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Preface

It is a solemn day when a new book appears, whether it is poetry, history, or a
modest Book of Proceedings. The collection of our presentations and discussions

made us feel again how entangled our activities are and that physics is an ef-
ficient interaction between physicists, not only an effective interaction between

particles. We may make reminiscences of the inspiring environment of Lake Bled

with its hills and mountains, like perhaps quarks enjoy their mesonic and quark-
antiquark environment.

We could sort our topics in three groups: baryonic resonances, heavy mesons and

tetraquarks, and search for new symmetries.

Progress was made in understanding the peculiar Roper resonance, as well as

the Roper-like resonances in the high-lying ∆∗ by using pion electroproduction.

Coupled-channel calculations indicate significant pion cloud contributions in all
processes. Suitable experimental conditions for a double-polarisation experiment

p(~e, e ′π0)~p were discussed. At higher resonances, the axial charge is decreasing

rapidly when parity doublets become almost degenerate. A better description of
the decay widths is obtained by coupling of qqq and qqqπ channels (pion dress-

ing by using an optical potential). Resonances in the [70,1−] multiplet were clas-
sified and new ones predicted; the 1/Nc hierarchy reduces the number of free

parameters and improves the predictive power.

It remains an open question which excitedmesons can be described as qq̄ systems
and which possess additional qq̄ pairs, as well as whether the dominant config-

urations are diquark-diantiquarks, dimesons or compact four-particle clusters.

Caveats were heard that resonant states may not appear as peaks; near threshold
or in presence of other channels they may appear as dips! The X(3872) resonance

exhibits interesting isospin violation effects. Various Lattice QCD methods were
discussed to distinguish resonances from two mesons: for example, the Y(4260)

behaves as a bound state. Newmotivations are coming from experiments at Belle

(states with surprisingly low masses or peculiar branching ratios).

The classical three-body problem is still suggesting a search for new dynami-
cal symmetries. On the other hand, studies beyond the standard model suggest

new candidates for darkmatter with a hadron-like strucutre; using SO(1,13) sym-
metry, eight families are predicted, the fifth family offering a stable superheavy

“neutron”.

We have opened as many new problems as we have resolved old ones, so the
interest in our Mini-Workshop will not wane. We hope to see you again at Bled.

Ljubljana, November 2010 M. Rosina
B. Golli
S. Širca
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On the nature of the Roper resonance

L. Alvarez-Ruso
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Portugal

Abstract. The lightest N∗ state, N(1440) P11 , also known as Roper resonance, has puz-

zled physicists for decades. A large variety of theoretical models aimed to understand its

properties have been proposed. Some of them are briefly reviewed here, together with the

hadronic processes where the Roper resonance is revealed or plays an important role.

1 Roper resonance properties

In the 1950ies, Fermi and coworkers started to measure pion-nucleon cross sec-
tions and to analyze the data in terms of partial waves, leading the way to the dis-

covery of a large number of baryon resonances. In 1963, in a partial-wave analysis

performed at the Lawrence Livermore National Laboratory, L. D. Roper found a
P11 resonance at

√
s ≈ 1.43 GeV (≈ 600MeV pion laboratory kinetic energy) [1].

The result was surprizing as there were no hints for such a state and the P11 scat-
tering length is rather large and negative. In words of Roper: I spent a much time

trying to eliminate the P11 resonance [2].

The Particle Data Group estimates for themainN∗(1440) properties are listed

in Table 1. Considerable uncertainties are apparent, specially in the full Breit-
Wigner width and the branching ratios to the strong-decay channels. Indeed, dif-

ferent values are obtained with different models, most of them built in terms
of Breit-Wigner resonances plus background, meson-exchange or K-matrix for-

malisms. For example, the recentK-matrixmultichannel analysis of Ref. [4],which

combines single and double-pion production data induced by pions and photons
finds a ΓπN/Γtot ≈ 61 %, in agreement with the PDG, but a smaller Γπ∆/Γtot ≈
18 % and a considerably larger ΓσN/Γtot ≈ 21 % (to be compared to the N∗ →
N(ππ)I=0S−wave 5-10 % PDG estimate).

Pole positions and residues allow for a parameterization of resonances in

a well-defined way, free of assumptions for the background and energy depen-

dence of the resonance part [5]. Actually,many different studies find for the Roper
resonance two almost degenerate poles close to the π∆ threshold on two different

Riemann sheets of the π∆ channel [6,5,7,8]. The pole positions are stable against
larger variations of parameters in meson-exchange mechanisms, with averaged

values of (ReM∗,−ImM∗) = (1363+9
−6, 79

+3
−5) MeV and (1373+12

−10, 114
+14
−9 ) MeV [8].

The second pole is a replica or shadow of the first one without strong physical im-
plications rather than a new structure [5]. In spite of this agreement, the dynami-

cal origin of the Roper poles is not clear: while in the JLMSmodel of Ref. [7], they
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N(1440) P11 I(JP) = 1/2(1/2+)

Breit-Wigner mass = 1420 to 1470 (≈ 1440) MeV

Breit-Wigner full width = 200 to 450 (≈ 300) MeV

Re(pole position) = 1350 to 1380 (≈ 1365) MeV

2Im(pole position) = 160 to 220 (≈ 190) MeV

Decay modes Fraction (Γi/Γtot)

Nπ 0.55 to 0.75

Nππ 30 − 40 %

∆π 20 − 30 %

Nρ < 8 %

N(ππ)I=0S−wave 5 − 10 %

gpγ 0.035 − 0.048 %

nγ 0.009 − 0.032 %

Table 1. Summary of the PDG estimates for the Roper resonance properties [3].

evolve from a single bare state that also gives rise to the N∗(1710), no genuine

pole term is required in the Jülich model [5].

2 (Some of) the many faces of the Roper resonance

In a simple quark model with a harmonic oscillator potential it is easy to under-
stand why it is unexpected to have a radial excitation of the nucleon as the first

N∗. The energy spectrum is given by En = ~ω(n + 3/2) with n = nr + l. If the

lowest state with n = 0, l = 0 is associated with the nucleon (JP = 1/2+), then
the first excited state with n = 1, l = 1 is N∗(JP = 1/2−) and only the next one

with n = 2, l = 0 is an N∗(JP = 1/2+) like the Roper. However, the first negative

parity stateN(1535) S11 turns out to be heavier than the N(1440) P11. This parity
reversal pattern cannot be described by successful quark models based on SU(6)

symmetry with residual c olor-spin interactions between quarks (see for instance
Fig. 9 of Ref. [9]).

Some authors argue that reverse parity is an indication that at low ener-

gies the interactions among constituent quarks could be dominated by flavor-

dependent Goldstone boson exchange (GBE) (see Ref. [10] for a review). With
this assumption it is possible to obtain a good description of the low-lying baryon

spectrum and, in particular, the correct level ordering between the N∗(1440) and
theN∗(1535), as can be seen in Fig. 4 of Ref. [11]. The model has been extended to

include the exchange of vector and scalar mesons to account for correlatedmulti-

ple GBE, although the special nature of pseudoscalar Goldstone bosons does not
extend to other mesons. Besides, the special status of mesons in this model makes

it difficult to achieve a unified description of both mesons and baryons [9].
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Further understanding of the nature of the Roper resonance and the level

ordering may be provided by lattice QCD. In a recent study, the first positive

and negative parity excited states of the nucleon have been obtained with vari-
ational analysis in quenched QCD [12,13]. The 1/2− state is below the 1/2+ one

for heavy quark masses, but the physical ordering is recovered for pion masses
below 380 MeV (see Fig. [13]). Caution should be exercised in the interpretation

of this result obtained in quenched QCD and for which the identification of the

1/2− at low quark masses, where finite lattice volume effects become significant,
still remains. If confirmed, this level crossing could support the hypothesis that

there is a transition from heavy quarks, where SU(6) symmetry with color-spin
interactions works well, to light quarks where flavor-spin interactions due to GBE

prevail [14].

To circumvent the parity reversal problem, alternative descriptions in which

the Roper resonance is not (only) a qqq state have also been proposed. For in-
stance, it could have a large gluonic component q3G, although the masses of

such hybrid states calculated with the flux-tube model are quite large (Mhyb >

1870 ± 100 MeV) [15]. In one of its oldest representations, the Roper appears

as a collective vibration of the bag surface, a breathing mode. Indeed, with the

Skyrme model, where baryons are topological solitons of the meson nonlinear
fields, a resonance was found in the breathing mode spectrum with a mass of

M∗ = 1420MeV [16]. In line with the collective picture, Juliá-Dı́az and Riska ex-
plored the presence of (qq̄)n components in the Roper resonance [17]. They found

that the confining interaction mixes the qqq and qqqq̄q components. The qqqq̄q

admixture in the Roper ranges from 3 to 25% depending on the constituent quark
mass while the qqq(q̄q)2 components are negligible. The qqq component could

even be totally absent in theN∗(1440) as suggested by the fact that the resonance
shape is dynamically generated in the Jülich model from meson-baryon interac-

tions in coupled channels [18,5]. Finally, if the baryons are regarded as many-

body systems of quarks and gluons, it is natural to expect that they could be
deformed. Such a possibility was investigated in Ref. [19], with a deformed oscil-

lator potential. It was shown that low lying masses fit well to rotational spectra

with the Roper as an n = 2 rotational state.

3 Hadronic reactions

Although the vast majority of the information about the N∗(1440) has been ex-
tracted from the πN → πN reaction, there are many other processes where the

resonance properties can be studied and/or where the reaction mechanism can-

not be understood without taking it into account. Some of these processes are
reviewed in this Section.

3.1 Electroproduction of the N∗(1440)

Valuable information about nucleon resonances is encoded in the electromagnetic

N → N∗ transitions, often presented in terms of helicity amplitudes connecting
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states with well defined helicities. In the case of the N−N∗(1440) transition, two

such amplitudes should be introduced, A1/2 and S1/2, defined as

A1/2(q
2) =

√
2πα

kR

〈
N∗ ↓

∣∣ǫ(+)

µ Jµ
∣∣N ↑

〉
, (1)

S1/2(q
2) =

√
2πα

kR

|q|√
−q2

〈
N∗ ↑

∣∣ǫ(0)

µ Jµ
∣∣N ↑

〉
. (2)

Here, α is fine-structure constant, kR = (M2
N∗ −M2

N
)/(2MN∗), q = (ω,q) is the

four-momentum transfered to the nucleon and ǫ(+,0) stand for the transverse and
longitudinal polarizations of the virtual photon. TheN−N∗(1440) transition elec-

tromagnetic current can be parametrized with two form factors

Jµ = ūN∗(p ′)
[
F1(q

2)
(
q/qµ − q2γµ

)
+ iF2(q

2)σµνqν
]
u(p) . (3)

This current is very similar to the nucleon one, except for the q/qµ part. In the

nucleon case, the form factor associatedwith this operator has to vanish to ensure
current conservation, but not for the N − N∗ transition because the Roper mass

differs from the nucleon one. Introducing electric and magnetic form factors, in

analogy to the Sachs form factors of the nucleon and substituting Eq. (3) in the
expressions for the helicity amplitudes, one obtains that up to well known factors

A1/2 ∼ GM and S1/2 ∼ GE [20,21].

TheN−N∗(1440) helicity amplitudes have been studied using various mod-

els with a wide diversity of results. Some of these are shown in Fig. 1, namely,
the prediction from the non-relativistic quark model (NRQM) [22], the hybrid

model [22], the light-front relativistic quarkmodel (LF) calculation of Ref. [20], the

chiral chromodielectric (ChD) model [23] and the extended vector-meson domi-
nance (EVMD) model of Ref. [24].

The extensive N∗ program at JLab has provided a large amount of preci-
sion data on pion electroproduction which, together with the data from previous

experiments at MIT/Bates and MAMI/Mainz, has made possible the extraction
of the transition helicity amplitudes at 0 < Q2 < 6 (GeV/c)2 the for several

resonances and, in particular, for the Roper [25,26]. The result from the global

MAID07 analysis is also shown in Fig. 1. The comparison with the models reveals
that non of them is really satisfactory. This is an indication of the difficulties that

quark models encounter in the description of the low Q2 < 1 (GeV/c)2 region.
At Q2 > 2 (GeV/c)2, where Ap

1/2
and Sp

1/2
are positive and decreasing, good

agreement is obtained with relativistic quark model calculations assuming that

the Roper is the first radial excitation of the nucleon [26,27]. The discrepancies at
lowQ2 are interpreted as due to the missing meson cloud effects. The importance

of the pion cloud, particularly at low Q2, has also been demonstrated in a recent

study of electroproduction amplitudes with the simple Cloudy Bag Model [28].
The pion cloud is found to be responsible for the large and negative value ofAp

1/2

at the photon point, while the quark dynamics becomes progressively relevant as
Q2 increases, causing Ap

1/2
to change sign.

It is important to bare in mind that extraction of helicities amplitudes in both
the MAID [25] and CLAS [26] analyses imply certain model dependent assump-

tions about the resonant and non-resonant parts of the pion electroproduction
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Fig. 1. Transverse (A1/2) and longitudinal (S1/2) helicity amplitudes for the N−N∗(1440)

transition calculated with various models: NRQM (solid line) [22], hybrid model (dash-

dotted line) [22], LF (dotted line) [20], ChD (dashed line) [23] and EVMD (dash-double-

dotted line) [24]. The result of the global MAID07 analysis [25] is given by the thick solid

line.

amplitudes. For this reason, alternative methods are being pursued, like the ex-
traction of transition form factors at the resonance poles using analytic continua-

tion [29].

3.2 Direct observation of the Roper resonance

The excitation of the Roper resonance in πN and γN reactions can only be as-

sessed with partial wave analyses; in the reaction cross section, the N(1440) P11
overlaps with the N(1520) D13 and the N(1535) S11 forming the so called sec-
ond resonance region. Moreover, all these N∗ states might be masked the promi-

nent ∆(1232)P33 excitation since πN and γN interactions mix isospin 1/2 and
3/2. However, certain reactions act as filters, making the direct observation of the

Roper excitation possible.

An example is the (α,α ′) reaction of proton target studied at SATURNEwith

a beam energy of 4.2 GeV [30]. As the projectile has I = 0, the ∆(1232) excitation
can occur on the projectile but not on the target. For this reason the Roper exci-

tation appears as small peak on the tail of the dominant ∆(1232) excitation (see
Fig. 2 of Ref. [30]). The theoretical study of Hirenzaki et al. [31] showed that the

isoscalar excitation on the proton is the dominant N∗(1440) production mecha-

nism and extracted its strength from data. The fact that the interference with the
∆(1232) excitation on the α is important allowed to establish also the relative sign

of the amplitudes.
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An even clearer case of direct N∗(1440) observation has been made by the

BES Collaboration with the decay J/ψ → N̄Nπ [32]. Here, because of isospin

conservation, the πN system is in pure isospin 1/2. Several N∗ were observed in
the πN invariant mass distribution, the first of them corresponding to the Roper

resonance. Its mass and width, estimated with a simple Breit-Wigner function
were found to be 1358 ± 6 ± 16 MeV and 179 ± 26 ± 50 MeV respectively. As a

constant width was used in the Breit-Wigner, the extracted mass is close to the

pole value.

3.3 Double-pion production reactions

The Roper resonance is a vital ingredient in double-pion production reaction

mechanisms. In spite of its small branching ratio, the S-wave character of the

N∗(1440) → N(ππ)I=0S−wave decay (or N∗(1440) → Nσ as often denoted in the lit-
erature) makes it a very important nonvanishing contribution at threshold. This

is the case for the πN → ππN reaction, as was shown long ago in Ref. [33] and
supported by other models. For instance, in Fig. 10 of Ref. [34] the dotted lines de-

noting the results without N∗(1440) are well below the full model (and the data)

in the channels where the N∗(1440) → N(ππ)I=0S−wave decay is allowed.

The relevance of the Roper is even more dramatic in NN → NNππ, where
according to the model of Ref. [35], the isoscalar excitation of the resonance, fol-

lowed by its decay into N(ππ)I=0S−wave appears to be dominant at laboratory ki-

netic energies of the incident proton Tp < 1 GeV. The other two important reac-
tion mechanisms: ∆∆ excitation and N∗(1440) → ∆π are negligible at threshold

but rise fast to become important above Tp = 1 GeV. In recent years, this reaction
has been accurately measured at CELSIUS and COSY. At low energies, the main

features predicted by the model of Ref. [35] have been confirmed (see for instance

Ref. [36]). The situation is more involved at higher energies: an isospin analy-
sis of the data [37] indicates that the contribution from heavier ∆ states might

be important. Resonances with masses up to 1.72 GeV have been incorporated

in the relativistic model of Cao et al. [38], finding large contributions from the
∆(1600) and ∆(1620) states. The agreement to data is improved by reducing the

N∗(1440) → ∆π branching ratio, in line with the findings of Ref. [4].

The NN → NNππ model of Ref. [38] does not include interferences but, in

particular, the interference between theN(ππ)I=0S−wave and∆π decaymodes of the
Roper has been found to explain some details of the invariant mass and angular

distributions for πN→ ππN (Fig. 12 of Ref. [34]),NN → NNππ (Fig. 4 of Ref. [36])
and specially np → dππ. For this later reaction, it has been shown that the shape

of the double differential cross sections measured at LAMPFwith a neutron beam

of pn = 1.463 GeV/c [39] can be explained by the above mentioned interference
between the two-pion decay modes of the Roper resonance [40]. As shown in

Fig 2, by taking into account the Roper one obtains a good description of the size
and energy dependence of the total np → dππ cross section even with a rather

simple model as the one of Ref. [40]. Thenp → dππ reaction close to threshold has

been recently investigated in the framework of chiral perturbation theory [41].
The reported results for the total cross section are considerably smaller than those

of Fig. 2 even at lower energies.
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Fig. 2. Total cross section for np → dππ as a function of the neutron laboratory momentum

(solid line). The dotted line corresponds to theN∗(1440) → N(ππ)I=0S−wave mechanism, the

short-dashed line stands for the N∗(1440) → ∆π and the long-dashed one for the double-

∆ excitation (see Ref. [40] for details). The data are fromRefs. [39] (circle), [42] (square) and

[43] (triangles).
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Abstract. We argue that the spectra of quark-antiquark systems should better be studied

from higher radial excitations and, in particular, from configurations with well-defined

quantum numbers, rather than from ground states and lower radial excitations, the most

suitable system being charmonium.

