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pravilnih stalagmitov
V stacionarnih pogojih rasti stalagmiti zrastejo v ravnotežno 
obliko. Todosežejo, ko se vse točke na površini v določenem 
časovnem intervalu Δt premaknejo za enako vertikalno razdaljo

 , pri čemer je  
hitrost odlaganja sige v , je koncentracija kalcija v 
raztopini, ki kaplja na teme kapnika, ravnotežna koncen-
tracija kalcija glede na kalcit,  pa je delni tlak ogljikovega 
dioksida v jamski atmosferi. Iz teh sestavin je narejen model 
razvoja stalagmita v ravnotežno obliko. V modelu predpostavi-
mo, da voda odteka iz temena stalagmita enakomerno v radial-
ni smeri. Iz ohranitve mase dobimo ravnotežni radij stalagmita 

, pri čemer je  volumen vodnih kapljic 
in  interval kapanja. Numerični model napove vertikalno 
premikanje ravnotežne oblike. Z ustrezno transformacijo koor-
dinat se nazorno izkaže, da so pravilni stalagmiti geometrijsko 
identični. To v članku prikažemo na izbranih primerih nara-
vnih stalagmitov premerov med 5 cm in 20 m. V okviru majnih 
odstopanj so umerjene oblike stalagmitov identične z napovedi 
numeričnega modela.
Ključne besede: stalagmit, morfologija, hitrost rasti, skalna in-
varianca.

1 Karst Processes Research Group, Institute of Experimental Physics, University of Bremen, 28359 Bremen, Germany
2 Karst Research Institute ZRC SAZU, Titov trg 2 SI-6230 Postojna
3 Institute of Geological Sciences, FU Berlin, Malteserstr. 74-100, Building D, 12249 Berlin

Received/Prejeto: 21.5.2008

COBISS: 1.01

ACTA CARSOLOGICA 37/2-3, 175-184, POSTOJNA 2008

Abstract	 UCC  551.435.834
Wolfgang Dreybrodt & Douchko Romanov: Regular stalag-
mites: The theory behind their shape
Under growth conditions constant in time stalagmites grow 
into an equilibrium shape, which is established, when all 
points of its surface are shifting by the same vertical distance 

 during a time inter-
val . Thereby  is the precipitation rate in 

,  is the calcium concentration of the supersatu-
rated solution dripping to the apex of the stalagmite, and  its 
equilibrium concentration with respect to calcite and the  
in the cave atmosphere.
From these ingredients a numerical model of stalagmite 
growth into an equilibrium shape is presented. In this model 
one assumes idealistically that the water dripping to the apex 
flows continuously down the stalagmite, spreading out radially. 
By simple mass balance one finds that the equilibrium radius is 

, where  is the volume of a drop and  

 the drip interval. Furthermore numerical modeling repro-
duces the vertical shifting of the stalagmite’s equilibrium shape. 
Finally an interesting similarity rule is found. If one scales two 
stalagmites of differing  to the same size and chooses their 
growth axes as common axis and their apexes as common ori-
gin, both show identical shapes. In other words regular stalag-
mites are similar geometrically. This similarity rule is verified 
by digitizing the shapes of various natural stalagmites with di-
ameters between 5 cm and 20 m. Within small natural varia-
tions, the rescaled shapes are identical and close to the shape of 
the numerical model.
Keywords: stalagmites, morphology, growth rates, scaling law
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Stalagmites are ubiquitous in many caves. They grow 
in a variety of shapes and sizes. Their diameters range 
from a few centimetres up to several meters. Fig. 1 shows 
a transect of a small regular stalagmite with a diameter 
of 4.5 cm (Soubies et al. 2005). The largest stalagmite in 
the world is reported from Cueva San Martin Infierno 
in Cuba. This giant stalagmite exhibits a height of about 
70 m and 20 m diameter. The photo of this speleothem 
http://www.goodearthgraphics.com/virtcave/largest.htm 
is shown in Fig. 2. Both samples, although extremely 
different in size at a first glance look quite similar. Both 
shapes can be crudely described as almost regular cylin-
ders with a half sphere at their top. Such regular stalag-
mites sometimes are called candle stalagmites.

