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Abstract

A graph Γ with a group H of automorphisms acting semiregularly on the vertices with
two orbits is called a bi-Cayley graph over H . When H is a normal subgroup of Aut(Γ),
we say that Γ is normal with respect to H . In this paper, we show that every finite group
has a connected normal bi-Cayley graph. This improves a theorem by Arezoomand and
Taeri and provides a positive answer to a question reported in the literature.
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1 Introduction
Throughout this paper, groups are assumed to be finite, and graphs are assumed to be finite,
connected, simple and undirected. For the group-theoretic and graph-theoretic terminology
not defined here we refer the reader to [5, 23].

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if
Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. It is well-known
that a graph Γ is a Cayley graph if it has an automorphism group acting regularly on its
vertex set (see [4, Lemma 16.3]). If we, instead, require that the graph Γ admits a group
of automorphisms acting semiregularly on its vertex set with two orbits, then we obtain the
so-called bi-Cayley graph.

Cayley graph is usually defined in the following way. Given a finite group G and an
inverse closed subset S ⊆ G\{1}, the Cayley graph Cay(G,S) onG with respect to S is a
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graph with vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}. For any g ∈ G, R(g) is the
permutation of G defined by R(g) : x 7→ xg for x ∈ G. Set R(G) := {R(g) | g ∈ G}. It is
well-known that R(G) is a subgroup of Aut(Cay(G,S)). In 1981, Godsil [10] proved that
the normalizer of R(G) in Aut(Cay(G,S)) is R(G)o Aut(G,S), where Aut(G,S) is the
group of automorphisms of G fixing the set S set-wise. This result has been successfully
used in characterizing various families of GRRs, namely, Cayley graphs Cay(G,S) such
that R(G) = Aut(Cay(G,S)) (see, for example, [10, 11]). A Cayley graph Cay(G,S) is
said to be normal if R(G) is normal in Aut(Cay(G,S)). This concept was introduced by
Xu in [24], and for more results about normal Cayley graphs, we refer the reader to [8].

Similarly, every bi-Cayley graph admits the following concrete realization. Given a
group H , let R, L and S be subsets of H such that R−1 = R, L−1 = L and R ∪ L does
not contain the identity element of H . The bi-Cayley graph over H relative to the triple
(R,L, S), denoted by BiCay(H, R, L, S), is the graph having vertex set the union of the
right part H0 = {h0 | h ∈ H} and the left part H1 = {h1 | h ∈ H}, and edge set the
union of the right edges {{h0, g0} | gh−1 ∈ R}, the left edges {{h1, g1} | gh−1 ∈ L}
and the spokes {{h0, g1} | gh−1 ∈ S}. Let Γ = BiCay(H,R,L, S). For g ∈ H , define a
permutation BR(g) on the vertices of Γ by the rule

h
BR(g)
i = (hg)i,∀i ∈ Z2, h ∈ H.

Then BR(H) = {BR(g) | g ∈ H} is a semiregular subgroup of Aut(Γ) which is isomor-
phic to H and has H0 and H1 as its two orbits. When BR(H) is normal in Aut(Γ), the
bi-Cayley graph Γ = BiCay(H,R,L, S) will be called a normal bi-Cayley graph over H
(see [3] or [27]).

Wang et al. in [22] determined the groups having a connected normal Cayley graph.

Proposition 1.1. Every finite group G has a normal Cayley graph unless G ∼= C4 ×C2 or
G ∼= Q8 × Cr2(r ≥ 0).

Following up this result, Arezoomand and Taeri in [3] asked: Which finite groups have
normal bi-Cayley graphs? They also gave a partial answer to this question by proving that
every finite group G 6∼= Q8 × Cr2(r ≥ 0) has at least one normal bi-Cayley graph. At the
end of [3], the authors asked the following question:

Question 1.2 ([3, Question]). Is there any normal bi-Cayley graph over G ∼= Q8 × Cr2 for
each r ≥ 0?

We remark that for every finite group G 6∼= Q8 × Cr2(r ≥ 0), the normal bi-Cayley
graph over G constructed in the proof of [3, Theorem 5] is not of regular valency, and so is
not vertex-transitive. So it is natural to ask the following question.

Question 1.3. Is there any vertex-transitive normal bi-Cayley graph over a finite group G?

In this paper, Questions 1.2 and 1.3 are answered in positive. The following is the main
result of this paper.

Theorem 1.4. Every finite group has a vertex-transitive normal bi-Cayley graph.