In the Resonance-Spectrum Expansion (RSE) [1], which is based on the model of
Ref. [2], the meson-meson scattering amplitude is given by an expression of the

form (here restricted to the one-channel and one-delta-shell case)

T (E) =





−2λ2µpj2ℓ (pr0)

∞∑

n=0

∣∣gnL(ℓ)

∣∣2

E− EnL(ℓ)





Π(E) , (1)

where p is the center-of-mass (CM) linear momentum, E = E(p) is the total in-

variant two-meson mass, jℓ and h
(1)

ℓ are the spherical Bessel function and Hankel

function of the first kind, respectively, µ is the reduced two-meson mass, and r0
is a parameter with dimension mass−1, which can be interpreted as the average

string-breaking distance. The coupling constants gNL, as well as the relation be-
tween ℓ and L = L(ℓ), were determined in Ref. [3]. The overall coupling constant

λ, which can be formulated in a flavor-independentmanner, represents the proba-

bility of quark-pair creation. The dressed partial-wave RSE propagator for strong
interactions is given by

Πℓ(E) =




1− 2iλ2µpjℓ (pr0)h
(1)

ℓ (pr0)

∞∑

n=0

|gNL|
2

E− ENL






−1

. (2)

In Ref. [4] we have studied an intriguing property of the propagator (2),

namely that it vanishes for E → ENL. Here, we will concentrate on the fact that
the scattering amplitude (1) is independent of the way quark confinement is intro-

duced, as only the confinement spectrum ENL appears in expressions (1) and (2).

⋆ Talk delivered by E. van Beveren
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Hence, whatever one’s preferred mechanism for confinement, the scattering am-

plitude only depends on the resulting spectrum. As a consequence, one merely

has to deduce from experiment a suitable set of values of ENL and then try to
guess the corresponding dynamics for confinement.

However, in the recent past we have found that analysing experimental data

is far from trivial. For instance, the expressions (1) and (2) may also lead to dy-
namically generated resonances, like the light scalar-meson nonet [5], or the Ds0
(2317) [6], which do not stem directly from the confinement spectrum. Further-

more, the mountain-shaped threshold enhancements in plots of events versus
invariant mass for particle production can easily be mistaken for resonances [7].

Also, to properly analyse certain hadronic decay modes, one has to turn the re-
sulting data upside down, so as to find the true quarkonium resonances and

threshold enhancements [8], instead of erroneously classifying the leftovers as

unexpected new resonances [9]. Moreover, in studying resonances from produc-
tion processes, one has no control over their quantum numbers [10].

Our simple formulas (1) and (2) for meson-meson scattering are certainly

not good enough for a detailed description of production processes, but must be
adapted in order to account for, at least, the threshold enhancements [11]. How-

ever, the precise dynamics of production processes is still far from being fully un-

derstood. Nevertheless, for the low-lying part of the spectrawemay deduce some
properties without toomuch dependence on a specific confinement spectrum.We

found that meson loops, which are properly accounted for in expressions (1) and
(2), have most influence on the mass shifts of the ground states. Consequently,

upon deducing a confinement spectrum from the lowest-lying states, one is urged

to seriously consider the meson loops [2].

Threshold enhancements are more conspicuous for sharp thresholds, i.e.,

when the involved particles have small widths, rather than for diffuse thresh-

olds, concerning decay products that have considerable widths themselves [12].
The latter phenomenon tends to happen higher up in the spectrum. There, we

may expect a smoothened-out pattern of overlapping broad threshold enhance-

ments. Therefore, higher radial excitations of quarkonium resonances can more
easily be disentangled from other enhancements. The disadvantage is that any

confinement mechanism predicts, for higher excitations, abundantly many states
of the qq̄ propagator, with a variety of different quantum numbers.

Now, in order to avoid a large number of partly overlapping resonances, one

best studies resonances obtained in electron-positron annihilation, which process
is dominated by vector quarkonia. But this is not the full solution for cleaning

up the data, since in the light-quark sector one has nonstrange and strange qq̄

combinations with comparable spectra, which will come out on top of each other,
besides possibly significant mixing of isoscalar nn̄ (n = u, d) and ss̄ states. More-

over, decay channels involving kaons are common to both nn̄ and ss̄ resonances.

Actually, the only system with a sufficient number of established states to find
evidence (see Table 3 of Ref. [13]) for a regular level splitting of about 380 MeV

is given by the radially excited f2 mesons. A way out is to study a well-isolated
system, with just one set of quantum numbers, like vector cc̄ states, which can

be produced in e+e− annihilation. Once the spectrum of vector cc̄ is well estab-
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lished, one can with some confidence apply its properties to other spectra. Unfor-

tunately, the well-established JPC = 1−− cc̄ spectrum anno 2010 still consists of

J/ψ, ψ(2S, 3S, 4S), and ψ(1D, 2D) only.

3.0
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4.0
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5.0

5.5
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JPC = 1−− cc̄

exp HO

DD̄
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Fig. 1. The higher charmonium vector states (exp) as extracted by us from data: (i) the

ψ(3D) [8], in BABAR data [9] on e+e− → J/ψπ+π− ; (ii) the ψ(5S) and ψ(4D) [17], in

data obtained by the Belle Collaboration on e+e− → Λ+
c Λ

−
c [18], D0D∗−π+ [19], and

D0D∗−π+ [20], as well as in the missing signal of Ref. [9], and in further BABAR data on

D∗D̄∗ [16]; (iii) the ψ(5S), ψ(4D), ψ(6S), and ψ(5D) [21], in the data of Ref. [18]; (iv) the

ψ(3D), ψ(5S), ψ(4D), ψ(6S), and ψ(5D) [22], in new, preliminary BABAR data [23] on

e+e− → J/ψπ+π− ; (v) the ψ(7S), ψ(6D), and ψ(8S) [15], in data from BABAR on D∗D̄∗

[16]. We also indicate the level scheme as predicted by pure HO confinement (HO) ( ).

Meson and baryon loops shift theD states a fewMeV down/up, whereas the S states shift

100–200 MeV downwards. For completeness, we also indicate the levels of the sharp, low-

lying meson-meson and baryon-baryon thresholds ( ) of the channels DD̄,DD̄∗,DsD̄s,

D∗D̄∗,DsD̄
∗
s ,D

∗
sD̄

∗
s , and Λ

+
c Λ

−
c .

In the following, we will concentrate on a specific choice for confinement,

namely the harmonic oscillator (HO), though not so much the corresponding po-
tential or geometry (anti-De-Sitter [14]), but just the HO spectrum that follows

from these approaches. For vector cc̄ systems, one has a single 3S1 ground state,
and radial excitations, which can be either 3S1 or 3D1. In the HO spectrum, 3S1
states with radial quantum number n and 3D1 states with n−1 are degenerate.

However, due to the interaction generated by the meson loops, the poles asso-
ciated with the resonances repel each other in such a way that one is subject to

a small mass shift, whereas the other shifts considerably more and downwards.
Higher up in the cc̄ spectrum, the mass shift of the lower pole, which is domi-

nantly 3S1, becomes of the order of 150–200MeV, whereas the higher pole, mostly
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3D1, acquires a central resonance position that is only a few to at most about 50

MeV away from the HO spectrum [2]. In Ref. [15] we found evidence, in data

obtained by the BABAR Collaboration [16], for further charmonium states, viz.
ψ(5S, 6S, 7S, 8S) andψ(3D, 4D, 5D, 6D), which confirm the above observation. In

Fig. 1 we display the resulting spectrum for vector charmonium.

We can conclude from Fig. 1 that our guess of an HO spectrum for vector cc̄
states, with a radial level spacing of 380 MeV [24], seems to work well in view

of the data. Furthermore, we may observe the advantage of studying the cc̄ vec-

tor spectrum from above, where the pattern of dominantly S and dominantly D
states becomes rather regular.

Summarizing, we have shown that the cc̄ confinement spectrum, which un-

derlies scattering and production of multi-meson systems containing open-charm
pairs, can best be observed by starting from higher radial excitations of vector

charmonium in electron-positron annihilation. Moreover, we have shown that a
constant radial level splitting of about 380MeV is consistent with light and heavy

meson spectra.
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Abstract. We develop a formalism to study tetraquarks using the generalized flip-flop

potential, which include the tetraquark potential component. Technically this is a difficult

problem, needing the solution of the Schrödinger equation in a multidimensional space.

Since the tetraquarkmay at any time escape to a pair of mesons, herewe study a simplified

two-variable toy model and explore the analogy with a cherry in a glass, but a broken one

where the cherry may escape from. We also compute the decay width in this two-variable

picture, solving the Schrödinger equation for the outgoing spherical wave.

1 Introduction, tetraquarks with flux tubes

Our main motivation is to contribute to understand whether exotic hadrons exit

or not. Although there is no QCD theorem ruling out exotics, they are so hard to

find, thatmany friends even state that either exotics dont exist, or that at least they
should be very broad resonances. Nevertheless candidates for different continue

to exotics exit [1]! Here we specialize in tetraquarks, the less difficult multiquarks
to compute beyond the baryons and hybrids. Notice that there are many possible

sorts of tetraquarks:

— the borromean 3-hadron molecule
— the Heavy-Heavy-antilight-antilight

— the hybrid-like tetraquark
— the Jaffe-Wilczek diquark-antidiquark with a generalized Fermat string

1.1 The borromean 3-hadron molecule

In an exotic channel, quark exchange leads to repulsion, while quark-antiquark

annihilation is necessary for attraction. A possible way out is adding another me-

son, allowing for annihilation, to bind the three body system. This has already
led to the computation of decay widths, which turned out to be wide [2,3].

1.2 The Heavy-Heavy-antilight-antilight

The heavy quarks are easy to bind since the kinetic energy p2/(2m) is smaller,

thus their Coulomb short distance potential could perhaps provide sufficient bind-

ing, while the light antiquarks would form a cloud around them [4].

⋆ Talk delivered by P. Bicudo
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1.3 The hybrid-like tetraquark

Possibly a quark and antiquark may be in a colour octet, and then the tetraquark

is equivalent to a quark-gluon-antiquark hybrid. Recently we computed in Lat-
tice QCD the color fields for the static hybrid quark-gluon-antiquark system, and

studied microscopically the Casimir scaling [5].

Notice that our lattice simulation shows that flux tubes prefer to divide into

fundamental flux tubes, or flux tubes carrying a colour triplet flux, as we show in
Fig. 1.
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Fig. 1. (left) In a hybrid, flux tubes divide into two fundamental flux tunes, one connecting

the octet with the quark and another connecting the octet to the antiquark. In the baryon

and in the three-gluon glueball, static quenched Lattice QCD simulations also show con-

finement via fundamental flux tubes. (right) Triple flip-flop Potential potential. To the list

of potentials to minimize including usually only two different meson pair potentials, we

join another potential, the tetraquark potential.

1.4 The Jaffe-Wilczek diquark-antidiquarkwith a generalized Fermat string

Since there is no evidence for long distance polarization forces, or Van der Waals

forces, in hadron-hadron interactions, the two-body confinement potentials can-
not be right for multiquarks [6]! A solution to this problem consists in consider-

ing the flip-flop potential, where confining flux tubes or strings take the geometry
minimizing the energy of the system. Quark Confinement And Hadronic Interac-

tions [7].

Again the flux tubes in the tetraquark are expected to divide and link into

fundamental flux tubes, and a possible configuration is in a H-like or butterfly-
like flux tube. This tetraquark can be classified as a Jaffe-Wilczek one since the

quarks are combined in a diquark-like antitriplet and the antiquarks are com-

bined in a antidiquark-like triplet [8].

The technical difficulty in that framework is to compute the decay widths
since this tetraquark is open for the decay into a pair of mesons. Moreover it is

expected that the absence of a potential barrier above threshold may again pro-

duce a very large decay width to any open channel, although Marek and Lipkin
suggested that multiquarks with angular excitations may gain a centrifugal bar-

rier, leading to narrower decay widths [9].
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Here we continue a previous work, where we assumed confined (harmonic

oscilator-like) wavefunctions for the confined objects, one tetraquark and two dif-

ferent pairs of final mesons, and computed their hamiltonian. We utilized the Res-
onating Group Method and were surprised by finding very small decay widths

[10].

1.5 Our approach to study the tetraquark with a generalized Fermat string

We thus return to basics and decide to have no overlaps. We want to solve the

Schrödinger equation for the four particles, and from the Schrödinger solutions

also compute the decay widths. Our starting point is the extended triple flip-flop
potential [11], obtained minimizing the three lengths depicted in Fig. 1. Recently,

we devised a numerical algorithm to compute the Fermat points of the tetraquark

and the tetraquark potential [12].

Solving the Schrödinger equation is then a well defined problem which sho-

uld be solvable, placing our system in a large 12 dimensional box. However this is

a very difficult problem. Even assuming s-vaves, we would get 3 variables, some
confined and some in the continuum (similar to problems in extra compactified

dimensions or to lattice QCD) so we decide to work in a toy model, where the
number of variables is simplified. We thus simplify the triple flipflop potential,

with a single inter-meson variable, using the approximation on the diquark and

anti-diquark Jacobi coordinates,

ρ13 = ρ24 (1)

of having a single internal variable ρ in the mesons. We get a flipflop potential

where ρ is open to continuum and r is confined, minimizing only two potentials,

VMM(r, ρ) = σ(2r) , (2)

VT (r, ρ) = σ(r +
√
3ρ) . (3)

Our problem is similar to the classical student’s problem of a Cherry in a glass.

However this is not a simple student’s problem since the glass is broken and

the cherry may escape from the glass! The flip-flop and broken glass potentials
are depicted in Fig. 2. Here we report on our answer [13] to the question, in the

quantum case, are there resonances, and what is their decay width?

2 Finite difference method

Since there is a single scale in the potential and a single scale in the kinetic energy,

we can rescale the energy and the coordinates, to get a dimensionless equation,

HΦ(r, ρ) = [−∆r/2− ∆ρ/2+ min(r +
√
3ρ, 2r)]Φ(r, ρ) = EΦ(r, ρ) , (4)

that we first solve with the finite difference method. Thus, our results and fig-

ures are dimensionless. This case is adequate to study equal mass quarks, where
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Fig. 2. (left) Cherry in a broken glass. Our simplified two-variable toy model is analogous

to the classical mechanics textbook problem of a cherry in a glass, but a broken one where

the cherry may escape from. Here we solve this model in quantum mechanics, addressing

the decay widths of a system compact in one variable and open in the other. (right) Plot of

our simplified flip-flop potential, as a function of the two radial variables r (compact) and

ρ (open).

the mesons and the tetraquark have no constant energy shifts. For instance that

would be ok for the light tetraquark and meson-meson system

uud̄d̄(S=2) ↔ ρ+ ρ+ , (5)

or the heavy quark system

ccc̄c̄(S=2) ↔ J/ψ J/ψ . (6)

We discretize the space in anisotropic lattices and solve the finite difference
Schrödinger equation, in up to 6000 × 6000 sparse matrices (equivalent to 40

points in the confined direction × 150 points in the radial continuum direction).

We first look for localized states, selecting among the 6000 eigenvalues the ones
more concentrated close to the origin at ρ = 0.

To measure the momenta ki and the phase shifts δi, we simply fit the large ρ
region of the non-vanishingψi, where i indexes the factorizedAiry wavefunction

in r, the expression

ψi → Ai
sin(kiρ+ δi)

ρ
. (7)

As can be seen in Fig. 4, the momenta ki obey the relation

ki(E) =
√
2(E− ǫi), (8)

where ǫi is the threshold energy of the respective channel.

However, the phase shifts we get are not only discrete but rather irregular
above threshold. In the next Section 3 we compute the phase shifts with an im-

proved method.
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Fig. 3. (left) Semi-localized state, or resonance for lr = 1.(right) Bound state for lr = 3.
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Fig. 4. (left) Momenta of the various components as a function of the energy. (right) ”Phase

shifts” obtained from the finite differences (by projecting the eigenstates in the meson-

meson eigenstates ). As can be seen the behaviour is irregularwhenwe havemore than one

channel, this is due to the different contributions of multiple channels, for each eigenstate

calculated in the finite difference scheme.

3 Outgoing spherical wave method

Because the finite difference method is not entirely satisfactory for the computa-

tion of the phase shifts δ, we move to another method, consisting in in studying
the outgoing spherical waves. Since the finite difference method shows clearly

bands for the different internal energies of the mesons, we integrate the confined
coordinate rwith eigenvalues of the meson equation, i.e. with Airy functions, and

thus we are left with a system of ordinary differential equations in the coordinate

ρ .

3.1 Projecting onto the ρ coordinate

We can reduce our problem in the dimensions ρ, r to a one-dimensional problem

in ρ but with of coupled channels. We just have to expand the two-dimensional
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wavefunction as

Φ(r,ρ) =
∑

i

ψi(ρ)φi(r) , (9)

where the φi are the eigenfunctions of the r confined hamiltonian. The one-di-
mensional potentials Vij are given by

Vij(ρ) =

∫
d3r φ∗

i (r)(VFF(r, ρ) − VMM(r))φj(r) (10)

where we subtract VMM from the potential, since ĤMM is already accounted for

in its eigenvalues and eigenfunctions, used for instance in Eq. (9).

3 4 5 6 7 8 9 10
( E - 4 m c

2
 ) / E

0

0

0.05

0.1

0.15

0.2

0.25

σ 0

Total
0 → 0
0 → 1
0 → 2

l
r
 = 0

5 6 7 8 9
( E - 4 m c

2
 ) / E

0

0

1

2

3

4

σ 0

Total
0 → 0
0 → 1
0 → 2

l
r
 = 1

Fig. 5. (left) S-wave scattering cross sections from the channel with lr = 0 and nr = 0.

(right) S-wave scattering cross sections from the channel with lr = 1 and nr = 0.

3.2 Phase shifts

We now compute the phase shifts, in order to search for resonances in our sim-
plified flip-flop model. Solving the outgoing spherical Eq. for this system we can

compute the partial cross sections and the total cross section for the partial wave
l — either directly or by using the optical theorem — and determine the phase

shifts as well.

Note that our flip-flop potential has the same scales of the simple Schrödinger
equation for a linear potential, which has a single dimension

E0 =
(

~
2σ2

m

)1/3
, (11)

the only energy scale we can construct with ~, σ and m, the three relevant con-

stants in the non-relativistic region. Thus the number of non-relativistic bound-

states or resonances is independent both of the quark mass m and of the string
constant σ.
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3.3 The centrifugal barrier effect

Note that we have two distinct angular momenta, which are both conserved,
Lr = r × pr and Lρ = ρ × pρ. So, each assimptotic state is indexed by its an-

gular momentum lr and its radial number nr, and the scattering partial waves

are indexed by lρ. Thus the system can be diagonalized not only in the scattering
angular momenta Lρ but also on the confined angular momenta Lr. We can de-

scribe the scattering process with four quantum numbers: The scattering angular
momentum lρ, the confined angular momentum lr and the initial and final states

radial number in the confined coordinate r, ni and nj.

3 4 5 6 7 8 9 10
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0
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π/2

π

3π/2

δ 0(ra
d)

l
r
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l
r
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l
r
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n
r
 = 0

Fig. 6. Comparison of the phase shifts for lr = 0, 1, 2 and 3, with nr = 0.

On Fig. 5 we show the lρ = 0 partial cross sections for the scattering from the
channel with lr = 0 and for lr = 1, with nr = 0. Interestingly, the bumps in the

cross section seem to occur prior to the opening of a new channel.