Franke (1965) was the first who recognized the prin-
ciple of their growth. He proposed the following mecha-
nism assuming growth conditions constant in time. A 
drop of solution, supersaturated with respect to calcite 
falling to the ground spreads out radially when it impinges 
at the surface. Precipitation rates are maximal at the center 
and decrease with distance outwards. This way a thin layer 
of precipitated calcite is created. It has a lenticular shape, 
thick at the center and thinning out at the edges. The next 

layer is build in the same way on the top of the previous 
one and a vertical candle like shaped stalagmite grows up-
wards. After a height of about its diameter its shape on the 

top becomes stable and also the diameter of the stalagmite 
does not change anymore. In other words the growth rates 
in the vertical direction are constant everywhere and the 
shape of the stalagmite is shifted vertically in its growth 
direction. This is depicted in Fig. 3. Franke suggested this 
principle from observation on the growth layers of tran-
sected stalagmites, such ones as shown in Fig. 1. Drey-
brodt (1988,1999) and Romanov et al. (2008a) derived 
this growth principle from three simple generally valid 
assumptions by use of numerical modelling, but also by 
strict mathematical proof. These are:

1) The point of drop impact and the drip interval 
are constant in time. This must be true also for tempera-
ture.

2) Growth by deposition of calcite is directed nor-
mal to the actual surface of the stalagmite.

Introduction

Fig. 1: Transect of a small regular stalagmite (Soubies et al. 2005) 
with a diameter of 4.5 cm. The laminations show growth surfac-
es. The red lines show the distance between various points of two 
distinct growth surfaces. They are all of the same length.

Fig. 2: The world’s largest stalagmite in Cueva San Infierno, 
Cuba. Its height is 70 m, its diameter 20 m.

Wolfgang Dreybrodt & Douchko Romanov
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3) Growth rates W(ℓ) 
decrease monotonically with 
distance ℓ along the actual 
surface and become zero at 
some large but finite distance 
ℓ0.

From these assump-
tions one can derive also a 
similarity rule depicted in 
Fig. 4: Rescaling the shape 
of a regular stalagmite into 
dimensionless coordinates 
x = x/Req  and y = y/Req , 
choosing their growth axes 
as common axis, and their 
apexes as origin x = 0 , y = 0  
gives identical shapes, inde-
pendent of the diameter Req   
of the sample. (Romanov 
et al., 2008a)

In this paper we will 
first discuss the basic fea-
tures of stalagmite growth 
to understand this similarity 
rule. In the second step we 
use rescaling of real regular 
stalagmites from diameters 
in the range of several cen-
timeters up to about 20 m to 
show its validity.

Fig. 3: Principle of stalagmite growth: The green lines depict the growth   perpendicular to a grow-
ing surface during the time span Δt. They decrease with distance ℓ along the growing surface. The 
red curves show the shapes of the stalagmite when it starts to grow from a plane surface. Finally 
an equilibrium shape with radius Req is attained (black curves). The vertical distance between to 
growth surfaces is shown by the red arrows with length W0 . Δt, they are all of equal length. See 
also Fig. 1. The volume between the two utmost layers is composed of rings with radius x, width Δx   
and height W0 . Δt. Their cross section is a parallelogram with sides Δx and W0 . Δt. See text.

Fig. 4:  Schematical representa-
tion of the geometrical similarity 
of stalagmites: A small stalagmite 
with 10 cm diameter is scaled by 
a factor of 1/10. A second one of 
2000 cm diameter is scaled by a 
factor of 1/2000. In the new com-
mon coordinate system they are 
plotted with common growth axis 
(a). Then the red line is shifted 
vertically until it merges with the 
black line (b).

Regular stalagmites: The theory behind their shape
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The most important principle stated already, can be 
formulated as follows: Under constant growth condi-
tions in time the top of a stalagmite attains an equilib-
rium shape, which during further growth is shifted up 
vertically. The part of the stalagmite below is a verti-
cal cylinder with constant equilibrium radius Req. This 
is illustrated in Fig. 3. This principle has been proven 
by Dreybrodt (1988) and Romanov et al. (2008a) as al-
ready mentioned in the introduction. We will not repeat 
this proof here, but we will derive some important con-
sequences from it.

Fig. 3 shows two growth surfaces of a stalagmite 
in equilibrium, which are separated by some distance 
W0 •  Dt (cm/year) is the growth rate at the apex and  
Dt (year) the time distance when the two layers origi-
nated. The total volume V between these two layers is 
composed of circular rings with radius x and width Dx, 
all with equal height W0 •  Dt. Summing over all of them 
yields

 	
(1)

W0 is the growth rate at the apex in cm/year.

