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A B S T R A C T A R T I C L E   I N F O 
Micro-milling is recognized as one of the most important manufacturing tech-
nologies for producing micro-components/products. Amongst various materi-
als, graphite has an important role in conventional micro-electrical discharge 
machining electrodes. This paper is focused on the investigation of the effect of 
micro-milling process parameters on the dimensional accuracy and surface 
quality of ultrafine grain graphite TTK-4. Depth of cut, spindle speed, stepover 
distance and feed rate have been considered as process variables of micro ball-
end milling in experimental design. Moreover, the influence of the workpiece’s 
inclination angle was also investigated. Taguchi’s L9 (34) orthogonal array was 
chosen to design the experiments, whereas grey relational analysis (GRA) was 
utilized for the multi-objective optimization of the micro ball end milling pro-
cess with minimum dimensional deviation and minimum arithmetic mean 
roughness as objective functions. Furthermore, principal component analysis 
(PCA) was used to extract principal components and identify the correspond-
ing weights for performance characteristics. In order to determine the signifi-
cance of micro-milling parameters on overall machining performance, analysis 
of variance (ANOVA) was performed. The result of the study revealed that the 
proposed approach is adequate to address the multi-objective optimization of 
micro-milling parameters. 
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1. Introduction
Micro-milling is extensively used for machining of inclined and free-form surfaces with very high 
precision, e.g., in mold manufacturing, automotive and aerospace industries, optics, biomedical 
industries, etc. Camara et al. [1] characterized the micro-milling process by the size of the cutting-
edge diameter of the tool, which ranges from 1 µm and 1 000 µm. Among various applications of 
micro-milling, the mold making industry is one of the most important due to the rapid and accu-
rate machining of high aspect ratio in the micro-domain [2]. The dimensional accuracy and surface 
roughness of the micro-parts manufactured with this micro-mechanical cutting process plays a 
major role in defining the quality of a die. In complex engineering environments, predicting prod-
uct quality based on performance parameters represents a challenging task [3]. There are some 
problems associated with the micro-milling process primarily induced by excessive cutting forces 
and cutting tool vibrations that can deteriorate the part quality or limit the overall productivity. 



Kramar, Miljuskovic, Cica 
 

76 Advances in Production Engineering & Management 20(1) 2025 
 

These performance characteristics are highly affected by the process parameters such as depth of 
cut, stepover distance, cutting speed, feed rate, workpiece material type, cooling/lubrication con-
ditions, etc. Hence, the selection of optimum control parameters is a very important step to obtain 
desired quality of the machined parts [4, 5]. 