In Fig. 6 we compare the phase shifts for different values of lr, namely for
lr = 0, 1, 2 and 3. For lr = 0, we don’t observe a resonance, since the phase shift

doesn’t even cross π/2. However, for the lr = 1 and lr = 2 cases, the phase shifts

clearly cross the π/2 line, and a resonance is formed. This behaviour is somewhat
expected, since a centrifugal barrier in r would, in the case of a true tetraquark,

maintain the two diquarks separated, favouring the formation of a bound state.
The tendency of greater stability for greater orbital angular momenta seems to be

further confirmed by the lr = 3, where besides the resonance, a true bound state

seems to be formed, as can be seen by the different qualitative behaviour of the
phase shifts for this case. This bound state formation confirms our observation of

a localized states in Section 2, with the finite difference simulation.

Finally we can compute the decay width utilizing the phase shift derivative,
Γ/2 = (dδ/dE)−1 computed when the phase shift δ crosses π/2, and get the results

of Table 1. For instance, for light quarks wherem ≃
√

(σ) ≃ 400MeV this results

in a lr = 1 decay width close to 15 MeV.
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Table 1. Decay widths as a function of lr .

lr (E − 4mc2)/E0 Γ / E0

1 6.116 0.037

2 6.855 0.131

3 7.462 0.352

4 Conclusion and outlook to tetraquarks

We study pentaquarks in the Jaffe-Wilczek model, with a H/butterfly string, but
include the open channels of decays to meson-meson pairs. We consider an ex-

tended flip-flop model, where we add the tetraquark string to the two-meson
strings. We first apply the RGMmethod assuming that the mesons have gaussian

wavefunctions, and we obtain very narrow widths.

We then utilize an approximate toy-model, simplifying the number of Jacobi

variables. The model is similar to the model of a Cherry in a Broken Glass. This
allows the solution of the Schrödinger equation with finite differences in a box,

where we look for localised states, and try to compute phase shifts.

To compute clearly the phase shifts we then solve the Schrödinger equation
for the outgoing spherical waves. We compute de decay widths from the phase

shifts, and we find relatively narrow decay widths. When the produced mesons

are unstable, the total decay width of the tetraquark is then dominated by the
final decays of the produced mesons.
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Graz, Austria

In the Standard Model of elementary-particle physics the axial charges gA of
baryons are decisive quantities for the comprehension of both the electroweak

and strong interactions. In the first instance they govern weak processes, such as

the β decay. Furthermore, they also relate to the strong interaction, what is most
clearly seen through the Goldberger-Treiman relation. In case of the nucleon N,

for example, it reads gA = fπgπNN/MN. Therefore, given the π decay constant
fπ and the nucleon massMN, the πNN coupling constant gπNN just turns out to

be proportional to gA. By this relation one can thus estimate the role of π degrees

of freedom in low-energy hadronic physics: Whenever gA becomes sizable, the π
coupling should also become appreciably strong and vice versa. In other words,

gA can also be viewed as an indicator for the phenomenon of spontaneous break-
ing of chiral symmetry of low-energy quantum chromodynamics (QCD). Conse-

quently, any reasonablemodel for hadronic physics should yield the gA of correct

sizes.

More recently, the axial charges not only of the baryon ground states but
also of the N resonances have come into the focus of interest. In particular, it

has been suggested that the sizes of gA should become small for almost degen-
erate parity-partner N resonances; these can be interpreted as chiral doublets,

indicating the onset of chiral-symmetry restoration with higher excitation ener-

gies [1,2]. Unfortunately, the gA values of the N resonances are unknown from
phenomenology and will be hard to measure in experiment. However, the prob-

lem can be explored with the use of lattice QCD. Corresponding first results have
already become available, but only for two of the N resonances, namely, N(1535)

and N(1650) [3]. Both of these resonances have the same spin J = 1
2
and parity

P = −1. Since there is not yet any lattice-QCD result for positive-parity states, the
above issue relating to parity-doubling remains unresolved from this side.

In addition, the axial charges of octet and decuplet ground states N, Σ, Ξ, ∆,

Σ∗, and Ξ∗ are also important to learn about the role of SU(3)F flavor-symmetry
breaking. Under the assumption of SU(3)F symmetry, the axial charges of the N,

Σ, and Ξ ground states are connected by the following simple relations:

gNA = F+D , gΣA =
√
2F , gΞA = F−D . (1)

⋆ Talk delivered by Ki-Seok Choi
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Violation of these relations indicates the amount of SU(3)F symmetry breaking.

Recently, we have performed a comprehensive study of the axial charges of
octet and decuplet ground statesN, Σ, Ξ, ∆, Σ∗, and Ξ∗ as well as their resonances

along RCQMs [4,5]. Specifically, we have employed the RCQMs whose quark-

quark hyperfine interactions derive from one-gluon-exchange and Goldstone-
boson-exchange dynamics; for the latter we have considered both the version

with only the spin-spin interaction from pseudoscalar exchange as well as the
extended version (EGBE) that includes all force components (i.e. central, tensor,

spin-spin, and spin-orbit) from pseudoscalar, scalar, and vector exchanges [6]. In

this contribution we refer only to results of this version. The calculations have
been performed in the framework of Poincaré-invariant quantum mechanics. In

order to keep the numerical computations manageable, we had to restrict the ax-
ial current operator to the so-called spectator model (SM) [7]. It means that the

weak-interaction gauge boson couples only to one of the constituent quarks in

the baryon. This approximation has turned out to be very reasonable already in
previous studies of the axial and induced pseudoscalar as well as electromagnetic

form factors of the nucleon.

Table 1. Axial charges gBA of octet and decuplet ground states as predicted by the EGBE

RCQM [5] in comparison to experiment [8] and lattice-QCD results from Lin and Orginos

(LO) [9] and Erkol, Oka, and Takahashi (EOT) [10] as well as results from chiral pertur-

bation theory by Jiang and Tiburzi (JT) [11,12]; also given is the nonrelativistic limit (NR)

from the EGBE RCQM.

Exp EGBE LO EOT JT NR

N 1.2695±0.0029 1.15 1.18±0.10 1.314±0.024 1.18 1.65

Σ · · · 0.65 0.636±0.068† 0.686±0.021† 0.73 0.93

Ξ · · · -0.21 -0.277±0.034 -0.299±0.014‡ -0.23‡ -0.32

∆ · · · -4.48 · · · · · · ∼ -4.5 -6.00

Σ∗ · · · -1.06 · · · · · · · · · -1.41

Ξ∗ · · · -0.75 · · · · · · · · · -1.00

† Because of another definition of gΣA this numerical value is different by a
√
2 from the

one quoted in the original paper.
‡ Because of another definition of gΞA this value has a sign opposite to the one in the

original paper.

In Table 1 we present the predictions of the EGBE RCQM for the axial charges
gBA of the octet and decuplet ground states B = N, Σ, Ξ, ∆, Σ∗, and Ξ∗. Except for

the N there are no direct experimental data for gBA. The EGBE RCQM prediction
for gNA come close to the experimental value, with only slightly falling below it.

This is also the trend of most modern lattice-QCD calculations; only the result by

Erkol et al. seems to represent a notable exception. In addition, our result com-
pares well with the gNA prediction obtained from chiral perturbation theory by

Jiang and Tiburzi. In the last column of Table 1 we quote also the nonrelativistic
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limit of the prediction by the EGBE RCQM. It deviates grossly from the relativistic

result, indicating that a nonrelativistic treatment of axial charges is unreliable.

For the gBA of the other octet and decuplet ground states, the EGBE RCQM

again yields results very similar to the other approaches. For the octet statesΣ and
Ξ the figures compare well with the lattice-QCD as well as chiral-perturbation-

theory results. For the decuplet states we can only compare the result for g∆A to
the one by Jiang and Tiburzi, what shows again a striking similarity. Evidently,

all the results from the nonrelativistic limit of the EGBE RCQM fall short; as in

the case of the N, the corresponding values are always bigger (in absolute value)
than all of the other results.

In Table 2 we have collected the predictions of the EGBE RCQM for gA of

all ground and resonance states of N, Σ, Ξ, ∆, Σ∗, and Ξ∗. They are classified as
belonging to the flavor octets and decuplets specified by total angular momen-

tum and parity, JP , where in addition their total orbital angular momenta L and
total spins S (in the rest frame) are given. Except for N(1535) and N(1650), which

are known from a lattice-QCD calculation [3] to be of the same sizes as our re-

sults, these are first relativistic predictions for axial charges of baryon resonances.

Table 2.Axial charges of octet (upper part) as well as decuplet (lower part) baryon ground

states and resonances as predicted by the EGBE RCQM. The flavor-multiplet assignments

follow ref. [13].

(LS) JP State gA State gA State gA
`

0 1
2

´

1
2

+
N(939) 1.15 Σ(1193) 0.65 Ξ(1318) -0.21

`

0 1
2

´

1
2

+
N(1440) 1.16 Σ(1660) 0.69 Ξ(1690) -0.23

`

0 1
2

´

1
2

+
N(1710) 0.35 Σ(1880) 0.38

`

1 1
2

´

1
2

−
N(1535) 0.02 Σ(1560) -0.15

`

1 3
2

´

1
2

−
N(1650) 0.51 Σ(1620) 0.62

`

2 1
2

´

3
2

+
N(1720) 0.35

`

1 1
2

´

3
2

−
N(1520) -0.64 Σ(1670) -0.92 Ξ(1820) -0.38

`

1 3
2

´

3
2

−
N(1700) -0.10 Σ(1940) -0.45

`

2 1
2

´

5
2

+
N(1680) 0.84

`

1 3
2

´

5
2

−
N(1675) 0.89 Σ(1775) 1.06

`

0 3
2

´

3
2

+
∆(1232) -4.48 Σ∗(1385) -1.06 Ξ∗(1535) -0.75

`

0 3
2

´

3
2

+
∆(1600) -4.41 Σ∗(1690) -1.05

`

1 1
2

´

1
2

−
∆(1620) -0.76 Σ∗(1750) -0.08

`

1 1
2

´

3
2

−
∆(1700) -1.68



26 Ki-Seok Choi, W. Plessas, and R. F. Wagenbrunn

We find it noticeable that the axial charges of members of two particular flavor

multiplets are all relatively small, namely the ones of the JP = 1
2

−
octet with

N(1535) and decuplet with ∆(1620). Interestingly, they are both the first 1
2

−
ex-

citations above the corresponding positive-parity ground states, the N(939) and

the ∆(1232).

Our results in Table 2 cannot tell anything regarding the issue of chiral-
symmetry restoration higher in the baryon excitation spectra. The more it will

be interesting to have in the near future calculations of resonance axial charges

from lattice QCD and other approaches. They will hopefully confirm or disprove
the pattern of results as produced by the RCQMs.
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In this talk we report some soon to be published results [1] of our studies of

figure-eight orbits of three-bodies in three potentials: 1) the Newtonian gravity,

i.e., the pairwise sum of −1/r two-body potentials; 2) the pairwise sum of linearly
rising r two-body potentials (a.k.a. the ∆ string potential); 3) the Y-junction string

potential [2] that contains both a genuine three-body part, as well as two-body

contributions (this is the first time that the figure-eight has been found in these
string potentials, to our knowledge). These three potentials share two common

features, viz. they are attractive and symmetric under permutations of any two,
or three particles. We were led to do this study after recognizing the existence of a

dynamical symmetry underlying the remarkable regularity in the Y- and ∆ string

energy spectra [3].

We have found that a set of variables that consists of the “hyper-radius”

R =
√
ρ2 + λ2, the “rescaled area of the triangle”

√
3

2R2 |ρ×λ|) and the (“braiding”)

hyper-angleφ = arctan
(
2ρ·λ
λ2−ρ2

)
makes this permutation symmetry manifest; we

use them to plot the motion of the numerically calculated figure-eight orbit. Ac-

cording to Ref. [4], H. Hopf was the first one to introduce these variables, Ref. [5].
As there are three independent three-body variables, and there are two indepen-

dent permutation-symmetric three-body variables, R and the area the third vari-

able cannot be permutation-symmetric. Moreover, it must be a continuous vari-
able and not be restricted only to a discrete set of points, as is natural for permuta-

tions. We identify here the third independent variable asφ = arctan
(
2ρ·λ
λ2−ρ2

)
and

show that it grows/descends (almost) linearly with the time t spent on the figure-

eight trajectory and reaches ±2π after one period T . Thus, on the figure-eight or-
bitφ is, for most practical purposes, interchangeable with the time variable t. The

hyper-angle φ is the continuous braiding variable that interpolates smoothly be-

⋆ Talk delivered by V. Dmitrašinović
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tween permutations and thus plays a fundamental role in the braiding symmetry

of the figure-eight orbits [6,8].

Then we constructed the hyper-angular momentum G3 = 1
2

(pρ · λ − pλ · ρ)

conjugate to φ, the two forming an (approximate) pair of action-angle variables
for this periodic motion. Here we calculate numerically and plot the temporal

variation of φ, as well as the hyper-angular momentum G3(t), the hyper-radius
R and r. We show that the hyper-radius R(t) oscillates about its average value R

with the same angular frequency 3φ and phase, as the new (“reduced area”) vari-

able r(t). Thus, we show thatφ(t) is, for most practical purposes, interchangeable
with the time variable t, in agreement with the tacit assumption(s) made in Refs.

[7], [4], though the degree of linearity of this relationship depends on the precise
functional form of the three-body potential.

As stated above, φ is not exactly proportional to time t, but contains some

non-linearities that depend on the specifics of the three-body potential; conse-
quently the hyper-angular momentum G3 is not an exact constant of this mo-

tion, but oscillates about the average value G3, with the same basic frequency

3φ. Thus, the time-averaged hyper-angular momentum G3 is the action variable
conjugate to the linearized hyper-angle φ

′

.

We used these variables to characterize two new planar periodic, but non-

choreographic three-bodymotions with vanishing total angular momentum. One
of these orbits corresponds to a modification of the figure-eight orbit with φ(t)

that also grows more or less linearly in time, but has a more complicated pe-

riodicity pattern defined by the zeros of the area of the triangle formed by the
three particles (also known as “eclipses”, “conjunctions” or “syzygies”). Another

new orbit has φ(t) that grows in time up to a point, then stops and “swings
back”. We show that this motion, and the other two, can be understood in view

of the analogy between the three-body hyper-angular (“shape space”) Hamilto-

nian on one hand and a variable-length pendulum in an azimuthally periodic
in-homogeneous gravitational field, on the other.
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Though the point-form of relativistic quantum dynamics is the least explored
of the three common forms of relativistic dynamics, it has several properties

that makes it well suited for applications to hadronic physics. Its main charac-

teristics are that interaction terms (if present) enter all four components of the
4-momentum operator, whereas the generators of Lorentz transformations stay

free of interactions. As a particular example we are going to present the calcu-
lation of electroweak form factors of heavy-light mesons within a constituent-

quark model. Since the dependence of matrix elements on the heavy-quark mass

is rather obvious in point-form relativistic quantum mechanics, it is comparably
easy to study the heavy-quark symmetry and its breaking due to finite masses of

the heavy quarks.

Starting point of our investigations are the physical processes from which
such electroweak form factors are extracted, i.e. elastic electron-meson scattering

and the weak decay of heavy-light mesons. We use a coupled-channel framework

in which the dynamics of the intemediate gauge bosons – either photon or W-
boson – is fully taken into account. Poincaré invariance is ensured by emplyoing

the Bakamjian-Thomas construction [1]. Its point-form version amounts to the
assumption that the (interacting) 4-momentum operator P̂µ can be factorized into

an interacting mass operator and a free 4-velocity operator

P̂µ = M̂V̂
µ
free . (1)

It is therefore only necessary to study an eigenvalue problem for the mass opera-

tor.

In case of elastic electron-meson scattering a mass eigenstate M̂|ψ〉 = m|ψ〉
is written as a direct sum of a quark-antiquark-electron component |ψQq̄e〉 and
a quark-antiquark-electron-photon component |ψQq̄eγ〉. Here we have already

assumed that the quark carries the heavy flavor. The mass eigenvalue equation
to be solved has the form

(
M̂Qq̄e K̂

K̂† M̂Qq̄eγ

)(
|ψQq̄e〉
|ψQq̄eγ〉

)
= m

(
|ψQq̄e〉
|ψQq̄eγ〉

)
, (2)

⋆ Talk delivered by M. G. Rocha
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whereMQq̄e andMQq̄eγ consist of a kinetic term and an instantaneous confining

potential between quark and antiquark, and K̂ is a vertex operatorwhich accounts

for the emission and absorption of a photon by the electron or (anti)quark. It is
determined by the interaction Lagrangean density of QED [2].

For the calculation of the electromagnetic meson currents and form factors it

is most convenient to apply a Feshbach reduction to the mass eigenvalue problem

(M̂Qq̄e −m)|ψQq̄e〉 = K̂†(M̂Qq̄eγ −m)−1K̂︸ ︷︷ ︸
V̂opt(m)

|ψQq̄e〉 (3)

and study the optical potential V̂opt(m). The electromagnetic meson current

Jµ(k′
M; kM)

can then be extracted from the invariant 1-γ-exchange amplitude which is essen-

tially given by on-shell matrix elements of the optical potential. These have the

structure

M1γ(k
′
e, µ

′
e; ke, µe) ∝ 〈V ′; k′

e, µ
′
e; k

′
M|V̂opt(m)|V ; ke, µe; kM〉on−shell

∝ V0δ3(V − V′)
jµ(k′

e, µ
′
e; ke, µe)J

µ(k′
M; kM)

(k′e − ke)2
. (4)

|V ; k
(′)
e , µ

(′)
e ; k

(′)
M〉 are, so called, “velocity states” that specify the state of a system

by the overall velocity and the center-of-mass momenta and canonical spins of its

components [3]. In our case k
(′)
M is the momentum of the confined q-q̄ subsystem

with the quantum numbers of the heavy-light meson. “On-shell” means thatm =

k0e+ k0M = k′ 0e + k′0M and k0e = k′ 0e , k0M = k′0M. A detailed derivation of Eq. (4) and
the explicit expression for the meson current Jµ(k′

M; kM) can be found in Ref. [4].

