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INTRODUCTION 

Electrical and electromechanical converters (EEMCs) are devices that convert energy from 

one form to another. Types of conversion: electrical to electrical, electrical to mechanical, 

mechanical to electrical. The conversion is time-limited or unlimited. 

Electrical machines are also considered as EEMCs. In these, the energy conversion is always 

mediated by a magnetic field. 

Examples of energy conversions 

Electrical →  electrical  lP  are losses. 

 

 

INVERTER
1 1,  U I 2 2,  U I

lP

P

1 0f = 2f
INV

 

( )DIRECT

CONVERTER

1 1,  U I 2 2,  U I

P

1f 2f
CON

lP
 

TRANSFORMER
1 1,  U I 2 2,  U I

lP

P

1f 1f

RECTIFIER
1 1,  U I 2 2,  U I

lP

P

1f 2 0f =



 
2 

number of branches = number of phases  frequency 

1 2m m
  1 2f f

  

Electrical →  mechanical 

 

 

 

MOTOR  

el m

el el

lP P P

P P


−
= =  :  0,6 0,98  . . .   EMC is an electromechanical converter. 

Mechanical →  electrical 

 

 

 

GENERATOR 

el

m

 
P

P
 =  : 0,95 0,98  . . .   

Magnetic field 

The transfer of power or energy in electrical machines is carried out by a magnetic field or 

magnetic flux. The basic quantities (marked with an asterisk) and derived quantities are used 

for notation. 

Basic quantities: 

B
A


 =   magnetic flux density

LGRID EMC
,U I

lP

elP

,m f

mP

M
L m, ( )M n

L is load.

GRIDEMC

lP

mP

m,M 

T

elP

,  U I

,m f
T is turbine.
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d

A

B A =   magnetic flux 

B
H


 =   magnetic field intensity 

B

H
 =  permeability 

Derived quantities: 

i i d

A

N B A =  =    coil flux or magnetic linkage 

L
I


=   inductance 

m dl

K

F H l=    magnetomotive force (MMF) – excitation 

m

mF


 =   magnetic conductivity (permeance) or m

m

F
R


=  resistance (reluctance) 

Examples for the main and leakage mag. fields 

 

 



m

yoke

winding
pole

pole
shoe

yoke

tooth

air
gap

m

yoke

column

winding 1

winding 2 m

σ1

σ2

iron core
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Basic magnetic field laws 

1) Law of current flow (Ampere's law) 

l d d

K A

H l J A IN  =  = =    ( J  is the current density.) 

discretization l i i; dH H l l→ =  

i iH l IN=  

2) Flux preservation law 

d 0

A

B A =  =   

discretization i i; dB B A A→ →  
 

i i i i i0    B A B A= =  

3) Material law 

i 0 i 0 0f ( )B B H B H H H    = = + = + =  0 r 0 (1 )    = = +  

iB  is the magnetic polarization or intrinsic flux density, and   the magnetic susceptibility. 

Magnetic curve (B-H curve) 

The B-H curve is shown in the left Figure for soft iron and a permanent magnet and for the 

corresponding permeabilities in the right Figure. For a magnetic circuit, the following applies 

without saturation: Fe Fe ;  0H → →  in saturation: Fe 0  →  

Fe sat  B B ( satB B=  – saturation) δ 0

IN
B 


=  Fe sat>B B  δ 0

Fe+

IN
B

l



   

iB
kB

iA
kA

Flux tube
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B

satB

iB

permanent magnet

soft iron

H  
 

Flux preservation law − application → δ Fe =  

Law of current flow – application: 

i i H l I N = =  

i i

μ
2

H l
I

N
=


, (if ˆH H=  is the peak value). 

Magnetization characteristic  

The magnetization characteristic gives the dependence for a magnetic circuit consisting of 

an air gap and an iron core. The air gap characteristic (AGC) is the tangent to the curve. 

 

 

Change of measure: f( )B =  

Ordinate: δ δ δ δ sum  f( )B A  = → =  

sum δ Fe   = = +  

Abscissa: μ μ  f( )I N B I = → =  

B
satB



0
permanent magnet

soft iron

I

N

Fel

, ,B H A  



Fe Fe Fe, ,B H A

Fe


I

B

A
G

C mag. characteristic

satB
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To calculate the magnetic circuit: from i E B→ →  on part i; from δB  will be: 

δ
δ Fe Fe Fe

0

,  
B

H l  


= =  ( FeH →  from B-H curve ) 

sum sum
μ μ
ˆ  

2
I I

N N

 
= → =  

μsum
μ m

m m

2
2

I N
I N

R R


 = = =  

inductance of the coil 
2

2
m

mμ μ2 2

N N
L N

RI I

 
= = = =  and m

m

1 A

R l


 = =  

Excitation of windings 

Magnetic field of a concentric (cylindrical) winding 

a) Example of a transformer 

The individual windings are spatially close. The excitation is concentrated. The main flux 

connecting the windings is generated in the iron core. If the Fe core does not have an air gap, 

it will: 

Fe
Fe m m σ

Fe Fe

0 and     0,      ,      0
l

R L L
A

 


→ → = → → → . 

mL  is the magnetizing (main) inductance and σL  the leakage inductance. 

b) Example of salient poles for rotating machines 

In rotating machines, the individual windings are separated by an air gap " "  or equivalent 

(enlarged) air gap e  to take account of the effect of the machine's slotted openings. 

cI N =  magnetic excitation by direct current of a single pole coil with cN  turns. 

If the current oscillates, ˆ2 cos( ) cos( )i I t I t = = ,   will also oscillate. 
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Magnetic field of a distributed winding 

a) DC power supply 

The left Figure (below) shows the coil 

excitation (MMF) curve for the developed 

rotor perimeter: c
c

2

IN
A =   

 

and the fundamental harmonic component of the coil excitation c
c1

4 4ˆ
π 2 π

IN
B A =  = . 

c)

p p

stator

rotor

a)

b)

d)

cIN =

δe
mxe d

B
R l x


=

x
mx d

B
R l x


 =

cIN

e
x

x

x

x

e

A

B

A

B
p

I+

2I+

3I+

2I+

I+

I−

2I−

3I−

2I−

I−

a)

x

A A ABB

I+

2I+

3I+

2I+

I+ max

3I−

2I−

I−

2I−

I−

p p

I+

2I+

I+

I−

2I−

I−

p2p0

x

x

x


b)

c)

( )x

A A ABB
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cN  are the number of turns of the coil. For p pole pairs are c

N
N

p
=  and c1

4ˆ
π 2

IN

p
 = . 

 

x

1c1

A B



2c1

Fundamental component

of sinus excitation

 0x =



 

The space distribution of the MMF of the coil is: ( )x c1 p
ˆ cos ( / )πx  = , if p

π π

2

D r

p p
 = =  and 

0x =  is in the coil symmetry axis. Introducing the angle p( / )πx =  is x c1
ˆ cos  = . 

For two coils displaced by an angle in adjacent slots of a rotating electromechanical converter, 

the fundamental harmonic component of the MMF is: res1 1c1 2c1  = + . 

In general, for a distributed winding, res1 w

4ˆ
π 2

I N
f

p
 = , if wf  is the 

winding factor, i.e. the ratio of the geometric to the arithmetic sum  

of the MMF of two or more coils: 
geom. res1

w n

ic1arit.
i 1

f







=

= =



 
. 

 

For a uniformly distributed winding of a large number of coils, the MMF equation is a straight 

line: x max

p / 2

x
 


=  for p0 / 2x   . (Valid to the right dotted Figure (b) on page 7.) 

b) AC power supply 2 cos( )i I t=  

MMF 1
ˆ( , ) cos cos( )x t t   =  →  0 ( , )

( , )
x t

b x t
 


=  (In the air gap, b  .) 

c

2

IN

p

1c1

2c1

res1


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1̂

i−

2 cos( )i I t=

x
i

a)
 

b)

x

1B̂

1
ˆ 2B

 

( )1
1

ˆ
ˆ( , ) cos cos( ) cos( ) cos( )

2
x t t t t


       = = − + +  or for b   

( )1
ˆ

( , ) cos( ) cos( )
2

B
b x t t t   = − + +  

p n( , )  ( , )  ( , )b x t b x t b x t= +  

direction of motion →    

The amplitude of a positive (direct) or negative (inverse) wave travels at the speed 

 obtained from the condition for the value of the argument: 

 0t  =  or 
p

π 0
x

t


=  → 
p

π
x t


=  , 

p p

p

2d
2

d π

x
f

t T

 
= =  =  = v . 

From the condition p

π
π 2 2

2

D
D n f f

p
= =  = v  the expression is given:   

f
n

p
=  . 

This is the basic equation for the rotational speed of a rotating magnetic field in an electrical 

rotating machine.  

A more practical equation for 50 Hzf =  is: ( )160 3000
 =   min rot. / min

f
n

p p

−=    . 
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The magnetic field of a distributed three-phase winding or of three single-phase windings 

displaced in space by a mechanical angle fm f / (2π / 3) / 120 /p p p = =  . 

 

The Figure applies to the MMF of a two-pole machine which causes a magnetomotive field in 

the air gap with phase current phasors according to the time diagrams for 0  and 60t = . 

Using the angle   and the corresponding space and time phase shift, i.e., 120 , we get:  

( )1
ap an

ˆ
phase "a" cos( ) cos( )

2

B
t t b b   − + + = + , 

( ) ( )( )1
bp bn

ˆ
phase "b" cos ( 120 ) ( 120 ) cos ( 120 ) ( 120 )

2

B
t t b b   − − − + − + − = + , 

( ) ( )( )1
cp cn

ˆ
phase "c" cos ( 240 ) ( 240 ) cos ( 240 ) ( 240 )

2

B
t t b b   − − − + − + − = + . 

p

p

x

p

3



b)

p

a)
ai ci−

c

bi ai−

p

a

b

bi−

x

aici
a

bi−

ai−

ci−

bici

ai

a

3

2


b

2

−
c

2

−

bi−

ai−

ci−

bici

ai

a

3

2


c−

a / 2

b / 2

1t

2t

ai

bici

ai

bici





developed air gap space phasor diagram time vector diagram
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The sum of the positive field waves is: p ap bp cp 1

3 ˆ cos( )
2

b b b b B t = + + = − . The sum of the 

negative field waves is: n an bn cn 0b b b b= + + = , because the phasors of the negative wave of the 

magnetic field of the second and third phases are displaced by 240 and 120  respectively. In 

general, for a symmetrical m-phase system p 1
ˆ cos( )

2

m
b B t = − , if the field amplitude of each 

phase is: 0 1
1

ˆ
B̂

 


=  or MMF w

1

4ˆ 2
π 2

N f
I

p
 =  and for m-phases w

1m

4ˆ 2 .
2 π 2

N fm
I

p
 =  

Induced voltage 

a) Induced voltage of a conductor (bar) due to motion in a magnetic field 

 

b ( ) ( )e B l B l=   = −  v v  

be B l = v  for B ⊥ v  

From d d d dA l x l s l t= = − = − v  (because d dx s= − ) 

we prove: b

d d d

d d d

Bl t B A
e

t t t


= = − = −
v

. 

b) Induced loop voltage due to a time-varying magnetic field  

Induction law in integral form (Faraday's law): 

 

l

d d
d d  .

d d
K A

e E l B A
t t


=  = −  = −   

 lE  is the electromotive force (EMF). 

be l

b

v

u e



0R =

i
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Example of a transformer: 

1 1

d

d
e N

t


= −  2 2

d

d
e N

t


= −  

1 1

2 2

e N

e N
=  1

U

2

N
K

N
=  (voltage ratio) 

The general law of induction, if f ( , )x t = :

t r

d d

d d

x
e e e

t t x t t x

          
= − = − + = − + = +   

      
v , 

transformer voltage + rotating or moving voltage. 
 

For two windings with mutual inductance 12L , there will be: 12 μL i =  and 

μ 12
12 μ t r

d dd

d d d

i L
e L i e e

t t t

  
= − = − + = + 

 
. 

Forces in a magnetic field 

Force on the current conductor (Lorenz force) 

 

 

l( ) ( ) ( ) ( )F Q B q l B l i B i B l=   =   =   =  v v , 

because li q=v  will be a force F i B l=   . 

lq  is the line charge. 

Motor:  F  acts in the direction of v  or m . 

Generator:  F  acts against the direction of v  or m . 



1e 1N

2e 2N

F
i

B

B
F

i

l



 
13 

Force on the iron core 

 

Energy in the air gap: 

m δ δ

1

2
W  =  and for δ δ δ  =  is 2

m δ δ

1

2
W  = . 

δ 0 δ2 2 δm
δ δ 2

δ

d dd 1 1

d 2 d 2 d

A lW
F

x x xl

 
 = = = −  

For 0 δ
δ

δ

A

l


 =  and δd dl x= −  is force: 

 

2
0 δ δ

2
δ

1

2

A
F

l

 
= . 

For 0 δ
δ

δ

B
l

 
= , we get the expression for the force on the iron core: 

2 2
δ δ δ

δ

0 0

1 1
.

2 2

B A B
F A

 
= =  

Examples of applications: switches, relays, magnets, and step motors. 

Energy and power transmission 

Electrical →  mechanical 

 

Stationary operation: 

el mlP P P− =  

EMC – electromechanical converter (motor) 

Electrical →  electrical 

 

Stationary operation: 

1 2lP P P− =  

TR – transformer 

B
F

δA B

i

l

EMC

mP

elP

lP

,M m

lP

1P 2P
TR



 
14 

Example of a lossless linear electromechanical converter 

,F
elP

e

i

B

v

mP

 

Accepted electrical power 

elP ei Bl i= = v  

Mechanical power output 

mP F iBl= =v v  

Arrows system 

 

P ui=  

0P   consumer (motor) 

0P   producer (generator) 

Torque 

There are several ways to calculate the torque. 

1) From electrical power el m m;P ei P M= = =  m 2π /n r = = v  (mechanical angular or 

circular speed) we get shaft torque: 

m

m

P
M


= . 

2) From induced voltage 

 a) From the induced voltage due to motion, we get: e e  
r

ei Bli iBl M M
r r

= = = = →
v

v v vF  

eM iBlr Fr= =  (e – electromagnetic torque) 

We need to know the magnetic field distribution (in the air gap).

i

u P
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b) The absolute value of the transformer induced voltage gives: 

d

d
e

t


= − . m

d

d
ei i M

t


= =  

m
m

d 1 d

d dt p t

 
 = =  ( m – mechanical angular velocity) 

mp =  ( m  is the mechanical or "space" angel,  – electrical angel) 

e

m

d d d

d d d

ei p t
M i pi

t

 

  
= = =  e

d
 is valid for .

d
M piN N


 



 
= = 

 
 

We need to know the magnetic field distribution (in the air gap). 

3.) From the magnetic field energy fieldd

d

W
F

x

 
= 

 
 

field field
e

d d

d d

W W
M Fr r

x 
= = =  ( )for d dx r =  

The force acts in the direction of increasing the mutual magnetic linkage, or increasing the 

magnetic conductivity, or decreasing the magnetic resistance. 

From the equation for energy, for a single excitation winding: 

2 m
e

d1 d 1

2 d 2 d
M


 

 
= =  or 2 m

e

d1 d 1

2 d 2 d

R
M


 

 
= − = − . 

In the equations, we consider m =  or mR = . 

For two or more windings, the energy is expressed better in terms of inductances: 

2 21 2 12
e 1 2 1 2

d d d1 1
  +    

2 d 2 d d

L L L
M i i i i

  
= + . 

1L  and 2L  are the self-inductances and 12L  the mutual inductance of the two windings.
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Losses and efficiency 

1) Winding losses: a) joule losses, b) eddy current losses due to skin-effect 

2
CuP I R=  or additional losses 

= addR R R= +  

2) Losses in the Fe core: a) hysteresis, b) eddy-current 

2 2
Fe Feh Fee h Fe e Fe

xP P P k f B m k f B m= + = + , 

where the exponent for hysteresis losses is 1,6 2,8x =  . 

3) Mechanical losses in rotating machines 

Efficiency 

out in

in in in 1

1 1l l lP P P P P

P P P P


−
= = = − = −  

Heating and cooling 

Heat transfer 

1. The propagation of heat − the heat flux − in a solid body is: 

t t 1 2( )   = −    – specific thermal conductivity 
W

m K

 
 

 
  

thermal conductivity t

A

d


 =   A  – surface ( 2m ), d  – body thickness (m) 

2. Thermal transmittance by convection 

t t 1 2 c c 1 2( ) ( )A      = − = −  c  – convection coefficient 
2

W

m K

 
 

 
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For air, the approximate equation is: c 1 26,5 0,05( )   + − . For natural convection, the 

convection coefficient for the temperature rise 40 50 K  is 2
c (8,5 9) W/(m K) =   . 

3) Radiative thermal transmittance 

t t 1 2 r r 1 2( ) ( )A      = − = −  

r  (radiation coefficient) is a function of temperature, temperature difference and material type. 

( )4 4
r 1 w a

1

Δ
C  


= −  

w  is the absolute wall temperature and a  the absolute ambient temperature, 

1 rC C=  is the radiative constant of the surface of a body,   is the absorption ratio ( )1 

, i.e., the ratio of the received (absorbed) to the irradiated radiant energy. 

8
r 2 4

W
5,67 10  

m K
C −= 


 black-body radiation constant 

1 2 w aΔ    = − = −  the temperature difference between the wall and the ambient 

For the temperature rise (40 50) K , calculate the radiation coefficient r 1 25 0,033( ),   + −  

i.e., 2
r (6,3 6,65) W/(m K) =   . 

EEMC heating 

Electrical and electromechanical converters are inhomogeneous bodies, but they are treated 

as homogeneous bodies. In the time differential dt , thermal energy dlP t  is released, some 

of which is stored (temperature rise − first term on the right-hand side of the equation), some 

of which is dissipated to the surroundings by convection and radiation (second term on the 

right-hand side).  

( )d d Δ + Δ dlP t mc A t  =  
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The solution for the time differential is: t

t

d d(Δ )

Δl

mc

t
P







=

−

.  

In the equation t A =  is the thermal conductivity, the coefficient of conductivity 

c r  = +  and the specific heat ( ) W s/(kg K)c   . 

Time 
t t

ln lPmc
t C

 

 
= − − + 

 
 Time constant: 

For 0t =  is 0Δ Δ =  or 0.  
mc

T
A

= (a few minutes to a few hours) 

Equation for heating 0 0

t

Δ Δ 1 e +Δ

t

l T
P

  


−  
= − −    
   

 

The equation applies to heating at constant losses and constant cooling conditions. 

max

t

Δ l lP P

A


 
= = , if it is 0Δ 0 = , it will be: 

maxΔ Δ 1 e

t

T 
− 

= − 
 
 

. 

EEMC cooling 

0 maxΔ Δ = , 0lP =  

maxΔ Δ e

t

T 
−

=  
 

In general, the time constant T  is larger for dimensionally larger EEMC (higher mass m). 

For forced cooling it will be T  smaller because it increases   (the heat transfer coefficient). 

Δ

maxΔ
T

t
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TRANSFORMER 

Introduction 

A transformer is a static power transmission device that converts an AC voltage and current 

system by electromagnetic induction into another voltage and current system, usually of 

different magnitudes and the same frequency. 

Primary  Secondary 

Single-phase system  →  single-phase system 

 or two-phase system 

Three-phase system →  three-phase system 

 or six-phase system 

 or twelve-phase system 

In general: 1m  phase system → 2m  phase system 1 2 1 2(  or )m m m m=    

The most elementary design of a single-phase transformer has two coils (windings): 

1) a primary power supply coil,  

2) a secondary coil for the power output. 

The two windings are usually separated galvanically. 

Example: 1 25 turns,   2 turnsN N= =  

1 1 1 1 1Current  i i N → = →  (6 magnetic lines or density lines) 

 2 2 2 20 0i i N= → = =  
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1i

1e1u 2e 2u

com

primary
winding

secondary
winding

 

Flux linkage of the primary winding: 

1 1 1

6 4 1
3 2 4

6 6 3
  

 
=  +  = 
 

 (ideal 1 15 = ) 

and of the secondary winding 

2 1 1

4 1
2 1

6 3
  

 
=  = 
 

 (ideal 2 12 = ). 

com 1 1

σ1 1 1

4 2
Common flux:  

6 3

2 1
Leakage flux:  

6 3

  

  


= = 


= =


 Primary flux: 1 com σ1 1 1

2 1

3 3
    = + = +  

2 com2 1

1
1

3
  = =  

1 com1 σ1 1 1 1

2 1 1
5 3 4

3 3 3
     

   
= + =  +  =   

   
 

Only the common flux com  is involved in the transformation process. The importance of the 

leakage flux, which is not involved in the transformation process, will be explained later. 

