
*Corr. Author’s Address: Faculty of Mechanical Engineering and Naval Architecture, I. Lučića 5, Zagreb, Croatia, tino.stankovic@fsb.hr 203

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212	 Paper received: 23.2.2011, paper accepted: 12.1.2012
DOI:10.5545/sv-jme.2011.042	 © 2012 Journal of Mechanical Engineering. All rights reserved.

Synthesis of Truss Structure Designs by NSGA-II
and NodeSort Algorithm

Stanković, T. – Štorga, M. – Marjanović, D.
Tino Stanković* – Mario Štorga – Dorian Marjanović

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia

This paper presents a genetic algorithm based approach for synthesis of truss structure designs. Genotype represented as a collection of
binary encoded nodes is decoded into the phenotype by applying the NodeSort algorithm. A genotype extension to consider a cross-section as
variable and variable length chromosomes to produce designs to successfully meet the boundary conditions are all being incorporated into
the NodeSort to provide an efficient truss structures synthesis framework. The introduction of multi-objective optimisation using NSGA-II will
help to address more real life engineering problems.
Keywords: truss structure design synthesis, genetic algorithms, NodeSort, NSGA-II

0 INTRODUCTION

The work presented in this paper proposes a genetic
algorithm based approach for synthesis of truss
structure designs. It builds on the NodeSort [1]
algorithm, which takes a collection of binary encoded
nodes from a 2D domain and decodes these into a truss
structure in a process similar to FEM meshing. In our
previous work it was shown that the NodeSort is well
suited for the generation of optimal truss structure
designs [1]. To continue the development of a truss
structures synthesis framework, within this paper the
following points are set as the research goals:
•	 To account for the multiple search objectives

a non-dominated sorting genetic algorithm II
(NSGA-II) [2] and [3] will be applied.

•	 Rather than being just a parameter, the cross-
section area of trusses is defined as a variable
what should improve the quality of produced
solutions. Thus, the genotype is extended with
one more binary encoded gene.

•	 To avoid the formation of node clusters occurring
in near-optimal designs that had excessive
number of predefined nodes, or in the opposite, to
provide nodes to resolve a design solution when
the course of evolution demands more trusses, a
variable length chromosomes are introduced.

•	 To facilitate versatility and user-centricity, an
arbitrary number of nodes with imposed loads are
allowed to be specified.
The next section will address the applicability

of evolutionary algorithms as powerful and apt
optimizers. Then, the related work section will
provide an overview of truss structures optimization
approaches and drawn from these will justify the
motivation for the NodeSort. To be able to accomplish
the genotype extension and the introduction of
variable length chromosomes, the adjustments need
to be performed at the evolutionary operators’ level.

How are the crossover and mutation resolved to
accommodate these changes, as well as the NodeSort
algorithm, is presented in the third section. Section 4
gives FEM model of truss girder system and Section
5 formulates the objectives and constraints of multi-
objective optimisation problem. Modifications of
the search process parameters and penalty functions
with the search algorithm given in pseudo-code
are presented in Section 6. Case study and results
discussion are presented afterwards. Conclusions and
the future work notice close this paper.

1 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are population based
stochastic optimisers that are built on mimicking the
notions from the natural evolution. Charles Darwin
stated that evolution begins with the inheritance of
good gene variations and that basically defines what
the evolutionary algorithms are all about. Enforcing
the survival of the fittest principle is managed by
allowing higher ranked solutions to participate in an
evolution process by the most. In a random process
of mixing together the building-blocks taken from two
parent solutions an offspring is produced. Presumably,
if building blocks originate from a higher fitness
individuals than there is a chance that newly generated
individual might get a bit closer to a solution optimum.
With the whole process iterated over population
generations to produce offspring which replace their
parents at least to an extent, the emergence of solution
occurs as a consequence of the most fit building-block
combinations being frequently utilised in a solution
construction. For such behaviour, it can be said that
algorithm exhibited a learning process in identification
of which building blocks to use and how [4] and [5].

