
ERK'2019, Portorož, 219-222 219

Experimental Evaluation of Deep Q-Learning Applied on
Pendulum Balancing

Zvezdan Lončarević, Rok Pahič, Gregor Papa, Andrej Gams
All authors are with the Jožef Stefan Institute,

and with the Jožef Stefan International Postgraduate School,
Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: zvezdan.loncarevic@ijs.si

Abstract
Autonomy is one of the central issues for the future robots
that are expected to operate in continuously changing en-
vironments. Reinforcement learning is one of the main
approaches for learning in contemporary robotics. With
the rise of neural networks in recent studies, the idea
of incorporating neural networks with classic Q-learning
algorithm for learning policies was introduced in a form
of deep Q-Learning algorithm. While supervised and un-
supervised learning became widely spread within com-
munity, deep Q-Learning still remains a black-box in a
sense of parameter tuning as well as neural network ar-
chitecture and training.

In this paper we explore and compare training per-
formance using different parameters and different neural
network architectures on a simple use-case of pendulum
balancing.

1 Introduction
Reinforcement learning (RL) is a popular way of solving

optimization problems in robotics through trial-and-error

interaction with the environment. This relieves humans

from tedious programming. Planning of actions is pos-

sible for solving decision making problems with known

and determined dynamics as shown in [1, 2]. However, as

this is not always the case, RL is applied to help in finding

solutions without having detailed description of the prob-

lem and is useful for systems with complex dynamics

where it is not possible for all the disturbances and exter-

nal forces to be modelled [3]. This model-free reinforce-

ment algorithms were successfully applied on different

types of problems [4] and with the expansion of neural

networks extended variety of its application [5, 6]. How-

ever, architecture of the neural network, training strategy

and high number of parameters that need to be tuned for

each specific task diminish benefits of theoretically re-

duced need for manual engineering.

In real-world domains experience must be collected

on real physical systems. By using simulations and

understanding the influence of parameters and training

strategies as well as possibilities of RL algorithms, it

would be possible to optimize the real world systems to

learn optimal policies in less iterations thus causing mini-

mal wear of the equipment and reducing the needed time.

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4
0

180
o

90o90o

x

(m)

Figure 1: Simulated cart pole used as the experimental environ-

ment in MATLAB

The goal of this paper is to show the influence of param-

eters on the learning process so we used simple inverted

pendulum attached to the cart pole (Figure 1) that was

powered by discrete accelerations.

The paper is organized as follows: In the next sec-

tion, we briefly present Deep Q-learning algorithm. In

section 3 simulation setup and parameters of the system

are presented. Section 4 presents obtained results. The

paper concludes with a short outlook on the obtained re-

sults and suggestion for the future work.

2 Deep Q-Learning
Reinforcement learning deals with control policies for

agents that interact with unknown environments. Envi-

ronments can be formalized as a Markov Decision Pro-

cesses (MDPs) with only four values describing them. At

each time-step the agent changes its state from the current

state st to a new state st+1 by performing an action at and

based on the new state gets the reward rt. Based on this

values, Q-learning algorithm [7] approximates the long

term reward known as Q-value if the particular action is

performed in given state. Values are iteratively updated

by the equation:

Qnew(s, a) = Qold(s, a)+

+ α
[
r + γmaxa′Qold(s

′, a′)−Qold(s, a)
]

(1)



220

where Qold is an approximate before and Qnew after

the update, α is learning rate, γ is discount factor and

maxa′Q(s′, a′) is the maximal approximated value over

all actions a′ in the resulting state s′. However, this way

of updating the Q-value means that actions and states

need to be discretized thus leading to the Q table of size

S × A where S is the number of possible states and A is

the number of possible actions. Instead of this, with the

Deep Q-learning algorithm, Q-values are approximated

by the neural network (parametrized by weights and bi-

ases collectively denoted by θ). With the use of neural

network, Q-values approximates, denoted by Q(s, a|θ),
are estimated by making a forward pass when an in-

put is the current state of the system. By using neural

network, discretization of the states is not required be-

cause it generalizes beyond the states that it was trained

on. To avoid divergence and oscillations in learning [8],

experiences of transitions are stored in replay memory

D as dt = {st, at, rt, st+1} and uniformly sampled in

mini-batches containing examples for each training pass.

Adam optimizer [9] was used to optimize learning mo-

mentum. General deep Q-learning is given below in Al-

gorithm 1.

Initialize replay memory D

Initialize neural network for approximating

Q-value with a random weights and biases θ
for i ∈ [1, number of episodes] do

Initialize state st
for t ∈ [1, number of steps] do

With ε probability select random action at,
otherwise select at =maxa′(s, a′)

Execute at, observe the next state st+1 and

get reward rt
Store transition dt = (st; at; rt; st+1) in D
Set st = st+1

Sample mini-batch from D
for j ∈ [1,mini− batch size] do

if s’= terminal state then
yj = rt

else
yj = rt + γmaxa′Q(s′, a′|θ)

end
Perform one step of training using

(yj −Q(s, a|θ))2 as a cost function

end
end
Algorithm 1: Deep Q-learning algorithm [10]

3 Experimental evaluation
In order to test the robustness and speed of learning, we

modelled the example of the cart pole with the pendulum

in Matlab Environment as shown in the Figure 1.