If we are dealing with a pseudoscalar meson its electromagnetic current sho-

uld be of the form Jµ(k′
M; kM) = (k′M + kM)µF(Q2), which allows us to identify

the electromagnetic form factor of the meson uniquely. It is, however, known that
the Bakamjian-Thomas construction, that we are using, provides wrong cluster

properties [5]. As a consequence, the hadronic current Jµ(k′
M; kM) which we ex-

tract from Eq. (4) exhibits a slight dependence on the electron momenta ke and

k′e
1. Fortunately this dependence vanishes rather quickly with increasing invari-

ant massm of the electron-meson system and thus also in the heavy-quark limit
(mQ = mM → ∞, mq̄/mQ → 0). This limit has to be taken in such a way that

v′ · v = 1 +Q2/2m2M stays constant. The function of (v′ · v) that is obtained from
F(Q2) by taking the heavy-quark limit is the famous Isgur-Wise function [7]. In

our case it takes on a rather simple analytical form:

ξEM(v ′ · v) = lim
mQ→∞

F(Q2)

=
∑

µ ′µ

∫
d3k̃ ′

q̄

√
ω̃q̄

ω̃ ′
q̄

√
2

1+ v · v ′
1

2
D
1/2

µ ′µ

[
R−1
W

(
k̃q̄

mq̄
, B(vQq̄)

)
RW

(
k̃ ′
q̄

mq̄
, B(v ′Qq̄)

)]

×ψout(k̃
′
q̄)ψin(k̃q̄) . (5)

1 See Ref. [6] for a short discussion of this problem.
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It is just an integral over incoming and outgoing wave functions, aWigner-rotation

factor and kinematical factors. The tildes in the integral indicate that the corre-

sponding quantities are given in the Q-q̄ rest system. In accordance with heavy-
quark symmetry ξEM(v ′ · v) does not depend on the heavy-quark mass.

Heavy-quark symmetry allows us also to relate the electromagnetic form

factor of a pseudoscalar heavy-light meson to its weak decay form factors for

heavy-to-heavy flavor transitions (like, e.g., B̄ → D(∗)ℓν̄). In the heavy-quark
limit the electromagnetic form factor and the weak decay form factors (modulo

kinematical factors) should lead to only one Isgur-Wise function [8]. If we apply
our coupled channel framework to semileptonic decays of pseudoscalar heavy-

light mesons, identify the decay form factors from the optical potential and take

the heavy-quark limit we end up with

ξW(v ′ · v) =
∑

µ ′µ

∫
d3k̃ ′

ū

√
ω̃ū

ω̃ ′
ū

√
2

1+ v ′ · v
1

2
D
1/2

µ ′µ

[
RW

(
k̃ ′
ū

mū
, B(v ′cū)

)]

×ψout(k̃
′
ū)ψin(k̃ū) . (6)

At first sight ξEM(v ′ · v) and ξW(v ′ · v) seem to be different and we are still not
able to show their equality analytically. A numerical study, however, reveals that

they coincide (see Fig.1). These investigations show that heavy-quark symmetry

is recovered in the heavy-quark limit within our relativistic coupled channel ap-
proach.

2 4 6 8 10
v.v’0.0

0.2

0.4

0.6

0.8

1.0

1.2

ΞHv.v’LEM

ΞHv.v’LW

Fig. 1. Isgur-Wise function for a heavy-light meson as obtained from electron-meson scat-

tering (cf. Eq. (5)) and semileptonic decays (cf. Eq. (6)). For the Q-q̄ bound-state wave

function we have taken a Gaussian with the same oscillator parameter (a = 0.55 GeV) and

light-quark mass (mu,d = 0.25 GeV) as in Ref. [9].

It is also interesting to study the breaking of heavy-quark symmetry caused

by finite values of the heavy-quark mass. This is done in Fig. 2 for the two weak
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decay form factors F0(v
′ · v) and F1(v ′ · v) that show up in the semileptonic B− →

D0e−ν̄ decay. If heavy-quark symmetry was perfect RF1 and R(1 − q2/(mB +

mD)2)−1F0 (with R = 2
√
mBmD/(mB + mD)) should coincide with the Isgur-

Wise function ξ(v ′ · v) (see Ref.[8]). What we rather observe is that the physical

values of the b- and c-quark mass give rise to a considerable breaking of heavy-
quark symmetry (left plot). Here we have not even taken into account a (heavy)

flavor dependence of the meson wave functions. If both masses were about a

factor of 10 larger heavy-quark symmetry would nearly hold (right plot).

A more comprehensive study of heavy-light systems along the lines pre-
sented here, including the discussion of (heavy-quark) spin symmetry, can be

found in Ref. [4].

2 4 6 8 10
v.v’0.0

0.2

0.4

0.6

0.8

1.0

1.2

mc=1.27 GeV, mb=3.3mc

RH1-Q2�HmB+mDL
2L-1F0

R F1

ΞHv.v’L

2 4 6 8 10
v.v’0.0

0.2

0.4

0.6
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1.0

1.2

mc=10 GeV, mb=3.3mc

RH1-Q2�HmB+mDL
2L-1F0

R F1

ΞHv.v’L

Fig. 2. Weak decay form factors (multiplied with appropriate kinematical factors) for the

process B− → D0e− ν̄ for finite mQ in comparison with the Isgur-Wise function. The

wave-function parameterization is the same as in Fig. 1.
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Within constituent-quark models the resonance character of hadron excitations is

usually ignored. They rather come out as stable bound states and their bound-

state wave function is then used to calculate partial decay widths perturbatively
by assuming a particular model for the elementary decay vertex. The fact that

the predicted strong decay widths are notoriously too small [1,2] is an indica-

tion that a physical hadron resonance is not just a simple bound state of valence
(anti)quarks, but it should contain also (anti)quark-meson components.

A good starting point to take such components into account is the chiral

constituent quark model (χQCM) [3]. The effective degrees of freedom of the
χQCM, that are assumed to emerge from chiral symmetry breaking of QCD,

are constituent (anti)quarks and Goldstone bosons which couple directly to the
(anti)quarks. In order to take relativity fully into account we work within point-

form quantum mechanics [4], which is characterized by the property that the

components of the four momentum operator P̂µ are the only generators of the
Poincaré group which contain interaction terms. A convenient method to add

interactions to P̂µfree such that the Poincaré algebra is satisfied is the Bakamijan-
Thomas construction [5]. The point-form version of the Bakamjian-Thomas con-

struction amounts to factorize the free 4-momentum operator into a free mass

operator M̂free and a free 4-velocity operator Vµfree and to add a Lorentz-scalar in-
teraction term M̂int that should also commute with V̂µfree to M̂free. The interacting

4-momentum operator then has the structure

P̂µ = P̂
µ
free + P̂

µ
int = (M̂free + M̂int) V̂

µ
free , (1)

and one only needs to study an eigenvalue problem for the mass operator. A very

useful basis, which is tailored to this kind of construction, is formed by velocity
states [6]. These are usual momentum states in the center-of-momentum of the

whole system which are then boosted to the overall four-velocity vµ. In this basis
the usual addition rules of nonrelativistic quantum mechanics can be applied to

spin and angular momentum.

In order to allow for the decay of hadron excitations into a lower lying state
and a Goldstone boson we formulate the eigenvalue problem for the mass op-

erator as a 2-channel problem. A general mass eigenstate is then a direct sum of

⋆ Talk delivered by R. Kleinhappel
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a valence (anti)quark component and a valence (antiquark) + Goldstone-boson

component. The latter can be eliminated by means of a Feshbach reduction and

one ends up with a mass-eigenvalue equation for the valence (anti)quark compo-
nent. In case of a meson, e.g., this equation takes on the form:


M̂qq̄ + K̂†(M̂qq̄π −m)−1K̂︸ ︷︷ ︸

V̂opt(m)


 |ψqq̄〉 = m|ψqq̄〉 . (2)

The channel mass operator M̂qq̄ is assumed to contain already an instantaneous

confinement and the optical potential Vopt(m) describes all four possibilities for
the (dynamical) exchange of a Goldstone boson between anti(quark) and (anti)-

quark, in particular also reabsorption of the Goldstone boson by the emitting
(anti)quark. Herewe have taken the π as a representative for the Goldstone bosons.

The vertex operator K̂ is derived from an appropriate field theoretical interaction

Lagrangian density [7].

α′

GB

α′′ αfαα′′fα′α′′

Fig. 1. Graphical representation of the optical potential, Vnn
′

opt (m) that enters the mass

eigenvalue equation (3) on the hadronic level.

In a velocity state representation Eq. (2) becomes an integral equation. In

order to make it better amenable to a numerical treatment we expand |ψqq̄〉 in
terms of (velocity) eigenstates |v, α〉 of M̂qq̄, i.e. the pure confinement problem.

α collectively denotes the internal quantum numbers that specify these states.

For reasons which will become clear immediately, we call |v, α〉 a “bare” meson
state, whereas |ψqq̄〉 is (the q-q̄ component of) a “physical” meson state. This

expansion leads to an infinite set of coupled algebraic equations for the expansion
coefficients Aα:

∑

α′

(
mαδαα′ + Vαα

′

opt (m)
)
Aα′ = mAα . (3)

The most remarkable feature of this equation is that it is rather a mass-eigenvalue
equation for mesons than for quarks. It describes how a physical meson of mass

m is composed of bare mesons with massesmα. The bare mesons are mixed via

the optical-potential matrix elements Vnn
′

opt (m). Even these matrix elements attain
a rather simple interpretation in terms of hadronic degrees of freedom. They cou-

ple a bare meson state with quantum numbers α′ to another bare meson state



Resonances and decay widths 35

with quantum numbers α via a Goldstone-boson loop such that any bare meson

state with quantum numbers α′′ (that is allowed by conservation laws) can be ex-

cited in an intermediate step (see Fig. 1). fαα′(|κ|) are (strong) transition form fac-
tors that show up at the (bare) meson Goldstone-boson vertices. The eigenvalue

problem that one ends up with describes thus bare mesons, i.e. eigenstates of
the pure confinement problem, that are mixed and dressed via Goldstone-boson

loops. The only places where the quark substructure enters, are the vertex form

factors. Here it should be emphasized that due to the instantaneous nature of the
confinement potential the dressing happens on the hadron level and not on the

quark level, i.e. emission and absorption of the Goldstone boson by the same con-
stituent must not be interpreted asmass renormalization of the (antiquark)quark.

Equation (3) is a nonlinear eigenvalue equation that cannot be solved with

standard techniques. In order to study it in some more detail we use a simple

toy model in which spin and flavor of the (anti)quark are neglected and a real
scalar particle is taken for the Goldstone boson. We use a harmonic oscillator

confinement in the square of the mass operator. This model has 5 parameters:
the (anti)quark massmq, the Goldstone-boson massmGB, the Goldstone-boson-

quark coupling strength g, the oscillator parameter a and a parameter V0 to shift

the mass spectrum. We have taken a standard value of 0.34 GeV for mq and the
pion mass for mGB. To give our toy model some physical meaning the param-

eters a and V0 have been fixed in such a way that the the experimental masses
of the ω ground state and its first excited state are approximately reproduced.

The Goldstone-boson-quark coupling is varied within the range allowed by the

Goldberger-Treiman relation, i.e. 0.67 . g2/4π . 1.19 [8]. To simplify things fur-
ther only radial excitations of bare mesons have been taken into account. The

mass eigenvalue problem, Eq. (3), can be solved by an iterative procedure. One
first has to restrict the number of bare states, that are taken into account, to a

certain number αmax. The first step is to insert a start value for m into V̂opt(m)

and solve the resulting linear eigenvalue equation. This leads to αmax (possibly
complex) eigenvalues. From these one has to pick out the right one, reinsert it

into V̂opt(m), solve again, etc. Appropriate start values are, e.g., the eigenval-

ues of the pure confinement problem. Note that the optical potential Vαα
′

opt (m)

becomes complex if the mass eigenvalue m is larger than the lowest threshold

mth = m0 + mGB, i.e. the mass of the lightest bare meson plus the Goldstone-
boson mass. As a consequence also the physical mass eigenvaluesmwill become

complex as soon as their real part is larger thanmth and we will get unstable me-
son excitations. The mass of such an excitation can then be identified with Re(m),

its width Γ with 2 Im(m).

The results of a first numerical study with our toy model (with αmax = 2)
are shown in Fig. 2. It can be seen that the Goldstone-boson loop provides an

attractive force and that the decay width exhibits a maximum as a function of

g2/4π. As soon as the real part of the mass eigenvalue of the first excited state
approachesm0+mGB, wherem0 is the harmonic oscillator ground-statemass, the

decay width vanishes. With a Goldstone-boson-quark coupling of g2/4π = 1.19,

which is still compatible with the Goldberger-Treiman relation, the 2 lowest lying
states are found to have masses of about 0.8 and 1.44 GeV, respectively. The first
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Fig. 2. Predictions of our toy model for the meson masses and widths. Shown are the

ground state (green line) and the first excited state (blue line) as functions of the Goldstone-

boson-quark coupling. The red band between the dashed blue lines represents four times

the decay width of the first excited state.

excited state has a width of 0.026 GeV. An increase of αmax changes these values
by only a few percent.The iterative procedure converges already after 5 iterations.

These are promising results in view of the simplicity of our toy model and it

will be interesting to see whether typical decay widths of 0.1 GeV or more can be
achieved within our approach in the more interesting case of baryon resonances

for the full chiral constituent-quark model.
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Abstract. We propose a new method to study mixed symmetric multiplets of baryons in

the context of the 1/Nc expansion approach. The simplicity of the method allows to better

understand the role of various operators acting on spin and flavour degrees of freedom.

The method is tested on two and three flavours. It is shown that the spin and flavour

operators proportional to the quadratic invariants of SUS(2) and SUF(3) respectively are

dominant in the mass formula.

1 Introduction

The 1/Nc expansion method proposed by ’t Hooft [1] is a valuable tool to study

nonperturbative dynamics in a perturbative approach, in terms of the parameter

1/Nc whereNc is the number of colors. The double line diagrammatic method of
’t Hooft implemented by Witten [2] to describe baryons gives convenient power

counting rules for Feynman diagrams. According to Witten’s intuitive picture, a
baryon containingNc quarks is seen as a bound state in an average self-consistent

potential of a Hartree type and the corrections to the Hartree approximation are

of order 1/Nc. These corrections capture the key phenomenological features of
the baryon structure.

Ten years after ’t Hooft’s work, Gervais and Sakita [3] and independently

Dashen and Manohar in 1993 [4] discovered that QCD has an exact contracted
SU(2Nf)c symmetry when Nc → ∞, Nf being the number of flavors. For ground

state baryons the SU(2Nf) symmetry is broken by corrections proportional to

1/Nc. Since 1993-1994 the 1/Nc expansion provided a systematic method to an-
alyze baryon properties such as ground state masses, magnetic moments, axial

currents, etc [5–8].

A few years later the 1/Nc expansion method has been extended to excited
states also in the spirit of the Hartree approximation [9]. It was shown that for

mixed symmetric states the SU(2Nf) breaking occurs at orderN0c instead of 1/Nc
as for the ground and symmetric excited states.

⋆ Talk delivered by Fl. Stancu
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Presently a lattice test of 1/Nc baryon masses relations has been performed

[10]. The lattice data clearly display both the 1/Nc and the SU(3) flavour symme-

try breaking hierarchies.

Also, it was shown that the NN potential has an 1/N2c expansion and the
strengths of the leading order central, spin-orbit, tensor and quadratic spin-orbit

forces gave a qualitative understanding of the phenomenological meson exchange

models [11].

2 The mass formula

Here we are concerned with baryon spectra. The general form of the baryon mass

operator is [12]

M =
∑

i

ciOi +
∑

i

diBi (1)

with the operatorsOi having the general form

Oi =
1

Nn−1
c

O
(k)

ℓ ·O(k)

SF , (2)

where O
(k)

ℓ is a k-rank tensor in O(3) and O
(k)

SF a k-rank tensor in SU(2), but in-
variant in SU(Nf). The latter is expressed in terms of SU(Nf) generators S

i, Ta

and Gia acting on spin, flavour and spin-flavour respectively. For the ground

state one has k = 0. Excited states require k = 1 terms, which correspond to the
angular momentum component and the k = 2 tensor term

L(2)ij
q =

1

2

{
Liq, L

j
q

}
−
1

3
δi,−jLq · Lq . (3)

The first factor in (2) gives the order O(1/Nc) of the operator in the series

expansion and reflects Witten’s power counting rules. The lower index i repre-
sents a specific combination of generators, see examples below. The Bi are SU(3)

breaking operators. In the linear combination, Eq. (1), ci and di encode the QCD

dynamics and are obtained from a fit to the existing data. It is important to find
regularities in their behaviour [13] and search for a possible compatibility with

quark models [14].

A considerable amount of work has been devoted to ground state baryons

summarized in several review papers as, for example, [5–7]. The ground state is
described by the symmetric representation [Nc]. For Nc = 3 this becomes [3] or

[56] in an SU(6) dimensional notation.

In the following we shall concentrate on the description of excited states only
and the motivation will be obvious.

3 Excited states

Excited baryons can be divided into SU(6) multiplets, as in the constituent quark

model. If an excited baryon belongs to the [56]-plet the mass problem can be
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treated similarly to the ground state in the flavour-spin degrees of freedom, but

one has to take into account the presence of an orbital excitation in the space

part of the wave function [15,16]. If the baryon belongs to the mixed symmetric
representation [21], or [70] in SU(6) notation, the treatment becomes much more

complicated.

There is a standardway to study the [70]-plets which is related to the Hartree

approximation [9]. An excited baryon is described by symmetric core plus an

excited quark coupled to this core, see e.g. [17–20]. In that case the core can be
treated in a way similar to that of the ground state. In this method each SU(2Nf)

× O(3) generator is splitted into two terms

Si = si + Sic; Ta = ta + Tac ; Gia = gia +Giac , ℓi = ℓiq + ℓic, (4)

where si, ta, gia and ℓiq are the excited quark operators and Sic, T
a
c , G

ia
c and ℓic

the corresponding core operators.

In this procedure the wave function is approximated by the term which cor-

responds to the normal Young tableau, where the decoupling of the excited quark
is straightforward. The other terms needed to construct a symmetric orbital-flav-

our-spin state are neglected, i.e. antisymmetry is ignored. An a posteriori justifi-

cation is given in Ref. [21].

But the number of linearly independent operators constructed from the gen-

erators given in the right-hand side of Eqs. (4) increases tremendously the num-
ber of terms in the mass formula so that the number of coefficients to be deter-

mined usually becomes much larger than the experimental data available. Con-

sequently, in selecting the most dominant operators one has to make an arbitrary
choice, as for example in Ref. [17]. In particular the isospin operator as t · Tc/Nc
, although important, has been entirely ignored without any reason.

A solution to this problem has been found in Ref. [22], where the separation

into a symmetric core and an excited quark is not necessary. The key issue is the
knowledge of thematrix elements of the SU(2Nf) generators formixed symmetric

states described by the partition [Nc−1, 1] for arbitraryNc. These can be obtained

by using a generalized Wigner-Eckart theorem [23]. Using SU(2Nf) generators
acting on thewhole system, the number of operators up to 1/Nc order in the mass

formula is considerably reduced so that the physics becomes more transparent,

as we shall see below.

