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Abstract
A variable anti-connectivity topological index was optimized for the modeling of pKa values. The variable anti-connec-
tivity index of order one showed superior modeling capabilities compared to ordinary variable connectivity index of the
same order because it is capable to account for the combination of positive and negative contributions for the molecular
descriptor in structure-property-relationship. Additionally we examined functional dependence of individual bond con-
tributions on modeling property by varying also the exponent appearing in connectivity index. Such variation did not
make significant improvements of the calculated results.
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1. Introduction

The proton transfer reactions constitute an important
class of chemical reactions and are crucial for studying
chemical processes in the solution and therefore also in
biological systems. For instance many biological systems
use proton-transfer reactions to perform intracellular or
extracellular communication. The rate of the proton-trans-
fer reactions depends also on the degree of dissociation of
the involved compounds. It is known that using ab initio
molecular orbital calculations, the gas-phase acidities can
be obtained with good accuracy, but the calculation of
acidities in the solution phase is still associated with large
uncertainties.1 This deficiency is due to the lack of a com-
plete and precise solvation model. Several procedures are
already developed for the description of processes in the
aqueous phase. Initial polarized continuum model2,3 for
the calculation solvation free energy was improved by
new parameterization of the Langevin dipole model.4 The
overall performance of the model is comparable or slight-
ly better than the polarized continuum model. However,
the main advantage of new model is the simplified repre-
sentation of solvent molecules, so one can gain a clearer
insight into the molecular origin of different solvent effe-
cts. The mentioned model was successfully applied for the

calculation of biologically relevant chemical reactivity.5

Nevertheless, only very limited numbers of studies are
available for the prediction of dissociation constant in the
solution phase.6–9

Quantitative structure – property relationship
(QSPR) modeling, which uses molecular descriptors to
represent molecules, that is, topological, electrostatic,
geometric and quantum chemical descriptors, can repre-
sent alternative to ab initio calculations of pKa values or
other molecular property in the solution phase. Such mod-
els give especially good predictions when created for fam-
ily of similar compounds where the same structural fea-
ture are influencing the modeled property.10,11 For in-
stance, empirical atom charge descriptors were used in the
combination with multiple linear-regression model for the
prediction of pKa values for 1122 aliphatic carboxylic
acids and 288 alcohols.12 However, it should be men-
tioned that usually the good prediction ability of such
models is traded for the lack of structural interpretation of
the obtained multiple linear correlation models. The mod-
eling of dissociation is far from straightforward because
of opposing influences of individual structural feature on
pKa. It is known that an increase of the number of carbon
atoms will increase pKa values, while the presence of
strong electron acceptors like halogens will increase dis-
sociation and therefore decrease pKa value. In order to
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account for both effects one must construct structural
descriptor that is able to capture the positive as well as the
negative contributions of critical structural factors within
the same molecule. Unfortunately available molecular
descriptors are not able to simultaneously account for the
presence and role of atoms or fragments that can exert
positive and negative contributions to molecular proper-
ties. Only recently, however, a modification of the vari-
able connectivity index was suggested, which takes into
account besides the positive also possible negative contri-
butions of atoms or bonds in structure-property-activity
relationship.13 The negative portion, that is one the pres-
ence of which decreases the overall molecular property
was named šanti-connectivity’ region. The modified vari-
able connectivity index of the order zero was used for the
modeling of the FID (the flame ionization detector) re-
sponse factors. Models using anti-connectivity yield con-
siderably smaller calculation error than is the case when
only positive additive contributions in construction of the
connectivity indices were allowed. In addition to improved
calculation ability of the model involving anti-connectivity
offers novel structural interpretation, because it gives an
information about which part of the molecule is an enhan-
cer and which a suppressor of the modeled property.

In this work we have extended the definition of the
anti-connectivity index of zero order to the anti-connec-
tivity indices of the first order and higher orders. We also
show that the šanti-connectivity’ phenomenon may be
more widespread in structure-property relationship than
may have been hitherto anticipated. We will illustrate ca-
pabilities of generalized variable connectivity indices on
calculation of the proton donor affinity expressed as pKa
value for a selection of organic acids.