The key issue of computational modelling [5] is
to find out suitable problem representation acceptable
both to the computational environment and to the

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

204 Stanković, T. – Štorga, M. – Marjanović, D.

task at hand. Thus, the problem representation has to
concur to the algorithm’s requirements and it should
be devised in a fashion that captures the most of
the form and attributes of the design search space.
With EA’s, the problem representation is most often
brought down to finding out the appropriate genotype
encoding and its counterpart, decoding into a
phenotype, thus representing a key point in designing
an evolutionary computation based optimization
method [4] and [5]. The extension of the genotype to
include truss thicknesses, the utilization of variable
length chromosomes, as well as the NodeSort
dependent decoding are viewed as part of an effort to
provide a good material for the truss design evolution
process. In that way by expanding the set of means to
realize the required behaviour, the navigation to more
applicable design solutions is made possible.

2 RELATED WORK AND PROBLEM FORMULATION

From the literature review, it can be found that
the methods for the truss structure optimization
are specialized either for the structure properties
optimization [6] and [7] or the structure topology
optimization [8] to [10]. By all means not diminishing
the complexity of the problem, still the parametric
optimisation genotypes are easily encoded because
the layout of trusses is known and remains unchanged
during the optimisation. As the initial variability
of the shape is not being accounted for; instead the
optimisation is carried over the usual truss design
related variables, i.e. cross-sectional area, length,
etc. By contrast, a different type of encoding is
applied in the topological optimum design (TOD)
cases [8] to [10]. The structure is represented in a
discrete domain, most often in the form of material
distribution, which is a straightforward approach in
shape optimization. The genotype encodings may be
accomplished in many ways, for example as matrices,
Voronoi representations [9], or even by using 3-D
FEM building blocks. The phenotype representation
then visually depicts the resulting structure. An
interesting cantilever optimization problem has been
researched by Kim and de Weck [10], who addressed
the quality of search with the domain resolution and
chromosomal length [5]. They increased domain
resolution gradually throughout the evolution to
simulate the concretization process starting up from a
vague concept as a small sized matrix to end up with a
refined and concrete solution. TOD is computationally
very demanding, it optimizes the structure in the form
of the in-domain material distribution, but the other

design variables, such as the cross-sectional area,
remain predefined and out of reach.

A more subtle approach using the simulated
annealing (SA) method together with shape
grammars for the structural optimization purposes
was developed by Shea and Cagan (1998) [11].
Shape grammars provide a formal language, a design
language for the structure shape manipulation.
Grammars are driven by a set of production rules, or
simply productions, by which the solution is obtained
from a series of transformations according to possible
rules implementation sequences. However, for the
description of all the possible truss structures, the set
of rules must be equally large. Therefore, for a generic
approach, to evolve the structures, the rules should be
evolvable as well [12].

F

?
Domain

y

x

Fig. 1. 2-D continuous search domain [1]

The problem of truss structure design in the
2-D continuous domain as seen within this work is
pictured in Fig. 1. Assuming a random distribution
of nodes and a number of predefined fixed nodes
(supports and load nodes) all of which are contained
within a chromosome, the topology of truss girder
design emerges after the application of the NodeSort
decoding algorithm [1] (Section 3.3 of this paper).

The genotype encoding and decoding applied in
the NodeSort enable the search space to be as large and
unconstrained as possible. It goes beyond parametric
optimisation by allowing the optimisation of topology,
it surpasses TOD approaches since it is much less
computationally demandable with girder FEM’s being
parametric and optimised in a continuous domain. The
phenotype represented as a truss structure emerging
out of inter-nodal arrangement is an algorithmically
driven approach. It offers an alternative to shape
grammars which being knowledge-driven achieve
the increase in the performance by addition of new
rules, thus retaining the same rule transformation
principles. Usually, there is a trade-off between the

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

205Synthesis of Truss Structure Designs by NSGA-II and NodeSort Algorithm

algorithmic and the knowledge-driven approaches
since the former requires code interventions for the
performance increase and the latter requires the shared
understanding about the domain and objective rule
definitions, otherwise formalized knowledge becomes
inconsistent and biased. Extensions to our previous
work reflecting the new encoding/decoding scheme
are presented within the next section.

3 EXTENDED ENCODING/DECODING SCHEME
FOR 2D CONTINUOUS DOMAINS

The model of truss structure is defined as the system
comprised of a number of trusses and nodes. Boundary
conditions specify the load cases, thus taking into
account the amount of the loads being applied, as
well as the type and the location of truss girder’s
supports. The load is modelled as a distribution of
nodal forces. Within each of the evolution turns for
every candidate solution the FEM system stiffness
matrix is re-calculated. The position and length of the
truss elements are defined as a consequence of the
nodal arrangements within the 2-D domain. Assuming
circular cross-section, an extension of previous work
is the introduction of a truss cross-section diameter
as a variable. Hence, a new structural model that is
established with the addition of the cross-section
diameter enables refinement in the search thus,
allowing getting closer to the optimal system topology.

