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In a modern machining system, tool wear monitoring systems are needed to get higher quality 
production. In precision machining processes, especially surface quality of the manufactured part can be 
related to tool wear. This increases industrial interest for in-process tool wear monitoring systems. For the 
modern unmanned manufacturing process, an integrated system composed of sensors, signal processing 
interface and intelligent decision making model are required. In this study, a new method for on-line tool 
wear monitoring is presented under varying cutting conditions. The proposed method uses wear feature 
extraction based on process modeling and parameter estimation. An adaptive estimation model of milling 
tool wear in variable cutting parameters is built based entirely on milling power. The adaptive model 
traces the properties of cutting process by combining process state signal, cutting conditions, power 
model. The tool wear feature is obtained from the estimated parameters of the model and carried on in 
the theoretical and experimental study. Experiment results have proved that changes of the parameters in 
the cutting power model significantly indicate tool wear independently of varying cutting conditions and it 
makes tool wear a recognized process with high precision.
© 2011 Journal of Mechanical Engineering. All rights reserved. 
Keywords: milling power, adaptive estimation model, tool wear, model parameters, information 
fusion

0 INTRODUCTION

Metal-cutting tool wear directly affects 
the precision, efficiency and cost efficiency of 
machining, so the on-line monitoring tool wear 
is becoming increasinhgly important, and has 
become an important research topic of flexible 
manufacturing system engineering. With other 
mechanical processing methods, the milling 
mechanism is more complex, while condition 
diversity, cutting parameters variability, and tool 
breakage and wear is random and complex. Thus, 
the feature extraction of milling tool wear is the 
key in tool wear monitoring research. This can 
effectively resolve the problem directly related 
to the accuracy and reliablity of milling tool wear 
monitoring. Therefore, new monitoring theories 
and technologies have been developed to solve 
the feature extraction of tool wear. In the previous 
literature [1] to [5], the identification method 
regarding the milling tool wear conditions is to 
identify the main purpose of tool wear, which 
reached a stage, and then a different processing 
method is applied according to the different 

phases. But in the automated production, the 
conditions of tool wear can be identified, and 
tool wear value must be also obtained to satisfy 
the machining accuracy through compensating the 
tool radius and optimizing the cutting parameters 
in time. In this study, the research method to obtain 
tool wear value is presented. In the tool wear 
process, tool wear occurs as a process concerned 
with time, which requires the monitoring system 
to identify current tool wear value at any time, so 
as to provide a basis for compensating tool wear.

At present, the methods to obtain cutting 
tool wear include a direct and indirect method. 
The former usually measures the cutting tool wear 
value directly by using the optimal sensor, such 
as CCD pick-up head because touching the tool 
shape cannot be reached in the cutting process 
[6]. However, it is highly difficult to measure its 
value on-line accurately in the cutting process. In 
the latter the wear value by measuring the cutting 
vibration signals [7] or acoustic emission (AE) 
signals [8] is calculated. It remains difficult to 
utilize the techniques in the real cutting process 
as due to the complexity of real-time power 
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source signals, it is not easy to extract the feature 
information of tool wear from complex signals 
in time-domain, frequency-domain.  In addition, 
many past methods were developed to monitor 
tool wear by measuring spindle and feed motor 
power (current) and proved that the tool wear is 
very sensitive to the change of the cutting power 
[9] and [10]. In the cutting process, techniques 
for tool wear monitoring are being used widely 
using the spindle and feed motor power. It does 
not interfere with cutting process by measurement 
equipment and the machine tool was not formed 
by a reworking process. However, generation 
mechanisms of the milling tool wear are more 
complex and in the view of various factors that 
affect tool wear, it is difficult to build the exact 
practical analysis model. Therefore, it is necessary 
to use experimental data to ensure the analysis and 
model. In some general methods, an explicit model 
is built by using Multivariate Linear Regression 
analysis method [11] and [12] or an implicit 
model by using the Neural Network [13]. MLR 
method for monitoring tool wear by measuring 
spindle and feed motor power is to establish a 
mathematical model between milling cutting 
parameters and the classification by fuzzy pattern 
using MLR analysis. Then, tool wear model for 
spindle and feed motor power is established. Tool 
wear value is predicted by tool wear model. Tool 
wear model is adjusted using cutting parameters 
to give it better dynamic, fuzzy and real-time 
characteristics. Therefore, it will be effective to be 
used in the nonlinear predictive control systems. 
The NN method for monitoring tool wear by 
measuring spindle and feed motor power is to 
establish a Neural Network model which contains 
milling cutting parameters and cutting power. 
Then, tool wear network model is trained by using 
several experimental data of tool wear in different 
cutting process. Tool wear value is predicted by 
the Network model. Several problems exist with 
these methods; (1) It is diffcult to establish an 
exact practical analysis model between milling 
cutting parameters and tool wear. (2) The model 
based on spindle and feed motor power is used to 
recognize tool wear and can also cause larger error 
in a different cutting process by using the MLR 
method because tool wear model coefficients 
are fixed, that is, of low-precision and limiting 
applications. (3) The results of prediction are 