Numerous studies have been carried out to improve different quality performance indices in 
micro-milling and carry out parameter’s optimization. For instances, Ray et al. [6] conducted an 
experimental analysis on Zr-based bulk metallic glass to evaluate the influence of the micro-mill-
ing process parameters, such as feed per tooth, spindle speed and axial depth of cut on average 
line roughness, average area roughness and the dimensional accuracy of the machined micro-
channels. Moreover, desirability function approach was used to determine the cutting parameters 
that optimizes the surface roughness and the average micro-channels width. Wojciechowski and 
Mrozek [7] carried out an analysis of dynamics of micro-ball end milling of hardened steel with 
various tool axis inclination angles. The optimization of the feed per tooth and tool inclination 
with cutting force components and accelerations of vibrations as objective functions were also 
conducted. An adaptive control optimization system to optimize feed rate and spindle speed for 
micro-milling (grooving) operations of AISI H13 tool steel in accordance with the estimation of 
tool wear state was proposed [8]. This study considers surface roughness and dimensional accu-
racy in terms of dimensional and form error as main aspects that define part quality. Vázquez et 
al. [9] utilized a particle swarm optimization (PSO) algorithm to identify optimal levels of micro-
milling process parameters (depth per pass, axial depth of cut, spindle speed and feed) with sur-
face roughness and geometrical and dimensional features of micro-channels fabricated on alu-
minium and titanium alloys as objective functions. Kuram and Ozcelik [10] utilized Taguchi based 
grey relational analysis (GRA) for multi-objective optimization in micro-milling of aluminium ma-
terial Al 7075. The feed per tooth, spindle speed and depth of cut were studied as the process 
parameters, while the considered performance characteristics were surface roughness, cutting 
forces and tool wear. The effects of feed rate, spindle speed and depth of cut on the surface rough-
ness, cutting forces and tool wear in micro-milling of two superalloys, namely, Ti6Al4V and In-
conel 718, were investigated and optimized with Taguchi method [11]. Beruvides et al. [12] opti-
mized the surface quality and machining time in micro-milling of tungsten-copper alloys using the 
non-dominated sorting genetic algorithm (NSGA-II). The desirability function approach has been 
used for optimization of the process parameters (feed, cutting speed and depth of cut) in micro 
milling of titanium alloy Ti-6Al-4V in order to simultaneously optimize surface roughness, tool 
wear and tool vibration [13]. Natarajan et al. [14] also used desirability function approach to ob-
tain maximum surface quality and productivity in micro-end milling of aluminium, considering 
the spindle speed, feed and depth of cut as the machining parameters. The NSGA-II was employed 
to address multi-objective optimization problem for enhancing surface quality and dimension ac-
curacy in micro-milling of thin-walled parts [15]. The surface quality in micro-milling of Al 2011 
aluminium alloy was optimized by Cardoso and Davim [16]. Thepsonthi and Özel [17] has studied 
the use of PSO algorithm to optimize multiple characteristics, i.e. surface quality, tool life and burr 
formation, in micro-milling of Ti-6Al-4V alloy. The considered machining parameters were tool 
path strategy, spindle speed, feed per tooth and depth of cut. In another study [18], same authors 
also used PSO algorithm for optimizing the process parameters in micro-milling of titanium alloy 
Ti-6Al-4V for minimizing surface roughness and top burr width. Aslantas et al. [19] reported the 
use of Taguchi-based GRA in multiple parameters optimization in micro-milling for Ti-6Al-4V ti-
tanium alloy. Three cutting parameters, namely, cutting speed, feed rate and depth of cut were 
optimized for minimal surface roughness and burr formation. Optimization of multiple perfor-
mance characteristics, such as surface quality, tool wear and tool vibration in micro-milling of 
AISI304 stainless steel has been conducted using a hybrid approach combining the Taguchi 
method-based graph theory and matrix approach and utility concept [20]. The spindle speed, 
depth of cut and feed rate were the cutting parameters studied in this paper. Suneesh and Sivapra-
gash [21] identified optimal parameters for micro-milling of magnesium alloy and its alumina 
composites using GRA and techniques for order of preference by similarity to ideal solution. Three 
objectives including cutting forces, surface roughness and tool wear were considered in the opti-
mization model, which are affected by three variables, namely spindle speed, cutting depth and 
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feed per tooth. Miljušković and Cica [22] studied the impact of the micro-milling parameters such 
as depth of cut, stepover, feed and spindle speed to the mean roughness depth on a graphite elec-
trode, followed by the differential evolution algorithm to identify the optimal machining condi-
tions. A model based on Taguchi’s signal-to-noise ratio has been used for optimization of process 
parameters in micro-milling of polycarbonate substrate to obtain minimum surface roughness 
[23]. Krimpenis et al. [24] employed genetic algorithm to find out optimal micro-milling process 
parameters with consideration of surface quality and machining time as objective function. The 
optimal condition of process parameters in micro milling process of hardened tool steel was found 
to minimize cutting forces, surface roughness, vibrations and burr formation and to maximize the 
material removal rate [25]. Sredanovic et al. [26] conducted optimization of machining parame-
ters, including depth of cut and feed per tooth, in micro-milling of the superalloy Inconel 718 with 
surface roughness, cutting forces, burr formation and channel depth deviation as the optimization 
objectives. The slime mold sequence algorithm was suggested to solve the optimal combination 
of process parameters with MRR, machining cost and machining time in the CNC micro-milling 
process as the optimization objectives, while the machining forces, surface roughness, tool defor-
mation and parameter uncertainty were considered as constraints [27]. Guo et al. [28] optimized 
process parameters (spindle speed, feed rate, depth of cut and tool cantilever length) for glow 
discharge polymer micro-milling to achieve lower cutting force and surface roughness. 