Not being explicitly written in the chromosomal
genes, the trusses emerge as a consequence of in-plane
nodal positions. Thus, in order to be able to introduce
a truss cross-section dependant attributes it has been
decided to extend the length of the binary encoded
node by one gene to contain a gamete of a truss cross-
section. The diameter of each truss is then obtained as
an average calculated over two gametes belonging to
the nodes which define the span of a truss.

According to [1], both fixed nodes and free
nodes where predetermined in numbers. To clarify a
distinction, in contrast to free nodes, the fixed nodes
have a static position in the 2-D search domain thus
not being subjected to a position change during the
course of the evolution. However, because of the way
the cross-section area is calculated, the new thickness
gamete addition has to be taken into account even
with the fixed nodes. The number of fixed nodes
is denoted as NoNx. The improvement introduced
within this work enables an increase or decrease of
free nodes to occur as demanded by the course of
evolution. For example, by prescribing the boundary
conditions including the maximal allowed cross-
section thickness, the search might be put in a dead

end situation with no feasible results being generated
unless it is allowed to increase the number NoN of free
nodes. Hence, the increase in node numbers creates
the possibility to generate more trusses since they
appear as the result of nodal arrangements within the
2-D search domain. Consequently, a more stiffened
and load capable structure will be designed. In
contrast, by allowing the number of free nodes to be
decreased is required in the case where the search has
strayed in producing too complex solutions in respect
to the defined loads. Then, it is necessary to reduce the
number of trusses in order to obtain a best-fit solution.

3.1 Genotype Encoding

The genotype is assembled two folded; on the primary
level each of the nodes is represented as a bit string,
and the secondary level comprises of a collection of
decoded nodes from which truss structure will be
determined. For free nodes, three binary encoded
genes are required, two to represent in-plain
positioning of the node and one for the determination
of the cross-section diameter (Table 1). Fixed nodes
only comprise one gene to participate in the cross-
section diameter calculation. Genotype encoding with
chromosome represented as a collection of nodes
is shown in Table 2. Parameter nmax represents the
allowed number of nodes per chromosome.

Table 1. Binary encoding of nodes

Nodei

xi coordinate,
binary string li1

yi coordinate,
binary string li2

di diameter gamete,
binary string li3

Table 2. Chromosome structure

Chromosomej

Node1, ..., Nodei, ...,
Noden

nj = NoNx + NoNj ≤ nmax

Decoding is performed using standard decoding
function γ [5]. Decoding per gene i for desired interval
u vk k, ∈ is defined by the following expression:

	 γk
l

k kik u v: 0 1, , .{ } →   	 (1)

The complete decoding of each gene within a
single free node i produces a vector of real numbers:

	 γi = γ1 × γ2 × γ3 .	 (2)

3.2 Evolutionary Operators

The mutation is performed simply, in a bit-flip
manner, thus directly altering the nodal position

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

206 Stanković, T. – Štorga, M. – Marjanović, D.

or changing the cross-section diameter gamete in
a random fashion. In order to improve the search
process in the early stages of the solution evolution
it was necessary to introduce scaling of the mutation
rate. In the literature, there are a number of such
mutation approaches [4] and [5]. They are driven by
the notions from the natural evolution, justifying the
initial mutation rate levels by the harsh environmental
conditions. A bit-flip mutation rate is defined as a
function of its initial rate p′m = 0.1 and the number of
evolution iterations N. The static mutation rate is being
set to p′′m = 0.02. The bit-flip mutation probability is
calculated by a linear scaling formula defined over a
desired number of iterations:

	 p
p p

N p N

p otherwise
m

m m
m

m

=
−

+ <






'' '
'

''
1000

1000,

.
	 (3)

Random addition or subtraction of nodes is
performed by a node mutation procedure with the
mutation probability taken the same as defined in Eq.
(3). A simple random coin toss trial is performed to
determine whether a point will be added or subtracted
from the chromosome. Currently, only the free nodes
are considered as legible for addition or subtraction.
The following formalism defines the procedure for the
node mutation of chromosome providing the maximal
length nmax and the mutation triggering condition
p ≤ pm:

	

add new randomly
initilzed free node
randomly delete
a sinngle free node

if

 if











∧ <

∧

head ,

tails

n n

No

j max

NN NoNxj − >1.