Precipitation of calcite from thin films of supersatu-
rated solutions, as they rest on stalagmites has been in-
vestigated theoretically and experimentally by Buhmann 
and Dreybrodt (1985) and Dreybrodt et al. (1996). These 
findings have been verified by measuring precipitation 
rates on stalagmites in relation to the chemical compo-
sition of the drip water (Baker and Smart, 1995, Baker 
et al., 1998, Genty et al. 2001). The precipitation rates R 
are given by

 	
(2)

where a [cm/s]  is the rate constant, c [mol/cm3] is the 
actual calcium concentration in the solution, and ceq its 
equilibrium concentration with respect to calcite and the 
partial pressure  pCO2

 of  CO2 in the cave atmosphere. α 
depends on temperature. Values of α in the range be-
tween 0°C and 30°C are reported by Baker et al. (1998). 
These can be fitted by the relation

 	
(3)

where Tc is the temperature in centigrade (Romanov et al. 
2008b). From this one gets a increase of a factor of ten with 
increasing temperature from 0°C (α = 5.2 · 10-6 cm/s) to 
30°C (α = 5.3 · 10-5 cm/s).

To convert the precipitation rates R (mol/(cm2 s)) 
into a growth rate W in cm/year we consider the volume 
of calcite deposited to 1 cm2 in 1s: This is given by

                                                                                          

   	

(4)

  
M is the molecular weight of CaCO

3
, M = 100 g/mol 

and 
 
the specific weight of calcite. To convert

this into growth of cm per year one has to multiply by the 
number NS of seconds in one year and finds 1mol cm-2s-1 
= 1.168·109 cm/year.

Therefore

cm/year   (5)

Now the volume Vd deposited to the stalagmite in 
1 year (Δt = 1) must be equal to the volume VL of the 
amount of calcite lost during this time from the water, 
which enters with concentration cin at the apex and 
leaves the stalagmite with equilibrium concentration ceq. 

Vdrop is the volume of the drop and τ the drip interval. 

Therefore we find by equating VL= Vd

  	
(7)

This result relates in a simple way the equilibrium 
radius to the kinetic constant a and the drip interval τ. 
Note that the radius does not depend on the initial su-
persaturation (cin-ceq).

 As an example one finds with a = 1.3·10-5 cm/s, 
corresponding to a temperature of 10°C, a drop volume 
Vdrop = 0.1 cm3, and τ = 30 s the equilibrium radius 
Req = 9 cm, a very realistic number. 

This equation also tells us that changes in drip inter-
val τ and in kinetic constant a cause changes of the equi-
librium radius and therefore also changes to the shape 
of the stalagmite. Increase in the drip interval τ or in a 

Basic principles of stalagmite growth
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result in smaller diameters and cone like stalagmites can 
result. On the other hand decreasing τ or a lead to an 
increase of Req and club-like shapes arise. This has been 
shown by numerical simulation first by Dreybrodt (1988, 
1999). Kaufmann (2002) and Kaufmann and Dreybrodt 
(2003) have taken climatic data from ice cores and tried 

to find out, how these were imprinted into the shape of 
stalagmites. They showed that analyzing the shapes of ir-
regularly grown stalagmites could give some additional 
information to the interpretation of climate proxies from 
oxygen and carbon isotopes.

A model of the equilibrium shape and the scaling rule

In our approach we assume that the water supplied to the 
apex spreads out to a water film, which expands radially 
flowing down the stalagmite in laminar flow. This way 
the stalagmite is covered by a water film of thickness δ 
with radial symmetry as shown in Fig. 5.

We now consider an annulus between the points i 
and i +1 at the surface with radial distance Ri and Ri+1 re-

spectively. The distance between these two points along 
the surface is l i+1- l i=Δ l i.

Mass balance requires that the amount of calcite de-
posited to the area of the annulus between points i and 
i+1 must be equal to the loss of CaCO3 in the solution 
when passing over the annulus. 

The mass of calcite lost per second from the solu-
tion covering the surface of the annulus is

   	
(8)

because the total flow Q = Vdrop/τ enters the annulus at Ri 
with concentration ci and leaves it at Ri+1 with concen-
tration ci+1.  Ms must be equal to the mass Mp of calcite 
precipitated per second to the surface Sa =2p ·Δ l i·R i of 
the annulus. Note that MS and Mp in this context are in 
mol/s.

