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Synthesis of Truss Structure Designs by NSGA-II  
and NodeSort Algorithm

Stanković, T. – Štorga, M. – Marjanović, D.
Tino Stanković* – Mario Štorga – Dorian Marjanović

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia

This paper presents a genetic algorithm based approach for synthesis of truss structure designs. Genotype represented as a collection of 
binary encoded nodes is decoded into the phenotype by applying the NodeSort algorithm. A genotype extension to consider a cross-section as 
variable and variable length chromosomes to produce designs to successfully meet the boundary conditions are all being incorporated into 
the NodeSort to provide an efficient truss structures synthesis framework. The introduction of multi-objective optimisation using NSGA-II will 
help to address more real life engineering problems.
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0 INTRODUCTION

The work presented in this paper proposes a genetic 
algorithm based approach for synthesis of truss 
structure designs. It builds on the NodeSort [1] 
algorithm, which takes a collection of binary encoded 
nodes from a 2D domain and decodes these into a truss 
structure in a process similar to FEM meshing. In our 
previous work it was shown that the NodeSort is well 
suited for the generation of optimal truss structure 
designs [1]. To continue the development of a truss 
structures synthesis framework, within this paper the 
following points are set as the research goals:
•	 To account for the multiple search objectives 

a non-dominated sorting genetic algorithm II 
(NSGA-II) [2] and [3] will be applied. 

•	 Rather than being just a parameter, the cross-
section area of trusses is defined as a variable 
what should improve the quality of produced 
solutions. Thus, the genotype is extended with 
one more binary encoded gene.

•	 To avoid the formation of node clusters occurring 
in near-optimal designs that had excessive 
number of predefined nodes, or in the opposite, to 
provide nodes to resolve a design solution when 
the course of evolution demands more trusses, a 
variable length chromosomes are introduced.

•	 To facilitate versatility and user-centricity, an 
arbitrary number of nodes with imposed loads are 
allowed to be specified. 
The next section will address the applicability 

of evolutionary algorithms as powerful and apt 
optimizers. Then, the related work section will 
provide an overview of truss structures optimization 
approaches and drawn from these will justify the 
motivation for the NodeSort. To be able to accomplish 
the genotype extension and the introduction of 
variable length chromosomes, the adjustments need 
to be performed at the evolutionary operators’ level. 

How are the crossover and mutation resolved to 
accommodate these changes, as well as the NodeSort 
algorithm, is presented in the third section. Section 4 
gives FEM model of truss girder system and Section 
5 formulates the objectives and constraints of multi-
objective optimisation problem. Modifications of 
the search process parameters and penalty functions 
with the search algorithm given in pseudo-code 
are presented in Section 6. Case study and results 
discussion are presented afterwards. Conclusions and 
the future work notice close this paper.

1 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are population based 
stochastic optimisers that are built on mimicking the 
notions from the natural evolution. Charles Darwin 
stated that evolution begins with the inheritance of 
good gene variations and that basically defines what 
the evolutionary algorithms are all about. Enforcing 
the survival of the fittest principle is managed by 
allowing higher ranked solutions to participate in an 
evolution process by the most. In a random process 
of mixing together the building-blocks taken from two 
parent solutions an offspring is produced. Presumably, 
if building blocks originate from a higher fitness 
individuals than there is a chance that newly generated 
individual might get a bit closer to a solution optimum. 
With the whole process iterated over population 
generations to produce offspring which replace their 
parents at least to an extent, the emergence of solution 
occurs as a consequence of the most fit building-block 
combinations being frequently utilised in a solution 
construction. For such behaviour, it can be said that 
algorithm exhibited a learning process in identification 
of which building blocks to use and how [4] and [5]. 

The key issue of computational modelling [5] is 
to find out suitable problem representation acceptable 
both to the computational environment and to the 
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task at hand. Thus, the problem representation has to 
concur to the algorithm’s requirements and it should 
be devised in a fashion that captures the most of 
the form and attributes of the design search space. 
With EA’s, the problem representation is most often 
brought down to finding out the appropriate genotype 
encoding and its counterpart, decoding into a 
phenotype, thus representing a key point in designing 
an evolutionary computation based optimization 
method [4] and [5]. The extension of the genotype to 
include truss thicknesses, the utilization of variable 
length chromosomes, as well as the NodeSort 
dependent decoding are viewed as part of an effort to 
provide a good material for the truss design evolution 
process. In that way by expanding the set of means to 
realize the required behaviour, the navigation to more 
applicable design solutions is made possible. 