2. Calculation of the Modified
Variable Connectivity Indices

We will refer to the variable connectivity indices in
which the domain of the variables has been extended so
that they may introduce negative contributions that char-
acterize the anti-connectivity phenomenon as the variable
anti-connectivity indices. The zero order variable anti-
connectivity index13 was developed from the variable con-
nectivity index14,15 in which in order to differentiate 
between heteroatoms the adjacency matrix was augment-
ed by inclusion of variables to replace zero diagonal ma-
trix elements. Many early topological indices,16–18 includ-
ing the connectivity index19,20 and other widely used topo-
logical indices like the Wiener,21 the Zagreb,22 the
Balaban,23 and the Hosoya24 index did not differentiate
heteroatoms. Although that the later developed weighted
indices differentiated between heteroatoms,25–27 they were
still not able to account for negative and positive contribu-
tion of individual atoms to the modeled property within
the same molecule. The modification of the zero order

variable connectivity index was introduced to solve this
deficiency (Equation 1).

(1)

Here m is the number of vertices, 0χf
j is contribution

of atom j to the connectivity index, while δf
j is the row sum

of the augmented adjacency matrix. The zero order con-
nectivity index is especially suitable for modeling atom
additive properties and reflects the size of a molecule. In
cases where beside size also the molecular branching
plays significant role in determining a particular property,
the higher order connectivity indices must be used. The
expression (1) for zero order anti-connectivity index can
be extended and in the case of the first order variable con-
nectivity index becomes:

(2)

The two expressions differ in replacement of the sin-
gle factor summation terms by two factors terms belong-
ing to connected atoms. Further generalization gives the
following expression:

(3)

where Π combines contributions of atoms forming paths
of length k to the variable connectivity index. In equations
1–3 the individual contribution becomes negative if at
least one of the atoms shows suppressive influence to the
property considered.

The prediction abilities of the final model were test-
ed using the leave-one out cross-validation procedure of
the whole modeling procedure. It was already shown that
just the cross-validation of the final models overestimates
the prediction capabilities of the same models.28 Therefo-
re, individual compounds were omitted from the training
set before the optimization procedure. Afterwards, the
obtained model was used for the prediction of the omitted
compounds. The reported results represent an average of
all obtained models generated during leave-one-out cross-
validation procedure.

3. Results and Discussion

We report here results obtained for 31 carboxylic
and halogenated carboxylic organic acids in which the
presence of halogen atoms show šanti-connectivity’ effect
on pKa values. The search for optimal parameters that
characterize carbon, oxygen, fluorine, chlorine and
bromine atoms starts by selecting at random the initial
values for these parameters. Afterwards the variables were
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optimized using the Simplex optimization algorithm,
which was already shown to give good optimization 
results in cases of variable connectivity indices29–32

or generalized topological indices.33, 34 In order to give 
the lowest RMS error for the linear regression models:
pKa = b*0χf + a, pKa = b*1χf + a or pKa = b*2χf + a, that is
simple regression using the zero the first and the second
order variable connectivity index. Initially all three in-
dices were restricted only to be composed from positive
contributions. The RMS errors found for the three models
were 0.904, 0.899, and 0.600, respectively. It is interesting
that when individual contributions were restricted to posi-
tive values the connectivity index of order two offered the
best calculation results. However, the variable anti-con-
nectivity models using 0χf and 2χf gave slightly worse 
results compared to 1χf. At the same time they didn’t offer
any additional information about the structural features
that are influencing pKa values, that is why, we continued
our study with the models using the variable connectivity
index of order one.

In Fig. 1 we illustrate the changes of RMS error dur-
ing optimization of 1χf. We can see from the figure that the
optimization process did not improve the RMS significant-
ly: the RMS error of 1 associated with random parameters
was reduced to 0.8986 when optimal state was reached. At
this stage the negative anti-connectivity contribution were
not considered. We found then that the optimal values for
the variables for fluorine and chlorine atoms achieved
maximum possible valued of 108, selected as the limit for
the particular computer program. On one side this means
that optimal variables make contributions of the correspon-
ding atoms practically zero and on the other side this sig-
nals that fluorine and chlorine are likely candidates for
presence of šanti-connectivity’ phenomenon. Subsequently
these variables were allowed to enter the šanti-connectivi-
ty’ region, the RMS error dropped significantly from 0.899
to 0.581. Moreover, at that moment also the variable for
bromine atom reached maximum the possible limiting val-
ue of 108, which indicates that also bromine atoms lowers

the pKa value and have anti-connectivity character for the
considered property. Finally, we allowed all variables rep-
resenting contributions of halogens to enter the šanti-con-
nectivity’ region. The RMS error now reached the mini-
mum value of 0.473 (Fig. 1). The values of the correspon-
ding variables for carbon, oxygen, fluorine, chlorine and
bromine atoms all received large but finite values: 2.819 ·
105, 5.846 · 103, (–) 2.0934 · 103, (–) 2.452 · 103, and (–)
5.939 · 103, respectively. The minus sign in the brackets in-
dicates that these variables are in šanti-connectivity’ re-
gion. The best regression model was:

pKa = 3.281 · 104 1χf + 2.680. (5)

