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Abstract

This paper presents the R package blockmodeling which is primarily meant as an imple-

mentation of generalized blockmodeling (more broadly blockmodeling) for valued networks

where the values of the ties are assumed to be measured on at least interval scale. Block-

modeling is one of the most commonly used approaches in the analysis of (social) networks,

which deals with the analysis of relationships or connections, between the units studied (e.g.,

peoples, organizations, journals etc.). The R package blockmodeling implements several ap-

proaches for the generalized blockmodeling of binary and valued networks. Generalized

blockmodeling is commonly used to cluster nodes in a network with regard to the structure

of their links. The theoretical foundations of generalized blockmodeling for binary and val-

ued networks are summarized in the paper while the use of the R package blockmodeling is

illustrated by applying it to an empirical dataset.

1. Introduction

The aim of this paper so to present the R package blockmodeling which is primarily

meant as an implementation of generalized blockmodeling for valued networks.

A network is defined by the set of nodes (also called vertices, units or actors) and the set

of links among the nodes. These two sets determine a graph which describes the network’s

structure. In, e.g. social sciences, the nodes often represent individuals and the links among

them represent a selected (social) relationship among individuals. Additional data can be

assigned to the nodes (e.g., gender or age) and links (e.g., the number of contacts) to describe

their properties (also called attributes) (Batagelj et al., 2004).

Since real-world networks may be large and complex, researchers try to simplify them

to smaller and more understandable structures that are easier to interpret. A common way of

accomplishing this goal is a blockmodeling approach which partitions the nodes of a network

and determines the ties among the (obtained) clusters of nodes (Batagelj et al., 2004). In the

social sciences, blockmodeling is also a very important explanatory tool for studying social

roles because it is assumed that the way a cluster of nodes is embedded in the network

structure is closely associated with the nodes’ social role(s) (Borgatti and Everett, 1992).
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While blockmodeling may entail several different methods, the focus of this paper is on

generalized blockmodeling of binary and valued networks using the blockmodeling package

for the R programming language (R Core Team, 2018).

The structure of this paper is as follows: In Section 2, we describe blockmodeling. In

Section 3, we describe the R package blockmodeling and in the Section 4, we provide ex-

amples of the package use, while in Section 5, we summarise the main functionalities of the

package.

2. Blockmodeling

Blockmodeling is a set of approaches for partitioning nodes into clusters (also called

positions) and simultaneously partitioning the links into blocks which are defined by the

obtained clusters (Lorrain and White, 1971; Batagelj et al., 2004; Žiberna, 2007). A block

is a submatrix showing the links between nodes from the same or different clusters.

The concept of blockmodeling is presented in Figure 1 where the illustrative valued

network is shown in both matrix form and as a graph (Figure 1a). The units are ordered in

rows and columns according to their names (n1, n2, n3, . . . ). The units are then partitioned

by considering the weights such that those with similar patterns of links are partitioned into

the same clusters. The network is represented consistently represented in matrix form in

accordance with the clusters obtained in matrix form so that units from the same clusters

are placed next to each other and different clusters are separated by blue lines (Figure 1b).

Nodes of the same cluster are coloured using the same colour in the corresponding graphic

visualization. Then nodes from the same clusters are shrieked and represented as nodes of a

blockmodel, which is shown as both a matrix and a graph (Figure 1c). The block densities

are provided in the matrix. These summarize the strength of the relationship within and

between the clusters. It can be seen that one core cluster and two cohesive clusters were

identified. The core cluster is linked with both cohesive clusters (and vice versa) whereas

the cohesive clusters are not linked to each other.

The nodes are clustered according to some notion of equivalence (Wasserman and Faust,

1994). The most commonly used are structural equivalence (Lorrain and White, 1971) and

regular equivalence (White and Reitz, 1983), both originally defined for binary networks

(Žiberna, 2007). Two nodes are structurally equivalent if they are identically linked to the

rest of the network (and to themselves), while the nodes are regularly equivalent if they are

connected in the same way to equivalent others. Regular equivalence is a generalization

of structural equivalence. While analysing valued networks, regular equivalence should be

replaced by f -regular equivalence, where f refers to any function, such as sum, max or mean

(Žiberna, 2007).