usually unstable because it is difficult to overcome 
multicollinearity of variables using the MLR 
method. (4) NN is difficult to give a reasonable 
interpretation of the factors influencing tool wear 
model.   

In flexible manufacturing systems, varying 
cutting conditions are a great challenge to reliable 
wear monitoring. Intelligent monitoring strategies 
currently dominate in research work. Intelligent 
monitoring includes machining processes, 
signal sensing, feature extraction, learning/
recognition, decision making and control. The 
performance of the whole monitoring system is 
heavily dependent upon the effectiveness of the 
feature extraction. The strategies for wear feature 
extraction in developed monitoring systems may 
be summarized in two categories based on the 
techniques for signal processing and analysis. 
A pattern recognition method is employed to 
identify tool wear based on various features. 
The parametric method includes two stages. In 
stage one; an empirical model is developed by 
regression analysis of experimental data. In stage 
two, tool wear is estimated in real-time using the 
empirical model and measurements of the cutting 
state signal and conditions. The advantage of the 
parametric method is that cutting conditions are 
used as a model input, so that wear estimation is 
independent of variation in the cutting condition. 
In actual machining, the empirical model still has 
large errors in the estimated tool wear or errors in 
recognition [14].

An improved strategy is proposed in this 
study for tool wear monitoring to solve such 
problems faced in the nonparametric and the 
parametric methods.

1 TOOL WEAR SENSING BASED ON 
PROCESS MODELLING AND PARAMETER 

ESTIMATION

1.1 Strategy

The improved strategy for reliable 
intelligent tool wear monitoring separates tool 
wear estimation into two steps. In step one, 
wear feature extraction, a process model is 
developed with the cutting power defined as 
a function of cutting conditions. The model is 
then used to estimate wear feature parameters. 
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During machining, tool wear will create an error 
between the measured signal and the model 
output. The model then adjusts its parameters to 
eliminate the error. Therefore, changes in model 
parameters indicate tool wear. The wear feature 
extraction method is independent of variations 
of the cutting conditions. In step two, tool wear 
recognition, variations of the features obtained 
in step one are used to estimate or classify the 
tool wear state. Several empirical models, which 
describe the quantitative relationship between 
the features and actual wear are developed for 
wear estimation. Some innovative models, in 
which the learning and classifying functions are 
performed simultaneously by self-learning, are 
also developed for tool wear classifications [14]. 