Simulated cart pole mass was M = 1kg, mass of pen-

dulum was m = 0.1kg, length was 0.5m and it could

be moved left or right by applying the force of −10N

or 10N respectively. For the state of the system to be

fully defined, we used two generalized coordinates: x-

axis and the displacement angle φ. The cart was mov-

ing along x-axis and it had to stay within the range

of x ∈ (−2.6m, 2.6m) for balancing to be counted

as successful. The displacement angle of the pole (φ)

is the second generalized coordinate and it was in the

range φ ∈ [−180◦, 180◦] as shown in Figure 1. The

pendulum was set to initial position of {x, ẋ, φ, φ̇} =
{0m, 0m/s, 0◦, 1◦/s} so that in initial position equilib-

rium state was disturbed. The number of possible actions

yields the size of neural network output layer at two neu-

rons (for -10N and 10N) and number of states needed to

fully describe the system (x, ẋ, φ, φ̇) sets the input layer

size to four neurons.

The goal of learning algorithm was to learn how to

balance the pendulum. In order to accomplish that task,

we tested three different neural networks with the archi-

tecture shown in Figure 2. With all three networks we

tested different combinations of reinforcement learning

parameters (exploration rate ε and discount factor γ). Af-

ter finding the combination that was able to find the bal-

ancing policy most efficiently, we added uncertainty to

the angle measurement to simulate sensors in a real world

environments and measured the number of iterations that

the policy successfully managed to balance the pendu-

lum.

4 Results
To find optimal learning strategy, we tested the learn-

ing efficiency with the different combinations of ε and

γ parameters. Our results have shown that the choice

of the neural network is crucial for the performance pol-

icy learning. We tested learning algorithm on three dif-

ferent networks formed of 4 × 16 × 2 (Network A),

4×1024×256×2 (Network B), 4×16×32×16×8×2
(Network C) fully connected layers as shown in Figure 2.

Results have shown that it is crucial for the task to find

the smallest possible network to achieve good speed of

learning and resistance to external perturbations. Bars

in Figure 3 show the episode of learning in which al-

gorithm successfully managed to balance the pendulum

for at least 300 steps for shown pairs of parameters for

the Network A (Figure 2-left) and Network B (Figure 2-

middle). The deepest network (Network C) (Figure 2-

right) did not manage to find any balancing policy for

any pairs of parameters in 10000 episodes.

With analyzing the results we found out that

fastest learning occurred with the parameters {ε, γ} =
{0.05, 0.8} for the case of Network A (in 20 iterations)

and with the {ε, γ} = {0.05, 0.9} for the case of Net-

work B (in only 7 iterations).

For aforementioned cases, the training was stopped

after the first success and resistance of learned policy was

analyzed by adding simulated sensor noise on the reading

of the state of the angle φ. Balancing was considered to

be successful for the angle φ ∈ [−12◦, 12◦] and that is

why maximal allowed noise on our simulated sensors was

set to the same values.

We tested how the number of the iterations that pen-

dulum was balanced was affected by this noise in both



221

Fully Connected
4

Fully Connected
256

Fully Connected
2

Fully Connected
4

F ll C t d

Fully Connected
2

Fully Connected
4

Fully Connected
16

Fully Connected
32

Fully Connected
16

Fully Connected
8

Fully 
2

4

16

2 4 2

1024

256

4

16

32

16

8
2

a) b) c)

Network A Network B Network C

onnected

Fully Connected
256

Fully Conne
2

nected
4 2

1024

256

b)

Figure 2: Neural network architectures used for approximating Q-value.

a) b)

Figure 3: Pairs of γ and ε parameters that found the control policy for the networks A (left) and B (right) at the iteration shown by

the bars. Only parts of the graphs where solution is found are shown. Neural network C did not manage to find the policy with any

parameters.

Figure 4: Resistance based on the number of iterations in which the pendulum satisfied the stabilizing criteria using control policy

learned by networks A (left) and B (right) with applied sensory noise.

cases (Networks A and B) and the results are shown in the

Figure 4. The graphs show the mean and standard devia-

tion for the number of iterations in which balancing was

successfully performed (tests were done 1000 times for

statistics). As expected, bigger noise reduced the number

of successful balancing iterations. The results show that

smaller network is much more robust to the wrong read-

ings from the sensors and that it manages to find a better



222

policy.