To end this section we give some notation which is used in this paper. For a positive
integer n, denote by Cn the cyclic group of order n, by Zn the ring of integers modulo n,
by D2n the dihedral group of order 2n, and by Alt(n) and Sym(n) the alternating group
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and symmetric group of degree n, respectively. Denote by Q8 the quaternion group. For
two groups M and N , N o M denotes a semidirect product of N by M . The identity
element of a finite group G is denoted by 1.

For a finite, simple and undirected graph Γ, we use V (Γ), E(Γ) and Aut(Γ) to denote
its vertex set, edge set and full automorphism group, respectively, and for any u, v ∈ V (Γ),
u ∼ v means that u and v are adjacent. A graph Γ is said to be vertex-transitive if its full
automorphism group Aut(Γ) acts transitively on its vertex set. For any subset B of V (Γ),
the subgraph of Γ induced by B will be denoted by Γ[B].

2 Cartesian products
The Cartesian productX �Y of graphsX and Y is a graph with vertex set V (X)×V (Y ),
and with vertices (u, x) and (v, y) being adjacent if and only if u = v and x ∼ y in Y , or
x = y and u ∼ v in X .

A non-trivial graph X is prime if it is not isomorphic to a Cartesian product of two
smaller graphs. The following proposition shows the uniqueness of the prime factor de-
composition of connected graphs with respect to the Cartesian product.

Proposition 2.1 ([12, Theorem 6.6]). Every connected finite graph can be decomposed
as a Cartesian product of prime graphs, uniquely up to isomorphism and the order of the
factors.

Two non-trivial graphs are relatively prime (w.r.t. Cartesian product) if they have no
non-trivial common factor. Now we consider the automorphisms of Cartesian product of
graphs.

Proposition 2.2 ([12, Theorem 6.10]). Suppose φ is an automorphism of a connected
graph Γ with prime factor decomposition Γ = Γ1�Γ2� · · ·�Γk. Then there is a permu-
tation π of {1, 2, . . . , k} and isomorphisms φi : Γπ(i) → Γi for which

φ(x1, x2, . . . , xk) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φk(xπ(k))).

Corollary 2.3 ([12, Corollary 6.12]). Let Γ be a connected graph with prime factor decom-
position Γ = Γ1�Γ2� · · ·�Γk. If Γ1,Γ2, . . . ,Γk are relatively prime, then Aut(Γ) =
Aut(Γ1)× Aut(Γ2)× · · · × Aut(Γk).

The following theorem provides a method of constructing normal bi-Cayley graphs.

Theorem 2.4. Let X be a connected normal bi-Cayley graph over a group H , and let Y
be a connected normal Cayley graph over a group K. If X and Y are relatively prime,
then X �Y is also a normal bi-Cayley graph over the group H ×K.

Proof. Assume that X and Y are relatively prime. By Corollary 2.3, Aut(X �Y ) =
Aut(X) × Aut(Y ). Since X is a connected normal bi-Cayley graph over H , one has
BR(H)E Aut(X), and since Y is a connected normal Cayley graph over a group K, one
has R(K) E Aut(Y ). Then BR(H) × R(K) is a normal subgroup of Aut(X �Y ) =
Aut(X) × Aut(Y ). Note that BR(H) acts semiregularly on V (X) with two orbits, and
R(K) acts regularly on V (Y ). It follows that BR(H) × R(K) acts semiregularly on
V (X)× V (Y ) with two orbits, and thereby X �Y is also a normal bi-Cayley graph over
the group H ×K.
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3 Normal bi-Cayley graphs over Q8 × Cr
2(r ≥ 0)

In this section, we shall answer Question 1.2 in positive.

3.1 The n-dimensional hypercube

For n ≥ 1, the n-dimensional hypercube, denoted by Qn, is the graph whose vertices are
all the n-tuples of 0’s and 1’s with two n-tuples being adjacent if and only if they differ in
exactly one place.

Let N = Cn2 be an elementary abelian 2-group of order 2n with a minimum generating
set S = {s1, s2, s3, . . . , sn}. By the definition of Qn, we have Cay(N,S) ∼= Qn. For
convenience of the statement, we assume that Qn = Cay(N,S). If n = 1, then Q1 = K2

and so Aut(Q1) = N . In what follows, assume that n ≥ 2. It is easy to observe that for
any distinct si, sj there is a unique 4-cycle in Qn passing through 1, si, sj , where 1 is the
identity element of N . So if a subgroup of Aut(Qn) fixes S pointwise, then it also fixes
every vertex at distance 2 from 1. By the connectedness and vertex-transitivity of Qn, we
have Aut(Qn)1 acts faithfully on S. It follows that Aut(Qn)1 . Sym(n). On the other
hand, it is easy to see that each permutation on S induces an automorphism of N , and so
Aut(N,S) ∼= Sym(n). Since Aut(N,S) ≤ Aut(Qn)1, one has Aut(Qn)1 = Aut(N,S) ∼=
Sym(n). Consequently, we have Aut(Qn) = R(N)oAut(N,S) ∼= N oSym(n) (see also
[25, Lemma 1.1]).

