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Introduction

Remote sensing techniques and Geographic Informa-
tion Systems (GIS) have proven to be useful tools in
environmental research, and particularly in model-
ling supraregional surface developments and land-
cover changes (Kaplan, Avdan 2017; Landuyt et al.
2019; Malekmohammadi, Jahanishakib 2017; Shen

et al. 2019). Open source medium-resolution satel-
lite images from the Landsat and Sentinel missions
are used to monitor and map surface cover modifi-
cations through multispectral analysis (Stratoulias
et al. 2018). These methods are extended by active
sensor radar analysis that allow for surface observa-
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ries, resulting in an increasingly blurred terminology
that makes it difficult to understand the methodolo-
gy and its limitations (David, Thomas 2010; Meier
2017). Landscape archaeology has a rather short hi-
story, and only came into use in the mid-1970s (Da-
vid, Thomas 2010; Fleming 2006). Moreover, it took
until the 1980s and Colin Renfrew’s advance in the
field of cognitive archaeology for landscape archae-
ology to become established in post-processual ap-
proaches (Doneus 2013): the categorical separation
or inclusion of culture and environment (Ingold
2000; Meier 2009). Basically, landscape archaeolo-
gy has now become an umbrella term for spatial pat-
terns in archaeology (Doneus 2013). It aims to un-
derstand how space has been organized and struc-
tured in premodern societies through the emotional
meaning, experience and categorization of land-
scapes (Meier 2009). Landscape archaeology thus
does not simply represent an extension of environ-
mental or settlement archaeology, but in contrast, a
conglomerate with explicitly cultural-scientific me-
thods for the social reconstruction of spatial life
worlds (Meier 2017). The integration of trans-regio-
nal geographic networks and the dissolution of the
local environment enable an objective consideration
of resource distribution, land-use, supraregional com-
munication, mobility and exchange, as well as tran-
scultural adaptation and development processes.

Human ecology and the spatial-temporal scale
of landscapes affordances
Beside a conceptual framework of archaeological cri-
teria to define spatial patterns of human behaviour,
landscapes are considered as being composed of
many characteristics. Michel Baguette et al. (2013)
consider the landscape as the most appropriate spa-
tial scale to define ecological networks in ecosystems.
According to the authors, the extreme difference in
the perception of the term landscape emerges from
the divergence of the concepts of biogeography and
behavioural ecology. Biogeography defines the land-
scape as a clearly categorized spatial organization
with a homogeneous geomorphology and climate.
Behavioural ecology, on the other hand, defines the
landscape as the individual’s perception of the en-
vironment and the spatial extent of his/her activi-
ty range as a function of the lifetime spread of the
organism (Baguette et al. 2013; Gurrutxaga et al.
2010; Kupfer 2012; Schaich et al. 2010). It is obvi-
ous that landscapes can hardly be defined solely
through spatial determination of human-environ-
ment interactions without adding a temporal com-
ponent and an individual dimension of landscape
perception.

tions during cloud-cover or without sunlight (SAR –
Synthetic Aperture Radar) (Cao et al. 2019; Dabrow-
ska-Zielinska et al. 2016; Landuyt et al. 2019; Mlecz-
ko, Mróz 2018). The massive anthropogenic pres-
sure on today’s ecosystems drastically expands the
need for large-scale surface monitoring. This is par-
ticularly visible in the growing social and cultural
vulnerability to extreme weather events, which re-
quires the intensification of large-scale surface moni-
toring to understand the relationship between natu-
ral ecosystem impacts and cultural heritage man-
agement. The integration of landscape connectivity,
the human as vulnerable agent, and increasing eco-
system susceptibility plays a key role in landscape
archaeological research (Kempf 2019b; Lasapona-
ra, Masini 2006; 2011; 2013; Masini, Soldovieri
2017; Morrison 2013). The evaluation of the distri-
bution of archaeological sites and human behaviour
in a specific landscape demands deeper knowledge
of the geographical interconnectivity of the environ-
mental preconditions. Intense land-use and settle-
ment activity in particular severely modified the
earth’s surface in past centuries, building a variety
of cultural landscapes on top of each other. It is a
methodological challenge to evaluate the patterns
and structures behind the distribution of archaeolo-
gical sites in the landscape, in order to rapidly draw
conclusions about landscape permeability, cultural
exploitation, and the human-environment interac-
tion of premodern societies. This contribution aims
to highlight the interface between the monitoring of
surface dynamics, the reconstruction potential of
palaeoenvironments, and the analysis of spatial pat-
terns of archaeological site distribution. The follow-
ing questions are of central importance in this con-
text:

❶ How is our modern understanding and percep-
tion of an archaeological landscape biased by mo-
dern land-use concepts, settlement activities, and
recent structural surface changes? 