5 Conclusion
Results show that the architecture of the neural network

is crucial for the success of the task. Size of the neural

network should be smallest possible for the solution to

be found in reasonably small number of episodes. For

the simple problem such as balancing the pendulum from

initial state in upright position, high complexity of the

neural network negatively affects the speed of a learning

process. Our tests show the performance might get more

degraded by extending the depth than extending the width

of the network. With the control problems in almost lin-

ear space as in presented use-case, there is no need for

big exploration noise to be added as proven by the cases

with the fastest learning (ε ≈ 0.05 for the cases with

both networks). Our tests with the different parameters

have shown that the best choice for γ is to choose val-

ues within the range
[
0.8, 1

]
. With the success occurring

in small number of learning episodes, deep Q-learning

seems to be promising approach in making the controllers

for the systems found in real world.

In the future work, we plan to test the balancing on the

real world system and with using the convolutional neu-

ral networks (CNN) as used in [11, 5] and to try to extend

the problem complexity to finding the strategy that would

be able to swing up and balance pendulum with using the

same network for both problems (swing-up and balance)

or play ball-in-a-cup game as it was done using the regu-

lar Q-learning algorithm in [12]. We also want to check

the possibilities of improvement using the adaptive learn-

ing rate method such as RMSProp [13] or ADADELTA

[14]. We are planning to perform the analysis of van-

ishing gradient [15, 16] to check if there are methods that

would help us to make deeper network architectures learn

the policies. With making deep neural networks more ro-

bust with optimization methods, we would be able to train

the policies for more complicated tasks as it was done

with the recurrent neural networks [17, 18].

Acknowledgement: The corresponding author is sup-

ported by the Fund for Public Scholarship, Develop-

ment, Disability and Maintenance Fund of the Republic

of Slovenia with Ad futura Scholarship for Postgraduate

Studies of Nationals of Western Balkan States for Study

in the Republic of Slovenia (226. Public Call).

References
[1] Moravčik Matej, S. Martin, B. Neil, V. Lisy, M. Dustin,

B. Nolan, D. Trevor, W. Kevin, J. Michael, and

B. Michael, “DeepStack : Expert-Level Artificial Intel-

ligence in Heads-Up No-Limit Poker,” Science, vol. 356,

no. 6337, pp. 508–513, 2017.

[2] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabi-

lization of Complex Behaviors through Online Trajectory

Optimization,” 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4906–4913, 2012.

[3] R. Pahič, Z. Lončarević, A. Ude, B. Nemec, and A. Gams,

“User feedback in latent space robotic skill learning,” in

2018 IEEE-RAS 18th International Conference on Hu-
manoid Robots (Humanoids), pp. 270–276, Nov 2018.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforce-

ment learning in robotics : A Survey,” Learning Mo-
tor Skills. Springer Tracts in Advanced Robotics, vol. 97,

no. Springer, Cham, 2013.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-

ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra,

S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, vol. 518, pp. 529–

533, 2015.

[6] M. J. Hausknecht and P. Stone, “Deep reinforce-

ment learning in parameterized action space,” CoRR,

vol. abs/1511.04143, 2016.

[7] P. Dayan, “Technical Note Q-Learning,” Machine Learn-
ing (MLJ), vol. 8, pp. 279–292, 1992.

[8] J. N. Tsitsiklis and B. V. Roy, “An Analysis of Temporal-

Difference Learning with Function Approximation,” IEEE
Transactions on Automatic Control, vol. 42, no. 5,

pp. 674–690, 1997.

[9] D. Kingma and J. Ba, “Adam: a method for stochas-

tic optimization (2014),” arXiv preprint arXiv:1412.6980,

vol. 15, 2015.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-

ing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,

A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,

A. Bolton, Y. Chen, T. Lillicrap, F. Hui, and L. Sifre,

“Mastering the game of Go without human knowledge,”

Nature Publishing Group, vol. 550, no. 7676, pp. 354–

359, 2017.

[12] B. Nemec, M. Zorko, and L. Zlajpah, “Learning of a

ball-in-a-cup playing robot,” 19th International Workshop
on Robotics in Alpe-Adria-Danube Region (RAAD 2010),
pp. 297–301, 2010.

[13] Y. N. Dauphin, H. Vries, J. Chung, and Y. Bengio, “Rm-

sprop and equilibrated adaptive learning rates for non-

convex optimization,” arXiv, vol. 35, 02 2015.

[14] M. D. Zeiler, “Adadelta: an adaptive learning rate

method,” arXiv preprint arXiv:1212.5701, 2012.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “Under-

standing the exploding gradient problem,” CoRR,

vol. abs/1211.5063, 2012.

[16] S. Hochreiter, “Untersuchungen zu dynamischen neu-

ronalen Netzen. Diploma thesis, Institut für Informatik,

Lehrstuhl Prof. Brauer, Technische Universität München,”

1991.

[17] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and

R. Tachibana, “Deep reinforcement learning for high pre-

cision assembly tasks,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 819–825, IEEE, 2017.

[18] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning

for partially observable mdps,” in AAAI Fall Symposia,

2015.