In practice, structural equivalence is probably the most commonly used type of equiv-

alence (Žnidaršič, Ferligoj and Doreian, 2012). At the same time, regular equivalence has

never achieved widespread use (Žiberna, 2013), especially because it is rarely present in

empirical data (Boyd and Jonas, 2001) and very sensitive to small changes in the network

(Žnidaršič, Ferligoj and Doreian, 2012). Concerns have also been voiced about regular

equivalence’s applicability to social theory (Boyd, 2002).

In terms of generalized blockmodeling, a chosen type of equivalence defines the possible

block types (and vice versa, i.e., the allowed block types in generalized blockmodeling imply

the type of equivalence). For example, when binary networks are analysed, and structural

equivalence is used, only null (ideally there are no links) and complete (ideally there are all

possible links) blocks are possible, while with regular equivalence null, complete and regular
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Table 1: Characterisations of ideal blocks (Žiberna, 2007)

Ideal block name Description for

binary

blockmodeling

Description for

valued

blockmodeling

Description for

homogeneity

blockmodeling

null all 0a all 0b all 0c

complete all 1d all values at least md all equale

row-dominant an all 1 row existsd a row where all

values are at least m

existsd

a row exists where

values are all equalc

col-dominant an all 1 column

existsd
a column where all

values are at least m

existsd

a column exists

where all values are

equalc

row(-f)-regular at least one 1 in

each row existsd
the f over each row

is at least md
f over all rows equal

column(-f)-regular at least one 1 in

each column exists

the f over each

column is at least m

f over all columns

equal

(f-)regular at least one 1 in

each row and each

column exists

the f over each row

and each column is

at least m

f over all rows and

all columns

seperately equal

row-functional exactly one 1 in

each row exists

exactly one tie with

value at least m in

each row exists, all

other 0

max over all rows

equal, all other

values 0

column-functional exactly one 1 in

each column exists

exactly one tie with

value at least m in

each column exists,

all other 0

max over all rows

equal, all other

values 0

a An exception may be cells on the diagonal, their values should all be equal to 1.
b An exception may be cells on the diagonal, their values should all be least m.
c An exception may be cells on the diagonal, their values should be equal.
d Diagonal, their values should all be equal to 0.
e Cells on the diagonal may be treated separately - their values should all be equal, however they can be

different from the values of the off-diagonal cells.
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of the direct blockmodeling approach. Use of the blockmodeling package is demonstrated

for (direct) generalized blockmodeling only.

Some non-generalized direct blockmodeling approaches (for non-signed and signed net-

works) are implemented in the dBlockmodeling package (Brusco, 2020), while generalized

blockmodeling for binary networks and some direct approaches for signed networks are im-

plemented in Pajek (Batagelj et al. 2004).

2.1.1. Conventional blockmodeling

Conventional blockmodeling (Doreian et al., 2005) is an indirect approach involving

two steps: (i) obtaining a dissimilarity matrix on the nodes using a dissimilarity measure

which is consistent with the type of equivalence selected (e.g., corrected Euclidean distance

(Batagelj, Ferligoj and Doreian, 1992) for structural equivalence); and (ii) clustering the

nodes with a hierarchical clustering method (e.g. Ward’s agglomerative clustering method

(Ward, 1963)), based on the dissimilarity matrix obtained. Since the second step is well sup-

ported by other R packages, the blockmodeling package only provides functions for com-

puting (dis)similarity matrices according to structural equivalence (sedist function) and

regular equivalence (REGE function and other functions).

2.1.2. Generalized blockmodeling

With generalized blockmodeling, a blockmodel is directly obtained from the network

data by optimizing a criterion function, typically with a relocation algorithm (Batagelj et al.,

1992). Different types of equivalences and/or block types can be specified.

Generalized blockmodeling holds several advantages over conventional blockmodeling

(Doreian, 2006; Doreian et al., 2005; Batagelj et al., 2006): (i) since the direct approach al-

ready includes the criterion function in the process of optimizing partitions, at least a locally

optimal solution will be obtained with the generalized approach; (ii) the partitions obtained

by generalized blockmodeling frequently outperform those obtained with the conventional

approach (at least in the case of structural and regular equivalence); (iii) conventional block-

modeling has mainly been used in an inductive way, meaning that researchers have accepted

what was delineated through the clustering procedure. Yet, researchers often possess some

prior knowledge about the global network structure that can be included in the blockmodel’s

specification.

