-vertex-transitive orX-arc-transitive, withX ≤ AutΓ , if
X is transitive on V Γ orAΓ respectively. An arc-transitive graph is also called a symmetric
graph. In particular, Γ is called arc-regular if AutΓ is regular on AΓ .

For a positive integer s, an s-arc of a graph Γ is a sequence v0, v1, . . . , vs of s + 1
vertices such that vi−1, vi are adjacent for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1.
If Γ has an s-arc and X ≤ AutΓ is transitive on the set of s-arcs of Γ , then Γ is called
(X, s)-arc-transitive. If Γ is (AutΓ , s)-arc-transitive but not (AutΓ , s+ 1)-arc-transitive,
then Γ is simply called s-transitive.

Characterizing symmetric graphs was initiated by a nice result of Tutte (1949) which
says that there exists no s-arc-transitive cubic graph with s ≥ 6. This result was generalized
by Weiss [27] who proved that there is no s-arc-transitive graph with s ≥ 8 of valency at
least 3. Since then, studying transitive graphs has been one of the main topics in algebraic
graph theory, and numerous results have been obtained. In particular, transitive graphs
of square-free order (not divisible by the square of a prime) have received considerable
attention; for example, symmetric graphs of valencies 3, 4 and 5 and square-free order
have been classified by [16, 17] and [6] respectively, and arc-regular graphs of square-free
order and prime valency have been determined by [9]. The main purpose of this paper
is to give a complete classification of symmetric graphs of square-free order and prime
valency admitting a soluble arc-transitive group, and a complete classification of 7-valent
symmetric graphs of square-free order.

The terminology and notation used in this paper are standard. For example, we denote
by J1 the Janko simple group, by HS the Higman-Sims simple group, and by Mn, with
n = 11, 12, 22, 23, 24, the five Mathieu simple groups. For a positive integer m, denote
by Am and Sm the alternating group and symmetric group of degree m, and by Zm,Fm
and Dm (with m even) the cyclic group, Frobenius group and dihedral group of order m
respectively. Given two groups N and H , denote by N × H the direct product of N and
H , by N.H an extension of N by H , and if such an extension is split, then we write N :H
instead of N.H .

A graph Γ is called a Cayley graph if there exists a group G and a subset S ⊆ G \ {1}
with S = S−1: = {s−1 | s ∈ S} such that the vertex set V Γ = G and a vertex x is adjacent
to a vertex y if and only if yx−1 ∈ S. This Cayley graph is denoted by Cay(G,S). The
following Cayley graphs of dihedral groups give rise to an infinite family of prime-valent
symmetric graphs, where the first two letters ‘CD’ of the name of the graph CD2m,p,k

stand for ‘Cayley graph of a dihedral group’.

Example 1.1. Let G = 〈a, b | am = b2 = 1, ab = a−1〉 ∼= D2m with m a positive integer,
and let p be an odd prime and k a solution of the equation

xp−1 + xp−2 + · · ·+ x+ 1 ≡ 0 (mod m).

Set
CD2m,p,k = Cay(G, {b, ab, ak+1b, . . . , ak

p−2+kp−3+···+k+1b}).

The following theorem determines the prime-valent symmetric graphs of square-free
order which admit a soluble arc-transitive automorphism group. We remark that cubic
graphs which admit a soluble edge-transitive or arc-transitive automorphism group have
been characterized by [20] and [8], respectively.
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Theorem 1.2. Let Γ be a connected p-valent symmetric graph of square-free order n with
p an odd prime, and suppose that Γ admits a soluble arc-transitive automorphism group
G. Then either

(1) Γ ∼= Kp,p, and G ∼= (((Zp : Zl1)× (Zp : Zl2)).Zr).Z2 ≤ Sp o Z2, where lir | p− 1
for i = 1, 2; or

(2) Γ ∼= CDn,p,k, n = 2 · psp1p2 · · · pt and G = AutΓ ∼= Dn:Zp, where 0 ≤ s ≤ 1,
t ≥ 1, and p1, p2, . . . , pt are distinct primes such that p | pi − 1 for i = 1, 2, . . . , t.
Further, there are exactly (p− 1)t−1 non-isomorphic such graphs of order n.

The next theorem present a complete classification of 7-valent symmetric graphs of
square-free order, where the graph C330 in Table 1 is introduced in Example 3.2 for conve-
nience.

Theorem 1.3. Let Γ be a connected 7-valent symmetric graph of square-free order n. Then
one of the following statements holds.

(1) Γ ∼= CDn,7,k, and the tuple (n,AutΓ ) is as in part (2) of Theorem 1.2 with p = 7.

(2) The triple (Γ , n,AutΓ ) lies in Table 1.

(3) AutΓ ∼= PSL(2, p) or PGL(2, p), where p ≥ 13 is a prime such that p(p2 − 1) |
225 · 34 · 52 · 7n.

Table 1: Two ‘sporadic’ 7-valent symmetric graphs

Row Γ n AutΓ (AutΓ )α Transitivity Remark

1 K7,7 14 S7 o Z2 S7.S6 3-transitive bipartite
2 C330 330 M22.Z2 Z4

2 : SL(3, 2) 2-transitive not bipartite

Remark 1.4. Graphs appearing in part (3) of Theorem 1.3 can be expressed as coset graphs
of PSL(2, p) or PGL(2, p) (refer to [10] for the definition of the coset graph). However,
it seems infeasible to determine all the possible values of p (and so the corresponding
symmetric graphs Γ ) for general square-free integer n.

2 Preliminaries
In this section, we introduce some preliminary results that will be used later.

For a group G with a subgroup H , let CG(H) and NG(H) denote the centralizer and
normalizer of H in G, respectively.

Lemma 2.1 ([14, Ch. I, Lemma 4.5]). Let G be a group and H a subgroup of G. Then
NG(H)/CG(H) . Aut(H).

For a groupG, the largest nilpotent normal subgroup ofG is called the Fitting subgroup
of G. Clearly, the Fitting subgroup is a characteristic subgroup. The next lemma gives a
property of the Fitting subgroup of soluble groups.

Lemma 2.2 ([26, P. 30, Corollary]). Let F be the Fitting subgroup of a soluble group G.
Then F 6= 1 and CG(F ) ≤ F .
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The maximal subgroups of the simple group PSL(2, q) are known, see [5, Section 239].

Lemma 2.3. Let T = PSL(2, q), where q = pn ≥ 5 with p a prime. Then a maximal
subgroup of T is isomorphic to one of the following groups, where d = (2, p− 1).

(1) D 2(q−1)
d

, where q 6= 5, 7, 9, 11;

(2) D 2(q+1)
d

, where q 6= 7, 9;

(3) Znp : Z q−1
d

;

(4) A4, where q = 5, or q = p ≡ 3, 13, 27, 37 (mod 40);

(5) S4, where q = p ≡ ±1 (mod 8);

(6) A5, where q = p ≡ ±1 (mod 5), or q = p2 ≡ −1 (mod 5) with p an odd prime;

(7) PSL(2, r), where q = rm with m an odd prime;

(8) PGL(2, r), where q = r2.

By [2, Theorem 2], one may easily derive the maximal subgroups of PGL(2, p).

Lemma 2.4. Let T = PGL(2, p) with p ≥ 5 a prime. Then a maximal subgroup of T is
isomorphic to one of the following groups:

(1) Zp : Zp−1;

(2) D2(p+1);

(3) D2(p−1), where p ≥ 7;

(4) S4, where p ≡ ±3 (mod 8);

(5) PSL(2, p).

A group G is called perfect if G = G′, the commutator subgroup; and an extension
G = N.H is called a central extension if N ⊆ Z(G), the center of G. If a group G is
perfect and G/Z(G) is isomorphic to a simple group T , then G is called a covering group
of T . Schur [25] showed that a simple (and, more generally, perfect) group T possesses a
universal covering groupGwith the property that every covering group of T is a homomor-
phic image of G, in this case, the center Z(G) is called the Schur multiplier of T , denoted
by Mult(T ), see [12, P. 43]. The Schur multipliers of nonabelian simple groups are known
(see [12, P. 302]), and the following lemma is easy to prove (see [23, Lemma 2.11]).

Lemma 2.5. LetG = N.T , whereN is a cyclic group and T is a nonabelian simple group.
Then G = N.T is a central extension. Further, G = NG′ and G′ = M.T , where M is
contained in G′ ∩N and is isomorphic to a subgroup of Mult(T ).

The following lemma characterizes the vertex stabilizers of 7-valent symmetric graphs,
see [13, Theorem 1.1].

Lemma 2.6. Let Γ be a connected 7-valent (X, s)-arc-transitive graph, whereX ≤ AutΓ
and s ≥ 1. Then one of the following holds, where α ∈ V Γ .

(1) If Xα is soluble, then s ≤ 3 and |Xα| | 252. Further, the couple (s,Xα) is listed in
Table 2.
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Table 2: Soluble vertex-stabilizers of 7-valent-symmetric graphs.

s 1 2 3

Xα Z7,D14,F21,D14 × Z2, AGL(1, 7),AGL(1, 7)× Z2, AGL(1, 7)× Z6

F21 × Z3 AGL(1, 7)× Z3

Table 3: Insoluble vertex-stabilizers of 7-valent symmetric graphs.

s 2 3

Xα PSL(3, 2),ASL(3, 2), PSL(3, 2)×S4,A7×A6,

ASL(3, 2)×Z2,A7,S7 S7×S6, (A7×A6):Z2,

Z6
2:(SL(2, 2)×SL(3, 2)),

Z20
2 :(SL(2, 2)×SL(3, 2))

|Xα| 23·3·7, 26·3·7, 26·32·7, 26·34·52·7,
27·3·7, 23·32·5·7, 24·32·5·7 28·34·52·7, 27·34·52·7,

210·32·7, 224·32·7

(2) If Xα is insoluble, then |Xα| | 224 · 34 · 52 · 7. Further, the couple (s,Xα) lies in
Table 3.

Analyzing a graph in terms of its normal quotients is a typical method for studying
vertex-transitive graphs. Let Γ be an X-vertex-transitive graph with X ≤ AutΓ , and
suppose that X has a normal subgroup N which is intransitive on V Γ . Denote by V ΓN
the set of all N -orbits on V Γ . Then the normal quotient graph ΓN of Γ induced by N
is defined as the graph with vertex set V ΓN , and B is adjacent to C in ΓN if and only if
there exist vertices β ∈ B and γ ∈ C such that β is adjacent to γ in Γ . In particular, if for
any adjacent vertices B and C in V ΓN , the induced subgraph [B,C] ∼= mK2 is a perfect
matching, wherem = |B| = |C|, then Γ is called a regular cover (or normal cover) of ΓN .

The following theorem gives a basic reduction method for studying vertex-transitive
locally primitive graphs (see [18, Lemma 2.5]), which slightly improves a nice result of
Praeger [24, Theorem 4.1]. Recall that, a graph Γ is calledX-locally primitive if the vertex
stabilizer Xα acts primitively on the neighbour set Γ (α) for each α ∈ V Γ . Obviously,
symmetric graphs with odd prime valency are locally primitive.

Theorem 2.7. Let Γ be an X-vertex-transitive locally primitive graph, where X ≤ AutΓ ,
and let N CX have at least three orbits on V Γ . Then the following statements hold.

(i) N is semi-regular on V Γ , X/N ≤ AutΓN , and Γ is a regular N -cover of ΓN ;

(ii) Xα
∼= (X/N)γ , where α ∈ V Γ and γ ∈ V ΓN ;

(iii) Γ is (X, s)-arc-transitive if and only if ΓN is (X/N, s)-arc-transitive, where
1 ≤ s ≤ 5 or s = 7.

Symmetric graphs of prime-valency and order twice a prime are known, see [3].

Lemma 2.8. Let Γ be a connected symmetric graph of odd prime valency p and order 2r
with r a prime. Then one of the following statements holds.
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(1) Γ ∼= O2 and AutΓ ∼= S5;

(2) Γ ∼= K2r with p = 2r − 1, and AutΓ ∼= S2r;

(3) Γ ∼= Kr,r with p = r, and AutΓ ∼= Sr o S2;

(4) Γ ∼= CD2r,p,k (which, up to isomorphism, is independent of the choice of k in this
case), where p | r − 1, and one of the following statements holds.

(i) (r, p) = (7, 3) and AutΓ ∼= PGL(2, 7);
(ii) (r, p) = (11, 5) and AutΓ ∼= PGL(2, 11);

(iii) (r, p) 6= (7, 3) and (11, 5), and AutΓ ∼= D2r : Zp.

Lemma 2.9 ([19, Theorem 1.1]). Let Γ be a connected 7-valent symmetric graph of order
2pq with p > q odd primes. Then one of the following holds:

(1) AutΓ ∼= PSL(2, p) with p ≥ 13;

(2) q = 7 or 7 | p− 1, 7 | q − 1, and Γ ∼= CD2pq,7,k (as in Example 1.1).

3 A lemma and an example
In this section, we give a technical lemma and introduce an example appearing in Theo-
rem 1.3.

The following is an assertion regarding simple groups, its proof depends on the classi-
fication of simple groups, see [12, P. 134-136].

Lemma 3.1. Let m be an odd square-free integer with at least three prime factors, and let
T be a nonabelian simple group such that 28m | |T | and |T | | 225 · 34 · 52 · 7m. Then the
couple (T, |T |) is listed in Table 4, where p in part 4 is the largest prime factor of m and
p ≥ 13.

Proof. If T is a sporadic simple group, by [12, P. 135-136], T = M22, M23, M24, J1, HS
or Ru, as in part 1 of Table 4. If T = An is an alternating group, since 36 does not divide
|T | and 36 | |A15|, we have n ≤ 14, it then easily follows that T = A11, A12, A13 or A14,
as in part 2 of Table 4.

Now, suppose that T is a simple group of Lie type defined on the re-elements field
GF(re), where r is a prime. If T is of exceptional Lie type, by [12, P. 135], T ∼= Sz(512)
or 3D4(2), as listed in part 3 of Table 4. Consider the case where T is of classical Lie type.
Since re | |T |, we have that e = 1 if r > 7, and e ≤ 2 if r = 7, by [12, P. 135], which
give rise to examples T = PSL(2, p) with p ≥ 13 a prime (noting that PSL(2, p) with
p = 5, 7, 11 does not satisfy the hypothesis of Lemma 3.1) and T = PSL(2, 49). If r = 5,
as 54 6 | |T |, we conclude from [12, P. 135] that T = PSL(2, 125). For the case where r ≤ 3,
since 36, 54 and 73 do not divide |T |, by [12, P. 135] and with the help of Magma [1], we
conclude that T is isomorphic to one of the groups listed in part 4 of Table 4.

Given a permutation group G, a direct computation by Magma program [1] can deter-
mine all orbital graphs of G (see [7, P. 66] for the definition of orbital graph), or in other
words, can determine all symmetric graphs which admit G as an arc-transitive automor-
phism group. It is then easy to have the following example.

Example 3.2. There is a unique connected 7-valent symmetric graph of order 330, denoted
by C330, which admits M22 or M22.Z2 as an arc-transitive automorphism group. The graph
C330 satisfies the conditions in Row 2 of Table 1.
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Table 4: Nonabelian simple groups T with 28m | |T | and |T | | 225 · 34 · 52 · 7m.

Part T |T |
1 M22 27·32·5·7·11

M23 27·32·5·7·11·23
M24 210·33·5·7·11·23
J1 23·3·5·7·11·19
HS 29·32·53·7·11
Ru 214·33·53·7·13·29

2 A11 27·34·52·7·11
A12 29·35·52·7·11
A13 29·35·52·7·11·13
A14 210·35·52·72·11·13

3 Sz(512) 218·5·7·13·37·73·109
3D4(2) 212·34·72·13

4 PSL(2, p) p(p2 − 1)/2

PSL(2, 49) 24·3·52·72
PSL(2, 125) 22·32·53·7·31
PSL(2, 26) 26·32·5·7·13
PSL(2, 29) 29·33·7·19·73
PSL(2, 212) 212·32·5·7·13·17·241
PSL(2, 215) 215·32·7·11·31·151·331
PSL(2, 218) 218·33·5·7·13·19·37·73·109
PSL(2, 221) 221·32·72·43·127·337·5419
PSL(2, 224) 224·32·5·7·13·17·97·241·257·673
PSL(3, 8) 29·32·72·73
PSL(3, 16) 212·32·52·7·13·17
PSL(3, 64) 218·34·5·72·13·19·73
PSL(4, 4) 212·34·52·7·17
PSL(5, 2) 210·32·5·7·31
PSL(5, 4) 220·35·52·7·11·17·31
PSL(6, 2) 215·34·5·72·31
PSL(7, 2) 221·34·5·72·31·127
PSp(6, 4) 218·34·53·7·13·17
PSp(8, 2) 216·35·52·7·17
PSp(4, 8) 212·34·5·72·13
PΩ(7, 4) 218·34·53·7·13·17
PΩ(9, 2) 216·35·52·7·17
PΩ+(10, 2) 220·35·52·7·17·31
PΩ−(8, 2) 212·34·5·7·17
PΩ−(8, 4) 224·34·53·7·13·17·257
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4 Proof of Theorem 1.2
In this section, we prove Theorem 1.2 which in particular gives a partial proof of Theo-
rem 1.3.

Let Γ be a connected symmetric graph of odd prime valency p and square-free order n,
and let G be a soluble arc-transitive automorphism group of Γ . Since Γ is of odd valency,
n is even. Set n = 2p1p2 · · · pt, with p1, p2, . . . , pt distinct odd primes.

If t = 1, by Lemma 2.8, Γ ∼= CD2p1,p,k (as in part (2) of Theorem 1.2) or Γ ∼= Kp,p.
If Γ ∼= Kp,p, then G ≤ AutΓ ∼= Sp o Z2, as G is arc-transitive on Γ , Z2

p CG and G 6⊆S2
p, it

is then routine to show that G ∼= (((Zp : Zl1)× (Zp : Zl2)).Zr).Z2, where lir | p− 1 for
i = 1, 2, as in part (1) of Theorem 1.2.

Suppose t ≥ 2 in the following. Let F be the Fitting subgroup of G. By Lemma 2.2,
F 6= 1. As |V Γ | = 2p1p2 · · · pt, G has no nontrivial normal Sylow a-subgroup, where
a 6∈ {2, p1, p2, . . . , pt} is a prime, hence

F = O2(G)×Op1(G)× · · · ×Opt(G),

where O2(G) and Opi(G) with i = 1, 2, . . . , t denote the largest normal 2- and pi-
subgroups of G, respectively.

For each prime q ∈ {2, p1, p2, . . . , pt}, since t ≥ 2, Oq(G) has at least six orbits on
V Γ , by Theorem 2.7, Oq(G) is semi-regular on V Γ , so is F and Oq(G) ≤ Zq . Hence
F ≤ Zn is cyclic and CG(F ) = F by Lemma 2.2.

If F is transitive on V Γ , then F ∼= Zn is regular on V Γ and Γ is a Cayley graph of F .
Set Γ = Cay(F, S), where S = S−1 ⊆ F \ {1} with size |S| = p. Since F C G, by [11,
Lemma 2.9], G ≤ F :Aut(F, S), so G1 ≤ Aut(F, S) ≤ Aut(F ) is transitive on Γ (1) = S,
where 1 denotes the vertex of Γ corresponding to the identity element of F , thus elements
in S have the same order, say h. Clearly, h 6= 2 as F has a unique involution. If h > 2, as
S = S−1, |S| is even, which is a contradiction.

If F has at least three orbits on V Γ , then Theorem 2.7 implies that the normal quotient
graph ΓF is G/F -arc-transitive; however, by Lemma 2.2, G/F = G/CG(F ) ≤ Aut(F )
is abelian, it forces that G/F is regular on V ΓF , and so G/F is not transitive on AΓ , also
yielding a contradiction.

Thus, F has exactly two orbits on V Γ , and F ∼= Zn
2

. Because t ≥ 2, F has a nontrivial
normal subgroup K ∼= Zp2p3...pt . Since K C G has 2p1 orbits on V Γ , by Theorem 2.7,
ΓK is a G/K-arc-transitive graph of valency p and order 2p1, and Γ is a regular K-cover
of ΓK . Such covers have been classified by [21, Theorem 1.1], hence the triple (Γ ,K,ΓK)
(as (Γ ,Zn,Σ ) there) satisfies parts (1)–(5) of [21, Theorem 1.1]. Since |K| 6= 2, parts
(1)–(3) are impossible. For part (4), since n is square-free, p1 6 | |K|, by [22, Theorem
1.1], Γ ∼= CDn,p,k. For part (5), noting that p1 6 | |K|, part (5)(ii) is not possible, we also
have Γ ∼= CDn,p,k. Finally, the last statement in part (2) of Theorem 1.2 is true by [9,
Theorem 3.1]. This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3
We will prove Theorem 1.3 in this final section.

Let Γ be a connected 7-valent symmetric graph of square-free order n. Since Γ is of
odd valency, n is even, so we may write

n := 2m = 2p1p2 . . . pt,



J. Pan et al.: On prime-valent symmetric graphs of square-free order 61

where p1, p2, . . . , pt are distinct odd primes. Let A = AutΓ .

Lemma 5.1. If t ≤ 2, then Theorem 1.3 is true.

Proof. If t = 1, by Lemma 2.8, Γ ∼= CD2p1,7,k (as in part (1) of Theorem 1.3), or Γ ∼=
K7,7 (as in Row 1 of Table 1).

If t = 2, by Lemma 2.9, Γ ∼= CD2p1p2,7,k (as in part (1) of Theorem 1.3), or A ∼=
PSL(2, p) or PGL(2, p) with p ≥ 13 a prime, satisfying part (3) of Theorem 1.3.

Thus, assume t ≥ 3 in the following, and assume inductively that Theorem 1.3 is
true for the graph which satisfies assumption of Theorem 1.3 and is of order less than n.
Let α ∈ V Γ . By Lemma 2.6, |Aα| | 224 · 34 · 52 · 7, hence |A| = |Aα||V Γ | divides
225 · 34 · 52 · 7m. Let R be the soluble radical of A, that is, the largest soluble normal
subgroup of A. Obviously, the soluble radical of A/R equals 1.

The next lemma treats the case R = 1.

Lemma 5.2. Suppose R = 1 and t ≥ 3. Then either AutΓ ∼= PSL(2, p) or PGL(2, p) with
p ≥ 13 a prime such that p(p2 − 1) | 225 · 34 · 52 · 7n, as in part (2) of Theorem 1.3; or
Γ ∼= C330 and AutΓ ∼= M22.2, as in Row 2 of Table 1.

Proof. Let N be a minimal normal subgroup of A, and let C = CA(N). Since R = 1,
N = T d and |N | = |T |d divides 225 · 34 · 52 · 7m, where T is a nonabelian simple group
and d ≥ 1.

Claim 1. C = 1.
Assume, on the contrary, C 6= 1. Then C is insoluble asR = 1. If C is semi-regular on

V Γ , then |C| | n, so C is of square-free order and hence soluble, which is a contradiction.
Thus Cα 6= 1. Since Γ is connected and C C A, we have 1 6= C

Γ(α)
α C A

Γ(α)
α , so 7 | |Cα|.

Arguing similarly, one may have 7 | |Nα|. Now, since N ∩C = 1, 〈N,C〉 = N ×C C A,
so Nα × Cα C Aα, hence 72 | |Aα|, which is a contradiction by Lemma 2.6. Therefore,
C = 1.

Claim 2. A is almost simple and the tuple (T, |T |) is listed in Table 4.
As discussed above, 7 | |Nα|. Then by Theorem 2.7, N has at most two orbits on V Γ ,

hence m divides |N : Nα|, we further conclude that 7m | |N |, 7 | |T | and m | |T |.
Without a loss of generality, let pt be the largest prime dividing n. As t ≥ 3, pt ≥ 7,

and as md = (p1p2 · · · pt)d divides 225 · 34 · 52 · 7p1p2 · · · pt, we have d ≤ 2. If d = 2, the
only possibility is t = 3 andm = 3 ·5 ·7, so |T |2 | 225 ·35 ·53 ·72, hence |T | | 212 ·32 ·5 ·7;
recall that m | |T |, by [15, Theorem III], T ∼= Al with l = 7 or 8, and N ∼= A2

l . By
Claim 1, C = 1, then Lemma 2.1 implies A = A/C . Aut(N) ∼= Sl o Z2, and as N ∼= A2

l

is a minimal normal subgroup of A, we conclude that A ∼= Al o Z2, (Al o Z2).Z2 or Sl o Z2.
Since |Aα| = |A|

210 , a direct computation by Magma [1] shows that no graph Γ exists in this
case, a contradiction. Thus, d = 1 and N = T , and by Lemma 2.1, A ≤ Aut(T ) is almost
simple. Recall that |T | divides 225 · 34 · 52 · 7m and 7m divides |T |, and noting that 4 | |T |
as T is nonabelian simple, we have 28m | |T |. By Lemma 3.1, the couple (T, |T |) is listed
in Table 4.

Now, we will analyse all the candidates of T in Table 4, thus proving Lemma 5.2.
Recall that n = 2m and |T : Tα| = m or 2m. Denote by Out(T ) the outer automorphism
group of T .
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Assume T ∼= PSL(2, p) with p ≥ 13 a prime. Then p(p2− 1) | 225 · 34 · 52 · 7n, and as
Out(T ) ∼= Z2 (see [12, P. 135]), we have A ∼= PSL(2, p) or PGL(2, p), the lemma is true.

Assume T ∼= M22. Then m = 3 · 5 · 11 = 165 and n = 330. Since Out(M22) ∼= Z2,
A ∼= M22 or M22.Z2. By Example 3.2, Γ ∼= C330, satisfying the conditions in Row 2 of
Table 1.

Assume T ∼= M23. Thenm = 3 ·11 ·23, 5 ·11 ·23 or 3 ·5 ·11 ·23. Since Out(M23) = 1,
A = T ∼= M23 and so |T : Tα| = 2m = 1518, 2530 or 7590. However, by [4], M23 has no
subgroup with index 1518, 2530 or 7590, a contradiction.

Assume T ∼= J1. Then m = 627, 1045 or 3135. Since Out(J1) = 1, we have A = T
and |T : Tα| = 2m = 1254, 2090 or 6270. By [4], J1 has no subgroup with index
1254, 2090 or 6270, which is a contradiction.

Suppose T ∼= A12. Then m = 165 and |T : Tα| = 165 or 330. By [4], A12 has no
subgroup with index 165 or 330, yielding a contradiction.

Suppose T ∼= PSL(2, 49). Then m = 105 and |T : Tα| = 105 or 210, it follows
|Tα| = 560 or 280 respectively. By Lemma 2.3, PSL(2, 49) has no subgroup with order
560 or 280, a contradiction.

Suppose T ∼= PSL(2, 224). Then Out(T ) ∼= Z24 by [12, P. 135], it follows A ∼=
PSL(2, 224).Zr with r | 24, and |A| = 224·32·5·7·13·17·97·241·257·673r. Hence m =
3·13·17·97·241·257·673, 5·13·17·97·241·257·673 or 3·5·13·17·97·241·257·673. For the
first case, |Aα| = 223·3·5·7r, which is impossible by Lemma 2.6. For the second case,
|Aα| = 223·32·7r, by Lemma 2.6, the only possibility is r = 2 and Aα ∼= Z20

2 : (SL(2, 2)×
SL(3, 2)); for the last case, we have |Aα| = 223·3·7r, by Lemma 2.6, the only possibility is
r = 6 and Aα ∼= Z20

2 : (SL(2, 2)×SL(3, 2)). However, by Lemma 2.3, both PSL(2, 224).Z2

and PSL(2, 224).Z6 have no subgroup isomorphic to Z20
2 : (SL(2, 2)× SL(3, 2)), which is

a contradiction.
Suppose T ∼= 3D4(2). Since Out(T ) ∼= Z3 (see [4]), A ∼= 3D4(2) or 3D4(2).Z3,

and so |A| = 212·34·72·13 or 212·35·72·13 respectively, implying m = 3·7·13. Now,
|Aα| = |A|

2m = 211·33·7 or 211·34·7, which is impossible by Lemma 2.6.
Arguing similarly as above, one may prove that no graph Γ exists for all other candi-

dates for T in Table 4 (the results have been checked by Magma [1]).

We finally consider the case where A is insoluble and R 6= 1 by the following lemma.

Lemma 5.3. Suppose that A is insoluble, R 6= 1 and t ≥ 3. Then no graph Γ exists.

Proof. Let M be a minimal soluble normal subgroup of A. Then M ∼= Zdr , where r is
a prime and d ≥ 1. Since t ≥ 3, M has at least 2 · 3 · 5 = 30 orbits on V Γ , so, by
Theorem 2.7, M is semi-regular on V Γ (so d = 1 and r ∈ {2, p1, p2, . . . , pt}), ΓM is a
7-valent A/M -arc-transitive graph of order 2m

r , and Γ is an arc-transitive regular Zr-cover
of ΓM .

If r = 2, then ΓM is arc-transitive of odd order m and odd valency 7, which is impos-
sible.

Thus, r = pi with i ∈ {1, 2, . . . , t}, and ΓM is a 7-valent A/M -arc-transitive graph of
order 2m

pi
. Recall that we assume by inductive hypothesis that Theorem 1.3 is true for all

graphs which satisfy the assumptions of Theorem 1.3 and are of order less than n, so ΓM
satisfies Theorem 1.3. Noting that A is insoluble and M is soluble, A/M is insoluble, so is
Aut(ΓM ). Then, checking the graphs in Theorem 1.3, we conclude that the soluble radical
of Aut(ΓM ) equals 1, and one of the following holds:
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(1) ΓM ∼= C330 and Aut(ΓM ) ∼= M22.Z2;

(2) Aut(ΓM ) ∼= PSL(2, p) or PGL(2, p) with p ≥ 13 a prime and t ≥ 3.

Since A/M acts arc-transitively on ΓM , we have 7|V ΓM | divides |A/M |.
For case (1), then |V ΓM | = 330, and 7 · 330 = 2310 divides |A/M |, since A/M ≤

M22.Z2, by [4], we have A/M ∼= M22 or M22.Z2. Let X be a normal subgroup of A such
that X ∼= M.M22

∼= Zr.M22. Since (r, |V ΓM |) = (r, 330) = 1, we have r 6= 2 and 3.
Then, as |Mult(M22)| = 12 (see [4]), Lemma 2.5 implies X ∼= Zr ×M22 and X ′ ∼= M22.
Since |X ′| = |M22| does not divide |V Γ |, X ′ C A is not semi-regular on V Γ , and X ′ has
at most two orbits on V Γ by Theorem 2.7. Because Γ is connected and 1 6= X ′α C Aα,
1 6= (X ′α)

Γ(α) C A
Γ(α)
α , it follows 7 | |X ′α|. Hence r divides |X

′|
7 = 27 · 32 · 5 · 11, which

is a contradiction as (r, |V ΓM |) = (r, 330) = 1.
We next consider case (2). Since A/M is insoluble and 7 | |A/M |, by Lemma 2.4,

A/M ∼= PSL(2, p) or PGL(2, p). Let B/M C A/M such that B/M ∼= PSL(2, p). Since
Mult(PSL(2, p)) ∼= Z2 (see [12, P. 302]) and r ≥ 3, Lemma 2.5 implies that B′ ∼=
PSL(2, p) and B = M × B′. Since B,B′ C A are insoluble, both B and B′ have at
most two orbits on V Γ . In particular, m divides |B′|.

If r > 7, since |A| divides 225 · 34 · 52 · 7m, and |B| = |M ×B′| = r|B′| divides |A|,
we have r 6 | |B′|, which is a contradiction to m dividing |B′|.

Assume r = 7. Since Γ is connected and 1 6= B′α C Aα, we have 7 | |B′α|. Then,
as |B′:B′α| = m or 2m is divisible by 7, we further conclude that 72 divides |B′| =
|B/M |. However, since |B/M :(B/M)δ| = m

7 or 2m
7 , which is not divisible by 7, we have

72 | |(B/M)δ|, so 72 | |(A/M)δ|, which is a contradiction by Lemma 2.6.
Assume finally r = 3 or 5. Since B/M ∼= B′ has at most two orbits on V ΓN , and B′

has at most two orbits on V Γ , we have |B/M :(B/M)δ| = m
r or 2m

r , and |B′:B′α| = m or
2m. It follows that r | |(B/M)δ| and so r | |(A/M)δ|. Also, as A/M acts arc-transitively
on ΓM , 7 | |(A/M)δ|, hence 7r | |(A/M)δ|. Suppose r = 3. If (A/M)δ is soluble, then
(A/M)δ is listed in part (1) of Lemma 2.6, and as 21 | |(A/M)δ|, we have (A/M)δ ≥ F21;
however, since A/M ≤ PGL(2, p) and p 6= 7, by Lemma 2.4, PGL(2, p) has no soluble
subgroup containing a subgroup isomorphic to F21, a contradiction. If (A/M)δ is insoluble,
noting that A/M ≤ PGL(2, p), we have (A/M)δ ∼= PSL(2, p) or A5. For the first case,
|V ΓM | = |A/M :(A/M)δ| = 2, which is impossible. For the latter case, 76 | |(A/M)δ|,
also a contradiction. Suppose now r = 5. Then 35 | |(A/M)δ|, and Lemma 2.6 implies
that (A/M)δ is insoluble, so (A/M)δ ∼= PSL(2, p) or A5 as A/M ≤ PGL(2, p). Now, the
same arguments as above draw a contradiction.

Theorem 1.3 now follows directly from Theorem 1.2 and Lemmas 5.1–5.3.
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Abstract

We classify the regular toroidal hypertopes of rank 4. Their automorphism groups are
the quotients of infinite irreducible Coxeter groups of euclidean type with 4 generators. We
also prove that there are no toroidal chiral hypertopes of rank 4.

Keywords: Regularity, chirality, toroidal, thin geometries, hypermaps, abstract polytopes.
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1 Introduction
A toroidal polytope is an abstract polytope that can be seen as a tessellation on a torus.
By abstract polytope we mean a combinatorial structure resembling a classical polytope
described by incidence relationships. Highly symmetric types of these polytopes are well
known and understood, in particular the regular and chiral toroidal polytopes have been
classified for rank 3 by Coxeter in 1948 [5], see also [6], and for any rank by McMullen
and Schulte [10]. Regular toroidal polytopes and also regular toroidal hypertopes, which
we define below, are strongly related to a special class of Coxeter groups, the infinite irre-
ducible Coxeter groups of euclidean type which are also known as affine Coxeter groups
(see, for example [11, page 73]). The symmetry groups of regular tessellations of euclidean
space are precisely the affine Coxeter groups with string diagrams (see [11, Theorem 3B5]).

When we talk about a tessellation we mean, informally, a locally finite collection of
polytopes which cover En in a face-to-face manner. A toroidal polytope can then be seen
as a "quotient" of a tessellation by linearly independent translations. For a precise definition
of a toroidal polytope see [8]. The concept of a hypertope has recently been introduced by
Fernandes, Leemans and Weiss (see [7]). A hypertope can be seen as a generalization of
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a polytope. Or, from another perspective, as a generalization of a hypermap. For more
infomation on hypermaps see [4]. In this paper we will classify the rank 4 regular toroidal
hypertopes.

Each affine Coxeter group in rank 4 (which are usually denoted by C̃3, B̃3 and Ã3),
as we shall see, can be associated with the group C̃3 = [4, 3, 4], the symmetry group of
the cubic tessellation of E3. The Coxeter Complex, denoted by C, of C̃3 can be seen as
the simplicial complex obtained by the barycentric subdivision of the cubic tessellation
{4, 3, 4}. The Coxeter complex for the other two rank 4 affine Coxeter groups can be
obtained by doubling the rank 3 simplicies for B̃3 and quadrupling them for Ã3. For
details on the construction of C see [9, Section 6.5] or [11, Section 3B]. We note that C
partitions E3.

A regular toroidal hypertope (see Section 2 for a precise definition) can be seen as
a quotient C/ΛI by a normal subgroup of translations, denoted ΛI where I represents
a generating set identifying the normal subgroup. In particular the quotient induced by
a normal subgroup of translations in the string affine Coxeter group C̃3 yields the three
families of regular rank 4 toroidal polytopes, while the other two affine Coxeter groups
with non-string diagrams do not yield regular polytopes, but as we shall see below, regular
hypertopes.

2 C-groups and hypertopes
Details of the concepts we review here are given in [7] and [11]. A C-group of rank p is a
pair (G,S) such thatG is a group and S = {r0, . . . , rp−1} is a generating set of involutions
of G that satisfy the following property:

∀I, J ⊆ {0, . . . , p− 1}, 〈ri : i ∈ I〉 ∩ 〈rj : j ∈ J〉 = 〈rk : k ∈ I ∩ J〉.

This is known as the intersection property which will be referred to later.
A subgroup ofG generated by a subset of S is called a parabolic subgroup. A parabolic

subgroup generated by a single element of S is called minimal and a parabolic subgroup
generated by all but one element of S is called maximal. For J ⊆ {0, . . . , p−1}, we define
GJ := 〈rj : j ∈ J〉 and Gi := 〈rj : rj ∈ S, rj 6= ri〉.

A C-group is a string C-Group if (rirj)
2 = 1G for all i, j with |i− j| > 1. A Coxeter

diagram C(G,S) of a C-group (G,S) is a graph whose vertex set is S and two vertices, ri
and rj are joined by an edge labelled by o(rirj), the order of rirj . We use the convention
that if an edge is labeled 2 it is dropped and not labeled if the order of the product of the
corresponding generators is 3. Thus the Coxeter diagram of a string C-group is a string.

Affine Coxeter groups are C-groups and those with string diagrams are associated with
toroidal polytopes. Hypertopes are generalizations of polytopes and we can, however, find
toroidal hypertopes whose automorphism groups are quotients of any affine Coxeter group.
We start with the definition of an incidence system.

Definition 2.1. An incidence system Γ := (X, ∗, t, I) is a 4-tuple such that

• X is a set whose elements are called elements of Γ;

• I is a set whose elements are called types of Γ;

• t : X → I is a type function that associates to each element x ∈ X of Γ a type
t(x) ∈ I;
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• ∗ is a binary relation of X called incidence, that is reflexive, symmetric and such that
for all x, y ∈ X , if x ∗ y and t(x) = t(y) then x = y.

A flag is a set of pairwise incident elements of Γ and the type of a flag F is {t(x) : x ∈
F}. A chamber is a flag of type I . An element x is said to be incident to a flag F when x
is incident to all elements of F and we write x ∗ F .

Definition 2.2. An incidence geometry is an incidence system Γ where every flag is con-
tained in a chamber. The rank of Γ is the cardinality of I .

Let Γ := (X, ∗, t, I) be an incidence system and F a flag of Γ. The residue of F in Γ
is the incidence system ΓF := (XF , ∗F , tF , IF ) where

• XF := (x ∈ F : x ∗ F, x /∈ F );

• IF := I\t(F );

• tF and ∗F are the restrictions of t and ∗ to XF and IF .

If each residue of rank at least 2 of Γ has a connected incidence graph then Γ is said to
be residually connected. Γ is thin when every residue of rank 1 contains exactly 2 elements.

Furthermore, Γ is chamber-connected when for each pair of chambers C and C ′, there
exists a sequence of chambers C =: C0, C1, . . . , Cn := C ′ such that |Ci∩Ci+1| = |I|−1
(here we say that Ci and Ci+1 are adjacent). An incidence system is strongly chamber-
connected when all of its residues of rank at least 2 are chamber-connected.

Proposition 2.3 ([7, Proposition 2.1]). Let Γ be a thin incidence geometry. Then Γ is
residually connected if and only if Γ is strongly chamber-connected.

A hypertope is a strongly chamber-connected thin incidence geometry. To reinforce the
relationship between polytopes and hypertopes we will sometimes refer to the elements of
a hypertope Γ as hyperfaces of Γ, and elements of type I as hyperfaces of type I.

Let Γ := (X, ∗, t, I) be an incidence system. An automorphism of Γ is a mapping
α : (X, I)→ (X, I) : (x, t(x)) 7→ (α(x), t(x)) where

• α is a bijection on X inducing a bijection on I;

• for each x, y ∈ X,x ∗ y if and only if α(x) ∗ α(y);

• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

An automorphism α is type-preserving when, for each x ∈ X, t(α(x)) = t(x). We de-
note by Aut(Γ) the group of automorphisms of Γ and by AutI(Γ) is the group of type-
preserving automorphisms of Γ.

An incidence system Γ is flag transitive if AutI(Γ) is transitive on all flags of type J
for each J ⊆ I . It is chamber-transitive if AutI(Γ) is transitive on all chambers of Γ.
Furthermore, it is regular if the action of AutI(Γ) is semi-regular and transitive.

Proposition 2.4 ([7, Proposition 2.2]). Let Γ be an incidence geometry. Γ is chamber-
transitive if and only if it is flag-transtive.

A regular hypertope is a flag transitive hypertope. We note that every abstract regular
polytope is a regular hypertope. The last concept we introduce here before we construct all
rank 4 regular toroidal hypertopes is that of coset geometries.
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Proposition 2.5 ([14]). Let p be a positive integer and I := {1, . . . , p} a finite set. Let G
be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all cosets
Gig, g ∈ G, i ∈ I and t : X → I defined by t(Gig) = i. Define an incidence relation ∗ on
X ×X by :

Gig2 ∗Gjg2 if and only if Gig1 ∩Gjg2 is non-empty in G.

Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. Moreover, the
group G acts by right multiplication as a group of type-preserving automorphisms of Γ.
Finally, the group G is transitive on the flags of rank less than 3.

Whenever Γ is constructed as in the above proposition it is written as Γ(G; (Gi)i∈I)
and if it is an incidence geometry it is called a coset geometry. If G acts transitively on all
chambers of Γ (thus also flags of any type) we say that G is flag transitive on Γ or that Γ is
flag transitive.

Now we note that we can construct a coset geometry Γ(G; (Gi)i∈I) using a C-group
(G,S) or rank p by setting Gi := 〈rj : rj ∈ S, j ∈ I\{i}〉 for all i ∈ I := {0, . . . , p− 1}.

We introduce the following proposition which lets us know that constructions we use
produce regular hypertopes.

Proposition 2.6 ([7, Theorem 4.6]). Let (G, {r0, . . . , rp−1}) be a C-group of rank p and
let Γ := Γ(G; (Gi)i∈I) withGi := 〈rj : rj ∈ S, j ∈ I\{i}〉 for all i ∈ I := {0, . . . , p−1}.
If Γ is flag transitive, then Γ is a regular hypertope.

Henceforth, we restrict our considerations to rank 4. Let G = 〈r0, r1, r2, r3〉 be an
affine Coxeter group where each ri is a reflection through an associated affine hyperplane,
Hi. Let C be the Coxeter complex of G formed from the hyperplanes H ′is. Here r1, r2 and
r3 will stabilize a point which, without loss of generality, can be assumed to be the origin
o in E3. Then the maximal parabolic subgroup G0 is a finite crystallographic subgroup,
which is a group that leaves a central point fixed. For details, see [3, pages 108–109]. The
normal vectors to the reflection planes of the generators ofG0 are called the fundamental
roots. The images of the fundamental roots under G0 form a root system for G0.

The lattice, Λ, generated by the root system is called the root lattice, and the funda-
mental roots form the integral basis for Λ. The region enclosed by the fundamental roots
is called the fundamental region. This lattice gives us (and can be identified with) the
translation subgroup T ≤ G generated by the root lattice of G0, note that G = G0 o T
[3]. For convenience we identify the translations with its vectors in addition a lattice also
corresponds with its generating translation.

If I is a set of linearly independent translations in T , and let TI ≤ T be the subgroup
generated by I . Then the sublattice ΛI ≤ Λ is the lattice induced by oTI , the orbit of the
origin under TI . We note that C is a regular hypertope and each simplex in C represents
a chamber where each vertex of the simplex is an element of a different type. In rank 4,
when the quotient C/ΛI is a regular hypertope, we say it is a regular toroidal hypertope
of rank 4. C/ΛI is a regular hypertope (and thus a regular toroidal hypertope) when ΛI

is large enough to ensure the corresponding group satisfies the intersection condition and
when ΛI invariant under G0, i.e. riΛIri = ΛI for i = 1, 2, 3. It is important to note that,
in addition to denoting a lattice, ΛI is also denotes a set of vectors as well as a translation
subgroup of G along those vectors. If I consists of all permutations and changes in sign of
the coordinates of some vector s then we will write Λs.
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3 Toroidal polytopes constructed from the group C̃3 = [4, 3, 4]

We begin, necessarily, with generating regular toroidal hypertopes (or, in this case, poly-
topes) whose automorphism groups are quotients of the group C̃3, the affine Coxeter Group
[4, 3, 4]. As generators of [4, 3, 4] we take ρ1, ρ2, ρ3 to be reflections in the hyperplanes
with normal vectors (1,−1, 0), (0, 1,−1), (0, 0, 1) respectively, and ρ0 the reflection in the
plane through (1/2, 0, 0) with normal vector (1, 0, 0) (see Figure 1). Then,

(x, y, z)ρ0 = (1− x, y, z),
(x, y, z)ρ1 = (y, x, z), (3.1)
(x, y, z)ρ2 = (x, z, y),

(x, y, z)ρ3 = (x, y,−z).

Figure 1: Fundamental simplex of [4, 3, 4].

In this case, the construction described in Section 2 will yield the regular polytopes
since [4, 3, 4] is a string group. We denote by τ the corresponding tessellation {4, 3, 4} of
the Euclidean plane by cubes and by T it’s full translation subgroup, where T is generated
by the usual basis vectors, T = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉.

Let Hi be the planes fixed by ρi. The simplex bounded by the reflection planes Hi is
a fundamental simplex of [4, 3, 4] and is denoted ε, it is a simplex in the Coxeter complex
of C̃3. Let Fi be the vertex of the fundamental simplex not on Hi then {F0, F1, F2, F3}
represents a flag of τ , and the set of all j-faces of τ = {4, 3, 4} is represented by the orbit
of Fj under C̃3.

The regular polytope which results from factoring the regular tesselation τ = {4, 3, 4}
by a subgroup Λ of T which is normal in [4, 3, 4], is denoted by τ/Λ (as above).

We let Λs be the translation subgroup (or lattice) generated by the vector s and its images
under the stabilization of the origin in [4, 3, 4] and hence under permutations and changes of
sign of its coordinates. The regular polytope τ/Λs is denoted by {4, 3, 4}s := {4, 3, 4}/Λs
and the corresponding group [4, 3, 4]/Λs is written as [4, 3, 4]s. The following Lemma lists
all possible such subgroups of T .

Lemma 3.1. Let Λ be a subgroup of T , and if for every a ∈ Λ, the image of a under
all changes of sign and permutations of coordinates (which is conjugation of a by the
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stabilization of the origin in [4, 3, 4]) is also in Λ, then Λ = 〈(x, 0, 0), (0, x, 0), (0, 0, x)〉,
〈(x, x, 0), (−x, x, 0), (0,−x, x)〉 or 〈(x, x, x), (2x, 0, 0), (0, 2x, 0)〉.

Proof. As adapted from page 165 from Abstract Regular Polytopes [11].
Let s be the smallest positive integer from all coordinates of vectors in Λ, then we can

assume that (s, s2, s3) ∈ Λ. Then (−s, s2, s3) ∈ Λ and thus 2se1 ∈ Λ and so too are
each 2sei. By adding and subtracting multiples of these we can find a vector all of whose
coordinates are values between −s and +s. It then follows that Λ is generated by the all
permutations of (sk, 03−k) with all changes of sign for some k ∈ {1, 2, 3}. (Note that in
rank n, k can be only 1, 2 or n. Since otherwise (sk, 0n−k)− (0, sk, 0n−k−1) ∈ Λ and so
(s, s, 0n−2) ∈ Λ if k is odd or (s, 0n−1) is if k is even. Though n = 3 in rank 4.)

If k = 1 then we have the first basis mentioned in the Lemma, the second if k = 2 and
the third when k = 3.

It follows that Λs = sΛ(1k,0n−l), and thus, as can be seen in [11, Theorem 6D1], we
have the following theorem.

Theorem 3.2. The only regular toroidal polytopes constructed from [4, 3, 4] are {4, 3, 4}s
where s = (s, 0, 0), (s, s, 0) or (s, s, s) and s ≥ 2.

Proof. Since conjugation of vectors in Λ by ρ1, ρ2 and ρ3 are precisely all permutations of
coordinates and changes of sign, this theorem follows directly from Lemma 3.1.

The following theorem also appears in [11] along with its proof. This theorem describes
the group of each toroid. To arrive at the following result (and subsequent related results in
sections 4 and 5) we note that the mirror of reflection ρ0 is x = 1/2 while the mirrors for
ρ1, ρ2 are x = y and y = z respectively and the mirror for ρ3 is z = 0.

Theorem 3.3 ([11, Theorem 6D4]). Let s = (sk, 03−k), with s ≥ 2 and k = 1, 2, 3. Then
the group [4, 3, 4]s is the Coxeter group [4, 3, 4] = 〈ρ0, ρ1, ρ2, ρ3〉, where the generators
are specified in (3.1), factored out by the single extra relation which is

(ρ0ρ1ρ2ρ3ρ2ρ1)s = id, if k = 1,

(ρ0ρ1ρ2ρ3ρ2)2s = id, if k = 2,

(ρ0ρ1ρ2ρ3)3s = id, if k = 3.

As explained in [11], a geometric argument can be used to verify the intersection prop-
erty for these groups when s ≥ 2. However, note that [4, 3, 4]s does not satisfy the inter-
section condition when s ≤ 1 and thus is not a C-Group. We show the breakdown of the
intersection condition for s = 1 by way of example for k = 1 where cases for k = 2, 3
follow similar arguments.

When s = 1, the identity ρ0ρ1ρ2ρ3ρ2ρ1 = id tells us that ρ0 ∈ 〈ρ1, ρ2, ρ3〉 so G does
not satisfy the intersection property.

4 Toroidal hypertopes whose automorphism group is B̃3 (= Sn)

Let {ρ0, ρ1, ρ2, ρ3} be the set of generators of [4, 3, 4] as in the previous section and ε the
corresponding fundamental simplex. We can double this fundamental simplex by replacing
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the generator ρ0 with ρ̃0 = ρ0ρ1ρ0. Then ρ̃0 is a reflection through the hyperplane through
the point (1, 0, 0) with normal vector (1, 1, 0). The transformation of a general vector by
ρ̃0 is

(x, y, z)ρ̃0 = (1− y, 1− x, z). (4.1)

Then {ρ̃0, ρ1, ρ2, ρ3} generates B̃3, a subgroup of [4, 3, 4] of index 2. The Coxeter
diagram for this group is the non-linear diagram in Figure 2. In this section we let G(=

B̃3) := 〈ρ̃0, ρ1, ρ2, ρ3〉 and let C(B̃3) be the Coxeter complex of G = B̃3.

Figure 2: Coxeter diagram for B̃3.

The fundamental simplex of B̃3 is the simplex in Figure 3 bounded by the planes
H1, H2, H3 (fixed by ρ1, ρ2, ρ3 respectively) and H0 (now fixed by ρ̃0). Let, as above,
Fi be the vertices of the fundamental simplex opposite to Hi. The orbit of each vertex,
Fj of the fundamental simplex of B̃3 represents the set of hyperfaces of type j. Since
this fundamental simplex shares vertices F0, F2 and F3 with the fundamental simplex of
〈ρ0, ρ1, ρ2, ρ3〉 we will use the same names for hyperfaces as the names in Section 3,
namely, vertices, faces and facets. Though the orbit or F1 (which is isomorphic to the
orbit of F0 since the maximal parabolic subgroups generated by excluding ρ1 or ρ̃0 are
isomorphic) will be called hyperedges.

Now the translation subgroup of G is different from the one translation subgroup in the
previous section since the set of vertices of {4, 3, 4} now represent vertices and hyperedges
(hyperfaces of type 0 and 1 respectively). The translation subgroup associated with this
fundamental simplex is T = 〈(1, 1, 0), (−1, 1, 0), (0,−1, 1)〉.

We then note that the translation by vector (1, 1, 0) is the transformation (by right multi-
plication) w1 = ρ̃0ρ2ρ3ρ2ρ1ρ2ρ3ρ2, (−1, 1, 0) is w2 = ρ1ρ2ρ3ρ2ρ̃0ρ2ρ3ρ2 and (0,−1, 1)
is w3 = ρ2ρ3ρ2ρ1ρ2ρ1ρ̃0ρ2ρ3ρ1.

Now, to form a root lattice Λ we have the freedom to choose the crystollographic sub-
group G0 by fixing either a vertex or a hyperedge (see [3, pages 108–109]). We choose to
leave out ρ̃0 since this reflection does not fix F0. Doing so leaves [3, 4] as the subgroup we
are conjugating with, which is the same as was for [4, 3, 4]. We also note that if we chose
ρ1 rather than ρ̃0 then the result is functionally the same since we are still conjugating by
[3, 4] = 〈ρ̃0, ρ2, ρ3〉 and this corresponds to forming a torus with its corners at hyper-edges.

We now note that although the same conditions are satisfied as in Lemma 3.1, T is now
a different set. So instead we have the following lemma.
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Figure 3: Fundamental simplex of B̃3.

Lemma 4.1. If T = 〈(1, 1, 0), (−1, 1, 0), (0,−1, 1)〉, Λ ≤ T a subgroup and if for ev-
ery a ∈ Λ, the image of a under changes of sign and permutations of coordinates is
also in Λ, then Λ = 〈(2x, 0, 0), (0, 2x, 0), (0, 0, 2x)〉, 〈(x, x, 0), (−x, x, 0), (0,−x, x)〉 or
〈(2x, 2x, 2x), (4x, 0, 0), (0, 4x, 0)〉.

Proof. We will only modify the proof of Lemma 3.1. In that proof we arrive at a generating
set (sk, 03−k) for each k ∈ {1, 2, 3}, given that T is different than the translation subgroup
of Section 3.

Similar arguments to the ones used in the proof to Lemma 3.1 can now be used to show
that for k = 1 or k = 3, s is even. For k = 2, Λ is generated by permutations and changes
of sign of (s, s, 0). This needs no further examination since it is clearly in T .

As in the previous section, we describe the groups that will be used to construct each
of the toroids. We denote by Gs the quotient B̃3/Λs. Earlier we noted w1 as the transla-
tion (1, 1, 0) while (ρ̃0ρ2ρ3ρ2ρ1)2 is the translation (2, 0, 0) and (ρ̃0ρ2ρ3ρ1ρ2ρ3)3 is the
translation (2, 2, 2). And now that the the mirror for ρ̃0 is y = 1− x.

Theorem 4.2. Let s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s) with s ≥ 1. Then the
group Gs = B̃3/Λs is the Coxeter group B̃3 = 〈ρ̃0, ρ1, ρ2, ρ3〉 with Coxeter diagram in
Figure 2, factored out by the single extra relation which is

(ρ̃0ρ2ρ3ρ2ρ1)2s = id if s = (2s, 0, 0),

(ρ̃0ρ2ρ3ρ2ρ1ρ2ρ3ρ2)s = id if s = (s, s, 0),

(ρ̃0ρ2ρ3ρ1ρ2ρ3)3s = id if s = (2s, 2s, 2s).

Here, as in Section 3, we have thatGs fails the intersection property for small enough s.
However, because the fundamental simplex is doubled, this time when s = (2s, 2s, 2s), Gs
satisfies the intersection condition for s ≥ 1 while s ≥ 2 is still necessary for the other two
vectors. Verifying that Gs fails the intersection condition for s = 1 when s = (2s, 0, 0) and
(s, s, 0) follows similar calculations as those done in Section 3. Namely, when s = 1 for the
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first vector, we arrive at the identity ρ̃0ρ2ρ3ρ2ρ̃0 = ρ1ρ2ρ3ρ2ρ1 and for the second vector
we have the identity ρ̃0ρ2ρ3ρ2 = ρ2ρ3ρ2ρ1. Which violates the intersection condition.

MAGMA [1] can be used to verify that Gs satisfies the intersection condition when
s = (4, 0, 0) = (2s, 0, 0), (2, 2, 0) = (s, s, 0) or (2, 2, 2). To see that the it also satisfies the
intersection condition for greater values of s can be seen with a geometric argument.

The orbit of a base chamber of each parabolic subgroup ofGs can be seen as a collection
of chambers which are duplicated at each of the 8 corners of the boundaries of Λs. For
instance, the subgroup 〈ρ1, ρ2, ρ3〉 consists of chambers forming octahedra centred around
corner vertex.

Given the collection of chambers in two such subgroups, there will always be some
intersection between the collections occurring at the same corner (someones it’s just the
base chamber itself). However, If Gs fails the intersection condition, then there will be an
intersection with the chambers of one subgroup centred around one corner that intersect
with the chambers of the other subgroup on another corner.

So, given a particular s where Gs satisfies the intersection condition, by increasing s,
the corners of Λs get further and further apart. So if there are no such intersections for some
s, then for larger s there will not be either.

Adopting a similar notation as in the previous section and using Λs as defined in Sec-
tion 2, we now have the following theorem.

Theorem 4.3. The regular toroidal hypertopes of rank 4 constructed from G(= B̃3) =

〈ρ̃0, ρ1, ρ2, ρ3〉, where the generators are specified in (3.1) and (4.1), are C(B̃3)/Λs where
C(B̃3) is the Coxeter complex of B̃3 and s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s)
with s ≥ 1.

Proof. To begin we need to find an s and corresponding Λs that is invariant under conju-
gation by a subgroup of G which is the symmetry group of "vertex"-figure (by vertex we
mean, the element that the translations begin from). In this case our subgroup ends up
being [3, 4] as was described before Lemma 4.1.

Now, since we are conjugating by [3, 4] = 〈ρ1, ρ2, ρ3〉, Λs must contain all permuta-
tions and changes of sign of any vector in Λs (which we discovered in the proof of Theorem
3.2 which is also on page 165 of [11]). Thus, by Lemma 4.1, s = (2s, 0, 0), (s, s, 0) or
(2s, 2s, 2s). However, we still do not know if this construction yields a regular hypertope.
To do this, we start by noting that the Coxeter complex C(B̃3) formed from G is precisely
the hypertope Γ(G; (Gi)i∈I) (the construction of which follows from [7]).

So we need to show that C(B̃3) is flag transitive (or, equivalently, chamber transitive).
To do so we will note the rank 3 residue Γ0̃ := Γ(G0̃; (G{0̃,i})i∈{1,2,3}). This is isomorphic
to the cube, a regular polyhedron, which is flag transitive.

So we pick to chambers in Γ(G; (Gi)i∈I) = C(B̃3) which can be written as C1 =
{G0̃g0, G1g1, G2g2, G3g3} and C2 = {G0̃h0, G1h1, G2h2, G3h3} for some gi, hi ∈ G.
Then, since G = G0̃oT and T acts transitively on elements of type 0̃ there is a translation
t ∈ G such that C1t = {G0̃h0, X, Y, Z} which is some chamber that shares the same
element of type 0̃ as C2. Then the chambers C1t and C2 are both in some rank 3 residue
which is isomorphic to Γ0̃. Since this residue is flag transitive, there is some element,
g ∈ G such that C1tg = C2. Thus C(B̃3) is chamber transitive and thus flag transitive. So,
by Proposition 4.6 from [7] this is a regular hypertope.

So now we want to know if Γ(G′; (G′i)i∈I) is a regular hypertope where G′ is the
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group G/Λs where s ≥ 2 (since otherwise G′ fails the intersection condition and the re-
sulting construction fails to be thin). Just as before, we take two chambers Φ and Ψ from
Γ(G′; (G′i)i∈I). Then to each of these chambers we can associate a family of chambers
Φ′ and Ψ′ in C(B̃3). Since C(B̃3) is chamber transitive for each Φj ∈ Φ′ and Ψk ∈ Ψ′

there exists ϕjk ∈ G where Φjϕjk = Ψk. In particular there exist chambers Φ1 ∈ Φ′ and
Ψ1 ∈ Ψ′ in C(B̃3) where, since Λs is invariant under G, Φ1ψ = Ψ1 and ψ ∈ G′. We can
see this by noting that Φ1 and Ψ1 are the members of their respective families which lie
inside the fundamental region of Λs.

Thus Γ(G′; (G′i)i∈I) is chamber transitive and thus face transitive, so is also a regular
hypertope by Proposition 2.6.

For the other two possibilities of Λ, we need only change the added relations, but be-
cause the relations were chosen specifically, they will also generate regular hypertopes.

5 Toroidal hypertopes whose automorphism group is Ã3 (= Pn)

We can show that this group is, yet again a subgroup of [4, 3, 4] by doubling the fundamental
simplex a second time (this can be seen geometrically in Figure 5) and now defining ρ̃3 =
ρ3ρ2ρ3 which is a reflection in the plane through (1, 1,−1) with normal vector (0, 1, 1).
Transformation of a general vector by ρ̃3 is

(x, y, z)ρ̃3 = (x,−z,−y). (5.1)

Now we let G(= Ã3) := 〈ρ̃0, ρ1, ρ2, ρ̃3〉 and C(Ã3) be the Coxeter complex of G. The
defining relations for G are implicit in the Coxeter diagram in Figure 4.

Figure 4: Coxeter diagram for Ã3.

Here the fundamental simplex of Ã3 is a tetrahedron bounded by the planes Hi (fixed
by ρi). This fundamental simplex shares the planes fixed by ρ̃0, ρ1, ρ2 with the fundamental
simplex of B̃3 as well as the corresponding vertices. The stabilizers of each vertex of the
fundamental simplex are also isomorphic since all maximal parabolic subgroups of Ã3 are
pairwise isomorphic. This implies that the set of hyperfaces of types i and j are isomorphic
for each i, j ∈ {0, 1, 2, 3}.

This fundamental simplex gives us the same translation subgroup as we had in the
previous Section. Though now we must use the new generators to find the translations.
We define w1 = ρ̃0ρ2ρ1ρ̃3ρ1ρ2 = (1, 1, 0), w2 = ρ1ρ2ρ̃3ρ̃0ρ̃3ρ2 = (−1, 1, 0) and w3 =
ρ2ρ1ρ̃0ρ̃3ρ̃0ρ1 = (0,−1, 1).
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Figure 5: Fundamental simplex of Ã3.

Using these translations, for a translation (a, b, c) ∈ Λ, we have that ρ1(a, b, c)ρ1 =
(b, a, c). In a similar way, conjugating by ρ2 yields (a, c, b) and conjugating by ρ̃3 yields
(a,−c,−b). So if we conjugate by ρ1ρ2ρ1 then we get (c, b, a) and so Λ must have all
permutations. Now, from the previous we know Λ must also contain (a,−b,−c) and adding
this to (a, b, c) gives (2a, 0, 0), which then subtracted from (a, b, c) is (−a, b, c) and so with
all permutations means that Λ must have all permutations and changes of sign.

With this group, we leave out ρ̃0 to form the crystollographic subgroup G0. Though
a curiosity of this group is that we use any generator of B̃3 to form a crystollographic
subgroup and still finish with the same objects. With each choice simply changing where
we draw the boundary of the torus. This leaves ρ1, ρ2 and ρ̃3 with which to conjugate Λ.
As in the regular case, ρ1 and ρ2 show us that Λ must consist of all permutations of the
coordinates of vectors.

If (a, b, c) is a general vector in Λ then ρ̃3 tells us that (−c, b,−a) must also be in
Λ and then so also must (−a, b,−c). Adding that to our original general vector tells us
that (0, 2b, 0) is also included. So, subtracting that from the general vector finally gives us
(a,−b, c). Note that this can just as easily be done with either a or c with some simple
permutations.

As in the previous section, we describe the groups of each of the toroids. Earlier
we noted w1 as the translation (1, 1, 0) while (ρ̃0ρ2ρ̃3ρ1)2 is the translation (2, 0, 0) and
(ρ̃0ρ2ρ1ρ̃3)3s is the translation (2, 2, 2). And now that the the mirror for ρ̃0 is y = 1 − x
while the mirror for ρ̃3 is y = −z.

Theorem 5.1. Let s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s) with s ≥ 1. Then
the group Gs = Ã3/Λs is the Coxeter group Ã3 = 〈ρ̃0, ρ1, ρ2, ρ̃3〉 (with Coxeter group
specifed in Figure 4), factored out by the single extra relation which is

(ρ̃0ρ2ρ̃3ρ1)2s = id if s = (2s, 0, 0),

(ρ̃0ρ2ρ1ρ̃3ρ1ρ2)s = id if s = (s, s, 0),

(ρ̃0ρ2ρ1ρ̃3)3s = id if s = (2s, 2s, 2s).
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For the same reasons as in Section 4, the intersection condition is satisfied for s =
(2s, 2s, 2s) when s ≥ 1.

Theorem 5.2. The regular toroidal hypertopes of rank 4 induced by G(= Ã3) = 〈ρ̃0,
ρ1,ρ2, ρ̃3〉 (where the generators are specified in (3.1), (4.1) and (5.1)) are C(Ã3)/Λs where
C(Ã3) is the Coxeter complex of Ã3 and s = (2s, 0, 0), (s, s, 0) for s ≥ 2 or (2s, 2s, 2s)
with s ≥ 1.

Proof. We first show that C(Ã3) is a regular hypertope, which requires showing that it is
flag transitive. In the same manner as the proof of Theorem 4.3 we need only show each
rank 3 residue is flag transitive, since all rank 3 residues are regular tetrahedra C(Ã3) is flag
transitive. The translation subgroup is the same as in the previous Section and conjugating
Λ by ρ1, ρ2, ρ̃3 gives all permutations and changes in sign of a general vector in Λ, the
same arguments for Lemma 4.1 and Theorem 4.3 will prove this theorem.

6 Non-existence of rank 4 chiral hypertopes
Here we recall that for an abstract polytope to be chiral its automorphism group must
have two orbits when acting on flags and that adjacent flags are in different orbits. Chiral
polytopes of any rank are examined in depth in [13]. The existence of these objects in
any rank was proved in [12]. There is also a notion of chirality in hypermaps as well, see
for example, [2]. Similarly we say for a hypertope to be chiral if its automorphism group
action has two chamber orbits and adjacent chambers are in different orbits [7].

As in Section 2, given an affine Coxeter group G and associated Coxeter complex C,
we define a subgroup G0 ≤ G as the maximal parabolic subgroup fixing the origin. Then,
given a set I of linearly independent translations in G and TI , the translation subgroup
generated by I then we call the lattice ΛI the lattice induced by the orbit of the origin under
TI . When ΛI is invariant under the rotation subgroup G0

+ but there is no automorphism
group of G that interchanges adjacent chambers, then in rank 4 we say that the quotient
C/ΛI is a chiral toroidal hypertope of rank 4.

The proof that there are no chiral toroids of rank 4 for the group [4, 3, 4] comes from
page 178 from [11] and the same proof can adapted for the other two rank 4 affine Coxeter
groups. The basic idea for the proof is that since C/Λ is chiral, Λ is invariant under the
rotation group [3, 4]+, so Λ contains vectors that are compositions of an even number of
permutations with an even number of sign changes or all compositions of an odd number of
permutations with an odd number of sign changes. It then goes to show that if (a, b, c) ∈ Λ
then (b, a, c) ∈ Λ, which is the image of (a, b, c) under an odd permutation, which is a
contradiction. Therefore no such Λ can exist.

We will use the same method to show the same is true for the other two groups.

Theorem 6.1. There are no rank 4 chiral toroidal hypertopes.

Proof. In [11] it was shown that there are no rank 4 hypertopes constructed from [4, 3, 4],
so we show for constructions from B̃3 and Ã3. In previous sections we found that if Λ is
a subgroup of the translations that is invariant under conjugation by the stabilizer of the
origin in B̃3 and Ã3 with (a, b, c) ∈ Λ, then Λ contains all permutations and changes of
sign of (a, b, c), just as it did with the stabilizer in [4, 3, 4].

Thus conjugation of Λ by the stabilizer of the rotation subgroup of each of these groups
is all compositions of even permutations with an even number of sign changes or all com-
positions of odd permutations with an odd number of sign changes, just as for [4, 3, 4].
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So the same arguments and calculations from page 178 in [11] still hold and show that
(b, a, c) ∈ Λ and we develop the same contradiction.

References
[1] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J.

Symbolic Comput. 24 (1997), 235–265, doi:10.1006/jsco.1996.0125.

[2] A. Breda D’Azevedo, G. A. Jones, R. Nedela and M. Škoviera, Chirality groups of maps and
hypermaps, J. Algebraic Combin. 29 (2009), 337–355, doi:10.1007/s10801-008-0138-z.

[3] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, volume 290 of
Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1988, doi:
10.1007/978-1-4757-2016-7.

[4] D. Corn and D. Singerman, Regular hypermaps, European J. Combin. 9 (1988), 337–351, doi:
10.1016/s0195-6698(88)80064-7.

[5] H. S. M. Coxeter, Configurations and maps, Rep. Math. Colloq. 8 (1948), 18–38.

[6] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, volume 14
of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin-New York, 4th
edition, 1980.
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Abstract

Let n denote a positive integer. A graph Γ of diameter at least n is said to be n-distance-
balanced whenever for any pair of vertices u, v of Γ at distance n, the number of vertices
closer to u than to v is equal to the number of vertices closer to v than to u. In this article
we consider n = 2 (e.g. we consider 2-distance-balanced graphs). We show that there
exist 2-distance-balanced graphs that are not 1-distance-balanced (e.g. distance-balanced).
We characterize all connected 2-distance-balanced graphs that are not 2-connected. We
also characterize 2-distance-balanced graphs that can be obtained as cartesian product or
lexicographic product of two graphs.

Keywords: n-distance-balanced graph, cartesian product, lexicographic product.

Math. Subj. Class.: 05C12, 05C76

1 Introductory remarks
A graph Γ is distance-balanced if for each pair u, v of adjacent vertices of Γ the number
of vertices closer to u than to v is equal to the number of vertices closer to v than to
u. Although these graphs are interesting from the purely graph-theoretical point of view,
they also have applications in other areas of research, such as mathematical chemistry and
communication networks. It is for that reason that they have been studied from various
different points of view in the literature.

Distance-balanced graphs were first studied by Handa [9] in 1999. The name distance-
balanced, however, was introduced nine years later by Jerebic, Klavžar and Rall [12]. The
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family of distance-balanced graphs is very rich (for instance, every distance-regular graph
as well as every vertex-transitive graph has this property [13]). In the literature these graphs
were studied from various purely graph-theoretic aspects such as symmetry [13], connec-
tivity [9, 16] or complexity aspects of algorithms related to such graphs [6], to name just
a few. However, it turns out that these graphs have applications in other areas, such as
mathematical chemistry (see for instance [3, 11, 12]) and communication networks (see for
instance [3]).

Another interesting fact is that these graphs can be characterized by properties that do
not seem to have much in common with the original definition from [12]. For example,
the distance-balanced graphs coincide with self-median graphs, that is graphs for which the
sum of the distances from a given vertex to all other vertices is independent of the chosen
vertex (see [4]). In [1], distance-balanced graphs are called transmission regular. Finally,
even order distance-balanced graphs possess yet another nice property, making them what
are called equal opportunity graphs (see [3] for the definition).

In distance-balanced graphs one only considers pairs of adjacent vertices. However,
it is very natural to extend the definition to the pairs of nonadjacent vertices. This gen-
eralized concept of n-distance-balanced graphs (see Section 2 for the definition) was first
introduced by Boštjan Frelih in 2014 [8] (we point out that certain other generalizations
of this concept, where one still focuses just on pairs of adjacent vertices, have also been
considered in the recent years [10, 14, 15]). The n-distance-balanced graphs and their prop-
erties were extensively studied in [17]. They are also the main topic in the paper [7], but
in this paper some of the stated results do not hold. We comment on one of these problems
later (see Remark 5.1).

In this article we consider 2-distance-balanced graphs. We now summarize our re-
sults. After some preliminaries in Section 2, we show in Section 3 that there exist 2-
distance-balanced graphs that are not 1-distance-balanced (e.g. distance-balanced). It was
shown in [9] that every distance-balanced graph is 2-connected. It turns out that not all
2-distance-balanced graphs are 2-connected. However, we characterize all connected 2-
distance-balanced graphs that are not 2-connected.

In [12] distance-balanced cartesian products and distance-balanced lexicographic pro-
ducts of two graphs were characterized. We characterize 2-distance-balanced cartesian
products and 2-distance-balanced lexicographic products of two graphs in Section 4 and 5,
respectively.

2 Preliminaries
In this section we review some basic definitions that we will need later. Throughout this
paper, all graphs are assumed to be finite, undirected, without loops and multiple edges.
Given a graph Γ let V (Γ) and E(Γ) denote its vertex set and edge set, respectively.

For v ∈ V (Γ) we denote the set of vertices adjacent to v by NΓ(v). If the number
|NΓ(v)| is independent of the choice of v ∈ V (Γ), then we call this number the valency of
Γ and we denote it by kΓ (or simply by k if the graph Γ is clear from the context). In this
case we say that Γ is regular with valency k or k-regular.

