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Abstract

The Kirchhoff index Kf(G) of a graph G is the sum of resistance distances between
all pairs of vertices in G. In this paper, we obtain exact formulas for the expected values
of the Kirchhoff indices of the random polyphenyl and spiro chains, which are graphs of
a class of unbranched multispiro molecules and polycyclic aromatic hydrocarbons. More-
over, we obtain a relation between the expected values of the Kirchhoff indices of a random
polyphenyl and its random hexagonal squeeze, and the average values for the Kirchhoff in-
dices of all polyphenyl chains and all spiro chains with n hexagons, respectively.
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1 Introduction
Based on the electrical network theory, Klein and Randić [13] introduced the concept of
resistance distance. A connected graph G with vertex set {v1, v2, · · · , vn} is viewed as
an electrical network N by replacing each edge of G with a unit resistor, the resistance
distance between vi and vj , denoted by rG(vi, vj) or r(vi, vj), is the elective resistance
between them as computed by the methods of the theory of resistive electrical networks
based on Ohm’s and Kirchhoff’s laws in N .

The Kirchhoff index of G, denoted by Kf(G), is the sum of resistance distances be-
tween all pairs of vertices in G, namely,

Kf(G) =
∑
i<j

rG(vi, vj)

Like many topological indices, Kirchhoff index is a structure descriptor. The resistance
distance is also intrinsic to the graph with some nice purely mathematical and physical in-
terpretations [14] [15]. Also, the Kirchhoff index has been found very useful in chemistry,
such as in assessing cyclicity of polycyclic structures including fullerenes, linear hexag-
onal chains and some special molecular graphs such as circulant graphs, distance-regular
graphs and Möbius ladders [1] [18] [22] [24]. Bonchev et al. [4] used it in polymer sci-
ence and found that the Kirchhoff index in their approach is especially useful for defin-
ing the topological radius Rtop = Kf

n2 of macromolecules containing cyclic fragments.
Some closed-form formulae for Kirchhoff index have been given for circulant graphs, lin-
ear hexagonal chains and so on [1] [16] [19] [22]. The resistance distance is also well
studied in mathematical literatures. Much work has been done to compute Kirchhoff in-
dex of some classes of graphs, or give some bounds for Kirchhoff index of graphs and
characterize extremal graphs. For instance, unicyclic and bicyclic graphs with extremal
Kirchhoff index are characterized and sharp bounds for Kirchhoff index of such graphs are
obtained [6] [12] [21] [25] [26].

Polyphenyls and their derivatives, which can be used in organic synthesis, drug synthe-
sis, heat exchangers, etc., attracted the attention of chemists for many years [11] [17] [20].
Spiro compounds are an important class of cycloalkanes in organic chemistry. A spiro
union in spiro compounds is a linkage between two rings that consists of a single atom
common to both rings and a free spiro union is a linkage that consists of the only direct
union between the rings. Some results on energy, Merrifield-Simmons index, Hosoya in-
dex and Wiener index of the spiro and polyphenyl chains were reported in [2] [5] [9] [27].
Recently, Deng [7] [8] [10] gave the recurrences or explicit formulae for computing the
Wiener index and Kirchhoff index of spiro and polyphenyl chains. Yang and Zhang [23]
obtained a simple exact formula for the expected value of the Wiener index of a random
polyphenyl chain. In this paper, we will consider the expected values of the Kirchhoff index
of random polyphenyl and spiro chains.

A polyphenyl chain PPCn with n hexagons can be regarded as a polyphenyl chain
PPCn−1 with n − 1 hexagons to which a new terminal hexagon has been adjoined by a
cut edge, see Figure 1.

Let PPCn = H1H2 · · ·Hn be a polyphenyl chain with n(n ≥ 2) hexagons, where Hk

is the k-th hexagon of PPCn attached to Hk−1 by a cut edge uk−1ck, k = 2, 3, · · · , n. A
vertex v of Hk is said to be ortho-, meta- and para-vertex of Hk if the distance between v
and ck is 1, 2 and 3, denoted by ok, mk and pk, respectively. Examples of ortho-, meta-, and
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para-vertices are shown in Figure 1. Except the first hexagon, any hexagon in a polyphenyl
chain has two ortho-vertices, two meta-vertices and one para-vertex.

x1

x2 x3

x4

x5x6

un−1PPCn−1 Hn

Figure 1: A polyphenyl chain PPCn with n hexagons,

cn = x1 and ortho-vertices on = x2, x6, meta-vertices

mn = x3, x5, and para-vertex pn = x4 in Hn.