2 RELATED WORK AND PROBLEM FORMULATION

From the literature review, it can be found that 
the methods for the truss structure optimization 
are specialized either for the structure properties 
optimization [6] and [7] or the structure topology 
optimization [8] to [10]. By all means not diminishing 
the complexity of the problem, still the parametric 
optimisation genotypes are easily encoded because 
the layout of trusses is known and remains unchanged 
during the optimisation. As the initial variability 
of the shape is not being accounted for; instead the 
optimisation is carried over the usual truss design 
related variables, i.e. cross-sectional area, length, 
etc. By contrast, a different type of encoding is 
applied in the topological optimum design (TOD) 
cases [8] to [10]. The structure is represented in a 
discrete domain, most often in the form of material 
distribution, which is a straightforward approach in 
shape optimization. The genotype encodings may be 
accomplished in many ways, for example as matrices, 
Voronoi representations [9], or even by using 3-D 
FEM building blocks. The phenotype representation 
then visually depicts the resulting structure. An 
interesting cantilever optimization problem has been 
researched by Kim and de Weck [10], who addressed 
the quality of search with the domain resolution and 
chromosomal length [5]. They increased domain 
resolution gradually throughout the evolution to 
simulate the concretization process starting up from a 
vague concept as a small sized matrix to end up with a 
refined and concrete solution. TOD is computationally 
very demanding, it optimizes the structure in the form 
of the in-domain material distribution, but the other 

design variables, such as the cross-sectional area, 
remain predefined and out of reach. 

A more subtle approach using the simulated 
annealing (SA) method together with shape 
grammars for the structural optimization purposes 
was developed by Shea and Cagan (1998) [11]. 
Shape grammars provide a formal language, a design 
language for the structure shape manipulation.  
Grammars are driven by a set of production rules, or 
simply productions, by which the solution is obtained 
from a series of transformations according to possible 
rules implementation sequences. However, for the 
description of all the possible truss structures, the set 
of rules must be equally large. Therefore, for a generic 
approach, to evolve the structures, the rules should be 
evolvable as well [12]. 

F

?
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y

x

Fig. 1. 2-D continuous search domain [1]

The problem of truss structure design in the 
2-D continuous domain as seen within this work is 
pictured in Fig. 1. Assuming a random distribution 
of nodes and a number of predefined fixed nodes 
(supports and load nodes) all of which are contained 
within a chromosome, the topology of truss girder 
design emerges after the application of the NodeSort 
decoding algorithm [1] (Section 3.3 of this paper). 

The genotype encoding and decoding applied in 
the NodeSort enable the search space to be as large and 
unconstrained as possible. It goes beyond parametric 
optimisation by allowing the optimisation of topology, 
it surpasses TOD approaches since it is much less 
computationally demandable with girder FEM’s being 
parametric and optimised in a continuous domain. The 
phenotype represented as a truss structure emerging 
out of inter-nodal arrangement is an algorithmically 
driven approach. It offers an alternative to shape 
grammars which being knowledge-driven achieve 
the increase in the performance by addition of new 
rules, thus retaining the same rule transformation 
principles. Usually, there is a trade-off between the 
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algorithmic and the knowledge-driven approaches 
since the former requires code interventions for the 
performance increase and the latter requires the shared 
understanding about the domain and objective rule 
definitions, otherwise formalized knowledge becomes 
inconsistent and biased. Extensions to our previous 
work reflecting the new encoding/decoding scheme 
are presented within the next section.

3 EXTENDED ENCODING/DECODING SCHEME  
FOR 2D CONTINUOUS DOMAINS

The model of truss structure is defined as the system 
comprised of a number of trusses and nodes. Boundary 
conditions specify the load cases, thus taking into 
account the amount of the loads being applied, as 
well as the type and the location of truss girder’s 
supports. The load is modelled as a distribution of 
nodal forces. Within each of the evolution turns for 
every candidate solution the FEM system stiffness 
matrix is re-calculated. The position and length of the 
truss elements are defined as a consequence of the 
nodal arrangements within the 2-D domain. Assuming 
circular cross-section, an extension of previous work 
is the introduction of a truss cross-section diameter 
as a variable. Hence, a new structural model that is 
established with the addition of the cross-section 
diameter enables refinement in the search thus, 
allowing getting closer to the optimal system topology.