Examples of generalized blockmodeling use are found in Doreian et al. (2005), Mrvar

and Doreian (2009), Cugmas, Ferligoj, and Kronegger (2016) and Cugmas et al. (2020).

These examples include social relations in working settings, classroom networks, political

unit networks, scientific collaboration and citation networks, sport networks and other types

of networks.

In this paper, the following types of generalized blockmodeling are considered:

(i) Generalized binary blockmodeling, which is intended for analysing binary networks.

The binary blockmodeling concept is presented thoroughly in Doreian et al. (2005).

(ii) Generalized valued blockmodeling, which was developed because earlier researchers

were converting valued networks into binary networks and analysing them as binary

networks. The binarization was accomplished by recoding values above (or equal to) a

certain threshold (often 1) into 1s and the other into 0s (see Doreian et al., 2005), which

however caused a loss of considerable amount of information. The valued blockmod-

eling approach reduces the amount of information lost, although some loss may still

occur.
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Valued blockmodeling may be seen as an extension of binary blockmodeling. It ex-

tends the equivalence relations and thereby the definitions of possible block types by

replacing the stipulations for 1 with analogous stipulations for the value m (the mini-

mal value that characterizes the tie between a unit and either a cluster or another unit

such that this tie satisfies the condition of the block). Therefore, the criterion function

used in the valued blockmodeling measures block inconsistencies as the deviation of

appropriate values from either 0 or m (Žiberna, 2007).

(iii) Generalized homogeneity blockmodeling, which is based on the idea that blocks should

be as homogeneous as possible with respect to some property. Accordingly, the incon-

sistencies of an empirical block with respect to its ideal block are measured by the

within-block variability of appropriate values.

One of the two variability criteria can be used: the sum of the squared deviations from

the mean or the sum of absolute deviations from the median (Žiberna, 2007).

2.2. Prespecified blockmodeling

A researcher can consider a prior knowledge concerning the ties among the clusters

while conducting blockmodeling (Doreian et al., 2005). This may be done by specifying not

only the number of clusters and allowed block types (the same for all blocks), but also by

specifying the allowed block types for each block separately. Typically, only one block type

is specified as allowed for at least some blocks.

3. Package description

A stable version of the R package blockmodeling1 is available from the Comprehensive

R Archive Network (CRAN) at https://cran.r-project.org/web/packages/bloc

kmodeling while test versions are available from the R-Forge at https://r-forge.r-pr

oject.org/R/?group id=203. The package has been around since 2007 and is currently

written in the programming languages R, C and Fortran. In this paper, version 1.0.0 is used.

The package supports generalized and indirect blockmodeling. For generalized block-

modeling, one-mode, two-mode and multilevel networks (also linked networks (Žiberna,

2020)) with one or more relations are supported. However, for purpose of clarity and sim-

plicity, this paper is limited to generalized blockmodeling of one-mode single relational

networks.

To obtain a generalized blockmodeling solution, a researcher might want to use the func-

tion optRandomParC, which optimizes a specified number of randomly generated partitions

based on the criterion function selected (to optimize a single partition, a researcher can use

the function optParC that optimizes only the supplied (one) partition, although so as to avoid

a local minimum this is not recommended). The main arguments of the function are:

• M: an adjacency matrix representing the (usually valued) network.

• k: the number of clusters.

1The blockmodeling package leverages functions from a variety of other packages. Key computations use

stats (R Core Team, 2019a), methods (R Core Team, 2019b), Matrix (Bates and Maechler, 2019), parallel (R

Core Team, 2019c) and others.
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• approach: the chosen generalized blockmodeling approach; 'bin' for generalized

binary blockmodeling, 'val' for generalized valued blockmodeling and 'hom' for

homogeneity blockmodeling.

• regFun: the function f specifies regular block types (e.g., max-regular block when

regFun = 'max'). The function is only relevant when the f -regular blocks are spec-

ified by the argument blocks.