1N 2N
coils
axis
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The ideal transformer: σ1 σ2 0 = = . 

The permeability of the medium (core) around which the winding is wound,  → , 

1μ 1 0,i N →  1μ 0i → . 

Operation mode 

Assume 1 2 0R R= =  

Primary winding →  imposed voltage 1u . Secondary winding open. 

The grid voltage 1u  drives a current through the primary winding: 

1 1 1 1i   → → → . 

The magnetic linkage 1  must be such that equilibrium is created: 

( )
( )com1 σ11 1

1 1 com1 σ1

dd d

d d d
u e e e

t t t

   + 
= − = − − = = = − + 

 
. 

At the same time, an induced voltage appears in the secondary winding with 2N  turns: 

( )sk2 sk2
2 2

d d

d d
e u

t t

 −
− = − = = . 

The primary leakage flux σ1 , or magnetic linkage σ1 , creates an inductive voltage drop 

across the primary winding: 

σ1
σ1

d

d
e

t


− =  and do not participate in the transformation process. 

Transformer design 

A two-coil transformer without an iron core (air transformer) has a large leakage flux σ1  and 

σ2  a small common flux com 1 σ1.  = −  
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Therefore, a core of ferromagnetic material, i.e., an oriented transformer sheet, is used to 

guide the flux ( rFe 4000 40000,    maximum). 

Design of single-phase transformer cores 

There is a core (column) type and a shell type. 

In the core type, the winding is mounted on one or two columns connected by a yoke (Figures 

a and b). The same applies to the cutting ribbon core (Figure c). 

In the shell type (Figure d), the flux in the yoke is half that in the column (half the cross 

section of the yoke → the lower the height of the transformer). 

 

Transformer tasks 

 

 
Energy transmission and 

voltage adjustment 

transmission 2 U→  (high) 

distribution 2 U→  (low) 

phase rotation 
 

a) b) c) d)

1 1 1 1
11 2 222

1U

1I 2I
2U

1U 2U
1U

2U
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Industry – phase multiplier 

 

 

 

Electrical circuits 
impedance adjustment 

UK  – voltage ratio 
 

Measurement technique 

  

Single-phase transformer with iron core 

Direction arrows 

They are adapted as follows: 

Both coils (windings) are wound clockwise. 

The direction of the voltage drops across winding 1 is positive and so is the current. Since 

the magnetization of both windings are in the same direction, this determines the direction 

of the current in winding 2, and also the voltage drop across winding 2. 

1U

1 3m =

2U

2 6m =

1m 2m

1U 2U

2
U1 2Z K Z=

1Z 2Z
UK

UK

1U

2U
1

2
U

voltage
converter

U
U

K
=

1I IK

2I
1

2
I

current
converter

I
I

K
=

I current ratioK −
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The positive direction also applies to the magnetic coupling through the coils ( ) , or the 

magnetic flux in the core com( ) . The positive current in the coils generates positive ampere-

turns for the integration path in the direction of the arrow through the coils. 

Operation of an ideal transformer 

The properties of the materials used are: 

1) permeability of the magnetic circle Fe =  , 

2) the electrical conductivity of the magnetic circuit Fe 0 = , 

3) the permeability of air air 0 = , 

4) electrical conductivity of the conductors con =  , 

5) the magnetic circuit has no air gaps gap 0 =  . 

For a loop (winding) with ohmic resistance R  and voltage drop Ri , the voltage equation is: 

d

d
u Ri e Ri

t


= − = + . 

Since 0R = , it applies to windings 1 and 2: 

1i

1e

1u

2i

2e

2u



1i

1u

com

1N1P

2i

2u
2N2P
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1
1 1

2
2 2

d
,

d

d
 .

d

u e
t

u e
t





= − =

= − =

 

Magnetic linkage of the two windings: 
1 1

2 2

N

N

 

 

=

=
 

 

This is true for an ideal transformer, because all the flux in the positive direction of the 

arrows passes through windings 1 and 2. It is therefore 1 2 com   = = = . 

 

In the absence of eddy currents, ampere-turns 

operate along the integration path 

1 1i N  and 2 2i N . 

Fe   0iN =  → = =  

1 1 2 2 0i N i N+ =  

For the sinusoidal form of the primary applied voltage 1U  (rigid grid) and the magnetic 

linkage jˆ( e )t =  the complex notation of the ideal transformer equations is introduced: 

1
1 11 j  j  

2 2
U E N

 
 = − = = , 

2
2 22 j  j  

2 2
U E N

 
 = − = = , 

1 21 2 0I N I N+ = . 

The first two equations give the voltage ratio: 

( )u1 u2j1 1 1 1

2 2 22

   e
U N U N

U N U N

 −
= → = . 

1u
1N 2u

2N

21

 

1u 2u

side 2side 1

integration path

1i

2i2 2i N

1 1i N
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1 1
U

2 2

U N
K

U N
= =  for u1 u2 =  

The voltage 1U  or 2U  dictates the magnitude (amplitude) and phase position of the flux. 

1 2

1 2

2 2ˆ U U

N N


 
= =  1 2

1 2

2 2ˆ U U

N N


 
= =  

Φ u1 u2 e1 e2

π π π π

2 2 2 2
    = − = − = + = +  

2π π / 2
4,44 4 4 1,11

2 2

 
= = =  

 
  

1 1 1

ˆ
ˆ 4, 44 

2
E N f N


 = =  is the RMS value of the induced voltage in the primary and 

2 2 2

ˆ
ˆ 4, 44 

2
E N f N


 = =  in the secondary winding.  

The phasor diagram shows the position 11,  and .U E   The third equation gives the current ratio 

IK : 

1 2 1 2
I i2 i1

2 1 2 1

     for  π
N I NI

K
I N I N

 = − → = = = − . 

The current phasor diagram is shown in the middle Figure for an example 1 2N N .  

The right Figure shows the ampere-turns for which: 1 21 2I N I N= − . 

  
 

1U

1E



Re

1I

2I

i1

i2

11I N

22I N

Re
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No-load of an ideal transformer 

1 gridU U=  (grid voltage) 

2

2 2
2 1 22 1

1 1

0

j
2

I

N N
U E U E N

N N




=

= − = = − =
 

After 2 0I =  follows from 1 2 11 2 0  0I N I N I+ = → = . 

A phasor diagram is shown for the example 1 2N N . 
 

Load of an ideal transformer 

1U

21

1I

2I 2U LI LZ

 

 

L
LL 2

L

L 2

           
U

U U Z
I

I I

= =

= −

 

Two current phasors appear on the secondary side of the diagram, whose phase position is 

shown in the example Figure: L L Lj .Z R X= +  

According to the power flow theorem:  

* *
L 2L 2Re( ) 0  and Re( ) 0U I U I  . 

The magnitude and phase position of the voltage and flux are unaffected by the loading of 

the ideal transformer. 

1U

1E



2U

2E



2 L  U U=

2E

LI

L

2I



 
28 

Valid: 2 2
2 1 22 1

1 1

j
2

N N
U E U E N

N N


= − = = − = . 

From the equilibrium condition 1 21 2 0
2

I N I N


+ = =  follow: 2
1 2

1

N
I I

N
= − . 

At Fe =   or m 0R =  any deviation from the value 0 =  would cause the flux and induced 

voltage to increase beyond all limits m m( / )R = . 

The following Figure shows a complete phasor diagram with the imposed voltage on the 

primary side 1U  and the load L L LjZ R X= +  on the secondary side. 

 

Energy balance: 

* *1 2
1 21 1 2

2 1

Re( ) Re
N N

P U I U I
N N

 
= = − = 

 
 

* *
2 L2 L2 LRe( ) Re( )U I P U I P= − = − = =  

In an ideal transformer, power is transmitted without losses, 

only the voltage level changes according to the turn ratio: 

2 1
2 1

1 U

N U
U U

N K
= = . 

Transformed (reduced) quantities 

It is not transparent for 1 1

2 2

  1  or    1
N N

N N
   the phasor diagram. 

Therefore, transformed quantities are introduced for voltage and current. For voltage it is: 

1
2 2 U 2

2

N
U U K U

N
 = = . For the current, it is from the equal excitation condition: 

2 2 1 2 2 2
ˆ ˆ2 2I N I N  = = =  →  2

2 2 I 2 2

1 U

1N
I I K I I

N K
 = = = . 



2 LU U=

2E

LI

2I

1I

1E

1U
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The power must also remain the same and valid: 

1 2
2 2 2 2 2 2

2 1

N N
U I U I U I

N N
  = =  →  apparent power 2 2S S =  and therefore it is 2 2P P = . 

For an ideal transformer, the following equations now apply: 

1
11 j j

2 2
U N

 
 = = , 

1 2 1
2 12

2 2

j j j
2 2 2

N N
U N N

N N

  
   = = = . 

The difference of the two equations gives: 1 2 0U U − = . 

For magnetic flux linkage: 

 1
2 2 U 2 1 2

2

  0
N

K
N

     = = → − = .  

From the equation for the ampere-turns 1 21 2 0I N I N+ = , the sum of 1 2 0I I + =  . 

Under load, it is possible to write: 

2

21 2 L 1
L L L L LUL L

2 1 2L

 and 
UN N N

U U I I Z Z K Z
N N NI

 
  = = → = = = 

  
. 

The above Figure shows the corresponding phasor diagram of an ideal transformer with 

transformed quantities of the secondary side to the primary side. 

Real transformer operation 

Because: 

1. Fe 1 2Fe 1 2d 2 2 0

K

H l I N I N  →  = +  , 

1 LI I =



1 2 LU U U = =

2I 
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2. hysteresis loop →  hysteresis losses in the iron FehP , 

3. f ( )B H=  (non-linear dependence between B and H ) →  higher harmonic components, 

4. Fe 0   →  eddy current →  eddy current losses in the iron FeeP , 

5. air 0 0  =  →  leakage magnetic linkage 1 2 σ( 0)  − =  ,  

6. c    →  ohmic resistance of the conductors →  voltage drops ( 1 1 2 2 and  R I R I ) →  

 joule losses in the windings 
2 2

Cu 1 1 2 2P R I R I= + , 

7. σ  →  eddy current in the massive conductors →   

 additional eddy current losses CueP , 

8. ohmic and leakage reactance voltage drops → 1 2 0U U − = . 

General equations 

The crosses and dots indicate the direction of the eddy current eI . 

 

The following equations apply: 

1
111

2
222

1 d
,

d2

1 d
,

d2

U R I
t

U R I
t





= +

= +

 

1 2 e1 2
2

I N I N I


+ + = . 

In order to facilitate the treatment of a real transformer and given the specific operating 

condition, the transformer is treated as: 

a) a current-ideal voltage-real transformer, 

b) a voltage-ideal current-real transformer.  

21

1U
2U

11I N

22I N

eI
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Operation of a current-ideal voltage-real transformer 

A real transformer is current-ideal for: 

Fe Fe

air 0 c

  and  0,

0  and  .

 

  

=  =

=   
 

No excitation is required to magnetize iron, and therefore 

1 2 1 21 2 0  0I N I N I I + = → + = . 

As a result of the leakage, the 1 2 0U U −  . 

General equations describe the state of a current-ideal real transformer with transformed 

quantities (if the jˆ e t = ): 

1
111 j

2
U R I


= + , 

2
222 j

2
U R I





 = + , 

1 2 0I I + = . 

The equal loss condition gives: 
2 2

2 2 2 2I R I R  = →  

2

22
2 2 U 2

2

=
I

R R K R
I

 
→ = 

 
, because the third equation implies 2 1.I I = −  

The voltage difference from the first two equations is: 

1 1 21 21 2 r σ( ) j ( ) / 2U U R R I U U   − = + + − = + . 

The 1 11 2r ( )U R R I RI= + =  part (ohmic voltage drop) is in phase with the current. 
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The 1 2σ j ( ) / 2U    = −  part (inductive voltage drop) overtakes the leakage magnetic 

linkage by 90 . 

Since 1 2I I = −  , the ampere-turns in the core column are opposed, and the difference in 

magnetic linkage 1 2  −  is present only in the space between the windings. In the Figure, 

each winding is shown with only one thin turn wound around the core in the same direction 

(usually the direction of the right-hand screw). 

 

1I2I



B

2N 1N

co
lu

m
n
 a

x
is

 

The winding always has a finite thickness. Therefore, the leakage in the cross-section has 

the shape of a trapezoid. The leakage linkage is written with the total inductance: 

1 2 1σ 2L I  − =  and, hence, voltage drops 1σ1 2 r σ ( j )U U U U R X I− = + = + . 

This equation corresponds to the following phasor diagram, where 1U  is the imposed voltage 

and the load L L LjZ R X= + . 

 1 2U U −  is the hypotenuse of a rectangular − Kappa triangle. 

1I

column axis



B

2I

instantaneous direction of leakage flux
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Energy balance 

If there is 1 2I I = −  and 2 LU U = , it will be: 

( ) ( )* * *
1 L 1 11 1 21 LRe Re ( )P U I U I R R I I = = + + =  

2 2
L 1 1 2 2P R I R I= + + , 

1 L CuP P P= + . 

The received power is used for the power at the 

consumer and the losses in the transformer winding. 
 

In a short-circuit current-ideal and voltage-real 

transformer at the imposed grid voltage 

1 gridU U=  and 2 0U =  will be:  

1σ1 r σ ( j )U U U R X I= + = + . 

Short-circuit current: 1
1 2

sc

U
I I

Z
= − = , sc σjZ R X= + , 

sc 1 2( )R R R R= = + , σ sc σ1 σ2( )X X X X = = + . 

 

Operation of a voltage-ideal current-real transformer 

A real transformer is voltage-ideal for: 

1 2 0U U − =  on condition 

air c0,                    = =   (no voltage drops or losses CuP ) 

Fe Fe,                  0     (needs magnetizing current and has losses FeP ) 

Because air 0 =  will be: 1 1 2 2  and  .N  N   = =  

1I

2I 

1U

2U

1 2( )  −

1 2( )U U −

1 1 2j j ( ) / 2X I   
= −

1RI

1I

2I 1rU RI=

1jU X I =
1U
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Voltage equations: 1 1

d

d
u N

t


=  

 2 2

d

d
u N

t


=  

For a voltage of cosine (sine) form 1 1 u1
ˆ cos ( )u U t = +  to be applied, the flux must also 

be of sine (cosine) form: 

1 u1
u1

1

ˆ cos( π/2) ˆ sin( )
U t

t
N

 
   



+ −
= = + . 

Magnetization phenomena in operation on a rigid grid 

The magnetic curve of the core material f ( )B H=  with the dimensions of the core and the 

definitions of d

A

B A =   and l d

K

H l =   gives us the magnetization characteristic 

f ( ) =  of the magnetic circuit. 

 

 

The sinusoidal voltage determines the sinusoidal flux with phase shift 90 . Taking into 

account the non-linear magnetization characteristic (hysteresis loop) f ( ) =  results in 

excitation ampere-turns that are not sinusoidal in shape. 

B

H

l d

K

H l = 

d

A

B A = 
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According to Fourier, a function f ( )t =  has odd-order components ( 3, 5, 7, .....) =  in 

addition to the fundamental harmonic component ( 1) = . 1  overtakes the flux   by an 

angle of h . Between ̂  and 1̂  a non-linear dependence applies. 

 

 

Losses in the core 

They are divided into hysteresis losses (due to the alternating magnetization) and eddy 

current losses (due to the eddy current in the core lamellae). 

Hysteresis losses 

Feh

1
 d  d f ( , )

t T t T

t t

P f f
T

    

+ +

= = =  . Approximately valid 2
Feh

ˆP f  . 






1







 t

h






1

h

̂

1̂
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Eddy current losses  

In a short-circuit loop (core lamella) the equation applies: 

e ee0 R I E= − . Because it is e j
2

E


= − , it will be: 

e
e

e e

j
2

E
I

R R

 
= = −  

The eddy current contributes to the ampere-turns on the integration path through the 

magnetic core ( e 1N = ): 

1 2 e1 21 ( ) 2  .I N I N I = + +  

Combining e1  and I  gives 

the total (fictitious) ampere-turns: 

e 1 21 21fic 1 2 2 2I I N I N = − = + .  

Eddy current losses in the core 

2
2

2 2 2
Fee e e e

ee

ˆ
ˆ ˆf ( , )

22
P I R R f

RR

 
 

 
= = = =  

 

 

massive core laminated core 

 

insulation"
" 

la
m

el
la

e
n

 

Fe e,  ,  R E  Fe e/ ,  ,  /n nR E n  

eE

eI

e2 I−



1fic

1

h
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The eddy current losses in the massive core are: Fee e eP E I= , if the current is 

e

Fe

d 1

d
I

t R


= −  and en 2

Fe Fe

d( / ) 1 1 d 1

d d

n
I

t nR t Rn

 
= − = − . 

For an n-times laminated core thickness d , there are eddy current losses: 

Fee 2e e
Fe(en) Fe(en)2 2 2

1
  f f ( )

PE I
P n P d

n n n n

 
= = → = = 

 
 . 

Total magnetization losses in the core: 

Fe Feh Fee
ˆf ( , )P P P f = + = . 

The losses in the iron core are given as specific losses per kilogram of mass for a given 

thickness of steel: 

2 2
Fe h e    (W/kg)xp k f B k f B= + . 

The exponent for hysteresis losses 1,6 2,8x    and depends on the value of B . 

Electrical steel manufacturers give the losses as curves Fe f ( )p B=  for 50 Hzf = , or at 

magnetic flux densities of 1 T and 1,5 T. 

The specific losses for any one xB  are calculated using the equation: 

2

x
Fex Fe

B
p p

B

 
  

 
. 

Example of a curve f ( )B H=  with losses data 

The curve for the magnetic flux density is given as a function of the magnetic field intensity 

in two different scales, marked I and II. Steel sheet thickness . The value for 

 can be given in RMS values and measured, e.g., at 50 Hz, (AC curve), or in peak values 

when magnetizing with a direct current (DC curve). 

0,35 mmd =

H
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No-load current 

The no-load current  is calculated from , which contains higher harmonic components. 

 

 (fundamental harmonic of 

the no-load current) 

 

Fourier analysis gives the amplitude of 

the currents  and, hence, . 

1,0

1,8

1,6

0,8

0,6

0, 4

1, 4

1,2

( ) TB

I
II

500
5000

1000
10000

1500
15000

2000
20000

( ) A mH

1

1,5

1,3 W kg

3,1 W kg

0,35 mm

p

p

d

=

=

=

II

I

10i 

10i

10,1i

10,3i

10,5i

i

t

e1
10,1

1 1

i
i

N N


= −

( )10 1 v 3 5 1

10 10,1 10,3 10,5 10,

( ) ... /

...

i i N

i i i i i

   



= − + + + +

= + + + +

10Î 
10

10

ˆ

2

I
I 

 =
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The common no-load current will be: 

 . 

If the higher harmonic components are neglected, only the fundamental frequency 

magnitudes remain. Therefore, a complex notation of the equations is used. 

 

 

Using transformed values, it is valid: 

 

and follows 1 21 2 0 0U U   − = → − =  (no leakage magnetic fields). 

The equation of equilibrium of ampere-turns: 

1
1 2 e1 2

2
I N I N I


+ = −  

and with transformed values 

1fic1
1 2 e 10

1 1

1

2 2
I I I I

N N

 
+ = − =  

 
 (the higher harmonic components are neglected). 

The deviation from ideal conditions is represented by the ampere-turns 1  required for 

excitation and reverse action eI  in the core. 

No-load voltage-ideal current-real transformer 

2 0I =  →  the voltage on the primary side is equal to the grid voltage. 

2 2 2 2
10 10,1 10,3 10,5 10,...I I I I I = + + + +

1
1 11 j j

2 2
U E N

 
 = − = =

2
2 22 j j

2 2
U E N

 
 = − = =

2
22 1j j

2 2
U E N

 
 


 = − = =
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1
1 grid

1

2

j

U
U U

N



= → =  

2 1U U = , 1fic
1 10

12
I I

N


 =  

The energy balance: 

10 mag Fe Feh FeeP P P P P= = = +  

( )*
1010 1ReP U I=  

10 1 10 10cosP U I =  
 

Load of a voltage-ideal current-real transformer 

L1,  U Z = load impedance 

L 2 2 1
2 L

L L L1

U U UN
I I

Z Z N Z
= − = − = − = −  

Even under load, the imposed (applied) voltage 1U  dictates the magnitude and phase of the 

flux 112 / ( j ).U N =  So the 1fic  stays the same as in no-load. 