3.1 The SU(4) case

The SU(4) case has been presented in Ref. [22]. Its algebra is

[Si, Sj] = iεijkSk, [Ta, Tb] = iεabcTc,

[Gia, Gjb] = i
4
δijεabcTc + i

2
δabεijkSk, (5)

with i, a = 1, 2, 3. The matrix elements of the SU(4) generators were extracted

from Ref. [23], initially proposed for nuclear physics where SU(4) symmetry is
nearly exact. The transcription to a system ofNc quarks was straightforward. In-

stead of 12 operators up to orderO(1/Nc) presented in Ref. [17] we needed only 6
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operators for 7 experimentally known three- and four-star nonstrange resonances

(no mixing angles). We have introduced the spin and isospin operators on equal

footing, as seen from Table 1, and obtained the new result that the isospin term
O4 becomes as dominant in ∆ resonances as the spin term O3 does in N∗ reso-

nances, as indicated by the comparable size of the coefficients c3 and c4 in Table 1.
Column 5 proves that by the removal of O4 the fit deteriorates considerably.

Table 1. List of operators Oi and coefficients ci in the N = 1 band revisited, 7 resonances

of 3 and 4 stars status, no mixing angles.

Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (Mev) Fit 4 (MeV) Fit 5 (MeV)

O1 = Nc l1 481 ± 5 482 ± 5 484 ± 4 484 ± 4 498 ± 3

O2 = ℓisi −31 ± 26 −20 ± 23 −12 ± 20 3 ± 15 38 ± 34

O3 = 1
Nc
SiSi 161 ± 16 149 ± 11 163 ± 16 150 ± 11 156 ± 16

O4 = 1
Nc
TaTa 169 ± 36 170 ± 36 141 ± 27 139 ± 27

O5 = 15
Nc
L(2)ijGiaGja −29 ± 31 −34 ± 30 −34 ± 31

O6 = 3
Nc
LiTaGia 32 ± 26 35 ± 26 −67 ± 30

χ2dof 0.43 0.68 0.94 1.04 11.5

3.2 The SU(6) case

Below we present preliminary results for SU(6). The group algebra is

[Si, Sj] = iεijkSk, [Ta, Tb] = ifabcTc,

[Si, Gja] = iεijkGka, [Ta, Gjb] = ifabcGic,

[Gia, Gjb] = i
4
δijfabcTc + i

2
εijk

(
1
3
δabSk + dabcGkc

)
, (6)

with i = 1,2,3 and a = 1,2,...,8. The analytic work was based on the extension of
Ref. [23] from SU(4) to SU(6) in order to obtain matrix elements of all SU(6) gener-

ators between symmetric [Nc] states first [24], followed later by matrix elements
of all SU(6) generators betweenmixed symmetric states [Nc−1, 1] states [25]. The

latter work has been recently completed by some new isoscalar factors required

by the physical problem [26].

Theoretically the [70, 1−] multiplet has 5 octets (N,Λ, Σ, Ξ), 2 decuplets (∆,Σ,

Ξ,Ω) and two flavour singletsΛ1/2 andΛ3/2. In the fit we take into account the 17

experimentally known resonances having a 3 or 4 star status and the two known
mixing angles between the 2NJ and

4NJ (J = 1/2, 3/2) states. Table 2 exhibits the
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9 operators used in the mass formula, from which the three Bi’s break explicitly

the SU(3) symmetry. The corresponding fitted coefficients ci and di are indicated

under a preliminary fit named Fit 1. We remind that in the symmetric core + ex-
cited quark procedure fifteen Oi (flavour invariants) and four Bi operators were

included in the fit [27]. However the flavour operator 1/Nc t · Tc was omitted,
without any justification.

Like for nonstrange baryons, one can see that the dominant operators are the
spin O3 and flavour O4. The latter has the form explained in Ref. [25]. It recovers

the matrix elements of O4 = 1/Nc T
aTa of nonstrange baryons (see Table 1).

The operators O3 and O4 have similar values for the corresponding coefficients,
which proves the importance of the flavour operators in the fit, like for the SU(4)

case.

Table 2. Operators and their coefficients in the mass formula obtained from a numerical

fit, mixing angles included, S denotes the strangeness.

Operator Fit 1 (MeV)

O1 = Nc l1 476.11 ± 4.09

O2 = lisi 63.6 ± 22.6

O3 = 1
Nc
SiSi 165 ± 15

O4 = 1
Nc

(TaTa − 1
12
Nc(Nc + 6)) 181.95 ± 11.6

O5 = 3
Nc
LiTaGia −19.4 ± 6

O6 = 15
Nc
L(2)ijGiaGja 8.5 ± 0.3

B1 = - S 163.90 ± 12.04

B2=
1
Nc
LiGi8 − 1

2

q

3
2
O2 33.96 ± 31.55

B3 =
1
Nc
SiGi8 − 1

2
√
3
O3 112.46 ± 62.14

χ2dof 2.85

In Tables 1 and 2 the operator O2 contains the one-body part of the spin-orbit
term, defined in Ref. [17], while O5, O6 and B2 contain the total orbital angular

momentum components Li, as in Eq. (3). Using the total spin-orbit term it would

hardly affect the fit. The contribution of terms containing the angular momen-
tum is generally small, like for nonstrange baryons [22], see Table 1. The SU(3)

breaking operator B1 turns out to be important, as expected.
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The χ2dof = 2.85 is larger than desired. We found that the basic reason is that

it is hard to fit the mass of Λ(1405) to be so low. The difficulty is entirely similar

to that of quark models, where Λ(1405) appears too high. An artificially larger
mass of the order of 1500 MeV considerably improves the fit, leading to χ2dof < 1.

More fits will be presented elsewhere [26].

The difference between our results and those of Ref. [18] can partly be ex-
plained as due to the difference in the wave function. In Ref. [18] only the compo-

nent with Sc = 0 is taken into account and this component brings no contribution

to the spin term in flavour singlets, so that the mass of Λ(1405) remains low. In
our case, where we use the exact wave function, both Sc = 0 and Sc = 1 parts of

the wave function contribute to the spin term. This makes the spin term contri-
bution identical for all states of given J irrespective of the flavour, which seems to

us natural. Then, in our case, with a non vanishing spin term in flavour singlets

as well, the mass formula accomodates a heavier Λ(1405) than the experiment,
like in quark models (for a review on the controversial nature of Λ(1405) see, for

example, Ref. [30] where one of the authors S.F. Tuan has predicted together with
D.H. Dalitz this resonance in 1959, discovered experimentally two years later.)

4 Conclusion

The 1/Nc expansion method provides a powerful theoretical tool to analyze the
spin-flavour symmetry of baryons and explains the success of models based on

this symmetry. We have shown that the dominant contributions come from the

spin and flavour terms in the mass formula both in SU(4) and SU(6). The terms
containing angularmomentum bring small contributions, which however slightly

improve the fit. It is hard to fit the mass of Λ(1405), a notorious problem in re-
alistic quark models [28,29]. This suggests again a more complex nature of this

resonance, as, for example, a coupling to a K̄N system , which might survive in

the largeNc limit [31,32].
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Abstract. In this work, we employ a quark model as well as a meson model to investigate

the isospin symmetry breaking of X(3872). We find that the quark model, in which the

isospin breaking occurs because of the u and d quark mass difference and of the electro-

magnetic force, can give a shallow bound state where the isospin is mixed but mostly 0.

The mesonmodel, where the width of the ρ orωmeson is taken into account, can also give

the X(3872) → J/ψρ and J/ψω transition strength with a sharp peak around the D0D
∗0

threshold. Their strength is comparable in size, which is consistent with the experiment.

1 Introduction

X(3872) is a heavy meson first observed by Belle in 2003 in the B decay, B± →
K±J/ψππ(π) [1]. It has a mass of (3872.3±0.8) MeV and a width of (3.0+2.1−1.7)

MeV [2]. It seems difficult to explain the properties of this particle if one assumes
a simple cc state. Its rather low mass and small width as well as the momentum

distribution of the final π’s suggest that X(3872) may be JPC=1++ and probably

has a large four-quark component, qqcc [3–5]. Another notable property is that it
decays into both J/ψπ2 and J/ψπ3 in comparable size [6]:

Br(X(3872) → π+π−π0J/ψ)

Br(X(3872) → π+π−J/ψ)
= 1.0± 0.4 ± 0.3, (1)

which means that X(3872) is a mixed state of the isospin 0 and 1.

Table 1. Relevant threshold energy close to X(3872) [2]. All entries are in MeV.

mX(3872) mD0 +mD̄∗0 mJ/ψ +mρ mJ/ψ +mω mD+ +mD∗−

exp. 3872.3±0.8 3871.8 3872.4 3879.6 3879.9

As seen in Table 1, there are four thresholds which are very close to X(3872).

It is natural to consider that X(3872) has large components of those two-meson

states. Because of the D+D∗− threshold is by about 8 MeV higher than that of

⋆ This work has been done with in collaboration with Dr. Makoto Takizawa and Dr. Kiy-

otaka Shimizu.
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D0D
∗0, the tail of thewave function of X(3872) probably consists mainly ofD0D

∗0.

This causes the isospin symmetry breaking in X(3872).

The decay into J/ψρ or J/ψω requires recoupling of the quarks, thus occurs

at the short range. So, it is still nontrivial whether the above threshold difference
also affects the short-range part enough to explain the decay ratio shown in eq.

(1). To clarify this point, we investigate the situation quantitatively by a quark
model as well as by a meson model in the following.

2 Quark model picture

A constituent quarkmodel is an effectivemodel for the low energy hadron physics
[7]. There the quarks are treated as dynamical variables whereas the gluon effects

are reduced mostly to the single particle energy of quarks or the potential be-
tween quarks. The masses of light quarks are considered to increase up around

to 300 MeV due to the chiral symmetry breaking.

This picture is more reliable when the concerning quarks are heavy. For ex-

ample, the summation of D(∗) mass and B
(∗)
s mass is almost the same that of

B(∗) and D
(∗)
s (Table 2). This suggests that the bulk effects of the gluon or the sea

quark degrees of freedom are effectively included in the single particle energy of

the quarks.

Table 2. Mass of (u+s+c+b) systems (in MeV).

mK(∗) +m
B

(∗)
c

mD(∗) +m
B

(∗)
s

mB(∗) +m
D

(∗)
s

pseudo-scalar mesons 6770 7231 7247

vector mesons 892+? 7420 7437

The difference between the above entries, for example, (mD+mBs
)− (mB+

mDs
), comes from the interaction between quarks. The 0th order terms are con-

sidered to be color-Coulomb and the linear confinement terms, which are estab-
lished in both of the empirical and theoretical ways.

The hadron-hadron interaction arises mostly from the spin-dependent part,

which is one of the higher order terms. It is well known that the effective one-
gluon exchange gives such a spin-spin term. The interaction is investigated also

by the Lattice QCD [8], where the spin-spin term is found to be proportional to
(1/m1m2):

Vss =
s1 · s2
m1m2

V(r) (2)

where V(r) is short-ranged (r < 0.5 fm) potential.

This spin-spin interaction seems to bemodified a little when one of the quarks

is the light quark. In Table 3, we listed the observed hyperfine splitting for each
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Table 3. Hyperfine splitting of the qQ systems (in MeV).

mK∗ −mK mD∗ −mD mD∗

s
−mDs mB∗ −mB mB∗

s
−mBs

398 141 144 46 47

qQ system1. It, however, is still clearly seen that the interaction becomes smaller
as the heavy quark is heavier. So the properties of the four-quark systems are gov-

erned mainly by the interaction between the light quark-light antiquark pairs.

In Table 4, we show the matrix elements of relevant interactions: the color-

magnetic interaction (CMI), the pair-annihilating term of OGE (OGE-a), Ins, and
an estimate by a typical parameter set used for a quarkmodel. Themost attractive

pair is the color-singlet, spin 0, flavor-octet, which exists, e.g. in the pion. There
is another weak but still attractive pair: the color-octet, spin 1, flavor-octet one.

I=0 pairs may also be attractive if OGE-a and Ins are weak, whose size is not

well known. Such pairs may be found in the qqcc systems. We argue that this
attraction leads to X(3872) to have a large four-quark configuration.

Table 4. Matrix elements of the interactions between qq pairs. The color-magnetic interac-

tion, −〈(λ · λ)(σ · σ)〉, is denoted as CMI, the pair-annihilating term of OGE (OGE-a), the

spin-color part of the instanton induced interaction (Ins), and estimate value by a typical

parameter set, E.

color spin flavor CMI OGE-a Ins E(MeV) States

1 0 1 −16 0 12 84 η

1 0 8 −16 0 −6 −327 π, K

1 1 1 16/3 0 0 63 ω

1 1 8 16/3 0 0 63 ρ

8 0 1 2 0 3/4 41

8 0 8 2 0 −3/8 15

8 1 1 −2/3 9/2 9/4 97

8 1 8 −2/3 0 −9/8 −34 ccqq with JPC=0++ ,1+− ,1++ ,2++

3 X(3872) by a quark model

In the quark model, the isospin symmetry breaking occurs due to the u and d

quark mass difference and the electromagnetic interaction between quarks. The

model hamiltonian and the wave function is taken to be the same as those in
ref.[9].

The X(3872) configuration is taken to be qqcc with a cc core. The four quark

state is solved by using the resonating group method with a full deformation in

1 The Table suggests that the SU(3)f flavor symmetry is good when the one of the quark

is heavy, but we do not discuss farther on this topic here.
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Table 5. Binding energy and probabilities of each configuration. (cc)1 [(cc)8] stands for the

cc pair is color-singlet [octet].

B.E. (cc)1(qq)1 (cc)8(qq)8 cc

I = 0 I = 1 I = 0 I = 1

5.2 MeV 0.11 0.04 0.44 0.09 0.37

the short distance. So the system can be a molecular state of two mesons with the

tetraquark components in the short range region.

It is found that there can be a shallow JPC = 1++ bound state which is mostly

isospin I = 0. The probability of each component is shown in Table 5. By mul-
tiplying larger phase space for J/ψρ channel, we may have the branching ratio

reported in ref.[6].

4 X(3872) by a meson model

In order to investigate the branching ratio directly, we employ the meson model

for X(3872). The mesons, D, D∗, ρ and ω are treated as fundamental degrees of
freedom in this model. The isospin breaking comes from the mass difference of

mesons [10].

The meson-meson interaction is taken to be the gaussian separable type as

Vm(p, p ′) = v0 exp[−a2(p2 + p ′2)/4] (3)

with the range a=0.4 fm. As for the coupling between the two-meson channel and

the cc channel we take

Vm,cc(p) = w0 exp[−b2p2/4] (4)

with also b=0.4 fm. As the first try, we fit v0 and u0 to produce an appropriate

shape for the peak. This interaction does not break the isospin symmetry.

We solve a four-channel coupled scattering problem, D0D
∗0-J/ψ ρ-J/ψω-

D+D∗−, with the cc(1P) state as a bound state embedded in the continuum [11],

and calculate the transition strength of X(3872) to the final α channel with the
D0D

∗0 momentum, q:

dW

dq
=
MK−D0D

∗0

µD0D
∗0

q
∑

α

µαqα
∣∣〈two mesons qα|Tα,cc G0|cc〉

∣∣2 (5)

The probability can be expressed by the cc self energy, Σcc, as
∑

α

· · · ∝ −ℑ〈cc|(Tα,cc G0)†G0 Tα,cc G0|cc〉 (6)

= −ℑ〈cc|Gcc
∗ Σcc Gcc|cc〉 (7)

In order to include the effects of the ρ and ω meson width, we substitute of the

resolvent of the α channel by that with the observed ρ or ωmeson width as:

−ℑ〈cc|G0 T∗cc,α G0 Tα,cc G0|cc〉 → −ℑ〈cc|G0 T∗cc,α G̃0 Tα,cc G0|cc〉 (8)



48 Sachiko Takeuchi

with G̃0 = (E − Kα + iΓ/2)−1. One of our parameter sets gives the result plotted

in Figure 1. A sharp peak appears in the final J/ψ ρ- or J/ψω-channel around the

D0D
∗0

threshold. Both of the J/ψ ρ and J/ψω can be found also below the thresh-

old due to the vector meson width. The size of the decay probability to J/ψ ρ and

J/ψω are almost the same around the peak, which is consistent with the experi-
ment.

20
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Fig. 1. Transition strength of X(3872) with respect to the D0D
∗0 momentum, q.

We argue that X(3872) can be considered as a meson molecular state with a
cc core. It is also pointed out that similar heavy mesons above the open charm

threshold, DD, the mass spectrum of charmonia deviates considerably from the
quark model prediction [12]. The method we employ here can also be applied to

investigate such states.
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Abstract. The Belle experiment at the KEKB asymmetric-energy e+e− collider has proven

to be an excellent environment for studies in hadron spectroscopy. These studies have led

to discoveries of many meson candidates that behave like charmonium states, but due

to some of their properties cannot be explained as pure conventional cc mesons within

the classical quark model. Similar exotic states have been observed also in the ss and bb

systems. In this report, recent Belle results on these newly observed states are reviewed.

1 Introduction

The Belle detector[1] at the asymmetric-energy e+e− collider KEKB[2] has accu-

mulated about 1 ab−1 of data by the end of its operation in June 2010. The KEKB
collider, called a B-factory, operated near the Υ(4S) resonance with a peak lumi-

nosity that exceeded 2.1×1034 cm−2s−1. Large amount of collected experimental
data and excellent detector performance enabled searches for new hadronic states

as well as studies of their properties. Many interesting spectroscopic results have

indeed been obtained at the Belle experiment, and this report covers most recent
and interesting ones.

There has been a renewed interest in charmonium spectroscopy since 2002.
The attention to this field was drawn by the discovery of the two missing cc

states below the open-charm threshold, ηc(2S) and hc(1P),[3,4] but even more

by observations of a number of new particles [5,6] above the threshold for the
open-charm production. Newly observed states – collectively called XYZ– resem-

ble charmonia, but differ from regular cc states by some of their properties, or
can simply not be identified as charmonia due to lack of available cc potential

model assignments (see for example Ref. [7]). As a consequence of these prop-

erties, XYZ states – although probably containing a cc quark pair – could be ex-
plained as more complex, exotic type of particles. These include: tightly bound

four-quark states called tetraquarks; two loosely bound charm mesons forming
the so-called molecular states; charmonium hybrids interpreted as cc-gluon states

with excited gluonic degrees of freedom; or hadro-charmonium states, where the

traditional charmonium states like J/ψ or ηc are “submerged” in a light hadronic
matter. On the other hand, there also exist some alternative models, which try to

explain experimental results simply by effects of various open charm thresholds

⋆ Representing the Belle Collaboration.
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on the conventional charmonium levels. All these different ideas have been ex-

tensively explored in numerous theoretical papers, published recently; the list of

these papers is far too long to be quoted in this review. However, it is important
to know that many aspects of these spectroscopic questions were also subject of

several studies presented by participants of the Bled 2010 workshop [8].

In this reviewwe will present results from some recent Belle analyses of new
charmoniun(-like) XYZ states. We will also mention some results, suggesting the

existence of similar exotic states in the ss and bb systems.