Note that Qn is bipartite. Let Aut(Qn)∗ be the kernel of Aut(Qn) acting on the two
partition sets of Qn. Let E = R(N) ∩ Aut(Qn)∗. Then E E Aut(Qn)∗ and E E R(N).
It follows that E E Aut(Qn)∗R(N) = Aut(Qn). Clearly, E acts semiregularly on V (Qn)
with two orbits. Thus, we have the following lemma.

Lemma 3.1. Use the same notation as in the above three paragraphs. For any n ≥ 1, Qn
is a normal Cayley graph over N , and Qn is also a normal bi-Cayley graph over E.

3.2 The Möbius-Kantor graph

The Möbius-Kantor graph GP(8, 3) is a graph with vertex set V = {i, i′ | i ∈ Z8} and edge
set the union of the outer edges {{i, i+1} | i ∈ Z8}, the inner edges {{i′, (i+3)′} | i ∈ Z8},
and the spokes {{i, i′} | i ∈ Z8} (see Figure 1). Note that GP(8, 3) is a bipartite graph with
bipartition sets B1 = {1, 3, 5, 7, 0′, 2′, 4′, 6′} and B2 = {0, 2, 4, 6, 1′, 3′, 5′, 7′}.

In [26], the edge-transitive groups of automorphisms of Aut(GP(8, 3)) were deter-
mined. We first introduce the following automorphisms of GP(8, 3), represented as per-
mutations on the vertex set V :

α = (1 3 5 7)(0 2 4 6)(1′ 3′ 5′ 7′)(0′ 2′ 4′ 6′),
β = (0 1′ 2)(0′ 6′ 3)(4 5′ 6)(7 4′ 2′),
γ = (1 1′)(2 6′)(3 3′)(4 0′)(5 5′)(6 2′)(7 7′)(0 4′),
δ = (1 1′)(2 4′)(3 7′)(4 2′)(5 5′)(6 0′)(7 3′)(0 6′).

By [26, Lemma 3.1], we have 〈α, β〉 = 〈α, αβ〉 o 〈β〉 ∼= Q8 o Z3, where Q8 is the
quaternion group, and moreover, 〈α, β〉 E Aut(GP(8, 3)). Clearly, 〈α, αβ〉 ∼= Q8 is the
Sylow 2-subgroup of 〈α, β〉, so 〈α, αβ〉 is characteristic in 〈α, β〉, and then it is normal in
Aut(GP(8, 3)) because 〈α, β〉 E Aut(GP(8, 3)). For convenience of the statement, we let
Q8 = 〈α, αβ〉. It is easy to see that Q8 acts semiregularly on V with two orbits B1 and B2.
Thus we have the following lemma.
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Figure 1: The Möbius-Kantor graph GP(8, 3).

Lemma 3.2. GP(8, 3) is a normal bi-Cayley graph over Q8.

3.3 An answer to Question 1.2

Noting that GP(8, 3) is of girth 6, GP(8, 3) is prime. For each r ≥ 1, it is easy to see that
Qr = K2�K2� · · ·�K2︸ ︷︷ ︸

n times

. So, Qn and GP(8, 3) are relatively prime. Now combining

together Lemmas 3.1 and 3.2 and Theorem 2.4, we can obtain the following theorem.

Theorem 3.3. For each r ≥ 1, GP(8, 3)×Qr is a vertex-transitive normal bi-Cayley graph
over Q8 ×N , where N ∼= Cr2 .

4 Proof of Theorem 1.4
The proof of Theorem 1.4 will be completed by the following lemmas. Let G be a group.
A Cayley graph Γ = Cay(G,S) on G is said to be a graphical regular representation (or
GRR for short) of G if Aut(Γ) = R(G).

Lemma 4.1. Let G be a group admitting a GRR Γ. Then Γ�K2 is a normal bi-Cayley
graph over the group G.