Part quality is crucial to enhancing productivity, profitability and sustainability of manufactur-
ing companies in Industry 4.0 [29]. Based on the previously mentioned literature review, the re-
search on optimizing micro-milling parameters in terms of dimensional accuracy and surface 
quality has focused on the conventional metals and alloys and there is limited work available ded-
icated to micro-milling of graphite material in the available literature. As a result of its high ther-
mal and chemical stability, good electrical conductivity and increasing strength with higher tem-
perature, graphite is considered to be still the primary option for electrode materials at meso/mi-
cro scale [30]. Apart from the erosion process, the performance of the micro die-sinking electrical 
discharge machining process is also related to the micro-milling process of the 3D form electrodes 
because any potential errors are copied into a micro mold [31]. Hence, dimensional accuracy and 
machined surface roughness of the 3D micro die sink electrode are very important in order to 
attain extremely strict tolerances of a machined micro-mold. On the other hand, when milling the 
graphite, its inconsistent polycrystal structure undergoes localized fractures instead plastic de-
formation and chip formation. This process forms short fragments resulting in the formation of 
graphite powder, rather than chips. Thus, graphite machining has its unique characteristics dis-
similar from those of metal cutting that can diminish the surface quality and the dimensional ac-
curacy of the machined micro-features. To achieve desired level of quality characteristics, selec-
tion of optimum combination of input process parameters is crucial. However, due to complicated 
cutting process mechanisms linked to physical characteristics of graphite and the presence of 
many process factors, determination of optimal micro-milling parameters accuracy is a challeng-
ing task. 

This study is based on dry micro-milling of ultrafine graphite electrodes through a set of ex-
periments, varying four process parameters such as depth of cut, spindle speed, stepover distance 
and feed rate. The material used was an isostatically pressed ultrafine graphite. Results were ob-
tained by evaluating the dimensional accuracy and arithmetic mean roughness of the part with 
different angles of surface inclination. Taguchi-based GRA has been employed to optimize micro-
milling parameters by simultaneously minimizing dimensional deviation and minimum arithme-
tic mean roughness as most important indicators for high-quality manufacturing. Additionally, in 
the present investigation, principal component analysis was introduced to estimate actual 
weights of performance characteristics under optimization. 

2. Research methodology and methods 
The flowchart of the research approach used in the study is illustrated in Fig. 1. Firstly, the exper-
imental plan was designed to select material, machine tool, cutting tool, micro-milling parameters 
and their levels and performance characteristics. The quality characteristics chosen to evaluate 
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the processes were dimensional accuracy and arithmetic mean roughness, whereas the corre-
sponding micro-milling parameters were depth of cut, spindle speed, stepover distance and feed 
rate. Experiments were performed using the Taguchi L9 orthogonal array. The influence of micro-
milling parameters on performance characteristics was determined using response surface meth-
odology (RSM). Next, grey relational analysis (GRA) coupled with principal component analysis 
(PCA) has been utilized for multi-objective optimization of the machining parameters in micro 
ball end milling of inclined surfaces. GRA was employed to transform multiple performance char-
acteristics into an equivalent single performance criterion, while PCA was applied to establish the 
corresponding weights for each performance characteristic. ANOVA was employed to analyse 
which of the process parameters notably affect the multiple performance characteristics. 
 

 
Fig. 1 Flowchart of the research methodology 

3. Experimentation 
The three-axis milling centre that was used to conduct the experimentation was Sodick MC430L. 
The maximum rotational speed is 40 000 rpm and axis travels are 420 mm, 350 mm and 200 mm 
for X, Y and Z axes, respectively. The feed system is fitted with linear drives and linear encoders 
with an absolute position accuracy of 1.5 µm. A standard heat-shrink fit HSK-E25 tool holder was 
employed in all experiments to minimize errors. The cutter used in the experiments was a carbide 
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ball nose micro end-mill with a 10 µm-thick CVD diamond coating. The milling tool had a diameter 
d = 0.6 mm and neck length l = 6 mm. 
 The workpiece material tested in this study was ultrafine graphite TTK-4 (average particle size 
4 µm) with the following mechanical properties: bulk density 1.78 g/cm3, hardness 72 HSD, elec-
trical resistivity 14 μΩ·m, tensile strength 49 MPa, flexural strength 73 MPa, compressive strength 
135 MPa, Young’s modulus 10.9 MPa, coefficient of thermal expansion 5·10-6 K-1 and thermal con-
ductivity 90 W(m·K)-1. The sample had a rectangular prism shape with dimensions: 27 mm × 27 
mm × 29 mm. To obtain three planes inclined at 15°, 45° and 85° as shown in Fig. 2, a workpiece 
was machined in two steps: roughing and semi-finishing to gain a determined constant depth of 
cut. While machining all inclined surfaces, contour operation from top to bottom in climb milling 
mode was carried out. All experiments were conducted without coolant to avoid contamination 
and air blow in a feed direction was performed throughout the experimental trials to keep the 
cutting zone clean. 
 