Load with 1fic
2 2 1 1 22 1 2

2
I I N I I N I N


→ → → + =  

1 11fic 1 0E U E → → → + =  

By introducing transformed secondary values on the primary side, it is valid: 

1fic
1 2 1 2 10

12
I I I I I

N


 + = → + = . 

Every change 2I  causes a change 1I , so that 10 const.I =  

1 2U U =

1 2E E=



1fic

10I

10wI

10I 

10
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Energy balance 

( ) ( )* * *
1 L 101 L mag L Fe1 L 1Re ReP U I U I U I P P P P= = + = + = +  

The accepted power 1P  covers the power of the consumer and the losses in the iron, but not 

the losses in the transformer windings. 

Analytical treatment 

General equations for stationary operation 

The derivation will be carried out for linear transformer theory, where: 

Fe Fe Feconst.,     no hysteresis loop and 0 hence 0P = → = → =  

air 0 const. = =   cand const. =  

The linear theory implies linear relationships 

between the flux linkage and the currents. 

1 1 21 122 2L I L I = +  

2 1 221 22 2L I L I = +  
 

 

1U



1fic

2I

2U
1I

112 I N

222 I N

1 2 LU U U = =



2I 

1I

10I
2I

B

H




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It is also true that 12 21L L= . Now write the two voltage equations: 

1
1 1 1 21 1 1 121 j j j

2
U R I R I X I X I


= + = + + , 

2
2 2 1 22 2 21 22 j j j

2
U R I R I X I X I


= + = + + . 

By introducing transformed quantities for winding 2 with already known relationships 

2 U 2 2 I 2 2 U 2                   ,               , continue toU K U , I K I K     = = =  

2 2
12 21 U 12 2 U 2 2 U 2,         and      X X K X X K X R K R   = = = =  

it is: 1
1 1 1 21 1 1 121 j j j

2
U R I R I X I X I


 = + = + + , 

2
2 2 1 22 2 21 22 j j j

2
U R I R I X I X I





      = + = + + . 

The difference of the two voltage equations gives the deviation from the ideal situation. 

1 2 1 21 21 2 j ( ) / 2U U R I R I    − = − + −  

Transformer equivalent circuit 

A transformer with two electrically isolated windings, i.e., isolated circuits, is converted into 

a circuit with electrically coupled circuits. This is achieved by adding the first voltage 

equation 112jX I  and the second equation 221jX I  , and combining the individual terms in 

a meaningful way. 

1 1 1 2 1 1 11 1 12 12 1 1 121 j( ) j ( ) j( )U R I X X I X I I R I X X I E  = + − + + = + − −  

2 2 1 2 2 2 22 2 21 21 2 2 212 j( ) j ( ) j( )U R I X X I X I I R I X X I E           = + − + + = + − −  

The following circuit corresponds to these two equations.  
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1 2I I +

2I 
1I LI 

LZ 
2U 1U 1E 12jX 

2 21j( )X X −
2R1R

1 2U U −

1 12j( )X X −

 

Deviation from voltage-ideal transformer →  voltage drop 1 2U U −  across longitudinal 

links, deviation from current-ideal transformer →  magnetizing current μ 1 2I I I = +  

flowing across the transverse link. 

Further, 1 12( )X X −  is the total leakage reactance between the two windings (no-load 

winding of side 2) for windings 1 and 2 on the same column, and, analogously, 2 21( )X X −  

is the total leakage reactance (no-load winding of side 1). If the two windings are separated, 

then: 1 12 σ1X X X− =  and 2 21 σ2X X X  − = . Taking into account the losses in the iron 

10 FeP P=  0 1 2( )I I I = + , the equivalent resistance for the losses in the iron FeR  is added in 

the equivalent circuit in parallel to the magnetizing (main) reactance 12 mX X = . 

 

 

Now it is possible to draw a complete 

phasor diagram of a loaded transformer 

with impedance L L LjZ R X= + . 

 

μI

1E
12 mj jX X =FeR

1 2 0I I I+ =

wI

I 
wI

0I

1I

2 LI I − =

2U 

1 2E E− = −

L

1U

2 2jX I


1 1R I

1 1jX I

2 2R I 
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Approximate situation 

If the transformer is excluded from the observation during no-load and at low loads, it will 

be 1 2 2 10I I I I + = → = −  and the difference of the voltage equations: 

( )1 11 2 1 12 2 211 2 ( ) j ( ) ( )U U R R I X X X X I    − = + + − + − , 

1σ1 2 ( j )U U R X I− = + . 

The equation 1 2U U − is illustrated by a 

simplified equivalent circuit. 

 

Transformer tests 

They are carried out at no-load and in a permanent short-circuit. They are used to 

determine the actual operating conditions of the transformer. 

No-load test 

For an 2 1 10 1N0  I I I I= → =   →  transformer is the voltage-ideal. The measurements 

will give: 

1) nominal voltage ratio 1 1 1
U

2 2 2

U E N
K

U E N
=  =  and 

2) the no-load characteristic. 

The sinusoidal voltage 1U  is said to dictate the sinusoidal flux, because 11 0U E+ = , 

1

1

2ˆ U

N



→ =  generated by 1fic 10 1

ˆ 2I N = . 

1I
2U 

1U

jXR
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Therefore, due to 1 1
ˆf ( )E U  = , ˆˆ f( ) =  and 1fic 10

ˆ f ( )I = , the no-load characteristic 

1 10f ( )U I=  is similar to the magnetizing characteristic or the magnetic curve, if the air gap 

can be neglected. 

 

 

3) Iron losses 

Since 10 NI I , the losses in the primary winding are negligible ( 10 0,01I   N0 02, I ). 

Measurement: w Fe0P P  (at NU U= ) gives the magnetization losses. From the losses it is 

possible to calculate the equivalent resistance FeR , 0wI , from 0I  still 0μI  and 12 mX X = . 

Short circuit test 

The switching scheme measures the current 1scI  and the power 1scP  at the variable voltage 

at the transformer terminals. 

 

The measurements give: 

1U

A W

V

1 2

V

1U

10I

1NU

10NI

1U

A W

V

1 2

short-circuit
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1) the short-circuit voltage at which the rated current flows through the transformer 

windings. 

Relative value for the short-circuit voltage: 

sc*
sc

N

U
u

U
=  or sc

sc

N

100
U

u
U

= . 

In the short circuit, the hypotenuse of the Kappa triangle scN 1U U=  and the 

r scN sccosU U =  and σ scN scsinU U = . 

Permanent short-circuit current 

N
sc

sc

U
I

Z
= , if 

2 2
sc σZ R X= + . 

 

Relative value of the permanent short-circuit current 

sc N N*
sc sc N

* *
N sc N sc sc sc

1 1
  

I U U
i I I

I Z I U u u
= = = = → =  

Relative value for the ohmic and inductive voltage drop: 

N*
r

N N

R I R
u r

U Z
= = = , where N

N

N

U
Z

I
=  − is the rated impedance. 

Also applies 
2

N N CuN* *
r CuN

N N N N

R I R I P
u r p

U U I S
= = = = =  (relative losses in the windings), and 

2
σ N σ N σN **

σ σ σN

N N N N

X I X I Q
u x q

U U I S
= = = = =  (the relative reactive power of the leakage field). 

2) Losses in the windings 

From the short-circuit equivalent circuit it can be seen that the induced voltage is 

approximately half of the applied voltage: 

1sc 1NI I=

rU

U 
1 scNU U=

sc
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N1
1 scN 10sc 10N    

2 2

U
E I I


 →  →  . 

 

 

In a short circuit, when the voltage sc N(4 16 %)U U=   is reduced by 1sc 1NI I=  and 

2sc 2NI I=  for: sc N sc N Fesc    0B B P  →  →  ; 
1 Nw 1sc CuN( )I IP P P==  =   

2
1N 1 2( )I R R= +  (rated losses in the windings). 

A wattmeter shall be used to measure the total short-circuit losses in the windings, i.e., joule 

losses and eddy current losses in the case of massive conductors. 

Since N
sc μ 12  0  

2
I X


  →  →   a simple short-circuit equivalent circuit is valid, 

drawn for approximate conditions (p. 44). The short-circuit impedance can also be obtained 

from scU  and scI : 

sc
sc sc sc sc 1 2 sc σ

sc

j .               (   and  )
U

Z R X R R R X X
I

= + = = +   

Transformer operation on a rigid grid 

For a rigid grid: 1 const.U =  

2U  or 2U   is a function of the size and type (character) of the load LZ , as shown in the 

Figures below. 

10I10scI 10NI

1 1

1

2
E U

1N 10U E=

,U E

2 0U  =1U 1E
12jX 

2 21j( )X X  −1 12j( )X X − 2R1R

1

1

2
U 1

1

2
U



 
48 

 

  

Kappa diagram 

For the Kappa diagram it is not derived from 1 const.U = , but 1 const.I = , L2 f ( )U  = , and, 

here, the position of the Kappa triangle is unchanged. From the equation 

1σ1 2 ( j )U U R X I− = +  express 2U  : 

1σ2 1( j ) .U R X I U = − + +  

 

In the complex plane, draw: 

1) 1σ( j )R X I− + , 

2) circles of radius 1U  for different 

1I , e.g., 1 1NI I=  and 1 0I =  on the 

starting line. 

For any phase angle L  is 

obtained ΔU  respectively 2.U    

 

R

1U
2U 

L 1I I =

1RI
1jX I

a)

L

1jX I

1I

1RI

1U

L

2U 

b)

C

1I L

1RI

1jX I

1U

2U 

c)

1I

2I 

0 1NRI−
1NjX I−

2U 
1U

U

1

1N

0
I

I
=

L
2




=

L 0 =

L

2

1

L
2




= −

1

1N

=1
I

I

0

ohmic  inductive

load       

− ohmic  capacitive

load       

−

startingline  
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External characteristic 2 2f ( )U I=  

 

The Kappa diagram gives for arbitrary values of current 2I , e.g. 2 2N/ 1/ 4I I = , 1/ 2 … 

and L const. = , external (load) characteristics 2 2f ( )U I=  at 1 const.U =  

Energy balance, losses and transformer efficiency  

Energy balance - power flow diagram 

 

4 / 4 NI3 / 41/ 4 2 / 40

2NU

2U

load
ohmic

ohmic - capacitive

ohmic - inductive

2P

1P

mag magnetizing lossesP −

input power

output power

                        

add additonal lossesP −

Cu conductors winding losses

(joule losses)                   

P −
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Losses 

Total losses are: 

Fe Cu addlP P P P= + + . 

The additional losses are divided into: those in the iron − voltage-dependent − which are 

captured in the no-load losses 0P , and those in the conductors − load-current-dependent − 

(eddy-current losses in massive conductors in higher-power transformers), and are captured 

in the short-circuit losses sc.P  

For any load, i.e., N/y I I= , the losses are:  

2

2
0N scN 0N scN

N N N

  for   ,l

I I S
P P P P y P y

I I S

 
= + = + = = 

 
 

where S  is the apparent transformer power. 

Introduce relative losses: 

*
20N N scN N 0N **

scN

N N

l
l

P P S P S p
p y p y

S S S S S y
= = + = + . 

At a given load (a given current NI I ), for 

opty y=  the total losses *( )lp  are the lowest 
* *
0N scN( / )p y p y=  and the efficiency is the 

highest. 

 

Efficiency 

It is defined as: 2

1

P

P
 =  or 1

1

lP P

P


−
= . 

4/4 y

opty

0

ip

0,05

0,10

0,15
lp

0Np

y



scN  p y

3/42/41/4
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For 2 N cosP y S =  and 2
1 2 N 0N scNcoslP P P yS P y P= + = + +  it will be: 

N2

2
1 N 0N scN

 cos
f ( , cos )

 cos

y SP
y

P y S P y P


  


= = → =

+ +
. 

Example: N 20 kVA,  1,  cos 1,0 0,97S y  = = = → =   

 cos 0,8 0,963 = → =  

Current transformer 

It operates at an imposed current 1I  which is supposed to be constant. Of course, it is not 

possible to assume that the current in a circuit will remain unchanged if a current transformer 

is connected to it in series. It is subject to the same laws as a voltage transformer, i.e., the 

same equivalent circuit and the same phasor diagram. 

 

Ideal current transformer 

Valid: 1 1
1 2 2 11 2

2 I

0  
N I

I N I N I I
N K

+ = → = − = −  or 1 2 0I I + =  →  2 1I I = −  

The load current L 2I I= −  causes a voltage drop across the complex resistance LZ  of the 

two-terminal L L L 2L 2U Z I Z I U= = − = . 

The voltage drops across a current transformer feed back to the circuit. 

1I

LZ 1Z 12jX 

2 12j( )X X −1 12j( )X X − 2R1R
2I 
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As it is considered to be the voltage of an ideal transformer U1 2U K U=  and 
2

L LUZ K Z = , 

it will be: 2
L 2 L 1 L 1 L 1U U U U U1 2 ( )U K U K Z I K Z K I K Z I Z I= = − = = = . 

1U  is the voltage on the primary side, and, at the same time, the voltage drops across the 

transformer. Therefore, the impedance LZ  must be small relative to the impedance of circuit 

1, which determines the current 1I  . 

Phasor diagram of a loaded ideal current transformer 

 

Analytical treatment of a real transformer 

From the voltage drop across the secondary winding (p. 42) 

2 1 22 21 22 j jU R I X I X I= + +  

for L 2 2L L2 ( j )U Z I R X I= − = − +  is the current:  

21
2 1

L2 2

j

j

X
I I

R X Z
= −

+ +
; 2 1I I  and are no longer displaced by 180 . 

Voltage drops across the primary winding: 

2
12

1 1 2 1 1 11 1 12 1 11

L2 2

j j j
j

X
U R I X I X I R X I Z I

R X Z

 
= + + = + + = 

+ + 
. 

2E

2U

2I

1U

LI

1I



2I

1 2 LU U U = =

1 LI I =



1 L 0I I − =
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The complex resistance 1Z  is, according to the alternative circuit in the Figure, the resistance 

between the input terminals on the primary side of the current transformer. 

Since 1 1f ( )U I=  will be 1 1 20,   0   and  0.I U U= = =  Therefore, the current transformer is not 

used as a voltage source, but for measurements. 

Measuring current transformer 

For a real transformer, it is: 

1 2 0 1 L 00  or  I I I I I I+ =  − = . 

Deviations from the ideal conditions result in ratio error and angle error. 

 

2 LI I = −

0I

1I



I

 
 

Ratio error: CT

1

Δ
100 (%)

I
e

I
=  

Angle error:   →  in degrees or minutes 

To minimize these two errors, the current transformer operates in the linear part of the 

magnetization characteristic ( 0,08 1 T).B =   

Accuracy class (0,1 – 0,2 – 0,5 – 1 – 3 – 5) defines both errors,  

e.g., the class 1 →  CT 1 %e =   and 1 = 60 =   . 

Since the ratio error changes as the load increases above the nominal value, the overcurrent 

number is also a known quantity. 

, ,B E

0I0NI 0 1I I=

L 2,Z E

20 L,E Z = 
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The overcurrent number is that multiple of the rated current at which the ratio error reaches 

the value −10 %. 

Danger of open secondary terminals 

It's normal: 1 2 0NI I I+ = . 

For L 2 1 0 0 00,      Z I I I x B xB = → =  → = → =  and 

( )
2 2

Fe 0 FeN/P k B B x P= =  →  core heating. Due to 0 20 2  x E xE = → =  (increase of  

voltage at the terminals). Therefore, after the load is removed, the secondary terminals must 

be short circuited. 

Three-phase transformation 

The three-phase system is the most widespread in the world. One reason for this is that the 

power in a symmetrical three-phase system does not have an AC share, as is the case in a 

single-phase system for example. The three-phase system also makes it possible to take 

advantage of the phenomenon of rotating magnetic fields in rotating machines.  

Three-phase voltage transformers connect individual three-phase systems of different 

voltage levels. 

Options: a) three single-phase transformers b) three-phase transformer 

Basic winding connections 

There are three typical connections: a) star  Y 

 b) delta D 

 c) zigzag Z 
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For star and zigzag connection 0I = , if the winding 

has no zero conductor. In a delta connection, the phase 

and line currents can be asymmetrical. 

 

 

 

Phase shift 

This occurs between the primary and secondary actual or imagined value of a phase voltage. 

The phase shift is: 30n  electric ( 0 12)n =  . Typical shifts are: 0,  5, 6, 11n = . 

It is given as the phase lag of the lower voltage phasor against the higher voltage phasor. The 

phase shift is identical to the displacement of the hour hands by whole hours. 

Vector group 

Example of marking: Dy5 

Capital letter: 

– delta connection of the primary side; 

lowercase letter: 

– star connection on the secondary side; 

Number: 

– phase shift ( 5 30 150 = ). 

 

The direction of the secondary phase voltage a( )U  
 

is equal to the direction of the primary line voltage AB( )U  between phase A and phase B. 

Z

Y

A B C

D

C B

A

c

b

a

0

1

2

3

4

5

6

7

8

9

10

11

12

5

Dy5

n =
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The Dy5 vector group can be changed to Dy11, and vice versa, by cyclic permutation of the 

two terminals on the primary side and the next two terminals on the secondary side. 

The Yy0 vector group can be changed to Yy6, and vice versa. This is done by swapping the 

starts and ends of the windings that are connected to the neutral terminal of the star on the 

primary or secondary side. 

Example of use:  generator transformer Dy5 

distribution transformer Yy0, Yd5 

local grid Dy5, Yz5 

Types of cores 

Three-phase shell transformer 

It is obtained by adding three 

single-phase transformers. 

 

 

The yoke of a shell transformer has half the cross-section of the column if the winding on 

the middle column is wound in the opposite direction to the outermost two, or the winding 

connection sequence on the middle column (phase) is reversed. 

Valid y A B/ 2 / 2  = +  or C B/ 2 / 2 + . 

C C

2

CU

B B

2

BU

A A

2

AU

A

C

B

B

2



A

2

B

2


C

2



( )C B

1

2
 +

( )A B

1

2
 +
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Three-phase core transformer 

It is made up of three single-phase transformers and is technically usable as an asymmetrical 

design (Figure c). 

 

It has two magnetic nodes in which the condition A B C 0.  + + =   

The Figures show the flux waveform for A BA
ˆ  and  0.  = =   

 

 

Asymmetrical load 

a) There are no problems in the YNyn  connection with 

zero conductors on the primary and secondary sides. 

b) In the Yyn  connection with a zero conductor only 

on the secondary side, asymmetry occurs. 

Worst case: pure single-phase load. 
 

 

med
C

B

A

a)

C

B

A

FeA FeB FeCl l l= =b)

symmetrical
3-level
core

CBA

c)

A

BC

t

A

BC

t

a b c0
LZ

A B C

aI

AI BI CI
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Because it is A B C 0  + + =  and A B C  = = , shall be A B C  = = . 

With asymmetrical loading, the balance of ampere-turns on the columns will be: 

a A x2 1 1I N I N I N+ =  

B x1 10     I N I N+ =  

C x1 10     I N I N+ =  

B a

A B C a

C a

1
 

23
  ( )

1 3 
3

I I

I I I I

I I


→ = 

= − + = −
 → =


 

a A B C x2 1 1 air( ) 3 3 / 2I N I I I N I N + + + = = , because it is 

in the star A B C 0I I I+ + = . In-phase excitation 

x a1 2air

1
2 2

3
I N I N = = → 2

x a a

1

1 1

3 3

N
I I I

N
= =  

air air air addE U → → →  (additional) →  zero shift 

 

c) In the Yzn  connection with no zero conductor on the primary 

side there is no problem (only two phases are loaded).  

d) There is also no problem in the Dyn connection, because 

the load current on the primary side flows only in one phase. 

 

Yzn  connection 

 

air

A B C air   + + =

A

C B

ABUCAU

BCU

aI

BphU

addU

CphU

AphU

A B C

0

LZ

aI

aI

AI
BI

a b c
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Autotransformer 

If the two windings of a normal transformer are combined, part of the winding will be 

common to both voltage sides. 