❷ How can GIS-based environmental models, remote
sensing applications, and statistical analysis ex-
plain spatial patterns of archaeological site distri-
bution? 

❸ How can these concepts contribute to a compre-
hensive landcover reconstruction? 

Fables of the reconstruction? Landscapes, eco-
systems and affordances
Landscape archaeology is in vogue, and there are in-
creasing discussions about the terminology of land-
scape. This has led to a mixture of concepts and de-
finitions from many scientific fields and subcatego-
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The temporal component is a methodological con-
fusion in landscape archaeology. This is particularly
important in terms of the differentiation of event
and process. Events seem to take place on a short-
term scale with noticeable and mostly severe impacts
on ecological habitats and sociocultural human sys-
tems (Berglund 2003; Büntgen et al. 2011; Toohey
et al. 2016). However, the differentiation between
event and process in archaeology is more deter-
mined by the material consequences than the envi-
ronmental triggers. As a result, short-term events
tend to blur in long-term chronological categoriza-
tion. They are not detectable until their consequen-
ces are not manifested materially, socially and cultu-
rally. Events, processes, and the spatial parameters
of landscape patterns and susceptibilities are inevi-
tably linked, and form the specific dynamic charac-
ter of landscape ecology and archaeology.

Tracing where and when groups and individuals
have settled and reshaped a particular place for a
certain reason is of central importance in archaeolo-
gical research, and especially in cultural heritage
management (van Leusen, Kamermans 2011; Ver-
hagen et al. 2010; Verhagen 2018). The basis for this
is relatively simple: human behaviour is patterned
(Brandt et al. 1992). The resulting structures follow
the conceptual landscape fragmentation of premod-
ern societies, and eventually their interaction with
their environment (Verhagen 2007). This geograph-
ic fragmentation and the patterned human behav-
iour are strongly connected to the concept of so-
called landscape affordances. The neologism affor-
dance, first introduced by James Gibson in the late
1970s, describes the phenomenon of propositions
emanating from objects within a specific environ-
ment (Gibson 1979; Jung 2018; Loveland 1991).
Affordances are not (meta)physical properties, but
rather empirical meanings that are in some way ar-
ranged in space (Jung 2018). Affordances were first
introduced into archaeological discourse by Timothy
Ingold in 1992 (Gillings 2009; Ingold 1992; 2000).
In contrast to defining the components of the envi-
ronment as passive resources, the concept of land-
scape affordances aligns dynamic and processual
feedback with an individual’s behaviour in the mo-
ment of mutual interaction (Gillings 2009). In a
broader sense, these fundamentals are decisive for
the differentiation of landscape and environment,
which Ingold characterizes through objective and
subjective or internal and external observers (Ingold
2000; Meier 2017; Webster 1999). Affordances are
not a universal concept for certain actions of social
groups with material objects or elements in their

environment, but take place at the individual level
of perception of an object in the immediate moment
of its confrontation. According to David Webster
(1999), the relationship between affordances and
landscapes can be divided in two: low-order invari-
ants denote the individual elements of a landscape,
while high-order invariants summarize these ele-
ments and generate potentially available/not avail-
able or usable/not usable surfaces that are offered
to an individual. Furthermore, Mark Gillings (2007)
describes affordances as disposition properties which
can be divided into direct and potential compo-
nents. Nevertheless, both characteristics constantly
coexist.

Although the concept of affordances is much older
than the basic idea of GIS-based multivariate land-
scape reconstructions in archaeological research,
both systems consist of similar components: the se-
lection and categorization of environmental parame-
ters and preferential sites in relation to the personal
interests and actions of individuals in their environ-
ment. Preferences in land-use are not only physical
interrelations between the needs and demands of
people and their surroundings. According to Marcos
Llobera (1996; 2001), changes in affordances reflect
social changes within a group. Individuals in a parti-
cular group share common or similar structures, de-
velop similar practices, and consequently share simi-
lar affordances.