         	
(9)

Equating Mp = Ms one obtains

 	
(10)

From this the deposition rates Wi+1 can be calcu-
lated by subtracting ceq from both sides of  the equation 
and then multiplying both sides by α

	
(11)

Remembering that
 

  eqn. 11 
can be rewritten as

	
(12)

This recursive equation shows growth rates declin-
ing with distance li. Rewriting eqn.11 as

Fig. 5: A water film with thickness δ covers the stalagmite. An an-
nulus of this film between distance ℓi and ℓi+1 is shown. The water 
supply Q flows radially from the apex. At distance ℓi along the 
growth surface the water enters into the annulus with concentra-
tion ci and leaves it at distance ℓi+1 with concentration ci+1. 

Regular stalagmites: The theory behind their shape
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(13)

In the limit of very small Dli = dl we obtain

             
(14)

because l(R) ≥ R.

Integrating eqn. 14 yields

             
(15)

Since the Gauss-function is monotonically deceas-
ing with distance l this must be true also for W(l).

Equation 11, which contains only defined parame-
ters and the somewhat idealistic assumption of continu-
ous flow spreading out radially can be used for numeri-
cal modelling. This has been performed as FLOW-model 
by Romanov et al. (2008). They employed the following 
procedure. The actual surface of the stalagmite at time t 
is approximated by the polygon P1 to P’n where P1 is the 
point of drip impact. The surface at later time t+Δt is 
obtained by drawing vertical lines with lengths W(li)· Δt 
from points i. This way the three basic assumptions on 
stalagmite growth are fulfilled and the new surface is ap-
proximated by the polygon P’1 to P’n as shown in Fig. 6. 

Fig. 6: Consecutive construction of a new growth surface P’1 P’n 
from an actual surface P1 Pn. The distances Pn P’n depend on the 
lengths along the actual surface P1 Pn. They decrease with n. P1’ are 
the points of drip impact (see text). 

Fig. 7: Computer simulation of a stalagmite by the FLOW-model:  
Vdrop=0.1 cm3, τ=30s, α=1.3·10-5 cm/s (T=10ºC). The red lines 
show the initial state of growth until an equilibrium shape is at-
tained (black curves). The growth surfaces are shown every 200 
years in the lower part and every 1000 years in the upper part. 
The vertical lines between the two utmost surfaces are all of equal 
length W0·∆t. ∆t=1000 years

Wolfgang Dreybrodt & Douchko Romanov
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Here we do not give technical details but we repre-
sent the results of the FLOW- model. These are shown 
in Fig.7. It depicts growth layers of a stalagmite grow-
ing on a plane surface. Note that the x and y axes have 
identical scales. Therefore the picture presents the natu-
ral undistorted shape. Clearly the shape of the stalagmite 
changes in its initial stage of growth (black lines) until 
an equilibrium shape is attained (red line) from then on 
this shape is maintained for further growth and the ver-
tical distance between any two equilibrium growth layers 
remains constant on all points of the surface. The verti-
cal red lines, all of equal lengths between the two upper 
surfaces indicate this. A further point to be noted is that 
the equilibrium shape is attained after a growth height 
close to its diameter.

Verification of the scaling rule on natural stalagmites

To prove this by observation one has to select regular 
stalagmites, which show vertical walls about 1 diameter 
below their apex. Two extreme examples are shown in 
Figs. 1 and 2. 

We have selected six transections of stalagmites, 
which are exhibited in the Deutsche Archiv für Sinter-
chronologie (DASC) in the Schillat-cave, located in a 
limestone quarry close to Hessisch-Oldendorf, Germa-

The similarity rule can be obtained from eqn.12. 
By introducing dimensionless coordinates x = x/Req and 
y = y/Req  one finds

             
(16)

This, however, means that any regular stalagmite 
scaled by the factor 1/Req, into this new coordinate sys-
tem must exhibit a unique shape independent on its for-
mer dimensions.

This proves the scaling rule depicted in Fig. 4: Scale 
the stalagmites in both coordinates by the factor 1/Req 
and chose their growth axis as y-coordinate and their 
apex as origin. Then all regular stalagmites have the 
same shape. 

Fig. 9: Two large stalagmites: Column from Kings Palace, Carlsbad Caverns, New Mexico, USA 
and the Bridal Veil, Lost world Caverns, West Virginia, USA.