Proof. If K2 and Γ are relatively prime, then by Corollary 2.3, we have Aut(Γ�K2) =
Aut(Γ)×Aut(K2). Clearly,R(G)×{1} acts semiregularly on V (Γ�K2) with two orbits,
andR(G)×{1}EAut(Γ�K2), where 1 is the identity of Aut(K2). It follows that Γ�K2

is a normal bi-Cayley graph over the group G.
Suppose that K2 is also a prime factor of Γ. Let Γ = Γ1�K2� · · ·�K2︸ ︷︷ ︸

m times

be such

that Γ1 is coprime to K2. From Corollary 2.3 it follows that G = Aut(Γ) = Aut(Γ1) ×
Aut(K2� · · ·�K2). Since Γ is a GRR of G, one has m = 1, and therefore Γ�K2 =
Γ1�K2�K2. Then G = Aut(Γ1) × Aut(K2�K2), and Γ1 is a GRR of Aut(Γ1). By
Lemma 3.1, K2�K2 is a normal bi-Cayley graph over C2, and by Theorem 2.4, Γ�K2

is a normal bi-Cayley graph over Aut(Γ1)× C2
∼= G.

A group G is called generalized dicyclic group if it is non-abelian and has an abelian
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subgroup L of index 2 and an element b ∈ G \ L of order 4 such that b−1xb = x−1 for
every x ∈ L.

The following theorem gives a list of groups having no GRR (see [9]).

Theorem 4.2. A finite group G admits a GRR unless G belongs to one of the following
classes of groups:

(I) Class C: abelian groups of exponent greater than two;

(II) Class D: the generalized dicyclic groups;

(III) Class E: the following thirteen “exceptional groups”:

(1) Z2
2,Z3

2,Z4
2;

(2) D6, D8, D10;
(3) A4;
(4) 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉;
(5) 〈a, b | a8 = b2 = 1, bab = a5〉;
(6) 〈a, b, c | a3 = b3 = c2 = 1, ab = ba, (ac)2 = (cb)2 = 1〉;
(7) 〈a, b, c | a3 = b3 = c3 = 1, ac = ca, bc = cb, c = a−1b−1cb〉;
(8) Q8 × Z3,Q8 × Z4.

Lemma 4.3. Let G be a group in Class D of Theorem 4.2. Then G has a normal bi-Cayley
graph.

Proof. If G ∼= Q8 × Cr2 for some r ≥ 0, then by Theorem 3.3 and Lemma 3.2, G has a
normal bi-Cayley graph. In what follows, we assume that G 6∼= Q8 × Cr2 for any r ≥ 0.
By Proposition 1.1, G has a normal Cayley graph, say Γ. If Γ is coprime to K2, then by
Corollary 2.3, Γ�K2 is a normal bi-Cayley graph over G.

Now suppose that K2 is a prime factor of Γ. Let Γ = Γ1�Qm, where Qm =
K2� · · ·�K2︸ ︷︷ ︸

m times

and Γ1 is coprime to K2. Again by Corollary 2.3, we have Aut(Γ) =

Aut(Γ1) × Aut(Qm). For any x ∈ V (Qm), set Vx = {(u, x) | u ∈ V (Γ1)}, and for any
y ∈ V (Γ1), set Uy = {(y, v) | v ∈ V (Qm)}. Then Γ[Vx] ∼= Γ1 and Γ[Vy] ∼= Qm. Let GVx

and GUy
be the subgroups of G fixing Vx and Uy setwise, respectively. We shall prove the

following claim.

Claim. G = GVx
× GUy

, Γ1 is a normal Cayley graph over a group which is isomorphic
to GVx

, and GUy
∼= Cm2 .

Since Γ is vertex-transitive, by Proposition 2.2, Vx is an orbit of Aut(Γ1) × {1} and
Aut(Γ1)×{1} = Aut(Γ[Vx]). As Aut(Γ1)×{1}EAut(Γ), each Vx is a block of imprim-
itivity of Aut(Γ) (namely, either V gx = Vx or V gx ∩ Vx = ∅ for any g ∈ Aut(Γ)). Consider
the quotient graph Γ′ with vertex set {Vx | x ∈ V (Qm)}, and Vx is adjacent to Vx′ if and
only if x is adjacent to x′ in Qm. Then Γ′ ∼= Qm, and Aut(Γ1) × {1} is just the kernel
of Aut(Γ) acting on V (Γ′). This implies that the subgroup Aut(Γ)Vx of Aut(Γ) fixing Vx
set-wise is just Aut(Γ1)× Aut(Qm)x. Since G is regular on V (Γ), GVx

is also regular on
Vx, and so Γ1

∼= Γ[Vx] may be viewed as a Cayley graph on GVx
. Since GE Aut(Γ), one

has GVx
= G ∩ Aut(Γ)Vx

E Aut(Γ)Vx
. Note that {1} × Aut(Qm)x fixes every vertex in

Vx. It follows that GVx
∩ ({1} × Aut(Qm)x) is trivial, and so GVx

can be viewed as a
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normal regular subgroup of Aut(Γ1) × {1}. Therefore, Γ1 is a normal Cayley graph over
some group, say H ∼= GVx