      
Fig. 2 The geometry of the test part 

  
 In precision engineering, coordinate measuring machines are typically used to determine the 
quality of dimensional and geometric part parameters [32]. Hence, dimensional accuracy was in-
vestigated by high accuracy 3D coordinate measuring machine Carl Zeiss F25, which is suitable 
for measuring micro-parts with linear measuring tolerance 0.5(μm) + L(mm)/666. The dimen-
sional error of the inclined surface (Δ) was defined as the deviation between the machined and 
designed surface profile  ∆= �∆𝑥𝑥2 + ∆𝑦𝑦2 + ∆𝑧𝑧2. Hence, the dimensional error was specified as 
the difference between the CAD model and the inspected part using 3D coordinate measuring ma-
chine. The dimensional error response is the average value of five measurements taken as points 
per surface. Although the deflection of long micro end-mills has a major impact on the dimensional 
accuracy of the machined part, there are also additionally sources of errors, such as positional 
accuracy and repeatability of the machine tool, spindle thermal expansion, radius tolerance of ball 
nose end-mill, diameter and tool length measuring accuracy, etc.  
 The arithmetic mean roughness Ra was measured by using non-destructive device InfiniteFo-
cus Alicona because typically used stylus type surface roughness tester might damage the surface 
of the brittle graphite. Measurements of the arithmetic mean roughness were undertaken in the 
pick feed direction and the average value of surface finish at three different areas under each set 
of micro-milling conditions was captured as the basis for further analysis. During the measure-
ment process, the cut-off length was selected as 0.8 mm and the sampling length as 2.5 mm. 
 The investigation conducted in the present study used the Taguchi method to design the ex-
periments to reduce the number of experimentations. Moreover, this method is also effective for 
investigating the interactions between the control factors and the responses, as well as to find out 
optimal levels of cutting parameters. Four control factors including depth of cut ap, spindle speed 
n, stepover distance a and feed rate vf were considered as micro-milling parameters, while the 
response factors include dimensional accuracy and arithmetic mean roughness. Each control fac-
tor was divided into three levels according to the recommendations of the tool manufacturer, lit-
erature findings and trial runs. The micro-milling parameters and their levels are shown in Table 
1. Then, the experimental design for four cutting parameters with three levels was arranged by 
Taguchi’s L9 orthogonal array as shown in Table 2. 
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Table 1 Design of experiments 

        Parameter Unit Levels 
Level 1 Level 2 Level 3 

Depth of cut (ap) mm 0.04 0.12 0.20 
Spindle speed (n) rpm 20 000 30 000 40 000 
Stepover (a) mm 0.04 0.08 0.12 
Feed rate (vf) mm/min 1 000 2 000 3 000 

4. Results and discussions 
Table 2 shows the experimental results for dimensional deviation and arithmetic mean roughness. 
The observed values of these results along surfaces with different inclination angles can be used 
as a favourable indicator for determining the shape characteristics of the machined profile during 
micro-milling of ultrafine graphite. With the aim to analyse the effect of micro-machining param-
eters on measured values of the output variables, response surface models were developed. 
Through the backward elimination process, the final models of dimensional accuracy and arith-
metic mean roughness for 15°, 45° and 85° workpiece inclination angles in a form of reduced sec-
ond-order polynomials with regression coefficients are presented in Table 3. Model terms that are 
not significant are not included in the reduced models. However, these models contain subset of 
all possible effects that retain hierarchy for statistical reasons.  
 