1.2 Process Modelling and Parameter 
Estimation Techniques

For processes with specified input and 
output variables, models can be expressed 
mathematically as static and dynamic. 
Static process models usually use nonlinear 
polynomials, while dynamic process models use 
differential equations. For processes with only 
output variables, such as vibrations in machining 
processes, an autoregressive moving averaging 
(ARMA) model is suitable. Time-varying models 
are used for tine-varying processes. A process 
model may be derived from either a theoretical 
analysis or from an empirical formula. The well-
known least squares (LS) method is normally used 
for parameter estimation. With on-line monitoring, 
a recursive LS method should be adopted. The 
primary advantage of the parameter estimation 
method is for multiple fault detection.

1.3 LS Method 

The least square method - a very popular 
technique - is used to compute estimations of 
parameters and to fit data. It is one of the oldest 
techniques of modern statistics as it was first 
published in 1805 by the French mathematician 
Legendre in a now classic memoir. But this method 
is even older because it turned out that, after the 
publication of Legendre’s memoir, Gauss, the 
famous German mathematician, published another 
memoir (in 1809) in which he mentioned that he 

had previously discovered this method and used 
it as early as 1795. A somewhat bitter anteriority 
dispute followed (a little reminiscent of the 
Leibniz-Newton controversy about the invention 
of Calculus), which, however, did not diminish 
the popularity of this technique. Galton used it (in 
1886) in his work on the heritability of size, which 
laid down the foundations of correlation and 
(also gave the name) regression analysis. Both, 
Pearson and Fisher, who did so much in the early 
development of statistics, used and developed it in 
different contexts (factor analysis for Pearson and 
experimental design for Fisher).

Functional fit example: regression. The 
oldest (and still most frequent) use of OLS was 
linear regression, which corresponds to the 
problem of finding a line (or curve) that best fits 
a set of data. In the standard formulation, a set 
of   pairs of observations is used to find a function 
giving the value of the dependent variable from 
the values of an independent variable. With one 
variable and a linear function, the prediction is 
given by the following equation:

	 Y a bX = + . 	 (1)

This equation involves two free parameters 
which specify the intercept (a) and the slope (b) 
of the regression line. The least square method 
defines the estimate of these parameters as the 
values which minimize the sum of the squares 
(hence the name least squares) between the 
measurements and the model (i.e., the predicted 
values). This amounts to minimizing the Eq:

	 ε = −( ) = − +( )∑∑ Y Y Y a bXi i i i
ii



2 2[ ] , 	 (2)

(where ε stands for “error” which is the quantity 
to be minimized). This is achieved using standard 
techniques from calculus, namely the property that 
a quadratic (i.e., with a square) formula reaches 
its minimum value when its derivatives vanish. 
Taking the derivative of ε with respect to a and b 
and setting them to zero gives the following set of 
Eqs. (called the normal equations):

	 ∂
∂

= + − =∑∑ε
a

Na b X Yi i2 2 2 0, 	 (3)

	
∂
∂

= + − =∑∑∑ε
b

b X a X Y Xi i i i2 2 2 02 . 	 (4)
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Solving these two Eqs. gives the least 
square estimates of a and b as:
	 a M bMY X= + , 	 (5)

with MY  and MX denoting the means of X and Y 
and:

	 b
Y M X M

X M
i Y i X

i X

=
−( ) −( )

−( )
∑
∑ 2 . 	 (6)

OLS can be extended to more than one 
independent variable (using matrix algebra) and to 
non-linear functions.

Multiple Regression Least Square Method. 
The term multiple regression originates from a 
multiple number of independent variables (control 
parameters), which means that the dependent 
variable is changed by more than one independent 
variable. The examples of fitting equations are as 
follows:
•	 Two independent variable: Z=aA+bB+c 

(where Z: dependent variable; A, B: 
independent variables;  a, b, c: constants).

•	 Three independent variable: Z=aA+bB+cC+d 
(where Z: dependent variable; A, B, C: 
independent variables;  a, b, c, d: constants).