• blocks: a vector with the names of allowed block types. At least two must be speci-

fied for binary and valued blockmodeling. Possible types are: null ('nul'), complete

('com'), regular ('reg'), column-(function) regular ('cre') and row-(function) reg-

ular block ('rre'). In the case of binary and valued blockmodeling, a researcher can

also specify column-dominant block ('cfn') and row-dominant block ('rfn') and

with valued blockmodeling a researcher can also specify average block ('avg'). The

option “do not care” ('dnc') is also available. When pre-specification is used, the

argument is stated in the form of an array, as shown in the example section.

• rep: the number of di erent starting partitions.

• nCores: the number of physical CPU cores to be used. All available but one physical

CPU cores are used when nCores = 0.

• preSpecM: the value m must be specified only in the case of generalized valued block-

modeling.

To calculate only the value of a criterion function, a researcher can use the function

critFunC. The same arguments apply as for the case of the function oprRandParC, ex-

cept that k is replaced by a partition (a vector) clu and the arguments rep and nCores are

omitted.

Once a blockmodel and partition have been obtained by either optParC or optRandom-

ParC, a researcher can use the function IM to extract a blockmodel, the function clu to

extract an obtained partition or the function err to extract the value of a criterion function.

The package contains some other handy functions such as funByBlocks (which com-

putes the value of a function (mean by default) over blocks of a matrix defined by a partition),

plotMat (which plots a network in matrix form by considering the corresponding partition)

and functions for computing the adjusted and original Rand Index (e.g. crand2). A plot

method that internally calls plotMat is available for S3 classes returned by optParC and

optRandomParC.

4. Demonstration of the package use

The use of various generalized blockmodeling approaches is illustrated using the Baker

citation network data (Baker, 1992). Here, the nodes represent journals from the field of

social work (the 20 journals listed in Table 2). There is an arc from journal i to journal j

if journal i cited journal j. The values on the arcs correspond to the number of citations in

1985.

The data can be loaded from the package blockmodeling using data('baker'). The

diagonal values, representing the number of citations by papers from the same journals, are

replaced with 0s (diag(baker) <- 0). The network can be visualized with the function

plotMat. Since the partition is not yet obtained, the clu argument is not set.
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Table 2: Journals in Social Work Citation Network

Label Journal

AMH Administration in Mental Health

ASW Administration in Social Work

BJSW British Journal of Social Work

CAN Child Abuse and Neglect

CCQ Chile Care Quarterly

CW Child Welfare

CYSR Children and Youth Services Review

CSWJ Clinical Social Work Journal

FR Family Relations

IJ6W Indian Journal of Social Work

JGSW Journal of Gerontological Social Work

JSP Journal of Social Policy

JSWE Journal of Social Work Education

PW Public Welfare

SCW Social Casework

SSR Social Services Review

SW Social Work

SWG Social Work with Groups

SWHC Social Work in Health Care

SWRA Social Work Research and Abstracts

plotMat(baker , main = 'Baker Network Data ',

mar = c(1, 1, 3, 1), title.line = 2)

Figure 2 is obtained with the function plotMat. To make the plot easier to read, the cell

values are automatically multiplied by the factor (in this case 0.1) which (by default) places

their absolute values in the range [0,100). The factor by which the values are multiplied is

automatically selected and reported, as noted below the plot.

It is immediately apparent from Figure 2 that the network is relatively sparse, meaning

the journals did not tend to cite each other. However, the highest number of citations extends

from SCW to SW and from SSR to SW. The latter journal is also the one which cited the

highest number of other journals.