Table 2 Experimental results of part dimensional accuracy and arithmetic mean roughness 

No. 
Micro-milling parameters  Experimental data 

ap 
(mm) 

n 
(rpm) 

a 
(mm) 

vf 
(mm/min) 

Δ15° 
(µm) 

Δ45° 
(µm) 

Δ85° 
(µm) 

Ra15° 
(µm) 

Ra45° 
(µm) 

Ra85° 
(µm) 

1 0.04 20 000 0.04 1 000  0.9 2.3 1.9 0.47 0.49 0.55 
2 0.04 30 000 0.08 2 000  2.4 8.0 5.8 0.89 1.25 0.61 
3 0.04 40 000 0.12 3 000  11.9 19.8 12.6 1.77 2.74 0.90 
4 0.12 20 000 0.08 3 000  5.6 20.4 17.7 1.03 1.58 0.81 
5 0.12 30 000 0.12 1 000  5.0 19.3 15.7 1.62 2.89 0.68 
6 0.12 40 000 0.04 2 000  6.4 12.7 13.8 0.47 0.53 0.47 
7 0.20 20 000 0.12 2 000  4.6 18.7 16.6 1.66 3.02 0.77 
8 0.20 30 000 0.04 3 000  0.3 5.2 8.2 0.55 0.64 0.52 
9 0.20 40 000 0.08 1 000  3.7 7.4 3.9 0.79 1.34 0.55 

 
Table 3 Summary of model’s coefficients 

Resp. b0 ap n a vf ap × n n × vf a × vf ap2 a2 
Δ15° 1.094 123.75 1.82·10-4 -184.6 -0.0045   0.074 -496.09 593.75 
Δ45° -10.43 341.67  20.833 -0.0027   0.0679 -1342.45  
Δ85° -26.77 520.63 7.79·10-4   -0.0073   -1182.29  
Ra15⁰ 0.3067   -3.833 7.8·10-5     116.667 
Ra45⁰ 0.071  2.7·10-5 -21.04 5.6·10-4  -1.73·10-8   313.542 
Ra85⁰ 0.586  -3.5·10-6 0.25 -5·10-5   0.00156   

 
Table 4 Evaluation of the models 

Response F-value P-value Hierarchical 
terms 

Influential terms R2 R2adj R2pred S/N 
ratio 

Δ15° 95.46 0.0295 ap n, a, vf, a × vf, ap2, a2 0.9998 0.9983 0.9745 87 
Δ45° 64.43 0.0030 ap a, vf, a × vf, ap2 0.9908 0.9745 0.9457 21.06 
Δ85° 38.38 0.0019 ap, n ap × n, ap2 0.9746 0.9492 0.8146 15.01 
Ra15⁰ 430.83 < 0.0001 - a, vf, a2 0.9961 0.9938 0.9857 48.63 
Ra45⁰ 3517.08 < 0.0001 - n, a, vf, n × vf, a2 0.9998 0.9995 0.9962 141.96 
Ra85⁰ 20.22 0.0065 n a, vf, a × vf 0.9529 0.9057 0.7487 12.06 
 
The statistical significances of the developed quadratic models were evaluated based on the F 

and P-values calculated within analysis of variance (ANOVA), as shown in Table 4. 
The obtained models were regarded statistically significant when the P-values are smaller than 

0.05 (95 % confidence). Moreover, models were also analysed using determination coefficient R2, 
adjusted determination coefficient R2adj, predicted determination coefficient R2pred and S/N ratio. 
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The results show that the developed response surface models provide adequate approximation of 
investigated process under the given experimental domain. 