Let us think about the multiple regression 
with two independent variables to simplify the 
situation. The least square error in multiple 
regression will be:
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1

	 (7)

The first derivatives of ε in terms of a and 
b will be (Eqs. 8 to 10):

	 ∂
∂
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a
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i

n

2 0
1

, 	 (8)

	 ∂
∂

= − + +( )  =
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b
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n

2 0
1

, 	 (9)
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c
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1

. 	 (10)

The Eqs. expended from Eqs. (8) to (10) 
will be:
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Computation of the unknown constants 
using A X X X Y = 



−T T1

 and matrices will be 
(Eq. (14)).

If you have a data set (x1,y1,Z1), (x2,y2,Z2), 
..., (xn,yn,Zn), computations of unknowns (a,b,c)   
are computed using matrices.

2 PARAMETER ESTIMATION METHOD FOR 
TOOL WEAR

In the milling process, the cutting power P 
is of the relation with the cutting speed, the feed 
speed f, the cutting depth ap and the cutting tool 
wear VB. At the same time, the cutting power 
changes with the different conditions such as 
the part material, the tool material and so on. 
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According to the metal-cutting principle, the 
spindle cutting power and the feed power are 
defined as follows [15] and [16]:

	 P a v f as
a a

p
a= 1

2 3 4 , 	 (15)

	 P b v f af
b b

p
b= 1

2 3 4 , 	 (16)

where a1 and b1 are the coefficients determined 
by the cutting tool geometry dimension and 
performance of the material. a2, a3, a4 and b2, b3, 
b4 is the exponent of the cutting parameters.

As Eqs. (15) and (16) show, a 
corresponding power value is output under certain 
cutting conditions and the cutting tool wear states. 
Eqs. (15) and (16) are a static nonlinear. The Eqs. 
can be written in the form as:

	 ln ln ln ln ln ,P a a v a f a as p= + + +1 2 3 4 	 (17)

	 ln ln ln ln ln .P b b v b f b af p= + + +1 2 3 4 	 (18)

If S = lnPs, F = lnPf, then:

	 S a a v a f a ap= + + +1 2 3 4ln ln ln , 	 (19)

	 F b b v b f b ap= + + +1 2 3 4ln ln ln . 	 (20)

Where XT = [1, lnv, lnf, lnap],  
A = [a2, a2, a3, a4]T, B = [b2, b2, b3, b4]T. XT is 
parameter matrix, A and B is coefficient matrix.

A series of milling states in varying cutting 
conditions are measured as follows:

	 Y v f a S Fi i i pi i i= { , , , , }, 	 (21)

Where Yi is corresponding processing 
states under different cutting conditions, Pi is 
spindle cutting power, vi is cutting speed, fi is feed 
speed and api is cutting depth.

For these process states, Eqs. (19) and (20) 
can be written as:

	 S i X i A e i( ) ( ) ( ),= +T 	 (22) 

	 F i X i B e i( ) ( ) ( ),= +T 	 (23)

where e is the model error. 
The parameters estimated by the Least 

Square Method (Eqs. (7) to (14)) are:

	 A a a a a� � � � �= 

1 2 3 4, , , ,

T 	 (24)

	 B b b b b� � � � �= 

1 2 3 4, , , .

T
	 (25)

In real-time tool wear monitoring, the 
parameter estimation is confirmed by the recursive 
least square method according to the model error 
function. 

The wear feature extraction strategy using 
cutting power modeling and parameter estimation 
is shown in Fig. 1. The procedure is summarized 
as follows: 
a)	 Establish a process model which describes 

the relationship between cutting conditions 
and cutting power, i.e. Eqs. (15) and (16). 

b)	 Use sensors to measure the model inputs and 
outputs (e.g. speed and power).

c)	 Estimate the model parameters using the 
Least Square Method. Detect changes in 
the model parameters as tool wear increase. 
These changes are stored as the wear feature 
parameter.

d)	 Recognize tool wear by estimating or 
classifying tool wear based on the wear 
feature [14].