A possible method for the reconstruction of human
patterns in the landscape is the application of mul-
tivariate modelling. In landscape archaeology, multi-
variate modelling is based on the integration of a va-
riety of GIS-based datasets (Groenhuijzen 2019; Ho-
wey 2011; Howey, Brouwer Burg 2017; van Dinter
2013). The inductive approach of multivariate land-
scape models is the recognition of specific location
parameters in the archaeological dataset (Güimil-Fa-
riña, Parcero-Oubiña 2015; Weaverdyck 2019). Di-
gitally obtained integrative accumulative surfaces
allow for the evaluation of environmental parame-
ters without completely excluding human interac-
tions. The diachronic reflection of the archaeological
record of a study area helps to identify patterns and
continuous human impacts on the landscape on large
temporal and spatial scales.

Anthropogenic surface modifications – how
modern is the past?
The French part of the Upper Rhine Valley was cho-
sen as the study site. The area covers about 8300km2

with large-scale geographical feedback and ecosys-
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tem connectivity (Kempf 2019b). In order to eval-
uate the natural conditions of the study area, the
actual environmental conditions and the recent sur-
face changes were modelled on the basis of histori-
cal maps, modern satellite images and various GIS-
attributes and datasets. The whole region was mas-
sively modified by intensive land-use and increas-
ing construction development within the past few
decades. Climatic extreme events and long-term va-
riability have also triggered droughts, flooding, and
surface transformation (Giacona et al. 2018; Glaser
et al. 2010; 2012; Himmelsbach et al. 2015a; 2015b).
The lowlands in particular are prone to increased
temperatures, heat waves, and drought stress (Duch-
ne, Schneider 2005; Muthers et al. 2017).

For prehistoric societies it was periodic events that
especially shaped perceptions and opportunities in
the landscape. This means that the sum of spatial re-
quirements is determined by the vulnerability of the
environment to extreme events and the maximum
benefit that can be assumed with an acceptable risk
of loss. This results in a long-term trend in land-use
which does not define areas of high suitability ac-
cording to qualitative and modern standards, but is
formed by periodic empirical values. Do pre-modern
landscapes largely consist of experiences that are no
longer accessible today? If this is the case, then the
question arises to what extent today’s surfaces are
still parts of the physically existing landscapes of pre-
modern societies, and how much palimpsest is still
present in the landscape? A review of the environ-
mental variability over the last 150 years is enough
to identify the massive interventions in the ecosys-
tem’s balances. Large-scale infrastructure develop-
ment, new urban areas, deforestation and expansion
of arable land, drainage and exploitation of resour-
ces are just a selection of the anthropogenic impacts
on the land surface. The rapid change in landcover
can be tracked by comparing historical maps, mod-
ern satellite images from different years, and more
recent landcover data sets such as Corine Landcover
(CLC). 

Material and methods

A Geographical Information System (GIS) is more
than just a simple software tool for storing and ma-
nipulating spatial data. Much of the actual work that
happens before visualization, spatial analysis and
database management is the acquisition of spatial
data that fits the desired spatio-temporal resolution
of the research framework. The issues that were
raised by the increasing application of GIS in inter-

disciplinary research led to the distinction between
GIS (software tools) and GISc (Geographic Informa-
tion Science), with the latter concerned with the
many conceptual interrelationships between science
and the humanities (Conolly, Lake 2006). Multiva-
riate landscape analyses are based on selected and
hypothetical environmental parameters. The selec-
tion of the parameters is carried out empirically via
the feedback mechanisms of an ecosystem. For exam-
ple, the type and composition of quaternary sedi-
ment stratigraphy in connection with groundwater
height, flood risk and average precipitation rates de-
termine soil formation processes and small-scale soil
mosaics. From the estimation of the numerous (mul-
tivariate) determinants, a potential premodern land-
scape can be deduced (Fig. 1). In reality, however,
this surface is based on modern empirical data and
can only be transferred to prehistoric surface forma-
tions with considerable uncertainties. Nevertheless,
these models allow us to draw conclusions about po-
tential prehistoric land-use concepts, because they
integrate ecosystem connectivity on both the small
and the large scales. A broad variety of spatial and
temporal environmental datasets have been acquir-
ed, manually developed or processed from various
departments, institutions or through open source
online portals. One major difficulty for the current
study was the synchronization of datasets from the
French and German sides of the Upper Rhine Valley,
which have different geographical coordinate sys-
tems, spatio-temporal data resolution, typology, and
particularly data availability and accessibility. The
following descriptions list the respective datasets and
briefly summarize the methods and strategies of the
digital manipulations for the study area.