For u, v ∈ V (Γ) we denote the distance between u and v by ∂Γ(u, v) (or simply by
∂(u, v) if the graph Γ is clear from the context). The diameter max{∂Γ(u, v) | u, v ∈
V (Γ)} of Γ will be denoted by DΓ (or simply by D if the graph Γ is clear from the context).
For any pair of vertices u, v ∈ V (Γ) we let WΓ

uv be the set of vertices of Γ that are closer
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to u than to v, that is

WΓ
uv = {w ∈ V (Γ) | ∂Γ(u,w) < ∂Γ(v, w)}.

Let n denote a positive integer. A graph Γ of diameter at least n is said to be n-distance-
balanced, if |WΓ

uv| = |WΓ
vu| for any u, v ∈ V (Γ) at distance n. The distance-balanced

graphs are n-distance-balanced graphs for n = 1.
For W ⊆ V (Γ) the subgraph of Γ induced by W is denoted by 〈W 〉 (we abbreviate

Γ −W = 〈V (Γ) \W 〉). A vertex cut of a connected graph Γ is a set W ⊆ V (Γ) such
that Γ −W is disconnected. A vertex cut of size k is called a k-cut. A graph is said to be
k-connected if it has at least k + 1 vertices and the size of the smallest vertex cut is at least
k. If a vertex cut consists of a single vertex v, then v is called the cut vertex.

We complete this section by defining the cartesian product and the lexicographic prod-
uct of graphs G and H . In both cases, the vertex set of the product is V (G)× V (H). Pick
(g1, h1), (g2, h2) ∈ V (G)× V (H).

In the cartesian product of G and H , denoted by G�H , (g1, h1) and (g2, h2) are
adjacent if and only if g1 = g2 and h1, h2 are adjacent in H , or h1 = h2 and g1, g2 are
adjacent in G. Note that the cartesian product is commutative.

In the lexicographic product of G and H , denoted by G[H], (g1, h1) and (g2, h2) are
adjacent if and only if g1 = g2 and h1, h2 are adjacent in H , or g1, g2 are adjacent in G.

3 On the connectivity of 2-distance-balanced graphs
In this section we characterize connected 2-distance-balanced graphs that are not 2-connect-
ed (Corollary 3.4). As a consequence, using the well known fact that an arbitrary connected
distance-balanced graph is at least 2-connected (see [9]), we construct an infinite family of
2-distance-balanced graphs that are not distance-balanced.

Let G be an arbitrary (not necessary connected) graph, and let c be a vertex that does
not belong to the set of vertices of G. We construct a graph, denoted by Γ(G, c), with the
set of vertices

V (Γ(G, c)) = V (G) ∪ {c}

and the set of edges

E(Γ(G, c)) = E(G) ∪ {cv | v ∈ V (G)}.

This graph is obviously connected. Next theorem follows directly from the construction
of Γ(G, c).

Theorem 3.1. G is not connected if and only if Γ(G, c) is not 2-connected.

We show that regularity of G is a sufficient condition for Γ(G, c) to be 2-distance-
balanced.

Theorem 3.2. If G is a regular graph that is not a complete graph, then Γ = Γ(G, c) is
2-distance-balanced.

Proof. Assume that G is a k-regular graph that is not a complete graph. Let G1, G2, . . . , Gn

be its connected components for some positive integer n. If G is connected, then n = 1,
otherwise G has at least two connected components. Since G is not a complete graph, it
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is clear that the diameter of Γ equals 2, which means that two arbitrary vertices of Γ are
either adjacent or they are at distance 2.

There are two different types of vertices at distance 2 in Γ. The first type is when both
vertices at distance 2 belong to the same connected component of G. The second type is
when vertices at distance 2 belong to different connected components of G.

Let Gi be an arbitrary connected component of G. Let v1, v2 ∈ V (Gi) be arbitrary
vertices at distance 2 in Γ. We count vertices that are closer to v1 than to v2 in Γ and
vertices that are closer to v2 than to v1 in Γ. We get

WΓ
v1v2 = {v1} ∪ (NGi

(v1) \ (NGi
(v1) ∩NGi

(v2))).

It follows that ∣∣WΓ
v1v2

∣∣ = 1 + |NGi
(v1)| − |NGi

(v1) ∩NGi
(v2)|.

Changing the roles of vertices v1 and v2, we get∣∣WΓ
v2v1

∣∣ = 1 + |NGi
(v2)| − |NGi

(v2) ∩NGi
(v1)|.

Since G is regular, the number of vertices that are closer to v1 than to v2 in Γ equals the
number of vertices that are closer to v2 than to v1 in Γ.

Let now Gi and Gj be arbitrary different connected components of a disconnected
graph G. Pick arbitrary v1 ∈ V (Gi) and v2 ∈ V (Gj). Obviously these two vertices are at
distance 2 in Γ. Observe that

WΓ
v1v2 = {v1} ∪NGi(v1) and WΓ

v2v1 = {v2} ∪NGj (v2).

Since every connected component of a k-regular graph is also a k-regular (induced) sub-
graph, it follows that ∣∣WΓ

v1v2

∣∣ = 1 + k and
∣∣WΓ

v2v1

∣∣ = 1 + k,

where k is the valency of G. So the number of vertices that are closer to v1 than to v2 in Γ
equals the number of vertices that are closer to v2 than to v1 in Γ. Since this is true for an
arbitrary pair of vertices at distance 2 in Γ, this graph is 2-distance-balanced.

Next we prove that every connected 2-distance-balanced graph, that is not 2-connected,
is isomorphic to Γ(G, c) for some regular graph G that is not connected.

Theorem 3.3. Let Γ be a connected 2-distance-balanced graph that is not 2-connected.
Then Γ is isomorphic to Γ(G, c) for some disconnected regular graph G.

Proof. Since Γ is not 2-connected, there exists a cut vertex c ∈ V (Γ). Let G1, G2, . . . , Gn

be connected components of G = Γ− {c}, n ≥ 2. We want to prove that G is regular and
that the cut vertex c is adjacent to every other vertex in Γ. To do this we will first prove
some partial results.

First we claim that the cut vertex c is adjacent to every vertex in a connected component
G` of G for at least one integer `, 1 ≤ ` ≤ n. Suppose that this is not true. Let Gi and Gj be
two different connected components of G. Then there exist v2 ∈ V (Gi) and u2 ∈ V (Gj),
both at distance 2 from c in Γ. This means that there exists v1 ∈ V (Gi) that is adjacent to
c and v2 in Γ, and there exists u1 ∈ V (Gj) that is adjacent to c and u2 in Γ. If we compare
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the set of vertices that are closer to c than to v2 in Γ and the set of vertices that are closer
to v2 than to c in Γ, we get

WΓ
cv2
⊇ {c} ∪ V (Gj) and WΓ

v2c ⊆ V (Gi) \ {v1}.

It follows that

1 + |V (Gj)| ≤
∣∣WΓ

cv2

∣∣ and
∣∣WΓ

v2c

∣∣ ≤ |V (Gi)| − 1.

Since Γ is 2-distance-balanced, we get

|V (Gj)| ≤ |V (Gi)| − 2. (3.1)

Similarly as above (changing vertex v2 with u2) we get

|V (Gi)|+ 2 ≤ |V (Gj)|. (3.2)

However, inequalities (3.1) and (3.2) imply

|V (Gi)|+ 2 ≤ |V (Gj)| ≤ |V (Gi)| − 2,

a contradiction. It follows that the cut vertex c ∈ V (Γ) is adjacent to every vertex in V (G`)
for at least one integer `, 1 ≤ ` ≤ n. Without loss of generality we may assume that ` = 1.

Next we claim that the induced subgraph G1 of Γ is regular. Pick some u ∈ V (G) \
V (G1) that is adjacent to the cut vertex c in Γ. Since c is adjacent to every vertex in V (G1),
the distance between u and an arbitrary v ∈ V (G1) equals 2 in Γ. Pick v ∈ V (G1). Notice
that

WΓ
vu = {v} ∪ (NΓ(v) \ {c}).

It follows that ∣∣WΓ
vu

∣∣ = 1 + |NΓ(v)| − 1 = |NG1
(v)|+ 1.

Pick w ∈ V (G1). Since Γ is 2-distance-balanced and c is adjacent to every vertex of
V (G1), we get the following sequence of equalities

|NG1
(v)|+ 1 = |NΓ(v)| =

∣∣WΓ
vu

∣∣ =
∣∣WΓ

uv

∣∣ =
∣∣WΓ

uw

∣∣
=
∣∣WΓ

wu

∣∣ = |NΓ(w)| = |NG1
(w)|+ 1.

So
|NG1

(v)| = |NG1
(w)|

for arbitrary v, w ∈ V (G1). From now on we may assume that the induced subgraph G1

of Γ is k-regular. This also means that every vertex in V (G1) has valency k + 1 in Γ.
Our next step is to show that the cut vertex c ∈ V (Γ) is adjacent to every vertex

in V (G) \ V (G1). Suppose that this is not true. Then there exists some vertex u2 in a
connected component G` of G, 2 ≤ ` ≤ n, that is at distance 2 from c in Γ. Without
loss of generality we can take ` = 2. Consequently there exists some u1 ∈ V (G2) that is
adjacent to both c and u2 in Γ. Pick an arbitrary v ∈ V (G1). We have already proved that
the valency of an arbitrary vertex in V (G1) is k + 1 in Γ. Now we count vertices that are
closer to v than to u1 in Γ. Since

WΓ
vu1

= {v} ∪ (NΓ(v) \ {c}),
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we get ∣∣WΓ
vu1

∣∣ = 1 + k + 1− 1 = k + 1.

In addition, for vertices that are closer to c than to u2 in Γ, we have

WΓ
cu2
⊇ V (G1) ∪ {c}.

It follows that ∣∣WΓ
cu2

∣∣ ≥ |V (G1)|+ 1 ≥ k + 2. (3.3)

Consider the distance partition of Γ according to adjacent vertices c and u1 that is shown
in Figure 1. The symbol Di

j denotes the set of vertices that are at distance i from u1 and at
distance j from c in Γ. Define a set

Figure 1: The distance partition of Γ according to adjacent vertices c and u1.

U =

D⋃
i=1

=
(
Di−1

i ∪Di
i

)
,

where D denotes the diameter of Γ. First we show that WΓ
u2c ⊆ U . Recall that for u, v ∈

V (Γ), ∂(u, v) denotes the distance between vertices u and v. Pick an arbitrary w ∈ WΓ
u2c.

Since u1, u2 are, by the assumption, adjacent vertices in Γ, the triangle inequality tells us
that

∂(u1, w) ∈ {∂(u2, w)− 1, ∂(u2, w), ∂(u2, w) + 1}.
If we consider all three cases, we get

∂(u1, w) = ∂(u2, w)− 1 < ∂(c, w),

∂(u1, w) = ∂(u2, w) < ∂(c, w),

∂(u1, w) = ∂(u2, w) + 1 ≤ ∂(c, w).

Each considered case gives us that w ∈ U and so WΓ
u2c ⊆ U . Note also that U ⊆ V (G2).

Now we show that U ⊆ WΓ
u1v (recall that v is an abitrary vertex in V (G1)). Let w be an

arbitrary vertex in U , which means that w is also in V (G2). We get that

∂(u1, w) ≤ ∂(c, w) < ∂(v, w),

since vertices v and c are adjacent in Γ, and v is not in V (G2). It follows that w ∈ WΓ
u1v ,

and so U ⊆WΓ
u1v . From relations WΓ

u2c ⊆ U ⊆WΓ
u1v , we get that WΓ

u2c ⊆WΓ
u1v and so∣∣WΓ

u2c

∣∣ ≤ ∣∣WΓ
u1v

∣∣ =
∣∣WΓ

vu1

∣∣ = k + 1. (3.4)



B. Frelih and Š. Miklavič: On 2-distance-balanced graphs 87

By taking into account inequalities (3.3) and (3.4), and since Γ is 2-distance-balanced, we
get

k + 2 ≤ |WΓ
cu2
| = |WΓ

u2c| ≤ k + 1,

which is a contradiction. This shows that the cut vertex c ∈ V (Γ) is adjacent to all vertices
in V (G).

It remains to prove that the induced subgraph G` (2 ≤ ` ≤ n) of Γ is k-regular. Without
loss of generality assume ` = 2. Since we already know that the cut vertex c is adjacent to
every vertex in Γ, an arbitrary vertex u in V (G2) is at distance 2 from an arbitrary vertex v
in V (G1) in Γ. Observe that

WΓ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪NG2

(u)

and
WΓ

vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪NG1
(v).

This means that ∣∣WΓ
uv

∣∣ = 1 + |NG2(u)| and
∣∣WΓ

vu

∣∣ = 1 + k.

Since Γ is 2-distance balanced, it follows that
∣∣WΓ

uv

∣∣ =
∣∣WΓ

vu

∣∣ and so |NG2
(u)| = k for

an arbitrary vertex u ∈ V (G2). Therefore, G2 is regular and has the same valency k as the
induced subgraph G1. It follows that G is regular and this completes the proof.

The characterization of all connected 2-distance-balanced graphs that are not 2-co-
nnected follows immediately from Theorems 3.1, 3.2 and 3.3.

Corollary 3.4. Let Γ be a connected graph. Then Γ is 2-distance-balanced and not 2-
connected if and only if it is isomorphic to Γ(G, c) for some disconnected regular graph
G.

4 2-distance-balanced cartesian product
Throughout this section let G and H be graphs and let Γ = G�H be the cartesian product
of G and H . We characterize connected 2-distance-balanced cartesian products of graphs
G and H (see Theorem 4.4). It follows from the definition that the cartesian product Γ
is connected if and only if G and H are both connected. In order to avoid trivialities we
assume that |V (G)| ≥ 2 and |V (H)| ≥ 2.

Recall that
∂Γ((g1, h1), (g2, h2)) = ∂G(g1, g2) + ∂H(h1, h2) (4.1)

for arbitrary (g1, h1), (g2, h2) ∈ V (Γ). Since we are dealing with 2-distance-balanced
cartesian products of graphs, we are interested in vertices at distance 2. It follows from
equality (4.1), that there exist three different types of vertices at distance 2 in Γ. We now
state these three types and we will refer to them later. Let (g1, h1), (g2, h2) ∈ V (Γ) be
vertices at distance 2 in Γ. We say that these two vertices are of type

• G2, if h1 = h2 and ∂G(g1, g2) = 2,

• H2, if g1 = g2 and ∂H(h1, h2) = 2,

• GH2, if ∂G(g1, g2) = ∂H(h1, h2) = 1.
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Note that vertices of type G2 (H2, respectively) do not exist if G (H , respectively) is a
complete graph. Denote the set of vertices that are at equal distance from g1 and g2 in G
by EG

g1g2 , and the set of vertices that are at equal distance from h1 and h2 in H by EH
h1h2

.
We first prove three lemmas that we will need later in the proof of the main theorem of

this section.

Lemma 4.1. Let (g1, h) and (g2, h) be arbitrary vertices of type G2 in Γ = G�H . Then∣∣∣WΓ
(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ and
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣ .
Proof. Let (a, x) be an arbitrary vertex of Γ. It follows from the equality (4.1) that

∂Γ((g1, h), (a, x)) = ∂G(g1, a) + ∂H(h, x)

and
∂Γ((g2, h), (a, x)) = ∂G(g2, a) + ∂H(h, x).

So (a, x) is closer to (g1, h) than to (g2, h) in Γ if and only if a is closer to g1 than to g2 in
G. Since (a, x) ∈ V (Γ) was an arbitrary vertex, this means that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ .
Similarly we get that ∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣ .
Lemma 4.2. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ = G�H . Then∣∣∣WΓ

(g,h1)(g,h2)

∣∣∣ = |G|
∣∣WH

h1h2

∣∣ and
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣ = |G|
∣∣WH

h2h1

∣∣ .
Proof. Similar to the proof of Lemma 4.1.

Lemma 4.3. Let (g1, h1) and (g2, h2) be arbitrary vertices of type GH2 in Γ = G�H .
Then ∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣EH

h1h2

∣∣ ∣∣WG
g1g2

∣∣+
∣∣WH

h1h2

∣∣ ∣∣WG
g1g2 ∪ EG

g1g2

∣∣
and ∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣ =
∣∣EH

h1h2

∣∣ ∣∣WG
g2g1

∣∣+
∣∣WH

h2h1

∣∣ ∣∣WG
g2g1 ∪ EG

g1g2

∣∣ .
Proof. Let (a, x) be an arbitrary vertex of Γ. It follows from the equality (4.1) that

∂Γ((g1, h1), (a, x)) = ∂G(g1, a) + ∂H(h1, x) (4.2)

and
∂Γ((g2, h2), (a, x)) = ∂G(g2, a) + ∂H(h2, x). (4.3)

There are three different cases according to the distance of h1 and h2 from x in H .
In the first case let ∂H(h1, x) = ∂H(h2, x). From equalities (4.2) and (4.3) we get that

∂Γ((g1, h1), (a, x)) < ∂Γ((g2, h2), (a, x))⇐⇒ ∂G(g1, a) < ∂G(g2, a).
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This is true for exactly those (a, x) ∈ V (Γ), for which a ∈WG
g1g2 . Similarly we get that

∂Γ((g2, h2), (a, x)) < ∂Γ((g1, h1), (a, x))⇐⇒ ∂G(g2, a) < ∂G(g1, a).

And this is true for exactly those (a, x) ∈ V (Γ), for which a ∈WG
g2g1 .

In the second case let ∂H(h1, x) < ∂H(h2, x). Since h1 and h2 are adjacent in H , it is
obvious that ∂H(h2, x) = ∂H(h1, x) + 1. From equalities (4.2) and (4.3) we get that

∂Γ((g1, h1), (a, x)) < ∂Γ((g2, h2), (a, x))⇐⇒ ∂G(g1, a) < ∂G(g2, a) + 1.

This is true for exactly those (a, x) ∈ V (Γ), for which a ∈ WG
g1g2 ∪ EG

g1g2 . Similarly we
get that

∂Γ((g2, h2), (a, x)) < ∂Γ((g1, h1), (a, x))⇐⇒ ∂G(g2, a) + 1 < ∂G(g1, a).

But such vertices do not exist, since ∂G(g1, a) ≤ ∂G(g2, a) + 1 by the triangle inequality.
In the third case let ∂H(h2, x) < ∂H(h1, x). Similarly as above we get that (a, x) is

closer to (g2, h2) that to (g1, h1) if and only if a ∈WG
g2g1 ∪ EG

g1g2 , and that (a, x) is never
closer to (g1, h1) that to (g2, h2).

It follows from the above comments that

WΓ
(g1,h1)(g2,h2) =

(
EH

h1h2
×WG

g1g2

)⋃(
WH

h1h2
×
(
WG

g1g2 ∪ EG
g1g2

))
and

WΓ
(g2,h2)(g1,h1) =

(
EH

h1h2
×WG

g2g1

)⋃(
WH

h2h1
×
(
WG

g2g1 ∪ EG
g1g2

))
.

The result follows.

Next theorem gives the characterization of connected 2-distance-balanced cartesian
products of graphs G and H .

Theorem 4.4. The cartesian product Γ = G�H is a connected 2-distance-balanced graph
if and only if each of G, H is either a connected 2-distance-balanced and 1-distance-
balanced graph, or a complete graph.

Proof. We first prove that if each of G, H is either a connected 2-distance-balanced and
1-distance-balanced graph or a complete graph, then Γ is a connected 2-distance-balanced
graph.

Let us assume that G and H are connected 2-distance-balanced and 1-distance-balanced
graphs. The connectivity of Γ follows from the connectivity of G and H . In this case all
three types of vertices at distance 2 are present in Γ.

Let (g1, h) and (g2, h) be arbitrary vertices of type G2 in Γ. Since G is, by the assump-
tion, 2-distance-balanced and since vertices g1, g2 are at distance 2 in G, it follows from
Lemma 4.1 that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ = |H|
∣∣WG

g2g1

∣∣ =
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ .
So for arbitrary vertices (g1, h), (g2, h) ∈ V (Γ) of type G2, the number of vertices that are
closer to (g1, h) than to (g2, h) in Γ equals the number of vertices that are closer to (g2, h)
than to (g1, h) in Γ.
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If (g, h1) and (g, h2) are arbitrary vertices of type H2 in Γ, then similarly as above
(using Lemma 4.2 instead of Lemma 4.1) we find that the number of vertices that are
closer to (g, h1) than to (g, h2) in Γ equals the number of vertices that are closer to (g, h2)
than to (g, h1) in Γ.

Let (g1, h1), (g2, h2) ∈ V (Γ) be arbitrary vertices of type GH2 in Γ. Since G and H
are both, by the assumption, 1-distance-balanced, and since g1, g2 are adjacent in G and
h1, h2 are adjacent in H , we have∣∣WG

g1g2

∣∣ =
∣∣WG

g2g1

∣∣ and
∣∣WH

h1h2

∣∣ =
∣∣WH

h2h1

∣∣ .
It follows from Lemma 4.3 that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣
for arbitrary vertices of type GH2 in Γ. So we proved that if G and H are both connected
2-distance-balanced and 1-distance-balanced graphs, then the cartesian product Γ = G�H
is a connected 2-distance-balanced graph. Note that since G and H are 1-distance-balanced
graphs, it follows that the cartesian product Γ = G�H is also 1-distance-balanced (see [12,
Proposition 4.1]).

If one (or both) of G, H is a complete graph, then the proof that Γ = G�H is a
connected 2-distance balanced graph is similar to the proof above. The only diference is
that we do not have to consider vertices of type G2 (H2, respectively).

Assume now that Γ = G�H is a connected 2-distance-balanced graph. The connectiv-
ity of G and H follows from the connectivity of Γ. If G and H are complete graphs, then
we are done. Therefore we assume that at least one of G or H is not a complete graph.
First we show that in this case G and H are 2-distance-balanced graphs provided they are
not complete.

Assume that G is not a complete graph. For an arbitrary h ∈ V (H) and arbitrary
g1, g2 ∈ V (G) that are at distance 2 in G, consider (g1, h), (g2, h) ∈ V (Γ). Note that
∂Γ((g1, h), (g2, h)) = 2 by (4.1) and that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ and
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣
by Lemma 4.1. Since Γ is 2-distance-balanced, it follows that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣, so also
G is a 2-distance-balanced graph. Due to commutativity of the cartesian product, if H is
not a complete graph, we can similarly show that H is a 2-distance-balanced graph.

Finally we show that G and H are also 1-distance-balanced graphs. Pick arbitrary
adjacent vertices g1, g2 of G and arbitrary adjacent vertices h1, h2 of H , and note that
(g1, h1), (g2, h2) ∈ V (Γ) are at distance 2. Since Γ is 2-distance-balanced, it follows that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣ .
From Lemma 4.3 we get that∣∣EH

h1h2

∣∣ (∣∣WG
g1g2

∣∣− ∣∣WG
g2g1

∣∣) =
∣∣WH

h2h1

∣∣ ∣∣WG
g2g1 ∪ EG

g1g2

∣∣
−
∣∣WH

h1h2

∣∣ ∣∣WG
g1g2 ∪ EG

g1g2

∣∣ . (4.4)
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Assume that G is not a 1-distance-balanced graph. Then we could choose g1, g2 in such a
way that

∣∣WG
g1g2

∣∣ > ∣∣WG
g2g1

∣∣. As a consequence we also have that∣∣WG
g1g2 ∪ EG

g1g2

∣∣ > ∣∣WG
g2g1 ∪ EG

g1g2

∣∣ .
It follows from (4.4) that

∣∣WH
h2h1

∣∣ > ∣∣WH
h1h2

∣∣. Consider now vertices (g1, h2), (g2, h1),
which are also at distance 2 in Γ. Similar argument as above shows that

∣∣WH
h2h1

∣∣ <∣∣WH
h1h2

∣∣, which is a contradiction. So G is a 1-distance balanced graph. Since the cartesian
product is commutative, the proof that H is a 1-distance balanced graph is analogous to the
proof for G.

5 2-distance-balanced lexicographic product
Throughout this section let G and H be graphs and let Γ = G[H] be the lexicographic prod-
uct of G and H . It follows from the definition that the lexicographic product Γ is connected
if and only if G is connected. In order to avoid trivialities we assume that |V (G)| ≥ 2 and
|V (H)| ≥ 2. We characterize connected 2-distance-balanced lexicographic products of G
and H (see Theorem 5.4).

Remark 5.1. A more general result about the characterization of connected n-distance-
balanced lexicographic products of G and H as in Theorem 5.4 is stated in [7, Theo-
rem 3.4]. But the result is not correct for at least n = 2. As a counterexample, let both G
and H be paths on 3 vertices, which are connected graphs. Observe that G is 2-distance-
balanced, and that H is locally regular (in a sense that any non-adjacent vertices in H
have the same number of neighbours). By [7, Theorem 3.4], G[H] is 2-distance-balanced.
However, one can easily check that the G[H] is not 2-distance-balanced.

Notice that there exist two different types of vertices at distance 2 in Γ. We now state
these two types and we will refer to them in the proof of the Theorem 5.4. Let (g1, h1),
(g2, h2) ∈ V (Γ) be vertices at distance 2 in Γ. We say that this two vertices are of type

• G2, if ∂G(g1, g2) = 2,

• H2, if g1 = g2 and ∂H(h1, h2) ≥ 2.

It follows from the definition that there exist vertices of type G2 in Γ if and only if G is
connected non-complete graph. Similarly, there exist vertices of type H2 in Γ if and only
if H is non-complete graph.

The following two lemmas will be used in the proof of the main theorem of this section.

Lemma 5.2. Let (g1, h1) and (g2, h2) be arbitrary vertices of type G2 in Γ = G[H]. Then∣∣∣WΓ
(g1,h1)(g2,h2)

∣∣∣ = 1 + |NH(h1)|+
(∣∣WG

g1g2

∣∣− 1
)
|V (H)|

and ∣∣∣WΓ
(g2,h2)(g1,h1)

∣∣∣ = 1 + |NH(h2)|+
(∣∣WG

g2g1 | − 1
)∣∣V (H)|.

Proof. Let (g1, h1) and (g2, h2) be arbitrary vertices of type G2 in Γ. Clearly, (g1, h1) is
closer to itself than to (g2, h2). Now consider vertices of Γ of type (g1, h), where h 6=
h1. Note that ∂Γ((g1, h), (g2, h2)) = 2, and so (g1, h) ∈ WΓ

(g1,h1)(g2,h2) if and only
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if h ∈ NH(h1). Finally, consider vertices of Γ of type (g, h), where g 6= g1. Then
∂Γ((g1, h1), (g, h)) = ∂G(g1, g), and so (g, h) ∈WΓ

(g1,h1)(g2,h2) if and only if g ∈WG
g1g2 \

{g1}. It follows that

WΓ
(g1,h1)(g2,h2) = {(g1, h1)} ∪ ({g1} ×NH(h1)) ∪ ((WG

g1g2 \ {g1})× V (H)).

Similarly we get

WΓ
(g2,h2)(g1,h1) = {(g2, h2)} ∪ ({g2} ×NH(h2)) ∪ ((WG

g2g1 \ {g2})× V (H)).

The result follows.

Lemma 5.3. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ = G[H]. Then∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ = 1 + |NH(h1)| − |NH(h1) ∩NH(h2)|

and ∣∣∣WΓ
(g,h2)(g,h1)

∣∣∣ = 1 + |NH(h2)| − |NH(h1) ∩NH(h2)|.

Proof. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ, and let (g′, h′) be an
arbitrary vertex of Γ. Note that if g 6= g′ then ∂Γ((g, h1), (g′, h′)) = ∂Γ((g, h2), (g′, h′)).
Assume therefore that g′ = g. But it is clear that in this case (g, h′) ∈ WΓ

(g,h1)(g,h2) if and
only if ∂H(h1, h

′) ≤ 1 < ∂H(h2, h
′). It follows that

WΓ
(g,h1)(g,h2) = {(g, h1)} ∪ ({g} × (NH(h1) \ (NH(h1) ∩NH(h2)))).

Similarly we get

WΓ
(g,h2)(g,h1) = {(g, h2)} ∪ ({g} × (NH(h2) \ (NH(h1) ∩NH(h2)))).

The result follows.

Next theorem gives the characterization of connected 2-distance-balanced lexicographic
products of graphs G and H .

Theorem 5.4. The lexicographic product Γ = G[H] is a connected 2-distance-balanced
graph if and only if one of the following (i), (ii) holds:

(i) G is a connected 2-distance-balanced graph and H is a regular graph.

(ii) G is a complete graph, H is not a complete graph, and each connected component
of the complement of H induces a regular subgraph of the complement of H .

Proof. We first prove that if one of (i), (ii) holds, then Γ is a connected 2-distance-balanced
graph. The connectivity of Γ follows from the connectivity of G.

Assume that (i) holds. Take arbitrary (g1, h1), (g2, h2) ∈ V (Γ) of type G2. Since G
is a 2-distance-balanced graph and H is a regular graph, we have that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣
and |NH(h1)| = |NH(h2)|. It follows from Lemma 5.2 that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣
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for arbitrary vertices of type G2 in Γ.

Take now arbitrary (g, h1), (g, h2) ∈ V (Γ) of type H2. Since, by the assumption, H
is a regular graph, we have that |NH(h1)| = |NH(h2)|. It follows from Lemma 5.3 that

∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ =
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣
for arbitrary vertices of type H2 in Γ. So, if (i) holds then Γ is a connected 2-distance-
balanced graph.

Assume that (ii) holds. Then G is a complete graph and H is not a complete graph,
so we only have vertices of type H2 in Γ. Let us denote the complement of H by H .
Let (g, h1), (g, h2) ∈ V (Γ) be arbitrary vertices of type H2. Note that this implies that
h1, h2 are not adjacent in H , and so h1, h2 are adjacent in H . As a consequence, h1, h2 are
contained in the same connected component of H . It follows that |NH(h1)| = |NH(h2)|,
and consequently also |NH(h1)| = |NH(h2)|. It follows from Lemma 5.3 that

∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ =
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣ .
So, if (ii) holds then Γ is a connected 2-distance-balanced graph.

Assume now that the lexicographic product Γ = G[H] is a connected 2-distance-
balanced graph. The connectivity of G follows from the connectivity of Γ. In what follows
we first treat the case where G is not a complete graph, and then the case when G is a
complete graph.

Suppose that G is not a complete graph. Take arbitrary g1, g2 ∈ V (G) at distance
2 in G. Then (g1, h), (g2, h) ∈ V (Γ) are of type G2 in Γ for an arbitrary h ∈ V (H).
Since Γ is, by the assumption, a 2-distance-balanced graph, it follows from Lemma 5.2
that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣ for arbitrary vertices at distance 2 in G. So, G is a connected
2-distance-balanced graph. For arbitrary h1, h2 ∈ V (H) and arbitrary g1, g2 ∈ V (G) at
distance 2 in G, consider (g1, h1), (g2, h2) ∈ V (Γ). These two vertices are of type G2 in
Γ. Since Γ is, by the assumption, a 2-distance-balanced graph and we already know that G
is also 2-distance-balanced graph, it follows from Lemma 5.2 that |NH(h1)| = |NH(h2)|
for arbitrary two vertices in H . So, H is a regular graph and (i) holds.

From now on let G be a complete graph. Since Γ is not a complete graph, it follows
that also H is not a complete graph. This means that all vertices at distance 2 in Γ are of
type H2. We want to show that in this case each connected component of the complement
of H induces a regular subgraph of the complement of H .

Let h1, h2 ∈ V (H) be arbitrary vertices at distance greater or equal than 2 in H (that
is, vertices h1, h2 are not adjacent in H). Observe that (g, h1), (g, h2) ∈ V (Γ) are of type
H2 for an arbitrary g ∈ V (G). From Lemma 5.3 we get that |NH(h1)| = |NH(h2)|, and
consequently also |NH(h1)| = |NH(h2)|. This shows that any adjacent vertices of H have
the same valency in H , and therefore each connected component of H induces a regular
subgraph of H .
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We finish our paper with a suggestion for further research. A fullerene is a cubic planar
graph having all faces 5- or 6-cycles. Examples include the dodecahedron and general-
ized Petersen graph GP(12, 2). Dodecahedron is distance-regular, and so it is n-distance-
balanced for every 1 ≤ n ≤ 5 (recall that the diameter of dodecahedron is 5). On the
other hand, the diameter of GP(12, 2) is also 5, but GP(12, 2) is n-distance-balanced only
for n = 5, see [17]. Therefore, it would be interesting to know, which fullerenes are n-
distance-balanced at least for some values of n (for example, for n ∈ {1, 2, D}, where D
is the diameter of a fullerene in question). For more on fullerenes see [2, 5, 18].
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Abstract

Let X be a finite vertex-transitive graph of valency d, and let A be the full automor-
phism group of X . Then the arc-type of X is defined in terms of the sizes of the orbits
of the action of the stabiliser Av of a given vertex v on the set of arcs incident with v.
Specifically, the arc-type is the partition of d as the sum n1 +n2 + · · ·+nt+ (m1 +m1) +
(m2 +m2) + · · ·+ (ms +ms), where n1, n2, . . . , nt are the sizes of the self-paired orbits,
and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired orbits, in descending
order.

In a recent paper, it was shown by Conder, Pisanski and Žitnik that with the exception
of the partitions 1 + 1 and (1 + 1) for valency 2, every such partition occurs as the arc-
type of some vertex-transitive graph. In this paper, we extend this to show that in fact
every partition other than 1, 1 + 1 and (1 + 1) occurs as the arc-type of infinitely many
connected finite Cayley graphs with the given valency d. As a consequence, this also shows
that for every d > 2, there are infinitely many finite zero-symmetric graphs (or GRRs) of
valency d.
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1 Introduction
Vertex-transitive graphs hold a significant place in mathematics, and within this, a major
role is played by Cayley graphs, which represent groups in a very natural way. A Cayley
graph can be defined as any graph that admits some group of automorphisms which acts
regularly (sharply-transitively) on the vertices of the graph. Equivalently, a Cayley graph
can be constructed from the regular permutation representation of a group G, with vertices
taken as the elements of G and edges indicating the effect of a subset S ⊆ G (by left
multiplication). The set S ∪ S−1 consists of the elements of G that take the identity vertex
to one of its neighbours.

It often happens that the automorphism group of a connected finite Cayley graph itself
acts regularly on vertices. Any Cayley graph with this property is called a zero-symmetric
graph, or a graphical regular representation of the group G, or briefly, a GRR. But of
course the automorphism group of a Cayley graph X may be much larger than the vertex-
regular subgroup G, and can sometimes even be the full symmetric group on the vertex-set
(when the graph is null or complete). Intermediate cases, with Aut(X) larger than G
but smaller than Sym(G), as well as other kinds of vertex-transitive graphs, fall into a
number of different and interesting classes of graphs, including those that are arc-transitive
(or symmetric), and those that are half-arc-transitive (which are vertex-transitive and edge-
transitive but not arc-transitive).

A means of classifying vertex-transitive graphs was given in a recent paper by Conder,
Pisanski and Žitnik [3], using what is known as the arc-type of the graph. This can be
defined as follows.

Let X be a d-valent vertex-transitive graph, with automorphism group A, let Av be the
stabiliser in A of any vertex v of X , and consider the orbits of Av on the set of arcs (v, w)
with initial vertex v. The Av-orbit of any arc (v, w) can be ‘paired’ with the Av-orbit of
the arc (v, w′) whenever (v, w′) lies in the same orbit of A as the reverse arc (w, v), and if
those two A-obits are the same, then we say the Av-orbit of (v, w) is ‘self-paired’. Then
the arc-type of X is the partition Π of its valency d as the sum

Π = n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms) (†)

where n1, n2, . . . , nt are the sizes of the self-paired orbits of Av on arcs with initial vertex
v, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired orbits, in descend-
ing order. Similarly, the edge-type of X is the partition of d as the sum of the sizes of the
orbits ofAv on edges incident with v, and can be found by simply replacing each bracketed
term (mj +mj) by 2mj , for 1 ≤ j ≤ s.

For example, if X is arc-transitive, then its arc-type is simply d, while if X is half-arc-
transitive, then its valency d is even and its arc-type is (d2 + d

2 ), and X is a GRR if and only
if all the terms ni and mj in its arc-type are 1.

The authors of [3] also answered the natural question of which arc-types occur for
a given valency d. Every vertex-transitive graph of valency 2 is a union of cycles and
is therefore arc-transitive, with arc-type 2. Hence in particular, the partitions 1 + 1 and
(1 + 1) of 2 do not occur as the arc-type of a vertex-transitive graph. It was shown in [3]
that these are the only exceptional cases. Using a construction that takes Cartesian products
of pairwise ‘relatively prime’ vertex-transitive graphs, Conder, Pisanski and Žitnik proved
that in all other cases, every partition of d as given in (†) occurs as the arc-type of some
vertex-transitive graph X of valency d.
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In this paper, we prove a much stronger theorem, namely that every such partition other
than 1, 1 + 1 and (1 + 1) occurs as the arc-type of infinitely many connected finite Cayley
graphs. (This answers a question posed by Joy Morris at the 2015 PhD Summer School
in Discrete Mathematics, in Rogla, Slovenia.) As corollaries, we find that every standard
partition of a positive integer d is realisable as the edge-type of infinitely many connected
finite Cayley graphs of valency d, except for 1 and 1 + 1 (when d ≤ 2), and that for every
d > 2, there are infinitely many finite zero-symmetric graphs of valency d.

To prove our main theorem, we adopt the same approach as taken in [3], but show
there are infinitely many Cayley graphs that can be used in the construction as building
blocks with the required basic type. In particular, we show that the half-arc-transitive
Bouwer graphs B(m, k, n) and the ‘thickened covers’ used in [3] are Cayley graphs, and
we construct some new families of Cayley graphs with various arc-types as well.

We begin by setting notation and giving some further background in Section 2. Then
in Section 3 we briefly summarise what has to be done to prove our main theorem, which
we proceed to do in Section 4. We complete the paper with the consequence for zero-
symmetric graphs in Section 5.

2 Preliminaries and further background
2.1 Notation

All the graphs we consider in this paper are finite, simple, undirected and non-trivial (in the
sense of containing at least one edge). Given a graph X , we denote by V (X), E(X) and
A(X) the set of vertices, the set of edges, and the set of arcs of X , respectively. We denote
an edge with vertices u and v by {u, v}, and an arc from u to v by (u, v).

The automorphism group of X is denoted by Aut(X). Note that the action of Aut(X)
on the vertex-set V (X) also induces an action of Aut(X) on the edge-setE(X) and one on
the arc-set A(X). If the action of Aut(X) is transitive on the vertex-set, edge-set, or arc-
set, then we say thatX is vertex-transitive, edge-transitive or arc-transitive, and sometimes
abbreviate this to ‘VT’, ‘ET’ or ‘AT’, respectively.

Obviously, vertex-transitive graphs are always regular. Moreover, because a discon-
nected vertex-transitive graph consists of pairwise isomorphic connected components, we
may restrict our attention here to connected graphs. An arc-transitive graph is often also
called symmetric. A graph is called half-arc-transitive if it is vertex-transitive and edge-
transitive, but not arc-transitive. The valency of every half-arc-transitive graph is necessar-
ily even; see [11, p. 59].

Now let G be a group, and let S be a subset of G that is inverse-closed and does not
contain the identity element. Then the Cayley graph Cay(G,S) is the graph with vertex-
set G, and with vertices u and v being adjacent if and only if vu−1 ∈ S (or equivalently,
v = xu for some x ∈ S). Since we require S to be inverse-closed, this Cayley graph
is undirected, and since S does not contain the identity, the graph has no loops. Also
Cay(G,S) is regular, with valency |S|, and is connected if and only if S generates G.
Furthermore, it is easy to see that G acts as a group of automorphisms of Cay(G,S) by
right multiplication, and this action is transitive on vertices, with trivial stabiliser, and hence
sharply-transitive (or regular). In particular, Cay(G,S) is vertex-transitive.

More generally, a graph X is a Cayley graph for the group G if and only if G acts
regularly on V (X) as a group of automorphisms ofX . This is very well known — see [10]
for example.
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2.2 Cartesian products and (relatively) prime graphs

Given a pair of graphs X and Y (which might or might not be distinct), the Cartesian
product X �Y is a graph with vertex set V (X)× V (Y ), such that two vertices (x, y) and
(u, v) are adjacent in X �Y if and only if x = u and y is adjacent with v in Y, or y = v
and x is adjacent with u in X . This definition can be extended to the Cartesian product
X1 � · · ·�Xk of a larger number of graphsX1, . . . , Xk, which are then called the factors.

A graph X is called prime (with respect to the Cartesian product) if it is not isomorphic
to the Cartesian product of a pair of smaller, non-trivial graphs. Every connected graph
can be decomposed as a Cartesian product of prime graphs, in a way that is unique up to
reordering and isomorphism of the factors; see [6, Theorem 4.9] for a proof. Then two
graphs can be said to be relatively prime (with respect to the Cartesian product) if there is
no non-trivial graph that is a factor of both. Note that two prime graphs are relatively prime
unless they are isomorphic.

For the construction in [3] and here, we need a number of other properties of the Carte-
sian product, and some ways in which we can tell if a given graph is prime with respect to
the Cartesian product. We summarise these as follows:

Proposition 2.1.

(a) The Cartesian product operation � is associative and commutative.

(b) A Cartesian product graph is connected if and only if all its factors are connected.

(c) If X1, . . . , Xk are regular graphs with valencies d1, . . . , dk, then their Cartesian
product X1 � · · ·�Xk is also regular, with valency d1 + · · ·+ dk.

(d) The Cartesian product of Cayley graphs is a Cayley graph.

(e) If X1, . . . , Xk are connected graphs that are pairwise relatively prime, then
Aut(X) ∼= Aut(X1)× · · · ×Aut(Xk).

(f) A Cartesian product of connected graphs is vertex-transitive if and only if all its
factors are vertex-transitive.

(g) If X1, . . . , Xk are non-trivial connected vertex-transitive graphs with arc-types
τ1, . . . , τk, and X1, . . . , Xk are pairwise relatively prime, then the arc-type of their
Cartesian product X = X1 � · · ·�Xk is τ1 + · · ·+ τk.

Proof. Parts (a) to (c) are easy, and part (d) follows by induction from the fact that

Cay(G,S)�Cay(H,T ) = Cay(G×H, (S × {1H}) ∪ ({1G} × T )).

Proofs of parts (e) and (f) can be found in [6], and part (g) was proved in [3].

Proposition 2.2. Let X be a Cartesian product of non-trivial connected graphs. Then:

(a) Every edge of X lies in some 4-cycle in X.

(b) All the edges in any cycle of length 3 in X belong to the same factor of X.

(c) If (x, y, z, w) is any 4-cycle in X , then the edges {x, y} and {z, w} belong to the
same factor of X , as do the edges {y, z} and {x,w}.

(d) [The square property] If two edges are incident in X but do not belong to the same
factor ofX , then there exists a unique 4-cycle inX that contains both of these edges,
and this 4-cycle has no diagonals.
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Proof. Part (a) is easy, and others were proved in [7], for example.

Corollary 2.3. Let X be a connected graph. If some edge of X is not contained in any
4-cycle (and in particular, if X has no 4-cycles), then X is prime.

2.3 Thickened covers

Let X be any simple graph, F any subset of the edge-set of X , and m any positive integer.
Then the authors of [3] defined the thickened m-cover of X over F as the graph X(F,m)
that has vertex-set V (X)× Zm, and edges of two types:

(a) an edge from (u, i) to (v, i), for every i ∈ Zm and every {u, v} ∈ E(X) \ F ,

(b) an edge from (u, i) to (v, j), for every (i, j) ∈ Zm × Zm and every {u, v} ∈ F .

One can think of this graph as being obtained from X by replacing each vertex of X by m
vertices, and each edge by the complete bipartite graph Km,m whenever the edge lies in F ,
or by mK2 (a set of m ‘parallel’ edges) whenever the edge does not lie in F .

For example, the thickened 2-cover of the cycle graph C6 over one of its 1-factors is
shown in Figure 1.

Figure 1: A thickened 2-cover of C6 (over a 1-factor).

It was shown in [3] that if X is a vertex-transitive graph, and F is a union of orbits of
Aut(X) on edges of X , then X(F,m) is vertex-transitive for every m ≥ 2. We can take
this further, as follows:

Proposition 2.4. If X = Cay(G,S) is a Cayley graph, and F is an orbit of G on edges of
X , then the thickened cover Y = X(F,m) is a Cayley graph for G× Zm.

Proof. We show that Y is exactly the same as the Cayley graph Cay(G× Zm,W ), where
multiplication in the group G × Zm is given by (g, i)(h, j) = (gh, i + j) for all g, h ∈ G
and i, j ∈ Zm, and W is the union of the two sets

W1 = {(s, 0) : s ∈ S, {1G, s} /∈ F} and W2 = {(t, i) : {1G, t} ∈ F, i ∈ Zm}.

Take any edge of Y of the first kind, say from (u, i) to (v, i) where {u, v} ∈ E(X) \ F .
Then v = su for some s ∈ S, and it follows that (v, i) = (su, i) = (s, 0)(u, i), with
{1G, s} = {u, su}u−1 = {u, v}u−1 /∈ F . Conversely, if s ∈ S and {1G, s} /∈ F then
{u, su} = {1G, s}u /∈ F , and so (s, 0)(u, i) = (su, i) is adjacent to (u, i), for all u and i.
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Similarly, for any edge of the second kind, from (u, i) to (v, j) with {u, v} ∈ F , we have
v = tu for some t ∈ S and so (v, j) = (t, j−i)(u, i) with {1G, t} = {u, v}u−1 ∈ F , and
conversely, if {1G, t} ∈ F (where t ∈ S), then {u, tu} = {1G, t}u ∈ F , and therefore
(t, j−i)(u, i) = (tu, j) is adjacent to (u, i), for all u, i and j.

Also we need some other information about thickened covers, taken from [3]. The fibre
over a vertex u of X is the set {(u, i) : i ∈ Zm} of vertices of X(F,m), and any element
of this set is said to project onto u. Similarly the fibre over an edge {u, v} of X is the
set {{(u, i), (v, i)} : i ∈ Zm} of edges of X(F,m) when {u, v} ∈ E(X) \ F , or the
set {{(u, i), (v, j)} : i, j ∈ Zm} when {u, v} ∈ F , and any element of this set is said to
project onto {u, v}. The fibre over an arc is defined similarly.

Proposition 2.5. Let X be a vertex-transitive graph, and let F be a union of edge-orbits
of X , with the property that every edge in F joins vertices from two different components
of X \ F . Then for every two arcs (x, y) and (u, v) from the same arc-orbit of X , any two
arcs of X(F,m) that project onto (x, y) and (u, v) respectively lie in the same arc-orbit of
X(F,m), for all m ≥ 2.

Proof. See [3, Theorem 7.6].

2.4 Bouwer graphs

The first known infinite family of half-arc-transitive graphs of arbitrary even valency greater
than 2 was constructed by Bouwer [2] in 1970. These graphs were a sub-family of a wider
class of graphs, which we now denote by B(k,m, n), defined as follows.

Let m and n be any integers such that 2m ≡ 1 mod n, with m ≥ 2 and n ≥ 3, and also
let k be any integer such that k ≥ 2. Then the vertices of B(k,m, n) may be taken as the
k-tuples (a,b) = (a, b2, b3, . . . , bk) with a ∈ Zm and bj ∈ Zn for 2 ≤ j ≤ k, with any
two such vertices being adjacent if and only if they can be written as (a,b) and (a+ 1, c)
where either c = b, or c = (c2, c3, . . . , ck) differs from b = (b2, b3, . . . , bk) in just one
position, say position j, where cj = bj + 2a.

Bouwer himself proved in [2] that every such graph is connected, edge-transitive and
vertex-transitive, with valency 2k. He also proved that the graphs B(k, 6, 9) are half-arc-
transitive, and his theorem was extended recently by Conder and Žitnik [4], who proved that
B(k,m, n) is arc-transitive only when n = 3, or (k, n) = (2, 5), or (k,m, n) = (2, 3, 7) or
(2, 6, 7) or (2, 6, 21). In particular, it follows that B(k,m, n) is half-arc-transitive when-
ever m > 6 and n > 5. Moreover, as shown in [4], if m > 6 and n > 7, then B(k,m, n)
has girth 6, and hence in that case, B(k,m, n) is prime.

These prime graphs gave the infinite family of half-arc-transitive graphs with arc-type
(k+ k), for each k ≥ 2, used in Lemma 8.2 of [3]. We can take this further, by proving the
following (which a referee has also pointed out was proved very recently by Ramos Rivera
and Šparl in [9]):

Proposition 2.6. Every Bouwer graph B(k,m, n) is a Cayley graph.

Proof. First note that n is odd, since 2m ≡ 1 mod n. Now letG be the semi-direct product
Zm n Zk−1n , where a generator of the complement Zm acts by conjugation from the right
on the kernel Zk−1n in the same way as component-wise multiplication by 2. Also let R
be the set of all elements of G of the form (1,b), where b is either the zero vector 0 in
Zk−1n , or one of the elementary basis vectors ej (with all its entries being 0 except for a 1
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in position j). The k elements of R are non-involutions, whose inverses are the elements
of the form (−1,d) where d = 0 or −2−1ei for some i. It follows that the 2k-valent
Cayley graph Cay(G,R ∪ R−1) is isomorphic to the Bouwer graph B(k,m, n), for if
(a,b) = (a, b2, b3, . . . , bk) is any vertex, then (1,0)(a,b) = (a+1,b), and (1, ei)(a,b) =
(a+ 1,b + 2aei) for all i.

3 Main theorem and overview of the proof
As indicated in the Introduction, our main theorem and its first immediate corollary are as
follows:

Theorem 3.1. For any positive integer d, let Π be any partition of d as given in (†). Then
Π occurs as the arc-type of infinitely many connected finite Cayley graphs of valency d,
except when Π is one of the partitions 1, 1 + 1 and (1 + 1) in the cases with d ≤ 2.

Corollary 3.2. With the exception of 1 and 1 + 1 (in the cases with d ≤ 2), every standard
partition of a positive integer d is realisable as the edge-type of infinitely many connected
finite Cayley graphs of valency d.

Corollary 3.2 follows easily from Theorem 3.1. To prove Theorem 3.1, we use much of
the proof of the theorem in [3] showing that every such partition is the arc-type of at least
one vertex-transitive graph of valency d. In that proof, the given partition Π was written
as a sum of ‘basic’ partitions, each having one of a number of forms, and then a VT graph
with arc-type Π was constructed as a Cartesian product of pairwise relatively prime graphs
with arc-types of the associated forms.

This required a good supply of prime vertex-transitive graphs with particular arc-types
as ‘building blocks’, and the following were sufficient.

(a) Arc-type m: infinitely many prime connected VT graphs, for each integer m ≥ 2;

(b) Arc-type (m+m): infinitely many prime connected VT graphs, for each m ≥ 2;

(c) Arc-type m+ 1: infinitely many prime connected VT graphs, for each m ≥ 2;

(d) Arc-type 1 + (1 + 1): at least two prime connected VT graphs;

(e) Arc-type m+ (1 + 1): at least one prime connected VT graph, for each m ≥ 2;

(f) Arc-type 1 + (m+m): at least one prime connected VT graph, for each m ≥ 2;

(g) Arc-type (1 + 1) + (1 + 1): infinitely many prime connected VT graphs;

(h) Arc-type (m+m)+(1+1): at least one prime connected VT graph, for eachm ≥ 2;

(i) Arc-type 1 + 1 + 1: infinitely many prime connected VT graphs;

(j) Arc-type 1 + 1 + (1 + 1): at least one prime connected VT graph;

(k) Arc-type 1 + 1 + 1 + 1: at least one prime connected VT graph;

(l) Arc-type (1 + 1) + (1 + 1) + (1 + 1): at least one prime connected VT graph.

Now to extend this to a proof of our theorem, we need infinitely many connected finite
Cayley graphs of each of the basic forms listed in cases (a) to (l) above.

Such infinite families were provided explicitly for cases (g) and (i) in Lemmas 8.6 and
8.8 of [3]. Also in cases (d), (e) and (g), a single vertex-transitive graph was produced for
eachm in Lemmas 8.4, 8.5 and 8.7 of [3], as a thickened cover of a particular Cayley graph
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over an edge-orbit. These are Cayley graphs, by Proposition 2.4, but we have to produce
infinitely many of them, for each m ≥ 2.

Hence it remains for us to find infinitely many connected finite Cayley graphs in the
cases (a)–(f), (h), and (j)–(l) above. We do that in the next section. Specifically, we con-
struct new families of Cayley graphs for cases (a), (d) and (j)–(l), we use the Bouwer graphs
for case (b), we show that the thickened covers used in [3] for case (c) are Cayley graphs,
and we show that thickened covers of the graphs in cases (d) and (g) provide infinitely
many Cayley graphs for cases (e), (f) and (h).

4 Proof of main theorem
As noted earlier, all we need to do to prove Theorem 3.1 is show that there exist infinitely
many prime connected finite Cayley graphs with each of the arc-types in the cases listed in
the previous section, and then the rest follows by the same argument as in [3, Section 9].
We do this case-by-case below. For completeness, we give a brief description of the Cayley
graphs in the cases that do not require any further analysis, and we give more detailed
arguments for the rest.

Case (a): Arc-type m, for all m ≥ 2.
For m = 2, we can take the family of all cycle graphs Cn with n ≥ 5. These graphs

have arc-type 2, and since they contain no 4-cycles, by part (a) of Proposition 2.2 they are
all prime (with respect to the Cartesian product).

For m ≥ 3, we construct an infinite family of arc-transitive prime connected finite
Cayley graphs of valency m using the same groups as for this case in [3, Lemma 8.1].

We know by Macbeath’s theorem [8] that for every prime p > m, the simple group
G = PSL(2, p) is generated by elements x and y such that x2 = ym = (xy)m+4 = 1.
Now take S to be the set {x, y−1xy, y−2xy2, . . . , y−(m−1)xym−1} of all conjugates of x
by powers of y, and let X = Cay(G,S).

The elements of S are distinct involutions (since G has trivial centre), and so X has
valency |S| = m. Moreover, the subgroup generated by S is normal in 〈x, y〉 = G, be-
cause x ∈ S and conjugation by y permutes the elements of S among themselves. Hence S
generates G, and therefore X is connected. But also conjugation by y induces an automor-
phism of X that fixes the identity vertex and cyclically permutes its m neighbours among
themselves, and so X is arc-transitive. Hence X has arc-type m.

Finally, X is prime, for if it were the Cartesian product of two relatively prime graphs
Y and Z, then its arc-type m would be the sum of the arc-types of Y and Z, and if it
were the kth Cartesian power of some prime graph Y , then we would find that |V (Y )|k =
|V (X)| = |G| = |PSL(2, p)| = p(p2 − 1)/2, which can occur only if k = 1.

Case (b): Arc-type (m+m), for all m ≥ 2.
If n and r are any integers such that 2r ≡ 1 mod n, with n > 7 and r > 6, then by

Lemma 8.2 of [3], the Bouwer graph B(m, r, n) is a prime half-arc-transitive graph with
arc-type (m+m), for every m ≥ 2. Also by Proposition 2.6 above, this graph is a Cayley
graph. Hence in particular, the Bouwer graph B(m, r, n) is a prime Cayley graph with
arc-type (m+m), whenever m ≥ 2, r > 6 and n > 7.

Case (c): Arc-type m+ 1, for all m ≥ 2.
By Theorem 7.5 of [3], for every integer m ≥ 2 and every integer n ≥ 3, the thickened

m-cover of the n-cycle C2n over one of its 1-factors is a prime VT graph with arc-type
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m+ 1 (that is, with two self-paired arc orbits of lengths m and 1). This thickened cover is
also a Cayley graph, as we show below.

Let a and b be canonical generators for the dihedral group Dmn of order 2mn, sat-
isfying amn = b2 = (ab)2 = 1, and define Ymn = Cay(Dmn, S) where S is the set
{b, ban, ba2n, . . . , ba(m−1)n, ba}, consisting of m+1 involutions. Now let η be the natural
epimorphism from Dmn to Dn

∼= Dmn/Cm with kernel 〈an〉 ∼= Cm, and let S and x be
the images of S and any x ∈ Dmn under η. Then η induces a graph homomorphism from
Ymn to Cay(Dn, S) = Cay(Dn, {b, ba}), which is clearly a cycle of length |Dn| = 2n.

Moreover, the pre-image of an edge of the form {x, bx} is a complete bipartite subgraph
of order 2m with m2 edges {xz, bxw} for z, w ∈ 〈an〉 ∼= Cm, while the pre-image of an
edge of the form {x, bax} is a subgraph of order 2m with m parallel edges {xz, baz} for
z ∈ 〈an〉 ∼= Cm.

Hence Ymn is isomorphic to the m-thickened cover of C2n used in Theorem 7.5 of [3],
and so is a prime Cayley graph with arc-type m+ 1, for all m ≥ 2 and all n ≥ 3.

Case (d): Arc-type 1 + (1 + 1).
Let p be any prime such that p ≡ 1 mod 4, with p > 5, and let k be any integer such that

k2 ≡ −1 mod p. Now take G to be the semi-direct product Cp ok C4, which is generated
by elements a and b such that ap = b4 = 1 and b−1ab = ak. Note that conjugation by b2

inverts a, while bab−1 = a−k.
Now let X = Cay(G, {b, b−1, ab2}). This graph is 3-valent, since ab2 is an involution,

and connected, since 〈b, ab2〉 = G. It is also non-bipartite, because if it were bipartite, then
its parts would be preserved by the only subgroup of index 2 in G, namely the subgroup
generated by a and b2, but that cannot happen since there is an edge from 1 to ab2. We will
show that X is prime and has arc-type 1 + (1 + 1), for all p and k.

First, note that the arcs (1, b), (1, b−1) and (1, ab2) can each be extended to a path of
length 2 in two ways, namely to (1, b, b2), (1, b, ab3), (1, b−1, b2), (1, b−1, ab),
(1, ab2, a−kb3) and (1, ab2, akb). It follows that the edge {1, ab2} lies in no 4-cycle, and
in particular, that X is prime. Moreover, the edges {1, b} and {1, b−1} lie in a single
4-cycle up to reversal, namely (1, b, b2, b−1), and so {1, ab2} lies in a different edge orbit
from {1, b} and {1, b−1}. On the other hand, the edges {1, b} and {1, b−1} lie in the same
orbit of Aut(X), since right multiplication by b−1 takes the former to the latter. Hence the
edge-type of X is 2 + 1, and the arc-type of X must be 1 + (1 + 1) or 2 + 1.

Next, we consider the stabiliser A1 in A = Aut(X) of the identity vertex 1. By the
above observations, A1 fixes the vertex ab2, as well as b2 (the only other common neigh-
bour of b and b−1) and a−1 (the vertex opposite ab2 in the 4-cycle (ab2, a−kb−1, a−1, akb)
containing ab2). By induction and connectedness, A1 fixes every vertex in the orbit of the
subgroup H of G generated by a and b2. The latter subgroup has index 2 in G, with coset
representatives 1 and b, and if β is any element of A1 that also fixes the vertex b, then by
vertex-transitivity, β fixes every vertex in the orbit of the coset bH , and hence fixes every
vertex, so β is trivial. It follows that |A1| ≤ 2, and furthermore, since A = GA1 (with
G∩A1 = {1}), we find that G has index 1 or 2 in A. Hence in particular, G is normal in A
(a fact which also follows from a theorem by Zhou and Feng [12, Theorem 2.3] on 3-valent
Cayley graphs of order 4p, for p prime).

Now suppose that A1 is non-trivial. Then there exists an automorphism θ ∈ A1 such
that A = 〈G, θ〉, and moreover, θ has order 2 and must swap the neighbours b and b−1 of
1, and fix ab2. Hence conjugation of G by θ fixes ab2 and swaps b with b−1 (as elements
of G). It follows that θ fixes b2 and hence also fixes (ab2)b2 = a, but then ak = (ak)θ =



106 Ars Math. Contemp. 15 (2018) 97–112

(b−1ab)θ = bab−1 = a−k, and so ak has order 2, contradiction.
Thus A1 is trivial, and Aut(X) = A = G, so X is a GRR, with arc-type 1 + (1 + 1).

Case (e): Arc-type m+ (1 + 1), for all m ≥ 2.
For any prime p ≡ 1 mod 4 with p > 5, and any square root k of −1 mod p, let X

be the Cayley graph for Cp ok C4 produced in case (d) above. This graph has two edge-
orbits, one of length 4p containing the edge {1, b}, and the other of length 2p containing
the edge {1, ab2}, where a and b are generators for G = Cp ok C4 satisfying the relations
ap = b4 = 1 and b−1ab = ak.

Now let Ym = X(F,m) be the thickenedm-cover ofX over F , where F is the smaller
of the two edge-orbits ofX . Then Ym is regular of valencym+2, and is a Cayley graph, by
Proposition 2.4, so all we have to do is show that Ym is prime and has arc-typem+(1+1).
We do this in much the same way as was done for the single example (for each m) in [3,
Lemma 8.4].

First, we note thatX \F is a union of quadrangles (unordered 4-cycles), and every edge
of F joins vertices from different quadrangles. Hence by Proposition 2.5, we find that all
edges in a fibre over an edge in E(X) \ F lie in the same edge-orbit of Ym, and all edges
in a fibre over an edge in F lie in the same edge-orbit. In particular, all edges of the form
{(1, 0), (ab2, i)} for i ∈ Zm lie in the same edge-orbit of Ym. Also multiplication by (b, 0)
puts {(1, 0), (b−1, 0)} in the same edge-orbit as {(1, 0), (b, 0)}.

On the other hand, up to reversal the edge {(1, 0), (b, 0)} lies in just one 4-cycle,
namely ((1, 0), (b, 0), (b2, 0), (b−1, 0)), while the edge {(1, 0), (ab2, 0)} lies in (m − 1)2

distinct 4-cycles, namely ((1, 0), (ab2, 0), (1, j), (ab2, `)) for j, ` ∈ Zm \ {0}. Hence
if m > 2 then {(1, 0), (b, 0)} cannot lie in the same orbit as {(1, 0), (ab2, 0)}. Simi-
larly, when m = 2, up to reversal the edge {(1, 0), (b, 0)} lies in precisely four 6-cycles,
namely ((1, 0), (b, 0), (ab−1, j), (b, 1), (1, 1), (ab2, `)) for j, ` ∈ {0, 1}, while the edge
{(1, 0), (ab2, 0)} lies in eight 6-cycles, viz. ((1, 0), (ab2, 0), (1, 1), (bε, 1), (ab−ε, j),
(bε, 0)) and ((1, 0), (ab2, 0), (aεkbε, 0), (a1−εkb−ε, j), (aεkbε, 1), (ab2, 1)) for ε = ±1 and
j ∈ {0, 1}, and again we find that the edge {(1, 0), (b, 0)} cannot lie in the same orbit as
the edge {(1, 0), (ab2, 0)}.

Hence the edge-type of Ym is m+ 2, and its arc-type is m+ 2 or m+ (1 + 1).
Next, consider the stabiliser A(1,0) in A = Aut(Ym) of the vertex (1, 0). We know

that A(1,0) preserves the set of m neighbours of (1, 0) of the form (ab2, i) for i ∈ Zm,
and as a consequence, A(1,0) must preserve the set of all paths of length 2 of the form
((1, 0), (ab2, i), y). For any such i, the third vertex y is either (a−kb−1, i), or (akb, i), or
(1, j) for some j ∈ Zm \ {0}. Moreover, if y = (a−kb−1, i) or (akb, i), then there is just
one path of length 2 from (1, 0) to y, while if y = (1, j) for some j, then there are m
distinct paths of length 2 from (1, 0) to y. Hence A(1,0) must preserve the set of all vertices
(1, j) with j ∈ Zm \ {0}, and so A(1,0) preserves the fibre over (1, 0).

By vertex-transitivity, the same thing holds for every vertex, and so Aut(Ym) permutes
the fibres over vertices of X . Hence every automorphism of Ym can be projected to an
automorphism of X . In particular, since X has arc-type 1 + (1 + 1), no automorphism can
take the arc ((1, 0), (b, 0)) to the arc ((1, 0), (b−1, 0)), and thus Ym has arc-typem+(1+1).

Finally, we show that Ym is prime. To do this, consider any decomposition of Y into
Cartesian factors, which are connected and vertex-transitive, by Proposition 2.1. The edge
{(1, 0), (b, 0)} does not lie in a 4-cycle with any of them edges of the form {(1, 0), (ab2, i)}
for i ∈ Zm, and so by part (d) of Proposition 2.2, all of those m edges must lie in
the same factor of Ym as {(1, 0), (b, 0)}, say Z. The same argument holds for the edge



M. D. E. Conder and N. Poznanović: The arc-types of Cayley graphs 107

{(1, 0), (b−1, 0)}, and so this edge must lie in Z as well. Hence Z contains all m+2 edges
incident with the vertex (1, 0). By vertex-transitivity and connectedness, all edges of Ym
lie in Z, so Z = Ym, and therefore Ym is prime.

Case (f): Arc-type 1 + (m+m), for all m ≥ 2.
This case is similar to the previous one, except that we let Ym = X(F,m) be the

thickenedm-cover ofX where this time F is the larger of the two edge-orbits ofX . Again,
Ym is a Cayley graph, by Proposition 2.4, but of valency 2m + 1, and all we have to do is
show that Ym is prime and has arc-type 1 + (m+m).

The neighbours of the vertex (1, 0) are the 2m vertices of the form (b, i) or (b−1, i)
where i ∈ Zm, plus the single vertex (ab2, 0). It is easy to see that every edge of the form
{(1, 0), (b±1, i)} lies in many different 4-cycles, while the edge {(1, 0), (ab2, 0)} lies in no
4-cycles at all. In particular, this shows that Ym is prime, and that the vertex (ab2, 0) is
fixed by the stabiliser A(1,0) of (1, 0) in A = Aut(Ym). Moreover, X \ F is a union of
non-incident edges, and so by Proposition 2.5, all arcs of the form ((1, 0), (b, i)) lie in the
same arc-orbit of Ym, and the same holds for all arcs of the form ((1, 0), (b−1, i)). Hence
the arc-type of Ym is either 2m+ 1 or 1 + (m+m).

To prove that the arc-type is 1 + (m + m), again we consider the local effect of the
stabiliser A(1,0) on vertices at short distance from the vertex (1, 0).

We know that A(1,0) preserves the set of 2m neighbours of (1, 0) of the form (b±1, i)
for i ∈ Zm, and fixes the neighbour (ab2, 0). In particular, A(1,0) must preserve the set of
all paths of length 2 of the form ((1, 0), (b±1, i), y). This time the third vertex y is either
(ab3, i), or (ab, i), or (1, `) or (b2, `) for some ` ∈ Zm, and in the first two cases, there is
just one such path of length 2 from (1, 0) to y, while if y = (1, `) or (b2, `) for some `, then
there are 2m such paths. Also each vertex v of the form (1, `) or (b2, `) lies at distance 3
from the vertex (ab2, 0) fixed by A(1,0), via the 2m paths (v, (bε, j), (1, 0), (ab2, 0)) with
ε = ±1 and j ∈ Zm. Moreover, if v is one of the vertices of the form (1, `), then there are
2m additional paths, namely ((1, `), (ab2, `), (aεkbε, j), (ab2, 0)) for ε = ±1 and j ∈ Zm,
but there are no such additional paths from a vertex of the form (b2, `).

It follows that no element of A(1,0) can take a vertex of the form (1, `) to one of the
form (ab3, i) or (ab, i) or (b2, `′), and therefore A(1,0) preserves the fibre over (1, 0).

By vertex-transitivity, the same thing holds for every vertex, and hence as before, ev-
ery automorphism of Ym can be projected to an automorphism of X . In particular, since
X has arc-type 1 + (1 + 1), no automorphism can take the arc ((1, 0), (b, 0)) to the arc
((1, 0), (b−1, 0)), and thus Ym has arc-type 1 + (m+m).

Case (g): Arc-type (1 + 1) + (1 + 1).
By Lemma 8.6 of [3], if p is any prime number with p ≡ 1 mod 6, if k is a prim-

itive 6th root of 1 mod p, and G is the semi-direct product Cp ok C6, generated by
two elements a and b of orders p and 6 such that b−1ab = ak, then the Cayley graph
Cay(G, {b, b−1, ab2, (ab2)−1}) is prime and has arc-type (1 + 1) + (1 + 1). In fact, the
edges {1, ab2} and {1, (ab2)−1} lie in 3-cycles, but the edges {1, b} and {1, b−1} do not.

Case (h): Arc-type (m+m) + (1 + 1), for all m ≥ 2.
For any prime p ≡ 1 mod 6, and any primitive 6th root k of 1 mod p, let X be the

Cayley graph produced in case (g) above. This graph has arc-type (1 + 1) + (1 + 1), and
its two edge-orbits both have length 4p, with representatives {1, b} and {1, ab2}, where a
and b are generators for G = Cp ok C6 satisfying ap = b6 = 1 and b−1ab = ak.
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Now let Ym = X(m,F ) be the thickened m-cover of X over F , where F is the edge-
orbit containing {1, b}, or equivalently, the set of edges that lie in no 3-cycle. This graph is
regular, with valency 2m + 2, and by Proposition 2.4 is a Cayley graph, so all we have to
do is show it is prime and has arc-type (m+m) + (1 + 1). We do this in the same way as
was done for the single example (for each m) in [3, Lemma 8.7].

First, X \ F is a union of triangles (unordered 3-cycles), and every edge of F joins
vertices from different triangles, and it follows that every automorphism of Ym induces a
permutation of the fibres over the edges in E(X) \ F , and also a permutation of the fibres
over the edges in F . On the other hand, Proposition 2.5 tells us that all edges in a fibre over
an edge in E(X) \ F lie in the same edge-orbit, and all edges in a fibre over an edge in F
lie in the same edge-orbit. Hence the edge-type of Ym is 2m+ 2.

Next, from vertex (u, i) in Ym there are precisely 2m paths from (u, i) to any other
vertex (u, `) in the fibre over (u, i), namely those of the form ((u, i), (bu, j), (u, `)) and
((u, i), (b−1u, j), (u, `)) for each j ∈ Zm, while on the other hand, there are only one, two
or m paths from (u, i) to any other vertex v at distance 2 from (u, i). Hence the stabiliser
in Aut(Ym) of the vertex (u, i) preserves the fibre over the vertex u, and it follows that
Aut(Ym) permutes the fibres over the vertices of X .

Thus every automorphism of Ym can be projected to an automorphism of X , and the
arc-type of Ym is (m+m) + (1 + 1), as required.

Finally, we show that Ym is prime. If Ym were the Cartesian product of two relatively
prime graphs, then one of them would have arc-type (1 + 1), which is impossible. On the
other hand, if Ym were a proper Cartesian power of some prime graph Z, say Ym = Zr

with r ≥ 2, then by part (b) of Proposition 2.2, all edges in a 3-cycle of Ym would lie in
the same factor of Ym, so Z would contain a 3-cycle, but in that case a vertex of Ym = Zr

would lie in at least two triangles, contradiction. Thus Ym is prime.

Case (i): Arc-type 1 + 1 + 1.
By Lemma 8.8 of [3], if n is any odd integer greater than 11, and G is the dihedral

group Dn, generated by two elements x and y satisfying x2 = yn = 1 and xyx = y−1,
then Cay(G, {x, xy, xy3}) is prime and has arc-type 1 + 1 + 1.

Case (j): Arc-type 1 + 1 + (1 + 1).
This is similar to case (d). Let p be any prime such that p ≡ 1 mod 4, with p > 5, let k

be any integer such that k2 ≡ −1 mod p, and let G be the semi-direct product Cp ok C4,
generated by two elements a and b such that ap = b4 = 1 and b−1ab = ak. Now take
S = {b, b−1, ab2, a2b2}, which consists of an inverse pair of elements of order 4 and two
involutions (as conjugation by b2 inverts a), and let X = Cay(G, {b, b−1, ab2, a2b2}).

Then X is 4-valent and connected, since 〈b, ab2〉 = G, and is also non-bipartite, just as
in case (d). We will show that X is prime and has arc-type 1 + 1 + (1 + 1).

First, by considering the vertices at distance 2 from the identity we see that up to re-
versal, the edges {1, b} and {1, b−1} lie in a single 4-cycle, namely (1, b, b2, b−1), while
each of the edges {1, ab2} and {1, a2b2} lies in no 4-cycle. In particular, it follows from
the latter observation that X is prime.

Also as before, the edges {1, b} and {1, b−1} lie in the same edge-orbit. On the
other hand, the edges {1, ab2} and {1, a2b2} lie in different edge orbits, because up to
reversal the edge {1, ab2} lies in four 5-cycles, namely those of the form (1, ab2, u, v, w)
with (u, v, w) = (a, b2, b), (a, b2, b−1), (akb, a−1, a2b2) and (a−kb−1, a−1, a2b2), while
the edge {1, a2b2} lies in only two 5-cycles, namely those of the form (1, a2b2, u, v, w)
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with (u, v, w) = (a−1, akb, ab2) and (a−1, a−kb−1, ab2). Hence the edge-type of X is
2 + 1 + 1.