Not being explicitly written in the chromosomal 
genes, the trusses emerge as a consequence of in-plane 
nodal positions. Thus, in order to be able to introduce 
a truss cross-section dependant attributes it has been 
decided to extend the length of the binary encoded 
node by one gene to contain a gamete of a truss cross-
section. The diameter of each truss is then obtained as 
an average calculated over two gametes belonging to 
the nodes which define the span of a truss. 

According to [1], both fixed nodes and free 
nodes where predetermined in numbers. To clarify a 
distinction, in contrast to free nodes, the fixed nodes 
have a static position in the 2-D search domain thus 
not being subjected to a position change during the 
course of the evolution. However, because of the way 
the cross-section area is calculated, the new thickness 
gamete addition has to be taken into account even 
with the fixed nodes. The number of fixed nodes 
is denoted as NoNx. The improvement introduced 
within this work enables an increase or decrease of 
free nodes to occur as demanded by the course of 
evolution. For example, by prescribing the boundary 
conditions including the maximal allowed cross-
section thickness, the search might be put in a dead 

end situation with no feasible results being generated 
unless it is allowed to increase the number NoN of free 
nodes. Hence, the increase in node numbers creates 
the possibility to generate more trusses since they 
appear as the result of nodal arrangements within the 
2-D search domain. Consequently, a more stiffened 
and load capable structure will be designed. In 
contrast, by allowing the number of free nodes to be 
decreased is required in the case where the search has 
strayed in producing too complex solutions in respect 
to the defined loads. Then, it is necessary to reduce the 
number of trusses in order to obtain a best-fit solution.

3.1 Genotype Encoding

The genotype is assembled two folded; on the primary 
level each of the nodes is represented as a bit string, 
and the secondary level comprises of a collection of 
decoded nodes from which truss structure will be 
determined. For free nodes, three binary encoded 
genes are required, two to represent in-plain 
positioning of the node and one for the determination 
of the cross-section diameter (Table 1). Fixed nodes 
only comprise one gene to participate in the cross-
section diameter calculation. Genotype encoding with 
chromosome represented as a collection of nodes 
is shown in Table 2. Parameter nmax represents the 
allowed number of nodes per chromosome.

Table 1. Binary encoding of nodes 

Nodei

xi coordinate,
binary string li1

yi coordinate,
binary string li2

di diameter gamete,
binary string li3

Table 2. Chromosome structure

Chromosomej

Node1, ..., Nodei, ..., 
Noden 

nj = NoNx + NoNj ≤ nmax

Decoding is performed using standard decoding 
function γ [5]. Decoding per gene i for desired interval 
u vk k, ∈  is defined by the following expression:

	 γk
l

k kik u v: 0 1, , .{ } →   	 (1)

The complete decoding of each gene within a 
single free node i produces a vector of real numbers:

	 γi = γ1 × γ2 × γ3 .	 (2)

3.2 Evolutionary Operators

The mutation is performed simply, in a bit-flip 
manner, thus directly altering the nodal position 
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or changing the cross-section diameter gamete in 
a random fashion. In order to improve the search 
process in the early stages of the solution evolution 
it was necessary to introduce scaling of the mutation 
rate. In the literature, there are a number of such 
mutation approaches [4] and [5]. They are driven by 
the notions from the natural evolution, justifying the 
initial mutation rate levels by the harsh environmental 
conditions. A bit-flip mutation rate is defined as a 
function of its initial rate p′m = 0.1  and the number of 
evolution iterations N. The static mutation rate is being 
set to p′′m = 0.02. The bit-flip mutation probability is 
calculated by a linear scaling formula defined over a 
desired number of iterations:

	 p
p p

N p N

p otherwise
m

m m
m

m

=
−

+ <






'' '
'

''
1000

1000,

.
	 (3)

Random addition or subtraction of nodes is 
performed by a node mutation procedure with the 
mutation probability taken the same as defined in Eq. 
(3). A simple random coin toss trial is performed to 
determine whether a point will be added or subtracted 
from the chromosome. Currently, only the free nodes 
are considered as legible for addition or subtraction. 
The following formalism defines the procedure for the 
node mutation of chromosome providing the maximal 
length nmax and the mutation triggering condition  
p ≤ pm:

	

add new randomly
initilzed free node
randomly delete    
a sinngle free node

if  

   if  











∧ <

∧

head ,      

tails

n n

No

j max

NN NoNxj − >1.