2 Charmonium and Charmonium-like States

Experimentaly, many different measurements in charmonium spectroscopy can

be performed at a B-factory, since charmonium(-like) particles are produced there
by various different mechanisms: via B decays; in e+e− annihilation into double

cc; C-even states can be formed in γγ processes; and JPC = 1−− resonances can

be created in e+e− annihilation after the photon radiative return.

2.1 The X(3872) news

The story about new charmonium-like states began in 2003, when Belle reported

on B+ → K+J/ψπ+π− analysis,1 where a new state decaying to J/ψπ+π− was

discovered [9]. The new state, called X(3872), was soon confirmed and also in-
tensively studied by the CDF, DØ and BABAR collaborations [10–18]. So far it has

been established that this narrow state (Γ = (3.0+1.9
−1.4 ± 0.9) MeV) has a mass

of (3872.2 ± 0.8) MeV/c2, which is very close to the D0D∗0 threshold [19]. The

intensive studies of several X(3872) production and decay modes suggest two

possible JPC assignments, 1++ and 2−+, and establish the X(3872) as a candidate
for a loosely bound D0D∗0 molecular state. However, results provide substantial

evidence that the X(3872) state must contain a significant cc component as well.

Just very recently, Belle performed a study of B → (ccγ)K using 712 fb−1

data sample collected at the Υ(4S) resonance [20]. Pure D0D∗0 molecular model

[21] predictsB(X(3872) → ψ′γ) to be less than B(X(3872) → J/ψγ). Results by the

BABAR collaboration [18] show that B(X(3872) → ψ′γ) is almost three times that
of B(X(3872) → J/ψγ), which is inconsistent with the pure molecular model, and

can be interpreted as a large cc−D0D∗0 admixture. We observe X(3872) → J/ψγ

together with an evidence for χc2 → J/ψγ in B± → J/ψK±, while in our search

for X(3872) → ψ′γ no significant signal is found (see Table 2). We also observe

B → χc1K in both, charged as well as neutral B decays.

The obtained results suggest that the cc-D0D∗0 admixture in X(3872) may
not be as large as discussed above. This might get us one step closer to resolving

the nature of the X(3872) state even without a much larger data sample.

1 In this review, the inclusion of charge-conjugated states is always implied.
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Table 1. Summary of newly observed states adapted fromRef. [6]. The naming convention for these new XYZ states indicates the lack of knowledge

about their structure and properties at the time of discovery.

State M [MeV] Γ [MeV] JPC Decay Modes Production Modes Observed by

e+e− (ISR),
Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980)

J/ψ → ηYs(2175)
BABAR, BESII, Belle

π+π−J/ψ,
X(3872) 3871.4 ± 0.6 3.0+2.1

−1.7 1++or 2−+

γJ/ψ,DD̄∗
B → KX(3872), pp̄ Belle, CDF, DØ, BABAR

X(3915) 3914 ± 4 28+12
−14 0/2++ ωJ/ψ γγ → X(3915) Belle

Z(3930) 3929 ± 5 29 ± 10 2++ DD̄ γγ → Z(3940) Belle

X(3940) 3942 ± 9 37 ± 17 0?+ DD̄∗ (not DD̄,ωJ/ψ) e+e− → J/ψX(3940) Belle

Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not DD̄∗) B → KY(3940) Belle, BABAR

Y(4008) 4008+82
−49 226+97

−80 1−− π+π−J/ψ e+e− (ISR) Belle

Y(4140) 4143.0 ± 3.1 11.7+9.1
−6.2 ??+ φJ/ψ B± → K±Y(4140) CDF

X(4160) 4156 ± 29 139+113
−65 0?+ D∗D̄∗ (not DD̄) e+e− → J/ψX(4160) Belle

Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e− (ISR) BABAR, CLEO, Belle

Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ′ e+e− (ISR) BABAR, Belle

X(4630) 4634+9
−11 92+41

−32 1−− Λ+
c Λ

−
c e+e− (ISR) Belle

Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ′ e+e− (ISR) Belle

Z±
1 (4050) 4051+24

−23 82+51
−29 ? π±χc1 B → KZ±

1 (4050) Belle

Z±
2 (4250) 4248+185

−45 177+320
−72 ? π±χc1 B → KZ±

2 (4250) Belle

Z±(4430) 4433 ± 5 45+35
−18 ? π±ψ′ B → KZ±(4430) Belle

Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb Belle
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Table 2. Summary of recent B → (ccγ)K results [20]. In all measurements the two con-

secutive errors indicate statistical and systematic uncertainties, respectively. Significances

also include systematic uncertainties.

Decay mode Signal Significance (σ) Branching fraction (B)
B± → χc1K

± 2308 ± 52 79 (4.9 ± 0.1 ± 0.3) · 10−4

B0 → χc1K
0 542 ± 24 37 (3.78+0.17

−0.16 ± 0.3) · 10−4

B± → χc2K
± 32.8+10.9

−10.2 3.6 (1.11+0.36
−0.34 ± 0.09) · 10−5

B0 → χc2K
0 2.8+4.7

−3.9 0.7 < 2.6 · 10−5 at 90%C.L.

B± → (X(3872) → J/ψγ)K± 30.0+8.2
−7.4 4.9 (1.78+0.48

−0.44 ± 0.12) · 10−6

B0 → (X(3872) → J/ψγ)K0 5.7+3.5
−2.8 2.4 < 2.4 · 10−6 at 90%C.L.

B± → (X(3872) → ψ′γ)K± 5.0+11.9
−11.0 0.4 < 3.4 · 10−6 at 90%C.L.

B0 → (X(3872) → ψ′γ)K0 1.5+4.8
−3.9 0.2 < 6.6 · 10−6 at 90%C.L.

2.2 Charged cc-like states: Z+(4430); Z+(4050)& Z+(4250)

In 2008 an exciting discovery of a new charmonium-like state was reported [22]

by Belle in the B+,0 → K0,−π+ψ(2S) analysis, performed on a data sample with
657·106 BB pairs. After excluding theKπDalitz regions that correspond toK∗(890)

and K∗
2(1430) mesons (i.e. K∗ veto), a strong enhancement is obtained in the

π+ψ(2S) invariant mass distribution. A fit with an S-wave Breit-Wigner function
for the signal and a phase-space-like background function yields a peakmass and

width ofM = (4433±4±2) MeV/c2 and Γ = (45+18
−13

+30
−13) MeV, with a 6.5σ statis-

tical significance. The observed resonance, named Z+(4430), is characterised by a

product branching fraction of B(B0 → K−Z+(4430))×B(Z+(4430) → π+ψ(2S)) =

(4.1 ± 1.0 ± 1.4) · 10−5. The Z+(4430) is thus seen as the first charmonium-like
charged meson with a minimal quark content of ccud – a serious tetraquark can-

didate.

The signature of this exotic state was also searched for by the BABAR collab-
oration [23]. The performed analysis of the B−,0 → ψπ−K0,+ (ψ = J/ψ or ψ(2S))

decays focuses on a detailed study of the Kπ− system, since its mass and angular-
distribution structures strongly influence the Dalitz plots. Using the final BABAR
data sample of 413 fb−1, no significant evidence for an invariant mass signal peak

is obtained for any of the processes investigated, not even in the K∗ veto region
for the ψ(2S)π+ distribution, where the Z+(4430) was observed by Belle. The

most prominent structure in the ψ(2S)π− mass distribution for all events is an
excess of 2.7σ with a mass and width of M = (4476 ± 8((stat.)) MeV/c2 and

Γ = 32 ± 16((stat.)) MeV. Using the measured Belle parameters [22] for the

Z+(4430), only the upper limit for the product branching fraction is obtained as
B(B0 → K−Z+(4430))×B(Z+(4430) → π+ψ(2S)) < 3.1 ·10−5 at a 95% confidence

level. This result does neither refute nor confirm the existence of the Z+(4430),
seen by Belle.

Soon after the BABAR group report, the Belle collaboration reanalysed the

same data set as used previously in [22]. In order to check for the possibleψ(2S)π−
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mass reflections from the Kπ system, a full Dalitz plot analysis is performed [24],

using the same data sample as above and a fit model that takes into account all

known Kπ resonances below 1780MeV/c2. Dalitz plot is divided in fiveM2(Kπ)-
regions and the Z+(4430) signal is clearly seen for the K∗-veto-equivalent

M2(π+ψ(2S)) distribution. The fit results with 6.4σ peak significance agree with
previous Belle measurement, and provide the updated Z+(4430) parameters:

M = (4443+15
−12

+19
−13) MeV/c2, Γ = (109+86

−43
+74
−56) MeV and B(B0 → K−Z+(4430)) ×

B(Z+(4430) → π+ψ(2S)) = (3.2+1.8
−0.9

+5.3
−1.6) · 10−5.

The observation of the Z+(4430) state suggests that studies of B → Kπ(cc)

decays could reveal other similar neutral and charged partners. Belle thus re-
ports also on a Dalitz plot analysis of B0 → K−π+χc1 decays with 657 · 106
BB pairs.[25] The fit model for Kπ resonances is the same as in the Z+(4430)

Dalitz analysis, but here it includes also the K∗
3(1780) meson. The fit results sug-

gest that a broad doubly peaked structure in the π+χc1 invariant mass distri-

bution should be interpreted by two new states, called Z+(4050) and Z+(4250).
The double-Z+ hypothesis is favoured when compared to the single-Z+ (no-

Z+) hypothesis by the statistical significance of 5.7σ (13.2σ), and even with var-
ious systematic variations of the fit model, the significance is still at least 5.0σ

(8.1σ). The masses, widths and product branching fractions for the two states

are: M(Z+(4050)) = (4051 ± 14+20
−41) MeV/c2, Γ(Z+(4050)) = (82+21

−17
+47
−22) MeV,

M(Z+(4250)) = (4248+44
−29

+180
−35 ) MeV/c2, Γ(Z+(4250)) = (177+54

−39
+316
−61 ) MeV;

and B(B0 → K−Z+(4050)) × B(Z+(4050) → π+χc1) = (3.0+1.5
−0.8

+3.7
−1.6) · 10−5,

B(B0 → K−Z+(4250)) × B(Z+(4250) → π+χc1) = (4.0+2.3
−0.9

+19.7
−0.5 ) · 10−5.

3 XYZ counterparts in bb and ss systems

An interesting question is whether in the ss and bb systems there exist analo-

gous “XYZ” states, predicted by many of the models proposed to explain the

charmonium-like exotic states.

3.1 Y(2175)

A possible candidate in the ss system is Y(2175), a 1−− state, first observed by

BaBar in the ISR process e+e− → γISRf0(980)φ(1020) [26] and later confirmed
by BES [27]. At Belle experiment, both π+π−φ(1020) and f0(980)φ(1020)

cross sections for the ISR processes e+e− → γISRπ
+π−φ(1020) and e+e− →

γISRf0(980)φ(1020) were measured [28]. The mass and width of the high mass

peak in the cross section, corresponding to Y(2175), are found to beM = 2079 ±
13+79

−28 MeV and Γ = 192 ± 23+25
−61 MeV, which are consistent with the previ-

ous measurements. For First measurements of mass and width are reported for

the low mass peak in the π+π−φ(1020) cross section distribution, correspond-
ing to the φ(1680), the measured values are:M = 1689 ± 7 ± 10 MeV and Γ =

211±14±19MeV. The widths for both, φ(1680) and Y(2175), are about 200MeV.

This may suggest that the Y(2175) is an excited 1−− ss state. Since the f0(980)
is expected to have a large ss component, Y(2175) → f0(980)φ(1020) can be un-

derstood as an open-flavor decay, different from Y(4260) → π+π−J/ψ, which is a
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hadronic transition. Studies of Y(2175) in other decaymodes are therefore needed

to determine if Y(2175) is a conventional ss state or an s-quark analogue of the

Y(4260).

3.2 Yb(10890)

The Belle experiment used a data sample at the CMenergy around theΥ(5S) mass

10.89 GeV, and found large signals for decays into π+π−Υ(1S), π+π−Υ(2S) and
π+π−Υ(3S) final states. If these transitions are only from the Υ(5S) resonance,

then the corresponding partial widths are between 0.5 and 0.9 MeV. These val-

ues aremore than two orders of magnitude larged than the corresponding partial
widths for Υ(4S), Υ(3S) and Υ(2S) decays to π+π−Υ(1S). This could be explained

by bb analogue of the Y(4260) state, called Yb(10890), which overlaps with the

Υ(5S). Alternatively, this phenomenon could be explained by the existence of a
tetraquark intermediate state, the effect of final state interactions or by a nonper-

turbative approach for the calculation of the decay widths of dipion transitions
of heavy quarkonia.

To distinguish between different possibilities, the Belle experiment performed

a measurement of the energy dependence of the cross sections for e+e− →
π+π−Υ(nS) (n = 1, 2, 3) at energies around 10.89 GeV [29]. The peak mass and

width, obtained by performing a fit with a common Breit-Wigner function to

the measured π+π−Υ(nS) cross section distribution, is measured to be M =

10889.6 ± 1.8 ± 1.6 MeV and Γ = 54.7+8.5
−7.2 ± 2.5 MeV. A fit with the Υ(5S) and

Υ(6S) resonance parameters [19], fails to describe the observed π+π−Υ(nS) cross

section.

4 Summary and Conclusions

The Belle experiment at the KEKB collider provides an excellent environment
for charm and charmonium spectroscopy. As a result, many new particles have

already been discovered during the Belle operation, and some of them are men-

tioned in this report. Some recent Belle results also indicate that analogs to exotic
charmonium-like states can be found in ss and bb systems. As the operation of

the experiment heas just finished in June 2010, some interesting results on spec-
troscopy could still be expected from Belle in the near future.

The Belle experimental results have already raised substantial interest and

various interpretations for the nature and properties of newly observed states

have been proposed. Perhaps some of the issues about these states might be re-
solved soon, following also the ideas and studies presented at this workshop.
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Abstract. Weapply a coupled channel formalism incorporating quasi-bound quark-model

states to calculate the S11 and D13 scattering amplitudes. The meson-baryon verteces for

πN, ηN, π∆, ρN and KΛ channels are determined in the Cloudy Bag Model. Using the

same values for the model parameters as in the case of the P11 and P33 amplitudes the

elastic as well as most of the inelastic amplitudes are reasonably well reproduced.

1 Introduction

This work is a continuation of a joint project on the description of baryon reso-
nances performed by the Coimbra group (Manuel Fiolhais, Luis Alvarez Ruso,

Pedro Alberto) and the Ljubljana group (Simon Širca and B. G.)

We have developed a general method to incorporate excited baryons repre-
sented as quasi-bound quark-model states into a coupled channel formalism us-

ing the K-matrix approach [1]. In our method, the meson-baryon and the photon-

baryon verteces are therefore determined by the underlying quark model rather
than fitted to the experimental data as is the case in phenomenological approaches.

The method can be applied to meson scattering as well as to electro and weak-
production of mesons.

In the previous work we have investigated the P33 and P11 amplitude dom-

inated by the low lying positive parity resonances ∆(1232), ∆(1600) and N(1440)

[1,2]. We have found a good agreement between the model prediction and exper-

iment for the scattering as well as the electro-production amplitudes. We have

shown that the pion and the σ-meson considerably contribute in particular to the
scattering amplitudes in the energy region just above the two pion threshold and

to the electro-excitation amplitudes in the region of lowQ2 transfer. In the present

work we investigate the extension of the approach to low lying negative parity
resonances. This implies the inclusion of new channels involving the s-wave and

the d-wave pions, the η and the ρmesons, and the K Λ channel.

In the next section we give a short review of the method and in the following
sections we discuss in more detail scattering in the S11 and D13 partial waves.
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2 A short overview of the K-matrix approach

We consider a class of chiral quark models in which mesons couple linearly to the

quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

(1)

where a†lmt(k) is the creation operator for a meson with angular momentum l its
third components m and isospin t (absent in the case of s-waves and isoscalar

mesons). Here Vlmt(k) is a general form of the meson source involving the quark
operators and is model dependent. In the following section we give a few exam-

ples for Vlmt(k) in the Cloudy Bag Model.

We have shown [1] that in such models the elements of the K matrix in the

basis with good total angular momentum J and isospin T take the form:

KJTM ′B ′MB = −πNM ′B ′〈ΨMBJT ||VM ′(k)||Ψ̃B ′〉 , NMB =

√
ωMEB

kMW
, (2)

where ωM and kM are the energy and momentum of the incoming (outgoing)
meson, EB is the baryon energy and W is the invariant energy of the meson-

baryon system. In addition, the channels are specified by the relative angular

momentum of the meson-baryon system and parity. Here |ΨMB〉 is the principal
value state and assumes the form:

|ΨMBJT 〉 = NMB
{

[a†(kM)|Ψ̃B〉]JT +
∑

R
cMBR |ΦR〉

+
∑

M ′B ′

∫
dk χM

′B ′MB(k, kM)

ωk + EB ′(k) −W
[a†(k)|Ψ̃B ′〉]JT

}
. (3)

The first term represents the free meson (π, η, ρ, K, . . . ) and the baryon (N, ∆,

Λ, . . .) and defines the channel, the next term is the sum over bare tree-quark
states ΦR involving different excitations of the quark core, the third term intro-

duces meson clouds around different isobars, E(k) is the energy of the recoiled
baryon. In our approachwe assume the commonly used picture in which the two

pion decay proceeds either through an unstablemeson (ρ-meson, σ-meson, . . . ) or

through a baryon resonance (∆(1232), N∗(1440) . . . ). In such a case the state ΨMB

depends on the invariant mass of the subsystem (either ππ or πN) and the sum

overM ′B ′ in (3) implies also integration over the invariant mass. The state Ψ̃B is
the asymptotic state of the incoming (outgoing) baryon; in the case it corresponds

to an unstable baryon it depends on the invariant mass of the πN subsystem,MB,

and is normalized as 〈Ψ̃B(M ′
B)|Ψ̃B(MB)〉 = δ(M ′

B−MB), whereMB is the invari-

ant massMB of the Nπ subsystem. The meson amplitudes χM
′B ′MB(k, kM) are

proportional to the (half) off-shell matrix elements of the K-matrix

KM ′B ′MB(k, kM) = πNM ′B ′NMB χM
′B ′MB(k, kM) (4)
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and obey a Lippmann-Schwinger type of equation:

χM
′B ′MB(k, kM) = −

∑

R
cMBR VM

′

B ′R(k) + KM ′B ′MB(k, kM)

+
∑

M ′′B ′′

∫
dk ′ KM

′B ′M ′′B ′′

(k, k ′)χM
′′B ′′MB(k ′, kM)

ω ′
k + EB ′′(k ′) −W

, (5)

where

KM ′B ′MB(k, k ′) =
∑

B ′′

fB
′′

BB ′

ṼM ′

B ′′B ′(k ′) ṼMB ′′B(k)

ωk +ω ′
k + EB ′′(k̄) −W

, (6)

fCAB =
√

(2JA + 1)(2JB + 1)(2TA + 1)(2TB + 1)W(1JAJB1; JC, J)W(1TATB1; TC, T) .