	 (4)

Chromosome transcription during crossover
acts to copy sequences of genetic material belonging
to both parents in order to produce an offspring.
However, to be able to perform the crossover on the
chromosomal structure as shown in Tables 1 and 2,
a slight adaption of the usual operator is required;
namely to address all of the genetic material, a
crossover has to be performed on both levels of the
genotype. The crossover procedure is defined with the
following:
•	 firstly, by randomly selecting one crossover point

per each parent on the nodal levels, then,
•	 corresponding to selected nodes, the crossover

points are randomly chosen again but on the bit-
string level.

After the crossover it may turn out that the length
of an offspring violates the condition nk > nmax, as
the result of an arbitrary nodal level crossover point
selection. The formalism in Eq. (5) presents a way
how to keep the size of the offspring k within the
preset boundaries as defined by nmax :

	

Turn wise crossover point reposition :
towards beginparent 1 iing,
owards end.

if

One point crossover :
tparent

n >n

,

2

k max

on free nodes,
on fixed nodes.

if nk ≤≤
















n .max

	(5)

For the condition nk > nmax, both chromosome
segments are being shortened for one node in a turn
wise manner until the condition nk = nmax has been
met. The turn wise relocation of the crossover point
tries to average the loss in diversity of genetic material
to both parents. Afterwards, the standard one point
crossover is performed separately on the collections of
free nodes and fixed nodes. At the end, the nodes are
unified into a single collection to form new offspring
individual.

3.3 Phenotype Generation with the NodeSort Algorithm

Performing an automated search for the optimal
system topology which employs the FEM methods
for the system behaviour evaluation requires a
creation of structural stiffness matrices absent of any
singularities. Although the singular solutions can be
ranked as infeasible by the constraint handling, their
frequent occurrences will slow down and complicate
the search process. To overcome the latter, drawn up
on the engineering practice it is known that arranging
trusses to form triangular substructures is the least
requirement for the avoidance of mechanical joints
formation in truss structures. Thus, if all of the sub-
structures are triangular, the search space is narrowed
down only to computable non-singular solutions,
which helps to boost the efficiency of the search.
Therefore, the NodeSort employs a mapping to create
phenotype out of the encoded chromosome resulting
in a mesh composed of triangular schemes to satisfy
topological stiffness requirement. This mapping is
similar to the meshing techniques applied within
various FEM methods. The NodeSort algorithm for
generating a phenotype based on the nodal positions
and truss thickness gametes is presented with the
following pseudo-code:

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

207Synthesis of Truss Structure Designs by NSGA-II and NodeSort Algorithm

1.	 sort and collect nodes ascending over x, if equal
compare over y,

2. 	 point to first node in chromosome i ← 0,
3. 	 while i < (ni – 2) do
	 A. 	 if nodei.y ≥ nodei+1.y
		 foreach truss definition collect nodei+1,

	 nodei+2 ,..., nodei+k which are ordered
	 ascending over y do

		 break the search if nodei+k+1 satisfies any
	 of the following:

		 a. is not ordered ascending over y,
		 b. is the second node in ascending order 	

	 satisfying nodei+k+1.y > nodei.y ,
		 c. i+k+1 > ni.
		 od
	 B. else: similar as in A but collecting nodes in

descending ordering over y with two break criteria
redefinitions: (a) is not ordered descending over
y, and (b) is the second node in descending order
satisfying node.y < nodei.y.

	 C. define trusses between nodei and all nodes
identified in A and B.

	 D. move to next node i ← i + 1
4. 	 od.

The NodeSort algorithm starts with all of
the nodes being sorted ascending based on their
x coordinate. The first node from chromosome is
taken into consideration by setting the counter i to
zero (see pseudo-code line 2). In the following while-
do loop which is marked with 3, the algorithm will
search for possible ways to define truss elements
between the considered node i and all of the nodes
with greater x coordinate. The resulting structure must
be composed of triangular schemes with no trusses
creating intersections. Inside the while-do loop two
possibilities which are marked with letters A and B
can appear: based on its position the first following
node i + 1 can either be below or on equal height (A)
or above the considered node i (B). Inside A all of
the nodes will be ranked legible for truss definition if
they do not violate the conditions a, b and c. The first
condition (a), makes sure whether all of the following
i+k+1 nodes are in an ascending order over y, the
following (b) stops the search if the node is the second
one above the node i and in the end (c) it is prevented
for the counter to be larger the number of nodes ni.
The condition B takes into account situations opposite
of A - the first following node being above node i thus
collecting truss definition nodes in a descending order.
Except for the step (c) which considers the counter
exceeding the number of nodes, the break criteria (a)
and (b) are redefined for B to consider descending