	 (4)

Chromosome transcription during crossover 
acts to copy sequences of genetic material belonging 
to both parents in order to produce an offspring. 
However, to be able to perform the crossover on the 
chromosomal structure as shown in Tables 1 and 2, 
a slight adaption of the usual operator is required; 
namely to address all of the genetic material, a 
crossover has to be performed on both levels of the 
genotype. The crossover procedure is defined with the 
following: 
•	 firstly, by randomly selecting one crossover point 

per each parent on the nodal levels, then,
•	 corresponding to selected nodes, the crossover 

points are randomly chosen again but on the bit-
string level. 

After the crossover it may turn out that the length 
of an offspring violates the condition nk > nmax, as 
the result of an arbitrary nodal level crossover point 
selection. The formalism in Eq. (5) presents a way 
how to keep the size of the offspring k  within the 
preset boundaries as defined by nmax :

	

Turn wise crossover point reposition :
towards beginparent  1 iing,
owards end.

if  

One point crossover :  
tparent

n >n
 

,

2

k max

                        
on free nodes,
on fixed nodes.

if  nk ≤≤
















n .max

	(5)

For the condition nk > nmax, both chromosome 
segments are being shortened for one node in a turn 
wise manner until the condition nk = nmax has been 
met. The turn wise relocation of the crossover point 
tries to average the loss in diversity of genetic material 
to both parents. Afterwards, the standard one point 
crossover is performed separately on the collections of 
free nodes and fixed nodes. At the end, the nodes are 
unified into a single collection to form new offspring 
individual.

3.3 Phenotype Generation with the NodeSort Algorithm

Performing an automated search for the optimal 
system topology which employs the FEM methods 
for the system behaviour evaluation requires a 
creation of structural stiffness matrices absent of any 
singularities. Although the singular solutions can be 
ranked as infeasible by the constraint handling, their 
frequent occurrences will slow down and complicate 
the search process. To overcome the latter, drawn up 
on the engineering practice it is known that arranging 
trusses to form triangular substructures is the least 
requirement for the avoidance of mechanical joints 
formation in truss structures. Thus, if all of the sub-
structures are triangular, the search space is narrowed 
down only to computable non-singular solutions, 
which helps to boost the efficiency of the search. 
Therefore, the NodeSort employs a mapping to create 
phenotype out of the encoded chromosome resulting 
in a mesh composed of triangular schemes to satisfy 
topological stiffness requirement. This mapping is 
similar to the meshing techniques applied within 
various FEM methods. The NodeSort algorithm for 
generating a phenotype based on the nodal positions 
and truss thickness gametes is presented with the 
following pseudo-code:
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1.	 sort and collect nodes ascending over x, if equal 
compare over y,

2. 	 point to first node in chromosome i ← 0,
3. 	 while i < (ni – 2) do
	 A. 	 if nodei.y ≥ nodei+1.y
		     foreach truss definition collect nodei+1, 

	    nodei+2 ,..., nodei+k which are ordered 
	    ascending over y do

		     break the search if nodei+k+1 satisfies any 
	    of the following:

		        a.   is not ordered ascending over y,
		        b.   is the second node in ascending order 	

	             satisfying nodei+k+1.y > nodei.y ,
		        c.   i+k+1 > ni.
		  od
	 B. else: similar as in A but collecting nodes in 

descending ordering over y with two break criteria 
redefinitions: (a) is not ordered descending over 
y, and (b) is the second node in descending order 
satisfying node.y < nodei.y.

	 C. define trusses between nodei and all nodes 
identified in A and B.

	 D. move to next node i ← i + 1 
4. 	 od.

The NodeSort algorithm starts with all of 
the nodes being sorted ascending based on their 
x  coordinate. The first node from chromosome is 
taken into consideration by setting the counter i to 
zero (see pseudo-code line 2). In the following while-
do loop which is marked with 3, the algorithm will 
search for possible ways to define truss elements 
between the considered node i and all of the nodes 
with greater x coordinate. The resulting structure must 
be composed of triangular schemes with no trusses 
creating intersections. Inside the while-do loop two 
possibilities which are marked with letters A and B 
can appear: based on its position the first following 
node i + 1 can either be below or on equal height (A) 
or above the considered node i (B). Inside A all of 
the nodes will be ranked legible for truss definition if 
they do not violate the conditions a, b and c. The first 
condition (a), makes sure whether all of the following 
i+k+1 nodes are in an ascending order over y, the 
following (b) stops the search if the node is the second 
one above the node i and in the end (c) it is prevented 
for the counter to be larger the number of nodes ni. 
The condition B takes into account situations opposite 
of A - the first following node being above node i thus 
collecting truss definition nodes in a descending order. 
Except for the step (c) which considers the counter 
exceeding the number of nodes, the break criteria (a) 
and (b) are redefined for B to consider descending 