The 3D surface plots of dimensional accuracy are presented in Fig. 3. The highest values of 
dimensional error were observed at 45° workpiece inclination angle, whereas the best dimen-
sional accuracy is evident at the 15° inclined plane for all considered parameters. Tool deflection 
caused by cutting forces is considered as the main factor that influences machining error [33]. As 
the diameter the of micro ball-end milling tool is extremely small, the stiffness is most sensitive to 
influence by cutting force than any other parameter and consequently bending deformation. The 
cutting forces generated while micro-milling of inclined surface cause tool deflection that leads to 
the form error of part surface. The cutting force components are affected by the workpiece’s in-
clination angle. Axial force decreases and radial force increases in magnitude as the inclination 
angle increases. The change in the workpiece inclination angle has a significant effect on the tool 
deflection as a result of the lower stiffness in the radial as compared to the axial direction which 
is attributed to the lower stiffness. Consequently, better dimensional accuracy can be achieved 
with lower workpiece inclination angle values. The variation of the dimensional accuracy with 
depth of cut and spindle speed indicate that lower values of both parameters lead to smaller di-
mensional errors (Fig 3a). As depth of cut and spindle speed increases, that results increase in the 
MRR, that has a positive correlation with cutting forces. The experimental results prove that the 
dimensional error of the machined surface is considerably influenced by the stepover, as shown 
in Fig. 3b. The results indicate that smaller values of stepover distance will lead to a significant 
increase in the dimensional accuracy for all workpiece inclination angle values. An increase in 
stepover during micro-milling operation leads to an increase in the metal removal volume and 
therefore to an increase of cutting forces. Higher cutting forces cause a larger tool deflection which 
results in higher dimensional errors. Moreover, a similar trend for feed rate was observed as in 
stepover distance, where increasing the values of feed rate results in higher dimensional devia-
tions. The reason being, increased feed rate value leads to large chip sizes and hence the growth 
of the cutting forces in micro-milling operation. Moreover, an increase in the feed rate also results 
in an increase of self-excited vibration (chatter). Subsequently, an increase in cutting forces and 
vibrations results in large values of cutting tool deflections which lead to geometric errors on the 
machined part. 
 

    
Fig. 3 Effect of micro-milling parameters on dimensional accuracy 

 
 Fig. 4 show the 3D surface plots of the arithmetic mean roughness. From this figure, it is seen 
that the highest arithmetic mean roughness was observed for 45° workpiece inclination angle, 
while the best machined surface finish is noted for 85° inclination angle. This was because during 
machining remarkably steep surfaces (almost vertical), the cylindrical segment of the ball end mill 
is mostly in contact with the machined surface causing generation of linear cusps with lower pro-
file height as compared to spherical shaped cusps. As viewed in surface response in Fig. 4a, the 
highest surface quality is obtained with the combination of the highest spindle speed and the low-
est feed rate. Increased spindle speed results in higher tooth passing frequencies and shorter 
plane area/reduction in chip thickness, lowering surface roughness. The increase in feed rate 
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increases the heat generation and vibration due to increase in MRR, leading to higher surface 
roughness. Fig. 4b shows the interaction effect between the stepover and the feed rate on the sur-
face quality. The stepover distance is the most significant factor associated with the arithmetic 
mean roughness. The surface finish significantly improved with decrease in stepover distance. 
This variation is identically changed for all workpiece inclination angle values. This can be at-
tributed to the fact that in the ball end milling process the stepover defines the overall peripheral 
area of the cutting tool which is in contact with the workpieces surface. The increase in stepover 
value increases overlap between cutting paths and it produces higher cusps height of the ma-
chined surface resulted in a deterioration of surface quality. Hence, smaller values of stepover 
distance must be selected to achieve the better arithmetic mean roughness. It is seen that the 
arithmetic mean roughness decreases with the decrease in the feed rate. This phenomenon can 
be explained by the higher cutting forces and the heat generation due to the larger cutting area at 
high feed rate. Besides that, increase in feed rate also increases the chatter resulting in poor sur-
face finish. 
 