.
With a similar argument as above, we can show that Qm is also a normal Cayley graph

over some group, say K ∼= GUy
. From the argument in Section 3.1, we have Aut(Qm) =

NoSym(m) withN ∼= Cm2 . We claim thatK = N . If this is not true, then we would have
1 6= KN/N E Aut(Qm)/N ∼= Sym(m), and since K is a 2-group, the only possibility is
m = 4. However, by Magma [6], Aut(Q4) has only one normal regular subgroup which is
isomorphic to C4

2 , a contradiction. Thus, K = N ∼= Cm2 , and hence GUy
∼= C2m .

For any g ∈ GVx
∩ GUy

, we have g fixes (y, x) and so g = 1 because G is regular on
V (Γ). Thus, GVx

∩GUy
= {1}. Then |GVx

GUy
| = |GVx

||GUy
| = |Vx||Uy| = |V (Γ)| =

|G|. It follows that G = GVxGUy . To show that G = GVx ×GUy , it suffices to show that
both GVx and GUy are normal in G. As G is a generalized dicyclic group, it is non-abelian
and has an abelian subgroup L of index 2 and an element b ∈ G \ L of order 4 such that
b−1ab = a−1 for every a ∈ L.

Suppose that GUy
� L. Then there exists g ∈ GUy

such that g = abi for some a ∈ L
and i = 1 or −1. Since GUy

∼= Cm2 , g is also an involution, and so G = Lo 〈g〉. Clearly,
for any a ∈ L, we have g−1ag = a−1, and so (ga)2 = 1. This would force that every
element of G outside L is an involution, a contradiction. Thus, GUy

≤ L, and hence
GUy

EG.
Since G = GVx

GUy
, GUy

≤ L implies that GVx
� L. Then |GVx

: GVx
∩ L| = 2

since |G : L| = 2. It then follows that GVx ∩ LEG, and hence

G/GVx
∩ L = (GUy

(GVx
∩ L)/GVx

∩ L)o (GVx
/GVx

∩ L).

Again as G is a generalized dicyclic group and since GUy
≤ L, the non-trivial element

of GVx
/GVx

∩ L maps every element of GUy
(GVx

∩ L)/GVx
∩ L to its inverse. Since

GUy
∼= C2m , one has G/GVx

∩ L is abelian, and so GVx
EG, completing the proof of the

Claim.
By Lemma 3.1, we may let Qm+1 = K2� · · ·�K2︸ ︷︷ ︸

m+1 times

be a connected normal bi-Cayley

graph over GUy
∼= Cm2 . By Claim, we may view Γ1 as a normal Cayley graph over GVx .

Since Γ1 is coprime to K2, by Theorem 2.4, Γ1�Qm+1 is a connected normal bi-Cayley
graph over GVx

×GUy
= G.

Lemma 4.4. Let G be a group in Class E of Theorem 4.2. Then G has a normal bi-Cayley
graph.

Proof. By Lemma 3.1, each of the groups in Class E (1) has a connected normal bi-Cayley
graph.

Let G = D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉 with n ≥ 3. Let Γ =
Cay(G, {ab, b}). Then Γ is a cycle of length 2n, and so Γ is coprime to K2. By Theo-
rem 2.4, Γ�K2 is a connected normal bi-Cayley graph over G. Thus, each of the groups
in Class E (2) has a connected normal bi-Cayley graph.

LetG = Alt(4) and let Γ = Cay(G, {(1 2 3), (1 3 2), (1 2 4), (1 4 2)}). By Magma [6],
we have Γ�K2 is a connected normal bi-Cayley graph over Alt(4).