Environmental conditions
A comparison of a historical map from the 19th cen-
tury with images from two satellite missions (Land-
sat-1, sensing date 9th October 1972; Landsat-OLI8
sensing date 24th September 2018) shows signifi-
cant transformations of the surface cover during the
past 150 years (Fig. 2). Massive deforestation activ-
ity took place that aimed to transform the surface
into arable land or to be suitable for use as con-
struction sites for increased urban and rural devel-
opment. However, in order to understand the distri-
bution of the archaeological sites in the landscape
and consider the potential movement behaviour of
past societies, landscapes need to be differentiated
into their physical parameters such as climate, geo-
logy, and hydrology, and into their artificial and
cultural components based on anthropogenic im-
prints.
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Two surface classifications can be deduced from the
evaluation of landcover changes and land-use: a land-
scape suitability model and a landscape bias model
that evaluates the impact of modern surface trans-
formations. These surfaces include geological units,
soil quality and drainage potential, flooding vulne-
rability, groundwater level, and historical surface
dynamics, such as infrastructure change, settlement
expansion and modifications of the hydrological sys-
tem. Based on these potential maps, archaeological
and modern land-use patterns can be quantitatively
compared and tested for their spatial interrelations.
The environmental factors have been analysed on the
supraregional scale to identify the large-scale con-
nectivity patterns of the Upper Rhine ecosystem.

The geological and pedological data that supports
the analyses of the study site were acquired from the
Bundesanstalt für Geowissenschaften und Rohstoffe
Hannover (BGR). For the French part of the Upper
Rhine Valley, soil maps from the ARAA (Association
pour la Relance Agronomique en Alsace, http://www.
araa-agronomie.org/, last accessed 19th January 2019)

and the API-AGRO (Paris, https://api-agro.eu/, last
accessed 19th April 2019) were integrated in the GIS-
project. The surface-near geological units are mostly
dominated by Quaternary alluvial sedimentation of
the River Rhine and River l’Ill. Soil formation pro-
cesses and drainage potential are strongly linked to
the height of the groundwater level below the sur-
face, late Pleistocene and early Holocene loess co-
ver, periodic flooding events, and sediment reloca-
tions that represent a conglomerate of different cli-
matic and geomorphological components (Hage-
dorn, Boenigk, 2008; Himmelsbach et al. 2015a;
Kempf 2018; 2019a; 2019b; Pfister et al. 2006;
Preusser 2008; Preusser et al. 2016; Rentzel et al.
2009). Slope inclination and terrain roughness play
a minor role in the study area, although the hydro-
logical and geomorphological parameters are subject
to natural transport, displacement and sedimentation
processes, which are controlled by the gradient. 

Two landscape models have been calculated from
the multivariate environmental datasets. The first
samples all information that is supposed to be deci-

Fig. 1. Study area and single components of the multivariate environmental model. The Alsace is situ-
ated west of the River Rhine, stretching towards the Vosges mountains. Geological data (alluvial
deposits) indicate fine-grained material, that lead to clayey-loamy soil conditions with low drainage
potential. A high aquifer (processed and interpolated from 327 groundwater stations) and periodic
flooding events (processed from Sentinel-1 SAR data from January 2018) lead to locally unfavourable
surfaces. Forest coverage, agricultural exploitation, and increasing demand for arable land and infra-
structural developments have had a significant impact on the surface over the past 150 years. The mod-
ern hydrological network is subject to manifold anthropogenic overprints such as canalization and
drainage activities, which reshaped the environment and caused groundwater lowering and erosion.
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sive for the choice of potential human utilization:
adequate drainage potential, aquifer height below
0.5m, non-alluvial geology, very low-flooding vulne-
rability, and non-forested areas. The multivariate mo-
del generates six suitability classes from 5 (= very
high surface suitability, all classes represent excel-
lent surface and subsurface conditions) to 0 (= se-
vere surface unsuitability, all classes represent se-
verely unfavourable surface and subsurface condi-
tions). The suitability model visualizes all environ-
mental conditions that distinguish potential settle-
ment and land-use corridors from areas with un-
suitable surface and subsurface conditions based on
the evaluation of their qualitative location factors.

The second model represents the modern biased
surface conditions in the study area. The dominant
parameters are deforestation, modern hydrological
system, intense modern built-up change, and exten-
sive agricultural utilization. The variables create a
landscape model with five classes from 0 (= no mo-
dern bias) to 4 (= very strong bias).