This also implies that every automorphism of X preserves the set T = {x, a2b2x}
of all edges corresponding to left multiplication by the element a2b2 ∈ S, and hence
induces an automorphism of the subgraph obtained by removing those edges, namely
Cay(G,S \ T ) = Cay(G, {b, b−1, ab2}). By case (d), however, the latter subgraph is
a GRR, with automorphism group G, and so every such automorphism is given by right
multiplication by some element of G. It follows that G = Aut(X), and hence X is also a
GRR, and has arc-type 1 + 1 + (1 + 1).

Case (k): Arc-type 1 + 1 + 1 + 1.
For any integer n > 15, let G be the dihedral group Dn, generated by elements a and b

such that an = b2 = (ab)2 = 1, and take S = {b, ba, ba2, ba5}. Then since S consists of
four involutions and G is generated by b and ba, the graph X = Cay(G,S) is 4-valent and
connected. We show that X is prime and has arc-type 1 + 1 + 1 + 1.

First, the paths of length 2 in X starting at the identity vertex 1 are (1, b, aj) for j ∈
{−1,−2,−5}, and (1, ba, aj) for j ∈ {1,−1,−4}, and (1, ba2, aj) for j ∈ {2, 1,−3},
and (1, ba5, aj) for j ∈ {5, 4, 3}. By considering the final vertex of each of these, we
see that the vertex 1 lies in only two 4-cycles up to reversal, namely (1, b, a−1, ba) and
(1, ba, a, ba2). Hence the edges {1, b} and {1, ba2} lie in just one 4-cycle, while {1, ba}
lies in two 4-cycles, and {1, ba5} lies in no 4-cycles at all. In particular, X is prime, and
also X has edge-type 1 + 1 + 1 + 1 or 2 + 1 + 1, with each of {1, ba} and {1, ba5} lying
in different orbits from each other and from {1, b} and {1, ba2}.

Next, multiplying by b, we find that ba5b = a−5 plays the same role for the vertex b
as ba5 does for the vertex 1, namely that {b, a−5} is the only edge incident with b that lies
in no 4-cycle. Now consider the cycles of length 6 containing one of the paths (ba5, 1, b),
(a−5, b, 1) and (ba5, 1, ba2). An easy calculation shows there are precisely three 6-cycles
of the form (ba5, 1, b, u, v, w), namely with (u, v, w) = (a−1, ba4, a3), (a−1, ba4, a4)
and (a−1, ba3, a3), and similarly, there are three 6-cycles of the form (a−5, b, 1, u, v, w),
namely with (u, v, w) = (ba, a−4, ba−3), (ba, a−4, ba−4) and (ba2, a−3, ba−3), but there
are seven 6-cycles of the form (ba5, 1, ba2, u, v, w), namely with (u, v, w) = (a, ba3, a3),
(a, ba6, a4), (a, ba6, a5), (a2, ba3, a3), (a2, ba4, a3), (a2, ba4, a4) and (a2, ba7, a5).

In fact, up to reversal the edge {1, b} lies in 16 different 6-cycles altogether, while the
edge {1, ba2} lies in 20 different 6-cycles, but this takes more work to verify.

Both calculations show that the edge {1, ba2} cannot lie in the same orbit as {1, b}
under Aut(X), and it follows that X has edge-type and arc-type 1 + 1 + 1 + 1.

Case (l): Arc-type (1 + 1) + (1 + 1) + (1 + 1).
This is somewhat similar to case (g). Let p be any prime with p ≡ 1 mod 6, but this

time where p > 7, let k be a primitive 6th root of 1 mod p, with k3 ≡ −1 mod p, and
let G be the semi-direct product Cp ok C6, generated by two elements a and b of orders p
and 6 such that b−1ab = ak. Now take S = {b, ab2, a2b2, b−1, a−k2b4, a−2k2b4}, which
consists of the elements b, ab2 and a2b2 and their inverses, and let X = Cay(G,S). Then
clearly X is 6-valent and connected. We will show that X is prime, and has arc-type
(1 + 1) + (1 + 1) + (1 + 1), for all p.

First we note that {1, s} and {1, s}s−1 = {1, s−1} lie in the same edge orbit of X , for
each s ∈ S. Hence X has at most three distinct edge orbits.

Next, up to reversal the edge {1, b} lies in just two 4-cycles, namely (1, b, ab3, a−k
2

b4)
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and (1, b, a2b3, a−2k
2

b4), and multiplying by b−1 gives the two 4-cycles containing the
edge {1, b−1} as (1, b−1, a−k

2

b3, ab2) and (1, b−1, a−k
2

b3, a2b2). Each of the other four
edges incident with the vertex 1 is contained in only one 4-cycle (up to reversal), namely
one of the four just listed for {1, b} and {1, b−1}. Hence the orbit of the edges {1, b±1}
under Aut(X) is different from the orbit(s) of {1, s±1} for s = ab2 and s = a2b2.

Also the edge {1, ab2} lies in five 5-cycles, viz. those of the form (1, ab2, u, v, w) with
(u, v, w) = (akb, ak−1, a2b2), (akb, a−kb−1, a−k

2

b4), (a−k
2

b3, ab, b−1), (a−k+1, b2, b),
and (a−k

2

b4, ab3, b), while the edge {1, a2b2} lies in only four 5-cycles, namely those of
the form (1, a2b2, u, v, w) with (u, v, w) = (ak−1, akb, ab2), (a2kb, a−2kb−1, a−2k

2

b4),
(a−2k

2

b3, a2b, b−1) and (a−2k
2

b4, a2b3, b). Hence the orbit of the edges {1, (ab2)±1} is
different from the orbit of {1, (a2b2)±1}, and so the edge-type of X is 2 + 2 + 2.

But furthermore, if there exists an automorphism ofX that fixes the vertex 1 and swaps
b with b−1, then that automorphism must swap the two 4-cycles (1, b, ab3, a−k

2

b4) and
(1, b, a2b3, a−2k

2

b4) with the two 4-cycles (1, b−1, a−k
2

b3, ab2) and (1, b−1, a−k
2

b3, a2b2),
and hence must swap ab2 with a−k

2

b4 = (ab2)−1 and swap a2b2 with a−2k
2

b4 = (a2b2)−1.
Similarly, if if there exists an automorphism that fixes 1 and swaps ab2 with a−k

2

b4, then it
must swap the 4-cycle (1, b−1, a−k

2

b3, ab2) with the 4-cycle (1, b, ab3, a−k
2

b4), and hence
must swap b with b−1, and the same holds for a2b2 and a−2k

2

b4.
It follows that any automorphism that fixes the vertex 1 must either fix all its six neigh-

bours, or induce the triple transposition (b, b−1)(ab2, a−k
2

b4)(a2b2, a−2k
2

b4) on them. By
vertex-transitivity, the analogous thing happens at every vertex, and an easy argument then
shows that the stabiliser A1 in A = Aut(X) of the vertex 1 acts faithfully on its neigh-
bourhood, and therefore |A1| = 1 or 2.

Now suppose that |A1| = 2. Then |A| = |GA1| = 2|G|, and so G is normal in
A. Hence if θ is any non-trivial element of A1, then θ normalises G, and so induces an
automorphism of G = 〈a, b〉. Moreover, as θ fixes the vertex 1 and acts non-trivially on
its neighbourhood, we find that θ swaps b with b−1, and ab2 with a−k

2

b4 = (ab2)−1. In
turn, this implies that θ swaps a = (ab2)b−2 with a−k

2

b4b2 = a−k
2

, but then we find that
ak = (ak)θ = (b−1ab)θ = ba−k

2

b−1 = a−k, and so ak has order 2, contradiction.
Thus A1 is trivial, and Aut(X) = G, so X has arc-type (1 + 1) + (1 + 1) + (1 + 1).
Finally, X cannot be the Cartesian product of two smaller graphs that are relatively

prime, since those would have to be connected and vertex-transitive, and one of them would
have arc-type (1 + 1), which is impossible. Also X cannot be a Cartesian power of some
smaller VT graph, since its order 6p is not a non-trivial power of any integer. Hence X is
prime, as required.

Accordingly, we have infinitely many connected finite Cayley graphs with each of the
basic arc-types, and this completes the proof of Theorem 3.1 and Corollary 3.2.

For the benefit of the reader (and for possible future reference), we summarise some of
the details of the basic arc-types used here, in Table 1.

5 A consequence for zero-symmetric graphs
Another consequence of Theorem 3.1 is the following:

Corollary 5.1. For every integer d > 2, there exist infinitely many finite zero-symmetric
graphs (or GRRs) of valency d.
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Table 1: Summary of some Cayley graphs with the basic arc-types.

Arc-type Cayley graphs

m Cycle graphs Cn (n ≥ 5) for m = 2, and Cayley graphs
for PSL(2, p) via m conjugate involutions for m ≥ 3

(m+m) Bouwer graphs B(m, r, n) with n > 7 and r > 6

m+1 Thickened m-cover of C2n over a 1-factor
1+(1+1) 3-valent Cayley graph for Cp ok C4 (for prime p)
m+(1+1) Thickened cover of Cayley graph for Cp ok C4

1+(m+m) Thickened cover of Cayley graph for Cp ok C4

(1+1)+(1+1) 4-valent Cayley graph for Cp ok C6 (for prime p)
(m+m)+(1+1) Thickened cover of Cayley graph for Cp ok C6

1+1+1 3-valent Cayley graph for dihedral groups Dn

1+1+(1+1) 4-valent Cayley graph for Cp ok C4 (for prime p)
1+1+1+1 4-valent Cayley graph for dihedral groups Dn

(1+1)+(1+1)+(1+1) 6-valent Cayley graph for Cp ok C6 (for prime p)

This is not at all surprising, but appears to be new, in the sense that we cannot find the
statement or something similar in the literature on GRRs or zero-symmetric graphs. It is
shown in [5, Theorem 3.10.4] that there exists a GRR of valency d for the symmetric group
Sd+1 whenever the latter group can be generated by an ‘asymmetric’ set of d transpositions.
The latter happens for all d > 5, but gives only finitely many GRRs with given valency d.
On the other hand, it is clear that larger sets of involutory generators for dihedral or sym-
metric or other groups will give GRRs, even if this does not appear to have been explicitly
proved elsewhere.
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Abstract

More than 50 years ago Hedetniemi conjectured that the chromatic number of cate-
gorical product of two graphs is equal to the minimum of their chromatic numbers. This
conjecture has received a considerable attention in recent years. Hedetniemi’s conjecture
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introduced the first nontrivial lower bound for the chromatic number of categorical product
of general Kneser hypergraphs and using this lower bound, they verified Zhu’s conjecture
for some families of hypergraphs. In this paper, we shall present some colorful type results
for the coloring of categorical product of general Kneser hypergraphs, which generalize
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1 Introduction and main results
For two graphsG andH , their categorical productG×H is the graph defined on the vertex
set V (G) × V (H) such that two vertices (g, h) and (g′, h′) are adjacent whenever gg′ ∈
E(G) and hh′ ∈ E(H). The categorical product is the product involved in the famous
long-standing conjecture posed by Hedetniemi which states that the chromatic number of
G×H is equal to the minimum of χ(G) and χ(H). It was shown that the conjecture is true
for several families of graphs, but it is wide open in general (see Tardif [21] and Zhu [23]).
In spite of being investigated in several articles, there is no substantial progress in solving
this conjecture. This conjecture was generalized to the case of hypergraphs by Zhu [22].

A hypergraph H is an ordered pair (V (H), E(H)) where V (H) is a set of vertices,
and E(H) is a family of nonempty subsets of V (H). The elements of E(H) are called
edges. All hypergraphs considered in the paper have no multiple edges and E(H) is thus
a usual set. For a subset S ⊆ V (H), the subhypergraph induced by S, denoted by H[S],
is a hypergraph with vertex set S and edge set {e ∈ E(H) : e ⊆ S}. A hypergraph H is
said to be r-uniform if E(H) is a family of r-subsets of V (H). In particular, a 2-uniform
hypergraph is called a simple graph. From now on, by a graph we mean a simple graph. An
r-uniform hypergraphH is called r-partite if V (H) can be written as a union of r pairwise
disjoint subsets (parts) U1, . . . , Ur such that each edge of H intersects each part Ui in one
vertex. An r-partite hypergraph is called complete if it contains all possible edges. Also,
it is said to be balanced if |Ui| − |Uj | ≤ 1 for each i, j ∈ [r].

Let H be a hypergraph and r be an integer, where r ≥ 2. For pairwise disjoint subsets
U1, . . . , Ur ⊆ V (H), the hypergraph H[U1, . . . , Ur] is defined to be a subhypergraph of
H whose vertex set is ∪ri=1Ui and whose edge set consists of all edges of H which are
contained in ∪ri=1Ui and have exactly one element in each Ui. Note that H[U1, . . . , Ur] is
an r-uniform r-partite hypergraph.

A proper coloring of a hypergraph H is an assignment of colors to the vertices of H
such that there is no monochromatic edge. The chromatic number of a hypergraph H,
denoted by χ(H), is the smallest number k such that there exists a proper coloring of H
with k colors. If there is no such a k, we define the chromatic number to be infinite. Let
c be a proper coloring of a complete r-partite hypergraph H with parts U1, . . . , Ur. The
hypergraph H is colorful (with respect to the coloring c) whenever for each i ∈ [r], the
vertices in Ui receive different colors, that is, |c(Ui)| = |Ui| for each i ∈ [r].

LetH1 = (V1, E1) andH2 = (V2, E2) be two hypergraphs. For i = 1, 2, the projection
πi is defined by πi : (v1, v2) 7→ vi. The categorical product of two hypergraphs H1 and
H2, defined by Dörfler and Waller in 1980 [10], is the hypergraphH1×H2 with vertex set
V1 × V2 and edge set

{e ⊆ V1 × V2 : π1(e) ∈ E1, π2(e) ∈ E2}.

In 1992, Zhu [22] proposed the following conjecture as a generalization of Hedetniemi’s
conjecture.

Conjecture 1.1 ([22]). LetH1 = (V1, E1) andH2 = (V2, E2) be two hypergraphs. Then

χ(H1 ×H2) = min{χ(H1), χ(H2)}.

One can easily derive a proper coloring of H1 × H2 from a proper coloring of H1 or
of H2. Therefore the hard part is to show that χ(H1 × H2) ≥ min{χ(H1), χ(H2)}. Let
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F be a subhypergraph of H1 × H2 with the same vertex set and whose edge set consists
of minimal edges of H1 × H2. It is clear that any proper coloring of F is also a proper
coloring of H1 × H2. This observation shows that Conjecture 1.1 is a generalization of
Hedetniemi’s conjecture.

For an integer r and a hypergraphH, the r-colorability defect of H, denoted by cdr(H),
is the minimum number of vertices that shall be removed from H so that the hypergraph
induced by the remaining vertices admits a proper coloring with r colors.

Let Zr = {ω, ω2, . . . , ωr} be a multiplicative cyclic group of order r with generator ω.
For X = (x1, . . . , xn) ∈ (Zr ∪{0})n, a sequence xi1 , . . . , xim with 1 ≤ i1 < · · · < im ≤
n is called an alternating subsequence of X if xij 6= 0 for each j ∈ [m] and xij 6= xij+1

for each j ∈ [m−1]. The alternation number of X , denoted by alt(X), is the length of the
longest alternating subsequence of X . We set 0 = (0, . . . , 0) and define alt(0) = 0. Also,
for an X = (x1, . . . , xn) ∈ (Zr ∪ {0})n and for ε ∈ Zr, define Xε = {i : xi = ε} . Note
that the r-tuple (Xε)ε∈Zr

uniquely determines X and vice versa. Therefore, with abuse
of notations, we can write X = (Xε)ε∈Zr

. The notation |X| stands for the number of
nonzero coordinates of X , i.e., |X| =

∑
ε∈Zr

|Xε|. For two vectors X,Y ∈ (Zr ∪ {0})n,
we write X ⊆ Y whenever Xε ⊆ Y ε for each ε ∈ Zr.

For a hypergraph H and a bijection σ : [n] → V (H), the r-alternation number of H
with respect to the permutation σ is defined as follows:

altrσ(H) = max {alt(X) : E(H[σ(Xε)]) = ∅ for all ε ∈ Zr} .

The r-alternation number of H, denoted by altr(H), is equal to minσ altrσ(H) where the
minimum is taken over all bijections σ : [n]→ V (H) (for more details see [3]).

For any hypergraphH = (V (H), E(H)) and positive integer r ≥ 2, the general Kneser
hypergraph KGr(H) is an r-uniform hypergraph whose vertex set isE(H) and whose edge
set is the set of all r-subsets of E(H) containing r pairwise disjoint edges of H. Note that
by this notation the well-known Kneser hypergraph KGr(n, k) is the Kneser hypergraph
KGr

(
[n],

(
[n]
k

))
. For r = 2, we will rather use KG(H) than KGr(H).

Lovász in 1978, by using tools from algebraic topology, proved that χ(KG(n, k)) =
n − 2k + 2. His paper showed an inspired and deep application of algebraic topology
in combinatorics [15]. As a generalization of this result and to confirm a conjecture of
Erdős [11], Alon, Frankl, and Lovász [5] proved that the chromatic number of KGr (n, k)

is equal to
⌈
n−(k−1)r

r−1

⌉
. A different kind of generalization of Lovász’s theorem has been

obtained by Dol’nikov [9]. He proved that

χ(KG(H)) ≥ cd2(H).

Then, in 1992, Kříž [13] extended the both latter results by proving that

χ(KGr(H)) ≥
⌈

cdr(H)

r − 1

⌉
.

Alishahi and Hajiabolhassan [3] introduced the alternation number as an improvement of
colorability defect. Using the Zp-Tucker lemma, they proved that

χ(KGr(H)) ≥
⌈
|V (H)| − altr(H)

r − 1

⌉
.
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It can be verified that |V (H)| − altr(H) ≥ cdr(H) and the inequality is often strict [3].
Therefore, the preceding lower bound for chromatic number surpasses the Dol’nikov-Kříž
lower bound. Recently, by an innovative use of the Zp-Tucker lemma, Hajiabolhassan and
Meunier [12] extended the Alishahi-Hajiabolhassan result (as well as the Dol’nikov-Kříž
result) to the categorical product of general Kneser hypergraphs as follows.

Theorem A ([12]). Let H1, . . . ,Ht be hypergraphs and r be an integer, where r ≥ 2.
Then

χ(KGr(H1)× · · · ×KGr(Ht)) ≥
⌈

1

r − 1
min
i∈[t]

(|V (Hi)| − altr(Hi))
⌉
.

Using Theorem A, Hajiabolhassan and Meunier introduced new families of hyper-
graphs satisfying Zhu’s conjecture.

From another point of view, Simonyi and Tardos [20] generalized the Dol’nikov result.
Indeed, they proved that for any hypergraph H, if t = cd2(H), then any proper coloring
of KG(H) contains a complete bipartite subgraph Kbt/2c,dt/2e such that all vertices of this
subgraph receive different colors and these different colors occur alternating on the two
parts of the bipartite graph with respect to their natural order. Then, this result as well
as the Dol’nikov-Kříž result was extended to Kneser hypergraphs by Meunier [19] as the
following theorem.

Theorem B ([19]). LetH be a hypergraph and p be a prime number. Any proper coloring
of KGp(H) contains a colorful, balanced, and complete p-partite subhypergraph F with
cdp(H) vertices.

It should be mentioned that, in his paper [19], Meunier also generalized Theorem B
and proved that this theorem remains true by replacing cdp(H) with |V (H)| − altp(H).
In his proof, Meunier used a Zq-generalization of a theorem by Ky Fan which is stated in
terms of chain maps. Later, by introducing an appropriate generalization of the Zp-Tucker
lemma, the present second author [2] gave a simple proof for Meunier’s result. Moreover,
several extensions of Meunier’s result can be found in [2]. Another common generalization
of the Simonyi-Tardos result and a result by Chen [7, Theorem 7] can be found in [4].

As an improvement of r-colorability defect, the equitable r-colorability defect was in-
troduced in [1]. For a hypergraph H, the equitable r-colorability defect of H, denoted
by ecdr(H), is the minimum number of vertices that shall be removed so that the sub-
hypergraph induced by the remaining vertices admits a proper equitable r-coloring, i.e.,
a proper r-coloring in which the sizes of color classes differ by at most one. Clearly,
ecdr(H) ≥ cdr(H). As a generalization of Theorem B, it was proved [1] that any
proper coloring of KGp(H) contains a colorful, balanced, and complete p-partite subhy-
pergraph F with ecdp(H) vertices. It is not difficult to construct a hypergraphH for which
ecdr(H)− cdr(H) is arbitrary large. Surpassing the Dol’nikov-Kříž lower bound, Abyazi
Sani and Alishahi [1] proved

χ(KGr(H)) ≥
⌈

ecdr(H)

r − 1

⌉
.

It is worth mentioning that they indeed proved a more general result which in particular
implies the prior lower bound. To be more specific, they gave a new lower bound for the
chromatic number of a generalization of Kneser hypergraphs introduced by Ziegler which



R. Abyazi Sani et al.: Coloring properties of categorical product of general Kneser hypergraphs 117

improves substantially Ziegler’s lower bound [24, 25]. Furthermore, they compared their
lower bound with the Dol’nikov-Kříž lower bound and the Alishahi-Hajiabolhassan lower
bound. In this regard, it was shown that there is a family of hypergraphs H such that for
each hypergraphH ∈H ,

χ(KGr(H)) =

⌈
ecdr(H)

r − 1

⌉
,

while χ(KGr(H)) −
⌈

cdr(H)
r−1

⌉
and χ(KGr(H)) −

⌈
|V (H)|−altr(H)

r−1

⌉
are both unbounded

for the hypergraphs H in H . Although there are hypergraphs H for which ecdr(H) −
(|V (H)| − altr(H)) is arbitrary large, one can construct some hypergraphs H making
(|V (H)| − altr(H))− ecdr(H) arbitrary large, see [1].

As the main results of this paper, motivated by the preceding discussion, we simul-
taneously extend the results by Abyazi Sani and Alishahi [1] and by Hajiabolhassan and
Meunier [12] to the following theorems.

Theorem 1.2. LetH1, . . . ,Ht be hypergraphs. Let p be a prime number and

η = max
{

min
i∈[t]

ecdp(Hi), min
i∈[t]

(
|V (Hi)| − altp(Hi)

)}
.

Any proper coloring of KGp(H1) × · · · × KGp(Ht) contains a colorful, balanced, and
complete p-partite subhypergraph F with η vertices.

Remark. The question of whether Theorem 1.2 holds for an arbitrary positive integer r
instead of a prime number p is an interesting open question.

Let c be the proper coloring with color set [C]. Let F be the colorful, balanced, and
complete p-partite subhypergraph whose existence is ensured by Theorem 1.2. Clearly, any
color appears in at most p− 1 vertices of F . Consequently, the previous theorem implies

χ(KGp(H1)× · · · ×KGp(Ht)) ≥
⌈

η

p− 1

⌉
≥
⌈

1

p− 1
min
i∈[t]

ecdp(Hi)
⌉
,

which can be extended for an arbitrary r ≥ 2 as follows.

Theorem 1.3. Let H1, . . . ,Ht be hypergraphs and r be a positive integer, where r ≥ 2.
Then

χ(KGr(H1)× · · · ×KGr(Ht)) ≥
⌈

1

r − 1
min
i∈[t]

ecdr(Hi)
⌉
.

Example. In what follows, by introducing some hypergraphs, we compare the two lower
bounds presented in Theorems A and 1.3. Let n, k, r and a be positive integers, where
n ≥ rk, n > a and r ≥ 2. Define H(n, k, a) to be a hypergraph with vertex set [n] and
edge set {

B ⊆ [n] : |B| = k and B 6⊆ [a]
}
.

Let KGr(n, k, a) denote the hypergraph KGr(H(n, k, a)). It was proved [1, Proposition 7]
that if either a ≤ 2k − 2 or a ≥ rk − 1, then χ (KGr(n, k, a)) =

⌈
n−max{a,r(k−1)}

r−1

⌉
.

Indeed, for a ≥ rk − 1, it was proved that

χ (KGr(H(n, k, a))) =

⌈
ecdr(H(n, k, a))

r − 1

⌉
=

⌈
n− a
r − 1

⌉
.
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One should notice that the chromatic number of KGr(H(n, k, a)) was left open for several
values of a with 2k − 1 ≤ a ≤ rk − 2. Note that Theorem 1.3 implies the validity of
Zhu’s conjecture for the family of hypergraphs KGr(n, k, a) provided that a ≥ rk − 1.
What is interesting about the hypergraph KGr(H(n, k, a)) is the fact that for r ≥ 4 and
a ≥ rk − 1, the value of ecdr(H(n, k, a)) − (n − altr(H(n, k, a))) is unbounded. Thus,
by the lower bound presented in Theorem A, we cannot derive that the family of hyper-
graphs KGr(n, k, a) satisfies Zhu’s conjecture. On the other hand, there is a family H
of hypergraphs (see [1]) such that for H ∈ H , the value of

(
n − altr(H(n, k, a))) −

ecdr(H(n, k, a)
)

is unbounded. Hence, Theorem A and Theorem 1.3 introduce two some-
how complementary lower bounds.

2 Proofs
This section is devoted to the proofs of Theorem 1.2 and Theorem 1.3. In the first sub-
section, we define some necessary tools which will be needed in the rest of the paper. We
assume basic knowledge in topological combinatorics. For more details, see [16].

2.1 Notations and tools

A simplicial complex is a pair (V,K) where V is a finite nonempty set and K is a family
of nonempty subsets of V such that for each A ∈ K, if ∅ 6= B ⊆ A, then B ∈ K.
Respectively, the set V and the family K are called vertex set and simplex set of the
simplicial complex (V,K). For simplicity of notation and since we can assume that V =
∪A∈KA, with no ambiguity, we can point to a simplicial complex (V,K) just by its simplex
set K. The barycentric subdivision of K, denoted by sdK, is a simplicial complex whose
vertices are the simplices of K and whose simplices are the chains of simplices of K
ordered by inclusion.

Let V and W be two sets. We write V ]W for the set V ×{1} ∪W ×{2}. Let K and
L be two simplicial complexes with vertex sets V and W , respectively. We define K ∗ L,
the join of K and L, to be a simplicial complex with vertex set V ]W and simplex set
{A ] B : A ∈ K,B ∈ L}. The join operation is obviously associative: if K,L,M are
simplicial complexes, then the simplicial complexes K ∗ (L ∗M) and (K ∗L) ∗M are the
same up to a natural relabeling of their vertices. This allows us, if we do not care about the
names of the vertices, to useK∗L∗M for both ofK∗(L∗M) and (K∗L)∗M . The n-fold
join of K, denoted by K∗n, is a simplicial complex obtained by joining n copies of K. By
relabeling the vertices of K∗n, we assume that K∗n has vertex set V (K) × [n] where for
each vertex (v, i) ∈ V (K) × [n], the index i indicates that the vertex v is considered as a
vertex of the ith copy of K.

For a prime number p, we also consider Zp as a simplicial complex with vertex set
Zp and simplex set

{
{ω}, {ω2}, . . . , {ωp}

}
. Clearly Z∗np is a simplicial complex whose

vertex set is Zp× [n] and whose simplices are all nonempty subsetsA ⊆ Zp× [n] such that
for each i ∈ [n], the number of ε’s for which (ε, i) ∈ A is at most one. This observation
implies that the simplex set of Z∗np can be identified with the set (Zp∪{0})n \{0}, i.e., for
each simplex A in Z∗np , define A 7→ (x1, . . . , xn) where xi = ε if (ε, i) ∈ A and xi = 0

otherwise. Also, the simplicial complex σp−1
p−2 is a simplicial complex with vertex set Zp

and with simplex set consisting of all nonempty proper subsets of Zp. Note that
(
σp−1
p−2

)∗n
is a simplicial complex with vertex set Zp × [n] and ∅ 6= τ ⊆ Zp × [n] is a simplex of
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(
σp−1
p−2

)∗n
if and only if |τ ∩(Zp×{i})| ≤ p−1 for each i ∈ [n]. It is clear that

(
σp−1
p−2

)∗n
is a free simplicial complex where for each ε ∈ Zp and (ε′, i) ∈ Zp × [n], the action is

defined by ε · (ε′, i) = (ε · ε′, i). Let τ ∈
(
σp−1
p−2

)∗n
be a simplex. For each ε ∈ Zp, define

τε = {(ε, j) : (ε, j) ∈ τ}. Also, define

`(τ) = p · h(τ) + |{ε ∈ Zp : |τε| > h(τ)}|,

where h(τ) = minε∈Zp
|τε|. As stated above, each X ∈ (Zp ∪ {0})n \ {0} represents a

simplex in Z∗np ⊆
(
σp−1
p−2

)∗n
and vice versa. Therefore, speaking about h(X) and `(X) is

meaningful. Indeed, we have

h(X) = min
ε∈Zp

|Xε| and `(X) = p · h(X) + |{ε ∈ Zp : |Xε| > h(X)}|.

Note that Zp acts freely on (Zp ∪ {0})n \ {0} by the action ε ·X = (ε · x1, . . . , ε · xn),
where ε · 0 is defined to be 0 for each ε ∈ Zp.

Now, we are ready to present the proof of Theorem 1.2. For simplicity, we first assume
that η = mini∈[t] ecdp(Hi) and then, in Subsection 2.2.2, we sketch the proof for η =
mini∈[t](|V (Hi)| − altp(Hi)). The proof will follow by applying Dold’s theorem on a
Zp-equivariant simplicial map

λ : sd(Z∗np ) −→ Z∗mp
X 7−→ (s(X), ν(X))

with n =
∑t
i=1 |V (Hi)| and m as small as possible. Indeed, Dold’s theorem implies

that if there is such a map λ, then m ≥ n. It is worth noting that the idea of using Dold’s
theorem or some of it specializations such as the Zp-Tucker lemma has been used in several
articles initiated by a fascinating paper of Matoušek [17]. For instance, see [1, 4, 6, 7, 12,
18, 19, 24]. Usually, the most challenging task in using Dold’s theorem is how to define
the map λ, especially the sign part s(X). In what follows, we show that some of the
techniques used in these works can be fruitfully mixed and extended to get a common
generalization. However, some additional tricks are introduced to make these techniques
work together. In particular, in our approach, we use a different way to define the sign map
s(X) and also we appropriately modify the value function ν(X). Being more specific, to
define the map λ, we partition sd(Z∗np ) = (Zp ∪ {0})n \ {0} into two subsets Σ1 and
Σ2, where Σ2 is the set of vectors X ∈ sd(Z∗np ) such that for each j ∈ [t] and ε ∈ Zp,
the set

{
i ∈ [nj ] : xi+

∑j−1

j′=1
nj′

= ε
}

contains some edge of Hj = ([nj ], Ej), and hence

Xε somehow contains a vertex of the hypergraph KGp(H1) × · · · × KGp(Ht). For each
X ∈ Σ2, we define ν(X) ∈ {α+1, . . . ,m}, where α = n−η+p−1, according to a given
proper coloring of KGp(H1)× · · · ×KGp(Ht) and we define s(X) ∈ Zp with the help of
an auxiliary sign map s3(−). Defining λ(X) for the remaining vectors X , i.e., X ∈ Σ1, is
even more difficult and technical which will be done by the use of two auxiliary sign maps
s1(−) and s2(−). A larger value of η will allow us to make α smaller and consequently m
smaller, giving a better bound in the end.

2.2 Proof of Theorem 1.2

When η = 0, there is nothing to prove. If 1 ≤ η ≤ p − 1, then consider pairwise disjoint
sets U1, . . . , Up ⊆ V (KGp(H1) × · · · × KGp(Ht)) such that |Ui| = 1 for i ≤ η and
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|Ui| = 0 otherwise. Note that for at least one i, we have Ui = ∅. In view of the definitions,
the subhypergraph KGp(H1) × · · · × KGp(Ht)[U1, . . . , Up] which has no edge is clearly
balanced and p-partite. Furthermore, for any proper coloring of KGp(H1)×· · ·×KGp(Ht),
this subhypergraph is colorful which is desired. Henceforth, we assume that η ≥ p.

For simplicity of notation, assume that H1 = ([n1], E1), . . . ,Ht = ([nt], Et) and
moreover, set n =

∑t
i=1 ni. For each X = (x1, . . . , xn) ∈ (Zp ∪ {0})n \ {0}, let

X(1) ∈ (Zp ∪ {0})n1 be the first n1 coordinates of X , X(2) ∈ (Zp ∪ {0})n2 be the next
n2 coordinates of X , and so on, up to X(t) ∈ (Zp ∪ {0})nt be the last nt coordinates of
X . Also, for each j ∈ [t], define Aj(X) to be the set of signs ε ∈ Zp such that X(j)ε

contains at least one edge of Hj . We remind that X(j)ε is the set of all i ∈ [nj ] such that
xi+

∑j−1

j′=1
nj′

= ε. Define

Σ1 =
{
X ∈ (Zp ∪ {0})n \ {0} : Aj(X) 6= Zp for at least one j ∈ [t]

}
and

Σ2 =
{
X ∈ (Zp ∪ {0})n \ {0} : Aj(X) = Zp for all j ∈ [t]

}
.

Note that for anX ∈ (Zp∪{0})n\{0} and for each j ∈ [t], if we set S = ∪ε∈ZpX(j)ε,
thenX(j) =

(
X(j)ε

)
ε∈Zp

can be thought of as a partition of vertices ofHj [S] into p color
classes, i.e., the vertices in X(j)ε receive the color ε. Intuitively, the value h(X(j)) is then
the size of the smallest color class, `(X(j)) is the maximum possible number of vertices
colored by an equitable sub-coloring (not necessarily proper), while Aj(X) is the set of
colors ε ∈ Zp for which there is an ε-monochromatic edge inHj [S].

2.2.1 Proof of Theorem 1.2 when η = mini∈[t] ecd
p(Hi)

In what follows, we first define two sign maps s1 and s2 playing important roles in the
proof. These two maps will help us to define s(X) for each X ∈ Σ1.

Definition of s1(−). LetX ∈ Σ1 be a vector such thatAj(X) ∈ {∅, Zp} for each j ∈ [t].
Define

Bj(X) =


X(j) if Aj(X) = Zp,

{ε : X(j)ε 6= ∅} if Aj(X) = ∅ and h(X(j)) = 0,

X̃(j) if Aj(X) = ∅ and h(X(j)) > 0,

where X̃(j) ∈ (Zp ∪ {0})nj \ {0} and for each ε ∈ Zp, we have

X̃(j)
ε

=

{
X(j)ε if |X(j)ε| = h(X(j)),

∅ otherwise.

Note thatBj(X) may be of two different natures: a vector in (Zp∪{0})nj \{0} or a proper
subset of Zp. Now, setB(X) =

(
B1(X), . . . , Bt(X)

)
and

L1 =
{
B(X) : X ∈ Σ1 and Aj(X) ∈ {∅, Zp} for all j ∈ [t]

}
.

Note that L1 is a subset of((
Zp ∪ {0}

)n1 ∪
(
2Zp \ {Zp}

))
× · · ·×((

Zp ∪ {0}
)nt ∪

(
2Zp \ {Zp}

))
\ ({0, ∅} × · · · × {0, ∅}).
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For an ε ∈ Zp and a vectorB = (B1, . . . , Bt) ∈ L1, we define

ε ·B = (ε ·B1, . . . , ε ·Bt),

where

ε ·Bi =

{
(ε · x1, . . . , ε · xni

) if Bi = (x1, . . . , xni
) ∈ (Zp ∪ {0})ni \ {0},{

ε · z : z ∈ Bi
}

if Bi ( Zp.

With respect to this action, one can simply check thatL1 is closed and free and furthermore,
B(−) is a Zp-equivariant map, i.e., B(ε · X) = ε ·B(X) for each ε ∈ Zp and for each
X ∈ Σ1 such thatAj(X) ∈ {∅, Zp} for each j ∈ [t]. Now, let s1 : L1 → Zp be an arbitrary
Zp-equivariant map. Note that such a map can be defined by choosing one representative
in each orbit and defining the value of the map arbitrarily on this representative.

Definition of s2(−). Clearly Zp acts freely on

L2 = 2Zp × · · · × 2Zp \ ({∅, Zp} × · · · × {∅, Zp})

by the action ε ·(C1, . . . , Ct) = (ε ·C1, . . . , ε ·Ct), where ε ·Ci = {ε ·z : z ∈ Ci}. Similar
to the definition of s1(−), let s2 : L2 → Zp be an arbitrary Zp-equivariant map.

Set α = n − mini∈[t] ecdp(Hi) + p − 1. Note that since mini∈[t] ecdp(Hi) ≥ p, we
have α < n. For every j ∈ [t], define the function νj : (Zp ∪ {0})n \ {0} → N as follows:

νj(X) =


|X(j)| if Aj(X) = Zp,

|Aj(X)|+ max
{
`
(
Z
)

: Z ⊆ X(j) and

E(Hj [Zε]) = ∅ for all ε ∈ Zp
} if Aj(X) 6= Zp.

We remind the reader that |X(j)| denotes the number of nonzero coordinates in X(j).
Now, let ν(X) =

∑t
j=1 νj(X).

Defining the map λ1. Set α = n−minε∈Zp
ecdp(Hi) + p− 1. Define the map

λ1 : Σ1 −→ Zp × {1, . . . , α}
X 7−→ (s(X), ν(X)).

For defining s(X), we consider the following different cases.

• If for each j ∈ [t], we have Aj(X) ∈ {∅, Zp}, then s(X) = s1

(
B(X)

)
.

• If for some j ∈ [t], we have Aj(X) 6∈ {∅, Zp}, then s(X) = s2

(
A1(X), . . . , At(X)

)
.

Lemma 2.1. The map λ1 is a Zp-equivariant map with no X,Y ∈ Σ1 such that X ⊆ Y ,
ν(X) = ν(Y ) and s(X) 6= s(Y ).

Proof. Clearly, λ1 is a Zp-equivariant map since the two maps s1(−) and s2(−) are Zp-
equivariant and ν(ε ·X) = ν(X) for all ε ∈ Zp. For a contradiction, suppose thatX and Y
are two vectors in Σ1 such that X ⊆ Y , ν(X) = ν(Y ) and s(X) 6= s(Y ). Since X ⊆ Y ,
we have X(j) ⊆ Y (j) and consequently, Aj(X) ⊆ Aj(Y ) for each j ∈ [t]. Additionally,
X(j) ⊆ Y (j) implies that{

`(Z) : Z ⊆ X(j) and E(Hj [Zε]) = ∅ ∀ε ∈ Zp
}
⊆{

`(Z) : Z ⊆ Y (j) and E(Hj [Zε]) = ∅ ∀ε ∈ Zp
}
.
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Thus, νj(X) ≤ νj(Y ) for each j ∈ [t]. Therefore, the equality ν(X) = ν(Y ) implies
νj(X) = νj(Y ). This equality together with above discussion results in Aj(X) = Aj(Y )
for each j ∈ [t]. This observation leads us to the following cases.

(I) Aj(X) ∈ {∅, Zp} for each j. Therefore, s(X) = s1

(
B(X)

)
. Since Aj(X) =

Aj(Y ) for each j, we have s(Y ) = s1

(
B(Y )

)
, Consequently, the fact that s(X) 6=

s(Y ) implies that B(X) 6= B(Y ). Now, let j0 be the smallest integer for which
Bj0(X) 6= Bj0(Y ). We consider the following different cases.

(1) When Aj0(X) = Aj0(Y ) = Zp. In view of the definition of Bj0(−), we have
X(j0) ( Y (j0). Therefore, the definition of νj0 implies that νj0(X) < νj0(Y ),
which is not possible.

(2) When Aj0(X) = Aj0(Y ) = ∅. Using νj0(X) = νj0(Y ), we have `(X(j0)) =
`(Y (j0)). Therefore,

p · h(X(j0)) + |{ε : |X(j0)ε| > h(X(j0))}| =
p · h(Y (j0)) + |{ε : |Y (j0)ε| > h(Y (j0))}|,

which clearly implies that h(X(j0)) = h(Y (j0)) and

|{ε : |X(j0)ε| > h(X(j0))}| = |{ε : |Y (j0)ε| > h(Y (j0))}|.

The fact that X(j0) ⊆ Y (j0) results in

{ε : |X(j0)ε| > h(X(j0))} = {ε : |Y (j0)ε| > h(Y (j0))}.

Therefore, in view of the definition of B(−), we have Bj0(X) = Bj0(Y )
which is a contradiction.

(II) Aj(X) 6∈ {∅, Zp} for some j ∈ [t]. Since s(X) 6= s(Y ), we have

s2

(
A1(X), . . . , At(X)

)
6= s2

(
A1(Y ), . . . , At(Y )

)
.

Consequently, we must have (A1(X), . . . , At(X)
)
6= (A1(Y ), . . . , At(Y )

)
. There-

fore, there is at least one j for which Aj(X) 6= Aj(Y ) which is not possible.

In what follows, we will define some new notations needed in the rest of proof. Let c
be a proper coloring of KGp(H1)× · · · ×KGp(Ht) with color set [C]. For each X ∈ Σ2

and each ε ∈ Zp, define

Eε(X) =
{

(e1, . . . , et) ∈ E1 × · · · × Et : ej ⊆ X(j)ε for each j ∈ [t]
}
.

Note that, in view of the definition of Σ2, for each ε ∈ Zp, we have Eε(X) 6= ∅. Now, set
τX to be defined as follows:

τX =
{

(ε, c(u)) : ε ∈ Zp and u = (e1, . . . , et) ∈ Eε(X)
}
.

Note that if we choose uε ∈ Eε(X) for each ε ∈ Zp, then {uε : ε ∈ Zp} is an edge of
KGp(H1) × · · · × KGp(Ht). Consequently, since c is a proper coloring of KGp(H1) ×
· · · × KGp(Ht), for each i ∈ [C], there is at least one ε ∈ Zp for which (ε, i) 6∈ τX . This

observation indicates that τX is a simplex of
(
σp−1
p−2

)∗C
. Furthermore, since Eε(X) 6= ∅

for each ε ∈ Zp, we have `(τX) ≥ p.
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Definition of s3(−). For a positive integer b ∈ [C], let Ub be the set consisting of all

simplices τ ∈
(
σp−1
p−2

)∗C
such that |τε| ∈ {0, b} for each ε ∈ Zp. Define U = ∪Cb=1Ub.

Choose an arbitrary Zp-equivariant map s3 : U → Zp. Also, for each τ ∈
(
σp−1
p−2

)∗C
with

h = h(τ) = min |τε|, define

τ̃ =
⋃

ε : |τε|=h

τε.

Note that τ̃ is a sub-simplex of τ which is in U . Therefore, s3(τ̃) is defined.

Defining the map λ2. Define the map

λ2 : Σ2 −→ Zp ×
{
α+ 1, . . . , α− p+ 1 + maxX∈Σ2 `(τX)

}
X 7−→ (s(X), ν(X)),

where s(X) = s3(τ̃X) and ν(X) = α− p+ 1 + `(τX).

Lemma 2.2. The map λ2 is a Zp-equivariant map with no X,Y ∈ Σ1 such that X ⊆ Y ,
ν(X) = ν(Y ) and s(X) 6= s(Y ).

Proof. Obviously, λ2 is a Zp-equivariant map. Suppose for a contradiction that X and Y
are two vectors in Σ2 such that X ⊆ Y , ν(X) = ν(Y ) and s(X) 6= s(Y ). In view of
the definition of λ2, we must have `(τX) = `(τY ). Using the definition of `(−), it implies
that h(τX) = h(τY ). From the last equality and τX ⊆ τY , we deduce that τ̃X = τ̃Y and
consequently, s(X) = s3(τ̃X) = s3(τ̃Y ) = s(Y ), which is a contradiction.

In the following lemma, we show that how the existence of an X with large `(X)
completes the proof.

Lemma 2.3. If there is an X ∈ Σ2 with `(τX) ≥ q, then KGp(H1) × · · · × KGp(Ht)
contains a colorful, balanced, and complete p-partite subhypergraph with q vertices.

Proof. Let X ∈ Σ2 be a vector for which we have `(τX) ≥ q. Let τ ⊆ τX be a sub-
simplex such that `(τ) = |τ | = q. For each i ∈ [p], set Si = {j ∈ [C] : (ωi, j) ∈ τ}.
First note that b qpc ≤ |Si| ≤ d

q
pe for each i ∈ [p]. Moreover, it is clear that

∑p
i=1 |Si| =

q. For each i ∈ [p] and s ∈ Si, in view of the definitions of τ(X) and Si, there is a
vertex ui,s = (esi,1, . . . , e

s
i,t) of KGp(H1) × · · · × KGp(Ht) such that c(ui,s) = s and

esi,j ⊆ X(j)ω
i

for each j ∈ [t]. Now, for i ∈ [p], set Ui = {ui,s : s ∈ Si}. Clearly,
KGp(H1)× · · · ×KGp(Ht)[U1, . . . , Up] is the desired subhypergraph.

Completing the proof of Theorem 1.2 when η = mini∈[t] ecd
p(Hi). For completing

the proof of Theorem 1.2, we need to use a generalization of the Borsuk-Ulam theorem
by Dold, see [8, 16]. Indeed, Dold’s theorem implies that if there is a Zp-equivariant
simplicial map from a simplicial Zp-complex K1 to a free simplicial Zp-complex K2, then
the dimension of K2 should be strictly larger than the connectivity of K1.

For simplicity of notation, let

m = α− p+ 1 + max
X∈Σ2

`(τ(X)).
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In view of Lemma 2.3, it suffices to show that

max
X∈Σ2

`(τX) ≥ min
i∈[t]

ecdp(Hi).

To this end, define λ : (Zp ∪ {0})n \ {0} → Zp × [m] such that for each X ∈ (Zp ∪
{0})n \ {0}, if X ∈ Σ1, then λ(X) = λ1(X), otherwise λ(X) = λ2(X). In view of
Lemma 2.1 and Lemma 2.2, λ(−) is a Zp-equivariant simplicial map from sd(Z∗np ) to
Z∗mp . Consequently, according to Dold’s theorem, the dimension of Z∗mp should be strictly
larger than the connectivity of sd(Z∗np ), that is m− 1 > n− 2 as desired. �

2.2.2 Proof of Theorem 1.2 when η = mini∈[t](|V (Hi)| − altp(Hi))

In this subsection, we sketch the proof of Theorem 1.2 for the η = mini∈[t](|V (Hi)| −
altp(Hi)) case. To this end, we need to slightly modify the proof of Theorem 1.2 in the
case of η = mini∈[t] ecdp(Hi) as follows.

• Throughout Subsection 2.2.1, replace mini∈[t] ecdp(Hi) by mini∈[t](|V (Hi)| −
altp(Hi)).

• Use alt(−) instead of function `(−) to define each νj(X).

• For any X such that Aj(X) ∈ {∅, Zp} for each j ∈ [t], in the definition of λ1(X),
set s(X) to be the first nonzero entry of X .

With the same approach as in Subsection 2.2.1, it is straightforward to check that Lem-
mas 2.1, 2.2, and 2.3 are still valid with the preceding modifications. Therefore, again
applying Dold’s theorem leads us to the desired assertion.

2.3 Proof of Theorem 1.3

To prove Theorem 1.3, we reduce this theorem to the prime case of r which is known to
be true by the discussion right after Theorem 1.2. One should notice that this reduction is
a refinement of the well-known reduction originally due to Kříž [14], which has been used
in some other papers as well, for instance see [3, 12, 24, 25]. In what follows, we use a
similar approach as in [12].

Lemma 2.4. Let r′ and r′′ be two positive integers. If Theorem 1.3 holds for both r′ and
r′′, then it holds also for r = r′r′′.

For two positive integers s and C and a hypergraphH, define a new hypergraph TH,C,s
as follows:

V (TH,C,s) = V (H)

E(TH,C,s) =
{
A ⊆ V (H) : ecds(H[A]) > (s− 1)C

}
.

The following lemma can be proved with a similar approach as in [12, Lemma 3].

Lemma 2.5. Let r and s be two positive integers. Then

ecdrs(H) ≤ r(s− 1)C + ecdr(TH,C,s).

Proof of Lemma 2.4. Using Lemma 2.5 instead of Lemma 3 in the proof of Lemma 1
in [12] leads us to the proof.
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Abstract

Given an n3 configuration, a one-point extension is a technique that constructs (n+1)3
configurations from it. A configuration is geometric if it can be realized by a collection of
points and straight lines in the plane. Given a geometric n3 configuration with a planar co-
ordinatization of its points and lines, a method is presented that uses a one-point extension
to produce (n+1)3 configurations from it, and then constructs geometric realizations of the
(n + 1)3 configurations. It is shown that this can be done using only a homogeneous cubic
polynomial in just three variables, independent of n. This transforms a computationally
intractable problem into a computationally practical one.

Keywords: (n, 3)-configuration, geometric configuration, anti-Pappian, rational coordinatization,
elliptic curve.

Math. Subj. Class.: 51E20, 51E30

1 Projective configurations
A projective configuration consists of a set Σ of points and lines, and an incidence re-
lation Π, such that two lines intersect in at most one point. We denote this by (Σ,Π).
For example, a triangle with points A,B,C and lines a, b, c can be represented by the pair
({A,B,C, a, b, c}, {Ab,Ac,Ba,Bc, Ca,Cb}). A configuration (Σ,Π) can also be viewed
as a bipartite incidence graph of points versus lines. We will always assume that the inci-
dence graph of a configuration is connected. Excellent references on configurations are the
recent books by Grünbaum [10], and by Pisanski and Servatius [18].

An n3-configuration is a projective configuration with n points and n lines such that ev-
ery line is incident with 3 points, and every point is incident with 3 lines. There is a unique
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73-configuration, the Fano configuration, and a unique 83-configuration, the Möbius-Kantor
configuration.

An n3 configuration which can be represented by a collection of points and straight
lines in the real or rational plane, such that all incidences are respected, and no two points
or two lines coincide is termed a geometric n3 configuration. In order to show that an n3

configuration is geometric, the usual method is to assign suitable homogeneous coordinates
to its points and lines. We call this a coordinatization of the configuration. A central prob-
lem [10] is to characterize which n3 configurations are geometric configurations, and to find
rational coordinatizations [4, 10, 21, 22, 23] of those that are geometric. Grünbaum [9],
and [10] (p. 151) has conjectured that an (n3) configuration that admits a real coordinati-
zation also admits a rational coordinatization. He considers this the single most important
outstanding problem in n3 configurations [11]. Sturmfels and White [22, 23] have shown
that all (113) and (123) configurations have rational coordinatizations. These configura-
tions were originally discovered by Martinetti [17], and Daublebsky von Sterneck [6, 7].
Sturmfels and White and Bokowski [4, 22, 23] found rational coordinatizations by con-
structing systems of diophantine equations, and then using methods of computer algebra to
solve them, in particular, Grassmannian algebras and Gröbner bases.

A coordinatization of an n3 configuration is usually represented by homogeneous coor-
dinates in the plane, e.g., let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be the homogeneous
coordinates of two points, and let L = (a, b, c) be the homogeneous coordinates of a line.
Then P1 and P2 are incident with L if and only if P1 · L = P2 · L = 0. Equivalently, L
is a multiple of P1 × P2. Consequently there is an exterior algebra that the homogeneous
coordinates generate. If there are n points and n lines, with 3n incidences, there are 6n
variables, and numerous algebraic constraints that the coordinates must satisfy. Bokowski
and Sturmfels [4] used computer-aided algebra to search for rational solutions to these
algebraic constraints. Eventually the constraints can be manipulated to produce a homoge-
neous polynomial with at most 3n variables whose zeros characterize the coordinatizations.
The polynomial has degree bounded by n. The difficulty of this work led Sturmfels and
White [23] to suggest that the problem of finding rational coordinatizations of n3 configu-
rations may be recursively undecidable.

A simpler method of finding a coordinatizing polynomial, without the need of Gröbner
bases and the exterior algebra, was presented in Kocay-Szypowski [15]. The degree of the
polynomial is still bounded by n. This method was used in Kocay [13] to find a rational
coordinatization of the Georges configuration, which is a (253) configuration. In Sturmfels
and White [22, 23], ad-hoc methods were used to find rational roots of the coordinatizing
polynomials for each of the (113) and (123) configurations. There are 31 (113) and 229
(123) configurations.

A note on homogeneous polynomials and their zeros: Homogeneous quadratic poly-
nomials are well understood, see Conway [5]. It is the theory of quadratic forms. Cubic
homogeneous polynomials are much more difficult. When there are three variables, they
include the class of elliptic curves [20]. The rational points on an elliptic curve form a
group. If there are one or more known rational points on the curve, then others can be
found by combining them using the group operation. This generates a countable number of
points. Mordell’s theorem says that these groups are finitely generated, i.e., a finite num-
ber of starting points is needed to find the entire group. It does not say what the group is,
or whether there are any rational points on the curve. And it does not provide a method
to determine if there are any rational points on the curve. Because it is relatively easy
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to do computation in these groups, but simultaneously, there are theoretical difficulties in
characterizing them, these groups are used in elliptic curve cryptographic systems [20].
Homogeneous polynomials of degree four or more are much more difficult, apparently not
amenable to the same techniques. Thus the degree of the polynomial is important.

The purpose of this paper is to present an algorithm which can be used to construct
real or rational coordinatizations of (n + 1)3-configurations from coordinatizations of n3-
configurations, by finding the roots (real or rational) of a cubic homogeneous polynomial in
three variables. The use of a cubic homogeneous polynomial in three variables makes the
formerly intractable problem of finding rational coordinatizations computationally practical
and efficient. Some of the techniques are similar to methods used in the theory of elliptic
curves [3, 20].

An elliptic curve is a cubic polynomial that can be expressed in the form

y2 = ax3 + bx2 + cx + d

The rational points on an elliptic curve form a group. See [20] for further information on
these groups.

Theorem 1.1 (Mordell’s theorem). If a non-singular plane cubic curve has a rational
point, then the group of rational points is finitely generated.

Methods that originated with Diophantus [1] are used to find the rational roots of elliptic
curves [20]. We use similar methods to construct coordinatizations of n3-configurations.
As there can be very many rational points on an elliptic curve, there can be also be very
many different rational coordinatizations of an n3 configuration. They are related in a way
that is similar to the group operation of an elliptic curve. In general, it seems to be difficult
to characterize when a rational coordinatization is possible. However the method presented
here is very fast in practice, and can be automated.

We begin with a 1-point extension [14] in an n3 configuration, which extends it to an
(n+1)3 configuration, and which leads to the coordinatization algorithm. This extension is
different from Martinetti’s extension [17], which is described in Grünbaum [10] (p. 89). As
pointed out in [10], it is in general quite difficult to characterize exactly which configura-
tions are generated by an inductive construction which produces an (n + 1)3 configuration
from an n3 configuration. This is true even if the construction can easily be described. In
[14] the configurations that can be built using a 1-point extension are characterized.

Theorem 1.2 (1-Point Extension). Let (Σ,Π) be an n3-configuration. Let a1, a2, a3 be
3 distinct points in Σ, and let `1, `2, `3 be 3 distinct lines in Σ such that a1 = `1 ∩ `2,
a2 = `2 ∩ `3 and a3 ∈ `3, where a3 6∈ `1. We can represent this in tabular form as

(Σ,Π) `1 `2 `3 · · ·
a1 a1 a2 · · ·
b1 a2 a3 · · ·
b2 b3 b4 · · ·

where the dots indicate other points of the configuration. Here the points in each column
are incident with the line at the top of the column. Let `′ be the third line containing a1.
Suppose further that if `′ ∩ `3 6= ∅, then `′ ∩ `3 = a3. Construct a new configuration
(Σ′,Π′) as follows. Σ′ = Σ∪{a0, `0} where a0 is a new point and `0 is a new line. Define
the new incidences as Π′ = Π−{a1`1, a2`2, a3`3} ∪ {a1`3, a2`0, a3`0, a0`0, a0`1, a0`2}.
We can represent this in tabular form as
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(Σ′,Π′) `0 `1 `2 `3 · · ·
a2 a0 a1 a1 · · ·
a3 b1 a0 a2 · · ·
a0 b2 b3 b4 · · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration. (Refer to Figure 1.)

a1a2

a3

`1

`2

`3

a0

a1

a2 a3
`0

`1

`2

`3
(Σ,Π) (Σ′,Π′)

(a)
initial points and lines

(b)
after 1-point extension

Figure 1: A 1-point extension with 3 points, before (a), after (b).

Example. The Fano configuration can be represented by the following table.

Fano `1 `2 `3 `4 `5 `6 `7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

Choose `1, `2, `3 as indicated, and choose a1 = 2, a2 = 3, a3 = 6, and let a0 = 8.
Notice that the third line containing a1 is `′ = `6, which intersects `3 in a3 = 6. Then
by Theorem 1.2, the following table represents an 83-configuration, which is known to be
unique.

83-config `0 `1 `2 `3 `4 `5 `6 `7
3 1 2 2 4 5 6 7
6 4 5 3 5 6 7 1
8 8 8 4 7 1 2 3

The diagram of Figure 1 illustrates the 1-point extension schematically, showing the inci-
dences altered by the extension. The method uses three points a1, a2, a3 and three lines
`1, `2, `3 sequentially incident, with a new point a0 and line `0 added. It can be generalized
to m points a1, a2, . . . , am and m lines `1, `2, . . . , `m sequentially incident, see Kocay [14]
for more details. This is indicated in Figure 2 for m = 4. When m = 4, the 1-point exten-
sion theorem has the following abridged form.

Theorem 1.3 (1-Point Extension with 4 points and 4 lines). Let (Σ,Π) be an n3-configur-
ation. Let a1, a2, a3, a4 be 4 distinct points in Σ, and let `1, `2, `3, `4 be 4 distinct lines in
Σ such that a1 = `1 ∩ `2, a2 = `2 ∩ `3, a3 = `3 ∩ `4, and a4 ∈ `4, where a3, a4 6∈ `1, `2,
and a1 6∈ `4.
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Let `′1 be the third line containing a1, and `′2 be the third line containing a2. Suppose
further that if `′1 ∩ `3 6= ∅, then `′1 ∩ `3 = a3; and if `′2 ∩ `4 6= ∅, then `′2 ∩ `4 = a4.
Construct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0} where a0 is a new
point and `0 is a new line. Define the new incidences as Π′ = Π − {a1`1, a2`2, a3`3,
a4`4} ∪ {a1`3, a2`4, a3`0, a4`0, a0`0, a0`1, a0`2}.

Then (Σ′,Π′) is an (n + 1)3-configuration. (Refer to Figure 2.)

When one point extensions are generated by computer, it is necessary to name them,
so that the extensions generated can be identified. We have used the following naming
convention. Here a configuration (Σ,Π) is assumed, but is not explicitly indicated in the
notation, as this will be clear from the context.

Definition 1.4. A 1-point extension using three lines `1, `2, `3 and three points a1, a2, a3
is denoted Ext(`1, `2, `3; a1, a2, a3). A 1-point extension using four lines `1, `2, `3, `4 and
four points a1, a2, a3, a4 is denoted Ext(`1, `2, `3, `4; a1, a2, a3, a4), and so forth.

When the starting n3 configuration has a real or rational coordinatization, we want to
use its coordinatization to find a real or rational coordinatization of the resulting (n + 1)3
configuration. Both Theorems 1.2 and 1.3 are needed for the extension algorithm.

a1a2

a3

a4
`1

`2

`3

`4

a0

a1

a2

a3

a4

`0

`1

`2

`3

`4

(Σ,Π) (Σ′,Π′)

(a) (b)
initial points and lines after 1-point extension

Figure 2: A 1-point extension with 4 points, before (a), after (b).

2 The coordinatization algorithm
Let the points of a geometric n3 configuration (Σ,Π) be {a1, a2, . . . , an} and let the lines
be {`1, `2, . . . , `n}. Let the homogeneous coordinates of ai be Pi, and the homogeneous
coordinates of `i be Li. These can be either real or rational. Then point ai is incident on
line `j if and only if Pi · Lj = 0. Suppose that a 1-point extension is applied to (Σ,Π)
to obtain an (n + 1)3 configuration (Σ′,Π′), using three points and lines of (Σ,Π), as in
Figure 1. We can assume that the points and lines are labelled so that the extension uses
points a1, a2, a3 and lines `1, `2, `3 as in Figure 1, and adds a0 and `0.

Let G denote the incidence graph, also known as the Levi graph, of (Σ,Π). The sub-
graph induced by {a1, a2, a3, `1, `2, `3} is a path of length five, since a3 6∈ `1, and because
the girth of the incidence graph must be at least six. After the extension, a0 and `0 are
added. Let G′ be the new incidence graph. The subgraph now induced is illustrated in
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Figure 3(a), since the girth of the incidence graph must be at least six. The significant fea-
ture of this subgraph is the hexagon induced by {a0, a1, a2, `0, `2, `3}. We now look for a
shortest path Q in the incidence graph, not using any edges of the hexagon, from any one
of {a0, a1, a2} to any one of {`0, `2, `3}. This is easy to do using a breadth-first search of
the incidence graph. Note that the shortest path may possibly contain a3 and/or `1. Q must
contain at least two internal vertices, i.e., one point and one line. Let the endpoints of Q be
ai and `j . If u is an internal vertex of Q, then u is not incident with the other vertices `k on
the hexagon (where k 6= j), or there would either be a shorter path than Q, or else the girth
requirement would not be satisfied. Similarly, u is not incident with the other vertices am
on the hexagon (where m 6= i).

a0

a1

a2

a3

`0

`1

`2

`3

induced subgraph for Figure 1 (b)

a0

a1

a2

a3

a4

`0

`1

`2

`3

`4

induced subgraph for Figure 2 (b)

Figure 3: An induced subgraph of the incidence graph of (Σ′,Π′) of Figures 1 and 2.

We now have a theta subgraph in the incidence graph, that is, two vertices (ai and
`j), connected by three internally disjoint paths. When m = 4, the situation is similar.
The vertices a1, a2, a3, a4, `1, `2, `3, `4 of Figure 2(b) determine a path of length 7 in the
incidence graph G. After the extension, the subgraph of G′ determined by Figure 2(b) is
illustrated in Figure 3(b). It is necessary that this be an induced subgraph for the coordi-
natization algorithm. We now look for a shortest path Q in the incidence graph, not using
any edges of the octagon, from any one of {a0, a1, a2, a3} to any one of {`0, `2, `3, `4}.
Let the endpoints of Q be ai and `j . Once again we find that Q must contain at least two
internal vertices, and again we have a theta-subgraph, Θ. The algorithm requires that this
be an induced theta subgraph. The incidence graph is 3-regular, so that vertices ai and `j
are adjacent only to vertices of Θ. All other vertices of Θ are adjacent to exactly one vertex
not in Θ. We now look for a coordinatization of (Σ′,Π′) such that all points and lines have
the same coordinates as in (Σ,Π), except for the points and lines of Θ.

Let the homogeneous coordinates of ai be (x, y, z), where x, y, z are real or ratio-
nal indeterminates, according to whether the coordinatization of (Σ,Π) is real or rational.
Then Θ contains three internally disjoint paths Q1, Q2, Q3 from ai to `j . We follow each
path, and execute the following statements, assigning coordinates to its vertices in terms of
x, y, z. For each vertex not in Θ, its homogeneous coordinates are those of (Σ,Π). These
are known constants. The algorithm below constructs coordinates for the vertices of Θ in
terms of x, y, z, by starting at ai, and successively following each path Qm of Θ to `j . Note
that if L and L′ are homogeneous coordinates of lines, then the cross product L×L′ gives
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the homogeneous coordinates of the unique point which is the intersection of the two lines.
Similarly P × P ′ gives the homogeneous coordinates of the unique line containing points
with coordinates P and P ′.

procedure FOLLOWPATH(ai, `j , Qm)
comment: follow a path Qm of Θ from ai to `j , assigning coordinates

u← ai
v ← first vertex on path Qm after ai
while v 6= `j

do



if v is a point

then


let ` be the unique adjacent line not in Θ
let L be the known coordinates of `
let L′ be the assigned coordinates of u
P ← L× L′

assign P as the coordinates of v

else


let a be the unique adjacent point not in Θ
let P be the known coordinates of a
let P ′ be the assigned coordinates of u
L← P × P ′

assign L as the coordinates of v
u← v
v ← next vertex on path Qm after u

comment: every vertex of Qm except for `j now has coordinates assigned

Observation. Once the algorithm FOLLOWPATH() has been executed for each path of
Θ, all vertices of Θ except for `j have homogeneous coordinates assigned such that each
coordinate is a linear homogeneous function of x, y, z.

There are three vertices of Θ adjacent to `j . Let their coordinates be P, P ′ and P ′′.
Define the polynomial p(x, y, z) = P · P ′ × P ′′.

Observation. p(x, y, z) is a cubic homogeneous polynomial in x, y, z.

Note that by projective duality we could equally well follow the paths in the other
direction, from `j to ai, starting with (x, y, z) as the coordinates of `j .

Theorem 2.1. If there is a coordinatization of (Σ′,Π′) such that all points and lines
not in Θ have the same coordinates as in (Σ,Π), then the values of x, y, z must satisfy
p(x, y, z) = 0.

Proof. The three points incident on `j all belong to Θ, with coordinates P, P ′, P ′′. There-
fore P · P ′ × P ′′ = p(x, y, z) = 0. Note that the coordinates of `j can be taken as any one
of P × P ′, P × P ′′ or P ′ × P ′′.

Thus, if there is a coordinatization of (Σ′,Π′) of the type we are looking for, we can
find it by solving p(x, y, z) = 0 for x, y, z. In general, there will be many values (x, y, z)
with p(x, y, z) = 0. They do not all give valid coordinatizations. According to the current
coordinatization of (Σ,Π), we want the values to be either real or rational. We will use a
method that originated with Diophantus (see [1]), as frequently used in the theory of elliptic
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curves [3, 20]. Now the groups defined by elliptic curves are used for cryptography, because
it is relatively easy to calculate with them, but a characterization of the groups appears to be
algorithmically intractable. A similar situation exists in the search for coordinatizations of
n3 configurations. But if we can find suitable values of x, y, z such that p(x, y, z) = 0, then
a real or rational coordinatization of (Σ′,Π′) can be relatively easy to find. The method
described below works very effectively.

Lemma 2.2. Let ` be any one of the three lines adjacent to ai in Θ, and let its coordinates
be L. Let a be the unique point not in Θ adjacent to `, and let its coordinates be P . If
(x, y, z) is set equal to P , then p(x, y, z) = 0.

Proof. If (x, y, z) = P , then L = P × (x, y, z) = (0, 0, 0). Each subsequent vertex on
this path in Θ will have coordinates (0, 0, 0), so that `j will also have coordinates (0, 0, 0).
Therefore p(x, y, z) = 0.

As there are three lines in Θ adjacent to ai, this gives three different points (x, y, z)
with p(x, y, z) = 0. None of these give coordinatizations of (Σ′,Π′), because (0, 0, 0) is
not a valid homogeneous coordinate. However, we can now proceed as follows.

Suppose that p(x, y, z) = 0, for some value (x, y, z) = (u, v, w). The equation
p(x, y, z) = 0 defines a cubic curve in the projective plane. The tangent line at point
(u, v, w) has the equation x∂p/∂x + y∂p/∂y + z∂p/∂z = 0, where the partial derivatives
are evaluated at (u, v, w). This is a linear equation in (x, y, z). As long as at least one par-
tial derivative is non-zero, say ∂p/∂z, we can solve for the associated variable, and obtain
z = −[x∂p/∂x + y∂p/∂y]/[∂p/∂z] along the tangent line. This is substituted into the
cubic homogeneous polynomial p(x, y, z) = 0 to obtain q(x, y) = 0, where q(x, y) is a
cubic homogeneous polynomial in x, y. At this point, we can divide by y3 to obtain the cu-
bic polynomial q(x/y, 1) = 0 in one variable x/y. Now q(x/y, 1) = 0 has three roots, of
which one, x/y = u/v, is already known (note: if v = 0, use y/x = v/u instead). The tan-
gent line has double contact (see [3]) with the curve p(x, y, z) = 0 at (x, y, z) = (u, v, w).
Therefore we can divide q(x, y) by vx− uy twice to obtain a linear homogenous equation
h(x, y) = 0. The single root of h(x, y) is then easy to find, even over the rational numbers.
Combining this with the expression for z, we obtain another root (x, y, z) = (u′, v′, w′) of
p(x, y, z) = 0.

This new value for (x, y, z) is now substituted into the coordinates for the vertices of Θ,
and the coordinates (which are linear homogeneous functions of x, y, z) of all vertices of Θ
are evaluated. It is then quickly determined whether this produces a valid coordinatization
of (Σ′,Π′). The conditions that must be satisfied are:

1. All points must have inequivalent homogeneous coordinates;

2. All lines must have inequivalent homogeneous coordinates;

3. P · L = 0 only if point P is incident with line L.

If some points or lines coincide, or if unwanted incidences are produced, then the method
can be repeated, starting from (x, y, z) = (u′, v′, w′). Either a new point (u′′, v′′, w′′) will
be found, or else a value previously found will recur, and so forth.

This can be done for each of the three lines in Θ adjacent to ai, which frequently
produces a number of valid coordinatizations of (Σ′,Π′).

There is still another possibility. The coordinates of any two of the three lines in Θ
adjacent to ai determine a line in the projective plane, intersecting the curve p(x, y, z) = 0
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in two known points. The third point of intersection is then easy to find. This calculation
allows a sequence of points satisfying p(x, y, z) = 0 to be found. We can then continue
with the tangents from these points, or take any two known roots on the curve to find
another. The number of points on the curve that can be generated from the starting values
can be either finite or countably infinite, as this is the situation that holds for rational points
on elliptic curves (see [20]).

We summarize this method as two theorems.

Theorem 2.3. Let (x, y, z) = (u, v, w) be a rational solution of the cubic homogeneous
polynomial p(x, y, z) = 0. If at least one of ∂p/∂x, ∂p/∂y, ∂p/∂z evaluated at (x, y, z) =
(u, v, w) is non-zero, then the tangent line x∂p/∂x+y∂p/∂y+z∂p/∂z = 0 intersects the
curve in another rational point.

Theorem 2.4. Let (x, y, z) = (u1, v1, w1) and (x, y, z) = (u2, v2, w2) be two rational
solutions of the cubic homogeneous polynomial p(x, y, z) = 0. Then the line containing
(u1, v1, w1) and (u2, v2, w2) intersects the curve in another rational point.

In practice, we want at least two of the partial derivatives to be non-zero at (x, y, z) =
(u, v, w). For if two of them are zero, then solving for the third variable forces one of x, y, z
to be zero. This invariably leads to a solution which does not give a valid coordinatization.
(However, it can then be used to find another rational solution.)

Once a valid coordinatization of (Σ′,Π′) has been found for a suitable value (x, y, z) =
(u, v, w), this process can be repeated, and more coordinatizations can be found. In general,
numerous coordinatizations for a given configuration can be found in this way. They are
inter-related through tangents to the cubic polynomial p(x, y, z), and through lines contain-
ing pairs of rational solutions, similar to the relation between points of the group of rational
points on an elliptic curve.

Example. We begin with a rational coordinatization of a (93) configuration, shown in
Figure 4. This is the (93) configuration listed as (93)2 in Figure 2.2.1 of [10], and as 9.2 in
[2]. It is cyclic and self-dual, with an automorphism group of order 9. The two “parallel”
lines `4 and `8 meet in point a9 at infinity. Similarly `5 and `7 meet in a8 at infinity, and
lines `1 and `3 meet in a2 at infinity. These three points at infinity are all contained in the
line `6, which is the “line at infinity”. The drawing is based on the rational coordinatization
of the configuration given by the coordinates shown in Table 1.

Table 1: Rational coordinates of the 93 configuration of Figure 4.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (−1, 1, 0) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (1, 1, 1)
P4 = (1, 1,−1) L4 = (0, 3, 2)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (1, 0,−1) L6 = (0, 0, 1)
P7 = (2, 2, 3) L7 = (1, 0, 1)
P8 = (0, 1, 0) L8 = (0, 1, 0)
P9 = (1, 0, 0) L9 = (1,−1, 0)

A 1-point extension using four points Ext(`1, `9, `4, `6; a4, a7, a9, a8), as in Figure 2,
is then done. (This example using 4 points was chosen instead of one using 3 points,
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Figure 4: A 93 configuration.

because the resulting (103) configuration has a “nice” drawing.) Observe that a4 = `1∩`9,
a7 = `9 ∩ `4, a9 = `4 ∩ `6, and that a8 ∈ `6. The third line through a4 is `7. It
intersects `6 in a8, as required for the 1-point extension. The result of the extension is the
103 configuration shown in Figure 5. It is (103)6 in Grünbaum [10]. Lines `1, `3 and `6
in Figure 5 meet in point a2 at infinity. Points and lines whose coordinates did not change
from (93) are drawn in heavier lines. (But note that the scaling of the two diagrams may be
slightly different.)