Common – parallel winding →  difference (differential) currents 

Series winding → load current of primary or secondary 

Use →  to save material (iron and conductors). This saving is maximum for the case of

U 1K  . In the three-phase version, the Y connection is used. 

1
p

s
U

U
U

=
+

2
p

s
U

U
U

=
+

s 2I I=

pI1 pU U= pN

sN

1 s pI I I= +
1 sI I=

pI pN

sN

2 s pI I I= +

2 pU U=

p  parallel
(common) winding

s  series winding

−

−

b)a)

 

For an ideal single-phase autotransformer (connection a): s s p p 0I N I N− =  →  

p s s2 1
s p

s p 1 p

     and   
N U NU U

I I
N U U N

−
→ = = = . 

The transformer's inherent or typical power, i.e., the power for which the transformer is built, 

is: t p p s s 2 1 2( )S U I U I U U I= = = −  or for connection b) t 1 2 1( )S U U I= − . 

Passing power: pas 1 1 2 2S U I U I= =  

The equation for the typical power is: 1 1
t 2 2 pas

2 2

1 1
U U

S U I S
U U

   
= − = −   

   
. ( t pasS S ) 

The reverse would be true for the connection b): 2 2
t 1 1 pas

1 1

1 1
U U

S U I S
U U

   
= − = −   

   
. 
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INDUCTION MACHINE 

An induction machine (IM) has some similarities with a transformer. 

 

Primary winding - on the stator 

Secondary winding - on the rotor 

There is an air gap   between them. 

Number of phases on the stator sm  

Number of phases on the rotor rm  

r s( )m m  

The stator currents induce rotating ampere-turns, which excite a rotating flux that induces a 

voltage in both windings. The frequency of the induced voltage in the stator sf f= . 

Frequency of induced voltage in the rotor r s r s or  .f f f f   The rotor at standstill operation 

is equivalent to a short-circuit of the transformer; the rotor winding is short-circuited. 

The resultant rotating magnetic field and currents in the short-circuited rotor winding 

produce a force that rotates the rotor. The rotating magnetic field rotates with synchronous 

speed sn , the rotor with speed sn n
  − hence asynchronously. 

Description of construction 

Stator – laminated sheet, with slots in which the sm  phase winding is located. 

Rotor – laminated sheet with slots. 



V1

U1 W1

stator

rotor

cage bar

cage ring

shaft
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We distinguish between: 

a) a wound rotor  

b) a rotor with a short-circuit squirrel cage 

 

 

c) massive iron rotor 

The stator and rotor can also be cylindrical or disc-shaped. 

Induction machine windings 

Three-phase belt windings: are single, double, and combined layer windings. 

Single-layer winding: 

diameter winding c p( ) =  

 3  

 

rI

rbI

c p =
10

14 5

13

4

12

3

I

11

2

I

IIIIII

1
II

II

6

15

7

16

8

17

9

18perimeter

distribution
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Each phase has a belt: b

360 360
60

2 6m
 = = =  and there are q  slots in it. 

For Q  slots on the perimeter of the machine: p / (2 )Q Q p=  the number of slots per pole, and 

2 2p =  the number of slots per pole and phase. The pole-arc is 18Q =  slots, or the width of 

the coil expressed by the number of slots. The voltages of the individual bars (or conductors) of 

the slots (or their phasors) are offset from each other by an electrical angle  

360
Qp p

Q
 = =  and form a slot star. 

Three-phase single-layer winding: calculation of the data for 2 2p =  and 18Q =  slots. 

The number of slots per pole is p

18
9

2 2

Q
Q

p
= = = , the number of slots per pole and phase 

p 9
3

3

Q
q

m
= = = , the electrical angle between the slots 

360 360
1 20

18
p

Q
 = =  = . 

  

1) Distribution factor 

b

geom.

d

b

arit.

2 sin sin
2 2

2 sin sin
2 2

E r q q

f
E

q r q

 

 

   
   
   = = =
   
   
   




 



b18E

b17E

b1E
b2E

b3E potential

circle

belt

bE

beltE

/ 2q



r

/ 2
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For our example, the distribution factor: 
( )
( )

d

sin sin 3 10 0,52
0,96

3 0,173653sin 10sin
2

q

f

q





 
  
 = = = =

 
 
 

. 

Diameter winding: the width of the QY  coils expressed in the number of slots Q p 9Y Q= = . 

Next, determine the winding pitch. The latter is defined as the expression: 

Q )p (itc 1h 1 Y= − + , i.e., for the slots from the initial (first) slot onwards. The pitch is: 

Q1 (1 ) 1 (1 9)Y− + = − + = 1 10= − , i.e., from the first to the tenth slot. 

21 43 65 87 109 1211 1413 1615 1817

W2 U1 U2 V1 V2 W1

c p Q pY Q =  =

 

The start of the first phase is marked U1 and the end U2. In the Figure we see that the start 

of the second phase is in slot 7, which is shifted by 6 20 120 =  (electrical) with respect to 

slot 1, and analogously, the start of the third phase is in slot 13 by 12 20 240 = . The phase 

shifts correspond to the condition for the generation of a circular rotating field. The direction 

of the current in the slots of the first phase changes twice. This corresponds to two poles. 

The same argument also applies to the three phases taken together. The directions of the 

currents in the Figure correspond to the position of the timeline 60t = , when the currents 

of the first and second phases are positive and of half amplitude, and the current of the third 

phase is negative and maximum. 
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In the case of twice as many poles (2 4)p = , the number of slots is also twice as large, i.e., 36Q = . 

The number of slots / pole is p 36/4 9Q = = , the diameter width of the coils Q p 9Y Q= = , the 

number of slot / pole / phase 3q = , the electrical angle between the slot 

360 360
2 20 .

36
p

Q
 = =  =  

Thus, practically all the data are the same as for the two poles on 18 slots. The winding pitch 

(of the coils) will also be the same Q1 (1 ) 1 (1 9) 1 10Y− + = − + = − . According to the Figure 

below (drawn for the first phase only), it can be seen that the group of the first three coils 

and the other three coils are connected in series, i.e., the end in the 12th slot with the beginning 

of the second group of coils in the 19th slot. The 19th slot is shifted with respect to the 1st slot by 

360  (electrical). 

21 43 65 87 109 1211 1413 1615 1817

U1

2019 2221 2423 2625 2827 3029 3231 3433 3635

U2  

 2) Pitch factor 

In practice, it proves useful to shorten the winding, i.e., to shorten the pitch (fractional pitch 

winding), thereby shortening the end winding connecting the individual slots. This also saves 

on material (copper). In the end winding, which are outside the slots of the stator pack (in 

the air), no voltage is induced due to the weak field. 

Only a two-layer winding can be shortened by x slots c p Q p( 1  or )x Y Q  →    so that the 

width of the coils is Q pY Q x= − . A two-layer winding has two coils in the slots with half the 

number of turns. Therefore, there are twice as many coils as in a single-layer winding. 
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Example for a two-layer winding: 12,  2 2,  3Q p m= = = , p2,  30 ,  12 / 2 6q Q= = = = , 

Q p 6Y Q= =  and the winding pitch Q1 (1 ) 1 (1 6) 1 7Y− + = − + = − . 

a) Diameter pitch 1 7−  

 

Turn (loop) voltage t b1 b7E E E= − . 
 

b) Shorted pitch 1−6 Q p( 1 6 1 5)Y Q= − = − =  

 

Turn voltage t b1 b6E E E= − .  
 

pitch factor: 

c
t b

pgeom. Qc
p

b p pt

arit.

1
2 sin π

2 π π
sin sin

2 2 2

E E
Y

f
E QE



 



 
 
      = = = =   

   
   




 

winding factor: w d p f f f=  w( 1)f   

Example: 24,  2 4,  3,  2,  30Q p m q = = = = =  (electric angle), Q p 24 / 4 6Y Q= = =  

5 112 4 123 101 6 7 8 9

c p =

a)
b7E

b2E
b1E

b1E

b7E−

tE

5 112 4 123 101 6 7 8 9

c p 

b)

b6E

c

p






b1E

b1E

b6E−

tE

c

p





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a) Single-layer winding: pitch 1 7− , drawn for the first phase  

W2 V1U1 U2W1 V2

19 2120 22 23 24145 112 134 123 101 6 157 168 179 18

 

b) Single-layer winding: pitch 1 7−  (The directions of the currents are drawn for 60t = .) 

 
c) Two-layer winding with shortened pitch: pitch 1−6, drawn for the first phase. 

1U1 1U2 2U1 2U2

19 2120 22 23 24145 112 134 123 101 6 157 168 179 18

U1 U2

19 2120 22 23 24145 112 134 123 101 6 157 168 179 18
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Operation mode 

a) Rotor winding − open (transformer no-load) 

mImI

stator
s

rotor
r

 

Amplitude of the stator MMF caused by the  

magnetization current: 

s s ws
s m

4ˆ 2
2 π 2

m N f
I

p
 = , 

generates a rotating (main) flux 

m 1 δ 1 p

2 2ˆ ˆˆ
π π

B A B l = = . 

2 / π  is the factor of mean value for a 

sinusoidal magnetic field. 

 

The rotating flux induces voltages: 

s s ws m
ˆ4, 44E f N f = , 

r r wr m
ˆ4, 44E f N f = , 

frequencies s rf f f= = . When the rotor is at 

a standstill, ro rE E=  is the induced voltage of 

the open terminals of the (wound) rotor.  

The reduction factor or voltage ratio is: s s ws
U

r r wr

E N f
K

E N f
= = . 

b) Rotor winding − short-circuit 

The amplitude of the rotor's rotational MMF is: r wrr
r r

4ˆ 2
2 π 2

N fm
I

p
 = .

sU

sE

rE

mI mm

p

1B̂
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Due to the equilibrium condition, s sU E= − , to remain the same m  as at no-load, the 

current in the stator winding must increase from mI  to sI . 

s r m

s r mI I I

  + =

+ =
 

Due to the compensation of the ampere-turns: 

s s ws
r r r

4ˆ ˆ2
2 π 2

m N f
I

p
  = = . 

Current ratio 

 r r wrr r
I

r s s ws s U

1m N fI m
K

I m N f m K


= = =  

 

Rotating machine operation 

The notion of a slip 

rel s

s s

 
n n n

s
n n

−
= = →

s (1 ) (1 )
f

n n s s
p

= − = −  

1) s0n n=   induction motor ( 1 0)s =  , 

2) sn n= +  induction generator ( 0 )s = − ,  

3) 0n = −  brake, the rotor rotates against the rotating magnetic field ( 1 )s = + . 

Slip is the difference between the synchronous speed of the MMF sn  and the rotor speed n . 

Frequencies of the induced voltages: 

synchronous speed of the rotating magnetic field s sπD n=v  

rotor speed πD n=v  

relative speed rel s s rel s sπ( ) π πD n n D n D n s s= − = − = = =v v v v  

sU

sE

rE

mI mm

r

s

sIrI−

r−

r

rI

rI

ss  ( ) → v

relr  ( ) →v

   stator
 at rest−

rotor
 rotates
( )
−
→ v
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sb se Bl= v  (induced stator voltage − in the bar or conductor) 

rb rel s sbe Bl Bl s e s= = =v v  (induced rotor voltage − in the bar) 

s sf f pn= =  (frequency of the induced stator voltage) 

r rel s sf pn pn s s f s f= = = =   (frequency of the induced rotor voltage) 

sr r sr s sr sr02π 2πX f L s f L sX= = =  (change of the mutual reactance) 

Force and torque of a short-circuit rotor winding 

The occurrence of a force on a short-circuited rotor winding (squirrel cage): 

rotating magnetic field of the air gap 1 rb r rbB E E I→ = → . 

A force is acting on a single bar (cage) in a rotating magnetic field on a current-carrying 

conductor according to Lorenz's law: 

1
b rb

ˆ

2

B
F I l= , 

where rbI  is the current in each rotor bar, and l  is the length of the conductor. 

In the equation for force, we have to account for the RMS value of the fundamental harmonic 

of the flux density. Considering the equation for the frequency in the rotor, the equation for 

the induced voltage in each rotor bar is r 1z =  (half turn r r / 2 1/ 2N z= = ): 

m 1
r rb sb r wr

ˆˆ
2π

2 2

Bs r
E E sE s f N f l

p

 
= = = = . 

The winding factor of each rotor bar is taken into account wr 1f = , m 1 p
ˆˆ (2 / π) B l =  and pole 

pitch p π / (2 ) = π /D p r p = . Express 1 rf ( )B E=  and the equation for the force takes a new 

form: 

r rb r rb r rb
b

ms s

p E I E I E I
F

s r s r s 
= = =

v
, 
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where   is the electrical angular frequency, s  the angular frequency of the stator MMF 

s( ) =  and ms s s/ 2π /p f p = =  is the mechanical synchronous angular velocity. 

The force is applied to each bar of the rotor with radius / 2r D= . For the rQ  bars in the 

rotor, we obtain the final expression for the torque from the internal power ( intP ): 

r r rb s r r intr r r
r b

ms ms ms ms

m E I m E I PQ E I
M Q F r

s s s   
= = = = = , 

if r r
r rb rb

s s

m Q
I I I

m m
= = . (Transforming multiphase bar current to a three-phase rotor current.) 

In the case of a squirrel cage, the number of phases rm  is equal to the number of slots in the 

rotor rQ , or equal to the number of bars r r( )Q m= . The equation for the torque fails when 

0s = . (For r r0 0,  0s E I= → = =  and get 0 / 0 .) 

Analytical treatment 

Voltage equations: 

m
s s s s ss σs s ws s σss j j ( ) j

2
U R I X I N f R I X I E


= + + = + −  

m
r r r r rr σr r wr r σrr j j ( ) j

2
U R I sX I s N f R I sX I sE


= + + = + −  

0j
m m

ˆ e
 =  generate the resulting ampere-turns: res s r  = + . 

The magnetic flux density is given by: 

( )0res res s p
ˆ( , ) cos ( / )πb x t B x t  = − − . 

 

For Fe →  , an equivalent (smooth) air gap is considered: 0

res res

e

ˆ ˆB




= . 

 res

stator

rotor

e
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For s 0x = , i.e., in the winding symmetry of phase "a", the resulting MMF is given by: 

( ) ( )res s is r ir
ˆ ˆcos cost t      = + + + . 

( )0

m res s rp p s ws r wr

e

2 2 3 4 1
( ) ( ) 2

π π 2 π 2
lB l N f I N f I

p


  


= = +  

Now insert the equation for the main flux on the left-hand side of the two equations for the 

stator and rotor voltages on the previous page, and they take the following form: 

( ) 0 s ws r wr
s s s rs σs s ws ps

e

2 3 4
j j

π 2 π 2 2

N f N f
U R I X I N f l I I

p p


 



 
= + + + 

 
, 

( ) 0 s ws r wr
r r s rr σr r wr pr

e

2 3 4
j j

π 2 π 2 2

N f N f
U R I sX I s N f l I I

p p


 



 
= + + + 

 
. 

By introducing magnetic or air gap reactance 

0

2
s ws

m m p

e

( )2 3 4

π 2 π 2

N f
X L l

p


  


= =  are the rearranged voltage equations: 

2

r wr r wr
r r s rr σr m mr

s ws s ws

j j j
N f N f

U R I s X I s X I s X I
N f N f

 
= + + +  

 
. 

The stator's own reactance is introduced: s σs mX X X= + . 

In the voltage equations, the term r wr m
m sr rs

s ws U

N f X
X X X

N f K
= = =  is equal to the mutual or 

magnetizing reactance between the stator and the rotor: m sr U srX X K X = =  

Introduce the rotor's own reactance: 

2

r wr srm
r σr m σr σr2

s ws UU

N f XX
X X X X X

N f KK

 
= + = + = + 

 
.  
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The result is two basic voltage equations: 
s s rs s srs

r s rr rs rr

j j

j j

U R I X I X I

U R I sX I sX I

= + +


= + +
 

Induction machine equivalent circuit 

1) By introducing reduced values and for the same number of phases, s rm m=  is: 

2 2r
rU r r U σr σr U sr sr U mr r

U

,   ,   ,   and  
I

U U K I R R K X X K X X K X
K

    = = = = = = . 

2) Add the first equation for voltage ssrjX I  and the second equation rs rjX I  . 

3) The equation for the rotor voltage is divided by the slip to give: 

s ss σs ms r( j ) j ( )U R X I X I I = + + + , 

r s rr σr mr / ( / j ) j ( )U s R s X I X I I   = + + + , 

where s r s rmj ( )X I I E E + = = . These equations are matched by an equivalent circuit. 

 

For a squirrel cage rotor winding r 0U = , respectively r 0U  = , the equivalent circuit applies: 

 

r /U ssU

sR sjX rjX r /R s

mjX
sI

s rI I+ rI 

sU

sR sjX rjX r /R s

mjX
sI

s rI I+
rI
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Approximate situation 

a) No-load run 

The assumption ms σs( j ) 0R X I+ =  gives an expression for sU : 

s r mm ms j ( ) jU X I I X I= + =  → s
m

mj

U
I

X
= . 

b) Load 

The voltage drop due to magnetizing current is neglected, s rI I = −  

and r / 0U s =  are taken. 

The voltage equations take the form:  

ss σs ms r r

sr σr mr r

( j ) j ( ) ,

0 ( / j ) j ( ).

U R X I X I I

R s X I X I I

 = − + + +

  = + + +
 

Subtract the two equations to get: 

( )s r σs σrs r( / ) j( )U R R s X X I  = − + + + . 

sU

s rj( )X X + s r /R R s+

mjX

sI

mI rI 

 

This equation corresponds to the simplified equivalent circuit above. For the slip 1s = , the 

simplification applies: sc s rR R R= +  and sc σi σs σrX X X X = = + .  

Operating an induction machine on a rigid grid 

The rotor winding is short-circuited r( 0)U = . 

The second basic voltage equation gives: 

r sr r sr( j ) jI R sX sX I+ = − , divided by slip " "s  

sr
r s

r r

j

/ j

X
I I

R s X

−
=

+
 and inserted into the first voltage equation 

sU

sI

rI

mI

s
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2
sr

s s ss s ss

r r

j
/ j

X
U U R X I Z I

R s X

 
= = + + = 

 + 

 . 

Calculate the current in the stator winding: s s
s 2

s sr
s s

r r

j
/ j

U U
I

Z X
R X

R s X

= =

+ +
+

 . 

The no-load current for 0s = : s
s0

s sj

U
I

R X
=

+
 . 

In an ideal short circuit, the current for s =  : s s
ki 2

s ssr
s s

s r

j
j 1

U U
I

R XX
R X

X X


= =

+ 
+ − 

 

. 

Stator current curve of IM 

For an approximate situation: s
s r m r

mj

U
I I I I

X
 = − = − . 

s
r

s r σi/ j

U
I

R R s X
 = −

+ +
, where σiX  is the leakage reactance σi σs σr( )X X X  +  

for ideal short-circuit i.e., common leakage of the stator and rotor. 

The stator current is now: s s
s

m s r σij / j

U U
I

X R R s X
= +

+ +
. 

We look at the characteristic values of the current for 0,  1 and .s =   

For s r / s 0R R+ → , the current is purely inductive. 

The second term in the equation for stator current represents a circle of diameter: s
Φ

σij

U
I

X
= . 

The circle is a graphical process, and is obtained by inversion of the complex quantities. 
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s

Φ Φ s2
σi

P P ctg
R

I U
X

 
 = =  and 

r

1 1 Φ Φ s2
σi

P P ctg P P
R

I U
X

 


  = − = , if it is 

s s r

1

σi σi

ctg    and   ctg
R R R

X X
 

+
= = . 

Now move the circle from the coordinate origin for the magnitude of the magnetizing current 

m s mj /I U X= −  to the right to obtain the current curve s f ( )I s= . 

  

sR
rR 1s =

s = 

j+

0s =

r
s i

line

j
R

R X
s




+ +

iX

s

i

U
I

X




=

0

1P

P

P

1s =

s = 

P

1P

r
s2

i

R
U

X



s
s2

i

R
U

X

j−

s

r
s ij

U

R
R X

s



+ +

1 1−

 −

sU

circle

sU

mI 0P ,  0s =

rI

P, ssI

1P ,  1s =

M

s

0

P

P

s = 

j−

power li
ne

torque line

sU

mI
wI

rI

P

sI

1P

M
0I 0P

s

0

P

P

j−
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Taking into account the losses in the iron, the friction and windage losses, the no-load current 

has a watt component wI . 