3 THE TIME-VARIANT CHARACTERISTIC 
OF PARAMETERS ON POWER MODEL

Experiments are conducted in a XKA714 
using the strategy described above. The milling 
experimental condition is shown in Table 
1. Cutting experiment is used in a new tool  
(VB = 0.05 mm), respectively, according to the 
first, second and third group of cutting parameters 
in Table 2, consisting of 48 cutting group 
parameters by orthogonal combination. At the 
same time, spindle power and feed power value 
are detected. Input and output data for 48 group 
model are obtained. Eqs. (22) and (23) are used 
to fit the experimental data by the least square 
method and the results are shown in Tables 3 and 
4. A worn tool (VB = 0.25 mm) is used to repeat 
these experiments and the results are shown in 
Tables 5 and 6.  

In the milling tool wear process, 
characteristics with changes on the width of flank 
wear land and the area of wear land are studied. 
The width of the flank wear is used as a measure 
of the degree of tool wear evaluation. The width of 
flank wear land was measured using Tool Makers 
Microscope. 
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From experimental data in Tables 3 to 6 it 
can be seen that in normal cutting circumstances 
(the new cutting tool), the fitting error for 16, 
32 and 48 groups of experimental data is all less 
than 3.5%, and that model parameter estimation 

on three batches of data is very similar. From 
model results of tool wear it follows that the three 
groups of estimated model parameters are very 
similar and model fitting error is less than 6.5. The 
model parameters have a relatively fixed value 

Table 1. Cutting experiment condition

Cutting tool
Material High-speed steel
Type End milling cutter
Diameter [mm] 14-20

Equipment XKA714
Milling method Climb milling

Workspace material Thermal refining 45 steel
Cutting speed [m/min] 8.792~26.376
Feed speed [mm/min] 20~35
Cutting depth [mm] 2~5

Fig. 1. The extraction method of the tool wear feature using the adaptive model parameter estimation
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Table 2. The experimental groups of the cutting parameters (Notes: v [m·min-1], f [mm·r-1], ap [mm])

Level The first group The second group The third group
v F ap v F ap v F ap

1 8.792 3.0 5 9.671 3.0 4 13.19 3.0 4
2 9.671 2.5 4.5 11.43 2.5 3.75 15.38 2.5 3.75
3 11.43 2.0 3.5 13.19 2.0 3 21.96 2.0 3
4 13.19 3.0 3 15.38 3.0 2.75 26.376 3.0 2.75

Table 3. The parameter estimation results of the spindle cutting power model (VB = 0.05 mm)

a1 a 2 a3 a 4
Fitting 

error [%]
The first group data estimation 7.1021 0.1056 0.1734 0.0786 2.46
The first and second group data estimation 7.1471 0.1174 0.1637 0.0777 2.78
First, second and third group data estimation 7.1802 0.1057 0.1745 0.0796 3.12

Table 4. The parameter estimation results of the feed power model (VB = 0.05 mm)

b1 b 2 b3 b 4
Fitting 

error [%]
The first group data estimation 5.1021 0.2056 0.1734 0.0786 2.38
The first and second group data estimation 5.2862 0.2157 0.1839 0.0795 2.62
First, second and third group data estimation 5.1326 0.2305 0.1879 0.0736 3.04

Table 5. The parameter estimation results of the spindle cutting power model (VB = 0.25 mm)

a1 a 2 a3 a 4
Fitting 

error [%]
The first group data estimation 9.1602 0.1752 0.1854 0.0886 3.76
The first and second group data estimation 9.1674 0.1875 0.1837 0.0857 4.75
First, second and third group data estimation 9.1803 0.1887 0.1897 0.0897 6.42

Table 6. The parameter estimation results of the feed power model (VB = 0.25 mm)

b1 b 2 b3 b 4
Fitting 

error [%]
The first group data estimation 6.1328 0.2359 0.1854 0.0778 4.47
The first and second group data estimation 6.2872 0.2212 0.1897 0.0891 5.73
First, second and third group data estimation 6.3352 0.2418 0.1872 0.0932 5.18