In order to find a rational coordinatization of it, we first find a theta subgraph by search-
ing for a shortest path from one of a4, a7, a9, a10 to one of `9, `4, `6, `10, where a10 and
`10 are the new point and line that were added. The theta subgraph is shown in Figure 6.
It consists of the octagon of Figure 3(b) and the shortest path just found. This is partly
indicated in Figure 5. The “corners” of the theta subgraph, a4 and `10, are shaded light
grey. With the aid of Figure 6, the paths can be traced out in Figure 5.

We now assign homogeneous coordinates (x, y, z) to `10, as it is one of the “corner”
vertices of the theta subgraph, and using the coordinates of Table 1 for the points and
lines not in the theta subgraph, we calculate coordinates for those of the theta subgraph
in terms of (x, y, z). Each point or line of the theta subgraph (except for the “corner”
vertices) is adjacent to exactly one line or point not in the theta subgraph. The adjacent
vertices can be determined from Figure 5. The calculated homogeneous coordinates are
linear homogeneous forms, shown in Table 2. Note that homogeneous coordinates can
be multiplied by a constant without changing the configuration. Therefore sometimes the
coordinates in Table 2. were multiplied by −1, or a common factor was removed from the
individual coordinates in order to simplify them. We then find that p(x, y, z) = L9·L7×L4,
which is expanded to

p(x, y, z) = −4x3 + 4x2y + 4x2z + 7xz2 − 16xyz + 11yz2 − 6z3

where a common factor of six has been removed from each term. The partial derivatives
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Figure 5: The extended 103 configuration.
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Figure 6: A theta subgraph in the 103 configuration.
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are

∂p/∂x = −12x2 + 8xy + 8xz − 16yz + 7z2

∂p/∂y = 4x2 − 16xz + 11z2

∂p/∂z = 4x2 − 16xy + 14xz + 22yz − 18z2

We have three known solutions to p(x, y, z) = 0, namely

(x, y, z) = L1 = (1, 1, 2) (which makes P10 = (0, 0, 0)),
(x, y, z) = L5 = (3, 0, 2) (which makes P8 = (0, 0, 0)),
(x, y, z) = L6 = (0, 0, 1) (which makes P9 = (0, 0, 0)).

The tangent line at (x, y, z) = L1 = (1, 1, 2) has equation 2x + 4y − 3z = 0. Solving
for 2x = −4y + 3z, substituting this into p(x, y, z) = 0, and removing common factors
gives

q(y, z) = 4y3 − 4y2z + yz2

The point L1 on the tangent line has (y, z) = (1, 2) so that q(y, z) is divisible twice by
2y − z. We find that

q(y, z) = 6y(2y − z)2

Therefore the third point of intersection of the tangent with p(x, y, z) = 0 occurs when
y = 0. Then since 2x + 4y − 3z = 0, we can take z = 2, and obtain 2x = −4y + 3z = 6,
giving (x, y, z) = (3, 0, 2). This does not give a valid solution, as it makes P8 = (0, 0, 0).

Table 2: Homogeneous coordinates for the theta subgraph.

L10 = (x, y, z)
P10 = L10 × L1 = (2y − z, z − 2x, x− y)
P8 = L10 × L5 = (2y, 3z − 2x,−3y)
P9 = L10 × L8 = (−z, 0, x)
L9 = P10 × P5 = (z − 2x, z − 2y, 0)
L7 = P8 × P6 = (2x− 3z,−y, 2x− 3z)
L6 = P9 × P2 = (x, x, z)
P7 = L6 × L5 = (−2x, 2x− 3z, 3x)
L4 = P7 × P3 = (4x− 3z, x, 2x− z)

We then try the tangent line at (x, y, z) = L5 = (3, 0, 2), which has equation 2x+ y−
3z = 0. Solve for y = 3z − 2x and substitute this into p(x, y, z) to obtain

q(x, z) = 4x3 − 16x2z + 21xz2 − 9z3

The known solution is (x, z) = (3, 2), so that this is divisible twice by 2x− 3z, giving

q(x, z) = (x− z)(2x− 3z)2

We find that the third intersection point with the curve p(x, y, z) = 0 occurs when x = z.
Without loss of generality, we take (x, y, z) = (1, 1, 1). If we then calculate the coordi-
nates, we find that L10 and L6 both have coordinates (1, 1, 1), which is not acceptable.
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However, this gives another rational point on the curve, so we find the tangent line at
(x, y, z) = (1, 1, 1). It is −5x− y + 6z = 0. We substitute y = 6z − 5x into p(x, y, z) to
obtain

q(x, z) = 2x3 − 9x2z + 12xz2 − 5z3

The known solution is (x, z) = (1, 1), so that this is divisible twice by x − z, giving
q(x, z) = (2x − 5z)(x − z)2. The third point of intersection is therefore (x, y, z) =
(5,−13, 2). This value of (x, y, z) is then found to give a valid coordinatization of the 103
configuration found. The coordinates that result are shown in Table 3.

At this point, the algorithm could continue, and find the tangent line at (x, y, z) =
(5,−13, 2) to look for more rational coordinatizations. Or the known rational points on the
curve could be taken two at a time, as the line containing two points intersects the curve
in a third rational point, and so forth. In practice, very many rational coordinatizations
can be found in this way from a single theta subgraph of a single one-point extension of a
geometric configuration.

Table 3: Rational coordinates of the 103 configuration of Figure 5.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (−1, 1, 0) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (1, 1, 1)
P4 = (−14,−4, 27) L4 = (14, 5, 8)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (1, 0,−1) L6 = (5, 5, 2)
P7 = (−10, 4, 15) L7 = (4, 13, 4)
P8 = (−26,−4, 39) L8 = (0, 1, 0)
P9 = (−2, 0, 5) L9 = (−2, 7, 0)
P10 = (−14,−4, 9) L10 = (−5, 13,−2)

We now start from the 103 configuration of Figure 5, with the rational coordinatization
given in Table 3. There is a one-pont extension Ext(`10, `6, `3; a9, a2, a6) that can be done,
resulting in an 113 configuration. Its incidence table is given in Table 4. This configuration
is isomorphic to configuration (113)X in Martinetti [17]. The new point and line added
are a11 and `11. We use a theta subgraph to find a rational coordinatization of it. The theta
subgraph consists of the three paths [a9, `3, a2, `11], [a9, `6, a11, `11], [a9, `8, a6, `11].

There are many rational coordinatizations that result. One of them is shown in Table 5.
We see that the integer coordinates are getting bigger. This is the single greatest obstacle
that the algorithm has to deal with. One of the questions that needs to be addressed is how
to limit the number of digits in the integers that arise. It is very easy for integer overflow to
occur after several successive extensions have been done.

The Desargues configuration cannot be obtained by a 1-point extension (see [14]). The
“anti-Pappian” (see [8, 16]) is the only non-geometric 103 configuration. Rational coor-
dinatizations of all the other (103) configurations, can be easily found using one-point
extensions of the (93) configurations in this way. Then rational coordinatizations of all the
(113) configurations can be found from the (103) configurations, which then extend to co-
ordinatizations of all the (123) configurations. The author has written a computer program
to generate coordinatizations from a theta subgraph in a one point extension. It produces
thousands of them very quickly. Currently the program has to be run individually for each
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starting configuration, and the resulting output files must be individually collated and then
tested for isomorphisms.

Table 4: The 113 configuration extended from Figure 5.

`1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11
1 1 2 3 1 7 4 5 4 8 2
2 3 3 4 7 9 6 6 5 10 6
10 5 9 7 8 11 8 9 10 11 11

Table 5: Rational coordinates of the 113 configuration extended from Table 3.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (16,−34, 9) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (28, 19, 22)
P4 = (−14,−4, 27) L4 = (14, 5, 8)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (−136, 4, 123) L6 = (27,−15, 22)
P7 = (−10, 4, 15) L7 = (4, 13, 4)
P8 = (−26,−4, 39) L8 = (1, 34, 0)
P9 = (−748, 22, 933) L9 = (−2, 7, 0)
P10 = (−14,−4, 9) L10 = (−5, 13,−2)
P11 = (−64,−14, 69) L11 = (37, 28, 40)

3 In practice
Given an n3 configuration (Σ,Π), it is relatively easy to write a computer algorithm that
searches for all possible one-point extensions Ext(`1, `2, `3; a1, a2, a3) or Ext(`1, `2, `3, `4;
a1, a2, a3, a4), and extends (Σ,Π) to an (n + 1)3 configuration (Σ′,Π′), in all possible
ways. We also want a coordinatization of (Σ′,Π′) when (Σ,Π) is geometric. For each ex-
tension (Σ′,Π′) found, the coordinatization algorithm of the previous section can be used
to look for a coordinatization of (Σ′,Π′). There are various situations that one has to be
aware of when programming this.

1. The polynomial p(x, y, z) is a cubic homogeneous polynomial in three variables.
Sometimes a cubic polynomial will factor into the product of three linear homoge-
neous polynomials, or a linear and quadratic polynomial. In these cases the algorithm
will not succeed. This happens occasionally in practice. It will usually be detected
when the tangent is found. Not every extension (Σ′,Π′) has a coordinatization ex-
tended using a given theta subgraph. However, another theta subgraph can be chosen
in this case.

2. The tangent at (x, y, z) = (u, v, w) is a linear homogeneous polynomial. It may be
identically 0. In this case the extension does not succeed.

3. The tangent at (x, y, z) = (u, v, w) may be be a monomial, e.g., x = 0. This does
not tend to produce valid coordinatizations.
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4. Suppose that the tangent at (x, y, z) = (u, v, w) is ax+by+cz = 0. Solving for one
variable, e.g., cz = −ax − by and substituting this into p(x, y, z) gives the reduced
polynomial q(x, y) = 0, which is divisible twice by vx − uy. It can happen that
q(x, y)/(vx − uy)2 is a monomial, e.g., q(x, y) = x(vx − uy)2. This gives x = 0,
from which we find the solution (x, y, z) = (0,−c, b). This frequently occurs as a
special case.

5. The general case is when q(x, y) factors into (vx − uy)2(rx + sy). In this case the
solution is cx = cs, cy = −cr and cz = −as + br, or equivalently, (cs,−cr,−as +
br) is taken as the solution. The majority of solutions fall into this case.

6. The algorithm stores an array of solutions (x, y, z) = (u, v, w) to p(x, y, z) = 0.
Initially there are three such points (u, v, w) known, and they are known not to give
valid coordinatizations of (Σ′,Π′). They are placed on the array of solutions. For
each (u, v, w) on the array, the tangent is used to find another possible solution,
which is appended to the array. The solutions on the array are then taken in pairs
(u1, v1, w1) and (u2, v2, w2), to find more solutions, which are also appended to
the array. The algorithm proceeds to build an array of all solutions (u, v, w) that
can be obtained by these methods. This is similar to generating the elements of a
group. Typically a potentially infinite number of solutions will be found, so that a
limit must be placed on the maximum number allowed. The algorithm can stop with
the first valid coordinatization found, or it can look for some maximum number of
valid coordinatizations. It can easily find thousands of valid integer coordinatiza-
tions. However, the values of the integers u, v, w rapidly become enormous if a large
number of coordinatizations is required, causing integer overflow even when 64-bit
integers are used. The author has programmed it to find a maximum of three valid
coordinatizations for each extension (Σ′,Π′) found, using 64-bit integers, and using
only one theta subgraph. More theta subgraphs could be chosen.

If (Σ,Π) is an n3 configuration, there will be various (n+1)3 configurations that can be
produced from it by one-point extensions. If (Σ′,Π′) is such an (n+1)3 configuration, then
there are usually very many different extensions of (Σ,Π) that give rise to an isomorphic
(Σ′,Π′). Each extension will have up to three coordinatizations found. And this same
(Σ′,Π′) may also arise by a one-point extension from another n3 configuration, which will
also produce numerous coordinatizations of (Σ′,Π′). The result is thousands of integer
coordinatizations for (Σ′,Π′) when n = 10, 11 or 12. Graph isomorphism software is
used to distinguish and recognize the various configurations that are produced. The author
has used the software of [12], although others could also be used. The configuration is
represented by its Levi graph, with an initial partition of vertices into points and lines.

This method of finding coordinatizations is much simpler than that of [22, 23] because
it only requires finding the roots of cubic homogeneous polynomials with three variables,
whereas [23] states that solving their general diophantine equations for (n3) configurations
is likely to be recursively undecidable.

So far, the author has used this method to produce integer coordinatizations of all the
geometric (103), (113) and (123) configurations. As n increases, the integer coordinates
rapidly tend to have more and more digits, so that it is necessary to filter them somewhat
to limit the number of digits in the coordinates. If fixed size integers are used (e.g. 64
bits), overflow can soon occur, which limits the number of coordinatizations found. It is
advantageous to choose a coordinatization of (Σ,Π) to extend from, whose coordinates
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are “small” integers. Very many coordinatizations of (Σ,Π) are then obtained. This is the
case with n = 10, 11, 12, 13, where thousands of coordinatizations are easily found. If
multi-precision integer arithmetic is used, it is likely that coordinatizations can be found
for nearly any fixed n.

The number of distinct (133) configurations is 2036 (see [10], p. 69). One of these is
a Fano-type configuration, as described in [14], and therefore does not arise as a one point
extension. Using ad-hoc methods, the author has shown that it is geometric, and in fact has
a rational coordinatization. The other 2035 (133) configurations can all be constructed as
one point extensions of (123) configurations. All of them are geometric, and all have ratio-
nal coordinatizations. The coordinatization algorithm finds many integer coordinatizations
of them. One of them was much more difficult than all the others, requiring integer coordi-
nates with up to 22 digits in the intermediate calculations, and 13 in the final coordinates.
For this one configuration, the algorithm was carried out by hand using Maple [24] as a
calculator with unlimited precision. Maple was also used for constructing a coordinatiza-
tion of the Fano-type configuration. The description of the coordinatizations is too long to
include here. An article containing the details is currently in preparation.

4 Additional coordinatizations
Suppose that (Σ,Π) is an n3 configuration for which an integer coordinatization is known.
We would like to find more integer coordinatizations. One method is this.

1. Find an induced theta subgraph Θ in the incidence graph of (Σ,Π). This is most
easily done by finding an induced cycle of reasonable length, and then finding a
suitable path across the cycle. The path must have odd length.

2. The vertices not in Θ are to keep their current coordinates. One of the vertices of de-
gree three in Θ is chosen to have coordinates (x, y, z), with values to be determined.

3. The algorithm FOLLOWPATH() is used to assign coordinates that are homogeneous
linear forms to the vertices of Θ of degree two. A polynomial p(x, y, z) is constructed
using the second vertex of degree three of Θ. Solutions of p(x, y, z) = 0 are found
as in the previous section.

This allows us to find “related” coordinatizations of (Σ,Π). The author has used this
method to produce many rational coordinatizations of the (93) configurations, which can
then be used as starting points for the generation and coordinatization of the (103) con-
figurations and beyond. A given Θ may not produce any additional coordinatizations. In
general, different choices of Θ will produce different results. This method is less reliable
that the extension method of the previous section. The reason seems to be that the poly-
nomial p(x, y, z) frequently has large integer coefficients, resulting in solutions which lead
to integer overflow. For some configurations (Σ,Π), no additional coordinatizations are
found like this. For others, it gives dozens of new coordinatizations.

5 Real coordinatizations – the anti-Pappian
The previous sections are concerned with using one-point extensions to find rational coordi-
natizations of n3 configurations. Theorems 2.3 and 2.4 also apply to real coordinatizations.
The anti-Pappian [8, 16, 19] is the only (103) configuration that is not geometric. It cannot
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be coordinatized over any field, as shown in [8, 16]. However, it can be coordinatized over
the quaternions [16].

The anti-Pappian can be obtained by a one-point extension from a geometric (93) con-
figuration (it is (93)3 in [10] and 9.1 in [2], a self-dual configuration with an automorphism
group of order 12). When the extension algorithm is applied to find a coordinatization, it is
necessary to divide polynomials. It is easy to divide polynomials with integer coefficients,
as the division is always exact. However, when a computer works with real numbers, they
are represented as floating point numbers, and round-off error is always present. Conse-
quently division will always leave a non-zero remainder, which is usually very small, even
when the division is theoretically exact. A suitably small number is then replaced by zero,
e.g. 10−9. When Pi · Lj is evaluated to test for incidence of a point and line, the result
will usually not be exactly zero, due to round-off error, even if they are incident. So if
Pi · Lj is sufficiently close to zero, it must be considered to be zero. Thus, it is possible
to have a point and line not exactly incident, but very, very close to incident, for example,
|Pi · Lj | ≤ 10−9. Thus, a near-coordinatization can be found. Every real coordinatization
found using floating point numbers is in fact a near-coordinatization.

Figure 7: A near-coordinatization of the anti-Pappian configuration.

When the coordinatization algorithm is applied to the extension that produces the anti-
Pappian, several near-coordinatizations are found, even though the anti-Pappian cannot be
coordinatized over the reals. One of them is shown in Figure 7.

Question. Let ε be a small positive real value, and let ∆ be a fixed positive real value,
e.g., ∆ = 1. How small can ε be chosen so that there is a near-coordinatization of the
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anti-Pappian configuration such that |Pi · Lj | ≤ ε for all points Pi and lines Lj which are
incident, and |Pi · Lj | ≥ ∆ if Pi and Lj are non-incident?

Grünbaum [10] (p. 151) also asks whether there are any n3 configurations with n > 10
which are non-geometric? One place to look for them is the Fano-type configurations
of [14], as they cannot be constructed using a one point extension, and so are not accessible
to the cubic-polynomial-based coordinatization algorithm. The smallest Fano-type config-
uration is the unique (73). The next one is a (133) configuration (which is geometric).
Then (143).
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Abstract

For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph
of G. For an integer m ≥ 1 and for a set H of graphs, let f(m,H) denote the minimum
possible cardinality of f(G), as G ranges over all graphs on m edges that contain no mem-
ber of H as a subgraph. In particular, for a given graph H , we simply write f(m,H) for
f(m,H) whenH = {H}. Let r > 4 be a fixed even integer. Alon et al. (2003) conjectured
that there exists a positive constant c(r) such that f(m,Cr−1) ≥ m/2 + c(r)mr/(r+1) for
all m. In the present article, we show that f(m,Cr−1) ≥ m/2 + c(r)(mr log4m)1/(r+2)

for some positive constant c(r) and all m. For any fixed integer s ≥ 2, we also study
the function f(m,H) for H = {K2,s, C5} and H = {C4, C5, . . . , Cr−1}, both of which
improve the results of Alon et al.

Keywords: H-free graph, partition, maximum cut.

Math. Subj. Class.: 05C35, 05C70

1 Introduction
All graphs considered here are finite, undirected and have no loops and no parallel edges,
unless otherwise specified. All logarithms in this paper are with the natural base e. For
a graph G, let f(G) denote the maximum number of edges in a cut of G, that is, the
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maximum number of edges in a bipartite subgraph of G. For an integer m, let f(m) denote
the minimum value of f(G), as G ranges over all graphs with m edges. Thus, f(m) is the
largest integer f such that any graph with m edges contains a bipartite subgraph with at
least f edges.

It is easy to show that f(m) ≥ m/2 by considering a random bipartition of a graph
with m edges. Edwards [10, 11] proved that for every m

f(m) ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)
, (1.1)

and noticed that this is tight when m =
(
k
2

)
for odd integers k. For more information on

f(m) and some related topics, we refer the reader to [1, 3, 5, 6, 8, 14, 15, 16, 21, 26, 27, 28].
For survey articles, see [7, 23].

Suppose that H is a set of graphs. Let f(m,H) denote the minimum possible cardi-
nality of f(G), as G ranges over all graphs on m edges that contain no member of H. In
particular, for a given graph H , we simply write f(m,H) for f(m,H) whenH = {H}. It
is noted (see, e.g., [2]) that for every fixed graph H there exist positive constants ε = ε(H)
and c = c(H) such that f(m,H) ≥ m/2 + cm1/2+ε for all m. However, the problem of
estimating the error term more precisely is not easy, even for relatively simple graphs H .
For example, let r ≥ 4 be an integer and let H be the cycle Cr−1. The case r = 4 has
been studied extensively. After a series of papers by various researchers [12, 22, 24], Alon
[1] proved that f(m,C3) = m/2 + Θ(m4/5) for all m. For general r ≥ 4, Alon et al. [4]
proposed the following conjecture.

Conjecture 1.1. For every integer r ≥ 4, there is a positive constant c(r) such that

f(m,Cr−1) ≥ m

2
+ c(r)m

r
r+1 (1.2)

for all m. This is tight, up to the value of c(r), for all r ≥ 4.

The authors confirmed (1.2) for all odd r > 4. In this paper, we consider the conjecture
for every even integer r > 4 and establish the following theorem.

Theorem 1.2. For every even integer r > 4, there is a positive constant c(r) such that

f(m,Cr−1) ≥ m

2
+ c(r)

(
mr log4m

) 1
r+2

for all m.

Alon et al. [4] also studied the function f(m,H) when H is the complete bipartite
graph K2,s. It is proved that, for every s ≥ 2, there is a positive constant c(s) such that

f(m,K2,s) ≥
m

2
+ c(s)m5/6

for all m, and this is tight up to the value of c(s). Now, we consider the function f(m,H)
forH = {K2,s, C5}, which improves the above lower bound as follows.

Theorem 1.3. For each s ≥ 2, let G be a {K2,s, C5}-free graph with m edges. Then there
exists a positive constant c(s) such that

f(G) ≥ m

2
+ c(s)m6/7

for all m.
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Moreover, Alon et al. [2] considered the function f(m,H) for H = {C3, . . . , Cr−1},
and proved that

f(m,H) ≥ m

2
+ c(r)m

r
r+1

for all m. In the following, we allow the occurence of triangles and get a stronger result.

Theorem 1.4. Let r > 4 be a fixed even integer and Hr = {C4, . . . , Cr−1}. Then there
exists a positive constant c(r) such that

f(m,Hr) ≥
m

2
+ c(r)m

r
r+1

for all m.

2 Maximum cuts of C2k+1-free graphs
In this section, we give a proof of Theorem 1.2. The goal is to prove that the chromatic
number of a C2k+1-free graph is relatively small, since graphs with small chromatic num-
ber must have large bipartite subgraphs.

For a graph G, let χ(G) and α(G) denote the chromatic number and independence
number of G, respectively. We need the following lemma, whose easy proof can be found
in [1] (see also [2, 12, 21]).

Lemma 2.1. Let G be a graph with m edges and chromatic number at most χ. Then

f(G) ≥ χ+ 1

2χ
m.

To find an upper bound on the chromatic number of a C2k+1-free graph, we require
a lemma of Jensen and Toft [17] (see also [18]), which is a general lemma on monotone
properties. Note that a graph property is called monotone if it holds for all subgraphs of a
graph which has this property, i.e., is preserved under deletion of edges and vertices.

Lemma 2.2 (Jensen and Toft [17, §7.3]). For s ≥ 1, let ψ : [s,∞)→ (0,∞) be a positive
continuous non-decreasing function. Suppose that P is a family of graphs with monotone
properties such that α(G) ≥ ψ(|V (G)|) for every G ∈ P with |V (G)| ≥ s. Then for every
such G with |V (G)| ≥ s,

χ(G) ≤ s+

∫ |V (G)|

s

1

ψ(x)
dx.

In order to bound χ(G) by Lemma 2.2, we need bound α(G) of a C2k+1-free graph G
in terms of |V (G)|. The following well-known Turán’s lower bound (see, e.g., [25]) and
another two lemmas from [19] and [20] will be used to bound α(G).

Lemma 2.3 (Turán’s Lower Bound). Let G be a graph on n vertices with average degree
at most d. Then

α(G) ≥ n

1 + d
.

Lemma 2.4 (Li et al. [19]). Let G be a graph on n vertices with average degree at most d.
If the average degree of the subgraph induced by the neighborhood of any vertex is at most
a, then

α(G) ≥ nFa+1(d),
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where

Fa(x) =

∫ 1

0

(1− t)1/a

a+ (x− a)t
dt >

log(x/a)− 1

x
, (x > 0).

Lemma 2.5 (Li and Zang [20]). For a fixed integer k ≥ 2, let G be a C2k+1-free graph
with degree sequence d1, d2, . . . , dn. Then

α(G) ≥ 1

4k

( n∑
i=1

d
1

k−1

i

) k−1
k

.

Next, we shall also use the following upper bound, proved by Erdős and Gallai [13], on
the maximum number of edges in Pt-free graphs, where Pt stands for a simple path with t
vertices.

Lemma 2.6 (Erdős and Gallai [13]). Let G be a Pt+1-free graph with n vertices. Then G
contains at most (t− 1)n/2 edges.

Finally, we give a simple inequality, which is used frequently in our proofs of the fol-
lowing several theorems. We omit the proof details.

Lemma 2.7. For any real number x > 0, we have

x ≥ max
{

log(x+ 3)− 3

2
, e log x

}
(2.1)

and that the function g(x) = log x/x is monotonically increasing over the interval (0, e]
and decreasing over the interval (e,∞).

Having finished all the necessary preparations, we are ready to give lower bounds of
the independence number of a C2k+1-free graph.

Theorem 2.8. For any fixed integer k ≥ 2, let G = (V,E) be a C2k+1-free graph on n
vertices with average degree at most d. Then

α(G) ≥ max
{n log d

2kd
,

1

5k2
(nk log n)

1
k+1

}
.

Proof. First, we prove that

α(G) ≥ n log d

2kd
.

Case 1. d ≤ e2(2k − 1). By inequality (2.1), we have

2k ≥ log(2k − 1) +
5

2
> log d+

1

e
≥ log d+

log d

d
=

(1 + d) log d

d
.

This together with Lemma 2.3 implies that

α(G) ≥ n

1 + d
≥ n log d

2kd
.

Case 2. d > e2(2k − 1). It follows from inequality (2.1) that 2k − 1 ≥ 1 + log(2k − 1).
This together with d > e2(2k − 1) yields that

log d ≥ 2 + log(2k − 1) ≥ 2k

2k − 1

(
1 + log(2k − 1)

)
,
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which gives that

log d−
(
1 + log(2k − 1)

)
≥ log d

2k
. (2.2)

Since G is C2k+1-free, the subgraph induced by the neighborhood of any vertex of G
is P2k-free. By Lemma 2.6, the average degree of any P2k-free graph is at most 2(k − 1).
It follows from Lemma 2.4 and inequality (2.2) that

α(G) ≥ nF2k−1(d) >
n log d

e(2k−1)

d
≥ n log d

2kd
,

as desired.
Now, we show that

α(G) ≥ 1

5k2
(nk log n)

1
k+1 .

Let v1, . . . , vn be the vertices of G such that d(vi) = di for 1 ≤ i ≤ n. Set

S =
{
vi ∈ V : di > (n logk n)

1
k+1

}
.

If |S| ≥ 2n/5, then, by Lemma 2.5, we have

α(G) ≥ 1

4k

( n∑
i=1

d
1

k−1

i

) k−1
k ≥ 1

4k

(2n

5
· (n logk n)

1
k2−1

) k−1
k ≥ 1

5k2
(nk log n)

1
k+1 .

Suppose that |S| < 2n/5. Consider the graph H induced by V \S. Clearly, the number
of vertices contained in H is at least 3n/5, and the average degree d(H) of H is at most
(n logk n)1/(k+1). If d(H) ≤ e, then the desired result follows immediately from Lemma
2.3. Otherwise, by the preceding result, we obtain

α(G) ≥ α(H) ≥ 3n

5
· log d(H)

2kd(H)
≥ 1

5k2
(nk log n)

1
k+1 ,

where the last inequality holds because the function g(x) = log x/x is monotonically
decreasing over the interval [e, (n logk n)1/(k+1)] by Lemma 2.7. This completes the proof
of Theorem 2.8.

With the help of Lemma 2.2 and Theorem 2.8, we establish the following theorem,
which plays a key role in our proof of Theorem 1.2. The approach we take is an extension
of that by Poljak and Tuza [22].

Theorem 2.9. For any fixed integer k ≥ 2, letG be a C2k+1-free graph withm > 1 edges.
Then

χ(G) ≤ 32(k + 1)3
( m

log2m

) 1
k+2

.

Proof. Let G be a C2k+1-free graph on n vertices with m > 1 edges. If G is bipartite,
then χ(G) = 2 and the claim follows. Suppose that χ(G) ≥ 3. Without loss of generality,
we may assume that G is vertex-critical. Note that each vertex-critical graph has minimal
degree at least χ(G) − 1. It follows that the minimal degree of G is at least 2. Thus, we
have m ≥ n. Now, we end the proof by showing the following series of claims.
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Claim 1.
χ(G) ≤ 15k3

( n

log n

) 1
k+1

.

This is trivial for n < e2 as χ(G) ≤ n < e2, hence we may assume that n ≥ e2. For
x ≥ e2, define the functions

γ(x) = 1− log−1 x and ψ(x) =
1

5k2
(xk log x)

1
k+1 .

Clearly, γ(x) ≥ 1/2 for x ≥ e2, and γ(x), ψ(x) are positive continuous and non-
decreasing. By Theorem 2.8, we have α(G) ≥ ψ(n). Thus, Lemma 2.2 gives that

χ(G) ≤ e2 +

∫ n

e2

1

ψ(x)
dx ≤ e2 +

5k2

γ(e2)

∫ n

e2

γ(x)

(xk log x)
1

k+1

dx

= e2 + 10k2(k + 1)
( x

log x

) 1
k+1
∣∣∣n
e2
≤ 15k3

( n

log n

) 1
k+1

.

This completes the proof of Claim 1.

For convenience, we define

n∗ =
( mk+1

logkm

) 1
k+2

.

Claim 2. n > n∗.

Otherwise, assume that n ≤ n∗. By Lemma 2.7, we know the function g(x) = x/ log x
is monotonically increasing over the interval (e,∞) and log x ≥ e log log x for each x > 1.
Note that m > 1 (which implies n ≥ 3 > e). It follows from Claim 1 that

χ(G) ≤ 15k3
( n

log n

) 1
k+1 ≤ 15k3

( n∗

log n∗

) 1
k+1 ≤ 32k3

( m

log2m

) 1
k+2

.

Thus, we get the desired result and complete the proof of Claim 2.

Now, we construct a graph sequence G = {Gi}i≥0 according to the following proce-
dure, which we will call the G algorithm. Set i = 0, G0 = G and n0 = |V (G0)|. Repeat
the following steps until ni ≤ n∗.

• Choose Si to be a maximum independent set of Gi.

• Set Gi+1 = Gi\Si and ni = |V (Gi)|. Increment i.

Let `+1 be the length of the resulting sequence G. By the G algorithm, we immediately
have n` ≤ n∗ and that G can be colored by at most χ(G`) + ` colors. Clearly, we may
assume that G` is vertex-critical. Thus, by Claim 1, for n` ≥ 3, we have

χ(G`) ≤ 15k3
( n`

log n`

) 1
k+1 ≤ 15k3

( n∗

log n∗

) 1
k+1 ≤ 32k3

( m

log2m

) 1
k+2

. (2.3)

Note that χ(G`) clearly satisfies the above inequality for n` ≤ 2. In the following, we aim
to bound the value of `.
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Firstly, we give a lower bound of |Si|. Let t = d n
n∗ e. It follows from Claim 2 that

t ≥ 2. Let I = {0, 1, . . . , ` − 1} and J = {2, 3, . . . , t}. Note that ni > n∗ ≥ n/t for
each i ∈ I by the G algorithm and the definition of t. Let v1, . . . , vn0

be a labelling of the
vertices of G0 such that Si = {vp : ni+1 < p ≤ ni} for each i ∈ I . Denote S the union of
Si for all i ∈ I . Thus, for each j ∈ J , we can define

Vj =
{
vp ∈ S :

n

j
< p ≤ n

j − 1

}
and Ij =

{
i ∈ I : ni >

n

j

}
.

Note that S\S`−1 ⊆ ∪j∈JVj ⊆ S and I2 ⊆ I3 ⊆ . . . ⊆ It. Therefore, for each x ∈ Vj ,
there exists an i ∈ Ij such that x ∈ Si. In addition, we have

|Vj | ≤
⌈ n

j − 1
− n

j

⌉
. (2.4)

Claim 3. For each i ∈ Ij 6= ∅,

|Si| ≥
n2 log 2jm

n

4kj2m
.

Let di denote the average degree of Gi for each i ∈ I . Clearly, for each i ∈ Ij , we
have di ≤ 2m

ni
≤ 2jm

n . Suppose that di > e. Recall that the function g(x) = log x/x is
decreasing over the interval (e,∞). By Theorem 2.8, we have

|Si| ≥
ni log di

2kdi
≥
n2 log 2jm

n

4kj2m
.

Otherwise, di ≤ e. It follows from Lemma 2.3 that |Si| ≥ ni

2k ≥
n

2kj , which together with
the fact that x ≥ log x implies the required result as well. This completes the proof of
Claim 3.

Then, for each x ∈ Si and i ∈ I , define w(x) = |Si|−1. Therefore, for each x ∈ Si
and i ∈ Ij , it follows from Claim 3 that

w(x) = |Si|−1 ≤
4kj2m

n2 log 2jm
n

≤ 4kj2mn−2

log j + log m
n

.

By the definition of w(x) and the above inequality, we immediately have

`− 1 =
∑

i∈I\{`−1}

∑
x∈Si

w(x)

≤
∑
j∈J

∑
x∈Vj

w(x) ≤
t∑

j=2

4kj2|Vj |mn−2

log j + log m
n

≤
t∑

j=2

16kmn−1

log j + log m
n

. (2.5)

The last inequality follows from (2.4) and the fact j ≥ 2.

Finally, we give the following upper bound of `.

Claim 4.
`− 1 ≤ 64(k + 1)2

( m

log2m

) 1
k+2

.
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By the definition of n∗, we have

n

n∗
· m
n

=
m

n∗
= (m logkm)

1
k+2 . (2.6)

It follows that max{m/n, n/n∗} > m
1

2(k+2) , and then

max
{

log
m

n
, log

n

n∗

}
>

1

2(k + 2)
logm. (2.7)

Suppose that n/n∗ < m/n. Note that t − 1 < n/n∗ by the definition of t. Then, we
delete the first term of the denominator of (2.5) and obtain

`− 1 ≤
t∑

j=2

16kmn−1

log m
n

≤ 16k(t− 1)m

n log m
n

<
16km

n∗ log m
n

≤ 64k2
( m

log2m

) 1
k+2

,

where the last inequality follows from (2.6) and (2.7); as desired. Otherwise, n/n∗ ≥ m/n.
Recall that t− 1 < n/n∗ ≤ t. It follows that∫ t

2

1

log x
dx ≤ 2(t− 1)

log t
≤ 2n

n∗ log n
n∗
.

Deleting the second term of the denominator in (2.5), we have

`−1 ≤ 16km

n

t∑
j=2

1

log j
≤ 16km

n

∫ t

2

1

log x
dx ≤ 32km

n∗ log n
n∗
≤ 64(k+1)2

( m

log2m

) 1
k+2

.

Again, the last inequality follows from (2.6) and (2.7). This completes the proof of Claim 4.

Now, it follows from (2.3) and Claim 4 that

χ(G) ≤ χ(G`) + ` ≤
(
32k3 + 64(k + 1)2

)( m

log2m

) 1
k+2

+ 1

≤ 32(k + 1)3
( m

log2m

) 1
k+2

.

Thus, we get the desired result and complete the proof of Theorem 2.9.

We are now in a position to establish Theorem 1.2.

Proof of Theorem 1.2. Let r > 4 be a fixed integer and let G be a Cr−1-free graph with
m edges. The desired result follows immediately for m = 1. Suppose that m > 1. Set
r − 1 = 2k + 1 and c(r) = 1/(8r3). By Theorem 2.9, we have

2χ(G) ≤ 8r3
( m

log2m

) 2
r+2

.

This together with Lemma 2.1 yields that

f(G) ≥ m

2
+ c(r)

(
mr log4m

) 1
r+2 .

Thus, we complete the proof of Theorem 1.2.
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3 Maximum cuts of H-free graphs
In this section, we obtain lower bounds on the size of the maximum cuts ofH-free graphs.
Let G = (V,E) be a graph. For a subset U ⊂ V , denote E(U) the set of edges of G
spanned by U . We need the following simple lemma from [1, 4, 8].

Lemma 3.1. Let G = (V,E) be a graph with m edges. Suppose that U ⊂ V and let G′ be
the induced subgraph of G on U . If G′ has m′ edges, then

f(G) ≥ f(G′) +
m−m′

2
.

Next, we need another result from [4], which provides a very useful lower bound on the
size of a maximum cut in an H-free graph for a certain class of graphs H .

Lemma 3.2 (Alon et al. [4]). There exists an absolute positive constant ε such that for
every positive constant C there is a δ = δ(C) > 0 with the following property. Let G be a
graph with n vertices (with positive degrees),m edges, and degree sequence d1, d2, . . . , dn.
Suppose, further, that the induced subgraph on any set of d ≥ C vertices, all of which have
a common neighbour, contains at most εd3/2 edges. Then

f(G) ≥ m

2
+ δ

n∑
i=1

√
di.

A graph is r-degenerate if every one of its subgraphs contains a vertex of degree at
most r. We need the following easy and well-known fact. See, e.g., [1, 2, 4] for a proof.

Lemma 3.3. Let H be an r-degenerate graph on h vertices. Then there is an ordering
v1, . . . , vh of the vertices of H such that for every 1 ≤ i ≤ h the vertex vi has at most r
neighbours vj with j < i.

Finally, we shall also use the following lower bound in extremal set theory, proved by
Corrádi [9], on the size of a setQ from which we can drawN subsets of size at least q such
that any two of them share at most λ elements.

Lemma 3.4 (Corrádi [9]). LetQ1, . . . , QN beN sets with |Qi| ≥ q for each i = 1, . . . , N ,
and let Q be their union. If |Qi ∩Qj | ≤ λ for all i 6= j, then

|Q| ≥ q2N

q + (N − 1)λ
.

Having finished all the necessary preparations, we are ready to give proofs of Theo-
rems 1.3 and 1.4. Our proofs combine combinatorial and probabilistic techniques, includ-
ing extensions of ideas that appear in [1, 2, 4].

Proof of Theorem 1.3. For each s ≥ 2, let G = (V,E) be a {K2,s, C5}-free graph on n
vertices with m edges. Define ` = b4sm2/7c. The proof proceeds by considering two
possible cases depending on the existence of dense subgraphs in G.

Case 1. G is (` − 1)-degenerate, that is, it contains no subgraph with minimum degree
at least `. In this case, we use Lemma 3.2 to bound f(G). By Lemma 3.3, we can get a
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labelling v1, v2, . . . , vn of the vertices of G such that d+i < ` for every i, where d+i denotes
the number of neighbors vj of vi with j < i. Note that

∑n
i=1 d

+
i = m. Let di be the degree

of vi for each 1 ≤ i ≤ n. Then

n∑
i=1

√
di ≥

n∑
i=1

√
d+i >

∑n
i=1 d

+
i√

`
≥ 1

2
√
s
m6/7.

Now, we check the condition of Lemma 3.2. For each v ∈ V , letN(v) be the neighbor-
hood of v in G and Nd(v) be any subset of cardinality d of N(v). Denote Gvd the subgraph
induced by Nd(v). Since G is C5-free, we know that Gvd contains no path of length 3. It
follows from Lemma 2.6 that Gvd contains at most d edges, which is smaller than εd3/2 for
all d > ε−2. Thus, by Lemma 3.2, we have

f(G) ≥ m

2
+ δ

n∑
i=1

√
di ≥

m

2
+

δ

2
√
s
m6/7,

where δ = δ(ε) is a constant, as required.

Case 2. There exists a subset Q of q vertices of G such that the induced subgraph G[Q]
has minimum degree at least `. Now, we prove that Q contains a subset Q′ such that the
induced subgraph G[Q′] spans at least q`/4 edges and is 3t-colorable for t = d4sq/`2e.

For fixed x ∈ Q, denote by S(x) the set of vertices in Q which are at distance exactly
2 from x and denote by sx the size of S(x). We bound sx by Lemma 3.4.

Claim 5. sx ≥ `2/(2s) for each x ∈ Q.

For each x ∈ Q, letNQ(x) be the neighborhood of x inG[Q]. For each v ∈ NQ(x), let
Qv = NQ(v)∩ S(x) . Since G is K2,s-free, we conclude that |Qu ∩Qv| ≤ s− 1 for each
pair of vertices u, v ∈ NQ(x) and that v is adjacent to at most s− 1 vertices in NQ(x). It
follows that |Qv| ≥ `− (s− 1)− 1 = `− s. Note that

S(x) =
⋃

v∈NQ(x)

Qv and |NQ(x)| ≥ ` ≥ 4s.

By Lemma 3.4, we obtain

sx =
∣∣∣ ⋃
v∈NQ(x)

Qv

∣∣∣ ≥ (`− s)2|NQ(x)|
(`− s) + (|NQ(x)| − 1)(s− 1)

≥ `2

2s
.

This completes the proof of Claim 5.

Let T be a random subset of Q obtained by picking uniformly at random, with repeti-
tions, t vertices of Q. Let Q′ be the set of all vertices x in Q such that S(x) ∩ T 6= ∅ and
let G[Q′] be the induced subgraph of G on Q′.

Claim 6. There exists a set T such that G[Q′] spans at least q`/4 edges.

By the definition of Q′, for each x ∈ Q, we have

P(x /∈ Q′) =
(

1− sx
q

)t
≤
(

1− `2

2sq

)t
≤ exp

{
− `2t

2sq

}
<

1

4
,
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where the second inequality follows from Claim 5, and the last inequality holds by noting
that t ≥ 4sq/`2. Thus, for each edge xy ∈ E(Q), we obtain

P(xy ∈ E(Q′)) = P(x ∈ Q′) · P(y ∈ Q′) >
(

1− 1

4

)
·
(

1− 1

4

)
>

1

2
.

By linearity of expectation, and noting that |E(Q)| ≥ q`/2, we have

E(|E(Q′)|) =
∑

xy∈E(Q)

P(xy ∈ E(Q′)) ≥ 1

2
|E(Q)| ≥ 1

4
q`.

Hence, there exists a set T of at most t vertices so that the corresponding graph G[Q′] has
at least q`/4 edges. Thus, we complete the proof of Claim 6.

Fix such sets T and Q′, let G′ = G[Q′] and T = {u1, . . . , ut′}, where 1 ≤ t′ ≤ t.
Now we show G′ is 3t-colorable. Define a coloring c of G′ in t′ colors by coloring each
vertex x ∈ Q′ with the smallest index of a vertex from T which belongs to S(x). For each
1 ≤ i ≤ t′, let Hi be the subgraph of G′ induced by the vertices of Q′ with color i.

Claim 7. For each 1 ≤ i ≤ t′, Hi is 3-colorable.

For each ui ∈ T and v ∈ N(ui), let Hv
i be the subgraph induced by the neighbors of

v with color i in G′. By the above definition and the fact that G is C5-free, we have the
following properties:

• For each v ∈ N(ui), Hv
i is P4-free;

• For each v1, v2 ∈ N(ui) and u ∈ V (Hv1
i ) ∩ V (Hv2

i ), u is an isolated vertex in both
Hv1
i and Hv2

i ;

• For each x ∈ V (Hv1
i ) and y ∈ V (Hv2

i ), x and y are nonadjacent in Hi.

Note that Hi is induced by the union of V (Hv
i ) over all v ∈ N(ui). This together with the

above three properties implies that Hi is P4-free, i.e., 3-colorable. Thus, we complete the
proof of Claim 7.

By the definition of c and Claim 7, we conclude that G′ is 3t-colorable. According to
Lemma 2.1, it follows that

f(G′) ≥ |E(Q′)|
2

+
|E(Q′)|

6t
≥ |E(Q′)|

2
+
q`

24

⌈4sq

`2

⌉−1
≥ |E(Q′)|

2
+

`3

144s
≥ |E(Q′)|

2
+

4s2

9
m6/7.

The second inequality follows from Claim 6, and the third inequality holds because q ≥
sx ≥ `2/(2s) by Claim 5. The above inequality together with Lemma 3.1 gives that

f(G) ≥ m− |E(Q′)|
2

+
|E(Q′)|

2
+

4s2

9
m6/7 =

m

2
+

4s2

9
m6/7.

Therefore, the desired result follows immediately from Cases 1 and 2 by setting c(s) =

min{ δ
2
√
s
, 4s

2

9 }, completing the proof of Theorem 1.3.
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The proof of Theorem 1.4 is similar to that of Theorem 1.3.

Proof of Theorem 1.4. Let G be an Hr-free graph on n vertices with m edges. Define
` = b2m2/(r+1)c and proceed as before, by considering two possible cases.

Case 1. G contains no subgraph with minimum degree at least 2`. In this case, we proceed
as in the previous proof. Similarly, the induced subgraph of G on any set of common
neighbors of a vertex can span only a linear number of edges, as it contains no copy of C4.
Thus, we can apply, again, Lemma 3.2 and conclude, as in the proof of Theorem 1.3, that

f(G) ≥ m

2
+ δ

m√
2`
≥ m

2
+
δ

2
m

r
r+1 ,

where δ = δ(ε) is also a constant, as needed.

Case 2. There exists a subset Q of q vertices of G such that the induced subgraph G[Q]
has minimum degree at least 2`. Here, too, we prove that there exists Q′ ⊂ Q such that the
induced subgraph G[Q′] spans at least q`/2 edges and is 2t-colorable for t = dq/`ke.

Let r = 2k + 2. Denote by Sk(x) the set of vertices in Q which are at distance exactly
k from x and denote by sx the size of Sk(x). Since the minimal degree of G[Q] is at
least 2` and G[Q] contains no cycle of length from 4 to 2k + 1, it can easily be seen that
sx ≥ 2`(2`− 2)k−1 ≥ 2`k for each x ∈ Q.

Let T be a random subset of Q obtained by picking, with repetitions, t vertices of Q,
each chosen randomly with uniform probability. This together with the fact sx ≥ 2`k

yields that the probability that Sk(x) ∩ T is empty is at most(
1− sx

q

)t
≤
(

1− 2`k

q

)t
≤ exp

{
− 2`kt

q

}
<

1

4
.

An argument similar to the one used in the proof of Claim 6, the details of which we omit,
shows that there exists a set T of at most t vertices so that the corresponding graph G[Q′]
has at least q`/2 edges.

Fix such sets T and Q′. Now, we define a coloring c of G′ and the induced subgraphs
Hi of G′ for 1 ≤ i ≤ |T | as in the proof of Theorem 1.3.

Claim 8. For each 1 ≤ i ≤ |T |, Hi is the disjoint union of edges modulo isolated vertices.

For fixed ui ∈ T and for each v ∈ Sk−1(ui), let Hv
i be the subgraph induced by

the neighbors of v with color i in G′. By the above definition, and recalling that G con-
tains no cycle of length from 4 to 2k + 1, we have the following properties: (i) for each
v ∈ Sk−1(ui), Hv

i is P3-free; (ii) for each v1, v2 ∈ Sk−1(ui), V (Hv1
i ) ∩ V (Hv2

i ) = ∅;
(iii) for each x ∈ V (Hv1

i ) and y ∈ V (Hv2
i ), x and y are nonadjacent inHi. It follows from

(ii) and (iii) that Hi is the disjoint union of Hv
i over all v ∈ Sk−1(ui). Thus, by (i), Hi

is the disjoint union of edges modulo isolated vertices. This completes the proof of Claim 8.

By the definition of c and Claim 8, we know that G′ is 2t-colorable. Using Lemma 2.1,
we conclude that

f(G′) ≥ |E(Q′)|
2

+
|E(Q′)|

4t
≥ |E(Q′)|

2
+
q`

8

⌈ q
`k

⌉−1
≥ |E(Q′)|

2
+
`k+1

12
=
|E(Q′)|

2
+

(
√

2)r

12
m

r
r+1 .
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The second inequality follows from the fact |E(Q′)| ≥ q`/2, and the third inequality holds
because q ≥ sx ≥ 2`k. Taking Lemma 3.1 into consideration, we obtain

f(G) ≥ m− |E(Q′)|
2

+
|E(Q′)|

2
+

(
√

2)r

12
m

r
r+1 =

m

2
+

(
√

2)r

12
m

r
r+1 .

Again, we get the required result from Cases 1 and 2 by choosing c(s) = min{ δ2 ,
(
√
2)r

12 },
which completes the proof of Theorem 1.4.
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Abstract

Investigating the equality of the chromatic number and the circular chromatic num-
ber of graphs has been an active stream of research for last decades. In this regard,
Hajiabolhassan and Zhu in 2003 proved that if n is sufficiently large with respect to k,
then the Schrijver graph SG(n, k) has the same chromatic and circular chromatic num-
ber. Later, Meunier in 2005 and independently, Simonyi and Tardos in 2006 proved that
χ(SG(n, k)) = χc(SG(n, k)) if n is even. In this paper, we study the circular chromatic
number of induced subgraphs of Kneser graphs. In this regard, we shall first generalize the
preceding result to s-stable Kneser graphs for large even n and even s. Furthermore, as
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1 Introduction
Throughout the paper, the symbol [n] stands for the set {1, . . . , n}. Let n and d be two
positive integers. The circular complete graph Kn

d
is a graph with vertex set [n] and two

vertices i and j are adjacent whenever d ≤ |i − j| ≤ n − d. For a graph G, the circular
chromatic number of G, denoted by χc(G), is defined as follows:

χc(G)
def
= inf

{n
d

: there is a homomorphism from G to Kn
d

}
.

It is known that the infimum can be replaced by minimum. Moreover, one can see that
χ(G) − 1 < χc(G) ≤ χ(G), see [36]. Therefore, the circular chromatic number is a
refinement of the chromatic number. It is a natural question to ask for which graphs G, we
have χc(G) = χ(G). However, it turns out to be a difficult question. Hell [19] proved that
the problem of determining whether a graph has the circular chromatic number at most nd is
NP-Hard. Hatami and Tusserkani [18] showed that the problem of determining whether or
not χc(G) = χ(G) is NP-Hard even if the chromatic number is known. Therefore, finding
necessary conditions for graphs to have the same chromatic and circular chromatic number
turns out to be an interesting problem. This problem has received significant attention, for
instance see [1, 17, 36, 37].

For two positive integers n and k, where n ≥ 2k, the Kneser graph KG(n, k) is a
graph with vertex set

(
[n]
k

)
, that is, the family of all k-subsets of [n], and two vertices are

adjacent if their corresponding k-subsets are disjoint. Kneser in 1955 [23] conjectured that
the chromatic number of KG(n, k) is n− 2k+ 2. In 1978, Lovász [26] gave an affirmative
answer to Kneser’s conjecture. He used algebraic topological tools, giving birth to the field
of topological combinatorics. For a positive integer s, a nonempty subset S of [n] is said
to be s-stable if for any two different elements i and j in S, we have s ≤ |i− j| ≤ n− s.
Throughout the paper, the family of all s-stable k-subsets of [n] is denoted by

(
[n]
k

)
s
. The

subgraph of KG(n, k) induced by all s-stable k-subsets of [n] is called the s-stable Kneser
graph and is denoted by KGs(n, k). The 2-stable Kneser graph KG2(n, k) is known as the
Schrijver graph SG(n, k). Schrijver [31] proved that Schrijver graphs are vertex critical
subgraphs of Kneser graphs with the same chromatic number. Meunier [30] showed that for
any two positive integers n and k, where n ≥ sk, the s-stable Kneser graph KGs(n, k) can
be colored by n−s(k−1) colors and conjectured that the chromatic number is n−s(k−1).
Jonsson [22] proved that this conjecture is true provided that s ≥ 4 and n is sufficiently
large with respect to k and s. Also, Chen [12] confirmed Meunier’s conjecture for even
values of s.

Lovász’s theorem [26] has been generalized in several aspects. For a hypergraphH, the
general Kneser graph KG(H) is a graph with vertex setE(H) and two vertices are adjacent
if their corresponding edges are vertex disjoint. Dol’nikov [13] generalized Lovász’s result
and proved that the chromatic number of KG(H) is at least the colorability defect of H,
denoted by cd(H), where the colorability defect of H is the minimum number of vertices
which should be excluded from H so that the induced subhypergraph on the remaining
vertices is 2-colorable.

For a vector X = (x1, . . . , xn) ∈ {−, 0,+}n, a sequence xi1 , xi2 , . . . , xit (i1 <
· · · < it) is called an alternating subsequence of X with length t if xij 6= 0 for each
j ∈ {1, . . . , t} and xij 6= xij+1 for each j ∈ {1, . . . , t − 1}. The maximum length of an
alternating subsequence of X is called the alternation number of X , denoted by alt(X).
For 0 def

= (0, . . . , 0), we define alt(0)
def
= 0. Also, we defineX+ andX− to be respectively
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the indices of positive and negative coordinates of X , i.e.,

X+ def
= {i : xi = +} and X−

def
= {i : xi = −}.

Note that both X+ and X− are subsets of [n] and by abuse of notation, we can write
X = (X+, X−). For two vectors X,Y ∈ {−, 0,+}n, by X ⊆ Y , we mean X+ ⊆ Y +

and X− ⊆ Y −.
LetH = (V,E) be a hypergraph and σ : [n] −→ V (H) be a bijection. The alternation

number of H with respect to σ, denoted by altσ(H), is the maximum possible value of
an alt(X) such that E(H[σ(X+)]) = E(H[σ(X−)]) = ∅. Also, the strong alternation
number ofH with respect to σ, denoted by saltσ(H), is the maximum possible value of an
alt(X) such that E(H[σ(X+)]) = ∅ or E(H[σ(X−)]) = ∅. The alternation number of
H, denoted by alt(H), and the strong alternation number of H, denoted by salt(H), are
respectively the minimum values of altσ(H) and saltσ(H), where the minimum is taken
over all bijections σ : [n] −→ V (H). The present first author and Hajiabolhassan [4]
proved the following theorem.

Theorem A. For any hypergraphH, we have

χ(KG(H)) ≥ max {|V (H)| − alt(H), |V (H)| − salt(H) + 1} .

One can simply see that this result improves the aforementioned Dol’nikov’s result [13].
Using this lower bound, the chromatic number of several families of graphs is computed,
for instance see [2, 3, 5, 6, 8].

In 1997, Johnson, Holroyd, and Stahl [21] proved that χc(KG(n, k)) = χ(KG(n, k))
provided that 2k + 1 ≤ n ≤ 2k + 2 or k = 2. They also conjectured that the circu-
lar chromatic number of Kneser graphs is always equal to their chromatic number. This
conjecture has been studied in several articles. Hajiabolhassan and Zhu [17] using a com-
binatorial method proved that if n is large enough with respect to k, then χc(KG(n, k)) =
χ(KG(n, k)). Later, using algebraic topology, Meunier [29] and Simonyi and Tardos [33]
independently confirmed this conjecture for the case of even n. It should be mentioned that
the results by Hajiabolhassan and Zhu [17], Meunier [29], and Simonyi and Tardos [33]
are indeed proved for the Schrijver graph SG(n, k). Eventually in 2011, Chen [11] con-
firmed the Johnson-Holroyd-Stahl conjecture. Chen’s proof was simplified by Chang, Liu
and Zhu in [10] and by Liu and Zhu in [25]. The present first author, Hajiabolhassan, and
Meunier [8] generalized Chen’s result to a larger family of graphs. They introduced a suf-
ficient condition for a hypergraphH having χ(KG(H)) = χc(KG(H)).

Plan. The paper contains two main sections. In Section 2, we shall investigate the coloring
properties of stable Kneser graphs. In this regard, we prove the equality of the chromatic
number and the circular chromatic number of s-stable Kneser graph KGs(n, k) provided
that n ≥ (s+ 2)k − 2 and both n and s are even. In the last section, we study the circular
chromatic number of large induced subgraphs of Kneser graphs. Indeed, it is proved that,
for large enough n, any sufficiently large induced subgraph of the Kneser graph KG(n, k)
has the same chromatic number and circular chromatic number. In particular, giving a
partial answer to a question posed by Lih and Liu [24], we present a threshold n(k, s)
such that for any n ≥ n(k, s), the chromatic number and circular chromatic number of
KGs(n, k) are equal.
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2 Chromatic number of stable Kneser graphs
As it is mentioned in the previous section, the chromatic number of s-stable Kneser graph
KGs(n, k) is determined provided that k and s ≥ 4 are fixed and n is large enough [22] or
s is even [12]. In this section, we first present a generalization of Theorem A. Using this
generalization, for any even s, we prove that any proper coloring of s-stable Kneser graph
KGs(n, k) contains a large colorful complete bipartite subgraph, which immediately gives
solutions to the chromatic number of s-stable Kneser graphs KGs(n, k). Also, this result
concludes that the circular chromatic number of s-stable Kneser graph KGs(n, k) equals
to its chromatic number provided that n ≥ (s+ 2)k − 2 and both n and s are even.

Tucker’s lemma is a combinatorial counterpart of the Borsuk-Ulam theorem with sev-
eral useful applications, for instance, see [27, 28].

Lemma A (Tucker’s lemma [35]). Let λ : {−, 0,+}n \ {0} −→ {±1, . . . ,±m} be a map
satisfying the following properties:

• it is antipodal: λ(−X) = −λ(X) for each X ∈ {−, 0,+}n \ {0}, and

• it has no complementary edges: there are no X and Y in {−, 0,+}n \ {0} such that
X ⊆ Y and λ(X) = −λ(Y ).

Then m ≥ n.

There are several results concerning the existence of a large complete bipartite multi-
colored subgraph in any proper coloring of a graph G, see [4, 11, 32, 33, 34]. In what
follows, we present a similar type of result with a combinatorial proof. Note that since
there is a purely combinatorial proof [28] for Tucker’s lemma, any proof using Tucker’s
lemma with combinatorial approach can be considered as a purely combinatorial proof.

Theorem 2.1. Let H be a hypergraph and set t = max
{
|V (H)| − alt(H), |V (H)| −

salt(H) + 1
}

. For any proper coloring c : V (KG(H)) −→ [C], there exists a complete bi-
partite subgraph Kbt/2c,dt/2e of KG(H) whose vertices receive different colors and more-
over, these different colors occur alternating on the two parts of the bipartite graph with
respect to their natural order.

Proof. Let σ1, σ2 : [n] −→ V (H) be two bijections for which we have alt(H) = altσ1
(H)

and salt(H) = saltσ2
(H). Now, we shall proceed the proof with two different cases, t =

n−alt(H) and t = n−salt(H)+1. Assume that t = n−alt(H) (resp. t = n−salt(H)+1).
For simplicity of notation, by identifying the set V (H) and [n] via the bijection σ1 (resp.
σ2), we may assume that V (H) = [n]. For each X = (X+, X−) ∈ {−, 0,+}n \ {0},
define c(X)

def
= (c(X+), c(X−)) ∈ {−, 0,+}C to be a signed vector, where

c(X+)
def
=
{
c(e) : e ∈ E(H) and e ⊆ X+

}
and

c(X−)
def
=
{
c(e) : e ∈ E(H) and e ⊆ X−

}
.

For each X ∈ {−, 0,+}n \ {0}, define λ(X) as follows.

• If alt(X) ≤ altσ1
(H) (resp. alt(X) ≤ saltσ2

(H)), then define λ(X) = ± alt(X),
where the sign is positive if the first nonzero term of X is positive and is negative
otherwise.
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• If alt(X) ≥ altσ1(H) + 1 (resp. alt(X) ≥ saltσ2(H) + 1), then define λ(X) =
±(altσ1

(H)+alt(c(X))) (resp. λ(X) = ±(saltσ2
(H)+alt(c(X))−1)), where the

sign is positive if the first nonzero term of c(X) is positive and is negative otherwise.

One can simply check that λ satisfies the conditions of Lemma A. Consequently, there
should be an X ∈ {−, 0,+}n \ {0} such that |λ(X)| = λ(X) ≥ n. Clearly, we should
have alt(X) ≥ altσ1

(H) + 1 (resp. alt(X) ≥ saltσ2
(H) + 1). Therefore, the definition of

λ(X) implies that alt(c(X)) ≥ n− altσ1
(H) (resp. alt(c(X)) ≥ n− saltσ2

(H) + 1). Let
Z = (Z+, Z−) ⊆ c(X) be a signed vector such that alt(Z) = |Z| = t, as alt(c(X)) ≥ t.
Note that if Z+ ∪ Z− = {i1, i2, . . . , it}, where 1 ≤ i1 < · · · < it ≤ C, then we should
have Z+ = {ij : j ∈ [t] is odd} and Z− = {ij : j ∈ [t] is even}. For an j ∈ [t], if j is
odd (resp. even), then according to the definition of c(X), there is an edge e ∈ E(H) such
that e ⊆ X+ (resp. e ⊆ X−) with c(e) = ij . Note that the induced subgraph of KG(H)
on the vertices {e1, . . . , et} contains the desired complete bipartite graph.

Note that the complete bipartite graph whose existence is guaranteed by Theorem 2.1
is not necessarily an induced subgraph. Also, it is worth mentioning that we here used
Tucker’s lemma though, in case t = |V (H)| − alt(H), the previous theorem was proved
in [4] by use of Ky Fan’s lemma [14].

Let n, k, and s be positive integers, where n ≥ sk and s is even. It is not difficult to see
that if n is large enough (with respect to s and k), then any 2-stable ( s2 (k − 1) + 1)-subset
of [n] contains an s-stable k-subset of [n]. In the following two lemmas, we shall prove
that n ≥ (s+ 2)k − 2 would be sufficient for this observation.

Lemma 2.2. Let s be an even positive integer and let n = 2s+ 2. If S is a 2-stable subset
of [n] of cardinality s

2 + 1, then there are a, a′ ∈ S such that a− a′ ∈ {s, s+ 1, s+ 2}.

Proof. Without loss of generality, we may assume that 1 ∈ S and 2s+2 6∈ S. If s+1 ∈ S,
then there is nothing to prove. Therefore, let s + 1 6∈ S. For 1 ≤ i ≤ s

2 , define Bi =
{2i − 1, 2i, 2i + s, 2i + s + 1}. Therefore, for some i, 1 ≤ i ≤ s

2 , |Bi ∩ S| = 2. Let
a, a′ ∈ Bi ∩ S , since S is 2-stable, we have a− a′ ∈ {s, s+ 1, s+ 2}.

Lemma 2.3. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. If S is a 2-stable subset of [n] of cardinality s

2 (k − 1) + 1, then
there is an s-stable k-subset of S. In particular, salt

(
[n],

(
n
k

)
s

)
= s(k − 1) + 1.

Proof. First note that for given k and s, if the statement is true for some n ≥ k(s+ 2)− 2,
then it is true for all integers n′ ≥ n. Therefore it is enough to prove the lemma for n =
k(s+ 2)− 2.

We use induction on k to prove the lemma. The validity of the lemma when k = 1 is
trivial and when k = 2 it was shown in Lemma 2.2. Thus, we may assume that k ≥ 3.

If for each i ∈ S, we have {i + s, i + s + 1, i + s + 2} ∩ S 6= ∅ (where addition is
modulo n), then we can greedily find an s-stable k-subset, and there is nothing to prove.
Otherwise, without loss of generality, assume that n− s− 1 ∈ S and n− 1, n, 1 6∈ S.

Set A
n−s−1

= {n − s − 1, n − s, . . . , n}. Note that since n − 1, n 6∈ S, we have
|An−s−1 ∩ S| = s

2 − β, for some 0 ≤ β ≤ s
2 . Now, consider [n] \A

n−s−1
and S \A

n−s−1
.

Set ṅ = n − (s + 2) and Ṡ = S \ A
n−s−1

. Note that [ṅ] and [n] \ A
n−s−1

are equal and
since 1 6∈ S, Ṡ is a 2-stable subset of [ṅ] of cardinality s

2 (k − 2) + β + 1.
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Define the s-subset B of [ṅ] by

B
def
= {n− 2s− 1, n− 2s, . . . , n− s− 2}.

By induction, we may consider the following two cases:

(i) There is an s-stable (k − 1)-subset of Ṡ, say Ḋ, which has no element of B. In this
case, it is readily verified that D = Ḋ ∪ {n − s − 1} is an s-stable k-subset of [n],
completing the proof in this case.

(ii) There are at least β + 1 s-stable (k − 1)-subsets of Ṡ, say Ḋ1, Ḋ2, . . . , Ḋβ+1, such
that each Ḋi has exactly one distinct element of B, say bi.

Now, consider the 2-stable subset {b1, b2, . . . , bβ+1} ∪ (S ∩ A
n−s−1

), by Lemma 2.2,
there exist two elements a, b such that a− b ∈ {s, s+ 1, s+ 2}. Since n− 1, n 6∈ S, both
a, b are not in A

n−s−1
. Hence, we may assume that a ∈ A

n−s−1
and b = bi for some i,

1 ≤ i ≤ β + 1. Let d be the smallest element of Ḋi. Since Ḋi is an s-stable (k − 1)-
subset of [ṅ], therefore we have s ≤ b − d ≤ ṅ − s = n − (2s + 2). On the other hand,
s ≤ a − b ≤ s + 2. Therefore, 2s ≤ a − d ≤ n − s. Therefore, Ḋi ∪ {a} is an s-stable
k-subset of [n] as desired.

Note that for an X ∈ {−, 0,+}n \ {0} with alt(X) ≥ s(k − 1) + 2, both X+ and
X− contain 2-stable subsets of size at least s

2 (k − 1) + 1, which implies that both X+

and X− contain s-stable subsets of size at least k. This concludes that salt
(
[n],

(
n
k

)
s

)
=

s(k − 1) + 1.

We remind the reader that Meunier [30] showed that KGs(n, k) has a proper coloring
with n− s(k−1) colors. Note that if we setH = ([n],

(
[n]
k

)
s
), then KG(H) = KGs(n, k).

Clearly, using these observations, Lemma 2.3, and Theorem 2.1, we have the next theorem.

Theorem 2.4. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. Any properly colored KGs(n, k) contains a complete bipartite
subgraph Kbt/2c,dt/2e, where t = n − s(k − 1) such that all vertices of this subgraph
receive different colors and these different colors occur alternating on the two parts of the
bipartite graph with respect to their natural order. In particular, we have χ(KGs(n, k)) =
n− s(k − 1).

Let r be a positive integer. For an r-coloring c of a given graph G, a cycle C =
v1, v2, . . . , vm, v1 is called tight if for each i ∈ [m], we have c(vi+1) = c(vi)+1 (mod r).
It is known [36] that χc(G) = r if and only if the graph G is r-colorable and every r-
coloring of G contains a tight cycle. In view of this result, to prove the next theorem, it
suffices to show that any proper (n − s(k − 1))-coloring of KGs(n, k) contains a tight
cycle.

Theorem 2.5. Let n, k, and s be positive integers, where n and s are even and n ≥
(s+ 2)k − 2. Then, we have

χc(KGs(n, k)) = n− s(k − 1).

Proof. For simplicity of notation, we set t = n−s(k−1). In view of the former discussion,
to prove the assertion, let c be a proper t-coloring of KGs(n, k). Consider the complete
bipartite subgraph Kt/2,t/2 of KGs(n, k), whose existence is ensured by Theorem 2.4.
Clearly, this subgraph contains a tight cycle, which completes the proof.
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The original proof of Lovász of Kneser’s conjecture is rather long and complicated
[26]. Bárány [9], using Gale’s lemma [15], presented a short proof of this result. For
n > 2k, Gale [15] proved that the set [n] can be identified with a subset of Sn−2k in
such a way that any open hemisphere contains at least one k-subset of [n] (a vertex of
KG(n, k)). Schrijver [31] generalized Gale’s lemma to 2-stable k-subsets of [n]. He also
used this generalization to prove that χ (SG(n, k)) = n − 2k + 2. For an interesting
proof of Gale’s lemma, see [16]. Moreover, the present first author and Hajiabolhassan [7]
generalized Gale’s lemma. For any hypergraph H = (V,E), they introduce a lower bound
for the maximum possible value of m for which there is a subset X of Sm and a suitable
identification of V with X such that any open hemisphere of Sm contains an edge of
H. The next lemma can be obtained directly from this result. However, for the sake of
completeness, we prove it here with a different approach.

Lemma 2.6. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. There exists an n-subset X of Sn−s(k−1)−2 and a suitable
identification betweenX and [n] such that every open hemisphere of Sn−s(k−1)−2 contains
an s-stable k-subset of [n].

Proof. Set p = s
2 (k − 1) + 1. In view of the generalization of Gale’s lemma by Schri-

jver [31], there exists an n-subset X of Sn−2p and an identification of X with [n] such that
any open hemisphere of Sn−2p contains a 2-stable p-subset of [n]. Now, by Lemma 2.3,
any 2-stable p-subset contains an s-stable k-subset. This implies that any open hemisphere
of Sn−s(k−1)−2 contains an s-stable k-subset of [n] as desired.

Simonyi and Tardos [34], using the Tucker-Bacon lemma (Lemma B), proved that if the
chromatic number of a graph G equals to a topological lower bound for chromatic number,
then for any optimal coloring of G with colors [C] and for any partition L ]M of [C],
there is a multi-colored complete bipartite subgraph K|L|,|M | of G such that all colors in
L are assigned to the vertices of one side of K|L|,|M | and all colors in M are assigned to
the vertices of the other side. These kinds of results are known as Kl,m type theorems,
see [32, 34].

Lemma B (Tucker-Bacon lemma). Let U1, U2, . . . , Ud+2 be open subsets of the d-sphere
Sd such that for any 1 ≤ i ≤ d+ 2, Ui ∩−Ui = ∅ and also, U1 ∪ · · · ∪Ud+2 = Sd. Then
for any partition A ∪ B = {1, 2, . . . , d + 2} for which A 6= ∅ and B 6= ∅, there is an
x ∈ Sd such that x ∈ ∩i∈AUi and −x ∈ ∩j∈BUj .

In what follows, similar to the Simonyi-Tardos result, using the Tucker-Bacon lemma,
we prove a Kl,m type theorem for s-stable Kneser graphs provided that n is large and s is
even.

Theorem 2.7. Let n, k, and s be positive integers, where s is even and n ≥ (s+ 2)k − 2.
Also, let c be a proper coloring of KGs(n, k) with colors {1, 2, . . . , n − s(k − 1)} and
assume that A and B form a partition of {1, 2, . . . , n − s(k − 1)}. Then there exists a
complete bipartite subgraph Kl,m of KGs(n, k) with parts L and M such that |L| = l =
|A|, |M | = m = |B| and the vertices in L and M receive different colors from A and B,
respectively.

Proof. By Lemma 2.6, we can identify [n] with a subset of Sn−s(k−1)−2 such that ev-
ery open hemisphere of Sn−s(k−1)−2 contains an s-stable k-subset of [n]. For 1 ≤ i ≤
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n− s(k − 1), define

Ui
def
=
{
x ∈ Sn−s(k−1)−2 : H(x) contains a vertex with color i

}
.

One can see that each Ui is an open set, U1, U2, . . . , Un−s(k−1) covers Sn−s(k−1)−2 and
also none of them contains a pair of antipodal points. Thus, the Tucker-Bacon lemma
implies that there is an x ∈ Sn−s(k−1)−2 such that x ∈ ∩i∈AUi and −x ∈ ∩j∈BUj .
Therefore, in view of the definition of Ui’s, for each i ∈ A (resp. j ∈ B), there is an s-
stable k-subset Li (resp. Mj) of [n] such that c(Li) = i and Li ⊆ H(x) (resp. c(Mj) = j
and Mj ⊆ H(−x)). Note that since H(x)∩H(−x) = ∅, for each i ∈ A and j ∈ B, Li is
adjacent to Mj in KGs(n, k), which completes the proof.

We would like to mention that the idea of our proof is close to the Bárány’s proof of
Kneser conjecture [9].

3 Circular coloring of induced subgraphs of Kneser graphs
The concept of free coloring of graphs was introduced in [1] by the present first author
and Hajiabolhassan as a tool for studying the circular chromatic number of graphs. Indeed,
they proved that if the free chromatic number of a graph G is at least twice of its chromatic
number, then χ(G) = χc(G).

An independent set in a graph G is called a free independent set if it can be extended to
at least two distinct maximal independent sets in G. Clearly, one can see that an indepen-
dent set F inG is a free independent set if and only if there exists an edge uv ∈ E(G) such
that (N(u)∪N(v))∩F = ∅. The maximum possible size of a free independent set inG is
denoted by ᾱ(G). Furthermore, a vertex of a graphG is contained in a free independent set
if and only if the graph obtained by deleting the closed neighborhood of this vertex has at
least one edge (for more details, see [1]). As a natural extension of the chromatic number,
we can define the free chromatic number of graphs as follows.