Energy balance 

Power flow diagram 

1 Cus Fe δP P P P= + +   Fe Fes( )P P=  

δP  (air gap power) 

δ Cur fwP P P P= + +   Fer r( 0,  0)P f= →  

mP P=  the power delivered or mechanical 

power at the motor shaft. Input stator power is: 

 1 Cus Fe Cur fwP P P P P P= + + + + . 
 

Power calculation for the m-phase stator s( 3)m =  

Input electrical power delivered to the stator: 1 s s s scosP m U I =  

Joule losses in the stator winding: 
2

Cus s s sP m I R=  

Power delivered to the rotor: 2 r Cur
δ s r

PR
P m I

s s


= =  

Joule losses in the rotor winding: 
2 2
rCur s r r r rP m I R m I R = =  

Output mechanical power 2( )P P=  at the shaft: 
2

δ Cur s r r

1
1P P P m I R

s

 
 = − = − = 

 
 

 
2

s r r δ

1
(1 )

s
m I R P s

s

− 
 = = − 

 
 

Motor torque 

At " "n  rotor rotations m s ms δ ms δ2π 2π (1 ) (1 ) and n n s s P M  = = − = − =  

rotor

stator
Cus FeP P+

Cur fwP P+

shaft

P

1P

P

stator

n
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2
s r r δ

δ

m ms ms ms

1

(1 ) (1 )

m I R PP P s
M M

s s s   

  −
= = = = =

− −
 

δM M=  is valid only if the friction and windage losses are fw 0P =  and fw 0M = , respectively. 

Operating areas on the circle diagram 

Depending on the points on the circle, the following areas of operation are obtained for 

different slip values: 

a) rotor lagging behind the rotating field s = 0 to 1, " motor area " ( s 0n n=  ); 

b) the rotor rotates against the rotating field s = 1 to + , " braking area " ( 0n = − ); 

c) the rotor rotates faster than the rotating field s = 0 to − , " generator area " ( sn n= + ). 

Torque 

The torque f ( )M s=  is obtained graphically (from a circle diagram) or analytically. 

a) Torque waveform f ( )M s=  for the slip area 0 2s =   

 

The labels in Figure f ( )M s=  have the following meanings: 

bM  is the breakdown, 

sM  is the starting (pull-up) torque, 

ibM  is the initial braking torque.

s0s = bs 1s = 2s =

f ( )M s=

bM

sM
ibM

M
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b) Analytical derivation from power δP  

2
s r rδ

ms ms

m I RP
M

s 

 
= =  for 

2

s
r

2
s r σi( / )

U
I

R R s X
 =

+ +
 (p. 74) is obtained: 

2 2

2 2

rs s s s

2 2
ms mss r σi s σi r r s

/ 1

( / ) ( ) / / 2

R sm U m U
M

R R s X R X s R R s R 


= =

  + + + + +
. 

The maximum (breakdown) torque is obtained from the condition: 

0
M

s


=


, which gives a value for 

2 2

r r

b

σis σi

R R
s

XR X

 
=   

+
 if ( s σiR X ), and 

2

2 2

s s
b

ms s s σi

1
 

2

m U
M

R R X
=

+ +
 

2

s
b

ms σi

3
 

2

U
M

X
  . 

Effect of changing rR  and σiX  on the torque curve 

a) Increase r r ( )R R  

r(b) r(a) rR R R   

As rR  increases, the point bs  

moves along the circle towards 

higher values of the slip. It is 

even possible that b 1s  . 

M

bM

0s = bs
b(b)s =1s

sM
s(a)M

s(b)M

s

r  increaseR→

r(b)( )Rr(a)( )R
r( )R

b(a)s
 

 



 
79 

b) Change σi σs σrX X X = +  

  

The Kloss equation 

It represents the ratio 
b

M

M
, which is obtained from the equation for M  and bM  respectively: 

b s r

b b b b s r

2(1 / )

/ / 2 /

s R RM

M s s s s s R R

+
=

+ +
. 

If s rR R  and b  1s  , it is obtained for s 0R → . 

The Kloss ratio: 
b b b

2

/ /

M

M s s s s
=

+
, 

where the breakdown slip is 
r

b

σi

R
s

X


  and 

2

s
b

ms σi

3

2

U
M

X
 .  

For 0s → , applicable b b 1

b b

2
/  /  and 

M s
s s s s k s

M s
 = =  (equation of a line). 

For 1s → , applicable b
b b 2

b

2 1
/  /   and 

sM
s s s s k

M s s
 = =  (hyperbola). 

iaX

iX

ibX

ia( )X

0s = 1s = s

M

i( )X

ib( )X

ia i ibX X X   
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Starting an induction motor 

Induction motor starting is the process that takes a certain amount of time for the rotor to reach 

speed from 0n =  to n . Ideally: ratio s N/M M  is as large as possible and s N/I I  as small as possible. 

a) Starting the motor with a starter  

 

During start-up, apply additional 

ohmic resistors via the slip rings 

(applies only to the wound rotor). 

a r b r

c r r

R R R R

R R R

+  + 

 + 
 

 

 

Maximum permissible starting current smax sI I  

Minimum permissible starting current smin NI I  

b) Starting the motor with the switch Y / Δ  

In a star connection, the voltage across the winding is: Y s/ 3U U U= = . 

starter

stator

rotor

NI

I

0s = s1s =

sminI smaxI

a

b

c

d
N

M

M

3

s

0s
n n
=
=

1

2

1
0

s
n
=
=

smin

N

M

M

s

smax

N

M

M
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The current in the terminals for a star 

connection compared to a delta 

connection is: 

Δ LΔ LΔ
LY Y  =  = .

33 3 3

I I I
I I= =


 

Display current (and torque) curves 

by switching from Y in Δ   
 

 

The winding voltage is / 3U →  

Δ Δ
Y Y   

3 3

B
B


 = → = . 

Starting torque 

Δ Δ
Y Y Y

3 3

B I
M k B I k= =  

Y Δ

1

3
M M=  

c) Start-up transformer (autotransformer) 

Ratio 1N L
U I

1x s U

1
1  and  1

U I
K K

U I K
=  = =  , stator phase current of the motor sx I sI K I= , 

grid (line) current 
2

Lx I sx I sI K I K I= =  and 2
x IM K M= . 

Special versions of squirrel cages 

a) Double cage 

Above is the starting cage (index "sc"). 

The lower one is the operating cage (index "oc"). 
 

I
I

Y
L

Y


U

LI 

I

turnsN −

U

3

U

turnsN −

1

2

3

4

5

N

I

I

N

M

M

0,5

1,0

1,5

2,0

2,5

0n = Nn sn n

switching Y in 

LYI

M

YM

LI 

LNI NM

sc

oc
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σsc σoc σoc σsc σr σr(ss);  X X X sX  →  =  (ss − standstill) 

b) Deep slots 

We take advantage of the impact of the ejection current. 

The height or depth of the slot h  is increased by the 

inclination of the slot. 
 

Shapes of torque curves of different rotor 

winding designs: 

a) double cage, 

b) deep slots, 

c) normal cage, 

d) wound rotor. 

 

Options for changing the rotation speed 

s (1 ) (1 )
f

n n s s
p

= − = −  
 

1) by changing the frequency, 

2) by changing the number of pole pairs, 

3) by changing the slip. 

1) Frequency-changing 

From U k f=  it applies: x

x

const.
UU

k
f f

= = =  (Applies up to the value x NU U .) 

h

shaft

s

0s

n n

=

=

c

d

M

1

0

s

n

=

=

b

a
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2) Pole pairs (poles) changing 

a) With multiple windings for different numbers of poles 

b) Dahlander connection ratio by 2:1. This uses a Δ / YY or Y/YY  circuit combination. The 

first connection is used mostly, the second only to drive the fans. 

 

Directions of currents for 2 4.p =  

 

Directions of currents for 2 2.p =  

Circuit illustration for connection  

 

1U 1V2V

5 112 4 123 101 6 7 8 9

p4

1U 1V2V

5 112 4 123 101 6 7 8 9

p2

T

SR

2W

1W

2U

2V

1V1U

R

S

T

2W

1W

2U

2V

1V1U
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3) Slip-changing (for a motor with slip rings) 

Since δ

ms

P
M


= , is const.M =  for δ const.P =  and with the resistance addR  in the rotor is: 

2 2 r addr
rN rNδ s s

N x

R RR
P m I m I

s s

  +
 = =  r add

x N
r

 
R R

s s
R

 +
 =


. 

With higher slip, the losses Cur δ xP P s=  in the rotor circuit increase. This is not economical. 

It is more economical to use a cascade, i.e., a rectifier − inverter ( r r,  ,U f U=  are variable) 

or converter cascades r r( ,  U f  are variable, const.)U= =  in the rotor circuit. 

 

Changing the torque 

The torque is proportional to the power of the air gap or the power at the resistor according 

to the equivalent circuit r /R s : 

2 2r r
r r

ms ms

3 3R R
M I I

s s 


= = , 

where the rotor current rI   is reduced to the stator r
r r I

U

I
I I K

K
 = =  and 2

r rUR K R =  

s r(for )m m= . 

r r,  U f

=U

r r,  U f

=U

L
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Introduce a voltage drop across the rotor at the replacement resistor r /R s  Rr r r( / )E I R s= . The 

rotor current rI  or rI   is opposite to the stator current, and therefore the voltage drop 

rrRr /E I R s =  is of opposite magnitude to the induced voltage due to the rotation magnetic 

field m s rE E E= = .  

rRr Rr r

3 3p p
M E I E I

 
 = =  

In an induction motor, torque variation (control) is achieved by varying the voltage RrE , i.e., 

by varying the current rI . (The phase angle between RrE  and rI  is zero.) For this purpose, 

we modify the usual equivalent circuit. The stator and rotor leakage reactance are expressed 

as the difference of the own and mutual reactance between the stator and rotor. The 

transformation constant   (in the circuit) can be chosen to be any value except zero. For the 

case UK = , i.e., equal to the ratio of the effective stator and rotor turns, we obtain again 

the usual equivalent circuit. 

 

From the condition 2
r sr 0X X − =  we obtain: sr r/X X = , i.e., the transformation 

constant at which the leakage reactance in the rotor circuit of the equivalent circuit vanishes. 

The new rotor current is now 1/ -times the actual (three-phase) rotor current r( )I , and the 

new rotor voltage is  -times the original rotor voltage (voltage drop RrE ) across the 

resistance. This new voltage (voltage drop *
RrE ) is applied to the terminals of the new 

magnetic (main) reactance and is, thus, related directly to the flux of the rotor, which causes 

the voltage RrE  *
Rr Rr( )E E= . 

sU

sR s srj( )X X− 2
r srj( )X X −

2 rR

s


srj X

sI rI

U
m

K
I


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By taking the product of 2
sr sr r/XX X = , we obtain a new equivalent circuit. 

2
sr

r

j
X

X
sU

sR

2
sr

s
r

j
X

X
X

 
−  

 

2 rR

s
*

Rr RrE E=

sI

rI



sI 

 

This equivalent circuit is reformulated by introducing a transient machine parameter. This is 

defined as the stator leakage reactance of the whole machine, and given by equation: 

2 2 2 2
sr sr u m

σs s s s s2
r s r s ru

1 1
X X K X

X X X X X
X X X X XK


   

= − = − = − =   
  

. 

The asterisk index does not mean relative, but means the changed stator reactance. Similarly, 

an asterisk indicates the changed magnetizing reactance: 

2 2 2
sr U m

m sr 2
r rU

X K X
X X

X XK
 = = =


. 

Considering that: 
2

sr U m
U2

r rU

X K X
K

X XK
 = =


 and 

2
r r2 m

2
r

R RX

s sX



= 


, we obtain a finitely 

transformed equivalent circuit in which all quantities are transformed to the stator. 

 

The stator current is thus divided into two (mutually orthogonal) current components, 

namely the reactive component of the current sΨ s sinI I =  sΨ U m( ( / )I K I= , i.e., the 

sU

sR

*
mjX *

RrE

2
rm

2
r

RX

sX






*
sjX

sI r
sM

I
I


= −sI 
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excitation current) and the working component of the current sM s cosI I = ; this represents 

the torque. The working component may also be marked sTI . 

Varying the torque with the current sΨI  and sMI  

The induced voltage, or the stator-reduced voltage drop *
RrE  

across the rotor substitution resistance 2
r /R s , is equal to the 

time variation of the rotor magnetic linkage: 

* **
Rr r sΨmj / 2 jE X I= − = − . 

Reduced values can also be omitted from the equation, and it is:  

Rr rj / 2E = − . 

According to a redesigned circuit, the reactive component of 

the excitation current sΨI  is given by equation: 

*
Rr Rr Rr

*
m

s
sr srj jj

EE E
I

X LX



 
 = − = − = − . 

From the last equation, the induced voltage is Rr sr sΨE L I= . 

Product sr sΨL I  in the induced voltage equation RrE   

represents a rotor magnetic linkage r sr sΨL I =  (RMS value because the current is not 

multiplied by 2 ), and the reduced value of this is: **
r mr sr sΨ sΨLL I I   == = . 

The torque component of the current sMI  is obtained directly from the circuit as the expression: 

r
sMsM

I
I I


= =  → r sMI I= . 

The final equation for the torque of the machine, if the expression for the voltage RrE  and 

the current rI  (without the negative sign) is substituted in, reads: 

ssR I
*

ssjX I

sU

sMI
sI

s

sI  *
r

r sMI I= −

* *
mRr sjE X I − =


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*
sr sΨ sM sr sΨ sM m sΨ sM

3
( )( ) 3 3

p
M L I I p L I I p L I I  


= = = . 

The equation represents an expression that is a function of the two components of the current. 

The basic equation for the torque takes the form (with * *
r m sΨL I =  and sM s cosI I = ): 

* *
r s r sM3 cos 3M p I p I  = = , 

i.e. the product of the rotor magnetic linkage and the working component of the stator current. 

Given an equivalent circuit, we obtain the working component of the stator current sMI : 

rRr Rr r Rr Rr
sM 2

srr sr r rr

1

/

X LE sE sE sE
I

R X R L RR s




= − = − = − = − . 

Combining the last equation with the previous equation for RrE  gives the relationship 

between the two stator current components sMI  and sΨI : 

r
sM sΨ

r

j
L

I s I
R

= . 

This connection is due to the fact that the voltages on the new magnetizing (mutual) 

reactance and on the replacement (fictitious) rotor resistance are the same. The slip angular 

frequency is also determined by the two current components. Rearranging the last equation 

gives the expression for the slip angular frequency: 

r rsM sM sM

r sΨ r sΨ r sΨ

1I I IR R
s

L I L I I





= = =


. 

r r r/L R =  is the electrical time constant of the change in all rotor quantities. When both 

components of the current are selected (in stationary machine operation − motor), only one 

value of the slip in this equation gives us the corresponding rotor magnetic linkage r  and 

torque M . 
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Induction generator 

Operating on a rigid grid 

 
 

The grid provides the reactive power Gs s s s sr( 3 sin 3 )Q U I U I= =  and the driving machine 

provides the working power. An IM works as a generator if it is a slip (0 1)s = − . Then the 

load drives the rotor faster than the speed of the rotating magnetic field and the generator 

emits electrical power. For the slip 1s  − , the machine works in the generator braking area 

and does not emit any power. 

Single-phase induction motor 

They are building up to 2,2 kW . 

It has a main winding (usually occupying 2 / 3  

of the stator slots) and an auxiliary winding, the 

axis of which is shifted by 90  (electrical) degrees 

with respect to the axis of the main winding 

(usually occupying the remaining 1/ 3  of the 

stator slots). 

axis MW

axis AW

main

winding (MW)

auxiliary

winding (AW)

 

U

n

driving
machine

induction 
generator

j−

sU

swI sI

 0P

P

srI
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a) Operating mode if only the main winding is connected. 

The sinusoidal voltage sU  dictates the sinusoidal flux m . The fundamental harmonic 

component of the magnetic flux density is a function of the local distribution in stator 

coordinates, or the circumferential angle ( )s s p/ πx =  in the air gap, and time: 

1 s 1 s
ˆf ( , ) cos cos( )b x t B t = = =  

( ) ( )( )1
s s

ˆ
cos cos

2

B
t t   = − + + . 

 

In the rotor coordinate system, the fundamental harmonic component of the field for 

s r m r (2π )p t p n t   = + = + , taking into account s (1 ) (1 )
f

n n s s
p

= − = −  and 

s r r s r2π 2π (1 ) (1 )pnt pn s t s t    = + = + − = + − , is: 

 ( ) ( )1 1
1 r r r

ˆ ˆ
f ( , ) cos cos (2 )

2 2

B B
b x t s t s t   = = − + + − . 

In the rotor, the induced voltage of frequency s f  and (2 )s f− , i.e., the induced voltage is 

obtained of the positive and negative components of the field. At 1s =  the two rotating 

magnetic fields are equal and develop the same torque. Such a motor therefore does not start 

by itself. 

 

sU

sI

rI

MW

2s = s1s =

nM

0s =

M

M

pM
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b) Start 

An auxiliary phase − winding (AW) is required to start the motor. The current in the auxiliary 

phase has to be shifted in time and an asymmetric (elliptical rotating magnetic field) is 

obtained. The capacitor gives the largest displacement. 

 

Torque ratio: 

1) Z R=       s N/ 1 1,3M M =   

2) LjZ X=    s N/ 0,3M M   

3a) CjZ X=   s N/ 1,6 2,1M M =   

3b) CjZ X=   s N/ 0,5M M   

3a) starting capacitor, 

 b) operating capacitor, 

 c) combination 3a) + 3b). 

Switch "Sw" switches off the start capacitor by s0,75n n . 

Phasor diagram drawn for example 3b) 

 

In this case, we have two-phase asymmetrical 

excitations s1 s3  . 

C s

cos 1

U U






 

The capacitor motor rotates from the auxiliary to the 

main phase. To reverse the direction of rotation, the 

terminals, i.e., the start (s) and end (e) of the auxiliary or 

main phase, must be reversed. 

s3I s1I

rI

axis MW

axis AW

U

L R C

Sw

Z

e s

s

e

s3  (AW)U

s1I

s1  (MW)U U=

CU

s3I

1

1

1
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Torque curves for starting with auxiliary winding for cases 3a), 3b) and 3c) 

 

Shaded poles motor  

These types of motors are built for low power (a few tens of watts). A short-circuit turn (ring) 

is mounted on part of the pole shoe. 

 

The main flux m  is divided into a part 

going directly into the rotor m1  and a 

shaded part m3  passing through the short-

circuit ring. The latter is time delayed 

towards m1  and smaller. An elliptical 

rotating magnetic field is created. Due to the 

delay ( m3  relative to m1 ) the rotor will 

always rotate from the unshaded to the 

shaded part. To reverse the direction of 

rotation, the rotor must be reversed 

(reassembled).  

 

M

sn0

1s =

sM bM

M

sn0

1s =

M

sn0

1s =
a) b) c)

n n n

m3

m

m3

m

m1

m1

shaded pole turn

single-phase

concentric
winding

rotor with

short-circuit
squirrel cage
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SYNCHRONOUS MACHINE 

Description of construction 

There are two designs, a machine with salient poles on the rotor, and a machine with non-

salient poles or a machine with a cylindrical rotor. For both designs, the primary winding is 

on the rotor and the secondary winding is on the stator. The stator is identical to the IM stator. 

For the salient poles, the air gap is f ( )x = ,   non-salient pole konst. =  

 

For the salient poles, the air gap " "  in "d"  and "q"  axis is different (magnetic conductivity 

d q  ). The excitation − field winding is wound concentric on the salient pole body, but 

belt (usually spread over 2/3 of the circumference) at a cylindrical rotor. 

Operation mode 

The rotor is supplied with a DC excitation current fI  or fdI . To generate the excitation rotating 

ampere-turns (magnetomotive force − MMF) of the f , rotate it by s /n f p=  rotation. For 

a cylindrical rotor it is: 

stator

(armature)

V1

W1U1

I

sn
F1

F2
fI



stator

(armature)

V1

W1U1

I

sn



cylindrical

rotor   

        

    

longitudinal 

d-axis 

−

transverse

q-axis 

−

  

salient

poles 

longitudinal 

d-axis 

−

transverse

q-axis 

−
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f wf
f f

4ˆ
π 2

N f
I

p
 = . 