order of nodes as shown in pseudo-code. Afterwards, 
the trusses are defined (C) over all possible attributes 
including truss cross-section diameter and the whole 
procedure is repeated for the following node (D). Fig. 
2 pictures a truss structure phenotype generated by the 
NodeSort algorithm which corresponds to the nodal 
arrangement which has already been shown in Fig. 1:

Fig. 2. Truss structure obtained from nodal positions shown in Fig. 
1 [1]

The singular condition that may occur when 
two or more nodes are very close to each other or 
when they overlap is regulated with a constraint that 
proscribes the minimal allowed length of trusses:

	 l ≥ lmin .	 (6)

4 STRUCTURAL FEM MODEL

The structure is modelled using FEM planar trusses 
with possessing in total 6 degrees of freedom each. 
It was necessary to introduce bending to trusses and 
implicitly convert them into beams. Otherwise, the 
result of the evolution taking the infinite stiffness to 
bending of truss FEM element will always converge 
to a single horizontal truss. Such structure would 
have zero displacement since it cannot bend, it would 
be minimal in mass since it is just a horizontal line. 
Normal forces would also be equal to zero for the 
force vector put vertically as in Fig. 1. The relation 
between load F and the system’s nodal displacement u 
is given here by with the following expression:

	 {F}=[K]{u}.	 (7)

The [K] is a standard stiffness matrix defined for 
planar girder elements. The load vector considering 
the start and end points of each of the trusses is given 
in its transposed form as:

	 {FT}={N1, Q1, M1, N2, Q2, M2}.	 (8)
The vector of displacements per truss element is 

given with the following expression:

	 {uT}={u1, w1, φ1, u2, w2, φ2}.	 (9)
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5 MULTI-OBJECTIVE OPTIMIZATION MODEL

The search goal is to find an optimal distribution of 
trusses that comprise topology of the structure in 
respect to minimal mass m and minimal deflection δ. 
The results will be obtained as a Pareto optimal front 
of truss structure designs. The optimisation problem is 
formulated with the following expression:

	

min m F d E n NoNx m BC

min F d E n NoNx

max max

max max

, , , , , ,

, , , ,

'( )





δ ,, ,

| |

m BC

l l

n n

max

min
t

min
t

T

'( )





≤
≥

≤

≤ ≥

−

subject to:
δ δ

σ σ σ
σ

1

0
<< <




∈  =
∈  =


















σ σB

min max D

min max D

x x x x
y y y y

0
,
,









.	 (10)

The overall mass of individual solutions m′ 
is also being accounted for as an increase to the 
imposed loads. Empirically within this research it was 
determined that an addition of m′ to the imposed loads 
pushes the search towards the optimum much earlier 
in the course of evolution.

The optimization parameters, variables and 
constraints are given as follows:
•	 F – load vector – fixed node/nodes only,
•	 dmax – allowed truss cross-section diameter,
•	 E – Young’s modulus,
•	 nmax – allowed number of nodes,
•	 NoNx – predefined number of fixed nodes, 
•	 BC – boundary conditions – type of supports at 

particular fixed nodes, load distribution.
Problem variables:

•	 x and y coordinates of each node considered, 
•	 d – truss cross-section diameter,
•	 l – length of respective truss,
•	 m′ – mass of individual truss design added to the 

overall loads.
Constraints within the search domain are defined 

as follows:
•	 δmax – allowable nodal deflection, 
•	 lmin – minimally allowable truss length, 
•	 nt – dynamical and recursive constraint which 

proscribes that each population at step t is allowed 
to have the number of trusses less than or equal 

to the least number of trusses found in feasible 
solutions of the previous t – 1 step,

•	 σT – allowable tensile stress in trusses, and 
•	 σB  – the Euler buckling stress for trusses. 

It is assumed that compression stress state is 
calculated less than zero, and that the buckling 
strength will be entered as a parameter in its absolute 
value. Design search space is defined within 2-D 
bounding box.