Definition 3.1. The free chromatic number of a graph G, denote φ(G), is the minimum
size of a partition of V (G) into free independent sets. If G does not have such a partition,
then we set φ(G) =∞.

The next lemma plays a key role in the rest of the paper.

Lemma C ([1, Lemma 2]). Let G be a graph such that χc(G) = n
d with gcd(n, d) = 1. If

d ≥ 2, or equivalently, if χc(G) 6= χ(G), then φ(G) ≤ 2χ(G)− 1.

Let G be a graph with at least one free independent set. By definition, we have φ(G) ≥
|V (G)|/ᾱ(G). It was proved by Hilton and Milner [20] that if T is an independent set of
KG(n, k) of size at least (

n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 2,

then ⋂
A∈T

A = {i},
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for some i ∈ [n]. By using this result of Hilton and Milner, it was proved by Hajiabolhassan
and Zhu in [17] that if n ≥ 2k2(k − 1), then χc(KG(n, k)) = χ(KG(n, k)). This result
was improved in [1] by proving that we have χc(KG(n, k)) = χ(KG(n, k)) for n ≥
2k2(k − 1) − 2k + 3. It was also showed in [17] that there is a threshold n(k) such that
for n ≥ n(k), we have χc(SG(n, k)) = χ(SG(n, k)). This gave a positive answer to
a question of Lih and Liu [24]. Lih and Liu [24] also posed the question of what is the
smallest value of n(k). They proved that n(k) ≥ 2k+ 2. One should note that in [17] only
the existence of the threshold n(k) is ensured and the authors did not present any upper
bound for it.

Using the Hilton-Milner theorem, one can simply see that, for n > 2k, the size of any
free independent set in the Kneser graph KG(n, k) is at most

(
n−1
k−1
)
−
(
n−k−1
k−1

)
≤ k

(
n−2
k−2
)
,

see [1]. In view of this observation, we generalize the result by Hajiabolhassan and Zhu [17]
to the following theorem.

Theorem 3.2. Let n and k be two positive integers, where n ≥ 2k2(k − 1). Let H be an
induced subgraph of KG(n, k) with at least 2k2(k−1)

n

(
n
k

)
vertices. Then H has the same

chromatic number and circular chromatic number.

Proof. Obviously, the assertion holds for k = 1. So, let k ≥ 2. Assume that H is an
induced subgraph of KG(n, k) with at least 2k2(k−1)

n

(
n
k

)
vertices. According to Lemma C,

it is enough to show that φ(H) ≥ 2χ(H). To this end, note that

φ(H) ≥ |V (H)|
ᾱ(H)

≥ |V (H)|
ᾱ(KG(n, k))

≥
2k2(k−1)

n

(
n
k

)
k
(
n−2
k−2
)

≥ 2k2(k − 1)n(n− 1)

nk2(k − 1)
,

therefore φ(H) ≥ 2n− 2 > 2χ(KG(n, k)) ≥ 2χ(H) as desired.

In the rest of this section, we will return to the study of s-stable Kneser graphs from
Section 2, KGs(n, k), but this time we consider KGs(n, k) as an induced subgraph of
KG(n, k). We focus on the chromatic number and the circular chromatic number of the s-
stable Kneser graph KGs(n, k). As a special case of the previous theorem, we introduce a
threshold n(k, s) such that for any n ≥ n(k, s), we have χ(KGs(n, k)) = χc(KGs(n, k)).
In this regard, we first need to count the number of vertices of KGs(n, k).

LetNi be the number of vertices of KGs(n, k) containing i. It is obvious thatNi = Nj
for all i, j ∈ [n]. Also, let A = {x1, . . . , xk} be a vertex of KGs(n, k), where 1 = x1 <
x2 < · · · < xk ≤ n. Define yi = xi+1 − xi for all 1 ≤ i ≤ k − 1 and yk = n − xk + 1.
Since A ∈ V (KGs(n, k)) and 1 ∈ A, we have yi ≥ s for all i ∈ [k]. Also, since
y1 + y2 + · · · + yk = n, any vertex A of KGs(n, k) with 1 ∈ A leads us to a solution of
the following system:

Z1 + Z2 + · · ·+ Zk = n
Zi ≥ s for each i ∈ [n]
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and vise versa. Note that the number of solutions of the preceding system is
(
n−k(s−1)−1

k−1
)
.

Consequently, for each i ∈ [n], we have Ni = N1 =
(
n−k(s−1)−1

k−1
)

for all i ∈ [n]. By an
easy double counting, one can see that

|V (KGs(n, k))| = 1

k

n∑
i=1

Ni =
n

k

(
n− k(s− 1)− 1

k − 1

)
.

Theorem 3.3. If n ≥ 2k2(k−1)+(s−1)k(k−1)+1, then χc(KGs(n, k)) = χ(KGs(n, k)).

Proof. LetX be the number of (k−1)-subsetsB of the set [n−1] such thatB∩[(s−1)k] 6=
∅, i.e.,

X = # {B : B ⊆ [n− 1] and B ∩ [(s− 1)k] 6= ∅} .

Obviously, we have
(
n−1
k−1
)

=
(
n−(s−1)k−1

k−1
)

+ X . On the other hand, one can check that
X ≤ (s− 1)k

(
n−2
k−2
)
, which implies the following inequalities:

|V (KGs(n, k))| =
n

k

(
n− k(s− 1)− 1

k − 1

)
≥ n

k

(
n− 1

k − 1
− (s− 1)k

)(
n− 2

k − 2

)
≥ n

k(k − 1)
(n− 1− (s− 1)k(k − 1))

(
n− 2

k − 2

)
.

Clearly, the previous inequalities lead us to the following:

φ(KGs(n, k)) ≥ |V (KGs(n, k))|
ᾱ(KGs(n, k))

≥
n

k(k−1) (n− 1− (s− 1)k(k − 1))
(
n−2
k−2
)

k
(
n−2
k−2
)

≥ n

k2(k − 1)
(n− 1− (s− 1)k(k − 1)) .

Consequently, we have φ(KGs(n, k)) ≥ 2n ≥ 2(n−s(k−1)) provided that n ≥ 2k2(k−
1) + (s− 1)k(k − 1) + 1. Considering Lemma C, the proof is completed.

Note that for s = 2, the previous theorem gives an upper bound for the smallest value
of the threshold n(k), giving a partial answer to the question posed by Lih and Liu [24].

References
[1] M. Alishahi and H. Hajiabolhassan, Circular coloring and Mycielski construction, Discrete

Math. 310 (2010), 1544–1550, doi:10.1016/j.disc.2010.01.019.

[2] M. Alishahi and H. Hajiabolhassan, Hedetniemi’s conjecture via altermatic number, 2014,
arXiv:1403.4404 [math.CO].

[3] M. Alishahi and H. Hajiabolhassan, On chromatic number and minimum cut, 2014,
arXiv:1407.8035 [math.CO].

[4] M. Alishahi and H. Hajiabolhassan, On the chromatic number of general Kneser hypergraphs,
J. Comb. Theory Ser. B 115 (2015), 186–209, doi:10.1016/j.jctb.2015.05.010.



M. Alishahi and A. Taherkhani: Circular chromatic number of induced subgraphs of Kneser . . . 171

[5] M. Alishahi and H. Hajiabolhassan, On the chromatic number of matching graphs, 2015,
arXiv:1507.08456 [math.CO].

[6] M. Alishahi and H. Hajiabolhassan, Chromatic number via Turán number, Discrete Math. 340
(2017), 2366–2377, doi:10.1016/j.disc.2017.05.010.

[7] M. Alishahi and H. Hajiabolhassan, A generalization of Gale’s lemma, J. Graph Theory 88
(2017), 337–346, doi:10.1002/jgt.22215.

[8] M. Alishahi, H. Hajiabolhassan and F. Meunier, Strengthening topological colorful results for
graphs, European J. Combin. 64 (2017), 27–44, doi:10.1016/j.ejc.2017.03.011.

[9] I. Bárány, A short proof of Kneser’s conjecture, J. Comb. Theory Ser. A 25 (1978), 325–326,
doi:10.1016/0097-3165(78)90023-7.

[10] G. J. Chang, D. D.-F. Liu and X. Zhu, A short proof for Chen’s alternative Kneser coloring
lemma, J. Comb. Theory Ser. A 120 (2013), 159–163, doi:10.1016/j.jcta.2012.07.009.

[11] P.-A. Chen, A new coloring theorem of Kneser graphs, J. Comb. Theory Ser. A 118 (2011),
1062–1071, doi:10.1016/j.jcta.2010.08.008.

[12] P.-A. Chen, On the multichromatic number of s-stable Kneser graphs, J. Graph Theory 79
(2015), 233–248, doi:10.1002/jgt.21826.

[13] V. L. Dol’nikov, A certain combinatorial inequality, Sib. Math. J. 29 (1988), 375–379, doi:
10.1007/bf00969645.

[14] K. Fan, A generalization of Tucker’s combinatorial lemma with topological applications, Ann.
Math. 56 (1952), 431–437, doi:10.2307/1969651.

[15] D. Gale, Neighboring vertices on a convex polyhedron, in: H. W. Kuhn and A. W. Tucker
(eds.), Linear Inequalities and Related Systems, Princeton University Press, Princeton, New
Jersey, volume 38 of Annals of Mathematics Studies, pp. 255–263, 1956.

[16] C. Godsil and G. F. Royle, Algebraic Graph Theory, volume 207 of Graduate Texts in Mathe-
matics, Springer-Verlag, New York, 2001, doi:10.1007/978-1-4613-0163-9.

[17] H. Hajiabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Comb. Theory
Ser. B 88 (2003), 299–303, doi:10.1016/s0095-8956(03)00032-7.

[18] H. Hatami and R. Tusserkani, On the complexity of the circular chromatic number, J. Graph
Theory 47 (2004), 226–230, doi:10.1002/jgt.20022.
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Abstract

Every finite group G acts on some non-orientable unbordered surfaces. The minimal
topological genus of those surfaces is called the symmetric crosscap number of G. It is
known that 3 is not the symmetric crosscap number of any group but it remains unknown
whether there are other such values, called gaps.

In this paper we obtain the groups with symmetric crosscap number less than or equal
to 17. Also, we obtain six infinite families with symmetric crosscap number of the form
12k + 3.

Keywords: Symmetric crosscap number, Klein surfaces.

Math. Subj. Class.: 57M60, 20F05, 20H10, 30F50

1 Introduction
A Klein surface X is a compact surface endowed with a dianalytic structure [1]. Klein
surfaces may be seen as a generalization of Riemann surfaces including bordered and non-
orientable surfaces. An orientable unbordered Klein surface is a Riemann surface. Given
a Klein surface X of topological genus g with k boundary components the number p =
ηg + k − 1 is called the algebraic genus of X , where η = 2 if X is an orientable surface
and η = 1 otherwise.

In the study of Klein surfaces and their automorphism groups the non-euclidean crys-
tallographic (NEC) groups play an essential role. An NEC group Γ is a discrete subgroup
of G (the full group of isometries of the hyperbolic plane H) with compact quotient H/Γ.
For a Klein surface X with p ≥ 2 there exists an NEC group Γ, such that X = H/Γ, [27].
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A finite groupG of orderN is a subgroup of the automorphism group of a Klein surface
X = H/Γ if and only if there exists an NEC group Λ such that Γ is a normal subgroup of Λ
with index N and G = Λ/Γ. Every finite group G acts as a subgroup of the automorphism
group of some non-orientable surface without boundary, see [7]. The minimum topological
genus of these surfaces is called the symmetric crosscap number of G and it is denoted by
σ̃(G). Such a surface of topological genus g ≥ 3 has at most 84(g − 2) automorphisms.
Hence, for each g there is a finite number of groups acting on surfaces of genus g. The
systematic study of the symmetric crosscap number was begun by May in [23], although
previous results from other authors are also to be noted, see for instance [7, 14, 19].

Four types of inter-related problems arise naturally when dealing with the symmetric
crosscap number σ̃(G).

First of all, to obtain σ̃(G) for any given group G, and for the groups belonging to a
given infinite family.

Second, to obtain σ̃(G) for all groups G with o(G) < n for a given (small) value of n.
Third, for a given value of g, to obtain all groups G such that σ̃(G) = g. Evidently this

question is feasible only for low values of g.
Finally, to determine which values of g are in fact σ̃(G) = g for a group G. The

set of such values is called the symmetric crosscap spectrum and there exists a conjecture
according to which g = 3 is the unique positive integer not belonging to the spectrum.

In this paper we deal with the third question. We will study which groups have symmet-
ric crosscap number less than or equal to 17. First, we will indicate all the results we know
and then we will make a study of each group with symmetric crosscap number g ≤ 17 that
has not been studied in detail. Also, results on the spectrum are given. The contents of this
paper form part of the doctoral thesis of the author, [3].

2 Preliminaries
An NEC group Γ is a discrete subgroup of isometries of the hyperbolic planeH, including
orientation-reversing elements, with compact quotient X = H/Γ. Each NEC group Γ has
associated a signature [22]:

σ(Γ) = (g,±, [m1, . . . ,mr], {(ni,1, . . . , ni,si), i = 1, . . . , k}), (2.1)

where g, k, r,mi, ni,j are integers satisfying g, k, r ≥ 0,mi ≥ 2, ni,j ≥ 2. We will denote
by [−], (−) and {−} the cases when r = 0, si = 0 and k = 0, respectively.

The signature determines a presentation of Γ, see [30], by generators xi (i = 1, . . . , r);
ei (i = 1, . . . , k); ci,j (i = 1, . . . , k; j = 0, . . . , si); ai, bi (i = 1, . . . , g) if σ has sign ‘+’;
and di (i = 1, . . . , g) if σ has sign ‘−’. These generators satisfy the following relations:

xmi
i = 1; c2i,j−1 = c2i,j = (ci,j−1ci,j)

ni,j = 1; e−1
i ci,0eici,si = 1

and ∏r
i=1 xi

∏k
i=1 ei

∏g
i=1(aibia

−1
i b−1

i ) = 1 if σ has sign ‘+’∏r
i=1 xi

∏k
i=1 ei

∏g
i=1 d

2
i = 1 if σ has sign ‘−’

The isometries xi are elliptic, ei, ai, bi are hyperbolic, ci,j are reflections and di are
glide-reflections.
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Every NEC group Γ with signature (2.1) has associated a fundamental region whose
area µ(Γ), called area of the group, is:

µ(Γ) = 2π

(
ηg + k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

ni,j

))
, (2.2)

with η = 2 or 1 depending on the sign ‘+’ or ‘−’ in the signature. An NEC group with
signature (2.1) actually exists if and only if the right-hand side of (2.2) is greater than 0.
We denote by |Γ| the expression µ(Γ)/2π and call it the reduced area of Γ.

If Γ is a subgroup of an NEC group Λ of finite index N , then also Γ is an NEC group
and the Riemann-Hurwitz formula holds, |Γ| = N |Λ|.

Let X be a non-orientable Klein surface of topological genus g ≥ 3 without boundary.
Then by [28] there exists an NEC group Γ with signature:

σ(Γ) = (g,−, [−], {−}), (2.3)

such that X = H/Γ.
A group Γ with this signature is called a surface NEC group. If G acts as an automor-

phism group of X = H/Γ, then there exists another NEC group Λ such that G = Λ/Γ.
From the Riemann-Hurwitz relation we have g − 2 = o(G)|Λ|, where o(G) denotes the
order of G. Then

σ̃(G) ≤ g = 2 + o(G)|Λ|,
and so to obtain the symmetric crosscap number of G is equivalent to find a group Λ and
an epimorphism θ : Λ → G, such that Γ = ker θ is a surface NEC group (and so, without
elements with finite order) and G = θ(Λ+), where Λ+ is the subgroup consisting of the
orientation-preserving elements of Λ, see [28], and minimal |Λ|.

The groups having symmetric crosscap numbers 1 and 2 have been classified by
T. W. Tucker, [29]. The groups of symmetric crosscap number 1 are Cn, Dn, A4, S4

and A5. We have two families of groups of symmetric crosscap number 2, C2×Cn, n > 2
even, and C2 ×Dn, n even. It is known that there exists no group of symmetric crosscap
number 3, [23]. The groups with symmetric crosscap number 4 and 5 were obtained in [8].

M. D. E. Conder at a conference in Castro-Urdiales in 2010 announced that using com-
puting software, he had obtained the groups of symmetric crosscap number up to 65, in
terms of their “SmallGroupLibrary” description. The result of this research is available in
his webpage, [9]. The list contains the GAP reference of each group, its symmetric crosscap
number and the corresponding NEC group Λ. However, this list gives information neither
on the algebraic structure of the groups nor on the epimorphism θ which determines the
action of the NEC group Λ over the group G. Throughout the paper, we use extensively
this fundamental work by Conder, in order to study which are the concerned groups.

For each group G we have described its algebraic structure, its presentation and the
corresponding epimorphism, but here we will only show the algebraic structure and its
presentation. In the most complicated cases, we will show also the epimorphism. In the
presentations we skip the abelian relations. The full details are to be found in [2] and [3].
For groups of order 32 and 64 we use the notation given by Hall and Senior in [20]. The
algebraic identification allows us to know the subgroups structure of the involved groups,
and this is essential to determine all the groups that act on a surface of a given genus. Along
the article Cn, Dn, DCn and QAn denote, respectively, the cyclic, dihedral, dicyclic and
quasiabelian groups, for more details see [12, 13].
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3 Groups of symmetric crosscap number 6 to 9

In symmetric crosscap number 6 some groups stand out:

1. The group [80, 46]: Coxeter described this group of order 80 in [12], where he named
it as (2, 5, 5; 2) with presentation and algebraic structure as shown in the table.

2. The group [160, 234]: This group contains the previous one of order 80. In [12] it is
denoted as (4, 5 | 2, 4).

Table 1: Groups of symmetric crosscap number 6.

GAP G Relations [+ Generators] Reference

[8, 4] DC2 ' Q a4, a2b2, b−1aba [23]
[16, 3] (4, 4 | 2, 2) a4, b4, (ab)2, (a−1b)2 [15]
[16, 6] QA4 a8, b2, baba3 [15]
[16, 8] L4 a8, b2, baba5 [15]
[16, 13] 〈2, 2, 2〉2 a2, b2, c2, abcacb, abcbac, bcabac [15]
[16, 14] C2 ×C2 ×C2 ×C2 a2, b2, c2, d2 [19]
[32, 27] Γ4a1 a2, b2, c2, d2, e2, cecae, dedbe

[32, 43] Γ6a1 a8, b2, c2, (ab)2, aca3c

[80, 46] (2, 5, 5; 2) a2, b5, (ab)5, (a−1b−1ab)2

[120, 35] C2 ×A5 a2, [+ (1 2 3 4 5), (1 2 3)]
[160, 234] (4, 5 | 2, 4) a4, b5, (ab)2, (a−1b)4

Attending to symmetric crosscap number 7, we must analyze the group [72,15], which
contains the group of order 36 that appears in the table below (see [26]) and so that the
algebraic structure is ((C2 × C2) o C9) o C2. In this case, we are going to give the
epimorphism. This group has a presentation given by generators a, b, c and relations a4 =
b9 = c2 = (ac)2 = (cb)2 = (ab)2 = cb−1ab−1a−2 = 1. An associated NEC group is Λ
with signature (0; +; [−]; {(2, 4, 9)}) and reduced area 5

72 and an epimorphism θ : Λ→ G
is

θ(c1,0) = cb, θ(c1,1) = ac, θ(c1,2) = c, θ(c1,3) = cb.

The image of c1,1c1,2 is the generator a, the image of c1,2c1,3 is the generator b, and
finally, c is the image of the element (c1,1c1,2)2c1,2c1,3(c1,1c1,2)3c1,2c1,3. So we have the
generators as images of orientation-preserving elements, and so that the group acts on a
non-orientable surface.

For symmetric crosscap number 8 we just have to emphasize the group of order 504,
that is PSL(2, 8), whose symmetric crosscap number was firstly studied in detail by Wendy
Hall in [21].

To end this section, we comment some groups with symmetric crosscap number 9,
where we find:

1. The group [42, 1], which we call 〈7, 6, 5〉, according to the Coxeter-Moser notation
in [13]. It contains G21, which is also a group of this symmetric crosscap number,
and so that its algebraic structure is G21 o C2. Its presentation can be expressed in
terms of permutations taking a = (1 2 3 4 5 6 7) and b = (1 5 4 6 2 3).
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Table 2: Groups of symmetric crosscap number 7.

GAP G Relations [+ Generators] Reference

[12, 1] DC3 a6, a3b2, b−1aba [23]
[24, 8] (4, 6 | 2, 2) a4, b6, (ab)2, (a−1b)2 [15]
[36, 3] (C2 × C2) o C9 a2, b2, c9, [a, b], c−1acb, c−1bcba

[72, 15] ((C2 × C2) o C9) o C2 a4, b9, c2, (ac)2, (cb)2, (ab)2,
cb−1ab−1a−2

Table 3: Groups of symmetric crosscap number 8.

GAP G Relations [+ Generators] Reference

[24, 5] C4 ×D3 a4, b2, c2, (bc)3 [16]
[24, 10] C3 ×D4 a3, b2, c2, (bc)4 [16]
[48, 38] D3 ×D4 a2, b2, c2, d2, (ab)3, (cd)4 [17]
[56, 11] (C2×C2×C2)oC7 a7, b2, c2, d2, badca−1, caba−1,

daca−1

[504, 156] PSL(2, 8) a2, b3, (ab)7, ([a, b]4b)2 [21]

2. The group [168, 42] is PSL(2, 7). In this case, the presentation given in the table can
be expressed by permutations b = (2 3 4)(5 7 6) and a = (1 2 3)(4 5 6) and relations
a3 = b3 = (ab)4 = (a−1b)4 = 1, see [12]. Two more presentations for this group
are useful:

(a) R4, S4, (RS)2, (R−1S)3

(b) R2, S3, (RS)7, (R−1S−1RS)4

Studying this group, there are actions given by NEC groups with two different sig-
natures:

(i) For an NEC group Λ with signature (0; +; [−]; {(3, 3, 4)}) and reduced area 1
24 ,

we take the presentation given by permutations. So an associated epimorphism
θ : Λ→ G is:

θ(c1,0) = (baba2)2, θ(c1,1) = (a2b)2, θ(c1,2) = (ba2)2, θ(c1,3) = (baba2)2

Consider the image of c1,0c1,1 and the image of c1,1c1,2. Then the image of the
element (c1,0c1,1)2c1,1c1,2c1,0c1,1(c1,1c1,2)2 is (1 5 4 3 6 2 7), a permutation
of order 7. This element, together with the elements of order 3 and order 4,
θ(c1,0c1,1) and θ(c1,2c1,3), generate a group of order 84 at least, but PSL(2, 7)
is simple, so it is the full group. So the group G is generated by images of
orientation-preserving elements and the group acts on a non-orientable surface.

(ii) For an NEC group Λ with signature (0; +; [3]; {(4)}) and reduced area 1
24 , we

use the presentation (b). An associated epimorphism θ : Λ→ G is:

θ(x1) = S, θ(e1) = S2, θ(c1,0) = R, θ(c1,1) = SRS−1
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It is clear that θ is an epimorphism. The element c1,0x1 is orientation-reversing,
its seventh power is also orientation-reversing and the image of (c1,0x1)7 is the
identity element, so the group acts on a non-orientable surface.

3. The group [336, 208] has order 336 = 168 · 2. Then we can guess its algebraic
structure is PSL(2, 7) oC2. We can find a presentation of this group in [10], and an
epimorphism θ does exist. Hence this is the group we are looking for.

Table 4: Groups of symmetric crosscap number 9.

GAP G Relations [+ Generators] Reference

[21, 1] G21 a7, b3, aba3b−1 [15]
[30, 1] C5 ×D3 a5, b2, c2, (bc)3 [16]
[30, 2] C3 ×D5 a3, b2, c2, (bc)5 [16]
[42, 1] 〈7, 6, 5〉 a7, b6, b−1aba2

[60, 8] D3 ×D5 a2, b2, c2, d2, (ab)3, (cd)5 [17]
[168, 42] PSL(2, 7) a3, b3, (ab)4, (a−1b)4

[336, 208] PSL(2, 7) o C2 a3, b8, c2, (ac)2, (cb)2, (ab)2,
cb−1(ab−2)3a−1

4 Groups of symmetric crosscap number 10 to 17

Firstly, we analyze the groups with symmetric crosscap number 10, where we can find 30
different groups, most of them of order 32, 48 and 64. We just emphasize:

1. For the group [48, 29] we use two presentations, the one given in the table (generators
a, b, c and relations a2, b3, c3, (bc)4, (ab)2, (ac)2, [b, c](bc)2) and another one given
by generators R,S and relations R8, S3, (RS)2, R4SR4S−1. For this case, three
signatures of NEC groups are given:

(i) For an NEC group Λ with signature (0; +; [−]; {(2, 2, 3, 3)}) and reduced area
1
6 we take the presentation given in the table and an epimorphism θ : Λ → G
given by

θ(c1,0) = ac, θ(c1,1) = (bc)2, θ(c1,2) = ba, θ(c1,3) = a, θ(c1,4) = ac

The group acts on a non-orientable surface, because the image of the element
c1,2c1,3 is the generator b, the image of the element c1,3c1,4 is the generator
c and the image of the element c1,3c1,1(c1,2c1,4)2 is the generator a, so these
three images generate the group, and they are images of orientation-preserving
elements.

(ii) For an NEC group Λ with signature (0; +; [3]; {(2, 2)}) and reduced area 1
6 we

take the second presentation and so an associated epimorphism is θ : Λ → G
given by

θ(x1) = S, θ(e1) = S−1, θ(c1,0) = RS, θ(c1,1) = R4, θ(c1,2) = SR
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The images of the elements (c1,1c1,0e1)5 and x1 are the generators R and S
respectively and both are orientation-preserving elements, so it is a group acting
on a non-orientable surface.

θ(x1) = RS, θ(x2) = S, θ(e1) = SR−1, θ(c1,0) = R4

The quotient gives a non-orientable surface because the images of the elements
x1x

2
2 and x2 are the generators R and S respectively and both elements are

orientation-preserving.

2. The group [96, 70] can be expressed in terms of permutations, by means of the gen-
erators a = (1 2)(3 4)(5 8)(6 7) and b = (1 5)(2 8 3 6 4 7).

3. We can find the group [96, 193] in [24], called G∗
48, but in the presentation given

there, one relation is missing. We have added it, as can be seen in Table 5.

In symmetric crosscap number 11 we have to stand out two things: One is that the pre-
sentation of group [108, 15] can be expressed in terms of permutations of S18 as
a = (4 7)(5 8)(6 9)(13 16)(14 17)(15 18) and b = (1 17 5 14 2 18 6 15 3 16 4 13)
(7 12 9 11 8 10); and the other is that the group [108, 17] is G3,6,6 in the notation of [12].

For symmetric crosscap number 12 and 13, we have nothing to remark.
In symmetric crosscap number 14 we find several groups of order 48, and the following

groups stand out:

1. The presentation of the group [72, 43] has been deduced from its algebraic structure
(C3 × A4) o C2. We have taken d as the generator of C2 and we have determined
how d acts on the other generators.

2. The same argument has been applied to the group [96, 89], where its algebraic struc-
ture (D2 × D6) o C2 determine its presentation. In this case, e is the generator to
add. The presentation is given by generators a, b, c, d, e and relations a2, b2, c2, d2,
e2, (ab)2, (cd)6, eabea, ecdec. Let Λ be an associated NEC group with signature
(0; +; [−]; {(2, 2, 2, 4)}) and reduced area 1

8 , so an epimorphism is θ : Λ→ G given
by

θ(c1,0) = e, θ(c1,1) = b, θ(c1,2) = a, θ(c1,3) = c, θ(c1,4) = e

The elements c1,0, c1,2, c1,3, c1,1 and (c1,4c1,3)2 have as images the generators
e, a, c, b, d respectively and generate the group. On the other hand the element
(c1,0c1,2)2c1,1 has as image the identity element and it is orientation-reversing. Thus,
the group acts on a non-orientable surface.

3. The same happens for [96, 115] and its algebraic structure is (C2×D12)oC2, where
d is the generator of C2 and so that we have to determine its relations with the other
generators.

In symmetric crosscap number 15, we just note that the group [1092, 25] was obtained
in [21] by Wendy Hall, who proved that PSL(2, 13) is a group of 84(g−2) automorphisms
of a surface of genus g, and so g = 15.

Nothing stands out in symmetric crosscap number 16. But in symmetric crosscap num-
ber 17 we have again the same situation that in symmetric crosscap number 14. For the
group [72, 23] we have deduced the presentation from its algebraic structure (C6×D3)oC2,
taking d as the generator of C2 and obtaining its action on the other generators.



180 Ars Math. Contemp. 15 (2018) 173–190

Table 5: Groups of symmetric crosscap number 10.

GAP G Relations [+ Generators] Ref.

[16, 2] C4 × C4 a4, b4 [19]
[16, 4] C4 o C4 a4, b4, b−1aba [15]
[16, 9] DC4 a8, a4b2, b−1aba [23]
[16, 10] C4 × C2 × C2 a4, b2, c2 [19]
[24, 3] 〈2, 3, 3〉 a3, abab−1a−1b−1 [15]
[32, 5] Γ2j1 a2, b8, c2, bcb−1ac

[32, 6] Γ7a1 a2, b2, c2, d4, bdbad−1, cdcbad−1

[32, 7] Γ7a2 a8, b2, c2, aba3b, aca−1bc

[32, 9] Γ3a1 a2, b8, c2, bcbac

[32, 11] Γ3e a4, b4, c2, bcba−1c

[32, 17] Γ2k a16, b2, aba7b

[32, 19] Γ8a2 a16, b2, aba9b

[32, 28] Γ4b1 a2, b2, c4, d2, bdbad, (cd)2

[32, 34] Γ4a2 a4, b4, c2, (ac)2, (bc)2

[32, 42] Γ3b a8, b2, c2, (ac)2, bcba4c

[32, 46] C2 × C2 ×D4 ' Γ2a1 a2, b2, c2, d2, (ab)2, (cd)4 [17]
[32, 49] Γ5a1 a4, b2a2, c2a2, d2a2, abab−1, cdcd−1

[48, 29] GL(2, 3) a2, b3, c3, (bc)4, (ab)2, (ac)2, [b, c](bc)2

[48, 31] C4 ×A4 a4, [+ (1 4)(3 2), (1 2 3)] [18]
[48, 33] SL(2, 3) o C2 a2, b3, c3, (bc)4, abac, [b, c]2(bc)2

[48, 50] (C2×C2×C2×C2)oC3 a2, b3, c3, (cb)2, (ab−1)3,
c−1b−1abca, cbab−1c−1a

[64, 128] Γ15a1 a2, b2, c2, e2, f2, d2f, [a, b]fd−1,
[a, c]e, [a, d]f, [b, d]f

[64, 134] Γ26a1 a2, b2, c2, e2, f2, d2f, [a, b]fd−1,
[a, c]e, [a, d]f, [b, d]f, [b, e]f, [c, d]f

[64, 138] Γ25a1 a2, b2, c2, d2, e2, f2, [a, b]d, [a, c]e,
[b, e]f, [c, d]f

[64, 190] Γ19a1 a2, b2, c2, f2, d2fe−1, e2f,
[a, b]e−1d−1, [a, c]f, [a, d]fe−1,

[a, e]f, [b, d]fe−1, [b, e]f

[96, 70] ((C2 × C2 × C2 × C2) a2, b6, (bab−1a)2, (b−2a)3

o C3) o C2

[96, 187] (C2 × S4) o C2 a4, b12, c2, (ab)2, (cb)2, (ac)2,
cb−1ab−1a−2

[96, 193] GL(2, 3) o C2 a2, b8, c3, (bc)2, (ac)2, (ab)2, b4cb4c−1

[96, 227] ((C2 × C2 × C2 × C2) a2, b3, c2, d2, e2, f2, (ba)2, cada,
o C3) o C2 cbdb−1, daca, dbdcb−1, eafa,

ebfeb−1, faea, fbeb−1

[192, 955] (((C2 × C2 × C2 × C2) a4, b6, c2, (ab)2, (cb)2, (ac)2, (ab−1)4,

o C3) o C2) o C2 cb−1ab2a−1b3a−1
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Table 6: Groups of symmetric crosscap number 11.

GAP G Relations [+ Generators] Ref.

[18, 5] C6 × C3 a6, b3 [19]
[27, 3] (3, 3 | 3, 3) a3, b3, (ba)3, (b−1a)3 [15]
[36, 13] C2 × ((C3 × C3) o C2) a2, b3, c3, d2, (ba)2, (ca)2

[54, 5] (2, 3, 6; 3) a3, b6, (ab)2, (ba−1b)3

[54, 8] ((C3 × C3) o C3) o C2 a2, b3, c2, (b−1a)2, (ca)3,
(b−1c)2(bc)2, (ab−1c)2bac

[108, 15] ((C3 × C3) o C3) o C4 a2, (b−2a)3, b−1ab4ab−3,
b−1abab−2abab−1a

[108, 17] G3,6,6 a2, b2, c2, (ab)2, (ac)3, (bc)6, (abc)6

[216, 87] (((C3 × C3) o C3) a4, b6, c2, (ab)2, (cb)2, (ac)2,

o C4) o C2 c(b−1a)3a

Table 7: Groups of symmetric crosscap number 12.

GAP G Relations [+ Generators] Reference

[20, 1] DC5 a10, a5b2, b−1aba [23]
[40, 5] C4 ×D5 a4, b2, c2, (bc)5 [16]
[40, 8] (C10 × C2) o C2 a10, b2, (aba)2, (a−1b)2(ab)2

[40, 10] C5 ×D4 a5, b2, c2, (bc)4 [16]
[40, 12] C2 × 〈5, 4, 2〉 a5, b4, bab−1a3

[80, 39] D5 ×D4 a2, b2, c2, d2, (ab)5, (cd)4 [17]
[240, 189] C2 × S5 a2, [+ (1 2 3 4 5), (1 2)]

Table 8: Groups of symmetric crosscap number 13.

GAP G Relations [+ Generators] Reference

[42, 3] C7 × S3 a7, [+ (1 2 3), (1 2)] [16]
[42, 4] C3 ×D7 a3, b2, c2, (bc)7 [16]
[52, 3] C13 o C4 a4, b13, baba−1

[60, 9] C5 ×A4 a5, [+ (1 2 3), (1 4)(2 3)] [18]
[84, 8] D3 ×D7 a2, b2, c2, d2, (ab)3, (cd)7 [17]
[120, 38] (C5×A4)oC2 a4, b15, c2, (ab)2, (cb)2, (ac)2,

cb−1ab−1a2
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Table 9: Groups of symmetric crosscap number 14.

GAP G Relations [+ Generators] Ref.

[16, 12] C2 ×Q a4, a2b2, c2, b−1aba [23]
[24, 4] C2 ×DC3 a3, b4, c2, bab−1a [18]
[24, 7] DC6 a12, a6b2, b−1aba [23]
[24, 15] C6 × C2 × C2 a6, b2, c2 [19]
[32, 48] Γ2b a4, b2, c2, d2, bcba2c

[36, 11] C3 ×A4 a3, [+ (1 2)(3 4), (1 2 3)] [18]
[36, 12] C6 ×D3 a6, b2, c2, (bc)3 [16]
[48, 6] C24 o C2 a24, b2, baba13

[48, 14] (C12 × C2) o C2 a3, b4, c4, (bc)2, (b−1c)2, c−1aca

[48, 21] C3 × (4, 4 | 2, 2) a3, b4, c4, (bc)2, (b−1c)2

[48, 24] C3 ×QA4 a8, b2, c3, baba3

[48, 37] (C12 × C2) o C2 a3, b2, c2, d2, dcbcdb, dcbdbc, bdcdbc,
(ba)2, (da)2

[48, 43] C2 × ((C6 ×C2)oC2) a4, b6, c2, (ab)2, (a−1b)2

[48, 49] C2 × C2 ×A4 a2, b2, [+ (1 2)(3 4), (1 2 3)]
[48, 51] D2 ×D6 a2, b2, c2, d2, (ab)2, (cd)6 [17]
[72, 42] C3 × S4 a3, [+ (1 2), (1 2 3 4)]
[72, 43] (C3 ×A4) o C2 a3, b2, c3, d2, (da)2, (dc)2,

[+ b = (1 2)(3 4), c = (1 2 3)]
[72, 44] A4 × S3 [+ (1 2)(3 4), (1 2 3), (5 6 7), (5 6)]
[72, 46] D3 ×D6 a2, b2, c2, d2, (ab)3, (cd)6 [17]
[96, 89] (D2 ×D6) o C2 a2, b2, c2, d2, e2, (ab)2, (cd)6, eabea,

ecdec

[96, 115] (C2 ×D12) o C2 a2, b2, c2, d2, (bc)12, dcbdc

[96, 226] C2 × C2 × S4 a2, b2, [+ (1 2 3 4), (1 2)]
[144, 183] S3 × S4 [+ (1 2 3), (1 2), (4 5 6 7), (4 5)]
[180, 19] A5 × C3 a3, [+ (1 3 2 4 5), (2 4 3), (2 4)(1 3)]
[360, 121] A5 ×D3 a3, b10, c2, (ab)2, (cb)2, (ac)2,

b−2ab3a−1b−4a−1c

Table 10: Groups of symmetric crosscap number 15.

GAP G Relations [+ Generators] Ref.

[24, 1] 〈−2, 2, 3〉 a8, b8, (a3b)3, a2b6, a2(b−1a−1)3, b2(b−1a−1)3 [15]
[39, 1] C13 o C3 a3, b13, bab10a−1

[48, 15] (C3 ×D4) o C2 a2, b8, c3, (ab)2, (ac)2, b−1cbc

[78, 1] (C13 o C3) o C2 a2, b3, c13, (ca)2, cbc10b−1

[1092, 25] PSL(2, 13) a3, b7, c2, (ab)2, (cb)2, (ac)2, b−1(ab−2)6a−1c [21]
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Table 11: Groups of symmetric crosscap number 16.

GAP G Relations [+ Generators] Reference

[28, 1] DC7 a14, a7b2, b−1aba [23]
[56, 4] C4 ×D7 a4, b2, c2, (bc)7 [16]
[56, 7] (C14 × C2) o C2 a2, b14, (bab)2, (b−1a)2(ba)2

[56, 9] C7 ×D4 a7, b2, c2, (bc)4 [16]
[72, 16] C2×((C2×C2)oC9) a9, b2, c2, d2, bacba−1, caba−1

[112, 31] D7 ×D4 a2, b2, c2, d2, (ab)7, (cd)4 [17]
[144, 109] (C2 × ((C2 × C2) a4, b18, c2, (ab)2, (cb)2, (ac)2,

o C9)) o C2 cb−1ab−1a−2

Table 12: Groups of symmetric crosscap number 17.

GAP G Relations [+ Generators] Ref.

[25, 2] C5 × C5 a5, b5 [14]
[27, 2] C9 × C3 a9, b3 [14]
[27, 4] C9 o C3 a3, b9, bab5a−1 [15]
[36, 6] C3 ×DC3 a12, b3, baba−1 [18]
[50, 3] C5 ×D5 a5, b2, c2, (bc)5 [16]
[50, 4] (C5 × C5) o C2 a2, b5, c5, (ba)2, (ca)2

[54, 3] C3 ×D9 a3, b2, c2, (bc)9 [16]
[54, 4] C9 ×D3 a9, b2, c2, (bc)3 [16]
[54, 6] (C9 o C3) o C2 a2, b9, c3, (ba)2, cb7c−1b−1

[54, 7] (C9 × C3) o C2 a2, b3, c9, (ba)2, (ca)2

[68, 3] C17 o C4 a4, b17, bab4a−1

[72, 23] (C6 ×D3) o C2 a6, b2, c2, d2, (bc)3, bdcbd, dada3

[72, 39] (C3 × C3) o C8 a8, b3, c3, baca−1, cab−1a−1

[100, 12] (C5 × C5) o C4 a4, b5, c5, bab3a−1, cac3a−1

[100, 13] D5 ×D5 a2, b2, c2, d2, (ab)5, (cd)5 [17]
[108, 16] D3 ×D9 a2, b2, c2, d2, (ab)3, (cd)9 [17]
[200, 43] (D5 ×D5) oC2 a4, b10, c2, (ab)2, (cb)2, (ac)2, [ab, ba],

cb−1(ab−3)2a−2

[360, 118] A6 [+ (1 4 2 3 5), (3 5 4), (1 2 4 3)(5 6)]
[720, 764] A6 o C2 a3, b8, c2, (ab)2, (cb)2, (ac)2,

cb−1ab3ab−2a−1ba−1b−3a−1
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5 Groups with symmetric crosscap number 12k + 3

Firstly, the strong symmetric genus is the minimum genus of any Riemann surface on which
G acts, preserving orientation. For this parameter, there is a group of every strong sym-
metric genus, [25]. The symmetric genus is the smallest non-negative integer g such that
the group G acts faithfully on a closed orientable surface of genus g (not necessarily pre-
serving orientation). For this parameter, the spectrum includes every non-negative integer
g 6≡ 8 or 14 (mod 18), and moreover, if a gap occurs at some g ≡ 8 or 14 (mod 18), then
the prime-power factorization of g − 1 includes some factor pe ≡ 5 (mod 6), [11].

In the study of the spectrum of the symmetric crosscap number, the groups with sym-
metric crosscap number of the form 12k + 3 are very interesting. It is known that for all
n 6= 12k + 3, there is a finite group with symmetric crosscap number n, see [6]. Con-
versely, for some values n = 12k + 3, it is not known whether there exists a group with
symmetric crosscap number n. So that, we can enunciate some theorems whereby we find
infinite families of groups whose symmetric crosscap number is of the type 12k + 3.

The symmetric crosscap numbers obtained in Theorems 5.1 to 5.5, although of 12k+ 3
form, were already obtained for other groups, as we can see in the proofs. In the case of
Theorem 5.6, also these numbers n were already covered, since the group C7(12k+7) oC3,
in the terms of the statement, has symmetric crosscap number 84k + 51, see [6]. But they
are important because they give more examples of groups of this type of n, helping us to
see how these groups act.

Theorem 5.1. Let n = 12k + 3 be such that n − 2 has all its prime factors congruent to
1 (mod 3). Then

C12k+1 o C3 and (C12k+1 o C3) o C2

have symmetric crosscap number n.

Proof. Firstly we have that C12k+1 o C3 has a presentation given by generators a, b such
that a3 = b12k+1 = (ab)3 = 1. Now let Λ be an NEC group with signature (1;−; [3, 3];
{−}), whose reduced area is 1

3 . We can define an epimorphism θ : Λ→ G given by

θ(x1) = a−1, θ(x2) = ab, θ(d1) = b6k

We have that the images of x1 and x1x2 are the generators a−1 and b respectively, and
both are preserving-orientation elements, then we have that it is a group that acts on a non-
orientable surface. Besides, the NEC group area is minimal ([6]), and so the symmetric
crosscap number of C12k+1 o C3 is n.

Now we have (C12k+1 o C3) o C2 that has a presentation given by generators a, b, c
and relations a3 = b12k+1 = c2 = (ab)3 = 1, ca = ac and bc = cb−1. Now let Λ be an
NEC group with signature (0; +; [2, 3]; {(−)}), whose reduced area is 1

6 . Therefore, if we
define an epimorphism from this NEC group, (C12k+1 o C3) o C2 will have symmetric
crosscap number less or equal to n. We can define an epimorphism θ : Λ→ G given by

θ(x1) = cb, θ(x2) = b−1a−1, θ(e1) = ac, θ(c1,0) = c

We have that the element c1,0, the element e1c1,0 and the element c1,0x1 have as images
the generators c, a and b respectively. Besides the element (e1c1,0)3 has as image the
identity element and it is orientation-reversing, so we have just proved that the group acts on
a non-orientable surface. Because of this epimorphism we can say that (C12k+1oC3)oC2



A. Bacelo: Groups of symmetric crosscap number less than or equal to 17 185

has symmetric crosscap number at most n. But since it contains C12k+1 o C3, that has
symmetric crosscap number n, σ̃((C12k+1 o C3) o C2) = n.

Theorem 5.2. Let n = 12k + 3 be such that n− 2 = m2 is a square. Then:

(i) (3, 3 | 3,m) has symmetric crosscap number n.

(ii) There are two groups with algebraic structure (3, 3 | 3,m)oC2, namely (2, 3, 2m; 3)
and (2, 3, 6;m), that have symmetric crosscap number n.

Proof. Firstly we have that the group (3, 3 | 3,m) of order 3m2 has a presentation given
by generators a, b and relations a3 = b3 = (ab)3 = (a−1b)m = 1. From [15], we know
that this group has symmetric crosscap number m2 + 2.

Now we have two groups with algebraic structure (3, 3 | 3,m) o C2:

(i) The first one, that is the group (2, 3, 2m; 3) in the notation of [12], of order 6m2,
has a presentation given by generators a, b, c and relations a3 = b3 = c2 = (ab)3 =
(a−1b)m = 1, ca = a2c and cb = b2c. Take an NEC group Λ with signature
(0; +; [2]; {(3, 3)}), that has reduced area 1

6 . We define an epimorphism θ : Λ → G
given by

θ(x1) = c, θ(e1) = c, θ(c1,0) = ac, θ(c1,1) = cb, θ(c1,2) = a−1c

We have that θ(x1) = c, θ(c1,0x1) = a and θ(x1c1,1) = b, and the element (e1c1,0)3

has as image the identity element and it is orientation-reversing. Thereby we have
proved that the group acts on a non-orientable surface. Thereupon we have that this
group has symmetric crosscap number at mostm2 +2, but as it contains (3, 3 | 3,m)
that has that symmetric crosscap number n, then we have proved that σ̃((2, 3, 2m;
3)) = n.

(ii) The second one, that is the group (2, 3, 6;m) in the notation of [12], also with order
6m2, has a presentation given by generators a, b, c and relations a3 = b3 = c2 =
(ab)3 = (a−1b)m = 1, ac = ca and bc = cb−1. For an NEC group Λ with signature
(0; +; [2, 3]; {(−)}) and reduced area 1

6 , we define an epimorphism θ : Λ→ G given
by

θ(x1) = cb, θ(x2) = b−1a−1, θ(e1) = ac, θ(c1,0) = c

We have that the element c1,0, the element e1c1,0 and the element c1,0x1 have as
images the generators c, a and b respectively. Besides, the element (e1c1,0)3 has as
image the identity element and it is orientation-reversing, so that we have proved that
the group acts on a non-orientable surface. So this group has symmetric crosscap
number at most m2 + 2, but as it contains (3, 3 | 3,m), that has that symmetric
crosscap number, we have proved that σ̃((2, 3, 6;m)) = n.

Theorem 5.3. Let n = 12k + 3 be such that n − 2 = m2 is a square. The symmetric
crosscap number of the group G3,6,2m ≈ ((3, 3 | 3,m) o C2) o C2 is n.

Proof. The group G3,6,2m of order 12m2 has a presentation given by generators a, b,X, c
and relations a3 = b3 = X2 = c2 = (ab)3 = (a−1b)m = 1, aX = Xa−1, bX =
Xb−1, ac = ca−1 and cb = bc. For an NEC group Λ with signature (0; +; [−];
{(2, 2, 2, 3)}) we define an epimorphism θ : Λ→ G, given by

θ(c1,0) = aX, θ(c1.1) = Xc, θ(c1,2) = c, θ(c1,3) = Xb, θ(c1,4) = aX
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We have that the element c1,2 has as image the generator c, the element c1,1c1,2 has
as image the generator X , the element c1,1c1,2c1,3 has as image the generator b, and the
element c1,4c1,1c1,2 has as image the generator a. Moreover, the element (c1,0c1,1c1,2)3

has as image the identity element and it is orientation-reversing, so that we have proved
that the group acts on a non-orientable surface. The reduced area of the associated NEC
group is 1

12 , then we have proved that this group has symmetric crosscap number at most
m2 + 2, but as it contains (2, 3, 2m; 3) (see [12]), that has the same symmetric crosscap
number, then our group has symmetric crosscap number n.

Theorem 5.4. Let n be such that n = 48k + 39. The symmetric crosscap number of
DC3 × C6k+5 and (DC3 × C6k+5) o C2 is n.

Proof. We have a presentation of the group (DC3 × C6k+5) o C2, given by generators
a, b,X, Y and relations a4 = b3 = X6k+5 = Y 2 = 1, ba = ab2, aY = Y a3, XY =
Y X−1, Y b = b2Y and the rest commute. Let Λ be an NEC group with signature (0; +; [−];

{(2, 2, 3, 4(6k+5))}), which has reduced area 8(6k+5)−3
24(6k+5) . So if we can define the adequate

epimorphism, we will have that this group has symmetric crosscap number at most 48k +
39, but as it contains DC3 × C6k+5 that has the same symmetric crosscap number (see
[18]), we will be done. Then we take an epimorphism θ : Λ→ G given by

θ(c1,0) = Y Xa, θ(c1,1) = a2, θ(c1,2) = a2Y, θ(c1,3) = Y ba2, θ(c1,4) = Y Xa

We have that the element c1,1c1,2 has as image the generator Y , the element c1,1c1,2c1,3c1,1
has as image the generator b. We differentiate between two cases according to the value
of k:

(a) If k is even, then we have that the element (c1,3c1,4)3(6k+5)+1 has as image the
generator X and the element c1,1c1,2c1,3c1,1c1,3c1,4(c1,3c1,4)(6k+5)−1 has as image
the generator a.

(b) If k is odd, then we have that the element (c1,3c1,4)(6k+5)+1 has as image the gener-
ator X and the element c1,1c1,2c1,3c1,1c1,3c1,4(c1,3c1,4)3(6k+5)−1 has as image the
generator a.

So in both cases, we have generated the group with images of elements that preserve
the orientation, and thus we have proved that it acts on a non-orientable surface.

Theorem 5.5. Let n = 24k + 15. The symmetric crosscap number of C3 o C12k+8 and
(C3 o C12k+8) o C2 is n.

Proof. We have a presentation of the group (C3oC12k+8)oC2, given by generators a, b, c
and relations a3 = b8+12k = c2 = 1, ab = ba−1, ca = a−1c, cb = b−1c. Let Λ be an NEC
group with signature (0; +; [−]; {(2, 2, 3, 12k+ 8)}), which has reduced area 13+24k

6(12k+8) . So
if we have an epimorphism, we will have that this group has symmetric crosscap number
at most 24k + 15, but as it contains C3 o C12k+8 that has the same symmetric crosscap
number (see [6]), we will be done. Then we take an epimorphism θ : Λ→ G given by

θ(c1,0) = cb, θ(c1,1) = b4+6k, θ(c1,2) = ac, θ(c1,3) = c, θ(c1,4) = cb

We have that the element c1,3c1,4 has as image the generator b, the element c1,2c1,3 has
as image the generator a and the element c1,0c1,1(c1,3c1,4)3+6k has as image the generator
c. So we have generated the group with images of elements that preserve the orientation,
and thus we have proved that it acts on a non-orientable surface.
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Theorem 5.6. Let n = 84k + 51 be such that 12k + 7 has all its prime factors congruent
to 1 (mod 3). Then the symmetric crosscap number of C4 × (C12k+7 o C3) is n.

Proof. Firstly we have to indicate, that within the conditions in the statement, there exist
groups with order 36k + 21 with algebraic structure C12k+7 o C3 and with a presentation
given by generators a, b and relations a3 = b12k+7 = (ab)3 = 1. We call c a generator
of C4.

Let Λ be an NEC group with signature (0; +; [3, 12]; {(−)}) and reduced area 7
12 , and

define an associated epimorphism θ : Λ→ G given by:

θ(x1) = ba, θ(x2) = a−1c, θ(e1) = c−1b−1, θ(c1,0) = c2

The element x92 has as image the generator c, the element x82 has as image the generator
a, and the element x1x42 has as image the generator b. So we have generated the group with
images of orientation-preserving elements and so that it acts on a non-orientable surface.
Therefore the symmetric crosscap number of the group will be at most n.

On the other hand, the group C12k+7oC3 can be generated by two elements of order 3
and this condition cannot be lowered. Similarly, an element of order 4 is needed to generate
the group C4. Hence the area of Λ is minimal, because one element of order a multiple of 4
and two elements of order a multiple of an odd number are necessary. Thus, the symmetric
crosscap number of our group is n.

So that, we need to study some low k to try to find some clues in order to get new
numbers in the spectrum. In the previous section we have studied symmetric crosscap
number 15, and in this section we study 12k + 3 for k = 2, 3, 4, 5. For each symmetric
crosscap number we give the complete list of all groups with that symmetric crosscap
number. For that, we have used the Conder’s list and the previous theorems to know the
algebraic structure and the presentation of some of the groups. It is important to note that
all groups G with σ̃(G) = 15, 27, 39, 51 are provided by the results in the current section.

Table 13: Groups of symmetric crosscap number 27.

GAP G Relations [+ Generators] Reference

[40, 3] C5 o C8 a8, b5, bab3a−1 [3]
[75, 2] (3, 3 | 3, 5) a3, b3, (ab)3, (a−1b)5 [15]
[150, 5] (2, 3, 10; 3) a3, b3, c2, (ab)3, (a−1b)5, (ca)2, (cb)2 Theorem 5.2
[150, 6] (2, 3, 6; 5) a3, b3, c2, (ab)3, (a−1b)5, (cb)2 Theorem 5.2
[300, 25] G3,6,10 a3, b3, c2, d2, (ab)3, (a−1b)5, (ca)2, (cb)2, Theorem 5.3

(ad)2

From the group [40, 3], with symmetric crosscap number 27, and from the group [96, 1],
with symmetric crosscap number 63, other families have been obtained that cover all num-
bers of the form 24k+ 15 and 60k+ 27, see [6]. So that, it is totally necessary to know the
algebraic structure of the groups we have been studying. Another feature of this study is
to obtain the groups which are the full automorphism group of a surface of a given genus.
This was already done for g ≤ 5 in [8], for g = 6 in [4] and for g = 7 in [5].
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Table 14: Groups of symmetric crosscap number 39.

GAP G Relations [+ Generators] Reference

[60, 1] DC3 × C5 a4, b3, c5, baba−1 [18]
[111, 1] C37 o C3 a3, b37, bab27a−1 Theorem 5.1
[120, 12] (DC3×C5)oC2 a4, b3, c5, d2, baba−1, (ad)2, (cd)2, (db)2 Theorem 5.4
[222, 1] (C37 oC3)oC2 a3, b37, c2, bab27a−1, (bc)2 Theorem 5.1

Table 15: Groups of symmetric crosscap number 51.

GAP G Relations [+ Generators] Reference

[84, 2] C4 × (C7 o C3) a3, b7, c4, bab5a−1 Theorem 5.6
[147, 1] C49 o C3 a3, b49, bab31a−1 Theorem 5.1
[147, 5] (3, 3 | 3, 7) a3, b3, (ab)3, (a−1b)7 [15]
[294, 1] (C49oC3)oC2 a3, b49, c2, bab31a−1, (ac)2 Theorem 5.1
[294, 7] (2, 3, 14; 3) a3, b3, c2, (ab)3, (a−1b)7, (ca)2, (cb)2 Theorem 5.2
[294, 14] (2, 3, 6; 7) a3, b3, c2, (ab)3, (a−1b)7, (cb)2 Theorem 5.2
[588, 35] G3,6,14 a3, b3, c2, d2, (ab)3, (a−1b)7, (ca)2, Theorem 5.3

(cb)2, (ad)2

Table 16: Groups of symmetric crosscap number 63.

GAP G Relations [+ Generators] Reference

[96, 1] C3 o C32 a3, b32, abab−1 Theorem 5.5
[183, 1] C61 o C3 a3, b61, bab48a−1 Theorem 5.1
[192, 78] (C3oC32)oC2 a3, b32, c2, abab−1, (ca)2, (cb)2 Theorem 5.5
[366, 1] (C61oC3)oC2 a61, b3, c2, aba48b−1, bcb−1c, (ac)2 Theorem 5.1
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1 Introduction
A lattice animal is any bounded subset of a regular lattice in the plane whose boundary is
made of simple closed curve following lattice edges. In this paper we study the saturation
number of hexagonal and square lattice animals.

The saturation number s(G) of a graph G is the cardinality of a smallest maximal
matching in G. Maximal matchings serve as models of adsorption of dimers (those that
occupy two adjacent atoms) to a molecule. It can occur that the bonds in a molecule are not
efficiently saturated by dimers, and therefore, their number is below the theoretical maxi-
mum. Hence, the saturation number provides an information on the worst possible case of
adsorption. Besides in chemistry the saturation number has a number of interesting appli-
cations in engineering and networks. The problem of determining the saturation number is
equivalent to the problem of finding the edge domination number in a graph. Moreover, if
a graph G has an efficient edge dominating set D, it holds s(G) = |D| (see [7]). Previous
work on the saturation number includes research on random graphs [8, 9], on benzenoid
systems [5], fullerenes [1, 2, 4], and nanotubes [7]. Recent results on related concepts can
be found in [3, 6].

2 Preliminaries
A matching M in a graph G is a set of edges of G such that no two edges from M share
a vertex. A matching M is a maximum matching if there is no matching in G with greater
cardinality. The cardinality of any maximum matching in G is denoted by ν(G) and called
the matching number of G. If every vertex of G is incident with an edge of M , the match-
ing M is called a perfect matching (in chemistry perfect matchings are known as Kekulé
structures).

A matching M in a graph G is maximal if it cannot be extended to a larger matching
in G. Obviously, every maximum matching is also maximal, but the opposite is generally
not true. A matching M is a smallest maximal matching if there is no maximal matching in
G with smaller cardinality. The cardinality of any smallest maximal matching in G is the
saturation number of G, denoted by s(G).

The following lemma is very useful for proving lower bounds for the saturation number.
The proof can be found in [7]. See also [8, 9].

Lemma 2.1. Let G be a graph and let A and B be maximal matchings in G. Then |A| ≥
|B|
2 and |B| ≥ |A|2 .

This result implies the lower bound s(G) ≥ ν(G)
2 . In particular, in graphs with per-

fect matchings the saturation number cannot be smaller than one quarter of the number of
vertices, s(G) ≥ n

4 .
A polyomino system consists of a cycle C in the infinite square lattice together with all

squares inside C. A polyomino graph is the underlying graph of a polyomino system.
A benzenoid system consists of a cycle C in the regular infinite hexagonal lattice to-

gether with all hexagons inside C. A benzenoid graph is the underlying graph of a ben-
zenoid system.

Let G be a benzenoid graph or a polyomino graph. The vertices lying on the outer face
ofG are called external; other vertices, if any, are called internal. GraphGwithout internal
vertices is called catacondensed. If no inner face in a catacondensed graph G is adjacent
to more than two other inner faces, we say that graph G is unbranched or that it is a chain.
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In each chain G there are exactly two inner faces adjacent to one other inner face;
those two inner faces are called terminal, while any other inner faces are called interior.
The number of inner faces in chain G is called its length. An interior inner face is called
straight if the two edges it shares with other inner faces are parallel, i.e. opposite to each
other. If the shared edges are not parallel, the inner face is called kinky. If all interior inner
faces of a chain G are straight, the chain is called linear.

There is also another terminology, calling straight inner faces linear, and kinky inner
faces angular. By introducing abbreviations L and A, respectively, for linear and angular
inner faces, each chain can be represented as a word over the alphabet {L,A}, with the
restriction that the first and the last letter are always L. Such a word is called the LA-
sequence of the chain.

A fullerene F is a 3-connected 3-regular plane graph such that every face is bounded
by either a pentagon or a hexagon. By Euler’s formula, it follows that the number of
pentagonal faces of a fullerene is exactly 12.

The Cartesian product G�H of graphs G and H is the graph with the vertex set
V (G)×V (H) and (a, x)(b, y) ∈ E(G�H) whenever ab ∈ E(G) and x = y , or, if a = b
and xy ∈ E(H).

3 Polyomino chains and grid graphs
In this section we prove some results regarding the saturation number of polyomino chains
and rectangular grids. We start with the linear chain Ln, where n denotes the number of
squares. Such chain can be obtained as Cartesian product of the path Pn of length n and
K2. Here Pn is the path on n edges so that Ln = Pn�K2. Alternatively, Ln = Pn�P1.
We draw Ln so that the edges of both copies of Pn are horizontal, see Figure 1.

Figure 1: Linear polyomino chain L6 = P6 �K2.

We start by quoting two facts about the saturation number and the structure of smallest
matchings in paths.

Proposition 3.1 ([6]). Let Pn be a path of length n. Then s(Pn) =
⌈
n
3

⌉
. More precisely,

s(Pn) =


n
3 , 3 | n
n+2
3 , 3 | (n− 1)

n+1
3 , 3 | (n− 2).

Proposition 3.2. Let Pn be a path of length n. Then Pn has a smallest maximal matching
that leaves at least one of the end-vertices unsaturated.

Proof. Let n be divisible by 3. We form groups of three consecutive edges and construct a
matching M by taking the middle edge of each group. M is obviously a smallest maximal
matching and leaves unsaturated both end-vertices of Pn. If n = 3k + 1, again consider
groups of 3 consecutive edges, take the middle edge in each group and add the sole edge
that does not belong to any group. Again the constructed matching is a smallest maximal
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matching. Finally, when n = 3k + 2, construct a matching in the same way by taking
the middle edge from each of k groups of three consecutive edges and adding the edge
saturating the rightmost vertex.

Next we show that we can construct a smallest maximal matching in Ln without using
vertical edges. This result will enable us to reduce the problem of finding the saturation
number of Ln to known results about s(Pn).

Proposition 3.3. Let M be a maximal matching in Ln containing k > 0 vertical edges.
Then there is another maximal matching M ′ in Ln containing k′ < k vertical edges such
that |M ′| ≤ |M |.

Proof. We label the vertices in the upper copy of Pn with u0, u1, . . . , un, from left to right,
and vertices in the lower copy with v0, v1, . . . , vn, in the same direction. There are n + 1
vertical edges, each of the form uivi for some 0 ≤ i ≤ n. See Figure 2.

Figure 2: Linear polyomino chain Ln.

Let M be a maximal matching in Ln with k > 0 vertical edges and let the leftmost
vertical edge in M be the edge umvm. Obviously, m cannot be equal to 1.

We consider first the case m = 0. If u1v1 is also in M , we construct a matching M ′

as M ′ =M − {u0v0, u1v1} ∪ {u0u1, v0v1}. Obviously, M ′ is a maximal matching of the
same cardinality as M containing k − 2 vertical edges.

Let now both neighbors u1 and v1 of end-vertices of u0v0 be saturated by horizontal
edges. Hence, both u1u2 and v1v2 are in M . Then at least one of u3 and v3 must be
saturated by an edge of M . Let u3 be saturated. Then we can construct a matching M ′ as
M ′ = M − {u0v0, u1u2} ∪ {u0u1}. Again, M ′ is a maximal matching, |M ′| = |M | − 1
and k′ = k − 1. The case of saturated v3 follows by symmetry.

The last case to consider for m = 0 is the one in which only one of u1, v1 is saturated
by a, necessarily horizontal, edge of M . Let it be u1. Hence, u1u2 ∈ M and v1v2 6∈ M .
Then v3 must be saturated and M ′ = M − {u0v0} ∪ {v0v1} is a maximal matching of
the same cardinality as M but with one vertical edge less. Hence, the claim holds if the
leftmost vertical edge in M is u0v0. This case is depicted in Figure 3.

Figure 3: The case when m = 0 and only one of u1,v1 is saturated by M .

Let now the leftmost vertical edge in M be u2v2. Then both u0u1 and v0v1 must be
in M , and at least one of vertices u3 and v3 must be saturated by an edge of M . Let it be
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u3. Then the matching M ′ constructed as M ′ = M − {u2v2, v0v1} ∪ {v1v2} will be a
maximal matching with smaller cardinality and with one vertical edge less than M .

Similar constructions apply when the leftmost vertical edge of M is near the right
end of the chain. The simplest is the case m = n − 1, when also the rightmost edge
unvn must be in M . Then by switching the edges on the rightmost square one readily
obtains a maximal matching of the same size as M but without vertical edges. The case
m = n − 2 forces both horizontal edges un−1un and vn−1vn to be in M . Then at least
one of un−3 and vn−3 must be saturated. Let it be vn−3. Then the matching M ′ =
M − {un−2vn−2, un−1un} ∪ {un−2un−1} is a maximal matching of smaller size than M
without vertical edges. Remains the case when unvn is the leftmost (and hence the only)
vertical edge in M . If only one of un−1, vn−1 is saturated, let us say un−1, it suffices
to switch unvn and vn−1vn to obtain a maximal matching M ′ of the same size without
vertical edges. If both un−1, vn−1 are saturated, they must be saturated by horizontal
edges un−2un−1 and vn−2vn−1, respectively. Also, at least one of un−3 and vn−3 must be
saturated. Let it be vn−3. Then M ′ = M − {unvn, vn−2vn−1} ∪ {vn−1vn} is a maximal
matching of smaller size than M but without vertical edges.

Now we can look at the remaining cases in a unified manner. So, let umvm, 3 ≤ m ≤
n− 3, be the leftmost vertical edge in a maximal matching M . If um+1vm+1 is also in M ,
we construct M ′ by switching the edges on the square um, um+1, vm+1, vm, obtaining a
maximal matching of the same size but with two vertical edges less. Hence, we can suppose
that um+1vm+1 6∈M .

If both um−1 and um+1 are unsaturated, then both vm−1 and vm+1 must be saturated,
necessarily by horizontal edges vm−2vm−1 and vm+1vm+2, respectively. Further, both
um−2 and um+2 must be saturated, again by horizontal edges. The situation is shown in
Figure 4.

Figure 4: The case when um−1 and um+1 are both unsaturated.

We construct M ′ as M ′ = M − {umvm} ∪ {umum+1}. Obviously, M ′ is a maximal
matching of the same size as M and with one vertical edge less. The situation in which
both vm−1 and vm+1 are unsaturated follows by symmetry.

It remains to consider the case when at least one of um−1, um+1 and at least one of
vm−1, vm+1 are saturated. We construct a new matching M ′′ by keeping the part of M
to the left of umvm, shifting all edges of M that were right of umvm one place to the left
(hence, ulul+1 goes to ul−1ul, vlvl+1 to vl−1vl and ulvl to ul−1vl−1 for m < l ≤ n) and
moving umvm to unvn. Obviously, M ′′ is a maximal matching of the same size as M and
with the same number of vertical edges, but with the leftmost vertical edge at some place
l > m. Let us look at the situation on the right-hand side of Ln.

If un−1vn−1 is in M ′′, then M ′ with the desired properties can be obtained by switch-
ing edges on the rightmost square of Ln. If un−1vn−1 is not in M ′′, then also un−2vn−2
cannot be in M , and M ′ can be constructed in exactly the same manner as when unvn is
the only vertical edge in M .
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Hence, no matter where in M the leftmost vertical edge appears, we can always con-
struct a maximal matching of the same or smaller size with strictly smaller number of
vertical edges.

Corollary 3.4. There is a maximal matching in Ln of cardinality s(Ln) without vertical
edges.

Corollary 3.5. 2s(Pn) ≤ s(Ln) ≤ 2s(Pn) + 1.

Proof. We know that there is a smallest maximal matching M in Ln (i.e., of the size equal
to s(Ln)) without vertical edges. Hence all edges of M are horizontal, and each edge
belongs to one of two copies of Pn in Ln. If the cardinality of M is smaller than 2s(Pn),
then at least one of two copies of Pn will contain two adjacent unsaturated vertices. This
proves the left inequality.

To prove the right inequality, let us take a smallest maximal matching Mu in the upper
copy of Pn. If Mu saturates exactly one end-vertex of Pn, let us take it so that it saturates
u0. Let Mv be a smallest maximal matching in the lower copy of Pn obtained by taking
the edges corresponding to the edges of Mu and shifting them one place to the right. Then
Mv saturates the vertices in the lower copy of Pn adjacent to the vertices of the upper copy
of Pn left unsaturated by Mu. Hence M =Mu ∪Mv is a maximal matching in Ln of size
2s(Pn).

It remains to consider the case when all smallest maximal matchings in Pn leave both
end-vertices unsaturated. In that case, take two smallest maximal matchings Mu and Mv

in upper and lower copy of Pn, respectively, and shift Mv one place to the right so that it
saturates the neighbors of the vertices left unsaturated byMu. That leaves unsaturated both
end-vertices of v0v1. By adding that edge to the maximal matching constructed from Mu

and shifted Mv we obtain a maximal matching of size 2s(Pn) + 1.

From this we can get the exact expression for the saturation number of the linear poly-
omino chain.

Theorem 3.6. Let Ln be the linear polyomino chain. Then

s(Ln) =


2n
3 + 1, 3 | n
2(n+2)

3 , 3 | (n− 1)
2(n+1)

3 , 3 | (n− 2).

Proof. If 3 | (n − 1) or 3 | (n − 2) there is a smallest maximal matching M for Pn
such that M saturates exactly one end-vertex of Pn. Therefore, it follows from the proof
of Corollary 3.5 that s(Ln) = 2s(Pn) and we are done. If 3 | n, the smallest maximal
matching of Pn is uniquely defined and it leaves both end-vertices unsaturated. Hence, in
this case we obtain s(Ln) > 2s(Pn) and therefore, s(Ln) = 2s(Pn) + 1.

Examples of smallest maximal matchings in Ln for all classes of divisibility of the
chain length by 3 are given in the Figure 5.

The above approach can be successfully applied also to obtain non-trivial upper bounds
on the saturation number of grid graphs that arise as Cartesian products of two (or more)
paths. By taking smallest maximal matchings in all horizontal (or in all vertical) copies
of paths in Pm�Pn, shifting them and adjusting by adding an edge where necessary, and
using symmetry, we can obtain following upper bound on s(Pm�Pn).
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Figure 5: Linear polyomino chains with maximal matchings.

Proposition 3.7. s(Pm�Pn) ≤ min{(m+ 1)[s(Pn) + 1], (n+ 1)[s(Pm) + 1]}.

This upper bound can be improved a bit by exploiting particular relationships between
parities and remainders modulo 3 of m and n. See Figure 6 for an example. We believe,
however, that our upper bounds capture the asymptotic behavior of the saturation number
of rectangular grids.

Figure 6: Graph P8 �P3 with a maximal matching.

Now we go back to polyomino chains. In the following theorem we give the exact
closed formulas for the saturation number of polyomino chains where all internal squares
are kinky.

Theorem 3.8. Let Sk be a polyomino chain with k squares such that all internal squares
are kinky. Then

s(Sk) =

⌈
k

2

⌉
+ 1.

Proof. We consider two cases.

1. Let k be even. Since the number of vertices in Sk is 2k+2, a perfect matching (which
always exists) has k+1 edges. Using Lemma 2.1 we obtain that s(Sk) ≥ k+1

2 . Since
k is even, we obtain s(Sk) ≥

⌈
k
2

⌉
+ 1. To show the upper bound, we construct a

maximal matching M from Figure 7.

Obviously, |M | = k
2 + 1 =

⌈
k
2

⌉
+ 1. Hence, s(Sk) =

⌈
k
2

⌉
+ 1.

2. If k is odd, let M ′ be a maximal matching from Figure 8.

Obviously, |M ′| = k+1
2 + 1 and therefore, s(Sk) ≤ k+1

2 + 1 =
⌈
k
2

⌉
+ 1. Now

suppose that there is a maximal matching N for Sk such that |N | ≤ k+1
2 . It is easy

to see that at least one of edges e1, e2, and e3 must be in N . Consider the following
cases.
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Figure 7: Polyomino chain Sk (k even) with maximal matching M .

Figure 8: Polyomino chain Sk (k odd) with maximal matching M .

(a) If e1 ∈ N , then also e3 ∈ N or f3 ∈ N . Therefore, for the graph Sk−3 (see
Figure 8) it must hold s(Sk−3) ≤ k−3

2 , which is a contradiction with Case 1.

(b) If e2 ∈ N , then for the graph Sk−1 (see Figure 8) it must hold s(Sk−1) ≤ k−1
2 ,

which is a contradiction with Case 1.
(c) If e3 ∈ N , then also one of the edges e1, f1, f2 must be in N . If e1 ∈ N or

f1 ∈ N , then for the graph Sk−3 (see Figure 8) it must hold s(Sk−3) ≤ k−3
2 ,

which is a contradiction with Case 1. Therefore, suppose that f2 ∈ N . But
in this case we can use similar reasoning and either obtain a contradiction with
the Case 1 or eventually obtain a matching M ′, which is a contradiction since
|M ′| > |N |.

Since we obtain a contradiction in every case, it follows that every maximal matching
of Sk has at least k+1

2 +1 edges. Since k+1
2 +1 =

⌈
k
2

⌉
+1 it follows s(Sk) ≥

⌈
k
2

⌉
+1

and we are done.

4 Hexagonal animals
In this section we prove some results regarding the saturation number of benzenoid chains
and coronenes.