order of nodes as shown in pseudo-code. Afterwards,
the trusses are defined (C) over all possible attributes
including truss cross-section diameter and the whole
procedure is repeated for the following node (D). Fig.
2 pictures a truss structure phenotype generated by the
NodeSort algorithm which corresponds to the nodal
arrangement which has already been shown in Fig. 1:

Fig. 2. Truss structure obtained from nodal positions shown in Fig.
1 [1]

The singular condition that may occur when
two or more nodes are very close to each other or
when they overlap is regulated with a constraint that
proscribes the minimal allowed length of trusses:

	 l ≥ lmin .	 (6)

4 STRUCTURAL FEM MODEL

The structure is modelled using FEM planar trusses
with possessing in total 6 degrees of freedom each.
It was necessary to introduce bending to trusses and
implicitly convert them into beams. Otherwise, the
result of the evolution taking the infinite stiffness to
bending of truss FEM element will always converge
to a single horizontal truss. Such structure would
have zero displacement since it cannot bend, it would
be minimal in mass since it is just a horizontal line.
Normal forces would also be equal to zero for the
force vector put vertically as in Fig. 1. The relation
between load F and the system’s nodal displacement u
is given here by with the following expression:

	 {F}=[K]{u}.	 (7)

The [K] is a standard stiffness matrix defined for
planar girder elements. The load vector considering
the start and end points of each of the trusses is given
in its transposed form as:

	 {FT}={N1, Q1, M1, N2, Q2, M2}.	 (8)
The vector of displacements per truss element is

given with the following expression:

	 {uT}={u1, w1, φ1, u2, w2, φ2}.	 (9)

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

208 Stanković, T. – Štorga, M. – Marjanović, D.

5 MULTI-OBJECTIVE OPTIMIZATION MODEL

The search goal is to find an optimal distribution of
trusses that comprise topology of the structure in
respect to minimal mass m and minimal deflection δ.
The results will be obtained as a Pareto optimal front
of truss structure designs. The optimisation problem is
formulated with the following expression:

	

min m F d E n NoNx m BC

min F d E n NoNx

max max

max max

, , , , , ,

, , , ,

'()





δ ,, ,

| |

m BC

l l

n n

max

min
t

min
t

T

'()





≤
≥

≤

≤ ≥

−

subject to:
δ δ

σ σ σ
σ

1

0
<< <




∈  =
∈  =


















σ σB

min max D

min max D

x x x x
y y y y

0
,
,









.	 (10)

The overall mass of individual solutions m′
is also being accounted for as an increase to the
imposed loads. Empirically within this research it was
determined that an addition of m′ to the imposed loads
pushes the search towards the optimum much earlier
in the course of evolution.

The optimization parameters, variables and
constraints are given as follows:
•	 F – load vector – fixed node/nodes only,
•	 dmax – allowed truss cross-section diameter,
•	 E – Young’s modulus,
•	 nmax – allowed number of nodes,
•	 NoNx – predefined number of fixed nodes,
•	 BC – boundary conditions – type of supports at

particular fixed nodes, load distribution.
Problem variables:

•	 x and y coordinates of each node considered,
•	 d – truss cross-section diameter,
•	 l – length of respective truss,
•	 m′ – mass of individual truss design added to the

overall loads.
Constraints within the search domain are defined

as follows:
•	 δmax – allowable nodal deflection,
•	 lmin – minimally allowable truss length,
•	 nt – dynamical and recursive constraint which

proscribes that each population at step t is allowed
to have the number of trusses less than or equal

to the least number of trusses found in feasible
solutions of the previous t – 1 step,

•	 σT – allowable tensile stress in trusses, and
•	 σB – the Euler buckling stress for trusses.

It is assumed that compression stress state is
calculated less than zero, and that the buckling
strength will be entered as a parameter in its absolute
value. Design search space is defined within 2-D
bounding box.