A polyphenyl chain PPCn is a polyphenyl ortho-chain if uk = ok for 2 ≤ k ≤ n− 1.
A polyphenyl chain PPCn is a polyphenyl meta-chain if uk = mk for 2 ≤ k ≤ n− 1. A
polyphenyl chain PPCn is a polyphenyl para-chain if uk = pk for 2 ≤ k ≤ n − 1. The
polyphenyl ortho-, meta- and para-chain with n hexagons are denoted by On, Mn and Pn,
respectively.

For n ≥ 3, the terminal hexagon can be attached to meta-, ortho-, or para-vertex in
three ways, which results in the local arrangements we describe as PPC1

n+1, PPC2
n+1,

PPC3
n+1, see Figure 2.

PPCn−1

PPC1
n+1

PPCn−1

PPC2
n+1

PPCn−1

PPC3
n+1

Figure 2: The three types of local arrangements in polyphenyl chains.

A random polyphenyl chain PPC(n, p1, p2) with n hexagons is a polyphenyl chain
obtained by stepwise addition of terminal hexagons. At each step k(= 3, 4, · · · , n), a
random selection is made from one of the three possible constructions:

(i)PPCk−1 → PPC1
k with probability p1,

(ii)PPCk−1 → PPC2
k with probability p2,

(iii)PPCk−1 → PPC3
k with probability 1− p1 − p2

where the probabilities p1 and p2 are constants, irrespective to the step parameter k.
Specially, the random polyphenyl chain PPC(n, 1, 0) is the polyphenyl meta-chain

Mn, PPC(n, 0, 1) is the polyphenyl orth-chain On, and PPC(n, 0, 0) is the polyphenyl
para-chain Pn, respectively.

Also, a spiro chain SPCn with n hexagons can be regarded as a spiro chain SPCn−1
with n− 1 hexagons to which a new terminal hexagon has been adjoined, see Figure 3.
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SPCn−1 Hnun−1 x1

x2 x3

x4

x5x6

Figure 3: A spiro chain SPCn with n hexagons.

For n ≥ 3, the terminal hexagon can also be attached in three ways, which results in
the local arrangements we describe as SPC1

n+1, SPC2
n+1, SPC3

n+1, see Figure 4.

SPCn−1

SPC1
n+1

SPCn−1

SPC2
n+1

SPCn−1

SPC3
n+1

Figure 4: The three types of local arrangements in spiro chains.

A random spiro chain SPC(n, p1, p2) with n hexagons is a spiro chain obtained by
stepwise addition of terminal hexagons. At each step k(= 3, 4, · · · , n), a random selection
is made from one of the three possible constructions:

(i)SPCk−1 → SPC1
k with probability p1,

(ii)SPCk−1 → SPC2
k with probability p2,

(iii)SPCk−1 → SPC3
k with probability 1− p1 − p2

where the probabilities p1 and p2 are constants, irrelative to the step parameter k.
Similarly, the random spiro chain SPC(n, 1, 0), PPC(n, 0, 1) and PPC(n, 0, 0) are

the spiro meta-chain Mn, the spiro orth-chain On and the spiro para-chain Pn, respectively.
For a random polyphenyl chain PPC(n, p1, p2) and a random spiro chain SPC(n,

p1, p2), their Kirchhoff indices are random variables. In this paper, we will obtain exact
formulas for the expected values E(Kf(PPC(n, p1, p2))) and E(Kf(SPC(n, p1, p2)))
of the Kirchhoff indices of random polyphenyl and spiro chains, respectively.

2 Main results
2.1 The Kirchhoff index of the random polyphenyl chain

In this section, we will consider the Kirchhoff index of the random polyphenyl chain.

Theorem 2.1. For n ≥ 1, the expected value of the Kirchhoff index of the random poly-
phenyl chain PPC(n, p1, p2) is

E(Kf(PPC(n, p1, p2))) = (15−p1−4p2)n
3+(3p1+12p2+8)n2−(2p1+8p2+

11

2
)n

Proof. Note that the polyphenyl chain PPCn is obtained by attaching PPCn−1 a new
terminal hexagon by an edge, we suppose that the terminal hexagon is spanned by vertices
x1, x2, x3, x4, x5, x6, and the new edge is un−1x1 (see Fig.1). Then

(i) For any v ∈ PPCn−1,
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r(x1, v) = r(un−1, v) + 1, r(x2, v) = r(un−1, v) + 1 + 5
6 ,

r(x3, v) = r(un−1, v) + 1 + 4
3 , r(x4, v) = r(un−1, v) + 1 + 3

2 ,
r(x5, v) = r(un−1, v) + 1 + 4

3 , r(x6, v) = r(un−1, v) + 1 + 5
6 ;

(ii) PPCn−1 has 6(n− 1) vertices;

(iii) For k ∈ {1, 2, 3, 4, 5, 6},
6∑

i=1

r(xk, xi) =
35
6 .