4.1 Benzenoid chains

A benzenoid chain of length h will be denoted by Bh. If all interior hexagons of a ben-
zenoid chain are straight, the chain is called a polyacene and denoted by Ah.
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Saturation number of benzenoid chains has been already studied in a recent paper coau-
thored by one of the present authors [5]. We quote without proof some basic results estab-
lished there.

Proposition 4.1 ([5]). LetBh be a benzenoid chain with h hexagons. Then s(Bh) ≥ h+1.

Proposition 4.2 ([5]). For any h it holds

s(Bh) + 1 ≤ s(Bh+1) ≤ s(Bh) + 2.

Proposition 4.3 ([5]). s(Bh) = h+ 1 if and only if Bh = Ah.

LetBh,1 denote a chain of length h = k+m in which hexagon hk is kinky and all other
hexagons are straight. An example is shown in Figure 9. Furthermore, let Bh,k denote a
benzenoid chain of length h with exactly k kinky hexagons.

k

...

21 ...

1

m

Figure 9: A chain with one kinky hexagon.

Proposition 4.4 ([5]). For any h it holds

s(Bh,1) = h+ 2.

Hence one kinky hexagon means one more edge in the smallest maximal matching.
The following claim was stated in [5] as Proposition 5.

Proposition 4.5 ([5]). Let Bh,k be a benzenoid chain of length h with k kinky hexagons
such that no two kinky hexagons are adjacent. Then s(Bh,k) = h+ k + 1.

However, we show in Proposition 4.7, Proposition 4.8, and Proposition 4.9 that the
above proposition provides only an upper bound for the saturation number, which is evident
from the following proposition.

Proposition 4.6. Let Bh,k be a benzenoid chain of length h with k kinky hexagons. Then
s(Bh,k) ≤ h+ k + 1.

Proof. Let M be a matching of Bh,k obtained by taking all edges shared by two hexagons,
one additional edge in each terminal hexagon and all edges connecting vertices of degree
two in kinky hexagons. See Figure 10 for an example.

It is easy to see that M is a maximal matching and |M | = h + k + 1. Therefore, we
are done.



200 Ars Math. Contemp. 15 (2018) 191–204

Figure 10: Maximal matching M .

However, in the same graph shown in Figure 10 we can construct a smaller maximal
matching by simply taking all vertical edges. Hence h + k + 1 is only an upper bound on
s(Bh,k) and it can be improved in particular cases.

Let Bh be a chain of length h. A straight segment in Bh is any sequence of consecutive
straight hexagons. Equivalently, it is any sub-word made of consecutive L’s in the LA
sequence of Bh. The number of consecutive straight hexagons is the length of the straight
segment.

Figure 11: A benzenoid chain B8 with two straight segments (labelled with bold edges),
one of length 2 and one of length 1.

In the following we consider the saturation number of benzenoid chains where all
straight segments are of length one and no two kinky hexagons are adjacent. It turns out
we have to distinguish between three cases. In all of them the upper bound from Proposi-
tion 4.6 is improved.

Proposition 4.7. Let B2k+1,k be a benzenoid chain such that all straight segments are of
length one and no two kinky hexagons are adjacent. Then

s(B2k+1,k) ≤
1

4

(
10k + 9− (−1)k

)
.

Proof. We build B2k+1,k from left to right by adding blocks of 4 consecutive hexagons at
a time. Each block has the form LALL and it is added on the rightmost hexagon of the
already constructed chain so that it becomes a kinky hexagon in the new chain. To show an
upper bound for the saturation number, we construct a maximal matching M of B2k+1,k.
For the first four hexagons we need six edges in a maximal matching such that the edge
connecting the first and the second block of hexagons is in the matching. See Figure 12.
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Figure 12: Two possibilities for a maximal matching M of the first block.

Afterwards, we can always add four hexagons at a price of five new edges in a maximal
matching. Let l be the number of blocks in B2k+1,k. We consider two cases.

• If k is odd, then 4 | (2k − 2) and l = 2k−2
4 = k−1

2 and we have three additional
hexagons in a benzenoid chain. For these three hexagons, we need 4 additional edges
in a maximal matching. We obtain |M | = 6+ 5(l− 1) + 4 = 10+ 5 · k−32 = 5k+5

2 .

• If k is even, then l = 2k
4 = k

2 and we have one additional hexagon in a benzenoid
chain. For this hexagon, we need 1 additional edge in a maximal matching. There-
fore, we get |M | = 6 + 5(l − 1) + 1 = 7 + 5 · k−22 = 5k+4

2 .

Combining both cases, we obtain |M | = 1
4

(
10k + 9− (−1)k

)
.

Proposition 4.8. Let B2k+2,k, k ∈ N, be a benzenoid chain such that all straight segments
are of length one and no two kinky hexagons are adjacent. Then

s(B2k+2,k) ≤
1

4

(
10k + 13− (−1)k

)
.

Proof. We build B2k+2,k from left to right by adding blocks of 4 consecutive hexagons at
a time. Each block has the form LALL or each block has the form LLAL (before adding)
and it is added on the rightmost hexagon of the already constructed chain. Because of the
symmetry, we can assume that each block has the form LALL (otherwise we can start
from right to left). The new block is added on the last hexagon such that it becomes a kinky
hexagon. To show an upper bound for the saturation number, we construct a maximal
matching M of B2k+2,k. For the first four hexagons we need six edges in a maximal
matching such that the edge connecting the first and the second block of hexagons is in the
matching. Afterwards, we can always add four hexagons at a price of five new edges in a
maximal matching. Let l be the number of blocks in B2k+2,k. We consider two cases.

• If k is odd, then 4 | (2k+2) and l = 2k+2
4 = k+1

2 . We obtain |M | = 6+5(l− 1) =

6 + 5 · k−12 = 5k+7
2 .

• If k is even, then l = (2k+2)−2
4 = k

2 and we have two additional hexagons in a
benzenoid chain. For these two hexagons, we need 2 additional edges in a maximal
matching. Therefore, we get |M | = 6 + 5(l − 1) + 2 = 8 + 5 · k−22 = 5k+6

2 .

Combining both cases, we obtain |M | = 1
4

(
10k + 13− (−1)k

)
.
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Proposition 4.9. Let B2k+3,k, k ∈ N, be a benzenoid chain such that all straight segments
are of length one and no two kinky hexagons are adjacent. Then

s(B2k+3,k) ≤
1

4

(
10k + 19 + (−1)k

)
.

Proof. We build B2k+3,k from left to right by adding blocks of 4 consecutive hexagons
at a time. Each block has the form LLAL (before adding) and it is added on the right-
most hexagon of the already constructed chain. The new block is added such that the first
hexagon of this block becomes a kinky hexagon. To show an upper bound for the saturation
number, we construct a maximal matching M of B2k+3,k. For the first four hexagons we
need six edges in a maximal matching such that the edge connecting the first and the second
block of hexagons is in the matching. Afterwards, we can always add four hexagons at a
price of five new edges in a maximal matching (such that the edge connecting that block
with the next block is in the matching). Let l be the number of blocks in B2k+3,k. We
consider two cases.

• If k is odd, then 4 | ((2k + 3) − 1) and we have to add one additional hexagon (for
this hexagon we need one additional edge). Hence, l = 2k+2

4 = k+1
2 . We obtain

|M | = 6 + 5(l − 1) + 1 = 7 + 5 · k−12 = 5k+9
2 .

• If k is even, then 4 | ((2k+3)−3) and we have to add three additional hexagons (for
this three hexagons we need four additional edges in a maximal matching). Hence,
l = 2k

4 = k
2 . Therefore, we get |M | = 6 + 5(l − 1) + 4 = 10 + 5 · k−22 = 5k+10

2 .

Combining both cases, we obtain |M | = 1
4

(
10k + 19 + (−1)k

)
.

4.2 Coronenes

In this section we prove bounds for the saturation number of coronenes. These highly
symmetric benzenoid systems have long been attracting the attention of both theoretical
and experimental chemists. They are suggested as markers for vehicle emissions, since
they are produced by incomplete combustion of organic matter. Coronene H1 is just a
single hexagon, and Hk is obtained from Hk−1 by adding a ring of hexagons around it.
See Figure 13 for an example of coronene H4.

Proposition 4.10. Let Hk be a coronene. Then

3

2
k2 ≤ s(Hk) ≤


2k2, 3 | (k − 1)

2k2 + 4k
3 , 3 | k

2k2 + 2k+2
3 , 3 | (k − 2).

Proof. Obviously, every coronene has a perfect matching. Since the number of vertices in
Hk is 6k2, it follows by Lemma 2.1 that s(Hk) ≥ 3

2k
2.

For the upper bound, we will consider just the case when 3 | (k−1), since the proofs for
other two cases are almost the same. To prove this case, we construct a maximal matching
M for Hk. In the matching we put all the vertical edges lying in the center layer of the
coronene Hk. Since there are 2k − 1 hexagons in the center layer, we obtain 2k edges
in the matching M . See Figure 13. Next, we continue at the top half of the coronene
with alternating non-vertical and vertical edges such that two layers of edges are needed
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Figure 13: A coronene H4.

for every three layers of hexagons. Furthermore, for every non-vertical layer of edges we
need one additional vertical edge. Let x be the number of edges in M in the top half of the
coronene. Then

x = (2k − 1) + (2k − 3) + (2k − 4) + (2k − 6) + · · ·+ (k + 3) + (k + 1) =

=
2(k − 1)

3
· (2k)−

(
1 + 3 + 4 + 6 + · · ·+ (k − 3) + (k − 1)

)
=

=
4k2 − 4k

3
−
(
k2 − k

2
−
(
2 + 5 + · · ·+ (k − 2)

))
=

=
4k2 − 4k

3
−
(
k2 − k

2
− k2 − k

6

)
=

= k2 − k.

Finally, we obtain |M | = 2k + 2x = 2k + 2(k2 − k) = 2k2.

In the next proposition we improve the lower bound for any k ≥ 7.

Proposition 4.11. Let Hk be a coronene where k > 1. Then

s(Hk) ≥ 2k2 − 3k − 1.

Proof. For any Hk, k ≥ 2, one can construct a disk-shaped fullerene by taking another
copy of Hk and connecting the borders in the following way. We insert 6k edges between
vertices of degree 2 such that end-vertices lie in different copies of Hk. Obviously, this
can be done in such a way that the resulting graph F is planar with only pentagonal and
hexagonal faces. Since F is also 3-regular, it is a fullerene with 12k2 vertices.

LetM ′ be a maximal matching in each copy ofHk. Then this matching can be extended
to a maximal matching M of a graph F by adding at most 6k edges between two copies of
Hk. Therefore, |M | ≤ 2|M ′|+6k. From Theorem 4.1 in [2] it follows |M | ≥ |V (F )|

3 −2 =
4k2 − 2. Therefore, we obtain 2|M ′|+ 6k ≥ 4k2 − 2. Finally, |M ′| ≥ 2k2 − 3k − 1.
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Concluding remarks
In the paper we have established some bounds and also exact values for the saturation
number of certain families of lattice animals. However, there are still many open problems
regarding the exact values for the saturation number of different families of graphs.
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related invariants of fullerene graphs, MATCH Commun. Math. Comput. Chem. 68 (2012),
109–130, http://match.pmf.kg.ac.rs/electronic_versions/Match68/n1/
match68n1_109-130.pdf.
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1 Introduction
Throughout this paper, all graphs and groups are assumed to be finite. LetG be a connected
simple graph with vertex set V (G) and edge set E(G). The neighborhood of a vertex
v ∈ V (G), denoted by N(v), is the set of vertices adjacent to v. We use |X| for the
cardinality of a set X . The number β = |E(G)| − |V (G)| + 1 is equal to the number of
independent cycles in G and it is referred to as the Betti number of G.

Two graphs G and H are isomorphic if there exists a one-to-one correspondence be-
tween their vertex sets which preserves adjacency, and such a correspondence is called an
isomorphism between G and H. An automorphism of a graph G is an isomorphism of G
onto itself. Thus, an automorphism ofG is a permutation of the vertex set V (G) which pre-
serves adjacency. Obviously, the automorphisms of G form a permutation group, Aut(G),
under composition, which acts on the vertex set V (G).

A graph G̃ is called a covering of G with projection p : G̃ → G if there is a surjection
p : V (G̃)→ V (G) such that p|N(ṽ) : N(ṽ)→ N(v) is a bijection for any vertex v ∈ V (G)

and ṽ ∈ p−1(v). Also, we sometimes say that the projection p : G̃→ G is a covering, and
an n-fold covering if p is n-to-one. A covering p : G̃→ G is said to be regular (simply, A-
covering) if there is a subgroupA of the automorphism group Aut(G̃) of G̃ acting freely on
G̃ so that the graph G is isomorphic to the quotient graph G̃/A, say by h, and the quotient
map G̃→ G̃/A is the composition h ◦ p of p and h. The fiber of an edge or a vertex is its
preimage under p.

Two coverings pi : G̃i → G, i = 1, 2, are isomorphic if there exists a graph isomor-
phism Φ: G̃1 → G̃2 such that p2 ◦ Φ = p1, that is, the diagram

G̃1 G̃2

G

Φ

p1 p2

commutes. Such a Φ is called a covering isomorphism. A covering transformation is just a
covering automorphism.

Every edge of a graphG gives rise to a pair of oppositely directed edges. By e−1 = vu,
we mean the reverse edge to a directed edge e = uv. We denote the set of directed edges
of G by D(G). Let A be a finite group. An ordinary voltage assignment (or, A-voltage
assignment) of G is a function φ : D(G)→ A with the property that φ(e−1) = φ(e)−1 for
each e ∈ D(G). The values of φ are called voltages, andA is called the voltage group. The
ordinary derived graph G×φA derived from an ordinary voltage assignment φ : D(G)→
A has as its vertex set V (G) × A, and as its edge set E(G) × A, so that an edge (e, g)
of G ×φ A joins a vertex (u, g) to (v, φ(e)g) for e = uv ∈ D(G) and g ∈ A. In the
(ordinary) derived graph G ×φ A, a vertex (u, g) is denoted by ug and an edge (e, g) is
denoted by eg . The first coordinate projection pφ : G ×φ A → G commutes with the left
multiplication action of the φ(e) and the right multiplication action of A on the fibers,
which is free and transitive, so that pφ is a regular |A|-fold covering, called simply an A-
covering. Moreover, if the covering graphG×φA is connected, then the groupA becomes
the covering transformation group of the A-covering.

For a group A, let C1(G;A) denote the set of A-voltage assignments φ of G. Choose
a spanning tree T of G, and let

C1
T (G;A) = {φ ∈ C1(G;A) : φ(uv) is the identity for each uv ∈ D(T )}.
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Gross and Tucker [4] showed that everyA-covering G̃ of a graphG can be derived from an
A-voltage assignment φ in C1

T (G;A), say it T -reduced. From now on, let T denote a fixed
spanning tree of a graphG, and we consider only anA-voltage assignment φ in C1

T (G;A).
The enumeration problem of coverings became subject of investigation by many au-

thors starting from the classical paper by Hurwitz published more then 100 years ago. In
particular, enumeration of graph coverings became possible after the paper by Hall ([6])
published in 1949. In 1988, Hofmeister [8] counted double covers of graphs. Liskovets
enumerated connected non-isomorphic coverings of the graph with a given Betti number,
see [19, 20]. The number of connected and disconnected coverings were determined by
Kwak and Lee in [15]. Later, Kwak, Lee and A. D. Mednykh counted cyclic and dihedral
coverings over surfaces and graphs with prescribed topological characteristics, see [16, 17].

Following notations in [14], let IsoR(G;n) denote the number of the isomorphism
classes of regular (connected or disconnected) n-fold coverings of G, and use IsocR(G;n)
for their connected ones. Similarly, let Iso(G;A) denote the number of the isomorphism
classes of (connected or disconnected)A-coverings ofG, and use Isoc(G;A) for their con-
nected ones. By the properties of regularity of coverings, one can see that the number of the
isomorphism classes of (connected or disconnected) n-fold regular coverings of a graph G
is the sum of numbers of the isomorphism classes of connected d-fold regular coverings of
G, where d runs over all divisors of n:

IsoR(G;n) =
∑
d|n

IsocR(G; d).

Moreover, the number of the isomorphism classes of connected n-fold regular coverings of
G is the sum of the numbers of the isomorphism classes of connected A-coverings of G,
where A runs over all non-isomorphic groups of order n:

IsocR(G;n) =
∑
A

Isoc(G;A).

Consequently, it just needs to determine the numbers Isoc(G;A) for every finite group
A. Hong, Kwak and Lee [9] obtained an algebraic characterization of two isomorphic
graph regular coverings given as follows.

Lemma 1.1. Let φ ∈ C1
T (G;A) and ψ ∈ C1

T (G;B) be any two ordinary voltage assign-
ments in G. If their derived (regular) coverings pφ : G×φ A → G and pψ : G×ψ B → G
are connected, then they are isomorphic if and only if there exists a group isomorphism
σ : A → B such that ψ(uv) = σ(φ(uv)) for all uv ∈ D(G)−D(T ).

In particular, if two voltages φ and ψ in C1
T (G;A) derive connected coverings, then

the derived coverings are isomorphic if and only if there exists a group automorphism
σ ∈ Aut(A) such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ).

With a linear ordering of the cotree edges of G, the set C1
T (G;A) of T -reduced A-

voltage assignments of G can be identified as

C1
T (G;A) = A× · · · × A (β times),
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that is, anA-voltage assignment φ ofG can be identified as a β-tuple (g1, . . . , gβ) of group
elements gi ∈ A. Moreover, such a β-tuple of g’s derives a connected covering if and
only if it is transitive. It means by definition that the subgroup 〈g1, . . . , gβ〉 generated by
them acts transitively on the group A (under the left translation on A), or equivalently
{g1, g2, . . . , gβ} generates the whole group A.

Note that the automorphism group Aut(A) ofA can act on the set of transitive β-tuples
of group elements gi ∈ A coordinatewisely, and any two transitive β-tuples of elements in
A belong to the same orbit under the action if and only if they derive (connected) isomor-
phic A-coverings, by Lemma 1.1.

Clearly, the Aut(A)-action on the set of transitive β-tuples of group elements gi ∈ A
is free (having no fixed element), and hence Burnside’s counting Lemma gives a counting
formula for Isoc(G;A) as follows.

Theorem 1.2 ([14]). For any finite group A,

Isoc(G;A) =
|Ω(A;β)|
|Aut(A)|

,

where Ω(A;β) = {(g1, g2, . . . , gβ) ∈ Aβ | {g1, g2, . . . , gβ} generates A}.

Note that the set Ω(A;β) can be identified as the set of epimorphisms from the free
group generated by β elements onto the group A.

To determine the number Isoc(G;A), we need to estimate |Aut(A)| and |Ω(A;β)|.
The number |Aut(A)| can certainly be determined for a few groups A. For example, one
can refer to [14] for |Aut(A)| when A is abelian or dihedral groups. Also, one can see
recent two papers [1], [7] for abelian case.

The other number |Ω(A;β)| can be determined by a direct counting and it can also
be determined in terms of the Möbius function defined on the subgroups lattice of A, as
shown in [17]. The Möbius function assigns an integer µ(K) to each subgroup K of A by
the recursive formula ∑

H≥K

µ(H) =

{
1 if K = A,
0 if K < A.

Jones ([12, 13]) used the Möbius function to count the normal subgroups of a surface group
or a crystallographic group, and applied it to count certain covering surfaces. We see that

|A|β =
∑
K≤A

|Ω(K;β)|.

It follows from the Möbius inversion that

|Ω(A;β)| =
∑
K≤A

µ(K)|K|β .

The next theorem is deduced from Theorem 1.2.

Theorem 1.3. For any finite group A,

Isoc(G;A) =
1

|Aut(A)|
∑
K≤A

µ(K)|K|β .
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Now, we have two ways of computing |Ω(A;β)|, by a direct counting and by using the
Möbius function on the subgroups lattice of A. For example, when A is cyclic or dihedral,
Isoc(G;A) was determined by Kwak, Lee and Mednykh in [17] in terms of the Möbius
function. However, it is not easy to determine the Möbius function on the subgroups lattice
of any abelian group A. For an abelian group A, Isoc(G;A) was determined in [14] by a
direct counting method.

This paper is organized as follows. In a coming section, we review an extension of
a group, giving a classification of Z2-extensions of a cyclic p-group and a discussion on
Z2-extensions of a cyclic group. In Sections 3 and 4, we determine the number Isoc(G;A)
when A is a Z2-extension of a cyclic p-group, or Z2-extensions of any cyclic group, as
main results in this paper. In Section 5, we try to extend our discussion to a Z2-extension
of an abelian group, by considering two special cases of them.

2 Review on extensions of groups
We review briefly an extension of a group with some recent results to use it in this paper.

Let N and Q be two groups. A group A is an extension of N by Q (or a Q-extension
of N ) if N is a normal subgroup of A and the quotient group A/N ∼= Q. Or equivalently,
a sequence

1→ N ι−→ A π−→ Q → 1

is exact. The extension is split if N has a complement in A. By a complement of N in A,
we mean a subgroup H satisfying A = NH and N ∩H = 1. Otherwise, the extension is
nonsplit.

Let us assume that the given extension is split. For a complement H of N in A, one
hasH ∼= A/N . So we can viewQ as a subgroup of A. A trivial case is an (internal) direct
product of two groups N and Q: A = NQ with N ∩ Q = 1 and a trivial commutator
[N ,Q] = 1. For all nontrivial cases, it holdsA = NQwithN∩Q = 1, but the commutator
[N ,Q] is not trivial and the multiplication in N is twisted by an action of the elements of
Q, that is, for ni ∈ N and qj ∈ Q with i, j ∈ {1, 2},

(n1q1)(n2q2) = n1(q1n2q
−1
1 )q1q2 = n1n

α(q1)−1

2 q1q2,

where α : Q → Aut(N ) is a homomorphism defined by α(q)−1 = Inn(q−1). The semidi-
rect product A = N oα Q of N by Q with respect to α is defined on the set

A = {(n, q) | n ∈ N , q ∈ Q}

with a multiplication

(n1, q1)(n2, q2) = (n1n
α(q1)−1

2 , q1q2).

The semidirect product A = N oα Q is in fact a group with (n, q)−1 = (n−α(q), q−1).
If we identify Q and N with {(1, q) | q ∈ Q} and {(n, 1) | n ∈ N}, respectively, then
A = NQ = QN and N ∩ Q = 1. So a semidirect product A = N oα Q is a split
extension of N by Q. Consequently an extension of N by Q is split if and only if A is a
semidirect product of N by Q.

A (split or nonsplit) extension of a cyclic group by another cyclic group is called a
metacyclic group. The next two lemmas are famous in finite group theory, see [11] and
[10], respectively.
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Lemma 2.1 (Hölder). LetA be a metacyclic group which is an extension of a cyclic group
of order n by a cyclic group of order m. Then A has the following presentation

A = 〈a, b | an = 1, bm = at, b−1ab = ar〉, (2.1)

where n,m, t and r satisfy

rm ≡ 1 (mod n), t(r − 1) ≡ 0 (mod n). (2.2)

Conversely, for any parameters n,m, t, r satisfying Equation (2.2), the relations in
Equation (2.1) define a metacyclic group which is an extension of a cyclic group of order n
by a cyclic group of order m.

A subgroup N of A is a Hall subgroup if |N | is coprime to |A : N|.

Lemma 2.2 (Schur-Zassenhaus). Let N be a normal Hall subgroup of A. Then

(1) N has a complement in A.

(2) If H and K are two complements of N in A, then there is an element n ∈ N such
that n−1Hn = K.

By Lemmas 2.1 and 2.2, one can show that a Z2-extension of a cyclic p-group with odd
prime p is a cyclic or a dihedral group. Now, let p = 2.

The following theorems in this section come from an unpublished manuscript [18]
Chapter 3 by Kwak and Xu. Since the authors cannot find these theorems in any other
sources, we add their proofs in this paper.

Theorem 2.3. Let A be a Z2-extension of a cyclic 2-group Z2n−1 with n ≥ 4. Then A is
isomorphic to one of following six groups.

(1) (the cyclic group)
Z2n = 〈b | a2n−1

= 1, b2 = a〉,
(2) (the non-cyclic abelian group)

Z2n−1 × Z2 = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a〉,
(3) (the dihedral group)

D2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a−1〉,
(4) (the generalized quaternion group)

Q2n = 〈a, b | a2n−1

= 1, b2 = a2n−2

, b−1ab = a−1〉,
(5) (the ordinary metacyclic group)

M2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a1+2n−2〉,
(6) (the semidihedral group)

SD2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a−1+2n−2〉.

All the six groups are not isomorphic one another.

Proof. Since (1) and (2) are trivial cases, we assume that A is not abelian. By Lemma 2.1,
A has the following presentation:

A = 〈a, b | a2n−1

= 1, b2 = at, b−1ab = ar〉,
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where t and r satisfy

r2 ≡ 1 (mod 2n−1), t(r − 1) ≡ 0 (mod 2n−1).

By A non-abelian, one has r ≡ −1 or ±1 + 2n−2 (mod 2n−1), the latter two cases can
happen only when n ≥ 4. If r ≡ −1 or−1+2n−2 (mod 2n−1), then 2n−1 | 2t and hence
2n−2 | t, it follows that t ≡ 0 or 2n−2 (mod 2n−1). Now we consider the three cases
separately.

(i) r ≡ −1 (mod 2n−1). In this case we get the dihedral group (3) and the generalized
quaternion group (4) depending on t ≡ 0 or 2n−2 (mod 2n−1), respectively. These
two groups are not isomorphic. Note that the following cases (ii) and (iii) happen
only when n ≥ 4. So, when n = 3 we have only the above two groups.

(ii) r ≡ −1 + 2n−2 (mod 2n−1). In this case t ≡ 0 (mod 2n−2). Thus b2 = 1 or
a2n−2

. If b2 = a2n−2

, letting b1 = ba, then

b21 = (ba)2 = b2(b−1ab)a = b2a−1+2n−2

a = a2n−2

a2n−2

= 1.

Thus we get the group (6).

(iii) r ≡ 1 + 2n−2 (mod 2n−1). In this case, one has t · 2n−2 ≡ 0 (mod 2n−1) which
implies that t is even. Let t = 2s. Since n ≥ 4, there is a j satisfying j(1 + 2n−3) +
s ≡ 0 (mod 2n−2). Let b1 = baj . Then

b21 = b2(b−1ajb)aj = b2aj(2+2n−2) = a2(j(1+2n−3)+s) = 1.

Now the generators a, b1 satisfy the relations in the group (5), with b instead of b1.

Finally, we shall show that the mentioned four non-abelian groups are not isomorphic,
and we assume that n ≥ 4. It is easy to see that in these four cases the derived group
A′ = 〈[a, b]〉. We calculate the commutator [a, b] and get

[a, b] = a−1b−1ab =


a−2 for the groups (3) and (4),
a2n−2

for the group (5),
a−2+2n−2

for the group (6).

So, one has |A′| = 2 for (5), and |A′| = 2n−2 for the others. It follows that the group (5)
is not isomorphic to any one of the rest. To prove the rest three groups are not isomorphic,
we calculate the square of the elements of the form bai outside 〈a〉. We have

(bai)2 = b2(b−1aib)ai =


1 for the group (3),
a2n−2

for the group (4),
ai2

n−2

for the group (6).

This shows that the subgroup of order 2n−1 in A is unique, and outside this subgroup 〈a〉,
all elements are of order 2 in the group (3), order 4 in the group (4), and some are of order
2 and the others are of order 4 in the group (6). Therefore, all the four groups are not
isomorphic to one another.
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Let A be a Z2-extension of a cyclic group Zn, where n = pα0
0 pα1

1 · · · pαss is the prime
decomposition with p0 = 2. First, we consider the case that n is odd, that is, α0 = 0.

Theorem 2.4. Let A be a Z2-extension of a cyclic group Zn ∼= Zpα1
1
× · · · × Zpαss with n

odd. Then, A has a presentation

A = 〈a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

where r2
i ≡ 1 (mod pαii ) for all i. There are 2s non-isomorphic such extended groups.

Proof. By Lemma 2.2,A is split. SinceA is a metacyclic group, by Lemma 2.1,A has the
presentation

A = 〈a, b | an = b2 = 1, b−1ab = ar〉,

with r2 ≡ 1 (mod n). The action of b on each element of Zn by conjugacy is an auto-
morphism of Zn of order at most 2. Since Aut(Zn) ∼= Aut(Zpα1

1
)× · · · ×Aut(Zpαss ), the

b-conjugation on Zn corresponds to an s-tuple (r1, . . . , rs) with ri ≡ ±1 (mod pαii ) for
i ∈ {1, . . . , s}. Thus the s-tuple (r1, . . . , rs) has 2s choices and A is presented by

A = 〈a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉.

To finish the proof, it suffices to show that different s-tuples (r1, . . . , rs) give non-isomor-
phic groups. It is easy to see that Zpαii is a subgroup of the center ofA if and only if ri = 1.
Hence the groups with different s-tuples (r1, . . . , rs) have different center ofA. Therefore,
there are 2s non-isomorphic Z2-extensions of Zn.

Next we consider the case of even n. Let A be a Z2-extension of a cyclic group Zn ∼=
Zpα0

0
×Zpα1

1
×· · ·×Zpαss with p0 = 2. We deal with three cases α0 = 1, 2 or α0 ≥ 3 in the

next theorem. First we determine the Sylow 2-subgroup S0 of A which is a Z2-extension
of Z2α0 = 〈a0〉. This has been done by Theorem 2.3. Namely,

S0 = 〈a0, b0 | a2α0

0 = 1, b20 = at00 , b
−1
0 a0b0 = ar00 〉,

where t0 = 0, 1 or 2α−1, r0 = ±1 or ±1 + 2α0−1 depending on the types of S0 in
Theorem 2.3. Next, take b = b0. Thus each Sylow 2-subgroup and each element of order
at most 2 in Aut(Zpα1

1
)× · · · ×Aut(Zpαss ) gives a unique Z2-extension of Zn.

Theorem 2.5. LetA be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
×Zpα1

1
× · · · ×Zpαss

with p0 = 2.

(1) If α0 = 1, then A has the following presentations

(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z2 × Z2).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z4).

There are 2s+1 non-isomorphic groups.

(2) If α0 = 2, then A has the following presentations
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(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z4 × Z2 or D8).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z8).

(iii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a2

0, [ai, aj ] = 1, b−1aib = arii for all
i, j〉, (S0 = Q8).

There are 2s+1 non-isomorphic groups.

(3) If α0 ≥ 3, then A has the following presentations

(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z2α0 × Z2, D2α0+1 , SD2α0+1 , or M2α0+1 ).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z2α0+1 ).

(iii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a2α0−1

0 , [ai, aj ] = 1, b−1aib = arii
for all i, j〉, (S0 = Q2α0+1 ).

There are 6 · 2s non-isomorphic groups.

For each extension groupA appeared so far, the number Isoc(G;A) shall be determined
in the next section.

3 In cases of Z2-extensions of a cyclic p-group
For each group A in the classification of Z2-extensions of a cyclic p-group listed in the
previous section, we aim to determine the number Isoc(G;A) in this section. However, for
an abelian or a dihedral group A, it has already been done in [14]. Hence, we need to do it
only for each group A listed in the last three cases of Theorem 2.3. For a Z2-extension A
of a finite groupH, we call an element x normal type if x ∈ H and quotient type otherwise.
Note thatH is normal inA, and a product of any two normal type elements is normal type.
For any two quotient type elements ab, a′b, their product is aba′b = ab2b−1a′b, and hence
a product of any two quotient type elements is normal type. A word in {x1, . . . , xs} is
any expression of the form yi11 · · · y

ik
k where y1, . . . , yk ∈ {x1, . . . , xs} and i1, . . . , ik ∈

{1,−1}, denoted by w(x1, . . . , xs). The number k is known as the length of the word.
When writing words, it is common to use exponential notation as an abbreviation.

Lemma 3.1. Let A be a Z2-extension of a finite group H. For a subset I of S =
{1, . . . , β}, let

ΩI(A;β) = {(x1, . . . , xβ) ∈ Ω(A;β) : xi is quotient type for exactly indices i ∈ I}.

Then |Ω(A;β)| = (2β − 1)|Ω{1}(A;β)|.

Proof. Recall that

Ω(A;β) = {(x1, . . . , xβ) ∈ Aβ : 〈x1, . . . , xβ〉 = A}.
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For each tuple (x1, . . . , xβ) ∈ Ω(A;β), at least one of entries xi should be quotient type
to generate the whole group A. Then,

Ω(A;β) =
⋃
∅6=I⊆S

ΩI(A;β), disjoint union,

and
|Ω(A;β)| =

∑
∅6=I⊆S

|ΩI(A;β)|.

For any non-empty subset I of S, choose an index j0 ∈ I and define a map
φ : ΩI(A;β) → Ω{j0}(A;β) by replacing all quotient type entries xi for i ∈ I by xj0xi
except xj0 . Then one can see that φ is well-defined and bijective. It follows |ΩI(A;β)| =
(2β − 1)|Ω{j0}(A;β)|. One can assume that j0 = 1 for convenience.

Lemma 3.2. Let A be a Z2-extension of a finite groupH. If each xi is normal type except
x1, then 〈x1, . . . , xβ〉 = A if and only if 〈x2

1, x2, . . . , xβ , x
−1
1 x2x1, . . . , x

−1
1 xβx1〉 = H.

Proof. Assume 〈x2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . x

−1
1 xβx1〉 = H and each xi is normal type

except x1. Then 〈x1, . . . , xβ〉 = 〈x1, x
2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . x

−1
1 xβx1〉 = 〈x1,H〉 =

A. Now assume that 〈x1, . . . , xβ〉 = A. For any g ∈ A, g can be expressed by a
word w(x1, . . . , xβ). For odd k, xixk1 = x1 · (x−1

1 xix1) · (x2
1)(k−1)/2 and for even k,

xix
k
1 = xi · (xk/21 ). Rewrite g, one has

g = w(x1, . . . , xβ) = x`1w(x2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . , x

−1
1 xβx1), ` = 0, 1.

It follows that g is normal type if and only if ` = 0. Therefore, 〈x2
1, x2, . . . , xβ , x

−1
1 x2x1,

. . . , x−1
1 xβx1〉 = H.

Corollary 3.3. Let A be a Z2-extension of a cyclic group Zn. If each xi is a normal type
element except x1, then 〈x1, . . . , xβ〉 = A if and only if 〈x2

1, x2, . . . , xβ〉 = Zn.

We determine |Ω(A;β)| and |Aut(A)| for each groupA listed in the last three cases of
Theorem 2.3 in the following.

Lemma 3.4. Let A be a Z2-extension of a cyclic group Z2n−1 and let A be non-abelian.
Then |Ω(A;β)| = 2(n−2)β+1(2β − 1)(2β−1 − 1).

Proof. By Lemma 3.1, it just needs to determine Ω{1}(A;β). By Corollary 3.3,
〈x2

1, x2, . . . , xs〉 = Z2n−1 if and only if (x1, . . . , xs) ∈ Ω{1}(A;β). By the last three cases
of Theorem 2.5, one can assume b2 = at with t = 0 or 2n−2 for a generator a of Z2n−1 .
Note that x1 is quotient type, say x1 = bai. Then x2

1 = b2 · b−1aib · ai = b2ai(1+r) =
at+i(1+r) with r ∈ {−1,±1 + 2n−2}. Suppose x2

1 generates Z2n−1 . Then t+ i(1 + r) ≡ 1
(mod 2). But it is impossible by checking case by case. So 〈x2, . . . , xs〉 = Z2n−1 . By
|Ω(Z2n−1 ;β − 1)| = 2(n−2)(β−1)(2β−1 − 1), which was shown by Kwak et al. in [14], it
follows |Ω(A;β)| = (2β−1)2n−1|Ω(Z2n−1 ;β−1)| = 2(n−2)β+1(2β−1)(2β−1−1).

Lemma 3.5. For n ≥ 4,

(1) |Aut(Z2n)| = 2n−1,

(2) |Aut(Z2n−1 × Z2)| = 2n,
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(3) |Aut(D2n)| = 22n−3,

(4) |Aut(Q2n)| = 22n−3,

(5) |Aut(M2n)| = 2n,

(6) |Aut(SD2n)| = 22n−4.

Proof. Since the first three cases have been shown in [14], we only need to show the last
three cases. To do this separately, letA be a Z2-extension of a cyclic group Z2n−1 and let an
automorphism σ ∈ Aut(A) be of the form a 7→ aibk, b 7→ ajb` with 0 ≤ i, j ≤ 2n−1 − 1
and 0 ≤ k, ` ≤ 1.

(4) Since the identity (aib)2 = bb−1aibaib = b2 gives the orders o(aib) = 4 and o(a) =
2n−1 6= 4 for n ≥ 4, the image σ(ai) should be of the form ai with (i, 2n−1) = 1.
The surjectivity of σ implies that the choices of σ(b) are ajb with j = 0, . . . , 2n−1−
1. Moreover, all of such possible choices σ(a) and σ(b) satisfy the defining relations
of Q2n . Hence |Aut(Q2n)| = 22n−3 by counting the choices of σ(a) and σ(b), that
is, the choices of i, j, k, `.

(5) If k = 0, then σ(a) = ai for some i with (i, 2n−1) = 1. If k = 1, then σ(a) = aib
for some i with (i, 2n−1) = 1, because the order preserving condition says o(aib) =

o(a) = 2n−1, and (aib)m = bmai(1+···+rm−1) for all m ≥ 1, where r = 1 + 2n−2.
Next, we determine the possible values of σ(b). If ` = 0, then j should be 2n−2.
In this case, all possible values σ(a) and σ(b) do not satisfy the defining relations of
M2n . Thus it should be ` = 1. Now the order condition o(akb) = o(b) = 2 implies
j = 2n−2 or 0. Consequently, σ has four different forms.

(i) a 7→ ai, b 7→ b,
(ii) a 7→ ai, b 7→ a2n−2

b,
(iii) a 7→ aib, b 7→ b,
(iv) a 7→ aib, b 7→ a2n−2

b.

In these four cases, σ(a) and σ(b) satisfy the defining relations of M2n . Therefore,
the four different cases give |Aut(M2n)| = 2n.

(6) Since (aib)2 = ai·2
n−2

, one gets o(aib) = 2 for even i and o(aib) = 4 for odd i.
Hence σ should be of the form a 7→ ai, b 7→ ajb with (i, 2n−1) = 1 and j even.
Moreover, all such possible values σ(a) and σ(b) satisfy the defining relations of
SD2n . So |Aut(SD2n)| = 22n−4.

As a special case, |Aut(Q8)| = 24 which is not included in the above lemma. From
Theorem 1.2 and Lemmas 3.4 and 3.5, one can get the following theorem.

Theorem 3.6. For a Z2-extension of A a cyclic group Z2n−1 for n ≥ 2,

Isoc(G;A) =



2(β−1)(n−1)(2β − 1) if A is Z2n ,

2(β−2)(n−2)+(n−3)(2β − 1)(2β−1 − 1) if A is Z2n−1 × Z2,

2(β−2)(n−2)(2β − 1)(2β−1 − 1) if A is D2n for n ≥ 3,

2(β−2)(2β − 1)(2β−1 − 1)/3 if A is Q8,

2(β−2)(n−2)(2β − 1)(2β−1 − 1) if A is Q2n for n ≥ 4,

2(β−1)(n−2)−1(2β − 1)(2β−1 − 1) if A is M2n for n ≥ 4,

2(β−2)(n−2)+1(2β − 1)(2β−1 − 1) if A is SD2n for n ≥ 4,
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where the first three cases were shown in [14].

By using the Möbius function, Isoc(G;A) can also be determined. For example, for
a generalized quaternion group Q2n , a proper subgroup S of Q2n is isomorphic to Z2m

or Q(i)
2m , where Z2m = 〈a2n−m−1〉 and Q(i)

2m = 〈a2n−m
, aib〉 for m ∈ {1, . . . , n − 1} and

i ∈ {0, . . . , 2n−m − 1}. From the subgroups lattice of Q2n , see Figure 1, one has

µ(S) =


1 if S = Q2n ,

−1 if S = Z2n−1 ,Q(0)
2n−1 or Q(1)

2n−1 ,

2 if S = Z2n−2 ,

0 otherwise.

Q2n

Z2n−1 Q(0)
2n−1 Q(1)

2n−1

Z2n−2 Q(0)

2n−2 Q(1)

2n−2 Q(2)

2n−2 Q(3)

2n−2

Z4 Q(0)
4 Q(1)

4

Z2

1

Q(2)
4 Q(2n−2−1)

4Q(2n−2−2)
4

Figure 1: The subgroup lattice of Q2n .

It follows from Theorem 1.3

Isoc(G;Q2n) =

{
1
3 (23β−3 − 3 · 22β−3 + 2β−2) if n = 3,

1
22n−3 (2βn − 3 · 2β(n−1) + 2β(n−2)+1) if n > 3,

which coincides with the formula given in Theorem 3.6.
If A ∼= M2n , then every proper subgroup S of M2n is isomorphic to Zm or M(i)

2m

for m ∈ {2, . . . , n − 1} and i ∈ {0, 1}, where Z2m = 〈a2n−m−1〉, M(0)
2m = 〈a2n−m

, b〉
and M(1)

2m = 〈a2n−m
, a2n−m−1

b〉. If m = 1, then S is isomorphic to Z(0)
2 = 〈an−2〉

or Z(1)
2 = 〈an−2b〉. Now from the subgroups lattice of M2n illustrated in Figure 2 and

|Aut(M2n)| = 2n, one can have

Isoc(G;M2n) =
1

2n
(2nβ − 3 · 2(n−1)β + 2(n−2)β+1),
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M2n

M(0)
2n−1 M(1)

2n−1Z2n−1

Z2n−2 M(0)

2n−2 M(1)

2n−2

Z4 M(0)
4 M(1)

4

Z(0)
2 Z(1)

2

1

Figure 2: The subgroup lattice of M2n .

which coincides exactly with the result in Theorem 3.6.
Also, by using the Möbius function, one can show that

Isoc(G;SD2n) =
1

22n−4
(2nβ − 3 · 2(n−1)β + 2(n−2)β+1).

For some small β and n, the numbers Isoc(G;A) are tabulated in Table 1.

Table 1: The number Isoc for small β and n.

Isoc
(β, n) Z2n Z2n−1 × Z2 D2n Q2n M2n SD2n A
(2, 3) 12 3 3 1 0 0 22
(2, 4) 24 6 3 6 24 6 69
(2, 4) 48 12 3 6 48 6 123
(3, 3) 112 42 42 56 0 0 252
(3, 4) 448 168 84 168 672 168 1708
(3, 5) 1792 672 168 336 2688 336 5992
(4, 3) 960 420 420 560 0 0 2360
(4, 4) 7680 3360 1680 3360 13440 3360 32880
(4, 5) 61440 26880 6720 13440 107520 13440 229440
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4 In cases of Z2-extensions of any cyclic groups
In this section we determine Isoc(G;A) for a Z2-extension A of a cyclic group Zn (of any
order n, not necessarily to be a p-group). Again, let A be a Z2-extension of a cyclic group
Zn ∼= Zpα0

0
× Zpα1

1
× · · · × Zpαss and let n = pα0

0 pα1
1 · · · pαss be the prime decomposition

with p0 = 2. Let the b-conjugation on Zn correspond to an (s + 1)-tuple (r0, r1, . . . , rs),
where r0 ∈ {±1,±1 + 2α0−1} and ri = ±1 for i ∈ {1, . . . , s} with−1 in exactly t entries
`1, . . . , `t. Let n = 2α0n1n2 with n1 =

∏t
j=1 p

α`j
`j

. Then A is isomorphic to B × Zn2

where B is a Z2-extension of Zn1
since any element of Zn2

commutes with each element
of A. Since (|B|, |Zn1

|) = 1, one has Isoc(G;B × Zn1
) = Isoc(G;B) · Isoc(G;Zn1

),
as shown in [14]. Because Isoc(G;Zn1) has already been determined, we just need to
determine Isoc(G;B).

Lemma 4.1. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× · · · × Zpαss with

p0 = 2 and s ≥ 1, and let n = 2α0m. Let the b-conjugation on Zn correspond to an
(s + 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and all other ri’s are −1.
Then

|Ω(B;β)| =

{
(2β − 1)m2α0β |Ω(Zm;β − 1)| if 2α0+1 | o(b),
(2β − 1)m2α0 |Ω(Z2α0m;β − 1)| otherwise.

Proof. By Theorem 2.5, one can assume b2 = at0 with t ∈ {0, 1, 2α0−1}. By Lemma 3.1,
it just needs to determine |Ω{1}(B;β)|. Take (x1, . . . , xβ) ∈ Ω{1}(A;β). Note that x1 is a
quotient type element and other xi’s are all normal type. Since

Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss ,

any element of Zn can be presented gihi with gi ∈ Zpα0
0

and hi ∈
∏β
i=1 Zpαii . So x1

can be presented by g1h1b and other xi’s can be presented by gihi. By Corollary 3.3,
〈x1, . . . , xβ〉 = B if and only if 〈x2

1, x2, . . . , xβ〉 = Zn. By x2
1 = (g1h1b)

2 = b2g1+r0
1 ,

one has 〈b2g1+r0
1 , g2h2, . . . , gβhβ〉 = Zn ∼= Zpα0

0
×· · ·×Zpαss . Recall that b2 = at0 ∈ Zpα0

0

with p0 = 2, then 〈b2g1+r0
1 , g2, . . . , gβ〉 = Zpα0

0
and 〈h2, . . . , hβ〉 = Zpα1

1
× · · · × Zpαss .

So (b2g1+r0
1 , g2, . . . , gβ) ∈ Ω(Z2α0 ;β), (h2, . . . , hβ) ∈ Ω(Zpα1

1
× · · · × Zpαss ;β − 1).

To count the choice of (x1, . . . , xβ), equivalently to count the number of (g1, . . . , gβ) and
(h1, . . . , hβ). When computing x2

1 = b2g1+r0
1 , h1 can be any element of

∏β
i=1 Zpαii , and

it follows h1 has m choices by m =
∏β
i=1 p

αi
i . The number of choices of (h2, . . . , hβ) is

equal to |Ω(Zm;β − 1)|. Hence number of choices of (h1, . . . , hβ) is m|Ω(Zm;β − 1)|.
Now we determine the number of choices of (g1, . . . , gβ) in the following.

Assume that 2α0+1 | o(b) and it follows t = 1. Then the Sylow 2-subgroup of B is
Z2α0+1 . By Theorem 2.5, 〈b2〉 = 〈a0〉 = Z2α0 and r0 = 1. Since g1 ∈ Z2α0 , one
has 〈b2g1+r0

1 〉 = 〈b2g2
1〉 = 〈b2〉 = Z2α0 . By 〈b2g1+r0

1 , g2, . . . , gβ〉 = 〈b2〉 = Z2α0 ,
(g1, . . . , gβ) has 2α0β choices. So |Ω{1}(B;β)| = 2α0βm|Ω(Zm;β − 1)|, and it follows
|Ω(B;β)| = (2β − 1)m2α0β |Ω(Zm;β − 1)|.

If 2α0+1 does not divide o(b), then, by Theorem 2.5, b2 = at0 with t ∈ {0, 2α0−1}. If
t = 0, then b2 = 1 and r0 ∈ {±1,±1 + 2α0−1}. It follows b2g1+r0

1 = 1, g2
1 , g

2α0−1

1 or
g2+2α0−1

1 . So g1+r0 can not be the generator of Z2α0 . If t = 2α0−1, then r0 = −1. Then
b2g1+r0

1 = a2α0−1

0 , again, b2g1+r0
1 can not generate Z2α0 . So 〈b2g1+r0

1 , g2, . . . , gβ〉 =
Z2α0 if and only if 〈g2, . . . , gβ〉 = Z2α0 . It follows (g2, . . . , gβ) ∈ Ω(Z2α0 ;β − 1) and g1
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is any element in Z2α0 . Then (g1, . . . , gβ) has 2α0 |Ω(Z2α0 ;β−1)| choices. So |Ω(B;β)| =
(2β − 1)m2α0 |Ω(Z2α0m;β − 1)|.

Lemma 4.2. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss

with p0 = 2 and s ≥ 1, and let n = 2α0m. Let the b-conjugation on Zn correspond to an
(s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and all other ri’s are −1.

(1) If r0 = 1, then

|Aut(B)| =

{
2α0mϕ(n) if 2α0+1 | o(b),
2mϕ(n) otherwise.

(2) If r0 = −1, then |Aut(B)| = 2α0mϕ(n).

(3) If r0 = 1 + 2α0−1, then |Aut(B)| = 2mϕ(n).

(4) If r0 = −1 + 2α0−1, then |Aut(B)| = 2α0−1mϕ(n).

Proof. Again, one can assume that b2 = at0 with t ∈ {0, 1, 2α0−1}. For an automor-
phism σ of B, σ(ak) should be of the form aikk with (ik, p

αk
k ) = 1 for k ∈ {1, . . . , s}

since σ is order-preserving. Suppose that σ(a0) is quotient type, then b−1akb = ak since
σ(a0) commutes with σ(ak) for each k. So ri = 1 for each i ∈ {1, . . . , s}, which is
a contradiction. Then σ(a0) is normal type, say σ(a0) = ai00 with (i0, 2

α0) = 1. As-
sume σ(b) = au0

0 au1
1 · · · auss b. We need to count the number of choices of u0, . . . , uβ .

By computing, (au0
0 au1

1 · · · auss b)2 = b2a
u0(1+r0)
0 · · · auβ(1+rβ)

β = b2a
u0(1+r0)
0 . Note that

o(σ(b)) = o(b) and o(b) is even. By hypothesis, r1 = · · · = rβ = −1, and it follows
(σ(b))2 = b2a

u0(1+r0)
0 . Then ui can be any element of Zpαii for i ∈ {1, . . . , s}. Now it

needs to determine the number of choices of u0.

(1) If r0 = 1 and o(b) = 2α0+1, then (σ(b))2 = b2a2u0
0 . By Theorem 2.5, b2 = a0 in

this case. Then o(b2a2u0
0 ) = o(b2) = 2α0 , and it follows u0 has 2α0 choices. Hence

|Aut(B)| = 2α0mϕ(n). If r0 = 1 and o(b) = 2, then u0 can be 0 or 2α0−1. So
|Aut(B)| = 2mϕ(n).

(2) If r0 = −1, then (σ(b))2 = b2 and o(b) is 2 or 4, by Theorem 2.5. So u0 can be any
element of Z2α0 and has 2α0 choices. It follows |Aut(B)| = 2α0mϕ(n).

(3) If r0 = 1 + 2α0−1, then o(b) = 2. So (σ(b))2 = b2a
u0(2+2α0−1)
0 = a

u0(2+2α0−1)
0 =

1. If follows u0(2 + 2α0−1) ≡ 0 (mod 2α0). Then u0 has 2 choices: 0 or 2α0−1.
Hence |Aut(B)| = 2mϕ(n).

(4) If r0 = −1+2α0−1, then o(b) = 2. So (σ(b))2 = au02α0−1

0 = 1. Then u02α0−1 ≡ 0
(mod 2α0), and it follows u0 has 2αR0−1 choices. Hence |Aut(B)| = 2α0−1mϕ(n).

The next lemma follows from Theorem 1.2 and Lemmas 4.1 and 4.2.

Lemma 4.3. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss

and let n = pα0
0 pα1

1 · · · pαss be the prime decomposition with p0 = 2. Let the b-conjugation
on Zn correspond to an (s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and
all other ri’s are −1.
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(1) If r0 = 1,

Isoc(G;B) =


1

ϕ(n) (2β − 1)2α0β−α0

s∏
i=1

p
(αi−1)(β−1)
i (pβ−1

i − 1) if 2α0+1 | o(b),

1
ϕ(n) (2β − 1)2α0−1

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1) otherwise.

(2) If r0 = −1, then

Isoc(G;B) =
1

ϕ(n)
(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

(3) If r0 = 1 + 2α0−1, then

Isoc(G;B) =
1

ϕ(n)
2α0−1(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

(4) If r0 = −1 + 2α0−1, then

Isoc(G;B) =
1

ϕ(n)
2(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

Now one can get main theorem of this section.

Theorem 4.4. LetA be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
×Zpα1

1
× · · · ×Zpαss

and let n = pα0
0 pα1

1 · · · pαss be the prime decomposition with p0 = 2. Let the b-conjugation
on Zn correspond to an (s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and
ri = ±1 for i ∈ {1, . . . , s} with −1 in exactly t entries `1, . . . , `t. Let J = {`1, . . . , `t},
K = {1, . . . , s} − J and

N =
1

ϕ(n)
(2β − 1)

∏
i∈J

p
(αi−1)(β−1)
i (pβ−1

i − 1)
∏
i∈K

p
(αi−1)β
i (pβi − 1).

Then Isoc(G;A) = TN, where

T =



2α0β−α0 if r0 = 1 and 2α0+1 | o(b),
2(α0−1)β(2β−1 − 1) if r0 = 1 and 2α0+1 - o(b),
2(α0−1)(β−1)(2β−1 − 1) if r0 = −1,

2(α0−1)β(2β−1 − 1) if r0 = 1 + 2α0−1,

2(α0−1)(β−1)−1(2β−1 − 1) if r0 = 1 + 2α0−1.

Example 4.5. Let A be a Z2-extension of a cyclic group Z1260
∼= Z4 × Z32 × Z5 × Z7 =

〈a0〉×〈a1〉×〈a2〉×〈a3〉. By Theorem 2.5, the b-conjugation on Zn corresponds to a 4-tuple
(r0, r1, r2, r3), where ri = ±1 for i ∈ {0, 1, 2, 3}. Take (r0, r1, r2, r3) = (1,−1,−1, 1)
and β = 3 as an example. One has Isoc(G;A) = Isoc(G;B) Isoc(G;Z7), where B is a Z2-
extension of Z180. By Lemmas 4.1 and 4.2, |Ω(B; 3)| = (23 − 1)|Ω1(B; 3)| = 34836480
and |Aut(B)| = 4320. It follows that Isoc(G;B) = 8064. By Isoc(G;Z7) = 57, one gets
Isoc(G;A) = 459648.
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5 In cases of Z2-extensions of an abelian group
Naturally, we are interested in extending the counting problem of the previous two sections
to the case of a Z2-extension of an abelian group. To do this, we need to classify Z2-
extensions of an arbitrary abelian group, but we can not give a complete answer so far, see
Section 6. So we just count two special cases, generalized dihedral groups or generalized
dicyclic groups.

5.1 With generalized dihedral groups

LetH be an abelian group. A generalized dihedral group Dih(H), as a Z2-extension ofH,
is defined with relations

b2 = 1, b−1ab = a−1, for all a ∈ H.

It is a semidirect product of H and Z2, with Z2 acting on H by inverting elements. When
H is cyclic, Dih(H) is just a dihedral group.

Lemma 5.1. H is a characteristic subgroup of Dih(H).

Proof. Take an automorphism σ ∈ Aut(Dih(H)). Note that the order of a quotient type
element is 2. For any element a of odd order in Dih(H), σ(a) should be normal type since
σ is order-preserving. For an element a0 of even order, suppose that σ(a0) is a quotient
type element. Since a0 commutes with a as an element of odd order, σ(a0) commutes
σ(a). Then b commutes a, which is a contradiction. Then σ(a) ∈ H for any a ∈ H. Hence
H is a characteristic subgroup of Dih(H).

Now, |Aut(Dih(H))| = |H| · |Aut(H)|. By Lemmas 3.1 and 3.2, one can show that
|Ω(Dih(H);β)| = (2β − 1)|Ω{1}(H;β − 1)| = (2β − 1)|H||Ω(H;β − 1)|. Each abelian
group can be decomposed into direct product of abelian p-group, namely,H ∼= Hp1×· · ·×
Hps with pi prime. Then |Ω(Dih(H);β)| = (2β−1)|H||Ω(Hp1 ;β−1)| · · · |Ω(Hps ;β−1)|.
It just needs to determine Isoc(G; Dih(Hp)) for a prime integer p. Since |Ω(Hp;β − 1)| is
determined in [14], one gets

Theorem 5.2. For a generalized dihedral group Dih(Hp) and Hp = m1Zps1 × · · · ×
m`Zps` with m1, . . . ,m` and s1, . . . , s` are positive integers satisfying s` < · · · < s1, one
can obtain

Isoc(G; Dih(Hp)) = (2β − 1)pf(β−1,mi,si)

∏m
i=1 p

β−i − 1∏`
j=1

∏mj
h=1 p

mj−h+1 − 1
,

where m = m1 + · · ·+m` and

f(β−1,mi, si) = (β − 1−m)

(∑̀
i=1

mi(si − 1)

)
+

`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

 .

5.2 With generalized dicyclic groups

A generalized dicyclic group Dic(H), as another Z2-extension of an abelian group H, is
defined with relations

b2 = c, b−1ab = a−1,
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where c is an involution of H and a is an arbitrary element of H. Similarly, one can have
the coming lemma.

Lemma 5.3. H is a characteristic group of Dic(H). Hence

|Aut(Dic(H))| = |H| · |Aut(H)|.

Theorem 5.4. For a generalized dicyclic group Dic(Hp) andHp = m1Zps1×· · ·×m`Zps`
with m1, . . . ,m` and s1, . . . , s` are positive integers satisfying s` < · · · < s1, one can
obtain

Isoc(G; Dih(Hp)) = 2(2β − 1)pf(β−1,mi,si)

∏m
i=1 p

β−i − 1∏`
j=1

∏mj
h=1 p

mj−h+1 − 1
,

where m = m1 + · · ·+m` and

f(β−1,mi, si) = (β − 1−m)

(∑̀
i=1

mi(si − 1)

)
+

`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

 .

6 Further remarks
In this paper, we enumerate the regular coverings of a graph whose covering transformation
groups are Z2-extensions of a cyclic group. However, we could not give a complete answer
of this problem if A is a Z2-extension of any abelian groupH.

However, we cannot answer the same enumeration problem when the cyclic group is
replaced by an abelian group, even by an elementary abelian p-group. In fact the difficulty
for authors is how to determine all involutions of Aut(H). The counting problem has
studied by many researchers, for example, in [21], it gave a generating function for the
number of involutions of GL(n, p) which is isomorphic to automorphism group of Zp ×
· · ·×Zp. For more results, see [2], [5], [3] and so on. But it is still hard for us to determine
the specific form of each involution of GL(n, p).

For further possible problems unsolved in this paper, we list in the following.

(1) Isoc(G;A) if A is a Z2-extension of any abelian group.

(2) Isoc(G;A) if A is a Zp-extension of any cyclic group.

(3) Isoc(G;A) if A is any metacyclic group.
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[2] D. Ž. Djoković, Product of two involutions, Arch. Math. 18 (1967), 582–584, doi:10.1007/
bf01898863.

[3] J. Fulman, R. Guralnick and D. Stanton, Asymptotics of the number of involutions in finite
classical groups, J. Group Theory 20 (2017), 871–902, doi:10.1515/jgth-2017-0011.

[4] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assign-
ments, Discrete Math. 18 (1977), 273–283, doi:10.1016/0012-365x(77)90131-5.



J.-B. Liu et al.: Enumerating regular graph coverings whose covering transformation groups . . . 223

[5] W. H. Gustafson, P. R. Halmos and H. Radjavi, Products of involutions, Linear Algebra Appl.
13 (1976), 157–162, doi:10.1016/0024-3795(76)90054-9.

[6] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 187–190,
doi:10.4153/cjm-1949-017-2.

[7] C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114
(2007), 917–923, doi:10.1080/00029890.2007.11920485.

[8] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437–444, doi:
10.1002/jgt.3190120316.

[9] S. Hong, J. H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups
have the isomorphism extension property, Discrete Math. 148 (1996), 85–105, doi:10.1016/
0012-365x(94)00266-l.

[10] I. M. Isaacs, Finite Group Theory, volume 92 of Graduate Studies in Mathematics, American
Mathematical Society, Providence, Rhode Island, 2008, doi:10.1090/gsm/092.

[11] D. L. Johnson, Presentations of Groups, volume 15 of London Mathematical Society
Student Texts, Cambridge University Press, Cambridge, 2nd edition, 1997, doi:10.1017/
cbo9781139168410.

[12] G. A. Jones, Enumeration of homomorphisms and surface-coverings, Quart. J. Math. Oxford
46 (1995), 485–507, doi:10.1093/qmath/46.4.485.

[13] G. A. Jones, Counting subgroups of non-Euclidean crystallographic groups, Math. Scand. 84
(1999), 23–39, doi:10.7146/math.scand.a-13930.

[14] J. H. Kwak, J.-H. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian
covering transformation groups, SIAM J. Discrete Math. 11 (1998), 273–285, doi:10.1137/
s0895480196304428.

[15] J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996),
105–109, doi:10.1002/(sici)1097-0118(199606)22:2〈105::aid-jgt2〉3.0.co;2-r.

[16] J. H. Kwak and J. Lee, Distribution of branched Dp-coverings of surfaces, Discrete Math. 183
(1998), 193–212, doi:10.1016/s0012-365x(97)00030-7.

[17] J. H. Kwak, J. Lee and A. Mednykh, Coverings, enumeration and hurwitz problems, in:
J. Koolen, J. H. Kwak and M.-Y. Xu (eds.), Applications of Group Theory to Combinatorics,
CRC Press, London, pp. 71–107, 2008, selected papers from the Com2MaC Conference on
Applications of Group Theory to Combinatorics, Pohang, Korea, 9 – 12 July 2007.

[18] J. H. Kwak and M. Y. Xu, Finite Group Theory for Combinatorists, unpublished.

[19] V. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Appl.
Math. 52 (1998), 91–120, doi:10.1023/a:1005950823566.

[20] V. A. Liskovets, On the enumeration of subgroups of a free group, Dokl. Akad. Nauk BSSR 15
(1971), 6–9.

[21] K. E. Morrison, Integer sequences and matrices over finite fields, J. Integer Seq. 9 (2006),
Article 06.2.1, https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/
morrison37.html.





ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 15 (2018) 225–266
https://doi.org/10.26493/1855-3974.1115.90f

(Also available at http://amc-journal.eu)

Enumeration of hypermaps of a given genus∗

Alain Giorgetti †

FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS
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Abstract

This paper addresses the enumeration of rooted and unrooted hypermaps of a given
genus. For rooted hypermaps the enumeration method consists of considering the more
general family of multirooted hypermaps, in which darts other than the root dart are dis-
tinguished. We give functional equations for the generating series counting multirooted
hypermaps of a given genus by number of darts, vertices, edges, faces and the degrees of
the vertices containing the distinguished darts. We solve these equations to get parametric
expressions of the generating functions of rooted hypermaps of low genus. We also count
unrooted hypermaps of given genus by number of darts, vertices, hyperedges and faces.

Keywords: Enumeration, surface, genus, rooted hypermap, unrooted hypermap.

Math. Subj. Class.: 05C30, 05A15

1 Introduction
A (combinatorial) hypermap is a triple (D,R,L) whereD is a finite set of darts andR and
L are permutations on D such that the group 〈R,L〉 generated by R and L acts transitively
on D. A (combinatorial ordinary) map is a hypermap (D,R,L) whose permutation L is
a fixed-point-free involution on D. For a hypermap (resp. map) the orbits of R, L and
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RL (L followed by R) are respectively called vertices, hyperedges (resp. edges) and faces.
The degree of a vertex, edge, hyperedge or face is the number of darts it contains. The
equivalence of combinatorial maps and topological maps having been established in [14],
we use the word “map” to mean “combinatorial map” throughout this paper. The genus g
of a map is given by the Euler-Poincaré formula [7]

v − e+ f = 2(1− g), (1.1)

where v is the number of vertices, e is the number of edges and f is the number of faces.
The genus of a hypermap with t darts, v vertices, e hyperedges and f faces was defined
in [13] by the formula

v + e+ f = t+ 2(1− g). (1.2)

An isomorphism between two maps or hypermaps (D,R,L) and (D′, R′, L′) is a bi-
jection from D onto D′ that takes R into R′ and L into L′; it corresponds to an orientation-
preserving homeomorphism between two topological maps. A sensed hypermap (resp.
map) is an isomorphism class of hypermaps (resp. maps). We admit the existence of a
unique hypermap (resp. map) with an empty set of darts D, called the empty hypermap
(resp. map). For both of these objects v = f = 1 and g = e = 0. A rooted hypermap (resp.
map) is either the empty hypermap (resp. map) or a tuple (D,x,R,L) where (D,R,L) is
a non-empty combinatorial hypermap (resp. map) and x ∈ D is a distinguished dart, called
the root.

The enumeration of maps and hypermaps has several non-trivial applications. One such
application is based on the correspondence between hypermaps and algebraic curves estab-
lished by the Belyi theorem [16]. For instance, the formula for the number of plane trees
was used by A. Zvonkin in the computer generation of Shabat polynomials of bounded
degree [16]. Another area where the map enumeration plays an important role is theoret-
ical physics, in particular in 2-dimensional gravitation models. Roughly speaking, map
enumeration is used to compute matrix integrals determining the properties of gravitational
fields (see for instance the works of B. Eynard [9]). Some hypermaps have been shown to
be related to contextuality in quantum physics [21]. Also, A. Mednykh and R. Nedela have
applied the enumeration of rooted (resp. unrooted) hypermaps to the enumeration of sub-
groups (resp. conjugacy classes of subgroups) of the triangle group with three generators
x, y, z and the relation xyz = 1 [20].

We enumerate rooted hypermaps of a given genus by number of darts, vertices, hyper-
edges and faces. To do so we consider more general families of rooted hypermaps and
bipartite maps, in which other vertices or darts than the root dart are distinguished. We
also use the genus-preserving bijection between hypermaps and 2-vertex-coloured bipar-
tite maps presented in [23]. But since bipartite maps have all their faces of even degree
and we’re using the degrees of the vertices as parameters, we must instead study the face-
vertex dual of a 2-coloured bipartite map, that is, a map whose faces are coloured in two
colours (white and black) so that no two faces that share an edge have the same colour. All
these maps are Eulerian – that is, all their vertices are of even degree – but not all Eule-
rian maps are 2-face-colourable. For example, the map on the torus with one vertex, one
face and two edges is Eulerian because its only vertex is of degree 4, but its face cannot
be coloured because it shares both edges with itself. Therefore we call the maps we are
studying face-bipartite.

A sequenced (rooted) map is a rooted map with some vertices other than the root vertex
(the vertex that contains the root) distinguished from each other and from all the other
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vertices. The labels that distinguish these vertices can be taken to be 1, 2, . . . , k, where k is
the number of distinguished vertices. A sequenced (rooted) hypermap is defined similarly.
We state (in Section 4) a bijective decomposition for the setH(g, t, f, e, n,D) of sequenced
orientable hypermaps of genus g with t darts, f faces and e hyperedges, with the root
vertex of degree n and with the sequence of degrees of the distinguished vertices equal to
D = (d1, d2, . . . , d|D|), where di is the degree of the distinguished vertex with label i.
We obtain a bijective decomposition of the set F(g, e, w, b, n,D) of sequenced orientable
face-bipartite maps of genus g with e edges, w white faces, b black faces, with the root face
of degree 2n and with the sequence of half-degrees of the distinguished vertices equal toD.
Then we apply face-vertex duality to obtain a bijective decomposition of the corresponding
set of 2-coloured bipartite maps with distinguished faces. Next we use the bijection in [23]
to obtain a bijective decomposition for hypermaps with distinguished faces, and finally we
again apply face-vertex duality to obtain a bijective decomposition ofH(g, t, f, e, n,D).

A mutirooted hypermap is a hypermap in which a non-empty sequence of darts with
pairwise distinct initial vertices is distinguished. We relate multirooted hypermaps to se-
quenced hypermaps and thus obtain a recurrence for the number of multirooted hypermaps
and functional equations for the generating series counting multirooted hypermaps of a
given genus by number of darts, vertices, edges, faces and the degrees of the initial vertices
of the distinguished darts.

The paper is organized as follows. Section 2 fixes some notations, recalls a known
decomposition for sequenced rooted maps and describes the bijection between hypermaps
and bipartite maps presented in [23]. Sections 3 and 4 respectively enumerate sequenced
face-bipartite maps and sequenced rooted hypermaps of a given genus. In Section 5 we con-
sider multirooted hypermaps and we give equations for the generating functions that count
these objects. In Section 6 we give functional equations relating the generating functions
for rooted hypermaps with that for multirooted hypermaps. Then we show how to solve
these equations. In Section 7 we obtain parametric expressions for the generating functions
that count rooted hypermaps with a given small positive genus. Section 8 presents enumer-
ation algorithms for sensed unrooted hypermaps counted by number of darts, vertices and
hyperedges. Appendix A (resp. B) contains a table for numbers of rooted (resp. unrooted)
hypermaps of genus g with d darts, v vertices and e hyperedges for d ≤ 14.

2 Background
2.1 Notations

We first introduce the notations and conventions we use throughout the paper. Let D and
D′ be two lists of integers. The inclusion D′ ⊆ D means that D′ is a sublist of D. In
this case D − D′ is the complementary sublist of D′ in D. For instance, the sublists of
D = [1, 1, 2] are the empty list [ ], [1] (twice), [2], [1, 1], [1, 2] (twice) and D itself. Their
complementary sublists in the same order are D, [1, 2] (twice), [1, 1], [2], [1] (twice) and
[ ]. We denote by D.D′ the concatenation of the lists D and D′. If i is an integer and D
is a list of integers, then i.D is a shortcut for [i].D. For 1 ≤ j ≤ |D| we denote by dj
the j-th element of the list D of length |D| and by D − {dj} the list obtained from D by
removing its j-th element dj . Let ρ be a positive integer. The abbreviation D1..ρ denotes
the list [d1, . . . , dρ]. The abbreviation vD1..ρ

1..ρ denotes vd11 . . . v
dρ
ρ .

The sign + (resp.
∑

) denotes (resp. generalized) disjoint set union in the following
decompositions and (resp. generalized) arithmetic sum in the following equations. By con-
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vention, a disjoint set union (resp. sum) over an empty domain is equal to the empty set
(resp. zero). For any logical formula ϕ the notation ∆ϕ means the singleton set containing
only the empty hypermap or map (depending on the context) and the empty set if ϕ is false.
The notation δϕ means 1 if ϕ is true and 0 if ϕ is false.

2.2 Bijective decomposition of the set of sequenced maps

In 1962 W. T. Tutte [22] presented a bijective decomposition of a planar map with all
the vertices distinguished and a root in every vertex. In 1972 T. R. Walsh and A. B.
Lehman [27] generalized this decomposition to maps of higher genus and used it to count
rooted maps of a given genus by number of vertices and faces. In 1987 D. Arquès [3] used
this latter decomposition to find a closed-form formula for the number of rooted maps of
genus 1 by number of vertices and faces. In 1991 E. A. Bender and E. A. Canfield [4]
presented a more efficient decomposition that roots only a single vertex and distinguishes
only as many other vertices as necessary and used it to obtain explicit formulas for counting
rooted maps of genus 2 and 3. In 1998 the first author [11] modified this decomposition
and used it to obtain a bijective decomposition satisfied by the setM(g, e, f, n,D) of se-
quenced orientable maps of genus g with e edges and f faces, with the root vertex of degree
n and with D the list of degrees of the distinguished vertices was obtained in [11]. Since
this bijective decomposition contains an error, we present the correct bijective decompo-
sition here, and we derive it to make the derivation more accessible than the contents of a
Ph. D. thesis.

Theorem 2.1. The set M(g, e, f, n,D) of sequenced orientable maps of genus g with e
edges and f faces, with the root vertex of degree n and with the list D of degrees of the
distinguished vertices is defined by the bijective decomposition

M(g, e, f, n,D) =∑
g1 + g2 = g

e1 + e2 = e− 1
f1 + f2 = f

n1 + n2 = n− 2
D1 ⊆ D

M(g1, e1, f1, n1, D1)×M(g2, e2, f2, n2, D −D1)

+

n−3∑
p=1

M(g − 1, e− 1, f, n− 2− p, p.D)× {1, . . . , p} (2.1)

+

p=2e−2∑
p=n−1

M(g, e− 1, f, p,D)

+

|D|∑
j=1

M(g, e− 1, f, dj + n− 2, D − {dj}) + ∆(g,e,f,n,D)=(0,0,1,0,[ ]).

Proof. If a map m has at least one edge, we reduce by 1 the number of edges by the face-
vertex dual of deleting the root edge. There are two cases of this operation, depending
upon whether the root edge is a loop or a link, and each of these cases breaks down into
two sub-cases.

Case 1: The root edge is a loop. We delete the root edge and split the root vertex into two
parts, s1 and s2. If r is the root, then s1 consists of the darts R(r), R2(r), . . . , R−1(L(r))
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and s2 consists of the darts R(L(r)), R2(L(r)), . . . , R−1(r). This case breaks down into
two cases, depending upon whether or not this operation disconnects the map.