6 CONTROL PARAMETERS, CONSTRAINT HANDLING
AND ALGORITHM

Control parameters of the search algorithm for the
evolution of truss girder designs are given as follows:
•	 population size: μ = 60,
•	 offspring population size: μ = λ,
•	 crossover probability for both genotype levels:

pc = 1.0,
•	 static mutation probability: p′′m = 0.02,
•	 search halt criteria: either user defined or

predefined by N≤ 5000,
•	 bit-strings lengths in genotype (Table 1): 	

li1 = li2 = li3 = 9.
Both feasible and unfeasible solutions enter a

constrain-domination [2] and [3] process meaning that
Pareto ranking is performed over all solutions to
maintain diversity within the population. The feasible
solutions are Pareto ranked over objective functions
and the unfeasible ones are ranked according to their
constraint violations. When comparing feasible and
unfeasible solutions, the feasible always dominate the
unfeasible ones. Constraint violation measure Ωi(ai)
of ith solution ai∈P(t) from population P at iteration
step t is derived as the summation of product
between normalized violations ωj(ai) and the
corresponding weighting factor Rj (Rj is normalized
over the summation of all weighting factors). The
expression for Ωi(ai) is given as follows:

	 Ωi i
j j j i

k k
a

R a

R
() = =∑

=∑

1
5

1
5

ω ()
. 	 (11)

Normalizations and weights per constrain
violation of ith solution are defined as follows:

	

R
R l l

R n n

i

i

i
t

1 1

2 2

3 3

100 0 1 0
1000 0 1 0

1 0

= = >
= = <

= =

. .
. .

. -

max

min

m

ω δ δ
ω

ω iin
-

min
-

. /

. /

t
i
t t

i T i T

i B i B

n n
R
R

1 1

4 4

5 5

1 0
1 0

>
= = >
= = >







ω σ σ σ σ
ω σ σ σ σ










. 	 (12)

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

209Synthesis of Truss Structure Designs by NSGA-II and NodeSort Algorithm

Violation of minimal length is regarded as
a severe constraint violation since it may lead to
overlapping of the nodes in the search domain thus
resulting in the systems singular stiffens matrix.
Secondly the violation of allowed deflection is also
significant. These two constraints influence the initial
search stages the most thus requiring the formation of
so severe weighting factors. The other two constraints
begin to significantly influence the search only in
the later stages when most of the solutions being
generated are meaningful solutions. Therefore,
the weighting factor is set to 1.0 for the last three
constraint violations. For the recursive constraint the
normalized violations are calculated by subtracting
the number of trusses of the considered solution and
the least number of trusses found in feasible solutions
of the previous iteration step. For the last two
constraints the normalized violations are calculated
by a division of current stresses found in trusses with
the corresponding allowed stresses for tension and
buckling.

6.1 The Search Algorithm

The pseudo-code of the search algorithm is given in
concordance with the general model of evolutionary
algorithm [5]:
1.	 t ← 0;
2.	 P(t) ← init(μ, nmax, NoNx, BC);
3.	 F(t) ← eval(P(t), μ, F, dmax, E, m', xD, yD, θc) do;
	 A. decoding_γ(dmax, xD, yD);
	 B. check_points(P(t));
	 C. NodeSort((P(t));
	 D. [K] ← create_[K](P(t), E)
	 E. {F} ← create_{F}(P(t), F, m′);
	 F. {u} ← calculate_{u}((P(t), [K], {F});
	 G. {σ} ← calculate_{σ}((P(t), {u});
	 H. apply_Ω((P(t), θc);
od
4. 	 while (t < n) do
	 a. P'(t) ← cross(P(t), F, λ, pc, nmax, NoNx, BC);
	 b. P′′(t) ← bit-flip(P′(t), λ, pm);
	 c. P′′′(t) ← node_mut(P′′(t), λ, pm, nmax, NoNx);
	 d. F(t) ← eval(P′′′(t), λ, F, dmax, E, m′, xD, yD, θc)

do... od
	 e. P(t+1) ← NSGA_II(P(t) + P′′′(t), μ);
	 f. t ← t + 1;
od

A random creation of the initial population
composed of μ chromosomes refers to step 2 of the
pseudo-code. Populations of free and fixed nodes
are created separately and then joined together. The
evaluation considers decoding (A) form integer to real