Quantitative analysis of the archaeological
record
The distribution of archaeological finds in the Alsace
is used for the quantitative evaluation of land-use
spread and bias through modern infrastructural con-
struction activities. The spatial analysis is based on
the consistent archaeological database that is pro-

vided by the Université de Strasbourg. The project
ArkeoGIS is supported by over 170 international in-
stitutions and gathers archaeological data from all
over the world (arkeogis.org) (Bernard 2019). Origi-
nally designed as a local open-source online GIS for
the Upper Rhine Valley, the databases hosted by
ArkeoGIS now include a vast amount of geospatial
data, archaeological sites and environmental maps.
Major advantages arise from the large amount of
data for each respective archaeological period and
continuous updates by Dr Loup Bernard (UMR 7044
ArcHiMedE, Université de Strasbourg). In particular,
the chronological differentiation allows one to per-
form point pattern analyses that distinguish patterns
pertaining to different chronological periods. The
database contains a mixture of structured and un-
structured data sets that require filtering in an infor-
mation system (Gattiglia 2015). The fact that the
database consists of both archaeological excavation
data and archaeological survey data (including scat-
tered and stray finds) poses a particular challenge
for the interpretation of the spatial context of the
data distribution. In particular survey data are cha-
racterized by the specific teleological research foci,
the individual interests of the researcher, technical
standards, and the site-specific conditions of the se-
lected study area (Cowley 2016; van Leusen 1996).

For this research the stable versions of the open
source software QGIS 2.18.6 and QGIS 3.6.0 (Open

Fig. 2. Recent and historical landcover change and land-use in the study area based on various envi-
ronmental datasets and remote sensing applications. Multispectral satellite imagery analysis and veg-
etation indices (NDVI) reveal massive deforestation processes between 1972 and 2018 (a), extensive
crop cultivation (b), and strong built-up change (c). 
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Source Geospatial Foundation Project, http://qgis.os
geo.org) which include GRASS GIS 7.2.0 and GRASS
GIS 7.6.0 (Geographic Resources Analysis Support
System, http://grass.osgeo.org) were used. The envi-
ronmental modelling was supported by spatial sta-
tistical analyses conducted in R (R 3.5.1) and R Stu-
dio (R Studio 1.2.1335).

Point pattern analysis
Enrico Crema et al. (2010.1118) described point pat-
tern analysis (PPA) as a method that “examines the
spatial configuration of point observations across
a study area and, potentially, the underlying pro-
cess behind its information” (see also Bevan, Co-
nolly 2006; Conolly, Lake 2006). The research in the
Upper Rhine Valley relies on an archaeological data-
set that consists of 10 726 sites that were tested for
their clustered behaviour around modern agglom-
erations or along linear structures. In combination
with Kernel Density Estimates (KDE) and Complete
Spatial Randomness tests (CSR), PPA identifies the
statistically significant characteristics of a dispersal
of points/sites. A short explanation of the most im-
portant methods and tests follows.

Intensity analysis
Intensity analysis, also known as density analysis, is
a method that allows one to describe the changing
frequencies of observations in the data (Conolly,
Lake 2006; Herzog, Yépez 2013). One way to pro-
duce intensity estimations is to describe the amount
of observations in a geometrical area – usually a re-
gular grid. The total amount of observations in each
cell can be measured and interpolated from the cells
to the entire study area (Herzog, Yépez 2013). The
most common interpolation method is Kernel den-
sity estimation (KDE), which produces smooth visu-
alizations of the point pattern distributions from the
core areas and their surroundings (Bonnier et al.
2019; Conolly, Lake 2006). A kernel – which can be
visualized as a hill with a particular height, radius,
and shape of slope – is placed over each point, and
all of the kernels are added together to produce a
density map, sometimes called a ‘heat map’. In a GIS,

KDE can be processed using the different radii (band-
widths) through which the density levels were pro-
cessed (Baxter, Beardah 1997; Herzog, Yépez 2013).
The radius, however, depends on the subjective re-
search question and extent of the study area (Bon-
nier et al. 2019; Brigand, Weller 2018; Hughes et
al. 2018).

Complete Spatial Randomness (CSR) and Ripley’s
K-function
Spatial point pattern analysis examines the depen-
dence between points. The difference with typical
point analysis is the inclusion of spatial attributes in
a model. The character of the spatial behaviour of
point patterns is among the first statistical analyses
that are conducted to identify clustering, regular, or
dispersed point distribution patterns (Fig. 3). Typi-
cally, so-called CSR- tests (Complete Spatial Random-
ness) are applied to compare spatial point patterns
to complete spatial random processes (Lucio, Caste-
lucio de Brito 2004).