Case 1a: This operation disconnects the map into two maps, m1 containing s1 and m2

containing s2. Ifm1 has at least 1 edge, its root is r1 = R(r), and if m2 has at least 1 edge,
its root is r2 = R(L(r)). Let g1, e1, f1, n1, D1 and g2, e2, f2, n2, D2 be the parameters of
the maps m1 and m2, respectively, corresponding to g, e, f , n, D. This operation reduces
by 1 the total number of edges; so e1 + e2 = e − 1. It leaves unchanged the total number
of faces because r and L(r) simply get deleted from the cycle(s) of RL (L followed by R)
containing them; so f1 + f2 = f . It increases by 1 the total number of vertices; so from
Formula (1.1), which relates the genus of a map to the number of its vertices, faces and
edges, it can easily be deduced that g1 + g2 = g. It decreases by 2 the total number of
darts in s1 and s2 since r and L(r), which belonged to the root vertex, get eliminated; so
n1 + n2 = n − 2. Finally, D1 can be any sublist of D and D2 is just the complementary
sublist, denoted by D − D1. This operation is uniquely reversible; so the set of ordered
pairs of sequenced maps obtained in this case is∑

g1 + g2 = g
e1 + e2 = e− 1
f1 + f2 = f

n1 + n2 = n− 2
D1 ⊆ D

M(g1, e1, f1, n1, D1)×M(g2, e2, f2, n2, D −D1), (2.2)

where Σ means the union of disjoint sets.

Case 1b: This operation does not disconnect the map, but instead turns it into a new
map m′ with e− 1 edges and f faces and, since the number of vertices increases by 1, the
genus of m′ is g − 1, so that this case only occurs when g ≥ 1. Neither s1 nor s2 can be
of degree 0 (otherwise the map would be disconnected); so we can choose for m′ the root
r1 = R(r) belonging to s1. Let p be the degree of s2. Since the sum of the degrees of s1
and s2 is n− 2, the degree of s1, the root vertex, is n− 2− p. We distinguish the vertex s2
so that this operation can be reversed, and we put its degree p at the beginning of the list D,
turning it into p.D. Now this operation is reversible in p distinct ways, since any of the p
darts of s2 can be chosen to be R(L(r)) when we merge the vertices s1 and s2 and replace
the deleted root edge. Now p can be any integer from 1 up to n− 3 (so that n− 2− p ≥ 1).
For both p and n− 2− p to be at least 1, n must be at least 4. The set of sequenced maps
obtained in this case is

n−3∑
p=1

M(g − 1, e− 1, f, n− 2− p, p.D)× {1, . . . , p}. (2.3)

Case 2: The root edge is a link. We contract the root edge, merging its two incident
vertices s1 containing the root r and s2 containing L(r) into a single vertex s with root
R(r). This operation decreases by 1 the number of edges and doesn’t change the number
of faces, since r and L(r) simply get deleted from the cycle(s) containing them. Since the
number of vertices is decreased by 1, the genus remains the same. This case breaks down
into two sub-cases, depending upon whether or not s2 is one of the distinguished vertices.

Case 2a: The vertex s2 is not one of the distinguished vertices. Let p be the degree of
the new vertex s. Then p = n − 2 + the degree of s2, and since the degree of s2 must be



230 Ars Math. Contemp. 15 (2018) 225–266

at least 1, we have p ≥ n − 1. Also, the new map has 2e − 2 darts; so p ≤ 2e − 2. This
operation is uniquely reversible for each value of p; so the set of maps so obtained is

p=2e−2∑
p=n−1

M(g, e− 1, f, p,D). (2.4)

Case 2b: The vertex s2 is one of the distinguished vertices. It can be any one of the
|D| distinguished vertices. If it is the jth distinguished vertex, then its degree is dj . Then
since it gets merged with s1 into the new root vertex, dj gets dropped from D. Finally, the
degree of s is dj + n − 2. This operation too is uniquely reversible; so the set of maps so
obtained is

|D|∑
j=1

M(g, e− 1, f, dj + n− 2, D − {dj}). (2.5)

Finally, suppose that m has no edges. It is of genus 0, has 1 face, its one vertex is of
degree 0 and its list D is empty because it has no distinguished vertices; so it constitutes
the singleton

∆(g,e,f,n,D)=(0,0,1,0,[ ]). (2.6)

ThenM(g, e, f, n,D) is the disjoint union of the sets given by (2.2) – (2.6).

2.3 Bipartite maps and hypermaps

To motivate the transformation of (2.2) – (2.6) into the corresponding equations for se-
quenced hypermaps we briefly describe the bijection in [23] that takes a hypermap h into
a 2-coloured bipartite map m = I(h), its incidence map. The bijection I takes the darts,
vertices and hyperedges of h into the edges, white vertices and black vertices of m. A root
(distinguished dart) of h corresponds to a distinguished edge of m; to make it correspond
to a root of m we impose the condition that a root of m belongs to a white vertex. The
permutation R in h corresponds to R in m acting on a dart in a white vertex and the per-
mutation L in h corresponds to R in m acting on a dart in a black vertex. The permutation
L in m doesn’t correspond to any permutation in h; rather, since it takes a dart belonging
to a vertex of one colour into a dart belonging to a vertex of the opposite colour, it toggles
R in m between R and L in h. A face (cycle of RL) in h corresponds to a face in m with
twice the degree. To see this, we follow one application of RL in h starting with a dart d,
which corresponds to an edge in m but we make it correspond to the dart d′ in that edge
that also belongs to a white vertex. Then the L in h takes d′ first into L(d′), which belongs
to a black vertex, and then into RL(d′) and the following R in h takes RL(d′) first into
LRL(d′), which belongs to a white vertex, and then into RLRL(d′). Since the genus of a
hypermap with t darts, v vertices, e hyperedges and f faces is defined by (1.2), m has the
same genus as h.

Since the root of an incidence map of a rooted hypermap must belong to a white ver-
tex, we impose the condition on a rooted 2-face-coloured face-bipartite map that the root
belong to a white face and we transform (2.2) – (2.6) into the corresponding bijective de-
composition for these maps.
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3 Sequenced face-bipartite maps
Let F(g, e, w, b, n,D) be the set of sequenced orientable face-bipartite maps of genus g
with e edges, w white faces, b black faces, with the root face of degree 2n and with the list
of half-degrees of the distinguished vertices equal to D. For any dart d we denote by f(d)
the face containing d and we note that the face f(R(d)) = f(L(d)) must have the opposite
colour from f(d) because those two faces share the edge {d, L(d)}.

Theorem 3.1. The set F(g, e, w, b, n,D) satisfies the bijective decomposition

F(g, e, w, b, n,D) =∑
g1 + g2 = g

e1 + e2 = e− 1
w1 + b2 = b
w2 + b1 = w

n1 + n2 = n− 1
D1 ⊆ D

F(g1, e1, w1, b1, n1, D1)×F(g2, e2, w2, b2, n2, D −D1)

+

n−2∑
p=1

F(g − 1, e− 1, b, w, n− 1− p, p.D)× {1, . . . , p} (3.1)

+

p=e−1∑
p=n

F(g, e− 1, b, w, p,D)

+

|D|∑
j=1

F(g, e− 1, b, w, dj + n− 1, D − {dj}) + ∆(g,e,w,b,n,D)=(0,0,1,0,0,[ ]).

Proof. Case 1: The root edge is a loop. By definition, f(r), where r is the root of the map
m, is white, so that since r1 = R(r), f(r1) must be black. But when the loop is removed
and the vertex s containing r is split, r1 becomes a root; so f(r1) must change colour and
so must all the faces of the new map m′ (in case 1b) or the map m1 containing r1 (in case
1a). In case 1a, the other map m2 has r2 = RL(r) as a root and f(r2) is white; so its faces
stay the same colour. This implies that in case 1a w1 + b2 = b and w2 + b1 = w, whereas
in case 1b w and b switch in going from m to m′.

In case 1a, we have, as for general maps, g1 + g2 = g, e1 + e2 = e− 1 and D1 is any
subset of D, but instead of n1 +n2 = n− 2 we have n1 +n2 = n− 1 because the degrees
satisfy the equation 2n1 + 2n2 = 2n− 2. The analogue of formula (2.2) is thus∑

g1 + g2 = g
e1 + e2 = e− 1
w1 + b2 = b
w2 + b1 = w

n1 + n2 = n− 1
D1 ⊆ D

F(g1, e1, w1, b1, n1, D1)×F(g2, e2, w2, b2, n2, D −D1). (3.2)

In case 1b, the reduced mapm′ is still of genus g−1 and has e−1 edges, but the degree
of s2 is now 2p instead of p and the degree of the new root vertex s1 is 2(n − 1 − p); so
the parameter n− 2− p in (2.3) changes to n− 1− p. Also, 1 ≤ 2p ≤ 2n− 3, but since
2p is even, we have 1 ≤ p ≤ n− 2 instead of 1 ≤ p ≤ n− 3, and the condition that n ≥ 4
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changes to n ≥ 3. The analogue of formula (2.3) is thus

n−2∑
p=1

F(g − 1, e− 1, b, w, n− 1− p, p.D)× {1, . . . , p}. (3.3)

Case 2: The root edge is a link. Since the new root R(r) belongs to a black face, all the
faces change colour; so b and w switch.

In case 2a, we have 2n − 1 ≤ 2p ≤ 2e − 2, but since 2p is even, we now have
n ≤ p ≤ e− 1; so the analogue of (2.4) is

p=e−1∑
p=n

F(g, e− 1, b, w, p,D). (3.4)

In case 2b, the degree of the new root vertex is 2dj + 2n−2; so the analogue of (2.5) is

|D|∑
j=1

F(g, e− 1, b, w, dj + n− 1, D − {dj}). (3.5)

Finally, the map with no edges has one white face and no black ones; so the analogue
of (2.6) is

∆(g,e,w,b,n,D)=(0,0,1,0,0,[ ]). (3.6)

After deriving this bijective decomposition, we became aware of the article [8], which
presents a similar bijective decomposition but for multi-rooted face-bipartite maps, which
are like sequenced face-bipartite maps except that every distinguished vertex has a root.
However, we present our derivation here for several reasons: it makes our article self-
contained, we obtained it independently of [8] and our main purpose is to count hypermaps
rather than face-bipartite maps. Now [8] does present a construction that converts a hy-
permap into a face-bipartite map. However, that construction is not proved and it is far
more complicated than the one in [23], which is not cited in [8]. We also recently became
aware of the article [6], which generalizes the results of [15] by computing the generat-
ing functions for edge-labelled bipartite maps on an orientable surface of genus g with an
unbounded number of faces and including the degrees of these faces as parameters.

4 Sequenced rooted hypermaps
Theorem 3.1 holds for rooted 2-coloured bipartite maps with distinguished faces, where e
is the number of edges, w is the number of white vertices, b is the number of black vertices,
n is half the degree of the root face and D is the list of half-degrees of the distinguished
faces. By the bijection described in Section 2.3, it also holds for rooted hypermaps with
distinguished faces, where e is the number of darts, w is the number of vertices, b is the
number of hyperedges, n is the degree of the root face and D is the list of degrees of the
distinguished faces. By duality, the theorem also holds for sequenced hypermaps, where e
is the number of darts, w is the number of faces, b is the number of hyperedges, n is the
degree of the root vertex and D is the list of degrees of the distinguished vertices. To make
the letters correspond to the objects they represent, we change F toH, e to t, w to f and b
to e. We thus obtain the following results.
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Theorem 4.1 (Bijective decomposition for sequenced hypermaps). Let H(g, t, f, e, n,D)
be the set of sequenced orientable hypermaps of genus g with t darts, f faces and e hy-
peredges, with the root vertex of degree n and with the list of degrees of the distinguished
vertices equal to D = (d1, d2, . . . , d|D|), where di is the degree of the distinguished vertex
with label i. The setH(g, t, f, e, n,D) satisfies the bijective decomposition

H(g, t, f, e, n,D) =∑
g1 + g2 = g

t1 + t2 = t− 1
f1 + e2 = e
f2 + e1 = f

n1 + n2 = n− 1
D1 ⊆ D

H(g1, t1, f1, e1, n1, D1)×H(g2, t2, f2, e2, n2, D −D1)

+

n−2∑
p=1

H(g − 1, t− 1, e, f, n− 1− p, p.D)× {1, . . . , p} (4.1)

+

p=t−1∑
p=n

H(g, t− 1, e, f, p,D)

+

|D|∑
j=1

H(g, t− 1, e, f, dj + n− 1, D − {dj}) + ∆(g,t,f,e,n,D)=(0,0,1,0,0,[ ]).

Corollary 4.2 (Recurrence between numbers of sequenced hypermaps). LetH(g, t, f, e, n,
D) be the number of rooted sequenced hypermaps of genus g with t darts, f faces and e
hyperedges such that the root vertex is of degree n and D is the list of degrees of the
distinguished vertices. Then H(0, 0, 1, 0, 0, [ ]) = 1 and if t ≥ 1, then

H(g, t, f, e, n,D) =∑
g1 + g2 = g

t1 + t2 = t− 1
f1 + e2 = e
f2 + e1 = f

n1 + n2 = n− 1
D1 ⊆ D

H(g1, t1, f1, e1, n1, D1)H(g2, t2, f2, e2, n2, D −D1)

+ δn≥3δg≥1

n−2∑
p=1

pH(g − 1, t− 1, e, f, n− 1− p, p.D) (4.2)

+

p=t−1∑
p=n

H(g, t− 1, e, f, p,D)

+

|D|∑
j=1

H(g, t− 1, e, f, dj + n− 1, D − {dj}).

5 Multirooted hypermaps
For ρ ≥ 1 a ρ-rooted hypermap is a hypermap in which a sequence of ρ darts with pairwise
distinct initial vertices is distinguished. A multirooted hypermap is a ρ-rooted hypermap
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for some ρ ≥ 1. This section addresses the enumeration of multirooted hypermaps.

Theorem 5.1 (Recurrence between numbers of multirooted hypermaps). LetHm(g, t, f, e,
D) be the number of multirooted hypermaps of genus g with t darts, f faces and e hyper-
edges such that D is the list of degrees of the distinguished vertices. Then Hm(0, 0, 1, 0,
[ ]) = 1 and if t ≥ 1, then

Hm(g, t, f, e, n.D) =∑
g1 + g2 = g

t1 + t2 = t− 1
f1 + e2 = e
f2 + e1 = f

n1 + n2 = n− 1
D1 ⊆ D

Hm(g1, t1, f1, e1, n1.D1)Hm(g2, t2, f2, e2, n2.(D −D1))

+ δn≥3δg≥1

n−2∑
p=1

Hm(g − 1, t− 1, e, f, (n− 1− p).p.D) (5.1)

+

p=t−1∑
p=n

Hm(g, t− 1, e, f, p.D)

+

|D|∑
j=1

dj Hm(g, t− 1, e, f, (dj + n− 1).(D − {dj})).

Proof. A multirooted hypermap is similar to a sequenced rooted hypermap except that for
each distinguished non-root vertex a dart starting from it is distinguished. If the degree of
the jth distinguished vertex is dj , then there are dj ways of distinguishing a dart of this
vertex. It follows that for each sequenced rooted hypermap, there are Π

|D|
j=1dj multirooted

hypermaps. LetHm(g, t, f, e,D) be the number of multirooted hypermaps of genus g with
t darts, f faces and e hyperedges such that such that D is the list of degrees of the initial
vertex of the distinguished darts. Then

Hm(g, t, f, e, n.D) = H(g, t, f, e, n,D) Π
|D|
j=1dj . (5.2)

Solving (5.2) for H(g, t, f, e, n,D) and substituting into (4.2) proves the theorem.

For ρ ≥ 1 let

Hg(v1, . . . , vρ, x, y, u, z) =
∑

t ≥ 0, f ≥ 1, e ≥ 0
d1 ≥ 1, . . . , dρ ≥ 1

v = t + 2(1 − g) − e − f

Hm(g, t, f, e,D1..ρ)v
D1..ρ

1..ρ xfyeuvzt (5.3)

be the generating function that counts multirooted hypermaps of genus g with ρ distin-
guished darts if g ≥ 0, and 0 otherwise. For 1 ≤ i ≤ ρ, the exponent di of the variable vi
in this series is the degree of the initial vertex of the i-th distinguished dart. The exponent
f of the variable x is the number of faces, the exponent e of the variable y is the number
of hyperedges, the exponent t of the variable z is the number of darts and the exponent v
of the variable u is the number of vertices (v is computable from the other parameters by
Formula (1.2)).
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Corollary 5.2 (Functional equations for multirooted hypermaps). For g ≥ 0 and ρ ≥ 1 the
generating functions Hg of multirooted hypermaps of genus g are defined by the following
functional equations:

Hg(v1,W, x, y, u, z) =

yv1z

xu

g∑
j=0

∑
X⊆W

Hj(v1, X, y, x, u, z)Hg−j(v1,W −X,x, y, u, z)

+
v1z

u
Hg−1(v1, v1,W, y, x, u, z) (5.4)

+
v1uz

v1 − 1
(Hg(v1,W, y, x, u, z)−Hg(1,W, y, x, u, z))

+ v1uz

j=ρ∑
j=2

vj
∂

∂vj

(
vj
Hg(vj ,W − {vj}, y, x, u, z)−Hg(v1,W − {vj}, y, x, u, z)

vj − v1

)
+ xuδg=0δρ=1,

where W = v2, . . . , vρ.

Proof. By summation according to (5.3) of the recurrence between numbers of multirooted
hypermaps from Theorem 5.1.

By vertex-hyperedge duality, we have

Hg(v1,W, y, x, u, z) = Hg(v1,W, x, y, u, z) + δg=0δρ=1(yu− xu) (5.5)

and thus another functional equation without x, y swaps is:

Hg(v1,W, x, y, u, z) =

yv1z

xu

g∑
j=0

∑
X⊆W

((
Hj(v1, X, x, y, u, z) + δj=0δ|X|=0(yu− xu)

)
Hg−j(v1,W −X,x, y, u, z)

)
+
v1z

u
Hg−1(v1, v1,W, x, y, u, z) (5.6)

+
v1uz

v1 − 1
(Hg(v1,W, x, y, u, z)−Hg(1,W, x, y, u, z))

+ v1uz

j=ρ∑
j=2

vj
∂

∂vj

(
vj
Hg(vj ,W − {vj}, x, y, u, z)−Hg(v1,W − {vj}, x, y, u, z)

vj − v1

)
+ xuδg=0δρ=1.

The former equation is given here for maximal generality. However, a consequence of
the genus formula (1.2) is that three variables among the four variables x, y, u and z are
sufficient. In the remainder of the paper we consider the generating functions

Hg(v1,W, x, y, u) = Hg(v1,W, x, y, u, 1)
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with one fewer variable. They are defined by the following functional equations:

Hg(v1,W, x, y, u) =

yv1
xu

g∑
j=0

∑
X⊆W

(
Hj(v1, X, x, y, u) + δj,0δ|X|,0(yu− xu)

)
Hg−j(v1,W −X,x, y, u)

+
v1
u
Hg−1(v1, v1,W, x, y, u) (5.7)

+
v1u

v1 − 1
(Hg(v1,W, x, y, u)−Hg(1,W, x, y, u))

+ v1u

j=ρ∑
j=2

vj
∂

∂vj

(
vj
Hg(vj ,W − {vj}, x, y, u)−Hg(v1,W − {vj}, x, y, u)

vj − v1

)
+ xuδg=0δρ=1.

For g, ρ 6= 0, 1, after grouping in the left-hand side the terms containing Hg(v1,W, x, y, u)
in (5.7), one gets

A(v1, x, y, u)

v1
Hg(v1,W, x, y, u) =

x(1− v1)

g∑
j=0

∑
X ⊆ W

(j, X) 6= (0, [ ])
(j, X) 6= (g,W )

Hj(v1, X, x, y, u)Hg−j(v1,W −X,x, y, u)

+
1− v1
u

Hg−1(v1, v1,W, x, y, u) + uHg(1,W, x, y, u)

+ uTg(v1,W, x, y, u) (5.8)

with
A(v, x, y, u) = vu+ (1− v)(1− yv + xv − 2vH0(v, x, y, u)/u) (5.9)

and

Tg(v1,W, x, y, u) =

(1− v1)

j=ρ∑
j=2

vj
∂

∂vj

(
vj

vj − v1

(
Hg(vj ,W − {vj}, x, y, u)

−Hg(v1,W − {vj}, x, y, u)
))

. (5.10)

6 Rooted hypermap generating functions
Let hg(v, e, f) be the number of rooted genus-g hypermaps with v vertices, e hyperedges
and f faces. Let

Hg(x, y, u) =
∑

v,e,f≥1

hg(v, e, f)xvyeuf (6.1)

be the ordinary generating function for counting rooted hypermaps on the orientable surface
of genus g ≥ 0, where the exponent of variable x is the number of vertices, the exponent
of variable y is the number of hyperedges, and the exponent of variable u is the number of
faces.
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Rooted hypermaps being 1-rooted hypermaps,

Hg(x, y, u) = Hg(1, x, y, u), (6.2)

where Hg(v1, . . . , vρ, x, y, u) is the generating function counting ρ-rooted genus-g hyper-
maps defined in Section 5 for ρ ≥ 1.

We first recall in Section 6.1 a known parametric expression of the generating function
that counts rooted planar hypermaps. Then we explain in Section 6.2 how to solve the
functional equation of the generating functions Hg(x, y, u) that count rooted hypermaps
with a given positive genus g.

6.1 Rooted planar hypermaps

The following proposition is a reformulation of [1, Theorem 3], with the correspondence
s = x, f = u and a = y for variables, λ = p, µ = q and ν = r for parameters, and
H0 = sf(1 + J) for generating functions.

Proposition 6.1 ([1]). The ordinary generating function H0(x, y, u) that counts rooted
planar hypermaps by number of vertices (exponent of x), hyperedges (exponent of y) and
faces (exponent of u) is the unique solution of the following parametric system:

H0(x, y, u) = 1 + pqr(1− p− q − r) (6.3)

with 
x = p(1− q − r)
u = q(1− p− r)
y = r(1− p− q).

(6.4)

Proof. The generating function H0(v, x, y, u) that counts rooted planar hypermaps (genus
0) by number of vertices (exponent of x), hyperedges (exponent of y), faces (exponent of
u) and degree of the root vertex (exponent of v) satisfies the functional equation

H0(v, x, y, u) =
yv

xu
(H0(v, x, y, u) + yu− xu)H0(v, x, y, u)

+
vu

v − 1
(H0(v, x, y, u)−H0(1, x, y, u)) + xu (6.5)

obtained by instantiation of (5.7) with g = 0, ρ = 1 and v1 = v.
This equation can be solved by the quadratic method [10, page 515]. The idea is to

define auxiliary functions A(v, x, y, u) and B(v, x, y, u) by (5.9) and

B(v, x, y, u) = A(v, x, y, u)2 (6.6)

and look for a function V (x, y, u) such that

A(V (x, y, u), x, y, u) = 0, (6.7)

implying that B(V (x, y, u), x, y, u) = 0 and ∂vB(v, x, y, u)|v=V (x,y,u) = 0.
We get from (6.5), (5.9) and (6.6) that

B(v, x, y, u) =

1− 2yv − 2xv − 2v3y − 2v3x− 2v2u+ v4y2 − 2v3y2 + y2v2 + v4x2

− 2v3x2 + x2v2 + v2u2 + 4v3yx− 2yv2x− 2yv2u+ 2v3yu− 2v4yx

− 2v3xu+ 2xv2u+ 4v2x+ 4v2y + 2vu+ 4v3H0(1, x, y, u)

− 4v2H0(1, x, y, u)− 2v + v2. (6.8)
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The constraintsB(V (x, y, u), x, y, u) = 0 and ∂vB(v, x, y, u)|v=V (x,y,u) = 0 respectively
are

1− 2yV − 2xV − 2V 3y − 2V 3x− 2V 2u+ V 4y2 − 2V 3y2 + y2V 2

+ V 4x2 − 2V 3x2 + x2V 2 + V 2u2 + 4V 3yx− 2yV 2x− 2yV 2u

+ 2V 3yux− 2V 4y − 2V 3xu+ 2xV 2u+ 4V 2x+ 4V 2y + 2V u

+ 4V 3H0(1, x, y, u)− 4V 2H0(1, x, y, u)− 2V + V 2 = 0 (6.9)

and

−2 + 8yV + 8xV + 4V 3y2 − 6y2V 2 + 4V 3x2 − 6x2V 2 − 6V 2x

− 6V 2y − 4V u+ 2y2V + 2x2V + 2V u2 − 4yV u+ 4xV u− 4yV x

+ 12yV 2x+ 6yV 2u− 8V 3yx− 6xV 2u+ 2V − 2x− 2y + 2u = 0. (6.10)

It can be checked that both equations are satisfied by

V = 1/(1− q) (6.11)

with x, u, y and H0(1, x, y, u) related to p, q and r by (6.4) and (6.3).

6.2 Rooted hypermaps with positive genus

The following additional notations are used in this section. Let ρ be a positive integer. Let
Hj [n1, . . . , nρ] denote the partial derivative of the function Hj(v1, . . . , vρ, x, y, u) with
respect to the variables v1, . . . , vρ to the respective orders n1, . . . , nρ, computed at v1 =
. . . = vρ = V . The abbreviation [ρ] denotes the list [2, . . . , ρ] if ρ ≥ 2 and the empty list
[ ] if ρ = 1. The abbreviation N[ρ] denotes the list [n2, . . . , nρ]. For any sublist X ⊆ [ρ] of
[ρ], [ρ]−X denotes the sublist of the elements of [ρ] that are not in X , NX denotes the list
of those ni in N[ρ] such that i is in X and Nj denotes the list [n2, . . . , nj−1, nj+1, . . . , nρ].

6.2.1 Equation for rooted hypermaps and recurrence relations

The special case of Formula (5.8) for g ≥ 1, ρ = 1 and v1 = V is the following formula:

uHg(1, x, y, u) =

(V − 1)

x g−1∑
j=1

Hj(V, x, y, u)Hg−j(V, x, y, u) +Hg−1(V, V, x, y, u)/u


i.e.

uHg(1, x, y, u) = (V − 1)

x g−1∑
j=1

Hj [0]Hg−j [0] +Hg−1[0, 0]/u

 . (6.12)

In order to derive from (6.12) a value for Hg(1, x, y, u), we are looking for a value
for Hj [0], Hg−j [0] and Hg−1[0, 0]. More generally, we will derive from the following
proposition a closed form for the expressions Hg[n1, . . . , nρ].
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Proposition 6.2. For g ≥ 0, ρ ≥ 1 and n1, . . . , nρ ≥ 0 the function Hg[n1, . . . , nρ] is
defined by

(n1 + 1)A[1]

V
Hg[n1, N[ρ]] =∑

i+j+k=n1+1
i>0, k<n1

(
n1 + 1

i, j

)
(−1)

j+1
j!

V j+1
A[i]Hg[k,N[ρ]]

+ x
∑

k+l+m=n1+1
0≤j≤g
X⊆[ρ]

(j,X)6=(0,[ ])
(j,X) 6=(g,[ρ])

(
n1 + 1

k, l

)
M [m]Hj [k,NX ]Hg−j [l, N[ρ]−X ]

+
1

u

∑
i+j+k=n1+1

(
n1 + 1

i, j

)
M [k]Hg−1[i, j,N[ρ]] (6.13)

+ u

ρ∑
j=2

(n1 + 1)!nj !

(n1 + nj + 2)!

(
njFg[n1 + nj + 2, Nj ]

+
V (nj+1)
n1+nj+3Fg[n1 + nj + 3, Nj ]

)
,

where
Fg(v1, . . . , vh, x, y, u) = L(v1)Hg(v1, . . . , vh, x, y, u) (6.14)

for h ≥ 1, M(v) = 1− v and L(v) = v(1− v).

Proof. Equation (6.13) is obtained from Equation (5.8) as follows:

1. Partial derivation of (5.8) with respect to the variables v1, v2, . . . , vρ to the respective
orders n1 + 1, n2, . . . , nρ.

2. Evaluation of this differential equation at v1 = · · · = vρ = V . The functionHg[n1+
1, . . . , nρ] is multiplied by A[0] in the resulting equation, and A[0] is known to be
zero (6.7). The functions Tg[. . .] are replaced by expressions with the functions
Fg[. . .] thanks to Lemma 6.3 below.

3. In the left-hand side of the resulting equation, isolation of the single term involving
the function Hg[n1, . . . , nρ].

By inspection one can check that the right-hand side of (6.13) depends only on some func-
tions Hg[k, n2, . . . , nρ] with k < n1, some functions Hg[n

′
1, . . . , n

′
ρ′ ] with ρ′ < ρ and

some functions Hj [. . .] for j < g. Thus, (6.13) in a recursive definition of the family of
functions Hg[n1, . . . , nρ] for g ≥ 0, ρ ≥ 1 and n1, . . . , nρ ≥ 0.

The following lemma relates the partial derivatives of Tg at v = V with the ones of Fg .

Lemma 6.3. For ρ ≥ 2 and g, n1, . . . , nρ ≥ 0,

Tg[n1 + 1, N[ρ]] =

j=ρ∑
j=2

(n1 + 1)!nj !

(n1 + nj + 2)!

(
njFg[n1 + nj + 2, Nj ]

+
V (nj+1)
n1+nj+3Fg[n1 + nj + 3, Nj ]

)
. (6.15)
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Proof. We can easily prove that

∂

∂vj

[
(vj − v1)Hg(v1, [ρ]− {vj}, x, y, u)

vj − v1

]
= 0. (6.16)

Then, Tg(v1, . . . , vρ, x, y, u) equals

j=ρ∑
j=2

vj
∂

∂vj

(
(vj − v1)

−1
(
vj(1− v1)Hg(vj , [ρ]− {vj}, x, y, u)

− v1(1− v1)Hg(v1, [ρ]− {vj}, x, y, u)
))

. (6.17)

It also holds that

∂n1+1

∂vn1+1
1

[
vj(vj − v1)Hg(vj , [ρ]− {vj}, x, y, u)

vj − v1

]
= 0, (6.18)

so that ∂n1+1

∂v
n1+1
1

Tg(v1, . . . , vρ, x, y, u) equals

j=r∑
j=2

vj
∂n1+2

∂vn1+1
1 ∂vj

(
(vj − v1)

−1
(
vj(1− vj)Hg(vj , [ρ]− {vj}, x, y, u)

− v1(1− v1)Hg(v1, [ρ]− {vj}, x, y, u)
))

(6.19)

i.e.

j=ρ∑
j=2

vj
∂n1+2

∂vn1+1
1 ∂vj

(
Fg(vj , [ρ]− {vj}, x, y, u)− Fg(v1, [ρ]− {vj}, x, y, u)

vj − v1

)
. (6.20)

Formula (6.15) is a consequence of

∂n1+n2

∂xn1
1 ∂xn2

2

(
ψ(x1)− ψ(x2)

x1 − x2

)
x1=x2=a

=
n1!n2!

(n1 + n2 + 1)!
ψ(n1+n2+1)(a). (6.21)

The formula

Fg[n,N ] =
∑
k+l=n

(
n

k

)
L[k]Hg[l, N ] (6.22)

is an easy consequence of (6.14). Thus the right-hand side of (6.13) only depends on some
functions Hg[k, . . . , nρ] with k < n1, some functions Hg[n

′
1, . . . , n

′
ρ′ ] with ρ′ < ρ, some

functions Hj [. . .] for j < g and some functions A[i]. A relation between A[i] and some
functions H0[j] is established in Section 6.2.2.

6.2.2 Case g = 0 and ρ = 1

The function A[i] can be related to some functions H0[j] as follows: With M(v) = 1 − v
and L(v) = v(1− v), Equation (5.9) is

A(v, x, y, u) = vu+M(v) + L(v)(−y + x− 2xH0(v, x, y, u)). (6.23)



A. Giorgetti and T. R. S. Walsh: Enumeration of hypermaps of a given genus 241

Its instantiation at v = V gives

H0[0] =
1− q

1− q − r
. (6.24)

For k ≥ 1, the k-th partial derivative of (6.23) in v is

∂k

∂vk
A(v, x, y, u) =

∂k

∂vk
(vu) +

∂k

∂vk
M(v)

+
∂k

∂vk
[L(v)(−y + x− 2xH0(v, x, y, u))] (6.25)

and its instantiation in v = V is

A[k] =
∂k

∂vk
(vu)|v=V +M [k]

+
∑
i+j=k

(
k

i

)
L[i]

(
∂j

∂vj
(−y + x− 2xH0(v, x, y, u))|v=V

)
. (6.26)

Solving (6.26) for k = 1 gives

H0[1] =
(1− q)2(A[1] + 1− p− q − r)

2pq(1− q − r)
. (6.27)

For k ≥ 2, one gets

A[k] = −2x
∑
i+j=k

(
k

i

)
L[i]H0[j]

since M [k] = 0, i.e.

A[k] = −2x

(
L[0]H0[k] + kL[1]H0[k − 1] +

k(k − 1)

2
L[2]H0[k − 2]

)
(6.28)

since L[k] = 0 if k ≥ 3.

7 Explicit formulas for small genera
This section proposes explicit parametric expressions for the generating functions that
count rooted hypermaps of small positive genus. In Section 7.1 we count by number of
vertices, hyperedges and faces; the number of darts can be obtained from these parameters
by Formula (1.2). In Section 7.2 we count by number of darts alone.

7.1 Rooted hypermap series enumerated with three parameters

For g = 1, . . . , 5 we have computed an explicit expression ofHg(x, y, u) parameterized by
p, q and r, with x = p(1− q− r), u = q(1−p− r) and y = r(1−p− q), by application of
formulas in Section 6. For g ≥ 3, the expressions are too large to be included in the present
text, but a Maple file with all the generating functions up to genus 5 is available from the
first author on request.
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A parametric expression of H1(x, y, u) is

H1(x, y, u) =
p q r (1− p) (1− q) (1− r)
[(1− p− q − r)2 − 4pqr]

2 . (7.1)

This expression can be derived from [2, Theorem 3], with the correspondence s = x, f =
u, and a = y between variables and the correspondence H1(x, y, u) = xuK1(1, x, y, u)
between generating functions.

A parametric expression of H2(x, y, u) is

H2(x, y, u) =
p q r (1− p) (1− q) (1− r) P2(p, q, r)

[(1− p− q − r)2 − 4pqr]
7 (7.2)

where

P2(p, q, r) = 76p6q2r2 − 8p4q4r2 − 8p4q2r4 + 76p2q6r2 − 8p2q4r4 + 76p2q2r6

+ 40p7qr − 76p6q2r − 76p6qr2 − 112p5q3r − 228p5q2r2 − 112p5qr3

+ 8p4q4r + 16p4q3r2 + 16p4q2r3 + 8p4qr4 − 112p3q5r + 16p3q4r2

+ 40p3q3r3 + 16p3q2r4 − 112p3qr5 − 76p2q6r − 228p2q5r2

+ 16p2q4r3 + 16p2q3r4 − 228p2q2r5 − 76p2qr6 + 40pq7r − 76pq6r2

− 112pq5r3 + 8pq4r4 − 112pq3r5 − 76pq2r6 + 40pqr7 + p8 − 20p7q

− 20p7r − 35p6q2 − 64p6qr − 35p6r2 + 56p5q3 + 396p5q2r + 396p5qr2

+ 56p5r3 + 140p4q4 + 264p4q3r + 393p4q2r2 + 264p4qr3 + 140p4r4

+ 56p3q5 + 264p3q4r − 92p3q3r2 − 92p3q2r3 + 264p3qr4 + 56p3r5

− 35p2q6 + 396p2q5r + 393p2q4r2 − 92p2q3r3 + 393p2q2r4 + 396p2qr5

− 35p2r6 − 20pq7 − 64pq6r + 396pq5r2 + 264pq4r3 + 264pq3r4

+ 396pq2r5 − 64pqr6 − 20pr7 + q8 − 20q7r − 35q6r2 + 56q5r3

+ 140q4r4 + 56q3r5 − 35q2r6 − 20qr7 + r8 + 6p7 + 105p6q + 105p6r

+ 21p5q2 − 116p5qr + 21p5r2 − 420p4q3 − 821p4q2r − 821p4qr2

− 420p4r3 − 420p3q4 − 648p3q3r − 316p3q2r2 − 648p3qr3 − 420p3r4

+ 21p2q5 − 821p2q4r − 316p2q3r2 − 316p2q2r3 − 821p2qr4 + 21p2r5

+ 105pq6 − 116pq5r − 821pq4r2 − 648pq3r3 − 821pq2r4 − 116pqr5

+ 105pr6 + 6q7 + 105q6r + 21q5r2 − 420q4r3 − 420q3r4 + 21q2r5

+ 105qr6 + 6r7 − 49p6 − 189p5q − 189p5r + 315p4q2 + 479p4qr

+ 315p4r2 + 910p3q3 + 1162p3q2r + 1162p3qr2 + 910p3r3 + 315p2q4

+ 1162p2q3r + 720p2q2r2 + 1162p2qr3 + 315p2r4 − 189pq5 + 479pq4r

+ 1162pq3r2 + 1162pq2r3 + 479pqr4 − 189pr5 − 49q6 − 189q5r

+ 315q4r2 + 910q3r3 + 315q2r4 − 189qr5 − 49r6 + 112p5 + 70p4q

+ 70p4r − 770p3q2 − 876p3qr − 770p3r2 − 770p2q3 − 1380p2q2r

− 1380p2qr2 − 770p2r3 + 70pq4 − 876pq3r − 1380pq2r2 − 876pqr3

+ 70pr4 + 112q5 + 70q4r − 770q3r2 − 770q2r3 + 70qr4 + 112r5
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− 105p4 + 210p3q + 210p3r + 735p2q2 + 1034p2qr + 735p2r2 + 210pq3

+ 1034pq2r + 1034pqr2 + 210pr3 − 105q4 + 210q3r + 735q2r2 + 210qr3

− 105r4 + 14p3 − 315p2q − 315p2r − 315pq2 − 672pqr − 315pr2 + 14q3

− 315q2r − 315qr2 + 14r3 + 49p2 + 175pq + 175pr + 49q2 + 175qr

+ 49r2 − 36p− 36q − 36r + 8.

Remark: For g = 0, the formula

H0(x, y, u) = pqr(1− p− q − r) (7.3)

can be derived from [1], with the correspondence s = x, f = u, and a = y between vari-
ables and the correspondence H0(x, y, u) = xuK0(1, x, y, u) between generating func-
tions.

7.2 Rooted hypermap series enumerated by number of darts

Let Hg(z) be the ordinary generating function of rooted hypermaps on the orientable sur-
face of genus g ≥ 0, where the exponent of variable z is the number d of darts.

7.2.1 Generating functions

For g from 0 to 6, a parametric expression of Hg(z), where z = τ(1−2τ) and τ = 0 when
z = 0, is

H0(z) =
τ3 (1− 3 τ)

z2
, (7.4)

H1(z) =
τ3

(1− τ) (1− 4 τ)2
, (7.5)

H2(z) =
4 z2 τ3 (51 τ4 − 77 τ3 + 48 τ2 − 15 τ + 2)

(1− τ)5 (1− 4 τ)7
, (7.6)

H3(z) =
4 z4 τ3 P3(z)

(1− τ)9 (1− 4 τ)12
, (7.7)

H4(z) =
4 z6 τ3 P4(z)

(1− τ)13 (1− 4 τ)17
, (7.8)

H5(z) =
4 z8 τ3 P5(z)

(1− τ)17 (1− 4 τ)22
, (7.9)

H6(z) =
4 z10 τ3P6(z)

(1− τ)21 (1− 4 τ)27
, (7.10)

with

P3(z) = 28496 τ9 − 36888 τ8 − 13164 τ7 + 61676 τ6 − 61872 τ5 + 35172 τ4

− 13168 τ3 + 3360 τ2 − 552 τ + 45,
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P4(z) = 32375616 τ14 + 15509760 τ13 − 243313744 τ12 + 442844592 τ11

− 389268768 τ10 + 170357328 τ9 + 1281984 τ8 − 53553072 τ7

+ 39814032 τ6 − 17597520 τ5 + 5541192 τ4 − 1320920 τ3 + 239697 τ2

− 30456 τ + 2016,

P5(z) = 61742404608 τ19 + 239043447552 τ18 − 1163002515456 τ17

+ 1403096348736 τ16 + 338393916800 τ15 − 2962590413376 τ14

+ 4243997599488 τ13 − 3552865706240 τ12 + 2000782619136 τ11

− 761565230016 τ10 + 165542511744 τ9 + 7568059872 τ8

− 23295865824 τ7 + 11016156244 τ6 − 3336459144 τ5 + 761835465 τ4

− 141393220 τ3 + 21738240 τ2 − 2490480 τ + 151200

and

P6(z) = 178054771302400 τ24 + 1584534210564096 τ23 − 4933663711730688 τ22

− 2073822560019456 τ21 + 28025505345377280 τ20

− 55010184951564288 τ19 + 54283457920223232 τ18

− 22997164994372352 τ17 − 13439214645718272 τ16

+ 31734000656779264 τ15 − 29719458122609664 τ14

+ 18704646148809216 τ13 − 8736443315384448 τ12

+ 3098312828500416 τ11 − 813298324826016 τ10 + 138473163256176 τ9

− 4043551301232 τ8 − 6580517850696 τ7 + 2630924485729 τ6

− 626336383104 τ5 + 112079088144 τ4 − 17314508592 τ3 + 2485496880 τ2

− 284717376 τ + 17107200.

We have also computed the generating functions for 7 ≤ g ≤ 11. Their expressions are
too large to be included in the present text, but a Maple file is available from the first author
on request.

A. Mednykh and R. Nedela used our formulas (7.4) to (7.7) to find explicit formulas
for the number of rooted hypermaps for genus g = 0, 1, 2 and 3 [19].

7.3 Other parameterization

In a private communication to the second author, P. Zograf suggests the parameterization

z =
t

(1 + 2t)2
. (7.11)

After adding the condition that t = 0 when z = 0, it corresponds to

t =
1− 4z −

√
1− 8z

8z
. (7.12)

These two parameterizations are equivalent. The one can be transformed into the other
by means of the following substitutions:

τ =
t

1 + 2t
(7.13)
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and
t =

τ

1− 2τ
. (7.14)

By means of these substitutions, the following parametric expressions in t can be ob-
tained from the parametric expressions (7.4) – (7.10) for Hg(t) in τ :

H0(z) = t (1− t),

H1(z) =
t3

(1 + t)(1− 2t)2
,

H2(z) =
4 t5 (1 + 2t) (t4 − t3 + 6 t2 + t+ 2)

(1 + t)5(1− 2t)7
,

H3(z) = 4 t7 (1 + 2t) (1 + t)−9(1− 2t)−12 (80 t9 − 120 t8 + 1500 t7 + 1036 t6

+ 3768 t5 + 2820 t4 + 2288 t3 + 1008 t2 + 258 t+ 45),

H4(z) = 4 t9 (1 + 2t) (1 + t)−13(1− 2t)−17 (16768 t14 − 33536 t13

+ 653776 t12 + 786480 t11 + 4358016 t10 + 6151056 t9 + 10059552 t8

+ 10217040 t7 + 8418240 t6 + 5227024 t5 + 2365888 t4 + 800128 t3

+ 181665 t2 + 25992 t+ 2016),

H5(z) = 4 t11 (1 + 2t) (1 + t)−17(1− 2t)−22 (6732800 t19 − 16832000 t18

+ 450011520 t17 + 773106240 t16 + 5764983552 t15 + 11910647232 t14

+ 29130502912 t13 + 46090300928 t12 + 63452543616 t11

+ 68713116608 t10 + 60654218080 t9 + 43591208976 t8

+ 25142796864 t7 + 11637842232 t6 + 4232899206 t5 + 1181820745 t4

+ 245635580 t3 + 35501760 t2 + 3255120 t+ 151200),

H6(z) = 4 t13 (1 + 2t) (1 + t)−21(1− 2t)−27 (4424052736 t24 − 13272158208 t23

+ 452750478336 t22 + 1012254206976 t21 + 9488911137792 t20

+ 25803592571904 t19 + 83891900050944 t18 + 180120643165440 t17

+ 346626234587904 t16 + 535272874975232 t15 + 701152993531392 t14

+ 771688966862592 t13 + 716686355273472 t12 + 563018634260736 t11

+ 372549313187520 t10 + 207088794784752 t9 + 96021082581732 t8

+ 36765061031004 t7 + 11475757049569 t6 + 2863185376896 t5

+ 556090776432 t4 + 80913152016 t3 + 8274846384 t2 + 536428224 t

+ 17107200).

For 0 ≤ g ≤ 3, these expressions correspond to Fg(t) in Zograf’s communication.
Moreover, they reveal an extra factorization by 4(1 + 2t) for g ≥ 2.

8 Efficient enumeration of rooted and sensed unrooted hypermaps by
number of darts, vertices and hyperedges

We recall that a sensed map or hypermap is an equivalence class of (unrooted) maps or
hypermaps under orientation-preserving isomorphism.

Before enumerating sensed hypermaps we first need to enumerate rooted hypermaps.
We use an efficient method of counting rooted hypermaps by number of darts, faces, ver-
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tices and hyperedges or, equivalently [23], 2-coloured bipartite maps rooted at a white
vertex by number of edges, faces, white vertices and black vertices, presented by Kazarian
and Zograf [15], and then count sensed 2-coloured bipartite maps and hypermaps with the
same parameters using the same method we used [26, 12] to count sensed maps by num-
ber of edges, faces and vertices. The recurrence (formula (11) in [15]), with f changed
to H , is as follows. Define Hg,d to be a homogeneous polynomial in the three variables
t, u, and v. The coefficient of tfubvw in Hg,d is the number of 2-coloured bipartite maps
of genus g with d edges, f faces, b black vertices and w white vertices rooted at a white
vertex or, equivalently, the number of rooted hypermaps of genus g with d darts, f faces, b
hyperedges and w vertices. Then H0,1 = tuv and

(d+ 1)Hg,d =

(2d− 1)(t+ u+ v)Hg,d−1

+ (d− 2)
(
2(tu+ tv + uv)− (t2 + u2 + v2)

)
Hg,d−2 (8.1)

+ (d− 1)2(d− 2)Hg−1,d−2 +

g∑
i=0

d−3∑
j=1

(4 + 6j)(d− 2− j)Hi,jHg−i,d−2−j .

In [26] we collaborated with Mednykh to enumerate rooted and sensed maps. Med-
nykh enumerated maps of genus up to 11 by number of edges alone, while we enumerated
maps of genus up to 10 by number of edges and vertices. The method we used to enumer-
ate rooted maps is presented in [25]. The method we used to enumerate sensed maps is
based on Liskovets’ refinement [17] of the method Mednykh and Nedela used to enumer-
ate sensed map of genus up to 3 by number of edges [18]. Later we used a more efficient
method of enumerating rooted maps, presented in [5], to enumerate rooted and sensed maps
of genus up to 50 [12].

To describe here the modifications we made to pass from maps to 2-coloured bipartite
maps we need to briefly discuss a few of the concepts described in more detail in [26]. All
the automorphisms of a map on an orientable surface are periodic. If the period is L > 1,
then the automorphism divides the map into L isomorphic copies of a smaller map, called
the quotient map. Most of the cells (vertices, edges and faces) are in orbits of length L
under the automorphism; those that aren’t are called branch points. For example, if a map
is drawn on the surface of a sphere which undergoes a rotation through 360/L degrees, the
two cells through which the axis of rotation pass are fixed; so they are each in an orbit of
length 1 for any L. For maps of higher genus, not all the branch points are on orbits of
length 1. For example, if a torus is represented as a square with opposite edges identified
in pairs, and is rotated by 90 degrees (period 4), then the centre of the square is a branch
point of orbit length 1 and so is the point represented by all four corners of the square,
but the middle of the sides of the square are two branch points of orbit length 2: the point
represented by the middle of both vertical sides of the square is taken by the rotation onto
the point represented by the middle of both horizontal sides, and vice versa; so it takes two
rotations to take either of these points back onto itself. Also, if the middle of an edge is a
branch point, then the quotient map contains half of that edge – a dangling semi-edge.

An automorphism of a map M of genus G is characterized by the following param-
eters: the period L, the genus g of its quotient map and the number of branch points of
each orbit length. If each orbit length is replaced by its branch index (L divided by the
orbit length), we obtain what is called an orbifold signature in [18]. In [18] a method is
presented for determining which orbifold signatures could characterize an automorphism
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of a map of genus G (a G-admissible orbifold) and how many such automorphisms could
be characterized by that orbifold signature; a variant of that method is presented in [17],
and this is the one we use except that we deal with orbit lengths instead of branch indices.
The method used in [18] to enumerate sensed maps of genus G with E edges by number
of edges can be roughly described as follows. For each G-admissible orbifold O, let g be
the genus of the quotient map, L be the period and qi be the number of branch points with
branch index i. Then the number νO(d) of rooted maps with d darts that could serve as
a quotient map for an automorphism with that signature once the branch points are pasted
onto the map in all possible ways is given by

νO(d) =

q2∑
s=0

(
d

s

)(
(d− s)/2+2−2g

q2−s, q3, . . . , qL

)
Ng((d− s)/2), (8.2)

where Ng(n) is the number of rooted maps of genus g with n edges (0 if n is not an
integer). Here s is the number of dangling semi-edges in the quotient map m, all of which
must be in orbits of length L/2 so that they represent normal edges in the original map
M . The binomial coefficient is the number of ways of inserting dangling semi-edges into
the rooted map multiplied by d/(d− s) because there are d ways to root the map once the
dangling edges have been inserted and only d−sways to root it without the dangling edges.
The multinomial coefficient is the number of ways to distribute the branch points with the
various branch indices among the non-edges of the quotient map; the number at the top of
the multinomial coefficient is the number of non-edges and is given by the Euler-Poincaré
formula (1.1). Then the number of sensed maps of genus G with E edges is

1

2E

∑
L|E

∑
O

Epi0(π1(O), ZL) νO(2E/L), (8.3)

where O runs over all the G-admissible orbifolds with period L and Epi0(π1(O), ZL) is
the number of automorphisms that have the orbifold signature of O.

In [26] we distributed the branch points that aren’t on dangling semi-edges among
the vertices and faces separately. The quotient map of a bipartite map can’t contain any
dangling semi-edges; otherwise the lifted map would have an edge joining two vertices
of the same colour. Here we distribute the branch points among the white vertices, black
vertices and faces, and, like in [26], we don’t use a formula like (8.3); instead we compute
the contribution of each orbifold signature to the number of sensed 2-coloured bipartite
maps whose number of white vertices, black vertices, faces and edges are allowed to vary
within a user-defined upper bound on the number of edges.

Suppose that the quotient map is of genus g and has w white vertices, b black vertices
and f faces. Then the number e of edges can be calculated from the formula

f − e+ w + b = 2(1− g) (8.4)

and the number d of darts is 2e. Suppose also that among the branch points of orbit length
i, wi are on a white vertex, bi are on a black vertex and fi are in a face. We denote by wL,
bL and fL the number of white vertices, black vertices and faces, respectively, that do not
contain a branch point. The original map will have W white vertices, B black vertices and
F faces, where

W =

L∑
i=1

iwi, B =

L∑
i=1

ibi and F =

L∑
i=1

ifi, (8.5)
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and the total number E of edges is equal to Le = F +W +B − 2(1− g).
The binomial coefficient in (8.2) disappears because the quotient map can’t contain any

dangling semi-edges. The multinomial coefficient must be replaced by the number of ways
to distribute the branch points among the white vertices, black vertices and faces. Then
(8.2) becomes

νO(d,w, b, f) =(
w

w1, w2, . . . , wL

)(
b

b1, b2, . . . , bL

)(
f

f1, f2, . . . , fL

)
Ng(d,w, b, f), (8.6)

where d is the number of edges in the quotient maps on both sides of the formula (or the
number of darts in the corresponding hypermaps) and Ng(d,w, b, f) is the number of 2-
coloured bipartite maps with d edges with w white vertices, b black vertices and f faces,
rooted at a white vertex. For this number to be positive, the sum of all the wi cannot exceed
w with a similar bound on the sum of all the bi and the sum of all the fi; so w, b and
f each starts at its respective sum and increases by 1 until the number E of edges in the
original map exceeds a user-defined maximum. With each increase of w, b or f , one of the
multinomial coefficients in (8.6) gets updated using a single multiplication and division.
The product of these three multinomial coefficients must be computed for all sets of non-
negative integers such that for each i, wi + bi + fi is equal to the total number of branch
points of orbit length i.

Once (8.6) is multiplied by the number of automorphisms with the current orbifold
signature, we get the contribution of that signature and the numberswi, bi and fi toE times
the number of sensed 2-coloured bipartite maps of genusGwithE edges, F faces,B black
vertices and W white vertices. This contribution is added to the appropriate element of an
array, initially 0, and when all the contributions have been tallied, for each E, F , W and B
the corresponding array element is divided by E (not 2E because the root must be incident
to a white vertex) to give the number of sensed 2-coloured bipartite maps of genus G with
E edges, F faces, B black vertices and W white vertices or, equivalently, the number of
sensed hypermaps of genus G with E darts, F faces, B hyperedges and W vertices.

This enumeration was done with a program written in C++ using CLN to treat big
integers. It enumerated rooted and sensed hypermaps of genus up to 24 with up to 50 darts
as fast as it could display the numbers on the screen. The numbers coincide with those
obtained by generating the hypermaps [24]. The source code is available from the second
author on request.
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A First numbers of rooted hypermaps
The following sections show the numbers h of rooted hypermaps of genus g with d darts,
v vertices, e edges and d− v − e+ 2(1− g) faces, for g ≤ 6 and d ≤ 14.

A.1 Genus 0

d v e f h
1 1 1 1 1

1 sum 1

2 1 1 2 1
2 1 2 1 1
2 2 1 1 1

2 sum 3

3 1 1 3 1
3 1 2 2 3
3 2 1 2 3
3 1 3 1 1
3 2 2 1 3
3 3 1 1 1

3 sum 12

4 1 1 4 1
4 1 2 3 6
4 2 1 3 6
4 1 3 2 6
4 2 2 2 17
4 3 1 2 6
4 1 4 1 1
4 2 3 1 6
4 3 2 1 6
4 4 1 1 1

4 sum 56

5 1 1 5 1
5 1 2 4 10
5 2 1 4 10
5 1 3 3 20
5 2 2 3 55
5 3 1 3 20
5 1 4 2 10
5 2 3 2 55
5 3 2 2 55
5 4 1 2 10
5 1 5 1 1
5 2 4 1 10
5 3 3 1 20
5 4 2 1 10
5 5 1 1 1

5 sum 288

6 1 1 6 1
6 1 2 5 15
6 2 1 5 15
6 1 3 4 50
6 2 2 4 135
6 3 1 4 50
6 1 4 3 50
6 2 3 3 262
6 3 2 3 262
6 4 1 3 50

6 1 5 2 15
6 2 4 2 135
6 3 3 2 262
6 4 2 2 135
6 5 1 2 15
6 1 6 1 1
6 2 5 1 15
6 3 4 1 50
6 4 3 1 50
6 5 2 1 15
6 6 1 1 1

6 sum 1584

7 1 1 7 1
7 1 2 6 21
7 2 1 6 21
7 1 3 5 105
7 2 2 5 280
7 3 1 5 105
7 1 4 4 175
7 2 3 4 889
7 3 2 4 889
7 4 1 4 175
7 1 5 3 105
7 2 4 3 889
7 3 3 3 1694
7 4 2 3 889
7 5 1 3 105
7 1 6 2 21
7 2 5 2 280
7 3 4 2 889
7 4 3 2 889
7 5 2 2 280
7 6 1 2 21
7 1 7 1 1
7 2 6 1 21
7 3 5 1 105
7 4 4 1 175
7 5 3 1 105
7 6 2 1 21
7 7 1 1 1

7 sum 9152

8 1 1 8 1
8 1 2 7 28
8 2 1 7 28
8 1 3 6 196
8 2 2 6 518
8 3 1 6 196
8 1 4 5 490
8 2 3 5 2436
8 3 2 5 2436
8 4 1 5 490
8 1 5 4 490
8 2 4 4 3985
8 3 3 4 7500
8 4 2 4 3985
8 5 1 4 490
8 1 6 3 196

8 2 5 3 2436
8 3 4 3 7500
8 4 3 3 7500
8 5 2 3 2436
8 6 1 3 196
8 1 7 2 28
8 2 6 2 518
8 3 5 2 2436
8 4 4 2 3985
8 5 3 2 2436
8 6 2 2 518
8 7 1 2 28
8 1 8 1 1
8 2 7 1 28
8 3 6 1 196
8 4 5 1 490
8 5 4 1 490
8 6 3 1 196
8 7 2 1 28
8 8 1 1 1

8 sum 54912

9 1 1 9 1
9 1 2 8 36
9 2 1 8 36
9 1 3 7 336
9 2 2 7 882
9 3 1 7 336
9 1 4 6 1176
9 2 3 6 5754
9 3 2 6 5754
9 4 1 6 1176
9 1 5 5 1764
9 2 4 5 13941
9 3 3 5 26004
9 4 2 5 13941
9 5 1 5 1764
9 1 6 4 1176
9 2 5 4 13941
9 3 4 4 42015
9 4 3 4 42015
9 5 2 4 13941
9 6 1 4 1176
9 1 7 3 336
9 2 6 3 5754
9 3 5 3 26004
9 4 4 3 42015
9 5 3 3 26004
9 6 2 3 5754
9 7 1 3 336
9 1 8 2 36
9 2 7 2 882
9 3 6 2 5754
9 4 5 2 13941
9 5 4 2 13941
9 6 3 2 5754
9 7 2 2 882
9 8 1 2 36
9 1 9 1 1
9 2 8 1 36
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9 3 7 1 336
9 4 6 1 1176
9 5 5 1 1764
9 6 4 1 1176
9 7 3 1 336
9 8 2 1 36
9 9 1 1 1

9 sum 339456

10 1 1 10 1
10 1 2 9 45
10 2 1 9 45
10 1 3 8 540
10 2 2 8 1410
10 3 1 8 540
10 1 4 7 2520
10 2 3 7 12180
10 3 2 7 12180
10 4 1 7 2520
10 1 5 6 5292
10 2 4 6 40935
10 3 3 6 75840
10 4 2 6 40935
10 5 1 6 5292
10 1 6 5 5292
10 2 5 5 60626
10 3 4 5 179860
10 4 3 5 179860
10 5 2 5 60626
10 6 1 5 5292
10 1 7 4 2520
10 2 6 4 40935
10 3 5 4 179860
10 4 4 4 288025
10 5 3 4 179860
10 6 2 4 40935
10 7 1 4 2520
10 1 8 3 540
10 2 7 3 12180
10 3 6 3 75840
10 4 5 3 179860
10 5 4 3 179860
10 6 3 3 75840
10 7 2 3 12180
10 8 1 3 540
10 1 9 2 45
10 2 8 2 1410
10 3 7 2 12180
10 4 6 2 40935
10 5 5 2 60626
10 6 4 2 40935
10 7 3 2 12180
10 8 2 2 1410
10 9 1 2 45
10 1 10 1 1
10 2 9 1 45
10 3 8 1 540
10 4 7 1 2520
10 5 6 1 5292
10 6 5 1 5292
10 7 4 1 2520
10 8 3 1 540
10 9 2 1 45
10 10 1 1 1

10 sum 2149888

11 1 1 11 1
11 1 2 10 55

11 2 1 10 55
11 1 3 9 825
11 2 2 9 2145
11 3 1 9 825
11 1 4 8 4950
11 2 3 8 23694
11 3 2 8 23694
11 4 1 8 4950
11 1 5 7 13860
11 2 4 7 105435
11 3 3 7 194304
11 4 2 7 105435
11 5 1 7 13860
11 1 6 6 19404
11 2 5 6 216601
11 3 4 6 634865
11 4 3 6 634865
11 5 2 6 216601
11 6 1 6 19404
11 1 7 5 13860
11 2 6 5 216601
11 3 5 5 931854
11 4 4 5 1482250
11 5 3 5 931854
11 6 2 5 216601
11 7 1 5 13860
11 1 8 4 4950
11 2 7 4 105435
11 3 6 4 634865
11 4 5 4 1482250
11 5 4 4 1482250
11 6 3 4 634865
11 7 2 4 105435
11 8 1 4 4950
11 1 9 3 825
11 2 8 3 23694
11 3 7 3 194304
11 4 6 3 634865
11 5 5 3 931854
11 6 4 3 634865
11 7 3 3 194304
11 8 2 3 23694
11 9 1 3 825
11 1 10 2 55
11 2 9 2 2145
11 3 8 2 23694
11 4 7 2 105435
11 5 6 2 216601
11 6 5 2 216601
11 7 4 2 105435
11 8 3 2 23694
11 9 2 2 2145
11 10 1 2 55
11 1 11 1 1
11 2 10 1 55
11 3 9 1 825
11 4 8 1 4950
11 5 7 1 13860
11 6 6 1 19404
11 7 5 1 13860
11 8 4 1 4950
11 9 3 1 825
11 10 2 1 55
11 11 1 1 1

11 sum 13891584

12 1 1 12 1
12 1 2 11 66
12 2 1 11 66

12 1 3 10 1210
12 2 2 10 3135
12 3 1 10 1210
12 1 4 9 9075
12 2 3 9 43098
12 3 2 9 43098
12 4 1 9 9075
12 1 5 8 32670
12 2 4 8 245223
12 3 3 8 449988
12 4 2 8 245223
12 5 1 8 32670
12 1 6 7 60984
12 2 5 7 666996
12 3 4 7 1936308
12 4 3 7 1936308
12 5 2 7 666996
12 6 1 7 60984
12 1 7 6 60984
12 2 6 6 925190
12 3 5 6 3915576
12 4 4 6 6195560
12 5 3 6 3915576
12 6 2 6 925190
12 7 1 6 60984
12 1 8 5 32670
12 2 7 5 666996
12 3 6 5 3915576
12 4 5 5 9032898
12 5 4 5 9032898
12 6 3 5 3915576
12 7 2 5 666996
12 8 1 5 32670
12 1 9 4 9075
12 2 8 4 245223
12 3 7 4 1936308
12 4 6 4 6195560
12 5 5 4 9032898
12 6 4 4 6195560
12 7 3 4 1936308
12 8 2 4 245223
12 9 1 4 9075
12 1 10 3 1210
12 2 9 3 43098
12 3 8 3 449988
12 4 7 3 1936308
12 5 6 3 3915576
12 6 5 3 3915576
12 7 4 3 1936308
12 8 3 3 449988
12 9 2 3 43098
12 10 1 3 1210
12 1 11 2 66
12 2 10 2 3135
12 3 9 2 43098
12 4 8 2 245223
12 5 7 2 666996
12 6 6 2 925190
12 7 5 2 666996
12 8 4 2 245223
12 9 3 2 43098
12 10 2 2 3135
12 11 1 2 66
12 1 12 1 1
12 2 11 1 66
12 3 10 1 1210
12 4 9 1 9075
12 5 8 1 32670
12 6 7 1 60984
12 7 6 1 60984
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12 8 5 1 32670
12 9 4 1 9075
12 10 3 1 1210
12 11 2 1 66
12 12 1 1 1

12 sum 91287552

13 1 1 13 1
13 1 2 12 78
13 2 1 12 78
13 1 3 11 1716
13 2 2 11 4433
13 3 1 11 1716
13 1 4 10 15730
13 2 3 10 74217
13 3 2 10 74217
13 4 1 10 15730
13 1 5 9 70785
13 2 4 9 525525
13 3 3 9 960960
13 4 2 9 525525
13 5 1 9 70785
13 1 6 8 169884
13 2 5 8 1827683
13 3 4 8 5264545
13 4 3 8 5264545
13 5 2 8 1827683
13 6 1 8 169884
13 1 7 7 226512
13 2 6 7 3356522
13 3 5 7 14019928
13 4 4 7 22089600
13 5 3 7 14019928
13 6 2 7 3356522
13 7 1 7 226512
13 1 8 6 169884
13 2 7 6 3356522
13 3 6 6 19315114
13 4 5 6 44136820
13 5 4 6 44136820
13 6 3 6 19315114
13 7 2 6 3356522
13 8 1 6 169884
13 1 9 5 70785
13 2 8 5 1827683
13 3 7 5 14019928
13 4 6 5 44136820
13 5 5 5 64013222
13 6 4 5 44136820
13 7 3 5 14019928
13 8 2 5 1827683
13 9 1 5 70785
13 1 10 4 15730
13 2 9 4 525525
13 3 8 4 5264545
13 4 7 4 22089600
13 5 6 4 44136820
13 6 5 4 44136820
13 7 4 4 22089600
13 8 3 4 5264545
13 9 2 4 525525
13 10 1 4 15730
13 1 11 3 1716
13 2 10 3 74217
13 3 9 3 960960
13 4 8 3 5264545
13 5 7 3 14019928
13 6 6 3 19315114
13 7 5 3 14019928

13 8 4 3 5264545
13 9 3 3 960960
13 10 2 3 74217
13 11 1 3 1716
13 1 12 2 78
13 2 11 2 4433
13 3 10 2 74217
13 4 9 2 525525
13 5 8 2 1827683
13 6 7 2 3356522
13 7 6 2 3356522
13 8 5 2 1827683
13 9 4 2 525525
13 10 3 2 74217
13 11 2 2 4433
13 12 1 2 78
13 1 13 1 1
13 2 12 1 78
13 3 11 1 1716
13 4 10 1 15730
13 5 9 1 70785
13 6 8 1 169884
13 7 7 1 226512
13 8 6 1 169884
13 9 5 1 70785
13 10 4 1 15730
13 11 3 1 1716
13 12 2 1 78
13 13 1 1 1

13 sum 608583680

14 1 1 14 1
14 1 2 13 91
14 2 1 13 91
14 1 3 12 2366
14 2 2 12 6097
14 3 1 12 2366
14 1 4 11 26026
14 2 3 11 122122
14 3 2 11 122122
14 4 1 11 26026
14 1 5 10 143143
14 2 4 10 1053052
14 3 3 10 1919918
14 4 2 10 1053052
14 5 1 10 143143
14 1 6 9 429429
14 2 5 9 4557553
14 3 4 9 13043030
14 4 3 9 13043030
14 5 2 9 4557553
14 6 1 9 429429
14 1 7 8 736164
14 2 6 8 10701873
14 3 5 8 44221632
14 4 4 8 69432090
14 5 3 8 44221632
14 6 2 8 10701873
14 7 1 8 736164
14 1 8 7 736164
14 2 7 7 14168988
14 3 6 7 80231508
14 4 5 7 181925268
14 5 4 7 181925268
14 6 3 7 80231508
14 7 2 7 14168988
14 8 1 7 736164
14 1 9 6 429429
14 2 8 6 10701873

14 3 7 6 80231508
14 4 6 6 249321114
14 5 5 6 360078558
14 6 4 6 249321114
14 7 3 6 80231508
14 8 2 6 10701873
14 9 1 6 429429
14 1 10 5 143143
14 2 9 5 4557553
14 3 8 5 44221632
14 4 7 5 181925268
14 5 6 5 360078558
14 6 5 5 360078558
14 7 4 5 181925268
14 8 3 5 44221632
14 9 2 5 4557553
14 10 1 5 143143
14 1 11 4 26026
14 2 10 4 1053052
14 3 9 4 13043030
14 4 8 4 69432090
14 5 7 4 181925268
14 6 6 4 249321114
14 7 5 4 181925268
14 8 4 4 69432090
14 9 3 4 13043030
14 10 2 4 1053052
14 11 1 4 26026
14 1 12 3 2366
14 2 11 3 122122
14 3 10 3 1919918
14 4 9 3 13043030
14 5 8 3 44221632
14 6 7 3 80231508
14 7 6 3 80231508
14 8 5 3 44221632
14 9 4 3 13043030
14 10 3 3 1919918
14 11 2 3 122122
14 12 1 3 2366
14 1 13 2 91
14 2 12 2 6097
14 3 11 2 122122
14 4 10 2 1053052
14 5 9 2 4557553
14 6 8 2 10701873
14 7 7 2 14168988
14 8 6 2 10701873
14 9 5 2 4557553
14 10 4 2 1053052
14 11 3 2 122122
14 12 2 2 6097
14 13 1 2 91
14 1 14 1 1
14 2 13 1 91
14 3 12 1 2366
14 4 11 1 26026
14 5 10 1 143143
14 6 9 1 429429
14 7 8 1 736164
14 8 7 1 736164
14 9 6 1 429429
14 10 5 1 143143
14 11 4 1 26026
14 12 3 1 2366
14 13 2 1 91
14 14 1 1 1

14 sum 4107939840
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A.2 Genus 1

d v e f h
3 1 1 1 1

3 sum 1

4 1 1 2 5
4 1 2 1 5
4 2 1 1 5

4 sum 15

5 1 1 3 15
5 1 2 2 40
5 2 1 2 40
5 1 3 1 15
5 2 2 1 40
5 3 1 1 15

5 sum 165

6 1 1 4 35
6 1 2 3 175
6 2 1 3 175
6 1 3 2 175
6 2 2 2 456
6 3 1 2 175
6 1 4 1 35
6 2 3 1 175
6 3 2 1 175
6 4 1 1 35

6 sum 1611

7 1 1 5 70
7 1 2 4 560
7 2 1 4 560
7 1 3 3 1050
7 2 2 3 2695
7 3 1 3 1050
7 1 4 2 560
7 2 3 2 2695
7 3 2 2 2695
7 4 1 2 560
7 1 5 1 70
7 2 4 1 560
7 3 3 1 1050
7 4 2 1 560
7 5 1 1 70

7 sum 14805

8 1 1 6 126
8 1 2 5 1470
8 2 1 5 1470
8 1 3 4 4410
8 2 2 4 11199
8 3 1 4 4410
8 1 4 3 4410
8 2 3 3 20684
8 3 2 3 20684
8 4 1 3 4410
8 1 5 2 1470
8 2 4 2 11199
8 3 3 2 20684
8 4 2 2 11199
8 5 1 2 1470
8 1 6 1 126

8 2 5 1 1470
8 3 4 1 4410
8 4 3 1 4410
8 5 2 1 1470
8 6 1 1 126

8 sum 131307

9 1 1 7 210
9 1 2 6 3360
9 2 1 6 3360
9 1 3 5 14700
9 2 2 5 37035
9 3 1 5 14700
9 1 4 4 23520
9 2 3 4 108285
9 3 2 4 108285
9 4 1 4 23520
9 1 5 3 14700
9 2 4 3 108285
9 3 3 3 197896
9 4 2 3 108285
9 5 1 3 14700
9 1 6 2 3360
9 2 5 2 37035
9 3 4 2 108285
9 4 3 2 108285
9 5 2 2 37035
9 6 1 2 3360
9 1 7 1 210
9 2 6 1 3360
9 3 5 1 14700
9 4 4 1 23520
9 5 3 1 14700
9 6 2 1 3360
9 7 1 1 210

9 sum 1138261

10 1 1 8 330
10 1 2 7 6930
10 2 1 7 6930
10 1 3 6 41580
10 2 2 6 104115
10 3 1 6 41580
10 1 4 5 97020
10 2 3 5 440440
10 3 2 5 440440
10 4 1 5 97020
10 1 5 4 97020
10 2 4 4 697250
10 3 3 4 1264310
10 4 2 4 697250
10 5 1 4 97020
10 1 6 3 41580
10 2 5 3 440440
10 3 4 3 1264310
10 4 3 3 1264310
10 5 2 3 440440
10 6 1 3 41580
10 1 7 2 6930
10 2 6 2 104115
10 3 5 2 440440
10 4 4 2 697250
10 5 3 2 440440
10 6 2 2 104115
10 7 1 2 6930

10 1 8 1 330
10 2 7 1 6930
10 3 6 1 41580
10 4 5 1 97020
10 5 4 1 97020
10 6 3 1 41580
10 7 2 1 6930
10 8 1 1 330

10 sum 9713835

11 1 1 9 495
11 1 2 8 13200
11 2 1 8 13200
11 1 3 7 103950
11 2 2 7 259017
11 3 1 7 103950
11 1 4 6 332640
11 2 3 6 1493525
11 3 2 6 1493525
11 4 1 6 332640
11 1 5 5 485100
11 2 4 5 3420835
11 3 3 5 6165478
11 4 2 5 3420835
11 5 1 5 485100
11 1 6 4 332640
11 2 5 4 3420835
11 3 4 4 9684433
11 4 3 4 9684433
11 5 2 4 3420835
11 6 1 4 332640
11 1 7 3 103950
11 2 6 3 1493525
11 3 5 3 6165478
11 4 4 3 9684433
11 5 3 3 6165478
11 6 2 3 1493525
11 7 1 3 103950
11 1 8 2 13200
11 2 7 2 259017
11 3 6 2 1493525
11 4 5 2 3420835
11 5 4 2 3420835
11 6 3 2 1493525
11 7 2 2 259017
11 8 1 2 13200
11 1 9 1 495
11 2 8 1 13200
11 3 7 1 103950
11 4 6 1 332640
11 5 5 1 485100
11 6 4 1 332640
11 7 3 1 103950
11 8 2 1 13200
11 9 1 1 495