values (as given by Eq. (1)), displacing overlapping
nodes (B), applying NodeSort (see Section 3.3),
calculating displacements and stresses in trusses (steps
D-G) as explained in Section 4. Step H concludes
the evaluation by applying a constraint check using
the Eqs. (11) and (12) to obtain constraint violation
measure. For the sake of convenience all the relevant
constraint parameters are denoted as θc. Step 4 onwards
denotes the iterative while-do loop which lasts until
the halting condition is satisfied. The crossover in
step a. which produces offspring population of size λ
is defined as given by the Eq. (5). To stress out the
difference in respect to the parent population, the
offspring population generated at step a is denoted
with P′(t). The mutation of offspring’s involving
steps b and c is defined by expressions for mutation
probability calculation (Eq. (3)) for bit-flip mutation
to form P′′(t) and nodal mutation (Eq. (4)) to form
P′′′(t), respectively. The evaluation procedure at step
d is comprised of the same subroutines as in the initial
in steps D-G. The difference is that the evaluation is
being applied to offspring population P′′′(t). Finally,
the NSGA-II (e) creates a new population of size μ
involving the Pareto based ranking.

7 TEST EXAMPLE

Test example involves a multi-objective optimisation
case with the boundary conditions selected as shown
in Fig. 1. The input parameters are: load F = 2 t (~20
kN), maximal truss thickness dmax = 50 mm, Young’s
modulus of elasticity for steel E = 210 MPa, maximal
number of nodes involved nmax = 13, number of fixed
nodes NoNx = 3. In respect to formalism in Eq. (11)
the optimisation problem is given by the following
Eq. 13:

	

min m F d E n NoNx m BC

min F d E n NoNx m

max max

max max

, , , , , ,

, , , , ,

'()





δ '' ,

:
.
.

. /

BC

l

n nt
min
t

()





≤
≥

≤

≤

−

subject to
m
m

N mm

δ

σ

0 015
0 250

100 0

1

22 0
0

0 15 0
0 7 5

σ
σ σ σ

≥
< <






∈[]
∈[]

























B

x
y

, .
, .

m
m

.	 (13)

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

210 Stanković, T. – Štorga, M. – Marjanović, D.

8 DISCUSSION OF RESULTS

The scatter plot m ‒ δ (Fig. 3) shows the the Pareto
optimal front formation during 5000 iterations
recorded for every 100th step of truss design evolution.
The distinctive points on the Pareto curve which
define the span (designs 1 and 3) are shown in Figs. 4
and 5, and the knee solution (design 2) is shown in Fig.
6. Crossed-out points within the scatter plot denote
the infeasible solutions which violate the constraints
according to Eqs. (11) to (13) taken without nt‒1 ≤ nt.
Corresponding to labelling defined in the scatter plot
m ‒ δ (Fig. 3) and Figs. 4 to 6 the truss cross-section
diameters and positions of nodes for designs 1, 2 and
3 of non-dominated set are shown in Tables 3 and 4.

The optimisation of the averages of objectives
with standard deviation calculated at generation 5,000
during 10,000 evolution runs for distinctive points on
the Pareto curve are shown in Table 5.

The algorithm score presented in Table 5 states
high repeatability of the results in respect to the overall
objectives. The only significant dispersions are noted
over δ for Design@1 and Design@3. However, a 1/10
and 3/10 of a millimetre are more than acceptable for
the proposed search domain as defined in Eq. (13).
The repeatability achieved over the design topology is
shown in Fig. 7. The picture shows the spread of free
nodes in knee solutions recorded for 5,000th iteration
through 10,000 evolution runs.

Table 3. Truss cross-section diameters

Compression d [mm]
Design@ 1 2 3 4

1 45.4 43.5 42.0 44.0
2 45.0 47.5 46.7 44.0
3 50.0 50.0 49.9 50.0

Tension d [mm]
Design@ 5 6 7 8 9

1 22.4 24.2 20.3 22.7 22.5
2 29.1 33.9 31.6 33.1 28.9
3 49.9 49.9 49.9 49.9 49.5

Table 4. Nodal positions

Free nodes starting with top left node [m]
Design@ x y x y x y

1 3.4 4.2 7.8 5.2 12.0 4.0
2 2.4 4.9 7.5 6.6 12.6 4.6
3 2.6 5.6 7.6 7.5 12.4 5.6

Fixed nodes starting with bottom left node [m]
1, 2, 3 0.0 0.0 7.5 0.0 15.0 0.0

Table 5. Averages of objectives with standard deviations

Design@
m [t] δ [mm]

m SN δ SN

1 0.33 0.01 2.33 0.34
2 0.48 0.03 1.26 0.11
3 0.88 0.04 0.83 0.05

Fig. 3. Scatter plot m – δ showing the Pareto optimal front formation recorded during 5000 iterations