Oliver Nakoinz and Daniel Knitter (2016) pointed
out that CSR-tests allow not only for the detection
of random distributions but also of regular point
(negative interaction) and clustered point distribu-
tions (positive interaction). Points do not behave
equally at all scales. At smaller scales, they can show
clustered behaviour that gets random or dispersed
at larger scales. If the spatial pattern is not clustered,
it is either random or regularly dispersed. However,
the regular distribution of anthropogenic or ecolo-
gical samples is very rare (Haase 1995). One of the
most useful statistical approaches to test CSR is Rip-
ley’s K-function (Bevan, Conolly 2006; Conolly, Lake
2006) that describes how point patterns are distri-
buted over a certain area (Dixon 2002). Ripley’s K
defines the radius at which clustered behaviour is
established. Broadly speaking, the function counts
the number of points within given distances around
each point and compares the result to the number
of points one would expect within a totally random
point distribution. If the number of empirically ob-
served points within a certain distance is greater
than the number of the simulated random distribu-
tion, the empirical point pattern is clustered at that
scale. If the number is smaller than the simulation,
the distribution is dispersed (Dixon 2002). 

PPA was conducted in the study area to estimate the
spatial behaviour of the archaeological record and
the spatial relationship between the record and the
modern agglomerations (Fig. 4). First, a grid of 10 x
10km was established across the research area and

Fig. 3. Three spatial point patterns: Clustered,
regularly dispersed, and random distributions of
49 points.
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Fig. 4. Point pattern analysis and interpolated density estimates of the site distribution of archaeologi-
cal sites and modern agglomeration centroids. (a–1) total count of archaeological sites in a 10 x10km
grid; (a–2) modern agglomeration centroids in the same grid. The total number of sites was classified
in categories 1–10 (11) with 1 = low number of sites and 10 = high number of sites, and 11 for the out-
lier value of 998 sites (a–3, a–4). These reclassified values were assigned to cells in a raster (b–1, b–2)
and the differences between both data sets were calculated (b–3). Multilevel b-spline interpolations of
these reclassified values (c–1, c–2) and the differences between them were calculated to visualize areas
of congruence (c–3, moderate values) and difference (c–3, extreme negative and positive values).
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Fig. 5. Density estimates (KDE) of (a) the archaeological sites (r = 5000m, n = 10 726) and (b) the mod-
ern agglomeration centroids (r = 10 000m, n = 1913).

the total number of archaeological sites and modern
agglomeration centroids were calculated for each
grid cell. The numbers were reclassified in ranges
from 1 to 10 and one outlier 11 (the area of Stras-
bourg with 998 archaeological sites in the grid cell).
The reclassified values were mapped accordingly
(Fig. 4a). From the reclassification, a raster analysis
was performed that attaches the number of record-
ed sites to every grid cell. The difference between
the archaeological and modern raster indicates the
high spatial interdependencies of the archaeological
sites and the modern agglomerations (low values,
–1, 0, 1, white signature in Fig. 4b-3). Areas that are
significantly different show high negative or high
positive values. From the raster, a multilevel b-spline
interpolation was used to produce a density plot
with smoothed value ranges (Fig. 4c–1,c–2). Finally,
the difference calculation quantifies the spatial rela-
tionship estimate of both datasets in the study area.

Furthermore, a KDE estimation was performed for
both datasets with r=10 000m (Fig. 5b) for the mo-
dern agglomeration centroid dataset and r = 5000m
for the archaeological sites (Fig. 5a). Thresholds have
been calculated to classify the results of the KDE and
enhance their visual intelligibility. Both analyses in-

dicate spatial interdependencies between the data-
sets. However, significant outliers are visible that are
caused by extreme values in the point pattern distri-
bution. 

Results and discussion

In the Alsace, the bias model reveals a very strong
relationship between the spatial distribution of the
archaeological record and the modern residential
and industrial areas (Fig. 6). To refine the model,
the modern agglomeration boundaries were sepa-
rated into small residential districts, local industrial
areas, and rural complexes. The centroid of every
modern built-up complex was calculated (n = 1913)
and analysed according to the methods applied to
the archaeological database. Most of the sites of both
datasets are situated in areas that experienced strong
surface transformation. Figure 6 shows the spatial
relationship between the distribution of modern
residential areas, the archaeological sites, and the
accumulative bias surface in the study area. The bias
surface was calculated from built-up change, defor-
estation, modern arable land-use, and the connec-
tion to the modern hydrological network. Five bias
classes have been deduced from the accumulative
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surfaces, which classify the influence of modern use
from low to high. The distribution of archaeological
sites and modern agglomeration centres modelled
on the bias surface enables the estimation of similar
spatial behaviour. The distribution patterns of mo-
dern agglomerations indicate that a few centres do
not show any biased values. This is because modern
urban development and new construction sites hard-
ly interfere with the historical village centres. The
distribution of archaeological finds is similar to that
of modern agglomerations. Twenty percent of the
archaeological finds show little or no impact from
modern land-use. This may be because the archaeo-
logical database includes medieval and early mod-
ern heritage sites, which are located in the historical
centres outside the bias categories. However, 80%
of the total archaeological record lies in the biased
categories. The datasets have further been analysed
using Ripley’s k-function to test CSR (Fig. 6e,f). The
results reveal significant clustering, and a random
distribution can be excluded. This supports the argu-