The salient pole winding factor wf 1f = , turns/pole f p f / (2 )N N p=  and f fp f

4ˆ
π

N I = . 

No-load 

0 f0
f0 δ 1

e

ˆ
ˆ ˆ ˆB B

 



→ = =  magnetic flux density of the fundamental harmonic component or 

the mean value of the main air gap flux m 1 δ 1 p

2 2ˆ ˆˆ
π π

B A B l = =  

( p  is the pole pitch, l  the length of the stack, e  the equivalent air gap of the machine). 

At no-load, the current in the stator winding or armature winding is equal to s a 0I I I= = = . 

The main flux induces a no-load voltage in the stator winding which, when excited by 

f f 0I I= , is equal to the grid voltage: 

s ws m
ˆ4, 44U f N f = . 

m m0 p0  = =  is the flux of the salient pole due to the field winding concentrically wound 

around the salient pole body, or arranged on a cylindrical rotor. 

Load 

When loaded, the stator current I  generates stator ampere-turns a  in the three-phase 

winding (reaction or armature ampere-turns): 

s ws
a

3 4ˆ 2
2 π 2

N f
I

p
 = . 

Together with the field ampere-turns f  (of the cylindrical rotor), the resultant ampere-turns are:  

res f a  = + . 
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The ampere-turns of the reaction are converted to the excitation side of the machine from the 

condition of equality of the reduced and original ampere-turns with the current ratio IK . 

f wf
fa fa a

4ˆ ˆ
π 2

N f
I

p
 = =    s ws

fa I

f wf

3
2 2

2

N f
I I K I

N f
= =  and applies to 

resultant excitation: fres f faI I I= + . 

The effect of the armature reaction is captured in the magnetizing reactance of the machine 

m e1/X   (p. 104), because the armature reaction acts through the air gap on the excitation 

side of the synchronous machine. 

For m m0 const. = =  ( const.)U =  

we need to change the excitation that 

will res f 0 =  or f f0  . 

 

 

  

At no-load, the amplitude of the main flux m0̂  lies in the d-axis of the pole, while, under 

load, the flux is displaced with respect to the d-axis of the pole. Its position then depends on 

the size and character of the load, i.e., the size and direction of the armature reaction. 

The magnetizing characteristic is a non-linear curve in saturation and only in the initial 

(unsaturated) part is it linear and the fluxes can be summed geometrically. 

x

fdB̂

d-axis

0

fdmaxB

p

e

lin. non-lin.



s f - pole field, n 

s

a

armature reaction

field, 

n



a

f

res

sn

d-axis
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For a linear theory Fe( const.) = , it is: 

i

0

res

j
a a aa

j

p p f pf

j
m m fres mres

ˆ ˆstator     e        2

ˆ ˆrotor      e           

ˆ ˆresult.   e       

I

I

I







   

   

   

→ = →

→ = →

→ = →

 

res 0 ij j j
m p am p a

ˆ ˆ ˆe e e
       = = + = +  

0  is the phase position of the pole flux for 0,t = i  the phase 

position of the current and res  the phase position of the main flux. 
 

Machine operation on a rigid grid (U = const., f = const.) 

Three-phase machine (m = 3) 

 

a) Induced voltages 

m
0 s wsj ( )

2
E N f


= −  

with angle 0 res π / 2 = −  

and with flux components p  and a  

0 p aE E E= + . 

For s 0R =  and σs 0X =  it is valid 0 sE U− = , or by the components of the pole wheel voltage 

EpU  and the armature reaction voltage aU .  

p aEp a  and   U E U E= − = −  

Ep f as Ep a ,      / 2    and  U U U U I U I= +    

p

a

m
a f

res

a

s s s, , N R X

f f, N R

I U

fI
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b) Synchronization to the grid 

An excited synchronous machine (generator) with 

sn  revolutions is connected to the grid via the 

switch (Sw) if Sw s 0U U U= − = . Therefore, 

0I = , i.e., at sU U=  and EpU U= . 
 

An excited synchronous machine is therefore synchronized to the grid in an unloaded state. 

The two conditions for synchronization are: 

1) s Ep us up u  and  U U U   = = = = , 

2) s   =  (grid), s
s

f f
n n

p p
= = = . 

 

Taking on the load 

1) Reactive load acceptance at s σs0  and  0R X= =  

2) Working load acceptance at s σs0  and  0R X= =  

It starts from synchronism I = 0. Under load, if the voltage drop is neglected sU U= , the 

flux will be m p aconst.  = = + . 

1) Reactive load acceptance 

To change the reactive power input to a machine (generator or motor), change fI  with 

respect to the no-load value ( f 0I ) (assume here that 0lP = , because is s 0R =  and f 0R = ). 

The size of the excitation can be f f0I I  or f f0I I . 

Sw

U

sUphase "a"

zero conductor

c b

s EpU U U= =

s EpU U=

m p =

0 pE E=

U
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a) Synchronized b) Over-excitation c) Sub-excitation 

 f 00,  I I=  f f00,  I I I   f f00,  I I I   

 

b) I  is capacitive for the grid, inductive for the machine. 

c) I  is inductive for the grid, capacitive for the machine. 

2) Taking on the workload 

This is based on the assumption that f f 0 res p0
ˆ ˆ,  I I  = =  and Ep Ep0

ˆ ˆU U= ; force the 

generator to take up the power by connecting a mechanical load (the motor), or by connecting 

LZ  to the generator terminals. Let's leave it that f const.I =  

a) Synchronous motor 

Mechanical load, L d 0M M=  , causing the rotor to lag behind the rotating magnetic field 

m . Therefore, the flux p  lags behind the original position p0 m =  and is 0E U−  . 

The voltage difference EpU U−  drives a current I  and this causes a reaction a  or flux 

a . The condition for the resultant magnetic field applies: 

s
a p m

s ws

2

j ( )

U

N f
  


+ = = . 

U EpU

m p0 =

0E

d-axis

U EpU

p p0 

0E

U

I p

am

U

EpU

p p0 

0E

U

I p a

m

a) b) c)
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Space Figure and phasor 

diagram of motor MMF 

( )2 2p =  

 

Phasor diagrams  

1) Synchronized machine 2) Loaded machine 

s0,   I n n= =   0I  , load angle 0   

 

U

EpU

U

I

p
a

m







−

d-axis

 
When a load is applied, a load angle   occurs. The load angle   is the angle between the rotor 

d-axis (flux p ) and the resultant rotating field (flux m ). The synchronous motor draws 

operating power from the grid ( 0,  0)I    and develops a torque +M:  

s

ms

cos
m

M U I 


= . For number of phases s
ms s3,  , m

p


  = = =  (grid) will be: 

s ws m M m

3 ˆ ˆcos cos
2

p
M N f I c I   = =  M s ws

3
=

2

p
c N f
 
 
 

, u i( )  = − . 

f

res

a

B

ai

bi

ci

fI
n

f

res

a



U EpU

m p0 =

0E

d-axis



 
100 

3) Stability limit b

π

2
 = −  

In stationary operation: 

 L 0.M M+ =  L( load)M M= −  

The M  of the motor will be maximum at b

π

2
 = − . 

At b  , the machine falls out of synchronism.  

b) Synchronous generator 

If the driving machine d 0M   accelerates the rotor (pole 

wheel), p  overtakes with respect to position p0 . 

 

This makes a difference EpU U− , 

which caused the current aaI  → → . 

The following condition applies: 

s
a p m

s ws

2

j ( )

U

N f
  


+ = = . 

The current increases by enough to keep 

 it in stationary operation: 

d 0M M− + =  . 

f

res

a

B


ai

bi

ci

fI

n

 
 

The current has a negative watt component. 

M m cosM c I − =  

Supplying mechanical power to the shaft →  delivered electrical power to the grid (load angle 

0  ). 

π

2
 = −

U

EpU

I

p

a

m

b

bP

bP

b

d-axis

f

res

a


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Phasor diagrams 

1) Synchronized machine 2) Loaded machine 

 

3) Stability limit bd

π

2
 = +   

 

 

Before the load angle corresponding to a given 

load (angle  ) is established, the pole wheel, p  

and   oscillate around position 0  − mechanical 

oscillation. That is why it needs to be throttled. This 

is achieved by a short-circuit cage at the rotor poles. 

 
s

s

     induction motor

    induction generator

n n

n n




 

The cage is also used to start the motor. 

 

U EpU

m p0 =

0E

d-axis

U

EpU

U

I

p

a

m





+

d-axis

π

2
 =

U

EpU

I

p

a

m

b

bP

d-axis

p0



p

p0

p

( )−

( )+
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Analytical treatment 

For stationary operation, it is 1
s /   (s )n n f p −= = . The derivation is performed for non-

salient poles. For the salient poles, we need to take into account d q  . The magnetizing 

characteristic of a synchronous machine is linear Fe( const.) = . 

Stator voltage equation: m
s σs s wss j j ( )

2
U U R I L I N f


 = = + +  

a) m  complex value of rotational (main) flux 

Resulting ampere turns res f a( )  = + in the air gap res res m
ˆ ˆ ˆB → → . 

In stator coordinates, the main flux: ( )m m s res
ˆ cos t    = − − . In symmetry of the un-

shortened coil ( )s s s p0 or ( / )π 0x x = = =  the main flux is equal resj
m m

ˆ e
 = . 

The main flux consists of the flux of the pole wheel and the flux of the armature reaction. 

b) p  pole wheel flux 

MMF ( )f r f r
ˆ( ) cos   =  causes a magnetic flux density in 

the air gap f r f r
ˆ( ) cosb B = , written in rotor coordinates 

( )r r p( / )πx =   

or pole wheel flux 0j
p p

ˆ e
 =  

and this voltage 0j( π/2)
EpEp e .U U

 +
=  

 

0
0

p

Δ
π

x



=  is the rotor displacement of 0t =  with respect to the armature winding 

symmetry (phase "a"). 

In stator coordinates, the excitation is ( )f f s up
ˆ cos π / 2t    = − − + . 

c p =

0
0

sx

rx

Δx

e
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The change in coordinates of the rotor rotating with the sn  revolutions is obtained from the 

following operations: 

r s s 0Δ Δx x x x t x= − = − −v . 

Let's insert an expression for 
p

ms pπ 2
π

f
r D n p

p


  = = = =v  and derive: 

p

r s 0Δ
π

x x t x


= − −  
p

π


 , 0 up u

π π

2 2
   
 

= − = + − 
 

 

r s up

π

2
t   = − − + . 0 up u

π

2
   
 

+ = = + 
 

 

We usually take the voltage position u 0 =  0

π

2
 
 

+ = 
 

, and it will be: 
j

EpEp eU U = . 

The induced voltage is calculated using the well-known equation: Ep s ws p
ˆ4, 44U f N f = . 

c) a  armature reaction flux 

This flux is caused by load currents a b c,  and .i i i  In phase ''a'', the moment value of the 

current is a a i2 cos( )i I t = +  or complex ij

a eI I I


= = . 

In the stator coordinate system: 

a s a s i
ˆ( ) cos( )x t    = − − , which causes a magnetic flux density in the air gap 

a a s i
ˆ cos( )b B t  = − − . 

In a rotary coordinate system, it will be: 

( )a r a r
ˆ( ) cos ( π / 2)x    = + + − , if it is u i.  = −   

The position of the ampere-turns of the armature reaction a  is f ( , )  , i.e., a function of 

the phase angle and the load angle of the machine. 
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Machine with cylindrical rotor 

The excitation and reaction of the armature create a resultant excitation in the machine's air 

gap res f a( )  = + . For s 0x = , i.e., in the coil symmetry of phase "a", there is a resultant 

excitation: 

res res res
ˆ cos( )t   = + . 

The resultant excitation creates a resultant magnetic flux density in the air gap: 

s f s a s( ) ( ) ( )b x b x b x= + . 

The amplitude of the magnetic flux density of the fundamental harmonic component in the 

air gap 1 δ res( )B B B= =  is calculated from equation 0
1 res

e

ˆ ˆB





=  and the peak-mean value 

of the pole flux m 1 p

2 ˆˆ
π

B l = . The complex flux value is: 0

m p res

e

2

π
l


  


= . 

The stator voltage equation will now be given by the equations for excitation amplitude f̂  

and armature reaction a̂ : 

upj( π/2)0 f wf s wsf
s σs s ws ps

e

2 4 3
j j ( ) e

π π 2 2 22

N f N fI
U R I X I N f l I

p p


 



− 
= + + + 

 
 . 

If the magnetizing (main) reactance is 
( )

2

s ws0
m m p

e

2 3 4

π 2 π 2

N f
X L l

p


  


= =  (i.e., the 

same as for the induction machine p. 71), will be: 

upj( π/2)f wf v
s σs m ms

s ws

2
j j e j

3 2

N f I
U R I X I X X I

N f

 −
= + + +  . 

Expression f wf m
m avd

s ws I

2

3

N f X
X X

N f K
= =  is the mutual reactance between the stator and the rotor. 

The stator voltage equation takes the following form when the order of the last two terms is 

reversed: 
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upjf
s σs m afds j j e

2

I
U R I X I X I X


= + + +  . 

Introduce synchronous reactance d m σsX X X= +  ( m I afdX K X= ) and the voltage of the pole 

wheel Ep afd f / 2U X I= , to give the final form of the stator voltage equation: 

s ds EpjU U R I X I U= = + + . 

To this equation, we fit the equivalent circuit of a synchronous machine with a cylindrical 

rotor. 

Pole wheel voltage Ep p f
ˆ ˆU E I= −   and its position up u  = + . 

As it is s dR X , take s 0R =  and get a phasor diagram of a generator or motor with a 

cylindrical rotor. 

Synchronous reactance is usually given in the relative terms: d
d

N

X
x

Z
=  and Nf

N

Nf

U
Z

I
= . 

d 0,8 2,5x =   

 

 

Machine with salient poles  

EpU
U

I

djX I




 

The longitudinal or d-axis  and transverse or q-axis  are distinguished. d qX X  and d qX X . 

d σs ad ad ad m  and  X X X X X= + =  

q σs aq aq aq m  and  X X X X X= + =  

ad aq and    are the pole shape factors in the d and q-axes. 

djXsR

pEU
I

~

djX I
EpU

U

I




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dI

EpU

U





I

qI

d-axis

q-axis

 

The voltage equation applies: 

d qs d q Epj jU R I X I X I U= + + + . 

Machine phasor diagram with salient poles 

Valid for s 0R = . 

To draw a phasor diagram, the following must be given: 

Ep,  U U  and I  or  

d,   ,  U I X , qX  and load angle  . 

 

Permanent short circuit (U = 0) 

For s 0 R = will: 

d qd q Ep0 j jX I X I U= + + . 

 

The two components of the short-circuit current are: 

qq qj 0 0X I I= → =  and 

"d" axis

"q" axis

dI

EpU

U





I
qI

d djX I

q qjX I
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Ep Ep

d k dkd Ep

d d

j 0 j
j  

U U
X I U I I

X X
+ = → = = − = . 

The effective value of the permanent short-circuit current is: 
Ep

k

d

U
I

X
= . 

The value dX  is determined from the measurements: 

a) of the no-load EpU U=  no load voltage, 

b) of the short-circuit kI  short circuit current. 

Ep

d

k k

no-load voltage
=

short-circuit current

U U
X

I I

 
= =  

 
 at the same excitation. 

Operating an unsaturated machine on a rigid grid 

Derive the equations for a machine with salient poles. 

up upj j

d q d qd q,          j  e     and    eI I I I I I I
 

= + = − =  

up u s u   for  0  and  0R   = + = =  will be up =  and obtained from the previous 

voltage equation: 

j j j
d d q q Epe j e eU X I X I U  = + + . Multiply the equation by 

je −
. 

The real part of the equation: 

Ep

d d Ep d

d d

cos
cos  

UU
U X I U I

X X


 = + → = −   

The imaginary part of the equation: 

q q q

q

sin
sin  

U
U X I I

X


− = → = −  

This is put in the initial current equation d qI I I= + , and the solution for the armature current 

is: 
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Ep j j

d d q

j j e cos e sin
U U U

I
X X X

  = − − . 

Taking into account j j j j1 1
cos (e e )  and  j sin (e e )

2 2

    − −= + = −  calculate the current: 

Ep j 2

d q d d q

1 1 1 1
j j e j

2 2

U U U
I

X X X X X


   

= + − − +   
   
   

. 

For a cylindrical rotor d qX X= : 
Ep Ep

d d d

Δ
j

j j

U U U U U
I

X X X

− −
= = = . 

Torque: 

( )*

ms

          Re
P

M P U I


= → =  and for s 3m = , ms
p


 =  we get: 

( )*

w

3 3
Re    for  

p P p p
M U I U I U U

  
= = = = . 

Using the equation for the current, we derive: 

2
Ep

d q d

3 1 1
sin sin 2

2

UUp U
M

X X X
 



  
 = − + − 

  
  

.  

 synchronous reactance (reluctance) 

  torque torque 

For a cylindrical (turbo) rotor d qX X=  and only synchronous torque is obtained: 

Ep

f

d

3
sin ,           f ( , ).

U Up
M M I

X
 


= − =  

The maximum (breakdown) torque in both motor and generator operation is for a machine 

with salient poles at angle b b+ π / 2 − =   and for a cylindrical rotor b b+ π / 2 − = = . 
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Torque Figures: 

salient poles b

π

2
   cylindrical rotor b

π

2
 =  

 

 

 

For a given torque, the smaller the excitation 

current, the greater the load angle  . If the 

excitation current is too low (dashed curve), 

the motor falls out of synchronism or out of 

step. We are talking about static stability. 

Static stability 

The machine is able to take the load if it is loaded slowly. The limit of stability is determined 

by the breakdown torque. For a machine with a cylindrical rotor, the following applies: 

motor

generator

2

q d

3 1 1
sin(2 )

2

p U

X X




 
− − 

 
 

Ep

d

3
sin

UUp

X



−

M

bM
( )M 

b −

b+



motor

generator

M

NM

( )M 

b −

b+



motor

generator

b
2




=

f

f0

I

I

b
2




= −

M

LM−

1


1,5

0,5

1,5

1,0
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N EpN

b N N N

d

3 3
  and  for  cos

U Up p
M M U I

X


 
= =   

gives the ratio for the relative 

breakdown torque 

EpNb

N d N cos

UM

M X I 
= . 

Ep df ( , cos )U X = , i.e., the voltage 

drops across dX  d( )X I  and cos . 

 

It is for various cos : b
d

N

f ( )
M

X
M

= . 

For stable operation, e.g., for a motor loaded with LM , the following applies: 

L 0M M= −  . 

The increased load will be d / d 0M   . 

For small changes in angle  , a linear 

relationship holds at the point of operation 

f ( )M = . 

0δ

d
Δ Δ

d

M
M 



 
=  
 

, 

if the operating angle 0  is before the load change. 
 

Varying the torque of a synchronous motor  

A synchronous motor's torque is varied (controlled) by the armature voltage, or by excitation. 

In frequency inverter operation, the motor is varied simultaneously in voltage and frequency 

b

N

M

M

1,0

2,0

2,5

1,5

0,5

0,8 1,2 1,6 2,0 2,4 dx

cos 0,8 =

cos 1 =

π

2
−

0

d
Δ Δ

d

M
M






 
=  
 

π

2

M

LM
( )M 

0


ΔM
Δ

π−
π
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and thus in speed N( 0 ,U U=   N0f x f=  , x  is a multiple of Nf ). If the torque is varied 

by excitation, only the load angle is varied. With permanent magnet excitation, the excitation 

cannot be corrected directly, but indirectly by varying the angle of the stator current.  

Referring to the phasor diagram in Figure a) for a motor with a cylindrical rotor, we can 

introduce the internal angle  , i.e., the angle between the pole wheel voltage EpU  and the 

armature current I : 

up i    = + = − . 

The equation for the synchronous torque of the machine can be rearranged: 

Ep

Ep M m

d

3 3 ˆsin cos cos
UUp p

M U I c I
X

   
 

= − = = , 

where d dsin sin(90 ) cosU I X I X  − = − =  and Ep s ws m
ˆ / 2U N f = . 