The coefficients cMBR obey the equation

(W −M
(0)

R )cMBR = VMBR(kM) +
∑

M ′B ′

∫
dk
χM

′B ′MB(k, kM)VM
′

B ′R(k)

ωk + EB ′(k) −W
. (7)

Here VMBR(k) are the matrix elements of the quark-meson interaction between

the baryon state B and the bare 3-quark state ΦR, andM
(0)

R is the energy of the

bare state. Solving the coupled system of equations (5) and (7) using a separable

approximation [1] for the kernels (6), the resulting amplitudes take the form

χM
′B ′MB(k, kM) = −

∑

R
c̃MBR ṼM ′

B ′R(k) + DM ′B ′MB(k, kM) , (8)

where the first term represents the contribution of various resonances while

DM ′B ′MB(k) originates in the non-resonant background processes. Here

c̃MBR =
ṼMBR

ZR(W)(W −MR)
, (9)

ṼMBR is the dressed matrix element of the quark-meson interaction between the

resonant state and the baryon state in the channel MB, and ZR is the wave-

function normalization. The physical resonant state R is a superposition of the
dressed states built around the bare 3-quark states ΦR ′ . The T matrix is finally

obtained by solving the Heitler’s equation

T = K+ iTK . (10)

In this work we concentrate on the negative parity partial waves S11 and

D13; in both cases the amplitudes are dominated by two rather closely lying res-

onances, either the N(1535) S11 and N(1650) S11, or the N(1520)D13 and N(1700)
D13. We have performed the calculation of the scattering amplitudes in the same

model, the Cloudy Bag Model (CBM), with the same choice of model parameters
as in the case of positive parity resonances. For the bag radius we use R = 0.83 fm

and fπ = 76 MeV for the parameter determining the interaction strength, while

the energies of the bare states are taken as free parameters.
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3 The meson coupling to negative parity states in the CBM

We have used the bag model description for the resonances assuming that one of

the three quarks is excited from the 1s state to the 1pj state with the total angular

momentum j either 1/2 or 3/2. The relevant quark bispinors in the jmj basis are

ψs(r) =
Ns√

4π j0(ωs)

(
−i j0(ωsr/R)

σ · r̂ j1(ωsr/R)

)
χmj

,

ψp1/2
(r) =

Np1/2√
4π j0(ωp1/2

)

(
i j1(ωp1/2

r/R)σ · r̂
j0(ωp1/2

r/R)

)
χmj

,

ψp3/2
(r) =

Np3/2√
6π j1(ωp3/2

)

(
−i j1(ωp3/2

r/R)

σ · r̂ j2(ωp3/2
r/R)

)
∑

msm

χms
r̂mC

3
2
mj

1
2
ms1m

.

Here χm is the spinor for spin 1
2
, R is the bag radius, ωs = 2.043, ωp1/2

= 3.811,

ωp3/2
= 3.204, and

N2s =
ωs

2R2(ωs − 1)
, N2p1/2

=
ωp1/2

2R2(ωp1/2
+ 1)

, N2p3/2
=

9ωp3/2

4R2(ωp3/2
− 2)

.

The wave function of the negative parity states in the j–j coupling scheme are

taken from [5].

For the quark pion couplingwe use the usual CBM form yielding

Vπl=0,t(k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

τt(i)Psp(i) ,

Vπ1mt(k) =
1

2fπ

ωs

(ωs − 1)

1

2π

1√
3

k2√
ωk

j1(kR)

kR

3∑

i=1

τt(i)

×
(
σm(i) + rp1/2

S
[ 1

2
]

1m(i) + rp3/2
S

[ 3
2

]

1m(i)
)
,

Vπ2mt(k) =
1

2fπ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

√
2

2π

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[ 1

2
3
2

]

2m (i) .

Here

Psp =
∑

mj

|smj〉〈p1/2mj| , S
[ 1

2
]

1m =
√
3

∑

mjm
′

j

C
1
2
mj

1
2
m ′

j
1m

|p1/2mj〉〈p1/2m ′
j | ,

Σ
[ 1

2
3
2

]

2m =
∑

msmj

C
1
2
ms

3
2
mj2m

|sms〉〈p3/2mj| , S
[ 3

2
]

1m =
√
15
2

∑

mjm
′

j

C
3
2
mj

3
2
m ′

j
1m

|p3/2mj〉〈p3/2m ′
j | ,

and

rp1/2
=
ωp1/2

(ωs − 1)

ωs(ωp1/2
+ 1)

, rp3/2
=
2ωp3/2

(ωs − 1)

5ωs(ωp3/2
− 2)

.

The ρ meson coupling to quarks is similar to the EM coupling. For the cou-

pling of negative parity states to ρN, the dominant contribution is expected to
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arise from the transverse ρ-mesons with the total J = 1 and the orbital angular

momentum of the ρN system equal to either 0 or 2. In the spirit of the CBMmodel

we assume that the ρmeson couples to the quarks only on the bag surface [6]. As-
suming further a pure vector coupling γµρµ we find (note thatm in (1) and below

refers to the total angular momentum rather than to the orbital one):

V
ρ
l=0mt(k) =

1

2fρ

√
ωs

(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

∑

i

τt(i)

×
(√

8

3

√
ωp1/2

ωp1/2
+ 1

Σ
[ 1

2
]

1m + 3

√
ωp3/2

ωp3/2
− 2

Σ
[ 1

2
3
2

]

1m (i)

)
,

V
ρ
l=2mt(k) =

1

2fρ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

1

2π

1

3

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[ 1

2
3
2

]

1m (i) .

Here

Σ
[ 1

2
]

1m =
∑

msmj

C
1
2
ms

1
2
mj1m

|sms〉〈p1/2mj| , Σ
[ 1

2
3
2

]

1m =
∑

msmj

C
1
2
ms

3
2
mj1m

|sms〉〈p3/2mj| ,

and fρ is the ρ-meson decay constant with the experimental value 208 MeV. For

the coupling of the ρ meson to the nucleon we obtain a similar expression as for
the coupling of the p-wave pions, with fπ replaced by fρ, yielding gπNN/gρNN =

fρ/fπ which is experimentally well fulfilled. The choice of the above form with

fρ ≈ 200MeV is therefore not insensible.

For the s-wave η and K mesonswe assume the SU(3) symmetry yielding

Vη(k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

λ8(i)Psp(i) ,

VKt (k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

(Vt(i) +Ut(i))Psp(i) ,

with t = ±1
2
, and V±t = (λ4 ± iλ5)/

√
2 and U±t = (λ6 ± iλ7)/

√
2.

The peculiar oscillating shape of the CBM form factor has little influence in

the case of the p and d-wave pions but leads to the unphysical behaviour of the
s-wave scattering amplitude since it crosses zero already at W ∼ 1950 MeV. We

have cured this problem by replacing j0(kR) by an exponential tail for k > 1.6/R

in such a way as not to alter the value of the self energy integral.

4 S11 resonances

For the S11 partial wave we have included the πN, π∆, πN(1440), ρN and KΛ

channels and the N(1535) and N(1650) resonances. We have used the quark-
model wave-functions for the negative-parity states using the j–j coupling scheme

[5]:

ΦR = cRA |(1s)2(1p3/2)
1〉 + cRP |(1s)2(1p1/2)

1〉1 + cRP ′ |(1s)2(1p1/2)
1〉2 ,
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where the mixing coefficients cRA , c
R
P , and c

R
P ′ can be expressed in terms of the

mixing angle ϑs between the spin-1/2 and spin-3/2 3-quark configurations. The

mixing is a consequence of the gluon and the meson interaction; since the quark-
gluon interaction is not included in the model, the mixing angle due to gluons is

taken as a free parameter independent ofW. In the energy region of the N(1535)

andN(1650) resonances we obtain the best results using ϑs = −34◦ in agreement

with the phenomenological analysis [7].

Resonance Γtot [MeV] Γi/Γtot

πN ηN π∆ KΛ ρ1N πN(1440)

N(1535) 165 0.29 0.69 0.01 - 0.01 0

PDG 125 – 175 0.35 – 0.55 0.53 0.01 - 0.02 0

N(1650) 188 0.59 0 0.19 0.13 0.04 0.04

N(1650)mod 156 0.72 0 0.08 0.10 0.05 0.04

PDG 150 – 180 0.60 – 0.95 0.02 0.02 0.03 0.01 0.03

Table 1. The total and the partial widths for the N(1535) and the N(1650) resonance at

the K-matrix pole (1545 MeV and 1695 MeV, respectively) using the unmodified and the

modified (mod) quark-model values for the quark-meson couplings. The PDG values are

from [3].
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Fig. 1. The real and the imaginary part of the scattering amplitudes for the S11 wave.

Dotted lines are for the elastic channel with unmodified quark-model verteces, full lines

are those with the modified values, dashed lines correspond to the ηN channel. The data

points for the elastic channel are from the SAID πN → πN partial-wave analysis [4], those

for the inelastic one are taken from [9].

In the vicinity of the lower resonance, just above the ηmeson threshold, the

elastic and inelastic amplitudes are dominated by the s-wave ηN channel. In the
energy region of the upper resonance, additional channels open or become more

important. We have considered the following additional channels: the π∆(1232)

channel with l = 2, the KΛ(1116) channel with l = 0, two channels involving the
ρmeson with l = 0 (ρ1N) and l = 2 (ρ3N), and the πN∗(1440) channel with l = 0.
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Fig. 2. The real and the imaginary part of the inelastic amplitudes for S11 partial wave. The

experimental points are from [8].

Using the quark-model values for the quark-meson coupling as introduced in
the previous section we obtain a good agreement between the model prediction

and the experimental analysis for the lower resonance; for the upper resonance

the agreement is worse. Though the extraction of the experimental data is less
reliable and considerably differs between different authors, it clearly indicates

that the strengths of the π∆ (d-wave) vertex is overestimated in our model; the
same is probably true also for the KΛ (s-wave) channel (Table 1). Multiplying the

strength of the π∆ and the KΛ vertex by 0.6 and 0.8, respectively, yields a better

agreement in particular for the imaginary part of the T matrix (Figs. 1 and 2).

5 D13 resonances

In the D13 partial wave the model yields a consistent picture for the upper res-

onance but fails to reproduce the behaviour of the scattering amplitudes for the
lower resonance. In the latter case, the quark-model values for the d-wave πN

vertex and the s-wave π∆ vertex are of comparable strength and relatively weak.
Dressing the verteces and introducing the mixing of the two (bare) resonances

considerably enhances the verteces. However, the enhancement is stronger in the

case of the π∆ channel and, as a consequence, the resonance disappears in the
elastic channel. A reasonable agreement is obtained if the quark-model strength

of the π∆ is multiplied by 0.3 (Table 2 and Fig. 3).

Resonance Γtot [MeV] Γi/Γtot

πN π∆ (s-wave) π∆ (d-wave) ρN (s-wave)

N(1520) 64 0.56 0.40 0.00 0.03

PDG 100 – 125 0.55 – 0.65 0.15 0.11 0.09

N(1700) 55 0.02 0.10 0.70 0.18

PDG 50 – 150 0.05 – 0.15 0.11 0.79 0.07

Table 2. The total and the partial widths for the N(1520) and the N(1700) resonance at the

K-matrix pole (1515 MeV and 1700 MeV, respectively) using the unmodified quark-model

values for the quark-meson couplings except for the s-wave π∆ coupling which is taken

with only 30 % of the model strength. The PDG values are from [3].
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Fig. 3. The real and the imaginary part of the elastic and the dominant inelastic scattering

amplitudes for the D13 wave. The data points for the elastic channel are from [4]

For the upper resonance (N(1700)), the model predicts the dominance of the

d-wave π∆ channel in agreement with the phenomenological analysis.

6 Concluding remarks

The model reasonably well reproduces the behaviour of the amplitude in the S11
partial wave. The bare quark values for themeson verteces are generally tooweak

but are considerably enhanced through the meson cloud effects and the mixing
of the bare quark resonances. At higher energies around and above N(1650), the

model amplitudes are too small; here the contribution of higher resonances not

included in our model becomes important as suggested by the phenomenological
analysis [9]. The background contribution is in our model generated by the u-

channel processes. We have not considered the Weinberg-Tomazawa term which
would enhances the behaviour of the amplitudes near the pion threshold.

The situation is less favourable for the D13 partial wave. The model fails to

reproduce a rather intriguing behaviour of the s and d-wave π∆ amplitudes in

the energy region of the N(1520) resonance. Here the phenomenological analysis
suggests that they are comparable in strength which is difficult to explain in a

model calculation where at relatively low pion momenta the l = 0-wave coupling
is strongly favoured over the l = 2 one.
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Abstract. The ordinary matter, as we know it, is made mostly of the first family quarks

and leptons, while the theory together with experiments has proven so far that there are

(at least) three families. The explanation of the origin of families is one of the most promis-

ing ways to understand the assumptions of the Standard Model. The Spin-Charge-Family

theory [1,2] does propose the mechanism for the appearance of families which bellow the

energy of unification scale of the three known charges form two decoupled groups of four

families. The lightest of the upper four families, is predicted [3] to have stable members

and to be the candidate to constitute the dark matter. The clustering of quarks from the

fifth family into baryons in the evolution of the universe is discussed.

In this contribution we study how much the electroweak interaction influences the

properties of baryons of the fifth family.

1 Introduction

The Standard Model has no explanation for either the existence of families and

their properties or for the appearance of the scalar field, which in the Standard
Model determines the properties of the electroweak gauge fields. A theory which

would explain the origin of families and the mechanism causing the observed

properties of the quarks, leptons and gauge fields is needed. The Spin-Charge-
Family theory [1,2] is very promising for this purpose.

The Spin-Charge-Family theory points out that there are two kinds of the γa

operators, the Dirac ones and the ones observed by one of the authors (NMB) [1,2]
and called γ̃a, and it proposes that both should appear in an acceptable theory (or

it should be proven that one of these two kinds has no application at the observ-

able energy regime). Since the operators γ̃a and γb anticommute, while the corre-
sponding generators of rotations in d-dimensional space commute ([Sab, S̃cd] =

0), both kinds form equivalent representations with respect to each other. If Dirac
operators are used to describe spin and charges [1,2], then the other kind must

be used to describe families, which obviously form an equivalent representations

with respect to spin and charges.

⋆ Delivered in two talks, by M. Rosina and by N. Mankoč Borštnik
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The properties of the fifth family quarks and leptons, and corresponding

baryons, have been evaluated in ref. [3], concluding that the fifth family neu-

tron is very probably the most stable nucleon. In this paper, the formation of
neutrons and anti-neutrons from the fifth family quarks and anti-quarks in the

cooling plasma has been followed in the expanding universe. Their behaviour in
the colour phase transition up to the present dark matter, as well as the scattering

of the fifth family neutrons among themselves and on the ordinary matter has

been evaluated.

The purpose of this contribution is to show an example how one can use
standard hadronic calculations in order to examine possible higher families and

candidates for dark matter. It is also a demonstration of how much the properties
of clusters depend on the masses of the objects forming the clusters.

We shall use the promising unified Spin-Charge-Family theory [1] which has

been developed by one of the authors (NMB) in the recent decade. The reader can
find details about the theory in the references [1], while Sect. 2 is a short overview,

needed for the purpose of this contribution.

Let us remind the reader about possible prejudices one might have at the

first moment against accepting the particles which interact with the colour in-
teraction, as candidates for dark matter. We discuss these prejudices in order to

demonstrate that superheavy quark clusters are legitimate candidates worth ex-
ploring, provided they are stable.

1. Superheavy quarks are too short-lived. This is true for the fourth family predicted
by the Spin-Charge-Family theory, or any other proposal if the mixing matrix

elements to the lower mass families are not negligible. However, the Spin-

Charge-Family theory [1,4] predicts eight families, with the upper four fami-
lies (almost) decoupled from the lower four families. This makes one of the

quarks of the fifth family, actually one of possible baryonic clusters, practi-
cally stable.

2. Either the charged baryon u5u5u5 or the charged baryon d5d5d5 would be the light-

est, depending on whether u5 or d5 is lighter. Charged clusters cannot, of course,
constitute dark matter. Forming the atoms with the first family electrons they

would have far too large scattering amplitude to be consistent with the prop-
erties of darkmatter. However, if one takes into account also the electro-weak

interaction between quarks, then the neutral baryon n5 = u5d5d5 can very

probably be the lightest, provided the u-d mass difference is not too large.
The ref. [3] estimates the allowed differences, here we present the ratio be-

tween the weak and electromagnetic contributions for different fifth family

baryons in more detail (Sect. 3).
3. Strongly interacting particles have far too large cross section to be “dark”. The scat-

tering cross section of any neutral cluster due to any interaction depends
strongly also on the mass of the constituents. The fifth family baryons, in-

teracting with the fifth family ”nuclear force”, have very small cross section

if the masses are large enough. For m5 = 100 TeV, for example, the size of
the cluster is of the order 10−4 fm or less and the geometrical cross section as

small as 10−10 fm2.
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4. Did the fifth family quarks and/or their clusters form and survive after the big bang

and during galaxy formation?We kindly invite the reader to learn about the his-

tory of the fifth family clusters in the expanding universe from the paper [3].
In a hot plasma, when the temperature T is much higher than the mass of the

fifth family members, T >> m5, the fifth family members behave as massless
and are created out of plasma and annihilate back in the thermodynamically

equilibrium in the same way as other fermions and fields, which are massless

or have low enough masses. When due to the expansion of the universe the
temperature lowers bellow the mass of the family members, T < m5, they can

be annihilated while the creation starts to be less and less probable. When the
temperature falls bellow the binding energy of the clusters of the fifth family

quarks they start to form clusters. Once the cluster is formed, it starts to inter-

act with a very small ”fifth family nuclear force” and survives also the colour
phase transition up to now. In [3,5] the scattering of the fifth family neutrons

in the experimental equipment of DAMA [6] and CDMS [7] is evaluated and
discussed.

2 The Spin-Charge-Family theory

In this section a short introduction to the Spin-Charge-Family theory [1] is pre-

sented. Only the essential things are reviewed hoping to make the reader curious

to start thinking about the differences in the hadronic properties of the very heavy
fifth family hadrons as compared to the lowest three families.

The Spin-Charge-Family theory proposes in d = (1 + (d − 1)) dimensions a

very simple starting action for spinors which carry both kinds of the spin gener-

ators (γa and γ̃a operators) and for the corresponding gauge fields. Multidimen-
sional spinors unify the spin and electro-weak-colour charge degrees of freedom.

A spinor couples in d = 1 + 13 to vielbeins and (through two kinds of the spin
generators) to spin connection fields. Appropriate breaking of the starting sym-

metry leads to the left-handed quarks and leptons in d = (1 + 3) dimensions,

which carry the weak charge while the right handed ones carry no weak charge.
The Spin-Charge-Family theory is offering the answers to the questions about the

origin of families of quarks and leptons, about the explicit values of their masses
and mixing matrices, predicting the fourth family to be possibly seen at the LHC

or at somewhat higher energies [4], as well as about the masses of the scalar and

the weak gauge fields, about the dark matter candidates [3], and about breaking
the discrete symmetries.