So, we have
r(x1|PPCn) = r(un−1|PPCn−1) + 1× 6(n− 1) + 35

6

r(x2|PPCn) = r(un−1|PPCn−1) + (1 + 5
6 )× 6(n− 1) + 35

6

r(x3|PPCn) = r(un−1|PPCn−1) + (1 + 4
3 )× 6(n− 1) + 35

6

r(x4|PPCn) = r(un−1|PPCn−1) + (1 + 3
2 )× 6(n− 1) + 35

6

r(x5|PPCn) = r(x3|PPCn−1)

r(x6|PPCn) = r(x2|PPCn−1)
where r(x|G) =

∑
y∈V (G)

r(x, y), and

Kf(PPCn) = Kf(PPCn−1) + 6r(un−1|PPCn−1) + 71n− 36− 1

2

6∑
i=1

6∑
j=1

r(vi, vj)

= Kf(PPCn−1) + 6r(un−1|PPCn−1) + 71n− 36− 35

2

Then

Kf(PPCn+1) = Kf(PPCn) + 6r(un|PPCn) + 71n+
35

2
(2.1)

For a random polyphenyl chain PPC(n, p1, p2), the resistance number r(un|PPC(n,
p1, p2)) is a random variable, and its expected value is denoted by

Un = E(r(un|PPC(n, p1, p2))).

By the expectation operator and (1), we can obtain a recursive relation for the expected
value of the Kirchhoff number of a random polyphenyl chain PPC(n, p1, p2)

E(Kf(PPC(n+ 1, p1, p2)) = E(Kf(PPC(n, p1, p2))) + 6Un + 71n+
35

2
(2.2)

Now, we consider computing Un.
(i) If PPCn → PPC1

n+1 with probability p1, then un coincides with the vertex x3 or
x5. Consequently, r(un|PPCn) is given by r(x3|PPCn) with probability p1.

(ii) If PPCn → PPC2
n+1 with probability p2, then un coincides with the vertex x2 or

x6. Consequently, r(un|PPCn) is given r(x2|PPCn) with probability p2.
(iii) If PPCn → PPC3

n+1 with probability 1 − p1 − p2, then un coincides with the
vertex x4. Consequently, r(un|PPCn) is given by r(x4|PPCn) with probability 1− p1−
p2.
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From (i)-(iii) above, we immediately obtain

Un =r(x3|PPCn)p1 + r(x2|PPCn)p2 + r(x4|PPCn)(1− p1 − p2)

=p1[r(un−1|PPC(n− 1, p1, p2)) + 14(n− 1) +
35

6
]

+ p2[r(un−1|PPC(n− 1, p1, p2)) + 11(n− 1) +
35

6
]

+ (1− p1 − p2)[r(un−1|PPC(n− 1, p1, p2)) + 15(n− 1) +
35

6
]

By applying the expectation operator to the above equation, we obtain

Un = Un−1 + (15− p1 − 4p2)n+ p1 + 4p2 −
55

6

And U1 = E(r(u1|PPC(1, p1, p2))) =
35
6 , using the above recurrence relation, we have

Un =
(15− p1 − 4p2)

2
n2 + (

p1
2

+ 2p2 −
5

3
)n

From (2),

E(Kf(PPC(n+ 1, p1, p2))

= E(Kf(PPC(n, p1, p2))) + 6[ (15−p1−4p2)
2 n2 + (p1

2 + 2p2 − 5
3 )n] + 71n+ 35

2
= E(Kf(PPC(n, p1, p2))) + (45− 3p1 − 12p2)n

2 + (3p1 + 12p2 + 61)n+ 35
2

and E(Kf(PPC(1, p1, p2))) =
35
2 .

Using the above recurrence relation, we have

E(Kf(PPC(n, p1, p2))) = (15−p1−4p2)n3+(3p1+12p2+8)n2−(2p1+8p2+
11

2
)n.