The torque is at its maximum when 0 = , i.e., in the case of  = − . Then the armature 

current is in phase with the pole wheel voltage. 

 d

EpU

U



I

a)

djX I



90  −

d

EpUU

I

djX I

b)







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In the case of larger synchronous motors this is not very favorable, because the current lags 

behind the grid voltage (Figure a). In the case of larger motors, we usually want the current 

to overtake the grid voltage (reactive power generation). In this case, the angle is 

40 60 =   and the current overtakes the voltage (Figure b). 

Stationary operation of a cylindrical rotor motor in a d-q model 

The armature current can be decomposed into two components (d, q): 

d sinI I =  and q cosI I = . 

The angle   is the space angle between the q-axis, where the voltage EpU  is located, and 

the stator current. In conventional theory,   is the (time) phase angle. The Figure shows a 

phasor diagram of a synchronous machine with a cylindrical rotor in d, q components. 

The voltage of a pole wheel can also be expressed as a "voltage drop": 

d
f fEp afd afdj j j

2
U X I L I


 = = = . 

afd m I/X X K=  is the mutual reactance between the armature winding with index "a" and 

the excitation winding in the d-axis, i.e., the magnetizing (main) reactance of the motor 

(stator) divided by the current ratio (p. 104); and d afd f
ˆ L I =  the value of the magnetic 

leakage in the d-axis of the rotor. Pole wheel voltage Ep ff ( ,  )U f I= . 

The equation for the synchronous torque can be transformed into the form: 

afd f
Ep q d q

3 3
cos 3

2

L Ip p
M U I I p I


 

 
= = = . 

It can be seen that only the "q" component of the stator current, which is perpendicular to 

the excitation axis and in phase with the voltage EpU , contributes to the torque. In permanent 

magnet excitation ( d const. = ), the torque varies only with the "q" component of the stator 
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current, the "d" component of the stator current (in the axis of 

excitation) affects only the excitation (armature reaction), but 

also, indirectly, the magnitude of the torque. Therefore, if we 

want to vary the torque, we need to control the stator current in 

amplitude and phase. The stator current is increased by the 

voltage across the armature terminals, but this is only possible 

up to the nominal value. If the frequency f  increases beyond the 

nominal value Nf , the input reactance of the machine also 

increases, and, therefore, at constant voltage, as the frequency 

increases, the armature current q( )I I  decreases, and so does the 

torque. The situation is similar to the magnetic field weakening 

in an induction motor. 

afd fEp jU X I=

U

d djX I

dI

 I

qI

fI

d qjX I

j
 X

d I

d-axis

q
-a

x
is

 
Current characteristics for a cylindrical rotor 

For the armature current of a cylindrical rotor, 

the equation (p. 108) applies: 

j
Ep

d d

e
j j

UU
I

X X



= − + . 

The stator current characteristics I  as a function 

of angle   (circles in the complex plane) are 

obtained for Ep const.U =  f( const.)I =  and load 

angle const.   The domain in which the motor 

or generator operates is the operating diagram. 

It covers only a part of the full-field domain. 

 

+

f

f0

I

I

d

j
U

X
−

Ep j

d

j e
U

X



motor

generator

sub-excitation

stability limits

I
+j

U

0,5

1,0

1,5

over-excitation
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Approximate treatment of a saturated machine 

The superposition of magnetic field components in the air gap is no longer valid: 

res f aB B B + . Synchronous reactance is important for stationary operation d σs m( )X X X= + , 

the main proportion of which is determined by the equivalent air gap e  m e( f (1/ ))X = . 

The size of e  is affected by saturation. In saturation, there is no longer any proportionality 

between the current and the magnetic field of the air gap. We will consider saturation for a 

machine operating at no-load and short-circuit roughly. 

No-load and short-circuit 

No-load: f f0  and 0I I I= =  or f fδI I=  and 0I =  for the air gap characteristic (AGC). 

m
0 s ws

ˆ
( )

2
U E N f


= =  

No-load characteristic (NLC): 0 ff ( )U E I= =  

measured at const.n =  

Short circuit: 0k 0E E  

mk m   due to armature reaction 

Short circuit characteristic (SCC): k ff ( )I I=  

k ,I U

NU
0 ff ( )U E I= =

k ff ( )I I=

fIfkIf0IfδI

kδI
k1I

k NI I=
A

G
C

SCC

NLC

 

The excitation current fkI  is important. It is that excitation current at which, in a three-phase 

permanent short circuit, the armature current will be equal to the rated current k N( )I I= . 

The value of the unsaturated synchronous reactance is considered by IEC Standard 60034-4 

to be the ratio of the no-load voltage EpU U=  to the short-circuit current kδI : 

N
d

kδ

U
X

I
=  with the same excitation f fδ( )I I= . 
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The relative value of the synchronous reactance is: d d N N N N fk
d

N N kδ N kδ fδ

X X I U I I I
x

Z U I U I I
= = = = = . 

As a measure of armature reversibility, the IEC gives the ratio of the excitation current f 0I  

to fkI , defined as the short-circuit ratio of the saturated machine f0
c

fk

I
K

I
= . 

A large ratio means that a larger short-circuit current k1I  is required to compensate for the 

field of the excitation current f 0I  (i.e., a small influence of the armature reaction). 

a) Method for determining the excitation current of a saturated machine 

For a given load at terminal voltage U  and current I , fI  and the load angle   must be 

determined. 

Mathematically, it is: 
( )upres i
j π/2j j

fres f fae e eI I I
 −

= + .  ( fa I 2I K I= , p. 95) 

For s 0R = , we obtain the voltage equation: 

m
σs s wsj  j ( )

2
U L I N f


 = +  and with rezjm

0 s ws

ˆ
j ( ) e

2
E N f


= − . 

Valid: 0σsjU X I E= −  (bottom Figure) or: 0σsjU X I E− = −  (Figure p. 116). 

Graphical method for determining the excitation current for a cylindrical machine at a given 

load I  and voltage U  

σsjX I

U

0E−

I

resj
freseI



ij
faeI





E
p

(direction 
)

U

up
j(

/2)

f
eI


−

 
fIfresI

0E

E NLC
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From the known no-load characteristic (NLC), we determine fresI  for 0E . We also need to 

know faI  to obtain fI  and the load angle   or direction EpU . 

b) Internal characteristics 

ff ( ) for const.,  cos 0 ( π / 2)U I I  = = = = −  (overexcited machine) 

For i π / 2 = = −  and up u 0  = + =  valid resj jπ/2
fres f fae ( )eI I I

 −= −  

 

A triangle with sides σs  X I and faI  travels along the NLC for const.I =  and we get 

ff( )U I= . In a short circuit, 0U =  and 0k σsE X I= . As the excitation increases from f0I  to 

fNI , the leakage between the poles in the rotor increases and the voltage across the terminals 

will be lower. We are talking about Potier reactance p σsX X , so the actual curve f( )U I  

will be lower − the dashed line in the Figure. 

c) American diagram (ASA) 

The ASA diagram is used to determine fNI  at N N,  U I  and at any cos . For the design we 

need the no-load characteristic (NLC) and the short-circuit characteristic (SCC), fNI  at NU , 

NI , cos 0 (ind.) =  and pX  (Potier reactance). 

σsjX I−

U

0E−

I resj
freseI

 ij
faeI



fj
f eI 

σsX I

0 ,E U

0k σsE X I=

faI

fkI

fresI fI

faI
pX I

ff ( )

 π / 2

konst.

U I

I



=

= −

=

cos 0 =

0 ff ( )E I=

fI
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Determination of the Potier reactance: 

From SCC f fk( f ( ))I I I= →  for NI I= . The distance 0B  corresponds to fNI , cos 0 = (ind.). 

Subtract from point A fk AFI  . At point F, draw a parallel to the tangent to the NLC, and 

obtain the relative Potier reactance p HGx = . NLC and SCC are drawn in relative units. 

ASA diagram 

Apply perpendicularly to NI  from the end of NU  the value of the voltage drop p N pΔ 3U I X=  

(for the Y connection) and obtain the Potier voltage pU . The projection of the voltage pU  onto 

the ordinate gives us, between the AGC and NLC characteristics, the value of the increase in 

excitation due to saturation fΔI . The ASA diagram for the total excitation current is: 

fN fδ fk f( ) ΔI I I I= + + . 

A

N

U

U N

I

I

faI

fkI vI

cos 0 =

fNI

fkI

ff ( )I I=

0
D B

F

G

HH´

1,0

SC
C NLC

 

E U

N p3I X

pU

NU

0
fI  fpI fNI fI

fkI

fI

vI

N

NI

N

A
G

C NLC

 

Excitation systems for synchronous generators 

We use DC self-exciting generators to excite small synchronous generators. For larger 

synchronous machines, we use three-phase synchronous exciters or thyristor rectifiers (static 

converters). The excitation power is about 1 % of NS .  
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1 three-phase synchronous generator 

2 DC excitation generator 

2 three-phase synchronous exciter 

3 fully controlled thyristor rectifier 

  
2 transformer block 

3 own-use transformer 

4 foreign grid 

5 excitation transformer 

6 fully controlled thyristor rectifier 

5 half-controlled thyristor rectifier 

6 auxiliary transformer 
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Using permanent magnets for excitation 

It is possible to choose between ceramic permanent magnets and permanent magnets made 

of metal alloys. Ceramic permanent magnets are, e.g., barium or strontium ferrite. Among 

the metal alloys, the most known are AlNiCo magnets and rare earth-based alloys, e.g., 

samarium with cobalt, or, more recently, neodymium-iron-boron. 

Magnetic hysteresis 

In immaterial space, the magnetic flux density will be 

0B H= . ( )7
0 4π 10  V s / (A m) −=     

B varies in the ferromagnetic material. 

0 iB H B= + , 

where iB  is the magnetic polarization (unit T or mT). The magnetic polarization is: 

i 0B H = .   is magnetic susceptibility. 

It follows: 0 0 r(1 )B H H   = + = , where the relative permeability is r 1 = + . 

In saturation, r 1 =  will be and the course ( )B H  will be a straight line. The relative 

permeability is given for a transformer or dynamo sheet. For permanent magnets the recoil 

permeability is given p 1 1,1   . (Permeabilis is Latin for permeable.) 

The magnetic polarization iB  can also be expressed as a function of the magnetic field intensity H : 

i 0B B H= − . 

This is the intrinsic magnetic flux density, shown in the right Figure below. For good quality 

permanent magnets, the point of remanent magnetic flux density is the same in both Figures 

r( )B . (Remanere is Latin for remnant.) 
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1. quadrant2. quadrant

3. quadrant 4. quadrant

B

rB

cH

ciH
H

0B H=

 
 

The characteristic points for both curves are: 

r0H B= →   (remnant magnetic flux density)  

c0B H= →   (coercive magnetic field intensity) (Coercere is Latin for restraint.) 

i ci0B H= →  (coercive magnetic field intensity polarization) 

For excitation with permanent magnets, we use quadrant II (IV). This part of the hysteresis 

curve is called the demagnetization curve. For excitation with permanent magnets, it is 

essential that rB  and ciH  are as large as possible. What matters is the stored magnetic 

energy, i.e., the product of ( )BH . 

( ) max.BH =  the value at the knee of the demagnetization curve. 

Working line 

The magnet is embedded in a magnetic circuit (soft iron), which usually has an air gap. 

Ignoring leakage, it is:  

m m δ δB A B A = = . 

iB

rB

cH

ciH H

0B H=
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Ignoring the MMF drop in iron, the 

following is true: 

m m δ δH l H l = − =  

and follows 

m
δ 0 δ 0 m

δ

l
B H H

l
 = = − . 

The magnet's operating point will now be: 

 δ δ m
m δ 0 m

m m δ

A A l
B B H

A A l
= = −  

δl

δb
δa

ma mb

ml

air

gap

soft magnetic Fe

magnet

 

and angle of the working line 

δm m
0

m m δ

arctg arctg
AB l

H A l
 

  −
= =   

   
. 

The reaction of the armature moves the working 

line from point P to point P . This must not be 

below the knee of the curve, otherwise the magnet 

is demagnetized (weakened) irreversibly. 
 

Permanent magnet synchronous motors 

They are characterized by their high economic importance, due to their higher efficiency 

than induction motors. Synchronous motors of special designs are used in household and 

technical applications. From an engineering point of view, the synchronous torque is of 

particular importance. 

Stators are built differently: 

•  an annular coil with claw-shaped poles, 

•  side coils with clawed or toothed poles, 

B

rB

cH

mBP

P

mHH−



0

demagnetization curve

working line
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•  individual coil poles, 

• a normal three-phase stator − identical to the stator of an induction motor (larger units). 

Permanent magnet motors are considered to have high synchronous torque, but they do not 

start on their own.  

Synchronous and reluctance torque 

We will first establish the relationship between the synchronous torque and the magnet data, 

assuming that the stator (2) in Figure a) generates excitation ( e  with a sinusoidally 

distributed magnetic field). 

S

N

a) b)

1

2

I

m



M
bM

breakdown

90 180



N

S

 

When moved by a (mechanical) angle m  from the longitudinal direction, the electrical 

excitation el  (sinusoidal in shape) will cause a change in the MMF in the permanent magnet 

on the rotor (1) in Figure a). This results in a change in energy ΔW : 

δ el m

1
Δ cos( )

2
W p  = . 

In the equation there is: δ δ δB A =  , el I N =  and p  is the number of pole pairs. 

From what is written follows: 

δ el

d 1
sin

d 2

W
M p   


= =  
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and the maximum, i.e., the breakdown torque at an angle of m 90p = =  (Figure b) 

b δ el

1

2
M p  = . 

For the stator, we use ordinary laminated soft iron. The magnet in the iron poles builds up an 

opposing magnetic field and so the reluctance (adhesive) torque opposes the rotor twist. 

The Figure on the right marks the reluctance torque 

rM  with 1, the synchronous (electrical) torque elM  

resulting from the electrical supply to the stator with 

2 and the resultant torque with 3. 

For the motor to start, it must be el rM M . It is 

generally accepted that el r3M M . 
 

The equation for the breakdown torque can also be written in another way: 

el
b δ el δ p

p

1 1

2 2
M p p


   


= = . 

In the equation, the flux of the air gap δ  is equal to the flux of the permanent magnet 

δ p( )  , if we ignore the dissipation in the rotor. The excitation of the permanent magnet 

is p . For p m mB A = , p m mH l = , the specific energy p m m / 2w B H=  and the magnet 

volume m m mV A l= , the breakdown torque will be given by the energy: 

( )b p m el p/M p w V  =  

proportional to the magnet volume and dependent on the magnet quality, i.e., the stored 

energy of the magnet. For this reason, synchronous servomotors today use mainly rare earth 

magnets, e.g., neodymium-iron-boron r( 1 1,21 TB =   and ci 690 920 kA/m)H =  . 



M

belM

brM 1

2

3

90 180
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Three-phase synchronous motors 

Given a three-phase winding on the stator, the magnet rotates at a mechanical (synchronous) 

angular velocity ms / p =  and induces a pole wheel voltage 

p s ws δ
ˆ / 2E N f = . 

For small motors, the ohmic resistance of the stator winding must not be neglected, which is 

shown in the phasor diagram (Figure a), i.e., in the Kappa triangle of voltage drops and in 

the equivalent circuit (Figure b). 

 

For the synchronous (short-circuit) reactance in Figure b), an approximate equation applies: 

k p k/X E I . 

Permanent magnet synchronous motors with salient poles on the stator 

The permanent magnet synchronous motors are abbreviated in the English literature as 

PMSMs (permanent magnet synchronous motors). The peculiarity of this type of motors is 

that the armature winding is not distributed in the stator slots (Figure a) for a 4-pole PMSM 

with distributed winding for the s 12Q = , s( 1)q = , but concentrically mounted on the teeth 

of the stator or, according to German literature, wound on the salient poles of the stator. It is 

kjX

U

pE

a) b)

sR

s ktan R X =

kjX I

I

sR I

EpU

U

Z I







p
d-axis
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considered that the adhesive torque can be reduced at zero flux if such motors have a number 

of slots on the stator s 2Q p . The number of slots on the stator is: s 2 2Q p k= +  and the 

factor 0,5,  1,  2...k =     For all motors with stator pole windings, the number of slots per 

pole and phase shall be s 0,5q  . For example, in Figures b) and c): s 6Q =  and 2 4p =  

( 1)k = . We have one coil per phase for a single-layer winding, and two coils per phase for 

a two-layer (two-phase) winding. In general, there are many combinations for sQ  and 2 p : 

3/2, 3/4, 6/4, 6/8, 9/8, 9/10, 9/12, 12/10, 12/14, 24/16, 24/22, ... 36/42, etc. The number of 

periods of adhesive torque at zero flux is equal to the product between s /Q p  and 2 p . 

 

PMSMs motors have 2 p  poles. Thus, the stator winding for s 2Q p  has a relatively large 

winding factor for the 2 p  period. In the case of s 6Q =  and 2 4p = , this factor for a con-

centrated winding with respect to the width of the coil is equal to sin(120 / 2) 3 / 2 0,866= = . 

With such a winding, a virtually sinusoidal induced voltage can be achieved in the stator phases. 

These motors do not have a cage in the rotor, and cannot be connected directly to the AC 

grid. They depend on a frequency-variable power supply with power electronics. Even if they 

have a cage, stator excitation has very strong harmonic components due to s 2Q p . 

The field shape for the example of a motor with permanent magnets on the rotor surface 

(Figure a) below with the "d" and "q" axes marked) and windings on the salient stator poles 

for s 0,5q =  is shown in Figure b). 
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The arc of permanent magnets is usually equal to the arc of the stator slot width 

m s sπ /D Q = =  to reduce the adhesive torque. 

 

 

Calculating torque 

Assume that the magnetic coupling of the permanent magnets on the stator, with two coils per 

phase, varies sinusoidally. The maximum magnetic linkage for two coils with tN  turns will 

be as follows: 

p t δe m
ˆ 2N B A =  , 

where δeB  is the magnetic flux density in the equivalent air gap ( e  ) and the area mA of the 

magnet in the direction of the air gap. The maximum magnetic linkage will occur in the d-

axis, i.e., the symmetry of the permanent magnets, while the q-axis is the symmetry between 

the magnets (Figure a). 

For a sinusoidal arrangement of magnetic linkage: p r p r
ˆ( ) sin   = . 

r  is the electrical angle and is p-times the mechanical angle ( r rmp = ). 

δeB  is given by the equation:  

r m
δe

r m e

 
1

B l
B

k l 


+ +
. 

N

N
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N
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2 4p =a)
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The factor r 0,1 0,2k =   and takes into account the edge flux. ml  is the thickness of the 

magnet. 

The torque in the case where the armature current is in phase with the induced pole wheel 

voltage Ep p
ˆ / 2U = , i.e., in the case for d 0I = , where we have only the "q" component 

of the current qI I= , is calculated by the well-known equation: 

p
ˆ

3
2

M p I


= . 

In the case where the current is in phase with the induced voltage ( d 0I = ), the phasor 

diagram in Figure a) is valid, in which we consider the synchronous inductance sL  and the 

stator resistance sR . In Figure b) d 0I  , the and reaction reduces the excitation. 

b)

EpUU

qsR I

dsR I

p

max s qj L I

max s dj L I

a)

U

qI I=

p

EpU

sR I

s qj L I

qI

dI

I

 

The synchronous inductance in this case is not only equal to the sum of the magnetizing mL  

and leakage inductances σsL  (i.e., dL  for classical machines), but also to the mutual inductance 

between the adjacent phases 12 m / 3L L . In the case where the component of the current dI  

is in the opposite direction to the permanent magnet excitation (for control at higher rotor 

speeds max N  ), the phasor diagram in Figure b) applies. 
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COMMUTATOR MACHINE 

Description of construction 

A commutating machine is an electrical machine with a commutator in the secondary. The 

commutator assembly (collector − brushes) can be replaced by electronics. A DC or AC 

machine can be distinguished depending on the voltage applied. The main components are: 

a stator and rotor with a commutator. 

 

Sketch of a two-pole DC machine 

The stator consists of: 

 Y – a massive stator yoke, 

ps – a pole with a pole shoe, 

ew – an excitation winding. 

The rotor consists of: 

A – armature electrical steel 

(dynamo sheet metal) 

(1, 2 – armature winding), 

C – commutator (collector), 

B – stationary brushes. 

Operation mode 

a) Generator 

The rotor coil is rotated in a DC magnetic field. A voltage is induced in each side of the 

coil − the conductor (bar) according to equation: 

be Bl= v . 

B

N

NZNZ

ps

ps

Y

1

2

C

+−

ew

A

v
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This is identical in shape to the magnetic field. 