ment for a strong spatial relationship between the
two site distributions. 

These estimates indicate intensive location relation-
ships between modern development, geomorpholo-
gy, vegetation cover, land use, and the distribution
of archaeological sites. Due to the similar spatial
behaviour of settlement centres and archaeological
sites, the hypothesis is pursued that modern con-
struction activity is the decisive factor in the per-
ception of archaeological concentration areas. For
this reason, Thiessen/Voronoi polygons were calcu-
lated and analysed for their size and the spatial re-
lationships with the archaeological record. The poly-
gons are not randomly distributed over the area and
their size is strongly linked to the highest modern
built-up density and the most intensive construction
activity (for example, in the agglomerations of Stras-
bourg). Intensively restructured areas represent a
small network of polygons, while rural areas are
characterized by larger polygons. The archaeologi-

Fig. 6. Bias model from built-up change, deforestation, and the modern hydrological network in the
Alsace (a). Bright areas show low bias intensity, dark areas high bias intensity. Modern agglomera-
tions (green) and the archaeological record (red) are modelled to estimate the bias value of each site
(b, c). Both site distributions show clustered spatial behaviour and are not randomly dispersed (e, f).
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Fig. 7. Calculated Thiessen polygons from modern rural and urban agglomeration centroids (a). The size
varies from 0.0007km2 to 35km2 in the study area. Small polygons indicate high population density (high
modern residential area density). The archaeological sites are homogeneously distributed in the poly-
gons with only a few outliers caused by archaeological site concentrations in the area of Strasbourg
(b, c). The polygons show clustered spatial behaviour and only a few polygons reach up to more than
15km2 (d). Most of the sites are situated in small urban and rural agglomerations. There is no signif-
icant correlation between increasing polygon size and increasing number of archaeological sites. 

cal sites are homogeneously distributed in the poly-
gons. Only a few polygons show extreme values (the
agglomerations of Strasbourg). Most of the sites are
situated in small urban and rural agglomerations.
There is no significant correlation between increas-
ing polygon size and an increasing number of ar-
chaeological sites. The observations from the K-func-
tion are supported by the analyses of the spatial pat-
terns of the modern centroid Thiessen/Voronoi poly-
gons in relation to the archaeological record. The
distribution indicates non-regularly dispersed site
distribution (Fig. 7).

Furthermore, the land-use potentials of the region
were analysed to evaluate continuous site occupa-
tion. The multivariate suitability model described
above was used as a basis for the spatial analysis of

both datasets (Fig. 8). Both site distributions show
similar patterns. The modern agglomerations and
the archaeological record are distributed within the
highest classes of the model (Fig. 8b,c). Ninety-two
percent of the modern settlement and built-up cen-
troids are located in the two highest suitability cate-
gories. The site dispersal decreases significantly with-
in the other ranges. A similar signal can be detected
in the archaeological record: 91% of the total archae-
ological finds lie in the highest two categories, with
a sharp decrease in the numbers in the others. An
additional distance matrix was calculated to demon-
strate the strong spatial relationship between archae-
ological sites and modern agglomeration. This re-
veals that the closer to an urban or rural agglome-
ration an area is, the more archaeological sites can
be recorded. The significance is further increased if
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the distance matrix is based on the residential boun-
daries (polygon) instead of the centroids (Fig. 8d,e).