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

211Synthesis of Truss Structure Designs by NSGA-II and NodeSort Algorithm

9 CONCLUSION AND FURTHER WORK

The test example verified that it is possible to utilize
the NodeSort phenotype based decoding together with
the proposed genotype extensions to include thickness
gamete and variable length chromosomes to achieve a
multi-objective NSGA-II backed optimisation. By
supporting a complete topological search which
maintains high results repeatability, an edge over
presented methods has been achieved. Further work
will address the influences on the optimal solution
search in respect to recursive constrain n nt

min
t≤ −1 and

the order of node sorting.

10 REFERENCES

[1]	 Stanković, T., Marjanović, D., Bojčetić, N., Ščap, D.
(2009). Enhancing Evolution of truss structures by
using genetic algorithms. Transactions of FAMENA,
vol. 33, no. 11, p. 1-10.

[2]	 Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.
(2002). A fast and elitist multiobjective genetic
algorithm NSGA-II. IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, p. 182-197,
DOI:10.1109/4235.996017.

[3]	 Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000).
A fast elitist non-dominated sorting genetic algorithm

for multi-objective optimization: NSGA-II. Parallel
Problem Solving from Nature VI Conference.

[4]	 Goldberg, D.E. (2002). Design of Innovatinon. Kluwer
Academic Publishers, Norwell.

[5]	 Bäck, T., Fogel, D.B., Michalewicz, Z. (2000).
Evolutionary Computation, Advanced Algorithms and
Operators. Institute of Physics Publishing, Bristol.

[6]	 Hasançeb, Q. (2007). Optimization of truss bridges
within a specified design domain using evolution
strategies. Engineering Optimization, vol. 39, no. 6, p.
737-756, DOI:10.1080/03052150701335071.

[7]	 Coello, C.A.C., Christiansen, A.D. (2000).
Multiobjective optimization of trusses using genetic
algorithms. Computers and Structures, vol. 75, no. 6, p.
647-660, DOI:10.1016/S0045-7949(99)00110-8.

[8]	 Jakiela, M.J., Chapman, C., Duda, J., Adewuya, A.,
Saitou, K. (2000). Continuum structural topology
design with genetic algorithms. Computational
Methods in Applied Mechanical Engineering, vol. 186,
no. 2, p. 339-356, DOI:10.1016/S0045-7825(99)00390-
4.

[9]	 Hamda, H., Schoenauer, M. (2002). Topological
optimum design with evolutionary algorithms. Journal
of Convex Analysis, vol. 9, no. 2, p. 503-517.

[10]	Kim, Y.I., De Weck, O. (2004). Progressive structural
topology optimization by variable chromosome
length genetic algorithm. China-Japan-Korea Joint
Symposium on Optimization of Structural and
Mechanical Systems, M3, Kanazawa.

Fig. 4. Design@1 (lightweight design), m = 0.33 t, δ = 2.15 mm

Fig. 6. Design@2 (knee solution), m = 0.49 t, δ = 1.19 mm

Fig. 5. Design@3 (heaviest design), m = 0.92 t, δ = 0.78 mm

Fig. 7. Spread of free nodes recorded for the knee
solution(Design@2 type)

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1080/03052150701335071
http://dx.doi.org/10.1016/S0045-7949(99)00110-8
http://dx.doi.org/10.1016/S0045-7825(99)00390-4
http://dx.doi.org/10.1016/S0045-7825(99)00390-4

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)3, 203-212

212 Stanković, T. – Štorga, M. – Marjanović, D.

[11]	Shea, K., Cagan, J. (1998). Generating Structural
Essays from Languages of Discrete Structures. Hero,
j.s., Sudweeks, F. (Eds.) Artificial Intelligence in
Design, Klower Academic Publishers, Dordrecht, p.
365-384.

[12]	Gero, J.S., Louis, S.L. (1995). Improving pareto optimal
designs using genetic algorithms, Microcomputers
in Civil Engineering, vol. 10, no. 4, p. 241-249,
DOI:10.1111/j.1467-8667.1995.tb00286.x.

http://dx.doi.org/10.1111/j.1467-8667.1995.tb00286.x