4.1. Binary blockmodeling

To analyse valued networks by using generalized blockmodeling for binary networks, a

re-searcher must binarize the valued network and for this adopt one of several ways, such as

keeping all of the arcs with values greater than 0.

bakerBinar <- baker

bakerBinar[bakerBinar > 0] <- 1

In all of the following examples, the function optRandomParC is used. The number of

clusters is set to 2 or 3. The number of clusters is chosen arbitrarily by examining multiple

partitions with different numbers of clusters (2 or 3 seem to be the most appropriate) (also see

Doreian et al., 2005). The 1000 randomly generated partitions are optimized and multiple

cores are used. For binary blockmodeling, the approach argument must be set to 'bin'.
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Figure 2: Baker network data in matrix form

4.1.1. Structural equivalence

If structural equivalence is used, only null and complete block types are possible. There-

fore, a vector c('nul', 'com') is provided to blocks (the structural equivalence is set by

the vector of the allowed block types).

resBinStr <- optRandomParC(M = bakerBinar , k = 3, rep = 1000,

nCores = 0, blocks = c('nul', 'com'), approach = 'bin')

The number of errors (inconsistencies) of the blockmodel then obtained is 47 (accessed

via the function err). The obtained partition can be accessed with the function clu while

the blockmodel can be seen in the form of an image matrix using the function IM. The image

matrix specifies the block types by blocks. The function IM shows the image matrix obtained

(not the specified one) with blockmodeling.

IM(resBinStr)

[,1] [,2] [,3]

[1,] "nul" "nul" "com"

[2,] "nul" "com" "com"

[3,] "nul" "com" "com"

The image matrix shows the journals in cluster 2 and cluster 3 cite each other both within

and between the clusters. Journals in cluster 1 do not cite each other in general, but they cite

journals in cluster 3. Cluster 3 can be identified as the most central cluster while cluster 1 as

a peripheral cluster because in this cluster the journals are generally not cited much by other

journals.

The block densities can be calculated with the function funByBlocks and visualized

with the function plotMat. Finally, the empirical network can be visualized in matrix

form and in line with the blockmodeling solution that is obtained. When using the func-
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tion plotMat, the obtained partition has to be provided to the function by the argument

clu. The latter is not necessary when using the function plot (the S3 method exists for the

optMorePar class that is returned by the optRandomParC function), as shown below. The

clusters of journals obtained are separated by lines in Figure 3.

plot(resBinStr , main = 'A Baker Network Data ',

mar = c(1, 2, 3, 1), title.line = 2)
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Figure 3: Matrix representation of the network of journals partitioned into 3 clusters using

binary blockmodeling with structural equivalence and the corresponding block densities

It can be seen in Figure 3 (left) that the block densities are lowest in the null blocks, as

expected. Among the null blocks, however, the density is highest in the block belonging to

the link (citing) from cluster 3 to cluster 1, which reflects a tendency for reciprocity.

The most central cluster (cluster 3) only consists of two journals, SCW and SW, while

cluster 2 contains the following journals: ASW, CW, JSWE, SSR and SWRA. All other

journals are located in the peripheral cluster.

4.1.2. Regular equivalence

Here regular equivalence is used and the number of clusters is set to 2. The regular

equivalence is specified in the function optRandomParC by adding a regular block type

among the possible block types.

resBinReg <- optRandomParC(M = bakerBinar , k = 2, rep = 1000,

nCores = 0, blocks = c('nul', 'com', 'reg'),

approach = 'bin')

The partitioned matrix in Figure 4 shows that a small cluster (cluster 1) of journals exists

that are not cited by any journal. The three journals in this cluster are AMH, IJSW and JSP.

The first two journals cited SW while JSP cited SSR (all of the cited journals are in cluster

2). These citations represent inconsistent links (err(resBinReg)).

The similarity of the obtained partitions can be measured with the Adjusted Rand Index

(Rand, 1971; Hubert and Arabie, 1985), where the expected value is 0 in the case of two

random partitions and the maximum value of the measure is 1 (in the event of two identical

partitions).

crand2(clu1 = clu(resBinStr), clu2 = clu(resBinReg))
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Figure 4: The network of journals partitioned into 2 clusters using binary blockmodeling with

regular equivalence and the corresponding block densities

The value −0.12 confirms what is seen when comparing Figure 3 and Figure 4, i.e. that

the partitions obtained (by using structural equivalence vs. regular equivalence) are very

different.

4.2. Valued blockmodeling

The main dilemma in valued blockmodeling is how to determine the most appropriate

value of m. The best approach is to choose a value based on prior knowledge about how high

the value of a tie should be for it to be considered as strong or relevant. In the absence of

such prior knowledge, a researcher may refer to one of the guidelines provided by Žiberna

(2007) or select the most appropriate m based on the distribution of all tie values (Figure 5).
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Figure 5: Distribution of the number of citations among the journals

Here, m is set to a median value (only values greater than 0 are taken into account), which

is 13.