Regular stalagmites: The theory behind their shape
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Fig. 8: Regular small stalagmites from the Deutsche Archiv for Sinterchronologie (DASC) used to test the similarity 
rule. Regular stalagmites taken from the literature are also shown (see text). a) dasc1, b) dasc2, c) dasc3, d) dasc4, 
e) dasc9, f) Frisia, g) Genty, h) Bard. The black snd white squares at the base of stalagmites are 1 cm x 1 cm.

ny. These stalagmites exhibit diameters between 4 cm to 
8 cm. They are shown in Fig. 8.

Furthermore four stalagmites have been taken 
from the literature: Bard et al. (2002), Fig. 1, Frisia et al. 
(2006), Fig. 2, both with diameters of 10 cm, Genty et al. 
(2006), Fig. 4, with a diameter of 5 cm, and Soubies et 
al. (2005), Fig. 2a with 4.5 cm diameter. These are also 
shown in Fig.8.  We have digitized suitable growth layers 
of the surface of those stalagmites and rescaled them. We 
have also performed a search of regular large stalagmites 

in the Internet and found the world largest regular sta-
lagmite with a diameter of 20 m shown in Fig. 2. Other 
ones have been found on the from Carlsbad Caverns, 
New Mexico, USA, a column with 4 m diameter  (http://
www.fingerlakesbmw.org/visual/az/cccolumn1.jpg) and 
finally from Lost World Caverns, West Virginia, USA, 
the Bridal Veil with 2 m diameter, (http://www.wonder-
fulwv.com/archives/june01/fea1.cfm). Pictures of these 
two stalagmites are shown in Fig. 9.

Wolfgang Dreybrodt & Douchko Romanov
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Fig. 10: Rescaled shapes of three large stalagmites and one small 
stalagmite. See color legend.

Fig. 11: Rescaled shapes of the stalagmites from Fig. 8. See color 
legend.

Fig. 12: Rescaled shapes of all stalagmites compared to the shape 
obtained from the FLOW-model and a modified FLOW-model 
FLOW-M.

To compare the shapes we have rescaled all stalag-
mites to the same radius .

In Fig. 10 the rescaled shapes of the stalagmite from 
Cuba, Column, and the Bridal Veil are shown. Within 
some natural variation all these shapes are almost the 
same. We have also added the smallest stalagmite with 
4.5 cm from the paper of Soubies et al. (2005), (see 
Fig. 1). Its shape fits nicely with those of the large sta-
lagmites. 

Fig.11 compares the shapes of all small stalagmites 
from Fig. 1 and Fig. 8, which also prove the similarity 
rule. Finally, in Fig. 12 we have plotted the complete se-
lection of our samples and compare it to the theoretically 
obtained rescaled shape of the FLOW-model depicted in 
Fig. 7.

Although not perfect the theoretical shape is quite 
close to the natural shapes. 

Discussion and conclusion

We have shown that the shapes of regular stalagmites are 
similar from very small equilibrium diameters of several 
centimetres over three orders of magnitude up to 20 m. 
This is a rather unexpected result because the hydro-
dynamic flow conditions are extremely different. Small 
stalagmites up to diameters of several 10 cm are fed by 
drops with drip intervals of about 10 s for a diameter of 
30 cm and 200 s for a diameter of about 5 cm. To ob-
tain a diameter of 20 m a water supply of 40 cm3/s or 400 
drops/s are necessary. Whenever a drop impinges to the 
surface of a stalagmite splashing will occur and the drop 

or the continuous flow of water will cover the central part 
of the stalagmite’s surface by water film, which acts like 
a reservoir from which outward flow is supplied. In this 
water film due to mixing, when a new drop impinges, a 
constant calcium concentration will be maintained and 
the growth rate   is constant within the radius   where this 
water film covers the stalagmite.

To model the shape of this stalagmite requires 
Wi=W0 for all points i with Ri≤Rc. For Ri>Rc=0.33⋅Req 

the recursive equation 11 is valid.

Regular stalagmites: The theory behind their shape
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The comparison of the equilibrium shapes is shown 
in Fig. 12. The new shape (black fat line) is exactly what 
one obtains by cutting the upper part of the idealised sta-
lagmite (obtained from the FLOW – model). The modi-
fied model FLOW-M comes closer to the real shapes 
although it is not perfect. The FLOW- model exhibits a 
sharper tip.

Concluding we can state that although hydrody-
namics are different for small and large stalagmites, they 
all obey a similarity law, which indicates that the detailed 
growth mechanisms must be very similar. It may be a 
topic of future research to incorporate the hydrodynam-
ics including surface tension of the water flowing away 
from the apex into further more realistic growth models.
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