No obvious outliers were detected, but some degen-
eracy of the calculated values can be observed, that is, the
model failed to differentiate position isomers. In general
in order to find a good prediction model one must identify
the correct influences of the individual structural features
on modeled property. Using the variable connectivity 
index of order one, we have successfully solved this prob-
lem. The model correctly predicts the relative influence
along the halogen series, that is, fluorine has the strongest
effect, than chlorine and bromine.

Further improvement of the regression model is pos-
sible if the one considers variation of the connectivity
exponent of –0.5. 35,36 We tested this additional modifica-
tion of variable index, which takes the form:

(5)

where λ is an additional variable. We selected the interval
(–2 < λ < +2) to test the above model. A complete opti-
mization of diagonal elements of augmented connectivity
matrix was performed for each pre-selected λ. The varia-
tion of λ did not change significantly the quality of the
regression model, which appears to be insensitive to λ
over large intervals. When λ was changing from –0.2 to
–2, the RMS error varied less than 0.3%. The significant
increase in RMS error was detected when λ was selected
close to zero, that is, when (–0.1 < λ < + 0.1), the maxi-
mum RMS error being when λ is zero (Fig 2.). In this spe-
cial case the variable connectivity index reduces to the
counts of paths of length one. When λ entered positive
region we find the smallest calculation error, but again
there are no significant changes of RMS over a large inter-
val of λ. It appears that the best results were obtained
when λ was +0.4, when the RMS error was reduced to
0.460. One can see from table 1 that new model differen-
tiate between positional isomers, however estimated influ-
ence of the halogen atoms at a position is considerably to
low, that is error being almost 1 pH unit.

In order to test significance of the obtained models 
a randomization test was performed as well as leave-
one-out cross-validation test of the whole optimization

Fig. 1. Optimization of variable connectivity index 1χf for the
modeling of pKa values
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procedure. After randomization of the pKa values the opti-
mization procedure failed to reduce error of the model
from the initial random value of RMS close to 1 (Fig. 1).
Therefore the probability that proposed optimization pro-
cedure would find a random model when the RMS error is
significantly reduced is low. The final model was validat-
ed using leave-one-out cross-validation procedure to fur-
ther test its significance. The corresponding average vari-
ables for carbon, oxygen, fluorine, chlorine and bromine
atoms were 1.80, 3543, (–) 1.267 · 103, (–) 1.169 · 103, and
(–) 4.552 · 102, respectively. The accompanied final regre-
ssion model was:

pKa = 3.902 · 10–2 * 1χf λ+ 0.368. (6)

The results of the cross-validated pKa values are
shown in Table 1 and Fig. 3. The cross-validation RMS er-
ror was 0.463. The small difference in retrieved and cross-
validated RMS error, that is, less than 1%, again points to
the fact that the obtained model is significant. At the end it
we should stressed that although we have low sensitivity
of the exponent λ in the range of –2 to 2 always the best
results were obtained when variables for carbon and oxy-
gen were optimized in the connectivity region, that is
when their contributions are positive, and when the vari-
ables for halogens entered the anti-connectivity region.

The degree of dissociation of organic acids is related
to the free energy difference contribution of the proton
affinity of the anion, which dominates in the gas phase,
and hydration component of acid and anion that become
important in the aqueous phase. While in the series of
aliphatic carboxylic acids (formic, acetic, propionic ...)
the hydration energies are the most important component
rather than in vacuo proton affinities, the presence of the
strong electron acceptors like halogens increases the im-
portance of the later mentioned component. Therefore any
model that predicts pKa values for halogenated organic
acids should encode both mentioned contributions, which
is the case also in the developed validated variable con-
nectivity model. The information about both contributions
is encoded in the weights and regression parameters of the
obtained model, so we are not able to partition this infor-
mation into above mentioned contributions. However, sin-
ce we are using bond-additive model we are able to parti-
tion the overall effects to the individual functional groups.
Such an approach is quite common in QSAR/QSPR stud-
ies, for instance, group philicity was used for the model-