Table 7. Selection on cutting speed and feed speed

Cutting parameters Group number
1 2 3 4 5 6 7 8 9

v [m·min-1] 8.792 13.2 17.584 21.98 24.178 26.276 28.574 30.772 32.97
f [mm·r-1] 3 2.75 2.5 2.5 2 2 1.75 1.5 1

corresponding to tool wear, and this has laid a 
good foundation for looking for the adaptive of 
tool wear. Comparing two sets of the experiment, 
it can be seen that worn tool model parameters 

compared with the normal model parameters 
have changed dramatically, so the parameter 
model based on cutting power is the time-varying 
parameter model.
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4 THE FEATURE EXTRACTION OF TOOL 
WEAR  

The experiment of tool wear is designed to 
the varying cutting condition according to round 
trip milling and multi-feed. The cutting depths 
during every feed are 3.5, 2, 1.5 and 1 mm. 9 
groups of cutting parameters shown in Table 7 are 
selected as the cutting speed and feed speed.

The feature extraction method for tool 
wear is to detect the changes ΔA , ΔB  of the 
model estimation parameters which has 
been wear and the new tool, and calculate the 
distance function which indirectly reflects changes 
in the amount of tool wear. Prio to the experiment, 
the model parameters for the new tool were stored 
as the base values. The model parameters were 
then estimated for various worn tools and changes 
in the parameters were obtained by subtracting the 
base values from the estimated parameters. The 

parameter changes were evaluated using the 
Distance function.
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where D1 is the calculation distance of the model 
estimation parameters for spindle cutting power, 
and D2 is the calculation distance of the model 
estimation parameters for feed power. 

Based on the same cutting depth, in 
accordance with the cutting parameters of group 
number in Table 7, the experiment is applied. Eqs. 
(26) and (27) can be used to calculate the distance. 
The relationship between distance and tool wear is 
shown in Figs. 2 and 3. The feature D1, D2 and the 

Fig. 2. The relation between the feature and wear on the spindle cutting power



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)7-8, 568-578

576 Xu, C. ‒ Xu, T. ‒ Zhu, Q. ‒ Zhang, H.

Table 8. The error statistics between the feature D1 and wear on the spindle cutting power [unit/mm]

Cutting depth Group number
1 2 3 4 5 6 7 8 9

3.5 largest absolute error 0.030 0.020 0.020 0.020 0.030 0.025 0.030 0.025 0.026
average error 0.013 0.015 0.012 0.012 0.014 0.016 0.013 0.013 0.012

2.0 largest absolute error 0.023 0.023 0.020 0.025 0.025 0.025 0.030 0.030 0.025
average error 0.013 0.012 0.012 0.012 0.015 0.017 0.016 0.014 0.016

1.5 largest absolute error 0.030 0.023 0.029 0.030 0.029 0.030 0.025 0.030 0.030
average error 0.020 0.019 0.019 0.025 0.026 0.019 0.013 0.023 0.021

1.0 largest absolute error 0.020 0.028 0.028 0.030 0.030 0.029 0.030 0.030 0.030
average error 0.017 0.014 0.017 0.021 0.023 0.020 0.025 0.022 0.027

Table 9. The error statistics between the feature D2 and wear on the feed cutting power [unit/mm]

Cutting depth Group number
1 2 3 4 5 6 7 8 9

3.5 largest absolute error 0.020 0.021 0.20 0.025 0.025 0.018 0.020 0.020 0.020
average error 0.012 0.012 0.012 0.013 0.013 0.014 0.013 0.012 0.015

2.0 largest absolute error 0.020 0.019 0.020 0.022 0.025 0.025 0.025 0.020 0.025
average error  0.012 0.011 0.012 0.012 0.015 0.016 0.015 0.012 0.015

1.5 largest absolute error 0.025 0.023 0.019 0.025 0.025 0.025 0.025 0.024 0.025
average error  0.014 0.012 0.015 0.019 0.019 0.014 0.012 0.019 0.018