Specially, by taking (p1, p2) = (1, 0), (0, 1) or (0, 0), respectively, and Theorem 2.1,
we have

Corollary 2.2. ([8]) The Kirchhoff indices of the polyphenyl meta-chain Mn, the poly-
phenyl ortho-chain On and the polyphenyl para-chain Pn are

Kf(Mn) = 14n3 + 11n2 − 15

2
n

Kf(On) = 11n3 + 20n2 − 27

2
n

Kf(Pn) = 15n3 + 8n2 − 11

2
n
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2.2 The Kirchhoff index of the random spiro chain

In this section, we will consider the Kirchhoff index of the random spiro chain.

Theorem 2.3. For n ≥ 1, the expected value of the Kirchhoff index of the random spiro
chain SPC(n, p1, p2) is

E(Kf(SPC(n, p1, p2))) = (
25

4
− 25

36
p1 −

25

9
p2)n

3 + (
25

12
p1 +

25

3
p2 +

125

12
)n2

−(25
18

p1 +
50

9
p2 −

5

6
)n.

Proof. Note that the spiro chain SPCn is obtained by attaching SPCn−1 a new terminal
hexagon, we suppose that the terminal hexagon is spanned by vertices x1, x2, x3, x4, x5,
x6, and the vertex x1 is un−1 (see Fig.3). Then

(i) For any v ∈ SPCn−1,
r(x1, v) = r(un−1, v), r(x2, v) = r(un−1, v) +

5
6 ,

r(x3, v) = r(un−1, v) +
4
3 , r(x4, v) = r(un−1, v) +

3
2 ,

r(x5, v) = r(un−1, v) +
4
3 , r(x6, v) = r(un−1, v) +

5
6 ;

(ii) SPCn−1 has 5(n− 1) + 1 vertices;

(iii) For k ∈ {1, 2, 3, 4, 5, 6},
6∑

i=1

r(xk, xi) =
35
6 .

So, we have
r(x1|SPCn) = r(un−1|SPCn−1) +

35
6

r(x2|SPCn) = r(un−1|SPCn−1)+
5
6×(5n−4)+

5
6+

4
3+

3
2+

4
3 = r(un−1|SPCn−1)+

25
6 × (n− 1) + 35

6
r(x3|SPCn) = r(un−1|SPCn−1) +

20
3 × (n− 1) + 35

6
r(x4|SPCn) = r(un−1|SPCn−1) +

15
2 × (n− 1) + 35

6
r(x5|SPCn) = r(x3|SPCn−1)
r(x6|SPCn) = r(x2|SPCn−1)

where r(x|G) =
∑

y∈V (G)

r(x, y), and

Kf(SPCn) = Kf(SPCn−1) + 5r(un−1|SPCn−1)+ (2.3)

175(n− 1)

6
+ 35− 1

2

6∑
i=1

6∑
j=1

r(vi, vj)

= Kf(SPCn−1) + 5r(un−1|SPCn−1) +
175n

6
− 35

3

Then
Kf(SPCn+1) = Kf(SPCn) + 5r(un|SPCn) +

175n

6
+

35

2
(2.4)

For a random spiro chain SPC(n, p1, p2), the resistance number r(un|SPC(n, p1, p2))
is a random variable, and its expected value is denoted by

Un = E(r(un|SPC(n, p1, p2))).

By the expectation operator and (3), we can obtain a recursive relation for the expected
value of the Kirchhoff number of a random spiro chain SPC(n, p1, p2)

E(Kf(SPC(n+ 1, p1, p2)) = E(Kf(SPC(n, p1, p2))) + 5Un +
175n

6
+

35

2
(2.5)
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Now, we consider computing Un.
(i) If SPCn → SPC1

n+1 with probability p1, then un is the vertex x3 or x5. Conse-
quently, r(un|SPCn) is given by r(x3|SPCn) with probability p1.

(ii) If SPCn → SPC2
n+1 with probability p2, then un is the vertex x2 or x6. Conse-

quently, r(un|SPCn) is given r(x2|SPCn) with probability p2.
(iii) If SPCn → SPC3

n+1 with probability 1 − p1 − p2, then un is the vertex x4.
Consequently, r(un|SPCn) is given by r(x4|SPCn) with probability 1− p1 − p2.