Fig. 2. Changes of RMS error due to the variation of the exponent λ

Fig. 3. Calculated vs. experimental pKa values

Table 1. Experimental and cross-validation pKa for listed 31 organ-
ic acids for both models, that is, pKa = f(1χf) and pKa = f(1χf λ)

ID Compound name Experi- pKa = pKa = 
mental f(1χχf) f(1χχf λλ)

1 Formic acid 3.75 4.30 4.12
2 Trichloroacetic acid 0.66 0.67 0.46
3 Trifluoroacetic acid 0.52 0.36 0.33
4 Dichloroacetic acid 1.35 1.92 1.98
5 Bromoacetic acid 2.90 3.61 3.67
6 Chloroacetic acid 2.87 3.17 3.31
7 Fluoroacetic acid 2.59 3.06 3.28
8 Acetic acid 4.76 4.41 4.39
9 3-Bromopropanoic acid 4.00 3.73 3.76

10 2-Chloropropanoic acid 2.83 3.28 3.33
11 3-Chloropropanoic acid 3.98 3.28 3.40
12 Propanoic acid 4.87 4.53 4.51
13 2-Chlorobutanoic acid 2.84 3.40 3.44
14 3-Chlorobutanoic acid 4.05 3.40 3.41
15 4-Chlorobutanoic acid 4.52 3.40 3.50
16 Butanoic acid 4.83 4.65 4.62
17 2-Methylpropanoic acid 4.84 4.65 4.64
18 Pentanoic acid 4.83 4.76 4.74
19 2-Methylbutanoic acid 4.80 4.76 4.76
20 3-Methylbutanoic acid 4.77 4.76 4.76
21 2,2-Dimethylpropanoic acid 5.03 4.76 4.79
22 Heptanoic acid 4.89 4.99 4.97
23 Hexanoic acid 4.85 4.88 4.85
24 4-Methylpentanoic acid 4.84 4.88 4.87
25 Octanoic acid 4.89 5.11 5.07
26 2-Propylpentanoic acid 4.60 5.11 5.08
27 Nonanoic acid 4.96 5.23 5.20
28 2-Bromopentanoic acid 2.97 3.96 3.95
29 3-Bromopentanoic acid 4.01 3.96 3.92
30 4-Bromopentanoic acid 4.59 3.96 3.90
31 5-Bromopentanoic acid 4.71 3.96 3.97
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ing of pKa values of the series of carboxylic acids, various
substituted phenols, anilines, phosphoric acids, and alco-
hols.37 It was already shown that that such group contribu-
tion is valid if we are able to decompose the changes of
free energy,38,39 which govern the mentioned processes.
Just recently the conditions of such decomposition have
been presented.40

4. Conclusions

The aim of this work was to show the application of
variable anti-connectivity indices on the modeling of pKa
values for the selected organic and halogenated carboxylic
acids. These recently suggested indices are capable to
account for a combination of positive and negative contri-
butions of individual atoms and bonds in QSPR studies.
Among the three anti-connectivity indices the index of 
order one gave the best calculation results. The optimiza-
tion of variables for carbon, oxygen, fluorine, chlorine and
bromine atoms reduced significantly the RMS error from
around 1 to 0.473. The variables of all three halogenids
were optimized in anti-connectivity region, while the con-
tributions for oxygen and carbon atoms remained positive.
The variation of the exponent did not improve calculation
results substantially. The RMS error was reduced just by
another 3% when λ was set to 0.4. The obtained RMSCV
error was 0.463. It must be stressed that the most important
advantage of variable anti-connectivity indices is, besides
improving the calculation model, the ability of structural
interpretation of the model. From the optimization of sug-
gested variable indices one can gain information about
which part of the molecule enhances and which suppresses
the modeled property. However, the currently described 
index still lack of differentiation between position isomers.
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Povzetek
Za modeliranje pKa vrednosti smo uporabili optimiziran variabilni anti-povezovalni indeks. Variabilni anti-povezovalni
indeks prvega reda je pokazal bistveno bolj{e rezultate pri modeliranju pKa vrednosti v primerjavi z navadnim variabil-
nim povezovalnim indeksom, saj dovoljuje pozitivne kot tudi negativne vplive posameznih delov molekule na modeli-
rano lastnost pri {tudiju povezave med kemijsko strukturo in njihovimi lastnostmi. Dodatno smo raziskali funkcijsko
odvisnost posameznih vezi na modelirano lastnost tako, da smo spreminjali tudi koeficient, ki nastopa v izrazu za pove-
zovalni indeks. Te spremembe niso bistveno izbolj{ale kvalitete modela.