4.2.1. Structural equivalence

To apply blockmodeling of valued networks, a researcher must set approach = 'val'

and specify the value m by setting the argument preSpecM. In addition, the allowed block
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types (indirectly the type of equivalence) and number of clusters must be specified. The

number of clusters is set to three.

resValStr <- optRandomParC(M = baker , k = 3, rep = 1000,

preSpecM = 13, approach = 'val', blocks = c('nul', 'com'),

nCores = 0)

It can be seen in Figure 6 that cluster 1 and cluster 3 form a very clear symmetric core-

periphery global network structure since the journals in cluster 1 (core; JSWE, SCW, SSR

and SW) mutually cited each other and also cited those in cluster 3 (periphery; ASW, CW,

CSWJ, SWG, SWHC and SWRA). Another internally non-linked cluster (cluster 2) of jour-

nals exists. Some journals in this cluster cited the journals in the core cluster.
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Figure 6: The network of journals partitioned into 3 clusters using valued blockmodeling (m =
13) with structural equivalence and the corresponding block densities

4.2.2. Regular equivalence

In the case of valued blockmodeling with regular equivalence, a researcher must select

the function f to specify the type of f -regular blocks. This is set to max by default, although

it can also be set to sum, mean or other functions. Here, the max-regular block type is to

be allowed and therefore the argument regFun within the function optRandomPar is set to

'max'. A regular block type is added to the vector of allowed block types. The number of

clusters is arbitrarily set to two clusters.

resValReg <- optRandomParC(M = baker , k = 2, rep = 1000,

preSpecM = 13, approach = 'val',

blocks = c('nul', 'com', 'reg'), nCores = 0, regFun = 'max')

The blockmodel (image matrix) that is obtained is the same at that obtained by binary

blockmodeling with regular equivalence, but the sizes and obtained partitions are differ-

ent with a value of the Adjusted Rand Index of 0.1. There are more links in null blocks

(compared to binary blockmodeling with structural equivalence), but the corresponding link

values are relatively low. Consequently, the size of the cluster with the journals that are less

cited (and cite less) is bigger.
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Figure 7: The network of journals partitioned into 2 clusters using valued blockmodeling (m =
13) with max regular equivalence and the corresponding block densities

4.3. Homogenity blockmodeling

The homogeneity blockmodeling approach’s advantage over the valued blockmodeling

approach is that no parameters (such as the binarization threshold or parameter m) need to

be set. Therefore, it is very well suited as a preliminary or the main approach to valued

networks when no prior knowledge about these values is available. Homogeneity block-

modeling emphasizes the similarity of tie strengths within blocks over the pattern of ties.

4.3.1. Structural equivalence

To use homogeneity blockmodeling, the approach argument must be set to 'hom'. To

apply sum of squares homogeneity blockmodeling, the homFun argument must be set to

'ss' while, to apply absolute deviation blockmodeling, the argument must be set to 'ad' in

the optRandomParC function.

Because the computation of inconsistencies is very similar for sum of squares and abso-

lute deviations blockmodeling, application of the first approach is only shown here.

resHomSSStr <- optRandomParC(M = baker , k = 2, rep = 1000,

approach = 'hom', homFun = 'ss', blocks = c('nul', 'com'),

nCores = 0)

Usually, the image matrix is not of interest in the case of homogeneity blockmodeling

because the null blocks are a special case of complete blocks and thus only classified as null

when the mean of the block is exactly 0, which rarely happens in practice. Instead, blocks

with low block means are interpreted as null blocks (see Žiberna (2013) for another way of

identifying null blocks).