1.0 largest absolute error 0.020 0.023 0.023 0.023 0.024 0.023 0.023 0.022 0.020
average error  0.019 0.014 0.015 0.018 0.018 0.017 0.019 0.018 0.017

Table 10. The error statistics between the distance and the tool wear [unit/mm]

Cutting depth Group number
1 2 3 4 5 6 7 8 9

3.5 largest absolute error 0.020 0.020 0.020 0.020 0.025 0.019 0.022 0.020 0.020
average error 0.011 0.010 0.012 0.010 0.013 0.012 0.012 0.011 0.013

2.0 largest absolute error 0.020 0.019 0.019 0.020 0.025 0.025 0.025 0.024 0.025
average error 0.012 0.011 0.011 0.010 0.013 0.014 0.015 0.012 0.015

1.5 largest absolute error 0.029 0.023 0.025 0.027 0.027 0.027 0.03 0.024 0.029
average error 0.013 0.013 0.014 0.018 0.018 0.014 0.012 0.017 0.017

1.0 largest absolute error 0.018 0.025 0.023 0.030 0.027 0.024 0.029 0.025 0.027
average error 0.011 0.011 0.012 0.013 0.014 0.010 0.014 0.014 0.015

error statistics of tool wear are shown in Tables 8 
and 9.

From Table 8, feature and statistical error 
of tool wear for the spindle cutting power can be 
seen: in the whole tracking tool wear, the largest 
absolute error is below 0.03 mm, and the average 
error is equal to 0.017 mm; from Table 9, feature  
and statistical error of tool wear on the feed 
cutting power can be seen: in the whole tracking 
tool wear, the largest absolute error is below 0.025 
mm, and the average error is equal to 0.015 mm. It 
can be seen: (1) identification method for adaptive 

tool wear model parameter estimation is superior 
to fusion pattern recognition of a fixed model 
coefficient, reduction in error and improved 
accuracy of recognition; (2) distance function 
by the composition of adaptive tool wear model 
parameters can reflect changes in the amount of 
tool wear; (3) from identification results of the 
spindle cutting power and feed power, feed power 
identification is better than spindle power, and thus 
both in the tool wear identification showed some 
differences or sensitivity. In order to overcome the 
limitations of a single factor, taking into account 
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identification differences in tool wear of the 
spindle power and feed power, feature distance 
function is used in two types of fusion based on 
the cutting spindle power and feed power. The two 
weights respectively 0.4 and 0.6 are satisfactory 
according to the experiment results.
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According to Table 7, the experiment is 
applied to the group number in the same depth. 
Table 10 can be used to calculate the error 

statistics between the feature distance and the tool 
wear, and its result is shown in Table 10.

Compared to Table 10 and Table 8, Table 
9, the fusion distance function of tool wear feature 
can track the changes of tool wear value well and 
accurately; average error is 0.014 mm and the 
largest absolute error is less than before during 
tool wear identification.

5 CONCLUSION

In the milling process, a feature extraction 
method for power adaptive model parameter 
estimation is studied. The method regards the tool 
wear process as time-varying system parameters. 
By detecting the processing state signal and 

Fig. 3. The relation between the feature and wear on the feed cutting power
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processing parameters, processing state is 
predicted by using power model and least squares 
estimate model parameters. Model parameters 
are corrected according to the forecast error, so 
that the model automatically adapts to track the 
properties of the cutting process and obtains the 
parameters of the model as tool wear feature to 
achieve tool wear monitoring. The experiment 
results have shown that the model coefficients 
can be processed with the adaptive changes 
of processing conditions, and wear value is 
accurately estimated by feature parameter. In the 
actual processing, in order to achieve the different 
types of intelligent tool wear monitoring, this 
study can be used for tool wear feature extraction 
methods of different types of processing cutting 
power model parameters of self-learning. 
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