The interrelationships are not only visually and spa-
tially significant, but also statistically. Modern land-
use influences our perception of the distribution of
archaeological finds in the landscape. There are se-
veral reasons for this: first, it is possible that the
study area has experienced continuous utilization
and the archaeological sites are located where con-
tinuous land-use takes place. This would support the
theory of constant settlement and land-use strate-
gies, and ignore dynamic environmental and socio-
cultural behaviour for several thousand years. Such
hypotheses are currently questioned by geologists
and Quaternary sedimentologists that are evaluating
the palaeochannel shifts and riverbed relocations of
the Upper Rhine during the Holocene (Rambeau et
al. 2019). The first results indicate strong displace-
ments of the Rhine course and its tributaries – over

the entire Holocene. According to the authors, large-
ly stable conditions of the fluvial system of the river
Rhine can only be assumed for the post-Roman peri-
od onwards – at least for the investigated parts of
the river course. Local settlement continuity can
only be assumed for the margins of the higher moun-
tain foreland and elevated Mesozoic plateaus in the
floodplain. The floodplain of the Holocene anasto-
mosing river periodically shifted, and erosion and
accumulation processes replaced each other in very
dynamic systems that still seem to be unconsidered
in landscape archaeology.

However, a reasonable question here is whether the
suitability model is biased by modern perceptions of
the landscape. Entire past landscapes cannot be re-
constructed because past cognitive concepts of how
landscapes were formed cannot be perceived by mo-
dern individuals. Premodern landscapes consist of
experiences, traditional values and ideas rather than

Fig. 8. Multivariate landscape suitability model (a) composed of soil quality, geological units, low flood
vulnerability, high drainage potential and low aquifer (no groundwater discharge). Based on the
model, the distribution of modern agglomerations (n = 1913) was analysed. (b) A total of 1161 sites
are located in very high and 607 in high suitability classes. The total archaeological record (n =
10 726) shows 5299 sites in very high and 4485 sites in high suitability classes (c). The distance matrix
between the archaeological record and the modern agglomerations (d, e) demonstrates that most
archaeological sites are located in close proximity to the nearest modern rural or urban agglomera-
tion centroids (d). Modelling the distance between the archaeological record and the boundaries of the
modern residential polygons further increases the significance (e).
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their actual geographical contents (Gramsch 1996).
The landscape palimpsests of a variety of cultural
human-environment interactions have led to a mas-
sive transformation of the earth’s surface, and even-
tually to the outlook of the modern world. All archa-
eological distribution is finally a modern perception
of how we interpret past human behaviour. This is
triggered through modern urban agglomerations and
the pull-factor of continuously inhabited regions. In-
tensive survey activity generates a high archaeolo-
gical density in these areas, while adjacent areas
show a low data volume due to lower survey inten-
sity. Archaeological corridors are created technically
and methodically (Armit et al. 2014; van Leusen
1996; van Leusen, Kamermans 2011). The major
bias factor is the vicinity to modern built-up areas,
and in particular intensive construction activity in
the marginal zones of urban agglomerations, exten-
sive infrastructure and rail tracks. Furthermore, cul-
tural heritage sites in historical centres are important
public pillars that acquire increased cultural percep-
tions. Well-organized monument preservation man-
agement and a high density of excavation compa-
nies increases the capability to undertake archaeo-
logical surveys and prospections what strengthens
public recognition and financial support – in addi-
tion to the benefits of potential scientific publication.

Conclusion

Simple distribution maps of archaeological data are
useless. They produce dehumanized patterns in arti-
ficial space. The strength of GIS in archaeology is its
diversity (Conolly, Lake 2006). The process behind
the application of GIS, or digital modelling in gener-
al, is not meant to stand opposed to the interpreta-

tion of human patterns, but rather to complement
and extend the approaches of a comprehensive and
modern landscape archaeology (Llobera 2012). Just
like in any other science, uncertainties are a funda-
mental property of progress and research develop-
ment, and archaeological data in particular can eas-
ily be confused with absolute data. However, it is
the current state of archaeological research that is
used to model the spatial behaviour of past soci-
eties. The results of the bias and suitability models
of the Alsatian Upper Rhine can be used to identify
continuously used areas of intense human activity.
On the other hand, they can also be used to estimate
the impact of modern landcover change on the (mo-
dern) archaeological distribution, and thus to engage
in methodological source criticism. This paper shows
that there are very significant relationships between
modern anthropogenic surface modifications and the
density of the archaeological record that is perceived
by individuals today. Past societies did not leave
traces in linear patterns. The perception of cultural
heritage is constructed by modern individuals mov-
ing in space. The actual archaeological traces were
constructed by individuals creating space. That dif-
ference can be an additional way to understand past
human-environment interactions.

The statistical analyses of this article strongly benefit
from the discussions with Jan-Eric Schlicht and Oliver
Nakoinz (both Kiel University). I am further very gra-
teful to Jan Kolář and a second reviewer for their
constructive ideas and comments that increased the
structure of the paper.
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