The results shown in Figure 8 suggests the global network structure of the journal cita-

tion network can be characterized as a symmetric core-periphery structure. Here, the core

cluster is cluster 2 because the corresponding journals (SCW, SSR and SW) not only cited

each other, but also cited and were cited by other journals (according to the block densities,

the peripheral journals cited the core journal more often than the other way around). All

other journals are located in the peripheral cluster with a very few citations found within the

cluster.
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Figure 8: The network of journals partitioned into 3 clusters using homogeneity blockmodeling

(sum of squares) structural equivalence and the corresponding block densities

4.3.2. Regular equivalence

To apply blockmodeling with homogeneity regular equivalence, the regular block type

must be added to the vector of possible block types in the function optRandomParC and the

f function must be defined, e.g. 'max', as an argument of regFun.

resHomSSReg <- optRandomParC(M = baker , k = 2, rep = 1000,

approach = 'hom', blocks = c('nul', 'com', 'reg'),

regFun = 'max', nCores = 0)

Given that the partition and blockmodel which are obtained are the same as those in the

case of structural equivalence, they are not interpreted.

4.4. Pre-specified blockmodeling

A blockmodel can be fully or partially specified (see the subsection Prespecified block-

modeling). The following gives an example of the use of pre-specified blockmodels.

In the case of a journal citation network, a researcher might possess prior knowledge that

the global network structure is symmetric core-periphery, i.e. there are some journals (the

core) which are cited by most journals, while other journals (the periphery) cite journals in

the core and not those in their own cluster. Therefore, the pre-specified blockmodel may be

represented by the following image matrix:

preImageReg <- rbind(c('com', 'reg'), c('reg', 'nul'))

Here, the blocks connecting the core and the periphery are of the regular type. Alterna-

tively, a researcher can assume these blocks can be of the regular or complete type. When

this is the case, the image matrix must be specified as an array.

preImageRegCom <- array(NA , dim = c(2, 2, 2))

preImageRegCom [1,,] <- rbind(c('com', 'reg'), c('reg', 'nul'))

preImageRegCom [2,,] <- rbind(c('com', 'com'), c('com', 'nul'))

To apply pre-specified blockmodeling, the above matrix or array must be provided as

the argument to blocks within the function optRandomParC. To apply valued blockmod-

eling with m = 13, the approach and preSpecM arguments must be set to 'val' and 13,

respectively.
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resValPre <- optRandomParC(M = baker , k = 2, rep = 1000,

preSpecM = 13, approach = 'val', blocks = preImageRegCom ,

nCores = 0)

The obtained image matrix (blockmodel) is the following one,

IM(resValPre)

[,1] [,2]

[1,] "com" "reg"

[2,] "reg" "nul"

indicating that the journals CW, SCW, SSR and SW are all part of a closely connected

core (cluster 1) while other journals are classified in the periphery (cluster 2). The core

and the periphery are connected with max-regular links and the density (Figure 9) is higher

within the block that links periphery to the core than within the block that links the core to

the periphery.
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Figure 9: The network of journals partitioned into 2 clusters using homogeneity blockmodeling

(sum of squares) max-regular equivalence and the corresponding block densities

5. Conclusion

Generalized blockmodeling is an approach for finding clusters of equivalent units in a

network and for determining the ties among these units. As such, it is used to study global

network structures and the (social) positions of the units. While generalized blockmodel-

ing is also implemented in the Pajek software (Batagelj et al., 2004), the implementation of

generalized blockmodeling in the blockmodeling package for the R programming language,

which is presented in this paper, is the only one that supports also the blockmodeling of

valued networks and the generalized blockmodeling of more complex networks (e.g., mul-

tilevel, multi-relational). In addition, it also supports some other blockmodeling approaches

(indirect approach) besides generalized blockmodeling.

This paper demonstrates the use of the blockmodeling package for generalized block-

modeling of binary and valued one-mode networks on a real network data set, namely

Baker’s data (Baker, 1992) set on citing among the journals. Based on the examples given,
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it is clear that blockmodeling solutions can vary across different blockmodeling approaches,

underlining the fact that a prior knowledge concerning the analysed networks is crucial, not

only for the choice of the most appropriate blockmodeling approach, but also when it comes

to interpreting the results obtained.

Ultimately, this paper, together with the package documentation, can serve as a basis for

analysing more complex networks and further explorations of the package’s capabilities.
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[32] Žiberna, A. (2007): Generalized blockmodeling of valued networks. Social Networks,

29, 105–126.
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