The simple action in d = (1+13)-dimensional space of the Spin-Charge-Family

theory [1]

S =

∫
ddx E Lf +

∫
ddx E Lg (1)

contains the Lagrange density for two kinds of gauge fields linear in the curvature

Lg = E (αR+ α̃R̃),

R = fα[afβb] (ωabα,β −ωcaαω
c
bβ), R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ), (2)
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and for a spinor, which carries in d = (1 + 13) dimensions two kinds of the spin

represented by the two kinds of the Clifford algebra objects [1]

Sab =
i

4
(γaγb − γbγa), S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a),

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+, {γa, γ̃b}+ = 0, {Sab, S̃cd}− = 0. (3)

The interaction is only between the vielbeins and the two kinds of spin connection

fields

Lf =
1

2
(Eψ̄γap0aψ) + h.c.

p0a = fαap0α, p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα. (4)

This action offers a real possibility to explain the assumptions of the standard
model 1.

The Spin-Charge-Family theory predicts an even number of families, among
which is the fourth family, which might be seen at the LHC [1,4] or at somewhat

higher energies and the fifth family with neutrinos and baryons with masses of

several hundred TeV forming dark matter [4].

The action in Eq. (1) starts with the massless spinor which through two kinds

of spins interacts with the two kinds of the spin connection fields. The Dirac kind
of the Clifford algebra objects (γa) determines, when the group SO(1, 13) is anal-

ysed with respect to the StandardModel groups in d = (1+3) dimensions, the spin
and all charges,manifesting the left handed quarks and leptons carrying theweak

charge and the right handed weak-neutral quarks and leptons. Accordingly, the

Lagrange density Lf manifests after the appropriate breaking of symmetries all
the properties of one family of fermions as assumed by the Standard Model, with

the three kinds of charges coupling fermions to the corresponding three gauge

fields (first term of Eq.(5).

The second kind (γ̃a) of the Clifford algebra objects (defining the equivalent

representations with respect to the Dirac one) determines families. Accordingly,
the spinor Lagrange density, after the spontaneous breaking of the starting sym-

metry (SO(1, 13) into SO(1, 7)×U(1)×SU(3) and further into SO(1, 3)×SU(2)×
SU(2) × U(1) × SU(3)) generates the Standard Model-like Lagrange density for

massless spinors of (four + four) families (defined by 28/2−1 = 8 spinor states

for each member of one family). After the first symmetry breaking the upper four
families decouple from the lower four families (in the Yukawa couplings). In the

final symmetry breaking (leading to SO(1, 3)×U(1)×SU(3)) the upper four fam-
ilies obtain masses through the mass matrix (the second term of Eq.(5). The third

term ("the rest") is unobservable at low energies

Lf = ψ̄γm(pm −
∑

A,i

gAτAiAAim )ψ+
∑

s=7,8

ψ̄γsp0s ψ+ the rest. (5)

1 This is the only theory in the literature to our knowledge, which does not explain the

appearance of families by just postulating their numbers in one or another way, through

the choice of a group, for example, but by offering the mechanism for generating fami-

lies.
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Here τAi (=
∑
a,b cAiab S

ab) determine the hypercharge (A = 1), the weak

(A = 2) and the colour (A = 3) charge: {τAi, τBj}− = iδABfAijkτAk, f1ijk = 0,

f2ijk = εijk, where f3ijk is the SU(3) structure tensor.

The evaluation of masses and mixing matrices of the lower four families [4]
suggests that the fifth family masses should be above a few TeV, while evalua-

tions of the breaks of symmetries from the starting one (Eq. 1) suggests that these
masses should be far bellow 1010 TeV.

We have not yet evaluated a possible fermion number nonconservation in

the dynamical history of the universe either for the first (the lower four) or for the

fifth (the upper four) families. However, the evaluation of the history of the fifth
family baryons up to today’s dark matter does not depend much on the matter

anti-matter asymmetry, as long as the masses are higher than a few 10 TeV. So

our prediction that if DAMA [6] really measures the family neutrons, also other
direct experiments like CDMS [7] should in a few years observe the dark matter

clusters, does not depend on the baryon number nonconservation [3].

Following the history of the fifth family members in the expanding universe
up to today and estimating also the scattering properties of this fifth family on

the ordinary matter, the evaluated masses of the fifth family quarks, under the

assumption that the lowest mass fifth family baryon is the fifth family neutron,
are in the interval

200TeV < m5 < 10
5 TeV. (6)

The fifth family neutrino mass mν5 is estimated to be in the interval between a
few TeV and a few hundred TeV.

3 The superheavy neutron from the fifth family as a candidate
for the dark matter

We want to put limits on u-d quark mass differences so that the neutral baryon
n5 appears as the lightest. First we calculate the dominant properties of a three-

quark cluster [3], its binding energy and size. For this purpose we assume equal

superheavy masses and we realize that in this regime the colour interaction is
coulombic (one gluon exchange dominates at these energies ). For three nonrela-

tivistic particles with attractive coulombic interaction we solve the Hamiltonian

H = 3m +
∑

i

p2i
2m

−
(
∑
i pi)

2

6m
−

∑

i<j

2

3

αs

rij
. (7)

The potential energy of the solution can be conveniently parametrized as

Vs = −
2

3
αsǫ, ǫ = 〈

∑

i<j

1

rij
〉 = 3ηαsm5, (8)

wherem5 is the average mass of quarks in the fifth family. The binding energy is

then (according to the virial theorem)

E =
1

2
Vs = −Ekin = −α2s ηm5. (9)
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The parameter η for a variational solution using Jacobi coordinates and exponen-

tial profiles was calculated in [3]: η = 0.66.

The splitting of baryons in the fifth family is caused by the u-d mass dif-

ference as well as by the potential energy of the electro-weak interaction. In the
studied energy range, the electro-weak interaction has a coulombic form, deter-

mined by the exchange of one photon or one massless weak boson, and can be

treated as a perturbation. Even if we are far above the electroweak phase transi-
tion, it is convenient to work in the basis using Weinberg mixing of γ and Z since

this basis is more familiar to low energy hadron physicists.

We split the electro-weak interaction in five contributions, electric, Z-exchange

Fermi (=vector), Z-exchange Gamow-Teller (=axial), W-exchange Fermi (=vec-
tor), W-exchange Gamow-Teller (=axial)

M =
∑

i

mi + E+
(
VEM + VF

Z + VGT
Z + VF

W + VGT
W

)
. (10)

Separate terms are as follows

VEM = 〈
∑

i<j

QiQj〉 αEMǫ,

VF
Z = 〈

∑

i<j

(
t0i
2

− sin2 ϑWQi)(
t0j

2
− sin2 ϑWQj)〉 αZǫ, V

GT
Z = 〈

∑

i<j

t0i t
0
j

4
σiσj)〉 αZǫ,

VF
W = 〈

∑

i<j

t−i t
+
j + t+i t

−
j

8
〉 αWǫ, VGT

W = 〈
∑

i<j

t−i t
+
j + t+i t

−
j

8
σiσj〉 αWǫ. (11)

Here t = 1
2
τ are isospin operators, t+ = (tx + ty), and σ are Pauli spin matrices.

Separate terms are evaluated in Table 1. Note that the vector contributions (also
the electromagnetic) are the same for N and ∆ baryons while the axial contribu-

tions differ dramatically. The lowest two lines give the sum of these contributions
for the choice of the coupling constants given below. The unnecessary decimal

places are there if you like to check the reproducibility of the results.

In the numerical example we choose the average quark mass m5 = 100 TeV

and the corresponding average momentum of each quark p =
√
2m5 Ekin/3 =

5.1 TeV (see below). At this momentum scale, we read the running coupling con-

stants from Particle Data Group diagram [8] as αs = α3 = 1/13, αW = α2 = 1/32

and α1 = 1/56. The latter gives sin2 ϑW = (1 + 5
3
αW

α1
)−1 = 0.255 ≈ 1/4, αEM =

αW sin2 ϑW = 1/128 and αZ = αW/ cos
2 ϑW = 1/24.

In this example, the binding energy E = −0.39 TeV and the average recipro-

cal distance 〈1/rij〉 = ǫ/3 = ηαsm5 = 5.1TeV = 2.6 · 104fm−1.

Finally, we come to our goal to make limits on u-d mass difference such that

the neutral barion remains the lightest.

1. mu5 −md5 < (0.0273 − 0.0017)ǫ = 0.0256 ǫ prevents udd→ddd.
2. mu5 −md5 > (−0.0273 + 0.0256)ǫ = −0.0017 ǫ prevents udd→uud.

For our value of ǫ = 15.24 TeV this reads

−0.026TeV < mu5 −md5 < 0.39TeV.
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Table 1. Electro-weak contributions to superheavy baryon masses

uuu uud udd ddd

VEM/ǫαEM +4/3 0 −1/3 +1/3

VF
Z/ǫαZ +1/48 −1/48 0 +4/48

VGT
Z (N)/ǫαZ −15/48 −15/48

VGT
Z (∆)/ǫαZ −9/48 +3/48 +3/48 −9/48

VF
W/ǫαW 0 +1/4 +1/4 0

VGT
W (N)/ǫαW −30/48 −30/48

VGT
W (∆)/ǫαW 0 −1/4 −1/4 0

VEW(N)/ǫ −0.0256 −0.0273

VEW(∆)/ǫ +0.0035 +0.0017 −0.0000 −0.0017

This limits are narrow compared to the mass scalem5 = 100 TeV, but they are not

so narrow if the mass generating mechanism is of order of 100 GeV.

4 Conclusion

In this contribution we put light on the hadronic properties of the very heavy

stable fifth family as predicted by the Spin-Charge-Family theory, proposed by one
of the authors [1]. The evaluations presented in Sect. 3 were alreadypartially done

in [3]. However, we try to convince the hadron physicists that if the Spin-Charge-
Family theory is the right way to explain the assumptions of the Standard Model

then the hadron physicists will have a pleasant time to study properties of the

clusters forming dark matter with their knowledge form the lower three families.
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Abstract. Searches for tetraquarks and mesonic molecules in lattice QCD are briefly re-

viewed. In the light quark sector the most serious candidates are the lightest scalar reso-

nances σ, κ, a0 and f0 . In the hidden-charm sector I discuss lattice simulations of X(3872),

Y(4140) and Z+(4430). The most serious challenge in all these lattice studies is the pres-

ence of scattering states in addition to possible tetraquark/molecular states. The topics

covered in this talk are presented in [1], so only a brief outline is given below.

1 Introduction

Some of the observed resonances, i.e. light scalars and some hidden-charm res-

onances, are strong candidates for tetraquarks [qq][q̄q̄] or mesonic molecules

(q̄q)(q̄q). Current lattice methods do not distinguish between both types, so a
common name “tetraquarks” will be often used to denote both types of q̄q̄qq

Fock components below.

In order to extract the information about tetraquark states, lattice QCD sim-
ulations evaluate correlation functions on L3 × T lattice with tetraquark inter-

polators O ∼ q̄q̄qq at the source and the sink Cij(t) = 〈0|Oi(t)O†
j (0)|0〉p=0 =∑

n Z
n
i Z

n∗
j e−En t. If the correlation matrix is calculated for a number of inter-

polators Oi=1,..,N with given quantum numbers, the energies of the few lowest

physical states En and the corresponding couplings Zni ≡ 〈0|Oi|n〉 can be ex-
tracted from the eigenvalues λn(t) = e−En(t−t0) and eigenvectors un(t) of the

generalized eigenvalue problem C(t)un(t) = λn(t, t0)C(t0)u
n(t).

In addition to possible tetraquarks, also the two-meson scattering states

M1M2 unavoidably contribute to the correlation function and this presents the
main obstacle in extracting the information about tetraquarks. The scattering

states M1(k)M2(−k) at total momentum p = 0 have discrete energy levels

EM1M2
≃ EM1

(k) + EM2
(−k) with EM(k) =

√
m2M + k2 and k = 2π

L
n in the

non-interacting approximation when periodic boundary conditions in space are

employed.

The resonance manifests itself on the lattice as a state in addition to the dis-
crete tower of scattering states and it is often above the lowest scattering state (at

E ≃ M1 +M2 for S-wave decay). So the extraction of a few states in addition to
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the ground state may be crucial. Once the physical states are obtained, one needs

to determine whether a certain state corresponds to a one-particle (tetraquark)

or a two-particle (scattering) state. The available methods to distinguish both are
reviewed in [1] and all exploit the approximations employed on the lattice: the

finite spatial or the finite temporal extent of the lattice.

2 Some results

The question whether the light scalar mesons σ and κ have a sizable tetraquark

component has been addressed in simulation [2]. The energy spectrum has been
determined using a number of q̄q̄qq interpolators in a dynamical as well as

quenched simulation. In I = 0 channel, an additional light state has been found

on top of the expected scattering states π(0)π(0) and π(2π
L

)π(−2π
L

). This addi-
tional state may be related to the observed σ with the sizable tetraquark com-

ponent. Similarly, an additional light state on top of K(0)π(0) and K(2π
L

)π(−2π
L

)

scattering states has been found in the I = 1/2 channel; this statemay be related to
the observed κ with the sizable tetraquark component. Other lattice simulations

aimed at the similar question are reviewed in [1].

The simulations [3–5] aimed at determining the nature of hidden-charm reso-

nances X(3872), Y(4140) and Z+(4430), extract only the ground state in the given
JPC channel using an exponential fit C(t) ∝ e−E1t. Then they try to determine

whether the extracted state is a scattering state or a tetraquark/molecular state

using the available criteria.

The c̄ūcu and c̄s̄cs ground states with JPC = 1++ in the quenched simulation

[3] seem to behave as one-particle states. They have been found at 3890 ± 30

MeV (c̄ūcu) and at 4100 ± 50 MeV (c̄s̄cs), which is indeed close to the observed

resonances X(3872) and Y(4140). Note however, that the lowest scattering states
DD∗ and J/ψφ are extremely close and that they should be found in addition to

the one-particle states before the indication for the tetraquarks/molecules can be

fully trusted.

The dynamical simulation [4] studies the DD∗ scattering, which is related

to the resonance X(3872). The attractive interaction between D and D∗ has been
found, with a possible indication for a bound-state formation at smallmπ.

The quenched simulation [5] searched for Z+(4430) in JP = 0−, 1−, 2− chan-
nels using the molecular D1D

∗ interpolators. The most reliable results are ob-

tained for JP = 0−, where the attractive interaction between D1 and D
∗ has been

observed.

The only dynamical simulation that determined several energy levels using

c̄q̄cq and c̄c interpolators in the same variational basis was a pioneering simula-
tion [6]. So far it found some candidates forDD̄ scattering states and for charmo-

nia, but no candidates for tetraquarks yet.

3 Conclusions

Proving a sizable tetraquark or molecular Fock component in a hadronic reso-

nance using lattice QCD simulation is not an easy task. A resonance appears as a
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state in addition to the discrete tower of scattering states. So the extraction of few

states in addition to the ground state is expected to be crucial. Given the resulting

physical eigenstates, one needs to determine whether a certain state corresponds
to a one-particle (tetraquark/molecular) or a two-particle (scattering) state.

There are some indications for an additional state in I = 0, 1/2 light scalar

channels, which might correspond to observed σ and κ with strong tetraquark
components [2]. There have been surprisingly few lattice simulations of very in-

teresting experimentally observed exotic XYZ resonances, and much more work

on the lattice is needed to pin down their structure.
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Abstract. Highlights of experiments devoted to low-lying nucleon resonances at MAMI

and Jefferson Laboratory were reported in this talk. The structure of the nucleon-to-∆ tran-

sition and the electro-excitation and electro-production amplitudes of the P11(1440) Roper

resonance, as well as its neighbors S11(1535), S11(1650), and D13(1520) were discussed.

In this written contribution, only our work on the recent Roper experiment at MAMI is

briefly presented.

The P11(1440) (Roper) resonance [1] is the lowest positive-parity N⋆ state. The
study of its properties remains one of the major theoretical challenges (quark

models and Lattice QCD) as well as one of the cornerstones of nucleon resonance

experimental programmes at MAMI and Jefferson Lab.

The most fruitful way to study the structure of the Roper appears to lead
through measurements of double-polarization observables in pion electro-pro-

duction off protons. This strategy benefits substantially from the experience gai-
ned in the well-studied N → ∆ transition, the showcase of which were given in

the landmark JLab [2] and MAMI [3] experiments In the JLab experiment, mea-

surements in the p(e, e ′p)π0 channel were performed at relatively high momen-
tum transfer ofQ2 = (1.0± 0.2) (GeV/c)2 andW = (1.23± 0.02)GeV, where two

Rosenbluth combinations and 14 structure functions were separated [4].

A similar experiment, but much more restricted in scope, has been designed
for the MAMI/A1 experimental setup, partly motivated by the proposal [5]. In-

strumental constraints at Mainz prevent us from measuring in parallel or anti-

parallel kinematics for the proton and at the same time achieve complete cov-
erage in terms of the proton azimuthal angle. Our measurement was therefore

performed at Q2 = 0.1GeV2 with the invariant mass of W ≈ 1440MeV, and at
a single value of the center-of-mass angle, θcms = 90◦. The proton kinetic energy

in the center of the carbon secondary scatterer was Tcc ≈ 200MeV, which allows

for optimal figures-of-merit of the focal-plane polarimeter. The low value of Q2

is not favourable only because of the kinematics reach of the setup; according to

state-of-the-art calculations in the MAID [6,7] and DMT [8–10] models, the sensi-
tivities of the multipole amplitudes to the Roper couplings appear to be larger at

smaller Q2.
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Data was takenwith a beam current of≈ 10µA impinging on a 5 cm LH2 tar-

get in a beamtime lasting approximately two weeks. We have collected enough

data to allow us to determine the three components of the proton recoil polar-
ization to within a few percent statistical accuracy, i.e. ∆P ′

x ≈ 0.03, ∆Py ≈ 0.03,

and ∆P ′
z ≈ 0.051. The analysis of this data is work in progress. Gain-matching

and time-calibration of the scintillation detectors has been done. Odd-even pa-

rameters for the horizontal drift chambers have been adjusted. Figure 1 shows

preliminary azimuthal distributions in the focal-plane polarimeter.
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Fig. 1. The distributions of events in terms of the azimuthal angle in the focal-plane po-

larimeter (secondary scattering) for two helicity states of the electron beam. Top: helicity

sumN+ +N− . Apart from acceptance corrections and possible false asymmetries, this dis-

tribution should be flat. Bottom: helicity difference N+ − N− . By taking into account the

spin transport properties of the spectrometers, this asymmetry directly maps into proton

polarization components at the target.
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