    
Fig. 4 Effect of micro-milling parameters on the arithmetic mean roughness 

5. Multi-objective optimization of micro-milling process by Taguchi based 
grey relational analysis 
As depicted in the previous section, dimensional accuracy of part produced by micro-milling op-
eration as well as surface quality varies significantly with the changes in the machining parame-
ters. Presented multi-objective optimization method aimed to obtain the optimum micro-milling 
parameters to minimize both dimensional errors and the arithmetic mean roughness. The perfor-
mance characteristics, i.e. dimensional accuracy and arithmetic mean roughness for 15°, 45° and 
85° workpiece inclination angles, obtained from the experimental results, are firstly converted 
into S/N ratio. The S/N ratios matching to each of the studied single quality characteristics are 
normalized, because larger values of the normalized results indicate better performance. There-
after, the grey relational coefficients were calculated. 
 Frequently, in order to calculate the GRG, the equal weight factors of each performance char-
acteristic were selected for simplicity. However, this approach may not be an appropriate, due to 
fact that the importance of various quality characteristics is different in real engineering prob-
lems. Hence, PCA was employed to determine the appropriate weight of each performance char-
acteristic. The grey relational coefficients of each performance characteristics have been used to 
determine the correlation coefficient matrix and calculate the corresponding eigenvalues. The 
variance contribution for the first principal component characterizing the six performance char-
acteristics is as high as 68.2 %. Accordingly, the squares of corresponding eigenvectors were cho-
sen as the weighting factors of the associated performance characteristic and the coefficients w1, 
w2, w3, w4, w5 and w6 are consequently set as 0.0952, 0.1829, 0.1358, 0.2198, 0.2241 and 0.1423, 
respectively. Finally, the grey relational grades were calculated by multiplying grey relational co-
efficients with their corresponding weight of performance characteristics. 
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Table 5 The calculated grey relation coefficients and grey relational grades for six different machining responses 

No. 
Grey relational coefficient Grey relational 

grade 
Grey 
order Δ15° (µm) Δ45° (µm) Δ85° (µm) Ra15° (µm) Ra45° (µm) Ra85° (µm) 

1 0.6262 1.0000 1.0000 1.0000 1.0000 0.6739 0.9181 1 
2 0.4695 0.4668 0.5000 0.5094 0.4926 0.5547 0.4993 5 
3 0.3333 0.3364 0.3710 0.3333 0.3457 0.3333 0.3418 9 
4 0.3860 0.3333 0.3333 0.4580 0.4371 0.3737 0.3948 6 
5 0.3954 0.3391 0.3457 0.3489 0.3388 0.4679 0.3658 7 
6 0.3755 0.3898 0.3601 1.0000 0.9206 1.0000 0.7244 2 
7 0.4027 0.3424 0.3398 0.3444 0.3333 0.3969 0.3540 8 
8 1.0000 0.5722 0.4328 0.8084 0.7730 0.7626 0.7181 3 
9 0.4228 0.4829 0.6081 0.5608 0.4748 0.6739 0.5367 4 

 
 Table 5 shows the calculated grey relational coefficients and grey relational grades based for 
each experiment using the Taguchi L9 orthogonal array. From Table 5, it has been noted that ex-
periment No. 1 has the highest value of grey relational grade as 0.9180, whereas the lowest value 
was found for experiment No. 3 as 0.3418. 

Furthermore, the means of the weighted grey relational grade of each micro-machining param-
eter have been computed and listed in Table 6 and depicted in Fig. 5. From the analysis of the 
response table and main effect plot for weighted grey relational grade, the optimal level setting of 
micro-machining parameters is as follows ap = 0.04 mm, n = 20 000 min-1, a = 0.04 mm and vf = 1 
000 mm/min. Thus, the optimal combination of micro-milling parameters for minimum dimen-
sional deviation and minimum arithmetic mean roughness under the given experimental design 
was obtained when they are at their minimal level. This optimal process parameters setting that 
optimize the considered multiple objective function corresponds to experiment No. 1 shown in 
Table 2. Nevertheless, the relative significance among the micro-milling process parameters for 
optimized the quality indicators needs to be further analysed and understood to obtain the best 
parametric combination more clearly. Apart from analysis of the means accomplished for the ob-
tained grey relational grade, in Table 6 is also listed the rank of the micro-milling parameter af-
fecting the grey relational grade. The grey relational grade for each control factor is ranked ac-
cording to the difference between its maximum and minimum values. This difference can be also 
defined as the effect contribution of machining parameters. The response table indicates that 
stepover distance has the maximum level difference value of grey relational grade. Hence, this is 
the most influential factor affecting the overall characteristic. The second most significant factor 
is feed rate, followed by the depth of cut and spindle speed that has the least prominent effect on 
the multi-performance characteristic. These values are depicted graphically in Fig. 5. The graph 
indicates that higher levels of depth of cut, spindle speed, stepover distance and feed rate have 
negative effect on the weighted grey relational grade, that is, dimensional inaccuracy and arith-
metic mean roughness increase with increase in value of these micro-milling parameters. 
 An analysis of variance (ANOVA) was conducted to determine the influence of each machining 
parameter on the multi-performance characteristic. Since the degrees of freedom (DOF) for resid-
ual error was zero, the test for significance is not possible. Consequently, ANOVA pooling was per-
formed. Pooling is the process of merging the influence of the insignificant factors with the error 
term to create a new error term that can be tested further. Normally, this occurs because selected 
orthogonal array L9 with four parameters varied through three levels does not provide enough 
data. In general, pooling process start with the factor that has the least influence. In present paper, 
spindle speed was found insignificant (pooled). From the pooled ANOVA table (Table 7), it is ob-
vious that the stepover distance is the most significant factor that contributes towards the overall 
performance characteristic, since it contributes to the highest percentage of variation of 89 %. 
This is followed by feed rate and depth of cut which contribute 6.9 % and 3.7 %, respectively. The 
percentage of error was considerably low at 0.4 %. 
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Table 6 The response table for weighted grey relational grade 