LetG = 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉 be the group in Class E (4). Let
Γ = Cay(G, {a, b, c}). By Magma [6], Γ is a connected trivalent normal Cayley graph over
G and Γ has girth 6. Hence, Γ is coprime to K2. By Theorem 2.4, Γ�K2 is a connected
normal bi-Cayley graph over G.
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Let G = 〈a, b | a8 = b2 = 1, bab = a5〉 be the group in Class E (5). Let Γ =
Cay(G, {a, a−1, b, a4, a4b}). By [22, Lemma 6], Γ is a connected normal Cayley graph
over G, and by Magma, Aut(Γ�K2) = Aut(Γ) × Z2. Thus, Γ�K2 is a normal bi-
Cayley graph over G.

Let G = 〈a, b, c | a3 = b3 = c2 = 1, ac = ca, (ab)2 = (cb)2 = 1〉 be the group
in Class E (6). Let Γ = Cay(G, {c, ca, cb}). By Magma [6], Γ is a connected trivalent
normal Cayley graph overG and Γ has girth 6. Hence, Γ is coprime to K2. By Lemma 2.4,
Γ�K2 is a connected normal bi-Cayley graph over G.

Let G = 〈a, b, c | a3 = b3 = c3 = 1, ac = ca, bc = cb, c = a−1b−1cb〉 be the group in
Class E (7). Let Γ = Cay(G, {a, b, a−1, b−1}). By Magma [6], Γ is a connected trivalent
normal Cayley graph over G. Since G has order 27, Γ is coprime to K2. By Theorem 2.4,
Γ�K2 is a connected normal bi-Cayley graph over G.

Finally, we consider the groups in Class E (8). By Lemma 3.2, GP(8, 3) is a normal bi-
Cayley graph over Q8. For n ≥ 3, let Cn = 〈a〉 and let Γ = Cay(Cn, {a, a−1}). Clearly,
Γ is a normal Cayley graph over Cn. Since GP(8, 3) is of girth 6, GP(8, 3) is coprime to
Γ. By Theorem 2.4, GP(8, 3)�Γ is a connected normal bi-Cayley graph over Q8 × Cn.
Thus each of the groups in Class E (8) has a connected normal bi-Cayley graph.

Lemma 4.5. Let G be a group in Class C of Theorem 4.2. Then G has a normal bi-Cayley
graph.

Proof. Since G is abelian, G has an automorphism α such that α maps every element of
G to its inverse. Set H = G o 〈α〉. If H has a GRR Γ, then Γ is also a normal bi-Cayley
graph over G. Suppose that H has no GRR. Then by Theorem 4.2 we have H is one of the
groups in Class E (2) and (6). By Lemma 4.4, G has a normal bi-Cayley graph

Proof of Theorem 1.4. Let G be a finite group. If G has a GRR, then by Lemma 4.1, G has
a connected normal bi-Cayley graph. If G does not have a GRR, then the theorem follows
from Lemmas 4.3, 4.4, 4.5 and 3.2.

5 Final remarks
This paper would not be complete without mentioning some related work, namely on some
special families of bi-Cayley graphs such as bi-circulants, bi-abelians etc. Numerous papers
on the topic have been published (see, for instance, [1, 2, 7, 13, 14, 15, 16, 17, 18, 19, 20,
21]). In view of these, the following problem arises naturally.

Problem 5.1. For a given finite group H , classify or characterize bi-Cayley graphs with
specific symmetry properties over H .

Let H be a finite group. We say that a bi-Cayley graph Γ of regular valency over H is a
bi-graphical regular representation (or bi-GRR for short) if Aut(Γ) = BR(H). Motivated
by the classification of finite groups having no GRR (see Theorem 4.2), we would like to
pose the following problem.

Problem 5.2. Determine finite groups which have no bi-GRR.
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Abelian digraphs, J. Combin. Theory Ser. A 119 (2012), 1811–1831, doi:10.1016/j.jcta.2012.
06.004.

[3] M. Arezoomand and B. Taeri, Normality of 2-Cayley digraphs, Discrete Math. 338 (2015),
41–47, doi:10.1016/j.disc.2014.10.019.

[4] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University
Press, Cambridge, 2nd edition, 1993, doi:10.1017/cbo9780511608704.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.

[6] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I: The user language, J.
Symbolic Comput. 24 (1997), 235–265, doi:10.1006/jsco.1996.0125.
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[13] M. Hladnik, D. Marušič and T. Pisanski, Cyclic Haar graphs, Discrete Math. 244 (2002), 137–
152, doi:10.1016/s0012-365x(01)00064-4.

[14] H. Koike and I. Kovács, Isomorphic tetravalent cyclic Haar graphs, Ars Math. Contemp.
7 (2014), 215–235, http://amc-journal.eu/index.php/amc/article/view/
302.
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