From (i)-(iii) above, we immediately obtain

Un =r(x3|SPCn)p1 + r(x2|SPCn)p2 + r(x4|SPCn)(1− p1 − p2)

=p1[r(un−1|SPC(n− 1, p1, p2)) +
20

3
(n− 1) +

35

6
]

+ p2[r(un−1|SPC(n− 1, p1, p2)) +
25

6
(n− 1) +

35

6
]

+ (1− p1 − p2)[r(un−1|SPC(n− 1, p1, p2)) +
15

2
(n− 1) +

35

6
]

By applying the expectation operator to the above equation, we obtain

Un = Un−1 + (
15

2
− 5

6
p1 −

10

3
p2)n+

5

6
p1 +

10

3
p2 −

5

3

And U1 = E(r(u1|SPC(1, p1, p2))) =
35
6 , using the above recurrence relation, we have

Un = (
15

4
− 5

12
p1 −

5

3
p2)n

2 + (
25

12
+

5

12
p1 +

5

3
p2)n

From (4),
E(Kf(SPC(n+ 1, p1, p2)) =
= E(Kf(SPC(n, p1, p2))) + 5[( 154 −

5
12p1 −

5
3p2)n

2+
( 2512 + 5

12p1 +
5
3p2)n] +

175
6 n+ 35

2

and E(Kf(SPC(1, p1, p2))) =
35
2 .

Using the above recurrence relation, we have

E(Kf(SPC(n, p1, p2))) = (
25

4
− 25

36
p1 −

25

9
p2)n

3 + (
25

12
p1 +

25

3
p2 +

125

12
)n2

−(25
18

p1 +
50

9
p2 −

5

6
)n.

Specially, by taking (p1, p2) = (1, 0), (0, 1) or (0, 0), respectively, and Theorem 2.3,
we have

Corollary 2.4. ([8]) The Kirchhoff indices of the spiro meta-chain Mn, the spiro ortho-
chain On and the spiro para-chain Pn are

Kf(Mn) =
50

9
n3 +

25

2
n2 − 5

9
n

Kf(On) =
125

36
n3 +

75

4
n2 − 85

18
n

Kf(Pn) =
25

4
n3 +

125

12
n2 +

5

6
n.
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2.3 A relation between E(Kf(PPC)) and E(Kf(SPC))

Since a spiro chain can be obtained from a polyphenyl chain by squeezing off its cut edges,
it is straightforward by Rayleigh short-cut principle in the classical theory of electricity that
the Kirchhoff index of the spiro chain is less than the polyphenyl chain. In fact, a relation
between the Kirchhoff indices of a polyphenyl chain and its corresponding spiro chain
obtained by squeezing off its cut edges was given in [8]. Here, we can also obtain a relation
between the expected values of their Kirchhoff indices of the random polyphenyl chain
PPC(n, p1, p2) and the random spiro chain SPC(n, p1, p2) with the same probabilities
p1 and p2 from Theorems 2.1 and 2.3.

Theorem 2.5. For a random polyphenyl chain PPC(n, p1, p2) and a random spiro chain
SPC(n, p1, p2) with n hexagons, the expected values of their Kirchhoff indices are related
as

50E(Kf(PPC(n, p1, p2))) = 72E(Kf(SPC(n, p1, p2))) + 300n3 − 350n2 − 335n.

Theorem 2.5 also shows that the expected value of Kirchhoff index of the random
spiro chain is less than the random polyphenyl chain. In fact, for n ≥ 2, E(Kf(SPC(n,
p1, p2))) <

25
36E(Kf(PPC(n, p1, p2))). The reason is quite obvious. Dividing both sides

of the equation in Theorem 2.5 yields

E(Kf(PPC(n, p1, p2))) =
36

25
E(Kf(SPC(n, p1, p2))) + 6n3 − 7n2 − 67

10
n

and it is easily seen that for n ≥ 2, 6n3 − 7n2 − 67
10n > 0.

2.4 The average value of the Kirchhoff index

Let Gn is the set of all polyphenyl chains with n hexagons. The average value of the
Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
1

|Gn|

∑
G∈Gn

Kf(G).

In order to obtain the average value of the Kirchhoff indices with respect to Gn, we
only need to take p1 = p2 = 1

3 in the random polyphenyl chain PPC(n, p1, p2), i.e., the
average value of the Kirchhoff indices with respect to Gn is just the expected value of the
Kirchhoff index of the random polyphenyl chain PPC(n, p1, p2) for p1 = p2 = 1

3 . From
Theorem 2.1, we have

Theorem 2.6. The average value of the Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
40

3
n3 + 13n2 − 53

6
n.

Similarly, let Gn is the set of all spiro chains with n hexagons. The average value of the
Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
1

|Gn|
∑
G∈Gn

Kf(G).
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And the average value of the Kirchhoff indices with respect to Gn is just the the expected
value of the Kirchhoff index of the random spiro chain SPC(n, p1, p2) for p1 = p2 = 1

3 .
From Theorem 2.3, we have

Theorem 2.7. The average value of the Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
275

54
n3 +

125

9
n2 − 40

27
n.
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