6 CONTROL PARAMETERS, CONSTRAINT HANDLING  
AND ALGORITHM

Control parameters of the search algorithm for the 
evolution of truss girder designs are given as follows:
•	 population size: μ = 60,
•	 offspring population size: μ = λ,
•	 crossover probability for both genotype levels:  

pc = 1.0,
•	 static mutation probability: p′′m = 0.02,
•	 search halt criteria: either user defined or 

predefined by N≤ 5000,
•	 bit-strings lengths in genotype (Table 1): 	  

li1 = li2 = li3 = 9.
Both feasible and unfeasible solutions enter a 

constrain-domination [2] and [3] process meaning that 
Pareto ranking is performed over all solutions to 
maintain diversity within the population. The feasible 
solutions are Pareto ranked over objective functions 
and the unfeasible ones are ranked according to their 
constraint violations. When comparing feasible and 
unfeasible solutions, the feasible always dominate the 
unfeasible ones. Constraint violation measure Ωi(ai) 
of ith solution ai∈P(t)  from population P at iteration 
step t is derived as the summation of product 
between normalized violations ωj(ai) and the 
corresponding weighting factor Rj (Rj is normalized 
over the summation of all weighting factors). The 
expression for Ωi(ai) is given as follows:

	 Ωi i
j j j i

k k
a

R a

R
( ) = =∑

=∑

1
5

1
5

ω ( )
. 	 (11)

Normalizations and weights per constrain 
violation of ith solution are defined as follows:
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Violation of minimal length is regarded as 
a severe constraint violation since it may lead to 
overlapping of the nodes in the search domain thus 
resulting in the systems singular stiffens matrix. 
Secondly the violation of allowed deflection is also 
significant. These two constraints influence the initial 
search stages the most thus requiring the formation of 
so severe weighting factors. The other two constraints 
begin to significantly influence the search only in 
the later stages when most of the solutions being 
generated are meaningful solutions. Therefore, 
the weighting factor is set to 1.0 for the last three 
constraint violations. For the recursive constraint the 
normalized violations are calculated by subtracting 
the number of trusses of the considered solution and 
the least number of trusses found in feasible solutions 
of the previous iteration step. For the last two 
constraints the normalized violations are calculated 
by a division of current stresses found in trusses with 
the corresponding allowed stresses for tension and 
buckling.

6.1 The Search Algorithm

The pseudo-code of the search algorithm is given in 
concordance with the general model of evolutionary 
algorithm [5]:
1.	 t ← 0;
2.	 P(t) ← init(μ, nmax, NoNx, BC);
3.	 F(t) ← eval(P(t), μ, F, dmax, E, m', xD, yD, θc) do;
	 A. decoding_γ(dmax, xD, yD);
	 B. check_points(P(t));
	 C. NodeSort((P(t));
	 D. [K] ← create_[K](P(t), E)
	 E. {F} ← create_{F}(P(t), F, m′);
	 F. {u} ← calculate_{u}((P(t), [K], {F});
	 G. {σ} ← calculate_{σ}((P(t), {u});
	 H. apply_Ω((P(t), θc);
od
4. 	 while (t < n) do
	 a. P'(t) ← cross(P(t), F, λ, pc, nmax, NoNx, BC);
	 b. P′′(t) ← bit-flip(P′(t), λ, pm);
	 c. P′′′(t) ← node_mut(P′′(t), λ, pm, nmax, NoNx);
	 d. F(t) ← eval(P′′′(t), λ, F, dmax, E, m′, xD, yD, θc) 

do... od
	 e. P(t+1) ← NSGA_II(P(t) + P′′′(t), μ);
	 f. t ← t + 1;
od

A random creation of the initial population 
composed of μ chromosomes refers to step 2 of the 
pseudo-code. Populations of free and fixed nodes 
are created separately and then joined together. The 
evaluation considers decoding (A) form integer to real 