Control parameter 
Grey relational grade Max-min Rank Level 1 Level 2 Level 3 

Depth of cut (ap) 0.5864 0.4950 0.5363 0.0914 3 
Spindle speed (n) 0.5556 0.5277 0.5343 0.0279 4 
Stepover (a) 0.7869 0.4769 0.3539 0.4330 1 
Feed rate (vf) 0.6069 0.5259 0.4849 0.1220 2 
Total mean of the grey relational grade: 0.5393 

 
 

 
Fig. 5 Main effect plot for weighted grey relational grade 

 
Table 7 Results of the pooled ANOVA for grey relational grade 

Source Sum of squares DOF Mean square F-value P-value PC (%) 
ap 0.01257 2 0.00629 9.85 0.0922 3.7 
a 0.29869 2  0.14935 233.97 0.0043 89.0 
vf 0.02311 2 0.01156 18.1 0.0523 6.9 

Residual 0.00128 2 0.00064   0.4 
Total 0.33565 8    100 

5. Conclusion 
In this study, experimental investigation and multi-objective optimization of the dry micro-milling 
process while machining of ultrafine graphite TTK 4 has been carried out. Response surface meth-
odology was used to investigate effects of depth of cut, spindle speed, stepover distance and feed 
rate on dimensional deviation and arithmetic mean roughness along surfaces with three angles of 
inclination: 15°, 45° and 85°, whereas the grey relational analysis coupled with principal compo-
nent analysis was employed to optimize the process parameters. Based on the experimental find-
ings of this study, the following conclusions can be drawn: 

• Workpiece inclination angle was discovered to have a large influence on dimensional devi-
ation and arithmetic mean roughness in micro ball-end milling process. Best dimensional 
accuracy was observed at the smallest angle of inclination that is 15°, followed by 85° and 
45° workpiece inclination angles. On the other hand, minimum arithmetic mean roughness 
was observed for the 85° inclination angle of workpiece, while maximum value of this pa-
rameter was achieved at the inclination angle of 45°. 

• Taguchi based grey relational analysis greatly simplifies the optimization of the multi-re-
sponse problems due to conversion of the multiple performance characteristics into single 
performance measure. Moreover, principal component analysis is a well-suited technique 
for obtaining the corresponding weighting values of each performance characteristics. 

• Optimization procedure revealed that the optimum micro-milling conditions for minimum 
dimensional deviation and minimum arithmetic mean roughness were at a low level of 
depth of cut, spindle speed, stepover distance and feed rate, i.e. ap = 0.04 mm, n = 20 000 
min-1, a = 0.04 mm and vf  = 1 000 mm/min. 
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• The results of ANOVA showed that the stepover distance is the most influential factor 
among the four micro-milling parameters used on the multi-performance characteristics 
contributing by 89 %, while feed rate and depth of cut contribute 6.9 % and 3.7 %, respec-
tively. 

 The analysis and subsequent optimization of micro-milling of ultrafine graphite electrodes 
with high aspect ratio and different angles of surface inclination was performed in this research. 
These results are expected to be valuable for micro-milling of other brittle materials, for example, 
silicon, glass, etc.  In future works, the experimental area can potentially be expanded and more 
response variables such as tool wear, work materials, etc. could be included. Finally, it will be 
interesting to examine machining of more complex surfaces. 
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