11 sum 81968469

12 1 1 10 715
12 1 2 9 23595
12 2 1 9 23595
12 1 3 8 235950
12 2 2 8 585585
12 3 1 8 235950
12 1 4 7 990990
12 2 3 7 4410120
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12 3 2 7 4410120
12 4 1 7 990990
12 1 5 6 1981980
12 2 4 6 13768300
12 3 3 6 24695580
12 4 2 6 13768300
12 5 1 6 1981980
12 1 6 5 1981980
12 2 5 5 19920390
12 3 4 5 55785870
12 4 3 5 55785870
12 5 2 5 19920390
12 6 1 5 1981980
12 1 7 4 990990
12 2 6 4 13768300
12 3 5 4 55785870
12 4 4 4 87100531
12 5 3 4 55785870
12 6 2 4 13768300
12 7 1 4 990990
12 1 8 3 235950
12 2 7 3 4410120
12 3 6 3 24695580
12 4 5 3 55785870
12 5 4 3 55785870
12 6 3 3 24695580
12 7 2 3 4410120
12 8 1 3 235950
12 1 9 2 23595
12 2 8 2 585585
12 3 7 2 4410120
12 4 6 2 13768300
12 5 5 2 19920390
12 6 4 2 13768300
12 7 3 2 4410120
12 8 2 2 585585
12 9 1 2 23595
12 1 10 1 715
12 2 9 1 23595
12 3 8 1 235950
12 4 7 1 990990
12 5 6 1 1981980
12 6 5 1 1981980
12 7 4 1 990990
12 8 3 1 235950
12 9 2 1 23595
12 10 1 1 715

12 sum 685888171

13 1 1 11 1001
13 1 2 10 40040
13 2 1 10 40040
13 1 3 9 495495
13 2 2 9 1225653
13 3 1 9 495495
13 1 4 8 2642640
13 2 3 8 11674663
13 3 2 8 11674663
13 4 1 8 2642640
13 1 5 7 6936930
13 2 4 7 47604648
13 3 3 7 85050784
13 4 2 7 47604648
13 5 1 7 6936930
13 1 6 6 9513504
13 2 5 6 93880696

13 3 4 6 260619268
13 4 3 6 260619268
13 5 2 6 93880696
13 6 1 6 9513504
13 1 7 5 6936930
13 2 6 5 93880696
13 3 5 5 374805834
13 4 4 5 582408775
13 5 3 5 374805834
13 6 2 5 93880696
13 7 1 5 6936930
13 1 8 4 2642640
13 2 7 4 47604648
13 3 6 4 260619268
13 4 5 4 582408775
13 5 4 4 582408775
13 6 3 4 260619268
13 7 2 4 47604648
13 8 1 4 2642640
13 1 9 3 495495
13 2 8 3 11674663
13 3 7 3 85050784
13 4 6 3 260619268
13 5 5 3 374805834
13 6 4 3 260619268
13 7 3 3 85050784
13 8 2 3 11674663
13 9 1 3 495495
13 1 10 2 40040
13 2 9 2 1225653
13 3 8 2 11674663
13 4 7 2 47604648
13 5 6 2 93880696
13 6 5 2 93880696
13 7 4 2 47604648
13 8 3 2 11674663
13 9 2 2 1225653
13 10 1 2 40040
13 1 11 1 1001
13 2 10 1 40040
13 3 9 1 495495
13 4 8 1 2642640
13 5 7 1 6936930
13 6 6 1 9513504
13 7 5 1 6936930
13 8 4 1 2642640
13 9 3 1 495495
13 10 2 1 40040
13 11 1 1 1001

13 sum 5702382933

14 1 1 12 1365
14 1 2 11 65065
14 2 1 11 65065
14 1 3 10 975975
14 2 2 10 2407405
14 3 1 10 975975
14 1 4 9 6441435
14 2 3 9 28283255
14 3 2 9 28283255
14 4 1 9 6441435
14 1 5 8 21471450
14 2 4 8 145864355
14 3 3 8 259750218
14 4 2 8 145864355
14 5 1 8 21471450

14 1 6 7 38648610
14 2 5 7 375707570
14 3 4 7 1035514340
14 4 3 7 1035514340
14 5 2 7 375707570
14 6 1 7 38648610
14 1 7 6 38648610
14 2 6 6 512104880
14 3 5 6 2020140430
14 4 4 6 3126887407
14 5 3 6 2020140430
14 6 2 6 512104880
14 7 1 6 38648610
14 1 8 5 21471450
14 2 7 5 375707570
14 3 6 5 2020140430
14 4 5 5 4475516612
14 5 4 5 4475516612
14 6 3 5 2020140430
14 7 2 5 375707570
14 8 1 5 21471450
14 1 9 4 6441435
14 2 8 4 145864355
14 3 7 4 1035514340
14 4 6 4 3126887407
14 5 5 4 4475516612
14 6 4 4 3126887407
14 7 3 4 1035514340
14 8 2 4 145864355
14 9 1 4 6441435
14 1 10 3 975975
14 2 9 3 28283255
14 3 8 3 259750218
14 4 7 3 1035514340
14 5 6 3 2020140430
14 6 5 3 2020140430
14 7 4 3 1035514340
14 8 3 3 259750218
14 9 2 3 28283255
14 10 1 3 975975
14 1 11 2 65065
14 2 10 2 2407405
14 3 9 2 28283255
14 4 8 2 145864355
14 5 7 2 375707570
14 6 6 2 512104880
14 7 5 2 375707570
14 8 4 2 145864355
14 9 3 2 28283255
14 10 2 2 2407405
14 11 1 2 65065
14 1 12 1 1365
14 2 11 1 65065
14 3 10 1 975975
14 4 9 1 6441435
14 5 8 1 21471450
14 6 7 1 38648610
14 7 6 1 38648610
14 8 5 1 21471450
14 9 4 1 6441435
14 10 3 1 975975
14 11 2 1 65065
14 12 1 1 1365

14 sum 47168678571
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A.3 Genus 2

d v e f h
5 1 1 1 8

5 sum 8

6 1 1 2 84
6 1 2 1 84
6 2 1 1 84

6 sum 252

7 1 1 3 469
7 1 2 2 1183
7 2 1 2 1183
7 1 3 1 469
7 2 2 1 1183
7 3 1 1 469

7 sum 4956

8 1 1 4 1869
8 1 2 3 8526
8 2 1 3 8526
8 1 3 2 8526
8 2 2 2 21229
8 3 1 2 8526
8 1 4 1 1869
8 2 3 1 8526
8 3 2 1 8526
8 4 1 1 1869

8 sum 77992

9 1 1 5 5985
9 1 2 4 42588
9 2 1 4 42588
9 1 3 3 77028
9 2 2 3 189999
9 3 1 3 77028
9 1 4 2 42588
9 2 3 2 189999
9 3 2 2 189999
9 4 1 2 42588
9 1 5 1 5985
9 2 4 1 42588
9 3 3 1 77028
9 4 2 1 42588
9 5 1 1 5985

9 sum 1074564

10 1 1 6 16401
10 1 2 5 167013
10 2 1 5 167013
10 1 3 4 471240
10 2 2 4 1154095
10 3 1 4 471240
10 1 4 3 471240
10 2 3 3 2068070
10 3 2 3 2068070
10 4 1 3 471240
10 1 5 2 167013
10 2 4 2 1154095
10 3 3 2 2068070
10 4 2 2 1154095
10 5 1 2 167013
10 1 6 1 16401

10 2 5 1 167013
10 3 4 1 471240
10 4 3 1 471240
10 5 2 1 167013
10 6 1 1 16401

10 sum 13545216

11 1 1 7 39963
11 1 2 6 550011
11 2 1 6 550011
11 1 3 5 2221065
11 2 2 5 5409019
11 3 1 5 2221065
11 1 4 4 3465000
11 2 3 4 15014846
11 3 2 4 15014846
11 4 1 4 3465000
11 1 5 3 2221065
11 2 4 3 15014846
11 3 3 3 26717482
11 4 2 3 15014846
11 5 1 3 2221065
11 1 6 2 550011
11 2 5 2 5409019
11 3 4 2 15014846
11 4 3 2 15014846
11 5 2 2 5409019
11 6 1 2 550011
11 1 7 1 39963
11 2 6 1 550011
11 3 5 1 2221065
11 4 4 1 3465000
11 5 3 1 2221065
11 6 2 1 550011
11 7 1 1 39963

11 sum 160174960

12 1 1 8 88803
12 1 2 7 1585584
12 2 1 7 1585584
12 1 3 6 8654646
12 2 2 6 20981337
12 3 1 6 8654646
12 1 4 5 19324305
12 2 3 5 82897296
12 3 2 5 82897296
12 4 1 5 19324305
12 1 5 4 19324305
12 2 4 4 128420004
12 3 3 4 227256510
12 4 2 4 128420004
12 5 1 4 19324305
12 1 6 3 8654646
12 2 5 3 82897296
12 3 4 3 227256510
12 4 3 3 227256510
12 5 2 3 82897296
12 6 1 3 8654646
12 1 7 2 1585584
12 2 6 2 20981337
12 3 5 2 82897296
12 4 4 2 128420004
12 5 3 2 82897296
12 6 2 2 20981337
12 7 1 2 1585584

12 1 8 1 88803
12 2 7 1 1585584
12 3 6 1 8654646
12 4 5 1 19324305
12 5 4 1 19324305
12 6 3 1 8654646
12 7 2 1 1585584
12 8 1 1 88803

12 sum 1805010948

13 1 1 9 183183
13 1 2 8 4114110
13 2 1 8 4114110
13 1 3 7 29135106
13 2 2 7 70367479
13 3 1 7 29135106
13 1 4 6 87933846
13 2 3 6 374127663
13 3 2 6 374127663
13 4 1 6 87933846
13 1 5 5 125855730
13 2 4 5 824962502
13 3 3 5 1453414846
13 4 2 5 824962502
13 5 1 5 125855730
13 1 6 4 87933846
13 2 5 4 824962502
13 3 4 4 2239280420
13 4 3 4 2239280420
13 5 2 4 824962502
13 6 1 4 87933846
13 1 7 3 29135106
13 2 6 3 374127663
13 3 5 3 1453414846
13 4 4 3 2239280420
13 5 3 3 1453414846
13 6 2 3 374127663
13 7 1 3 29135106
13 1 8 2 4114110
13 2 7 2 70367479
13 3 6 2 374127663
13 4 5 2 824962502
13 5 4 2 824962502
13 6 3 2 374127663
13 7 2 2 70367479
13 8 1 2 4114110
13 1 9 1 183183
13 2 8 1 4114110
13 3 7 1 29135106
13 4 6 1 87933846
13 5 5 1 125855730
13 6 4 1 87933846
13 7 3 1 29135106
13 8 2 1 4114110
13 9 1 1 183183

13 sum 19588944336

14 1 1 10 355355
14 1 2 9 9798789
14 2 1 9 9798789
14 1 3 8 87291204
14 2 2 8 210164227
14 3 1 8 87291204
14 1 4 7 341825484
14 2 3 7 1444432612
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14 3 2 7 1444432612
14 4 1 7 341825484
14 1 5 6 661320660
14 2 4 6 4286172247
14 3 3 6 7523770016
14 4 2 6 4286172247
14 5 1 6 661320660
14 1 6 5 661320660
14 2 5 5 6100939726
14 3 4 5 16427471172
14 4 3 5 16427471172
14 5 2 5 6100939726
14 6 1 5 661320660
14 1 7 4 341825484
14 2 6 4 4286172247
14 3 5 4 16427471172
14 4 4 4 25199010256

14 5 3 4 16427471172
14 6 2 4 4286172247
14 7 1 4 341825484
14 1 8 3 87291204
14 2 7 3 1444432612
14 3 6 3 7523770016
14 4 5 3 16427471172
14 5 4 3 16427471172
14 6 3 3 7523770016
14 7 2 3 1444432612
14 8 1 3 87291204
14 1 9 2 9798789
14 2 8 2 210164227
14 3 7 2 1444432612
14 4 6 2 4286172247
14 5 5 2 6100939726
14 6 4 2 4286172247

14 7 3 2 1444432612
14 8 2 2 210164227
14 9 1 2 9798789
14 1 10 1 355355
14 2 9 1 9798789
14 3 8 1 87291204
14 4 7 1 341825484
14 5 6 1 661320660
14 6 5 1 661320660
14 7 4 1 341825484
14 8 3 1 87291204
14 9 2 1 9798789
14 10 1 1 355355

14 sum 206254571236

A.4 Genus 3

d v e f h
7 1 1 1 180

7 sum 180

8 1 1 2 3044
8 1 2 1 3044
8 2 1 1 3044

8 sum 9132

9 1 1 3 26060
9 1 2 2 63600
9 2 1 2 63600
9 1 3 1 26060
9 2 2 1 63600
9 3 1 1 26060

9 sum 268980

10 1 1 4 152900
10 1 2 3 659340
10 2 1 3 659340
10 1 3 2 659340
10 2 2 2 1595480
10 3 1 2 659340
10 1 4 1 152900
10 2 3 1 659340
10 3 2 1 659340
10 4 1 1 152900

10 sum 6010220

11 1 1 5 696905
11 1 2 4 4606910
11 2 1 4 4606910
11 1 3 3 8141100
11 2 2 3 19571123
11 3 1 3 8141100
11 1 4 2 4606910
11 2 3 2 19571123
11 3 2 2 19571123
11 4 1 2 4606910
11 1 5 1 696905
11 2 4 1 4606910
11 3 3 1 8141100
11 4 2 1 4606910
11 5 1 1 696905

11 sum 112868844

12 1 1 6 2641925
12 1 2 5 24656775
12 2 1 5 24656775
12 1 3 4 66805310
12 2 2 4 159762815
12 3 1 4 66805310
12 1 4 3 66805310
12 2 3 3 280514670
12 3 2 3 280514670
12 4 1 3 66805310
12 1 5 2 24656775
12 2 4 2 159762815
12 3 3 2 280514670
12 4 2 2 159762815
12 5 1 2 24656775
12 1 6 1 2641925
12 2 5 1 24656775
12 3 4 1 66805310
12 4 3 1 66805310
12 5 2 1 24656775
12 6 1 1 2641925

12 sum 1877530740

13 1 1 7 8691683
13 1 2 6 108452916
13 2 1 6 108452916
13 1 3 5 414918075
13 2 2 5 988043771
13 3 1 5 414918075
13 1 4 4 636184120
13 2 3 4 2646424729
13 3 2 4 2646424729
13 4 1 4 636184120
13 1 5 3 414918075
13 2 4 3 2646424729
13 3 3 3 4623070842
13 4 2 3 2646424729
13 5 1 3 414918075
13 1 6 2 108452916
13 2 5 2 988043771
13 3 4 2 2646424729
13 4 3 2 2646424729
13 5 2 2 988043771
13 6 1 2 108452916

13 1 7 1 8691683
13 2 6 1 108452916
13 3 5 1 414918075
13 4 4 1 636184120
13 5 3 1 414918075
13 6 2 1 108452916
13 7 1 1 8691683

13 sum 28540603884

14 1 1 8 25537655
14 1 2 7 409732895
14 2 1 7 409732895
14 1 3 6 2096068975
14 2 2 6 4973691275
14 3 1 6 2096068975
14 1 4 5 4538348815
14 2 3 5 18733893115
14 3 2 5 18733893115
14 4 1 5 4538348815
14 1 5 4 4538348815
14 2 4 4 28579309570
14 3 3 4 49719495672
14 4 2 4 28579309570
14 5 1 4 4538348815
14 1 6 3 2096068975
14 2 5 3 18733893115
14 3 4 3 49719495672
14 4 3 3 49719495672
14 5 2 3 18733893115
14 6 1 3 2096068975
14 1 7 2 409732895
14 2 6 2 4973691275
14 3 5 2 18733893115
14 4 4 2 28579309570
14 5 3 2 18733893115
14 6 2 2 4973691275
14 7 1 2 409732895
14 1 8 1 25537655
14 2 7 1 409732895
14 3 6 1 2096068975
14 4 5 1 4538348815
14 5 4 1 4538348815
14 6 3 1 2096068975
14 7 2 1 409732895
14 8 1 1 25537655

14 sum 404562365316
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A.5 Genus 4

d v e f h
9 1 1 1 8064

9 sum 8064

10 1 1 2 193248
10 1 2 1 193248
10 2 1 1 193248

10 sum 579744

11 1 1 3 2286636
11 1 2 2 5458464
11 2 1 2 5458464
11 1 3 1 2286636
11 2 2 1 5458464
11 3 1 1 2286636

11 sum 23235300

12 1 1 4 18128396
12 1 2 3 75220860
12 2 1 3 75220860
12 1 3 2 75220860
12 2 2 2 178462816

12 3 1 2 75220860
12 1 4 1 18128396
12 2 3 1 75220860
12 3 2 1 75220860
12 4 1 1 18128396

12 sum 684173164

13 1 1 5 109425316
13 1 2 4 687238552
13 2 1 4 687238552
13 1 3 3 1194737544
13 2 2 3 2820651496
13 3 1 3 1194737544
13 1 4 2 687238552
13 2 3 2 2820651496
13 3 2 2 2820651496
13 4 1 2 687238552
13 1 5 1 109425316
13 2 4 1 687238552
13 3 3 1 1194737544
13 4 2 1 687238552
13 5 1 1 109425316

13 sum 16497874380

14 1 1 6 539651112
14 1 2 5 4736419688
14 2 1 5 4736419688
14 1 3 4 12465308856
14 2 2 4 29310854804
14 3 1 4 12465308856
14 1 4 3 12465308856
14 2 3 3 50713072144
14 3 2 3 50713072144
14 4 1 3 12465308856
14 1 5 2 4736419688
14 2 4 2 29310854804
14 3 3 2 50713072144
14 4 2 2 29310854804
14 5 1 2 4736419688
14 1 6 1 539651112
14 2 5 1 4736419688
14 3 4 1 12465308856
14 4 3 1 12465308856
14 5 2 1 4736419688
14 6 1 1 539651112

14 sum 344901105444

A.6 Genus 5

d v e f h
11 1 1 1 604800

11 sum 604800

12 1 1 2 19056960
12 1 2 1 19056960
12 2 1 1 19056960

12 sum 57170880

13 1 1 3 292271616
13 1 2 2 686597184
13 2 1 2 686597184
13 1 3 1 292271616
13 2 2 1 686597184
13 3 1 1 292271616

13 sum 2936606400

14 1 1 4 2961802480
14 1 2 3 11947069680

14 2 1 3 11947069680
14 1 3 2 11947069680
14 2 2 2 27934773440
14 3 1 2 11947069680
14 1 4 1 2961802480
14 2 3 1 11947069680
14 3 2 1 11947069680
14 4 1 1 2961802480

14 sum 108502598960

A.7 Genus 6

d v e f h
13 1 1 1 68428800

13 sum 68428800

14 1 1 2 2699672832
14 1 2 1 2699672832
14 2 1 1 2699672832

14 sum 8099018496

These tables extend to 14 darts the part of Appendix B of [24] about rooted hypermaps.
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B First numbers of unrooted hypermaps
The following sections show the numbers H of unrooted hypermaps of genus g with d
darts, v vertices, e edges and d− v − e+ 2(1− g) faces, for g ≤ 6 and d ≤ 14.

B.1 Genus 0

d v e f H
1 1 1 1 1

1 sum 1

2 1 1 2 1
2 1 2 1 1
2 2 1 1 1

2 sum 3

3 1 1 3 1
3 1 2 2 1
3 2 1 2 1
3 1 3 1 1
3 2 2 1 1
3 3 1 1 1

3 sum 6

4 1 1 4 1
4 1 2 3 2
4 2 1 3 2
4 1 3 2 2
4 2 2 2 5
4 3 1 2 2
4 1 4 1 1
4 2 3 1 2
4 3 2 1 2
4 4 1 1 1

4 sum 20

5 1 1 5 1
5 1 2 4 2
5 2 1 4 2
5 1 3 3 4
5 2 2 3 11
5 3 1 3 4
5 1 4 2 2
5 2 3 2 11
5 3 2 2 11
5 4 1 2 2
5 1 5 1 1
5 2 4 1 2
5 3 3 1 4
5 4 2 1 2
5 5 1 1 1

5 sum 60

6 1 1 6 1
6 1 2 5 3
6 2 1 5 3
6 1 3 4 10
6 2 2 4 24
6 3 1 4 10
6 1 4 3 10
6 2 3 3 46
6 3 2 3 46
6 4 1 3 10

6 1 5 2 3
6 2 4 2 24
6 3 3 2 46
6 4 2 2 24
6 5 1 2 3
6 1 6 1 1
6 2 5 1 3
6 3 4 1 10
6 4 3 1 10
6 5 2 1 3
6 6 1 1 1

6 sum 291

7 1 1 7 1
7 1 2 6 3
7 2 1 6 3
7 1 3 5 15
7 2 2 5 40
7 3 1 5 15
7 1 4 4 25
7 2 3 4 127
7 3 2 4 127
7 4 1 4 25
7 1 5 3 15
7 2 4 3 127
7 3 3 3 242
7 4 2 3 127
7 5 1 3 15
7 1 6 2 3
7 2 5 2 40
7 3 4 2 127
7 4 3 2 127
7 5 2 2 40
7 6 1 2 3
7 1 7 1 1
7 2 6 1 3
7 3 5 1 15
7 4 4 1 25
7 5 3 1 15
7 6 2 1 3
7 7 1 1 1

7 sum 1310

8 1 1 8 1
8 1 2 7 4
8 2 1 7 4
8 1 3 6 26
8 2 2 6 67
8 3 1 6 26
8 1 4 5 64
8 2 3 5 309
8 3 2 5 309
8 4 1 5 64
8 1 5 4 64
8 2 4 4 505
8 3 3 4 946
8 4 2 4 505
8 5 1 4 64
8 1 6 3 26

8 2 5 3 309
8 3 4 3 946
8 4 3 3 946
8 5 2 3 309
8 6 1 3 26
8 1 7 2 4
8 2 6 2 67
8 3 5 2 309
8 4 4 2 505
8 5 3 2 309
8 6 2 2 67
8 7 1 2 4
8 1 8 1 1
8 2 7 1 4
8 3 6 1 26
8 4 5 1 64
8 5 4 1 64
8 6 3 1 26
8 7 2 1 4
8 8 1 1 1

8 sum 6975

9 1 1 9 1
9 1 2 8 4
9 2 1 8 4
9 1 3 7 38
9 2 2 7 98
9 3 1 7 38
9 1 4 6 132
9 2 3 6 640
9 3 2 6 640
9 4 1 6 132
9 1 5 5 196
9 2 4 5 1549
9 3 3 5 2890
9 4 2 5 1549
9 5 1 5 196
9 1 6 4 132
9 2 5 4 1549
9 3 4 4 4671
9 4 3 4 4671
9 5 2 4 1549
9 6 1 4 132
9 1 7 3 38
9 2 6 3 640
9 3 5 3 2890
9 4 4 3 4671
9 5 3 3 2890
9 6 2 3 640
9 7 1 3 38
9 1 8 2 4
9 2 7 2 98
9 3 6 2 640
9 4 5 2 1549
9 5 4 2 1549
9 6 3 2 640
9 7 2 2 98
9 8 1 2 4
9 1 9 1 1
9 2 8 1 4
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9 3 7 1 38
9 4 6 1 132
9 5 5 1 196
9 6 4 1 132
9 7 3 1 38
9 8 2 1 4
9 9 1 1 1

9 sum 37746

10 1 1 10 1
10 1 2 9 5
10 2 1 9 5
10 1 3 8 56
10 2 2 8 144
10 3 1 8 56
10 1 4 7 256
10 2 3 7 1226
10 3 2 7 1226
10 4 1 7 256
10 1 5 6 536
10 2 4 6 4111
10 3 3 6 7606
10 4 2 6 4111
10 5 1 6 536
10 1 6 5 536
10 2 5 5 6081
10 3 4 5 18019
10 4 3 5 18019
10 5 2 5 6081
10 6 1 5 536
10 1 7 4 256
10 2 6 4 4111
10 3 5 4 18019
10 4 4 4 28852
10 5 3 4 18019
10 6 2 4 4111
10 7 1 4 256
10 1 8 3 56
10 2 7 3 1226
10 3 6 3 7606
10 4 5 3 18019
10 5 4 3 18019
10 6 3 3 7606
10 7 2 3 1226
10 8 1 3 56
10 1 9 2 5
10 2 8 2 144
10 3 7 2 1226
10 4 6 2 4111
10 5 5 2 6081
10 6 4 2 4111
10 7 3 2 1226
10 8 2 2 144
10 9 1 2 5
10 1 10 1 1
10 2 9 1 5
10 3 8 1 56
10 4 7 1 256
10 5 6 1 536
10 6 5 1 536
10 7 4 1 256
10 8 3 1 56
10 9 2 1 5
10 10 1 1 1

10 sum 215602

11 1 1 11 1
11 1 2 10 5

11 2 1 10 5
11 1 3 9 75
11 2 2 9 195
11 3 1 9 75
11 1 4 8 450
11 2 3 8 2154
11 3 2 8 2154
11 4 1 8 450
11 1 5 7 1260
11 2 4 7 9585
11 3 3 7 17664
11 4 2 7 9585
11 5 1 7 1260
11 1 6 6 1764
11 2 5 6 19691
11 3 4 6 57715
11 4 3 6 57715
11 5 2 6 19691
11 6 1 6 1764
11 1 7 5 1260
11 2 6 5 19691
11 3 5 5 84714
11 4 4 5 134750
11 5 3 5 84714
11 6 2 5 19691
11 7 1 5 1260
11 1 8 4 450
11 2 7 4 9585
11 3 6 4 57715
11 4 5 4 134750
11 5 4 4 134750
11 6 3 4 57715
11 7 2 4 9585
11 8 1 4 450
11 1 9 3 75
11 2 8 3 2154
11 3 7 3 17664
11 4 6 3 57715
11 5 5 3 84714
11 6 4 3 57715
11 7 3 3 17664
11 8 2 3 2154
11 9 1 3 75
11 1 10 2 5
11 2 9 2 195
11 3 8 2 2154
11 4 7 2 9585
11 5 6 2 19691
11 6 5 2 19691
11 7 4 2 9585
11 8 3 2 2154
11 9 2 2 195
11 10 1 2 5
11 1 11 1 1
11 2 10 1 5
11 3 9 1 75
11 4 8 1 450
11 5 7 1 1260
11 6 6 1 1764
11 7 5 1 1260
11 8 4 1 450
11 9 3 1 75
11 10 2 1 5
11 11 1 1 1

11 sum 1262874

12 1 1 12 1
12 1 2 11 6
12 2 1 11 6

12 1 3 10 104
12 2 2 10 265
12 3 1 10 104
12 1 4 9 765
12 2 3 9 3605
12 3 2 9 3605
12 4 1 9 765
12 1 5 8 2736
12 2 4 8 20472
12 3 3 8 37545
12 4 2 8 20472
12 5 1 8 2736
12 1 6 7 5102
12 2 5 7 55633
12 3 4 7 161455
12 4 3 7 161455
12 5 2 7 55633
12 6 1 7 5102
12 1 7 6 5102
12 2 6 6 77174
12 3 5 6 326432
12 4 4 6 516507
12 5 3 6 326432
12 6 2 6 77174
12 7 1 6 5102
12 1 8 5 2736
12 2 7 5 55633
12 3 6 5 326432
12 4 5 5 752940
12 5 4 5 752940
12 6 3 5 326432
12 7 2 5 55633
12 8 1 5 2736
12 1 9 4 765
12 2 8 4 20472
12 3 7 4 161455
12 4 6 4 516507
12 5 5 4 752940
12 6 4 4 516507
12 7 3 4 161455
12 8 2 4 20472
12 9 1 4 765
12 1 10 3 104
12 2 9 3 3605
12 3 8 3 37545
12 4 7 3 161455
12 5 6 3 326432
12 6 5 3 326432
12 7 4 3 161455
12 8 3 3 37545
12 9 2 3 3605
12 10 1 3 104
12 1 11 2 6
12 2 10 2 265
12 3 9 2 3605
12 4 8 2 20472
12 5 7 2 55633
12 6 6 2 77174
12 7 5 2 55633
12 8 4 2 20472
12 9 3 2 3605
12 10 2 2 265
12 11 1 2 6
12 1 12 1 1
12 2 11 1 6
12 3 10 1 104
12 4 9 1 765
12 5 8 1 2736
12 6 7 1 5102
12 7 6 1 5102
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12 8 5 1 2736
12 9 4 1 765
12 10 3 1 104
12 11 2 1 6
12 12 1 1 1

12 sum 7611156

13 1 1 13 1
13 1 2 12 6
13 2 1 12 6
13 1 3 11 132
13 2 2 11 341
13 3 1 11 132
13 1 4 10 1210
13 2 3 10 5709
13 3 2 10 5709
13 4 1 10 1210
13 1 5 9 5445
13 2 4 9 40425
13 3 3 9 73920
13 4 2 9 40425
13 5 1 9 5445
13 1 6 8 13068
13 2 5 8 140591
13 3 4 8 404965
13 4 3 8 404965
13 5 2 8 140591
13 6 1 8 13068
13 1 7 7 17424
13 2 6 7 258194
13 3 5 7 1078456
13 4 4 7 1699200
13 5 3 7 1078456
13 6 2 7 258194
13 7 1 7 17424
13 1 8 6 13068
13 2 7 6 258194
13 3 6 6 1485778
13 4 5 6 3395140
13 5 4 6 3395140
13 6 3 6 1485778
13 7 2 6 258194
13 8 1 6 13068
13 1 9 5 5445
13 2 8 5 140591
13 3 7 5 1078456
13 4 6 5 3395140
13 5 5 5 4924094
13 6 4 5 3395140
13 7 3 5 1078456
13 8 2 5 140591
13 9 1 5 5445
13 1 10 4 1210
13 2 9 4 40425
13 3 8 4 404965
13 4 7 4 1699200
13 5 6 4 3395140
13 6 5 4 3395140
13 7 4 4 1699200
13 8 3 4 404965
13 9 2 4 40425
13 10 1 4 1210
13 1 11 3 132
13 2 10 3 5709
13 3 9 3 73920
13 4 8 3 404965
13 5 7 3 1078456
13 6 6 3 1485778
13 7 5 3 1078456

13 8 4 3 404965
13 9 3 3 73920
13 10 2 3 5709
13 11 1 3 132
13 1 12 2 6
13 2 11 2 341
13 3 10 2 5709
13 4 9 2 40425
13 5 8 2 140591
13 6 7 2 258194
13 7 6 2 258194
13 8 5 2 140591
13 9 4 2 40425
13 10 3 2 5709
13 11 2 2 341
13 12 1 2 6
13 1 13 1 1
13 2 12 1 6
13 3 11 1 132
13 4 10 1 1210
13 5 9 1 5445
13 6 8 1 13068
13 7 7 1 17424
13 8 6 1 13068
13 9 5 1 5445
13 10 4 1 1210
13 11 3 1 132
13 12 2 1 6
13 13 1 1 1

13 sum 46814132

14 1 1 14 1
14 1 2 13 7
14 2 1 13 7
14 1 3 12 172
14 2 2 12 440
14 3 1 12 172
14 1 4 11 1868
14 2 3 11 8741
14 3 2 11 8741
14 4 1 11 1868
14 1 5 10 10247
14 2 4 10 75283
14 3 3 10 137217
14 4 2 10 75283
14 5 1 10 10247
14 1 6 9 30711
14 2 5 9 325652
14 3 4 9 931845
14 4 3 9 931845
14 5 2 9 325652
14 6 1 9 30711
14 1 7 8 52634
14 2 6 8 764633
14 3 5 8 3159069
14 4 4 8 4960016
14 5 3 8 3159069
14 6 2 8 764633
14 7 1 8 52634
14 1 8 7 52634
14 2 7 7 1012271
14 3 6 7 5731330
14 4 5 7 12995424
14 5 4 7 12995424
14 6 3 7 5731330
14 7 2 7 1012271
14 8 1 7 52634
14 1 9 6 30711
14 2 8 6 764633

14 3 7 6 5731330
14 4 6 6 17809776
14 5 5 6 25720986
14 6 4 6 17809776
14 7 3 6 5731330
14 8 2 6 764633
14 9 1 6 30711
14 1 10 5 10247
14 2 9 5 325652
14 3 8 5 3159069
14 4 7 5 12995424
14 5 6 5 25720986
14 6 5 5 25720986
14 7 4 5 12995424
14 8 3 5 3159069
14 9 2 5 325652
14 10 1 5 10247
14 1 11 4 1868
14 2 10 4 75283
14 3 9 4 931845
14 4 8 4 4960016
14 5 7 4 12995424
14 6 6 4 17809776
14 7 5 4 12995424
14 8 4 4 4960016
14 9 3 4 931845
14 10 2 4 75283
14 11 1 4 1868
14 1 12 3 172
14 2 11 3 8741
14 3 10 3 137217
14 4 9 3 931845
14 5 8 3 3159069
14 6 7 3 5731330
14 7 6 3 5731330
14 8 5 3 3159069
14 9 4 3 931845
14 10 3 3 137217
14 11 2 3 8741
14 12 1 3 172
14 1 13 2 7
14 2 12 2 440
14 3 11 2 8741
14 4 10 2 75283
14 5 9 2 325652
14 6 8 2 764633
14 7 7 2 1012271
14 8 6 2 764633
14 9 5 2 325652
14 10 4 2 75283
14 11 3 2 8741
14 12 2 2 440
14 13 1 2 7
14 1 14 1 1
14 2 13 1 7
14 3 12 1 172
14 4 11 1 1868
14 5 10 1 10247
14 6 9 1 30711
14 7 8 1 52634
14 8 7 1 52634
14 9 6 1 30711
14 10 5 1 10247
14 11 4 1 1868
14 12 3 1 172
14 13 2 1 7
14 14 1 1 1

14 sum 293447817
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B.2 Genus 1

d v e f H
3 1 1 1 1

3 sum 1

4 1 1 2 2
4 1 2 1 2
4 2 1 1 2

4 sum 6

5 1 1 3 3
5 1 2 2 8
5 2 1 2 8
5 1 3 1 3
5 2 2 1 8
5 3 1 1 3

5 sum 33

6 1 1 4 7
6 1 2 3 31
6 2 1 3 31
6 1 3 2 31
6 2 2 2 78
6 3 1 2 31
6 1 4 1 7
6 2 3 1 31
6 3 2 1 31
6 4 1 1 7

6 sum 285

7 1 1 5 10
7 1 2 4 80
7 2 1 4 80
7 1 3 3 150
7 2 2 3 385
7 3 1 3 150
7 1 4 2 80
7 2 3 2 385
7 3 2 2 385
7 4 1 2 80
7 1 5 1 10
7 2 4 1 80
7 3 3 1 150
7 4 2 1 80
7 5 1 1 10

7 sum 2115

8 1 1 6 17
8 1 2 5 187
8 2 1 5 187
8 1 3 4 557
8 2 2 4 1409
8 3 1 4 557
8 1 4 3 557
8 2 3 3 2597
8 3 2 3 2597
8 4 1 3 557
8 1 5 2 187
8 2 4 2 1409
8 3 3 2 2597
8 4 2 2 1409
8 5 1 2 187
8 1 6 1 17

8 2 5 1 187
8 3 4 1 557
8 4 3 1 557
8 5 2 1 187
8 6 1 1 17

8 sum 16533

9 1 1 7 24
9 1 2 6 374
9 2 1 6 374
9 1 3 5 1634
9 2 2 5 4115
9 3 1 5 1634
9 1 4 4 2616
9 2 3 4 12033
9 3 2 4 12033
9 4 1 4 2616
9 1 5 3 1634
9 2 4 3 12033
9 3 3 3 21990
9 4 2 3 12033
9 5 1 3 1634
9 1 6 2 374
9 2 5 2 4115
9 3 4 2 12033
9 4 3 2 12033
9 5 2 2 4115
9 6 1 2 374
9 1 7 1 24
9 2 6 1 374
9 3 5 1 1634
9 4 4 1 2616
9 5 3 1 1634
9 6 2 1 374
9 7 1 1 24

9 sum 126501

10 1 1 8 34
10 1 2 7 698
10 2 1 7 698
10 1 3 6 4172
10 2 2 6 10434
10 3 1 6 4172
10 1 4 5 9724
10 2 3 5 44091
10 3 2 5 44091
10 4 1 5 9724
10 1 5 4 9724
10 2 4 4 69790
10 3 3 4 126519
10 4 2 4 69790
10 5 1 4 9724
10 1 6 3 4172
10 2 5 3 44091
10 3 4 3 126519
10 4 3 3 126519
10 5 2 3 44091
10 6 1 3 4172
10 1 7 2 698
10 2 6 2 10434
10 3 5 2 44091
10 4 4 2 69790
10 5 3 2 44091
10 6 2 2 10434
10 7 1 2 698

10 1 8 1 34
10 2 7 1 698
10 3 6 1 4172
10 4 5 1 9724
10 5 4 1 9724
10 6 3 1 4172
10 7 2 1 698
10 8 1 1 34

10 sum 972441

11 1 1 9 45
11 1 2 8 1200
11 2 1 8 1200
11 1 3 7 9450
11 2 2 7 23547
11 3 1 7 9450
11 1 4 6 30240
11 2 3 6 135775
11 3 2 6 135775
11 4 1 6 30240
11 1 5 5 44100
11 2 4 5 310985
11 3 3 5 560498
11 4 2 5 310985
11 5 1 5 44100
11 1 6 4 30240
11 2 5 4 310985
11 3 4 4 880403
11 4 3 4 880403
11 5 2 4 310985
11 6 1 4 30240
11 1 7 3 9450
11 2 6 3 135775
11 3 5 3 560498
11 4 4 3 880403
11 5 3 3 560498
11 6 2 3 135775
11 7 1 3 9450
11 1 8 2 1200
11 2 7 2 23547
11 3 6 2 135775
11 4 5 2 310985
11 5 4 2 310985
11 6 3 2 135775
11 7 2 2 23547
11 8 1 2 1200
11 1 9 1 45
11 2 8 1 1200
11 3 7 1 9450
11 4 6 1 30240
11 5 5 1 44100
11 6 4 1 30240
11 7 3 1 9450
11 8 2 1 1200
11 9 1 1 45

11 sum 7451679

12 1 1 10 62
12 1 2 9 1976
12 2 1 9 1976
12 1 3 8 19694
12 2 2 8 48846
12 3 1 8 19694
12 1 4 7 82652
12 2 3 7 367645
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12 3 2 7 367645
12 4 1 7 82652
12 1 5 6 165262
12 2 4 6 1147628
12 3 3 6 2058329
12 4 2 6 1147628
12 5 1 6 165262
12 1 6 5 165262
12 2 5 5 1660331
12 3 4 5 4649379
12 4 3 5 4649379
12 5 2 5 1660331
12 6 1 5 165262
12 1 7 4 82652
12 2 6 4 1147628
12 3 5 4 4649379
12 4 4 4 7259140
12 5 3 4 4649379
12 6 2 4 1147628
12 7 1 4 82652
12 1 8 3 19694
12 2 7 3 367645
12 3 6 3 2058329
12 4 5 3 4649379
12 5 4 3 4649379
12 6 3 3 2058329
12 7 2 3 367645
12 8 1 3 19694
12 1 9 2 1976
12 2 8 2 48846
12 3 7 2 367645
12 4 6 2 1147628
12 5 5 2 1660331
12 6 4 2 1147628
12 7 3 2 367645
12 8 2 2 48846
12 9 1 2 1976
12 1 10 1 62
12 2 9 1 1976
12 3 8 1 19694
12 4 7 1 82652
12 5 6 1 165262
12 6 5 1 165262
12 7 4 1 82652
12 8 3 1 19694
12 9 2 1 1976
12 10 1 1 62

12 sum 57167260

13 1 1 11 77
13 1 2 10 3080
13 2 1 10 3080
13 1 3 9 38115
13 2 2 9 94281
13 3 1 9 38115
13 1 4 8 203280
13 2 3 8 898051
13 3 2 8 898051
13 4 1 8 203280
13 1 5 7 533610
13 2 4 7 3661896
13 3 3 7 6542368
13 4 2 7 3661896
13 5 1 7 533610
13 1 6 6 731808
13 2 5 6 7221592

13 3 4 6 20047636
13 4 3 6 20047636
13 5 2 6 7221592
13 6 1 6 731808
13 1 7 5 533610
13 2 6 5 7221592
13 3 5 5 28831218
13 4 4 5 44800675
13 5 3 5 28831218
13 6 2 5 7221592
13 7 1 5 533610
13 1 8 4 203280
13 2 7 4 3661896
13 3 6 4 20047636
13 4 5 4 44800675
13 5 4 4 44800675
13 6 3 4 20047636
13 7 2 4 3661896
13 8 1 4 203280
13 1 9 3 38115
13 2 8 3 898051
13 3 7 3 6542368
13 4 6 3 20047636
13 5 5 3 28831218
13 6 4 3 20047636
13 7 3 3 6542368
13 8 2 3 898051
13 9 1 3 38115
13 1 10 2 3080
13 2 9 2 94281
13 3 8 2 898051
13 4 7 2 3661896
13 5 6 2 7221592
13 6 5 2 7221592
13 7 4 2 3661896
13 8 3 2 898051
13 9 2 2 94281
13 10 1 2 3080
13 1 11 1 77
13 2 10 1 3080
13 3 9 1 38115
13 4 8 1 203280
13 5 7 1 533610
13 6 6 1 731808
13 7 5 1 533610
13 8 4 1 203280
13 9 3 1 38115
13 10 2 1 3080
13 11 1 1 77

13 sum 438644841

14 1 1 12 99
14 1 2 11 4659
14 2 1 11 4659
14 1 3 10 69765
14 2 2 10 172040
14 3 1 10 69765
14 1 4 9 460245
14 2 3 9 2020530
14 3 2 9 2020530
14 4 1 9 460245
14 1 5 8 1533950
14 2 4 8 10419653
14 3 3 8 18554641
14 4 2 8 10419653
14 5 1 8 1533950

14 1 6 7 2760990
14 2 5 7 26837442
14 3 4 7 73967488
14 4 3 7 73967488
14 5 2 7 26837442
14 6 1 7 2760990
14 1 7 6 2760990
14 2 6 6 36580432
14 3 5 6 144298902
14 4 4 6 223353280
14 5 3 6 144298902
14 6 2 6 36580432
14 7 1 6 2760990
14 1 8 5 1533950
14 2 7 5 26837442
14 3 6 5 144298902
14 4 5 5 319684549
14 5 4 5 319684549
14 6 3 5 144298902
14 7 2 5 26837442
14 8 1 5 1533950
14 1 9 4 460245
14 2 8 4 10419653
14 3 7 4 73967488
14 4 6 4 223353280
14 5 5 4 319684549
14 6 4 4 223353280
14 7 3 4 73967488
14 8 2 4 10419653
14 9 1 4 460245
14 1 10 3 69765
14 2 9 3 2020530
14 3 8 3 18554641
14 4 7 3 73967488
14 5 6 3 144298902
14 6 5 3 144298902
14 7 4 3 73967488
14 8 3 3 18554641
14 9 2 3 2020530
14 10 1 3 69765
14 1 11 2 4659
14 2 10 2 172040
14 3 9 2 2020530
14 4 8 2 10419653
14 5 7 2 26837442
14 6 6 2 36580432
14 7 5 2 26837442
14 8 4 2 10419653
14 9 3 2 2020530
14 10 2 2 172040
14 11 1 2 4659
14 1 12 1 99
14 2 11 1 4659
14 3 10 1 69765
14 4 9 1 460245
14 5 8 1 1533950
14 6 7 1 2760990
14 7 6 1 2760990
14 8 5 1 1533950
14 9 4 1 460245
14 10 3 1 69765
14 11 2 1 4659
14 12 1 1 99

14 sum 3369276867
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B.3 Genus 2

d v e f H
5 1 1 1 4

5 sum 4

6 1 1 2 16
6 1 2 1 16
6 2 1 1 16

6 sum 48

7 1 1 3 67
7 1 2 2 169
7 2 1 2 169
7 1 3 1 67
7 2 2 1 169
7 3 1 1 67

7 sum 708

8 1 1 4 237
8 1 2 3 1072
8 2 1 3 1072
8 1 3 2 1072
8 2 2 2 2664
8 3 1 2 1072
8 1 4 1 237
8 2 3 1 1072
8 3 2 1 1072
8 4 1 1 237

8 sum 9807

9 1 1 5 667
9 1 2 4 4736
9 2 1 4 4736
9 1 3 3 8560
9 2 2 3 21113
9 3 1 3 8560
9 1 4 2 4736
9 2 3 2 21113
9 3 2 2 21113
9 4 1 2 4736
9 1 5 1 667
9 2 4 1 4736
9 3 3 1 8560
9 4 2 1 4736
9 5 1 1 667

9 sum 119436

10 1 1 6 1649
10 1 2 5 16725
10 2 1 5 16725
10 1 3 4 47164
10 2 2 4 115478
10 3 1 4 47164
10 1 4 3 47164
10 2 3 3 206895
10 3 2 3 206895
10 4 1 3 47164
10 1 5 2 16725
10 2 4 2 115478
10 3 3 2 206895
10 4 2 2 115478
10 5 1 2 16725
10 1 6 1 1649

10 2 5 1 16725
10 3 4 1 47164
10 4 3 1 47164
10 5 2 1 16725
10 6 1 1 1649

10 sum 1355400

11 1 1 7 3633
11 1 2 6 50001
11 2 1 6 50001
11 1 3 5 201915
11 2 2 5 491729
11 3 1 5 201915
11 1 4 4 315000
11 2 3 4 1364986
11 3 2 4 1364986
11 4 1 4 315000
11 1 5 3 201915
11 2 4 3 1364986
11 3 3 3 2428862
11 4 2 3 1364986
11 5 1 3 201915
11 1 6 2 50001
11 2 5 2 491729
11 3 4 2 1364986
11 4 3 2 1364986
11 5 2 2 491729
11 6 1 2 50001
11 1 7 1 3633
11 2 6 1 50001
11 3 5 1 201915
11 4 4 1 315000
11 5 3 1 201915
11 6 2 1 50001
11 7 1 1 3633

11 sum 14561360

12 1 1 8 7417
12 1 2 7 132202
12 2 1 7 132202
12 1 3 6 721382
12 2 2 6 1748723
12 3 1 6 721382
12 1 4 5 1610617
12 2 3 5 6908644
12 3 2 5 6908644
12 4 1 5 1610617
12 1 5 4 1610617
12 2 4 4 10702449
12 3 3 4 18938994
12 4 2 4 10702449
12 5 1 4 1610617
12 1 6 3 721382
12 2 5 3 6908644
12 3 4 3 18938994
12 4 3 3 18938994
12 5 2 3 6908644
12 6 1 3 721382
12 1 7 2 132202
12 2 6 2 1748723
12 3 5 2 6908644
12 4 4 2 10702449
12 5 3 2 6908644
12 6 2 2 1748723
12 7 1 2 132202

12 1 8 1 7417
12 2 7 1 132202
12 3 6 1 721382
12 4 5 1 1610617
12 5 4 1 1610617
12 6 3 1 721382
12 7 2 1 132202
12 8 1 1 7417

12 sum 150429819

13 1 1 9 14091
13 1 2 8 316470
13 2 1 8 316470
13 1 3 7 2241162
13 2 2 7 5412883
13 3 1 7 2241162
13 1 4 6 6764142
13 2 3 6 28779051
13 3 2 6 28779051
13 4 1 6 6764142
13 1 5 5 9681210
13 2 4 5 63458654
13 3 3 5 111801142
13 4 2 5 63458654
13 5 1 5 9681210
13 1 6 4 6764142
13 2 5 4 63458654
13 3 4 4 172252340
13 4 3 4 172252340
13 5 2 4 63458654
13 6 1 4 6764142
13 1 7 3 2241162
13 2 6 3 28779051
13 3 5 3 111801142
13 4 4 3 172252340
13 5 3 3 111801142
13 6 2 3 28779051
13 7 1 3 2241162
13 1 8 2 316470
13 2 7 2 5412883
13 3 6 2 28779051
13 4 5 2 63458654
13 5 4 2 63458654
13 6 3 2 28779051
13 7 2 2 5412883
13 8 1 2 316470
13 1 9 1 14091
13 2 8 1 316470
13 3 7 1 2241162
13 4 6 1 6764142
13 5 5 1 9681210
13 6 4 1 6764142
13 7 3 1 2241162
13 8 2 1 316470
13 9 1 1 14091

13 sum 1506841872

14 1 1 10 25405
14 1 2 9 700045
14 2 1 9 700045
14 1 3 8 6235526
14 2 2 8 15012496
14 3 1 8 6235526
14 1 4 7 24417030
14 2 3 7 103175785
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14 3 2 7 103175785
14 4 1 7 24417030
14 1 5 6 47238510
14 2 4 6 306159286
14 3 3 6 537417269
14 4 2 6 306159286
14 5 1 6 47238510
14 1 6 5 47238510
14 2 5 5 435785878
14 3 4 5 1173398706
14 4 3 5 1173398706
14 5 2 5 435785878
14 6 1 5 47238510
14 1 7 4 24417030
14 2 6 4 306159286
14 3 5 4 1173398706
14 4 4 4 1799940644

14 5 3 4 1173398706
14 6 2 4 306159286
14 7 1 4 24417030
14 1 8 3 6235526
14 2 7 3 103175785
14 3 6 3 537417269
14 4 5 3 1173398706
14 5 4 3 1173398706
14 6 3 3 537417269
14 7 2 3 103175785
14 8 1 3 6235526
14 1 9 2 700045
14 2 8 2 15012496
14 3 7 2 103175785
14 4 6 2 306159286
14 5 5 2 435785878
14 6 4 2 306159286

14 7 3 2 103175785
14 8 2 2 15012496
14 9 1 2 700045
14 1 10 1 25405
14 2 9 1 700045
14 3 8 1 6235526
14 4 7 1 24417030
14 5 6 1 47238510
14 6 5 1 47238510
14 7 4 1 24417030
14 8 3 1 6235526
14 9 2 1 700045
14 10 1 1 25405

14 sum 14732613116

B.4 Genus 3

d v e f H
7 1 1 1 30

7 sum 30

8 1 1 2 385
8 1 2 1 385
8 2 1 1 385

8 sum 1155

9 1 1 3 2900
9 1 2 2 7070
9 2 1 2 7070
9 1 3 1 2900
9 2 2 1 7070
9 3 1 1 2900

9 sum 29910

10 1 1 4 15308
10 1 2 3 65972
10 2 1 3 65972
10 1 3 2 65972
10 2 2 2 159608
10 3 1 2 65972
10 1 4 1 15308
10 2 3 1 65972
10 3 2 1 65972
10 4 1 1 15308

10 sum 601364

11 1 1 5 63355
11 1 2 4 418810
11 2 1 4 418810
11 1 3 3 740100
11 2 2 3 1779193
11 3 1 3 740100
11 1 4 2 418810
11 2 3 2 1779193
11 3 2 2 1779193
11 4 1 2 418810
11 1 5 1 63355
11 2 4 1 418810
11 3 3 1 740100
11 4 2 1 418810
11 5 1 1 63355

11 sum 10260804

12 1 1 6 220244
12 1 2 5 2054974
12 2 1 5 2054974
12 1 3 4 5567550
12 2 2 4 13314231
12 3 1 4 5567550
12 1 4 3 5567550
12 2 3 3 23377106
12 3 2 3 23377106
12 4 1 3 5567550
12 1 5 2 2054974
12 2 4 2 13314231
12 3 3 2 23377106
12 4 2 2 13314231
12 5 1 2 2054974
12 1 6 1 220244
12 2 5 1 2054974
12 3 4 1 5567550
12 4 3 1 5567550
12 5 2 1 2054974
12 6 1 1 220244

12 sum 156469887

13 1 1 7 668591
13 1 2 6 8342532
13 2 1 6 8342532
13 1 3 5 31916775
13 2 2 5 76003367
13 3 1 5 31916775
13 1 4 4 48937240
13 2 3 4 203571133
13 3 2 4 203571133
13 4 1 4 48937240
13 1 5 3 31916775
13 2 4 3 203571133
13 3 3 3 355620834
13 4 2 3 203571133
13 5 1 3 31916775
13 1 6 2 8342532
13 2 5 2 76003367
13 3 4 2 203571133
13 4 3 2 203571133
13 5 2 2 76003367
13 6 1 2 8342532

13 1 7 1 668591
13 2 6 1 8342532
13 3 5 1 31916775
13 4 4 1 48937240
13 5 3 1 31916775
13 6 2 1 8342532
13 7 1 1 668591

13 sum 2195431068

14 1 1 8 1824323
14 1 2 7 29267487
14 2 1 7 29267487
14 1 3 6 149721473
14 2 2 6 355267058
14 3 1 6 149721473
14 1 4 5 324171185
14 2 3 5 1338142324
14 3 2 5 1338142324
14 4 1 5 324171185
14 1 5 4 324171185
14 2 4 4 2041388556
14 3 3 4 3551405485
14 4 2 4 2041388556
14 5 1 4 324171185
14 1 6 3 149721473
14 2 5 3 1338142324
14 3 4 3 3551405485
14 4 3 3 3551405485
14 5 2 3 1338142324
14 6 1 3 149721473
14 1 7 2 29267487
14 2 6 2 355267058
14 3 5 2 1338142324
14 4 4 2 2041388556
14 5 3 2 1338142324
14 6 2 2 355267058
14 7 1 2 29267487
14 1 8 1 1824323
14 2 7 1 29267487
14 3 6 1 149721473
14 4 5 1 324171185
14 5 4 1 324171185
14 6 3 1 149721473
14 7 2 1 29267487
14 8 1 1 1824323

14 sum 28897471080
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B.5 Genus 4

d v e f H
9 1 1 1 900

9 sum 900

10 1 1 2 19344
10 1 2 1 19344
10 2 1 1 19344

10 sum 58032

11 1 1 3 207876
11 1 2 2 496224
11 2 1 2 496224
11 1 3 1 207876
11 2 2 1 496224
11 3 1 1 207876

11 sum 2112300

12 1 1 4 1510846
12 1 2 3 6268712
12 2 1 3 6268712
12 1 3 2 6268712
12 2 2 2 14872428

12 3 1 2 6268712
12 1 4 1 1510846
12 2 3 1 6268712
12 3 2 1 6268712
12 4 1 1 1510846

12 sum 57017238

13 1 1 5 8417332
13 1 2 4 52864504
13 2 1 4 52864504
13 1 3 3 91902888
13 2 2 3 216973192
13 3 1 3 91902888
13 1 4 2 52864504
13 2 3 2 216973192
13 3 2 2 216973192
13 4 1 2 52864504
13 1 5 1 8417332
13 2 4 1 52864504
13 3 3 1 91902888
13 4 2 1 52864504
13 5 1 1 8417332

13 sum 1269067260

14 1 1 6 38547144
14 1 2 5 338317960
14 2 1 5 338317960
14 1 3 4 890383128
14 2 2 4 2093639428
14 3 1 4 890383128
14 1 4 3 890383128
14 2 3 3 3622371084
14 3 2 3 3622371084
14 4 1 3 890383128
14 1 5 2 338317960
14 2 4 2 2093639428
14 3 3 2 3622371084
14 4 2 2 2093639428
14 5 1 2 338317960
14 1 6 1 38547144
14 2 5 1 338317960
14 3 4 1 890383128
14 4 3 1 890383128
14 5 2 1 338317960
14 6 1 1 38547144

14 sum 24635879496

B.6 Genus 5

d v e f H
11 1 1 1 54990

11 sum 54990

12 1 1 2 1588218
12 1 2 1 1588218
12 2 1 1 1588218

12 sum 4764654

13 1 1 3 22482432
13 1 2 2 52815168
13 2 1 2 52815168
13 1 3 1 22482432
13 2 2 1 52815168
13 3 1 1 22482432

13 sum 225892800

14 1 1 4 211558928
14 1 2 3 853365360

14 2 1 3 853365360
14 1 3 2 853365360
14 2 2 2 1995345826
14 3 1 2 853365360
14 1 4 1 211558928
14 2 3 1 853365360
14 3 2 1 853365360
14 4 1 1 211558928

14 sum 7750214770

B.7 Genus 6

d v e f H
13 1 1 1 5263764

13 sum 5263764

14 1 1 2 192834612
14 1 2 1 192834612
14 2 1 1 192834612

14 sum 578503836
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Groups and Graphs, Designs and Dynamics
Yichang, China, August 12 – 25, 2019

http://math.sjtu.edu.cn/conference/G2D2
China Three Gorges University is organizing the International

Conference and PhD-Master’s Summer School on “Groups and
Graphs, Designs and Dynamics” (G2D2). All scientific activi-
ties will take place in the Three Gorges Mathematical Research
Center at China Three Gorges University, Yichang, China during
August 12 – 25, 2019. The summer school part of G2D2 con-
sists of 4 short courses and 4 colloquium talks; its conference
part consists of about 20 invited talks and some contributed talks.

G2D2 is concerned with all aspects of mathematics, especially those relating to simple
structures and simple processes. We will bring together experts and students to exchange
ideas and to enrich their mathematical horizons. Four short courses and four colloquium
talks will let participants see order and simplicity from possibly new perspectives and share
insights with experts. We will also schedule invited talks (45 minutes) and contributed talks
(25 minutes) with topics ranging from coding theory, design theory, ergodic theory, graph
theory, group theory, matrix theory, optimization theory, and quantum information theory
to symbolic dynamics.

Selected papers based on talks in G2D2 will be published in a special issue of The Art
of Discrete and Applied Mathematics.
The guest editors of the special issue:
• Alexander Ivanov, Imperial College London, UK
• Elena Konstantinova, Sobolev Institute of Mathematics, Novosibirsk State

University, Russia
• Jack Koolen, University of Science and Technology of China, China
• Yaokun Wu, Shanghai Jiao Tong University, China

Confirmed short courses:
• Rosemary A. Bailey & Peter Cameron, University of St Andrews, UK, Laplacian

Eigenvalues and Optimality
• Mike Boyle & Scott Schmieding, University of Maryland and Northwestern Uni-

versity, USA, Symbolic Dynamics and the Stable Algebra of Matrices
• Tullio Ceccherini-Silberstein, Università del Sannio, Italy, Topics in Representation

Theory
• Nobuaki Obata, Tohoku University, Japan, Spectral Analysis of Growing Graphs –

A Quantum Probability Point of View
Steering committee:
• Eiichi Bannai, China Three Gorges University, China
• Sergey Goryainov, Shanghai Jiao Tong University, China
• Alexander Ivanov, Imperial College London, UK
• Vladislav Kabanov, Krasovskii Institute of Mathematics and Mechanics, Russia
• Elena Konstantinova, Sobolev Institute of Mathematics, Novosibirsk State

University, Russia
• Jiping Zhang, Peking University, China
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Vladimir Batagelj is 70

Vladimir Batagelj, known as Vlado to

Vladimir Batagelj

his friends, is one of the most prolific Slov-
enian scientists. Although he has a PhD in
mathematics and has worked most of his
active life at the Department of Mathemat-
ics of the University of Ljubljana where
he is now Professor Emeritus, he has very
broad research interests and a passion for
teaching. Over ten years before obtain-
ing his PhD, Vlado published a solo pa-
per on quadratic hash method in the dis-
tinguished journal Communications of the
ACM. When I was a graduate student of
computer science at Penn State, one of our
textbooks cited his paper. I was very proud
to tell my fellow graduate students that
Vlado and I attended the same courses as
undergraduates. Actually, during compul-
sory military service we shared a room in
barracks in Zagreb for a year.

Vlado’s scientific work has been cited
over 11000 times in Google Scholar; over
5400 times since 2013. His most cited work,
with over 3300 citations, is his book Exploratory Social Network Analysis with Pajek, writ-
ten together with W. de Nooy and A. Mrvar. The book was also translated into Chinese and
Japanese. The revised and expanded 3rd edition of this successful textbook was published
by Cambridge University Press this year. Pajek is a highly successful, freely available soft-
ware package for large networks analysis, authored by Vlado and his former PhD student
Andrej Mrvar and used widely in social sciences.

Vlado is one of the pioneers of discrete

Exploratory Social Network
Analysis with Pajek, 3rd Edition

mathematics and theoretical computer sci-
ence in Slovenia, who chartered his aca-
demic course on his own and works on
problems that he finds interesting. Nev-
ertheless, he understands the vital need for
a nation of 2M to receive fresh knowledge
in its own language. Vlado is the author of
over 20 textbooks in Slovenian, covering a
wide range of topics, from TEX to Combi-
natorics and Discrete Mathematics.

Vlado, I wish you a very happy birthday and many more productive years!
Tomo (Tomaž Pisanski)
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Branko Grünbaum, Geometer

Branko Grünbaum passed

Branko and Zdenka Grünbaum at the author’s
wedding in 2002.

away on September 14, 2018,
just a few weeks short of his
89th birthday. Dr. Grünbaum
was an early contributor to this
journal, and was a major in-
fluence on a lot of the people
who have been involved with
it over the years. He contribut-
ed an article [6] that appeared
in its second issue that remains
one of the most cited papers
to have appeared here, helping
raise the profile of AMC, and
his most recent contribution is
currently available online and
will appear in 2019 [1].

Branko was a prodigious
author. Over the course of his
career he published over 250
articles and several books. Pro-
bably the most influential was
his book Convex Polytopes [2],
which first appeared in 1967.
This was an indispensable ref-
erence for mathematicians working in the theory of convex polytopes, linear programming,
and related combinatorial problems in geometry for at least the next two decades. Its value
came not only from the thoroughness of his treatment, but the care and skill he applied in
presenting some of the latest ideas and techniques in the study of convex polytopes, and the
wealth of material he had collected from sometimes obscure references and then presented
in an approachable and clear style. It introduced the world to Micha Perles’ theory of Gale
diagrams and included Branko’s easy to follow proof of Steinitz’s Theorem on convex
polyhedra. The text also included numerous open problems and spurred much subsequent
activity. The text was so esteemed as a reference that a second addition was assembled and
prepared by Voker Kaibel, Victor Klee and Günter Ziegler, and released in 2003 [5]. In the
new edition the original text was presented in its entirety and supplemented with commen-
taries at the end of each section, these provide insight into more recent developments and
discuss the status of open problems discussed in the original text. There was a long period
prior to the publication of the second edition when copies were incredibly hard to obtain,
and I was once told it was the most stolen book in mathematics as a consequence.

His volume Tilings and Patterns, with Geoffrey C. Shephard [9], was also very influ-
ential from the moment of its publication in 1987. It is filled with beautiful diagrams and
interesting mathematical results and it inspired many researchers. It also functioned very
well as a coffee table book!
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To give you a sense of the scope of the reach of his work, these two texts alone have
over 1000 citations on MathSciNet, involving 1209 distinct authors!

In addition to his work on convex polytopes and tilings, he also inspired many mathe-
maticians to take up the study of configurations and arrangements of points and lines. His
1972 monograph Arrangements and Spreads was based on a series of keynote lectures he
gave at the Conference on Convexity and Combinatorial Geometry at the University of Ok-
lahoma [10]. To help set the stage he began his lectures by reading part of McElligot’s Pool
by Dr. Seuss [11], a book he had read to his sons when they were small, enjoining his audi-
ence to join him in the unexpected adventures that awaited in this subject area if only they
would use their imaginations. His fascination with arrangements and configurations con-
tinued into his retirement, resulting in the publication of the graduate text Configurations
of Points and Lines in 2009 [7]. This text is an essential reference on the subject, covering
the key developments in the study of configurations since their introduction in 1876 and
presenting many open problems that have inspired a new generation of mathematicians to
take up their investigation. At least seventeen different articles in this journal alone have
listed it as a reference.

Branko was also well known for having an encyclopedic knowledge about the state of
the field for a wide variety of topics in discrete geometry. His office had rows of cases
filled with note cards with bibliographic information and notes on the many articles he
had read over the years. People were always writing him to ask what might be known
about questions they were interested in, and he often had excellent references to point
them to (this was especially true before MathSciNet became popular). He was equally
well known for disseminating open problems in geometry, a testimony to which are the 58
articles he wrote for Geombinatorics, a journal devoted to the discussion of open problems
in combinatorial and discrete geometry.

Branko also had a talent for spotting mistakes. Many of his articles contain corrections
to the literature, and he often used finding such mistakes as a springboard for reopening
and exploring old questions from a new perspective. Probably the most famous mistake
he ever caught was in the logo of the Mathematical Association of America. From the
period from 1971-1985, the official logo of the MAA — a drawing of a supposedly regular
icosahedron — was drawn in such a way that it could not have been the product of any
geometric projection onto the plane, a point Branko made in the pages of Mathematics
Magazine [4]. The MAA, much to its credit, immediately revised its logo and started using
one with greater respect for geometry. Unfortunately, Branko caught them using the bad
one again a few years later, but a follow up letter from him on the question seems to have
permanently resolved the issue.

A recurring theme in Branko’s writing was the importance of teaching geometry, and
not as some highly refined and abstract activity, but through teaching the study of geometry
as an area of applied mathematics. Tied closely to this was his concern that as mathemati-
cians we have a responsibility to communicate our ideas and our proofs in a manner that
not only achieves the desired result — such as proving a theorem — but doing so in a way
that preserves the inherent beauty of the objects under investigation and provides genuine
insight into what motivates their study [3]. He was deeply concerned by the approach of
the Bourbaki to geometric subjects, and Dieudonné’s famous slogan “Euclid must go!”
epitomized a movement to treat geometry as a purely formal and abstract subject (so much
so that the only diagram in any of the texts on geometry published by the Bourbaki is of a
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Coxeter-Dynkin diagram).
Now that you know something of the mathematician, I’d like to say something about

the history of the man. Branko was born on October 2, 1929 in the small city of Osijek,
in what was then the Kingdom of Yugoslavia and is now Croatia; Zdenka Bienenstock was
born there a year later. Zdenka’s family, and all of the family on Branko’s father’s side were
Jewish. When World War II came to Yugoslavia in 1941 it uprooted their lives. Zdenka
survived the war hidden in a Catholic convent, but the rest of her entire extended family
was killed, many in Auschwitz. Branko’s mother was Catholic, and his family survived the
war by moving to live with his maternal grandmother, benefitting from protections given to
families in mixed marriages in Croatia. Branko and Zdenka met after the war while high
school students, and soon fell in love. Branko was admitted to the university in Zagreb,
but quickly realized that he might not be able to demonstrate sufficient ardor for Marxism-
Leninism and could be potentially denied a degree or future employment. This, combined
with his father’s experience of having been forced to “donate” his share in a successful
business to the local government soured him on the idea of staying in Yugoslavia. In 1948,
the Communist regime arranged for Jews wishing to emigrate from Yugoslavia to register
for transport to Israel. When it turned out that a ship really did arrive and it was announced
that there would be a second opportunity to emigrate the following year, Branko convinced
his family and Zdenka to seize the opportunity, arriving in Haifa, Israel in July 1949.

As was the case for many immigrants to Israel at the time, conditions were very dif-
ficult, but both Branko and Zdenka were determined to resume their studies. In the fall
of 1950, Branko quit a job in Tel Aviv to go to Jerusalem to study mathematics. In 1954
he received his M.Sc., and he and Zdenka married on June 30, 1954. In the fall of 1955
Branko was called to active duty in the Israeli Air Force, where he worked in the Operations
Research unit; meanwhile Zdenka earned her M.Sc. in Chemistry. Their first son, Rami,
was born in 1956. Branko completed his Ph.D. in 1957 and in 1958 he was discharged
from the military. Soon afterward he was awarded a scholarship to the Institute for Ad-
vanced Study in Princeton, NJ, where he and his family spent two years. In the fall of 1960
he obtained a visiting appointment at the University of Washington in Seattle, where their
second son Daniel was born in November. While they were planning their return to Israel
where Branko had accepted a position as a lecturer at Hebrew University, they learned his
marriage to Zdenka was annulled because he was not legally Jewish according to Orthodox
interpretation (his mother having not been a Jew), so he and Zdenka remarried at the City
Hall in Seattle before moving to Jerusalem. Within three years Branko had been promoted
to Associate Professor. He spent the summer of 1963 in Seattle as a visitor at the Univer-
sity of Washington, and he spent a sabbatical in 1965-66 at Michigan State University as a
visiting professor.

The story in the news that another Israeli immigrant from a mixed marriage had her
passport and citizenship revoked in 1966 for reasons similar to those used to annul Branko
and Zdenka’s marriage resulted in them deciding not to return to Israel, even though this
meant Zdenka would be unable to complete her Ph.D. in Chemistry. Branko joined the
faculty at the University of Washington as a full professor in 1966. He retired in 2001, but
continued to teach and work with graduate students as an emeritus professor (Leah Berman
and I were his last two doctoral students at the University of Washington, completing our
degrees in 2002).

I would like to close by saying a bit about what it was like being his student. I moved to
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Seattle in 1997 at the suggestion of Marjorie Senechal. I was immediately welcomed into
a vibrant and generous community of discrete geometers. At the core of this community
were Vic Klee and Branko Grünbaum, both of whom provided me with much valuable
advice and guidance during my time there, and both of whom were unfailingly kind to me.

As a mathematics graduate student, a visit to Branko’s office was like a visit to the
candy store. His office was filled with models he had built over the years to help him
think through geometric problems. They covered shelves and hung from the ceiling tiles
on bits of string (which I’m sure caused the fire marshal fits of apoplexy), and they were
colorful and intriguing. It seemed like every time I went into his office I noticed something
new, and he was always happy to explain the math behind the model and pull a copy of
a preprint from his filing cabinet of the paper that had provided the need for the model in
the first place. Questions I brought to Branko were often answered by him pulling a model
from a shelf to illustrate a point, and would lead us into a discussion of other questions the
model helped to illuminate. One of my most prized possessions is a model he built, and
I was immensely proud when he asked me to contribute a copy of a model I had built for
my own research into his collection. The garage at his house was equally a treasure trove
of mathematical models, and interesting examples often made their way from his home
to lecture halls at the university. In this way I learned the importance of visualization and
model building as tools to gain deeper insight into geometric questions, and as an important
step in verifying my understanding of mathematical ideas (if I couldn’t build it, I clearly
didn’t understand it).

When I began preparing my first paper for publication, I got invaluable advice from
Branko about what I should be trying to achieve in my writing. He believed strongly that
an article should be written as an invitation to engage in a conversation with the author(s).
This means making sure it has the necessary background, trying to make the writing as
clear and engaging as possible, and asking thought provoking questions. Because a paper
is a conversation between the author and the reader, even solo authored papers should use
“we”. He encouraged the inclusion of conjectures, because they excited the reader to a
challenge. He enjoyed and fostered collaboration at every turn. The slight exception to this
was co-authoring papers with his students (especially while they were his students), be-
cause he wanted to make sure readers gave us the credit instead of assuming the significant
contributions were his. This was a little frustrating to me because I wanted to lower my
Erdős number and get my Grünbaum number down to 1, so I’ve always been a bit envious
of my wife Leah Berman, who was a student of his at the same time, who co-authored a
paper with him a few years after we graduated.

After completing my Ph.D., Branko continued to be a significant presence and influence
on my life and career. His signature graces our marriage contract, and he and Zdenka
welcomed us into their home when we would visit Seattle. He and Zdenka always made us
feel welcome and cherished, and they doted on our children. I was always a little in awe of
how much in love they seemed, even after 61 years of marriage. Zdenka sadly passed away
in her sleep on December 28, 2015.

Having been his student has been a constant source of open doors for me. Anywhere I
go in the world of discrete geometry, I am always greeted with warmth and delight when
someone learns I was his student. One of my favorite interactions along these lines was
when I first met János Pach while he was at MSRI; when he learned I was Branko’s student
he said that Branko “always had great taste in problems.” That always struck me as very
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high praise indeed. It was also clear that many mathematicians I met not only respected
him for his achievements and contributions to the field, but also treasured his company,
hospitality and generosity — that they held in high esteem not just the mathematician but
the man.

There is an old Jewish tradition that no one is truly gone as long as their memory and
name survive. I will treasure his memory and the influence he has had on the course of my
life for the remainder of my days. May his name be a blessing to you as well.

Gordon Williams†

Department of Mathematics and Statistics, University of Alaska Fairbanks
E-mail address: giwilliams@alaska.edu

References
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[5] B. Grünbaum, Convex Polytopes, volume 221 of Graduate Texts in Mathematics, Springer-
Verlag, New York, 2nd edition, 2003, doi:10.1007/978-1-4613-0019-9, prepared and with a
preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.

[6] B. Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Math.
Contemp. 2 (2009), 1–25, doi:10.26493/1855-3974.88.e12.
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