values (as given by Eq. (1)), displacing overlapping 
nodes (B), applying NodeSort (see Section 3.3), 
calculating displacements and stresses in trusses (steps 
D-G) as explained in Section 4. Step H concludes 
the evaluation by applying a constraint check using 
the Eqs. (11) and (12) to obtain constraint violation 
measure. For the sake of convenience all the relevant 
constraint parameters are denoted as θc. Step 4 onwards 
denotes the iterative while-do loop which lasts until 
the halting condition is satisfied. The crossover in 
step a. which produces offspring population of size λ 
is defined as given by the Eq. (5). To stress out the 
difference in respect to the parent population, the 
offspring population generated at step a is denoted 
with P′(t). The mutation of offspring’s involving 
steps b and c is defined by expressions for mutation 
probability calculation (Eq. (3)) for bit-flip mutation 
to form P′′(t) and nodal mutation (Eq. (4)) to form 
P′′′(t), respectively. The evaluation procedure at step 
d is comprised of the same subroutines as in the initial 
in steps D-G. The difference is that the evaluation is 
being applied to offspring population P′′′(t). Finally, 
the NSGA-II (e) creates a new population of size μ  
involving the Pareto based ranking.

7 TEST EXAMPLE

Test example involves a multi-objective optimisation 
case with the boundary conditions selected as shown 
in Fig. 1. The input parameters are: load F = 2 t (~20 
kN), maximal truss thickness dmax = 50 mm, Young’s 
modulus of elasticity for steel E = 210 MPa, maximal 
number of nodes involved nmax = 13, number of fixed 
nodes NoNx = 3. In respect to formalism in Eq. (11) 
the optimisation problem is given by the following 
Eq. 13:
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8 DISCUSSION OF RESULTS 

The scatter plot m ‒ δ (Fig. 3) shows the the Pareto 
optimal front formation during 5000 iterations 
recorded for every 100th step of truss design evolution. 
The distinctive points on the Pareto curve which 
define the span (designs 1 and 3) are shown in Figs. 4 
and 5, and the knee solution (design 2) is shown in Fig. 
6. Crossed-out points within the scatter plot denote 
the infeasible solutions which violate the constraints 
according to Eqs. (11) to (13) taken without nt‒1 ≤ nt. 
Corresponding to labelling defined in the scatter plot 
m ‒ δ (Fig. 3) and Figs. 4 to 6 the truss cross-section 
diameters and positions of nodes for designs 1, 2 and 
3 of non-dominated set are shown in Tables 3 and 4. 

The optimisation of the averages of objectives 
with standard deviation calculated at generation 5,000 
during 10,000 evolution runs for distinctive points on 
the Pareto curve are shown in Table 5.

The algorithm score presented in Table 5 states 
high repeatability of the results in respect to the overall 
objectives. The only significant dispersions are noted 
over δ for Design@1 and Design@3. However, a 1/10 
and 3/10 of a millimetre are more than acceptable for 
the proposed search domain as defined in Eq. (13). 
The repeatability achieved over the design topology is 
shown in Fig. 7. The picture shows the spread of free 
nodes in knee solutions recorded for 5,000th iteration 
through 10,000 evolution runs.

Table 3. Truss cross-section diameters

Compression d [mm]
Design@ 1 2 3 4

1 45.4 43.5 42.0 44.0
2 45.0 47.5 46.7 44.0
3 50.0 50.0 49.9 50.0

Tension d [mm]
Design@ 5 6 7 8 9

1 22.4 24.2 20.3 22.7 22.5
2 29.1 33.9 31.6 33.1 28.9
3 49.9 49.9 49.9 49.9 49.5

Table 4. Nodal positions

Free nodes starting with top left node [m]
Design@ x y x y x y

1 3.4 4.2 7.8 5.2 12.0 4.0
2 2.4 4.9 7.5 6.6 12.6 4.6
3 2.6 5.6 7.6 7.5 12.4 5.6

Fixed nodes starting with bottom left node [m]
1, 2, 3 0.0 0.0 7.5 0.0 15.0 0.0

Table 5. Averages of objectives with standard deviations 

Design@
m [t] δ [mm]

m SN δ SN

1 0.33 0.01 2.33 0.34
2 0.48 0.03 1.26 0.11
3 0.88 0.04 0.83 0.05

Fig. 3. Scatter plot m – δ showing the Pareto optimal front formation recorded during 5000 iterations
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9 CONCLUSION AND FURTHER WORK

The test example verified that it is possible to utilize 
the NodeSort phenotype based decoding together with 
the proposed genotype extensions to include thickness 
gamete and variable length chromosomes to achieve a 
multi-objective NSGA-II backed optimisation. By 
supporting a complete topological search which 
maintains high results repeatability, an edge over 
presented methods has been achieved. Further work 
will address the influences on the optimal solution 
search in respect to recursive constrain n nt

min
t≤ −1  and 

the order of node sorting.
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