 

 

 

Coil connected to two slip rings  Magnetic field distribution of the  

 salient poles 

 

Induced conductor voltage 

 

Induced coil voltage 

The induced voltages in the two sides of the coil are oriented oppositely. The geometric sum 

is twice. The voltage is alternating in time. Such a voltage is also obtained on the slip rings. 
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Instead of two slip rings, we take just one slip ring, which we cut, i.e., two lamellas. The 

beginning of the coil is connected to one lamella and the end to the other. 

 

 

a) Space and temporal Figure of an induced 

coil voltage 

b) Voltage on the brushes 

A collector (commutator) is a mechanical rectifier. The induced voltage will always be in 

the same direction (−) at terminal A, always (+) at terminal B. A single coil has a large 

voltage ripple. Usually we have at least two (Figure) or more coils. 
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b) Motor 

 

 

a) Magnetic flux density 

b) Torque 

The rotor is connected to a voltage and a current I flow in it. A force is acting on a conductor 

in a magnetic field of magnetic flux density B: F IBl=  and a pair of forces on both sides of 

the coil, creating a torque: 

2 2

D D
M F F F D= + = . 

Each motor can act as a generator, and vice versa. In a generator, there is also a force 

opposing the force (torque) of the driving machine. 

Voltage magnitudes: 

generator U E  

motor E U  

F

D

S

N

NZNZ
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ps

Y
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a)

t


B

b)

M

t

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Commutator machine windings 

These are usually two-layer windings. The number of coils is equal to the number of slots. 

 
 

Coil design Arrangement of the coil in the slots 

The start and end are connected to adjacent lamellas. Therefore, the number of lamellas K is 

equal to the number of coils or the number of slots Q: 

K Q= . 

Vector star and induced voltage polygon 

The induced voltage of the individual slots is represented by a vector (phasor). All the 

conductors in a slot have an induced voltage of the same direction and magnitude. The 

electrical angle in degrees between the slots will be: 

Q

360
p p

Q
 = = , 

where the mechanical angle between the slots is Q

360

Q
 = . 
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Example: 8Q = , 2 2p = , 45 =  

 
 

If we connect the end of the first coil with the beginning of the second, etc., we get a polygon. 

For Q =  , this is a circle. If we place the brushes at two diametral points of the circle 

(commutator), the winding breaks into two parallel branches. The voltage across the brushes 

will be equal to the diameter of the circle. 

Winding versions 

Depending on the connection of the individual coils, we distinguish between lap and wave 

windings (or hairpin winding). 

  

Lap winding Wave winding 

1 2

3

4

5

6

7

8
45
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2
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8

1Y

2YY
Y

1Y 2Y
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In a lap winding, the end of the previous coil is connected to the beginning of the next coil. 

In a wave winding, we skip some adjacent coils. A winding, lap or wave, is always self-

connected or self-linkage. 

For a lap winding, the width of the scroll (winding) is: 1 2Y Y Y= − . 

For a wave winding, the width of the scroll (winding) is: 1 2 p2
Q

Y Y Y Q
p

= +  = →
1Q

Y
p


= . 

1Y  is the width of the coils 1 p
2

Q
Y Q

p
 = . ( pQ  is the number of slots per pole.) 

2Y  is the connection width. 

Example of a lap winding Example of a wave winding 

1 p6, 2 2, 3, 1Q p Y Q Y= = = = =  1 p

1
8, 2 2, 4, 9

Q
Q p Y Q Y

p

+
= = = = = =  

The pitch is p1 (1 ) 1 4Q− + = − , 2 2Y = . The pitch is p1 (1 ) 1 5Q− + = − , 2 1 5Y Y Y= − = . 

  

In the pictures we can see that the commutator winding is closed in on itself. The thickly 

drawn coils are short-circuited via the brushes.

1 2 3 4 5 6

1 2 3 4 56

1 2 3 4 5 6

1 23 64 5 7 8 3

7 8
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DC machine theory 

Induced voltage 

Current in the excitation winding: f f f f δ mI I N B → = → →  

 

No-load magnetic field image for 

pole pitch 

 

No-load magnetic field distribution Figure 

for pole pitch 

peb

p

B
B

m

neutral
  zone

neutral
  zone

 

One pole flux: 

p

m

0

( )dl B x x



 =   

m pe δ pb lB l B = =  

peb  is the equivalent peripheral pole width. 

Flux is represented as the volume of a geo-

metric body (quad) with sides for the mean 

value B , dimensions l  and p . 

The mean value of the induced voltage in a conductor (bar): 

b m2E B l pn= =v , if it is p

2 π
π 2

2

pD
D n p n

p
= = =v . 

neutral zone

S

( )B x B

p
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A winding with " z " conductors ( 2 )z N=  connected in series and with "2a " parallel branches, 

where " "a  is the number of parallel branches of half the armature (rotor), will have an 

induced voltage: 

b m m a m2 4 4
2 2 2

z z N
E E p n pn pn N

a a a
  = = = = , 

where a / (2 )N N a=  is the effective number of turns, i.e., the number of turns of the parallel 

branch, and the product " "pn  is the frequency of the induced voltage in the armature (rotor). 

With the introduction of the design voltage constant e

p z
c

a
= : 

e m E mE c n C = = , 

and EC  is the magnetic flux coefficient for calculating the induced voltage e
E m

2π

c
C 
 

= 
 

. If 

m const., =  EC  is also constant. The voltage at the generator terminals is: 

a a cΔU E I R U= − − . 

The voltage is smaller for the voltage drop across the armature resistance a aI R  and for the 

voltage drop across the commutator brushes cΔU . The reverse is true for the motor: 

 a a cΔU E I R U= + + . 

Torque 

It is calculated from the mechanical power: m m iaP M EI P= = = , which is equal to the 

internal power of the machine (if friction and windage losses can be neglected). This 

statement is proved by the following derivation: 

a
m m p a m a e m a2π 4

2

I pz
P M F D n N Bl p n I n I c n EI

a a
   = = = = = = , 

e
m a M m a M a

2π

c
M I c I C I = = =  
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where M e / (2π)c c=  is the design torque constant. The coefficient MC  (or TC ) is the 

magnetic flux coefficient for calculating the torque. Thus, MC  is the same in value as EC

for the induced voltage if the torque of the rotor friction and ventilation losses can be 

neglected. The unit of the coefficient is (N m / A)  for torque and (V s / rad.)  for induced 

voltage. For servomotors is EC  usually given at 1000 rpm. The coefficients for flux and 

torque are also denoted by the letter K. 

DC machines 

 a) generator b) motor 

 

 

aU E IR= −  a e mE U IR c n= − =  

e m aU c n IR= −  a

e m

U IR
n

c 

−
=   

2
el aP U I EI I R= = −  i M mM c I=  (Index "i" is intrinsic.) 

m i el CuP EI P P P= = = +  m i m iP M EI P= = =  

el i CuP P P= −  m el CuP P P= −  

fU m

LR

E

I

+ −
U E

fU m

E

I

+ −
U E
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Armature reaction 

In a loaded machine, a load current aI  flows in the armature. a a aI B→ →  (the magnetic 

field of the armature reaction). Together with the magnetic field of excitation, we obtain the 

resulting magnetic field. The physical picture of the action changes. The whole phenomenon 

and its consequences are called the armature reaction. 

 

The magnetic field of a DC machine in and near an air gap: 

a) no-load − excites the excitation winding, 

b) unexcited machine − excites only the armature winding (armature reaction), 

c) sum of a) and b). 

The difference between a) and c) is twofold: 

1. the magnetic field in the air gap is not distributed homogeneously, 

2. the neutral zone is displaced by angle   from the symmetry between the poles. 

For generator operation, the spatial distribution of the no-load magnetic field is denoted by 0B , 

the angular reaction magnetic field by aB  and the resultant magnetic field by B. Due to 

saturation, the increase in the MMF is not equal to the decrease and m  will be smaller. 

S

N

b) c)



S

N

a)
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The consequences of the armature reaction are as follows: 

1. reduction of induced voltage E , 

2. an increase in iron losses,  

3. a shift of the neutral zone, 

4. an increase in the inter-lamellar voltage. 

1. Reduction of induced voltage due to armature reaction 

a) Generator m.E   The main flux m  falls due to the reaction of the armature, and, 

hence, E . 

b) Motor const.U =  →  const.E =  (neglecting voltage drop). m  drops due to the armature 

reaction and the revolution increase, so it remains const.E   

Graphical method for determining the effect of armature reaction 

We start from the known no-load characteristic (NLC) ff ( )E I=  . 

p

aB

a

x
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Distance KD E=  at excitation 0   

a a a aI N I→ =  

Resulting excitation: 

res 0 a / 2  =   

2 2aHE E e= = −  

1 1dGE E e= = +  

2 abe =  and 1 cde =  

According to Simpson: 

2 1 2 14
Δ

6 6

E e E E e e e
E E

− + + + −
= − = . 

Graphical procedure to reduce the induced voltage: 

The triangle with nodes a, b, K has surface 1S , 

and the triangle with nodes K, c, d has surface 2S . 

We travel along the NLC from a point K to a point C, which is determined by the fact that 

the area of the triangles with vertices a, h, C and C, g, d is 1 2( )S S = . CF  is the reduced 

induced voltage by a distance KB  due to the armature reaction. This voltage reduction is 

due to a drop of the excitation sat FDV =  (sat −  saturation). Therefore, we need to increase 

the excitation due to the armature reaction when the load is applied by sat satV = . 

 

When the load changes: 

2

a
sat satN

aN

I
V V

I

 
  

 
. 

d

c 1e

g
B

Kb

h

a

2e

1S 

1S

2S 

2S

GDFH

0 satV

a

2

 a

2



KB E= 

m

E



fI



C
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 2. Increase in iron losses due to the armature reaction 

Due to the armature reaction δ( const.)B  , the losses in the iron, i.e., mainly in the rotor 

teeth, increase by approximately 
2

tmax t0( / )B B . 

3. Neutral zone displacement due to the armature reaction 

 

The voltage on the brushes is reduced due to the 

displacement of the NZ. The commutating coil 

comes under the influence of the main magnetic 

field. A voltage is induced in it, which deteriorates 

the commutation. 

4. Increasing the voltage between the lamellas  

Mean voltage between the lamellas of a commutator with " "K  lamellas: 

K
2 pU

E
K

= . 

K 16 20 VE = −  is permissible. 

Due to the deformation of the magnetic field this increases KE  and the sparking too. 

Reducing the effects of an armature reaction can be achieved by: 

a) moving the brushes, 

b) a compensating winding. 

Depending on the movement of the neutral zone, move the brushes at: 

1. the motor in the opposite direction of rotation, 

2. the generator in the direction of rotation. 

−

+

x

B
NZNZ
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The armature reaction is removed by a compensating winding through which the load current 

flows. The direction of magnetization shall be opposite to the direction of the armature reaction. 

Voltage at the machine terminals 

 

No-load: 0E E=  

Distance A represents the reduction 

in voltage due to the movement of 

the brushes out of the geometric 

neutral zone. 

Distance B illustrates the effect of 

saturation. 

Distance C illustrates the effect of the 

voltage drops. 

N

S

NZ



Gen

Mot

c

a

0

compensating
    winding

NZ

A

B

C

0E

E

E

U

c

sat

a c

A influence 

B influence 

C I R U





=

=

= + 

I

E

U
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Commutation 

 

When a coil passes from one pole region through the 

NZ to the other pole region, the direction of the 

induced voltage changes, and so does the direction 

of the current. This is commutation. 

At the time of the current change, the commutating 

coil is short-circuited across the adjacent lamellas 

and the brush (Figure b). 

If the current does not drop to zero at the moment 

the number 2 lamella leaves the brush, a spark 

(electric arc) occurs. This maintains the short circuit 

until the change in current is complete. 

Linear commutation 

The time cT  waveform of the current during commutation is unknown (dashed line). 

The branch current is considered to be ca / (2 )I I a= , cT – the duration of the commutation; 

and iT  − time of constant current. 

The time course of the current is given by Kirchhoff's laws. 

caI caI

I

cv

ct T=

a)

21

1 2

1 2

caI caI

I

cv

0t =

icaI caI

I

cv

t t=

b)

c)

tb
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Depending on the labels, the equation for the commutation time is: 

t t a
c

c a c

b b D
T

D
= =
v v

, 

where aD  is the rotor diameter, cD  the commutator diameter, tb  the tangential width of the 

brush, and c" "v  the corresponding speeds. 

According to Kirchhoff's first law: 

1 cai I i= − , 

2 cai I i= + , 

where " "i  is the instantaneous value of the current, 1" "i  and 2" "i  are the input currents at 

lamellas 1 and 2. In the loop, we neglect the resistance of the coil which commutates cR  and 

the resistance of the connection conductors conR .  

The brush-to-commutator contact resistance bcR  is taken into account. 

According to Kirchhoff's second law: 

1 1 2 2 0i R i R− = . 

iTcT cT

caI−
t

caI+ i

t cT t−

cT

tb

1S 2S1 2 3

1i 2iconR conR
caI caI

i

cR

bcR

cv

cR cR cR
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According to the Figure, the contact resistance of the individual parts of the brush is 

proportional to the areas between the brush and the lamella: 

c c c c
1 bc bc 2 bc bc

1 2 c

 ,           ,
S T S T

R R R R R R
S t S T t

= = = =
−

 

where the surface of the brush c 1 2S S S= +  or  

1 c

c

t
S S

T
= ,             c

2 c

c

T t
S S

T

−
= . 

The shape of the current in the commutating coil is: 

ca

c

1 2
t

i I
T

 
= − 

 
. 

 

The equation represents a straight line, and we call 

this type of commutation linear. 

Influence of self-induced voltage 

According to classical theory, the commutation 

process is the switching on and off of an 

inductive circuit, i.e., a commutating coil. 

According to Faraday's law: 

σc
c c σc

d d

d d

i
e N L

t t


= − = − , 

 

where σc  is the leakage flux of the commutating coil (with the cN  turns) and σcL  is its 

leakage inductance. 

Due to the self-induced voltage, the current lags behind the linear commutation. This degrades the 

commutation (increasing arcing on the brushes, and thus radio interference in the surroundings). 

caI
1i

2i

cT

t

i

cT

caI−
t

 (by the influence of its

   self-induced voltage)

i

caI+

 (linear

   commutation)

i
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Ways to reduce the impact of self-induced voltage: 

1. a reduction in d / di t , i.e., a reduction in current and rotational speed, 

2. reducing inductance σcL  by reducing cN , 

3. commutating auxiliary poles that induce a voltage in the opposite direction cp c( )e e . 

These are used on larger machines. 

Commutation auxiliary poles 

 

 

Place them in the neutral zone. The poles shall be narrow and shall correspond to the width 

of the brush. The Figure is drawn for a generator. For the motor, the opposite direction of 

rotation or the opposite arrangement of the commutation poles applies. 

The load current flows through the windings of the commutator poles and compensates for 

the effect of the armature reaction. Depending on the dimensioning of these poles, different 

current curves are obtained: 

1 and 2 sub-commutation, 4 and 5 optimal state and 6 and 7 over-commutation. 

main

field
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field
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field
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Commutation assembly 

Classic Commutation Assembly 

 

This assembly includes the following parts: 

commutator, brushes, and brush holders. The 

picture shows a simple commutation assem-

bly used in small machines. The brushes and 

brush holders are mounted in holders on the 

stator and are stationary. The commutator is 

mounted on the rotor shaft and rotates with it. 

There are two different designs of commutators: 

1. for small machines where the lamellas are bonded with plastic, 

2. for larger machines, we know the swallowtail version. 

 

 

 

In addition to these designs, there is a disc design for robotic motors, where the lamellas are 

mounted radially and the brushes in the direction of the machine shaft, and a turbo 

commutator for high-speed machines. 

spring

commutator

lamella

insulation

holder

brush

insulation

commutator lamellaconnector
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F F

cF

1F

airiness
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Depending on the type of material and the manufacturing process, the brushes are divided 

into: carbon, carbon-graphite, graphite, electro graphite, metal-graphite and resin-bonded 

graphite. They must have certain properties, e.g., for carbon graphite: specific resistance 

30 800  (μΩ m) , current density 5 7  2(A/cm ) , peripheral speed up to 20 (m/s) , voltage 

drop across the brush pair 2,8 V , pressure 21 (kPa) . 

Applications: small DC and universal motors 

 

 

The dimensions of the brushes are tagged 

according to the IEC recommendations: 

t a r  , where it is 

t  – tangential, 

a  – longitudinal (axial), 

and r  – radial dimension. 

The connecting conductor to the brush 

holder is made of (fine) copper braid. The 

brush holders are of different designs. They 

are usually radial, but skewed (reaction) 

brush holders are also possible. The picture 

shows the holders for universal motors. 

Electronic commutation assembly 

The commutator-brush assembly replaces a stationary switch. The excitation is on the rotor 

(permanent magnet) and the armature winding is on the stator. The English abbreviation for 

these converters is a BLDC motor and stands for brushless (BL) DC motor. 

t

a
r

a

t

r
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The sensors report the position of the rotor (magnet poles) and provide a signal to control 

the electronic switches. The types of sensors are: 

Hall elements, photo diodes, or photo transistors and inductive encoders.  

The armature winding is: a single, two, three and four phase system.  

Single and two phase →  high torque pulsation system 

The Figure shows a scheme of a three-phase system with constant polarity (unipolar). The 

torque is f ( ) . 

 

 

a) operating diagram 

b) motor cross-section 

c) torque 

  

 

a)

H1 H3

H2

Hall element magnet
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Tr2 Tr3
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N1
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b)

120 120



M

phase I II III

c)



 
150 

Types of DC machines 

Types of excitations 

Classical →  electromagnet excitation, i.e., one or more excitation windings on the pole 

shoes. Another option →  permanent magnets. 

Different machine properties are obtained, depending on the dependence of the excitation 

on the physical quantities (I, U).  

Depending on the connection, we distinguish: 

1. foreign excitation, 

2. parallel excitation, 

3. serial excitation, 

4. compound excitation. 

Excitation by electromagnets is the first circuit. The second circuit is the winding of the 

armature and any auxiliary poles and the compensating winding. Different types of machines 

are distinguished according to the connection of the two circuits. 

No-load characteristic (NLC) 

 

This is a basic characteristic. 

mf ( )E =  and m m/ R = → f ( )E =  or 

m f ( ) =  

The magnetic resistance mR  depends on the saturation. 

For NLC we can change the measure for m f( ) = , 

because the excitation is 

f f m ff ( )I N I = → = . 


m

0E

0E

m NLC

fI

0( const.)n =
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Excitation can be a function of voltage, armature current, or a combination of the two. The 

characteristics of the machines depend on the type of excitation and the connection of the circuits. 

External characteristic by the "I" line method 

Generator →  f ( )U I=  const.n =  

Motor  →  f ( )n M=  const.U =  

It is a geometric representation of physical quantities at different drive states. The process is 

not analytical, such as the circuit diagram of an induction machine or the current 

characteristics of a synchronous machine, but graphical.  

Example for a foreign excitation generator: the starting point is the no-load point 0P  (distance 

0 0P A E= ) of the NLC, i.e., f ( )E = . Distance: 0 f 0 f0A I N= = . Then draw: 

 

aAB ΔU IR= =  and sat sat fa fBC V I N= = = .  

( fa II K I=  and IK  is the current ratio of the 

machine.) 

res 0 sat 0A BC  = − = −  or 

res f0 faI I I= − . 

As the load current I  changes, ΔU  and sat  change 

and the extreme point C travels in the direction of the 

abscissas and describes the "I" line. The distance 

PC ( )U I=  is the voltage of the generator terminals. 

The "I" line thus represents a combination of the geometrical locations of the points of the 

resultant ampere-turns, and the ohmic voltage drop of a DC machine as a function of the 

change in load current; hence the name "I" line. Due to the non-linear influence of the 

armature reaction (saturation), the "I" line is not really a straight line, but a curve.  

0P

P

A

C

B

aIR

( )U I

NLC
E

U

0

fI

faI
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Generators for direct current 

Generator with foreign excitation 

We need two separate voltage sources. 

 
 

When loaded with NI  is 0E E .  = f( )E I  is an internal characteristic. The distance ab  is 

due to the reduction in induced voltage due to the armature reaction. Taking into account 

a cΔ bc ΔU I R U= = +  we get f( )U I= . The voltage drops and at kI , there is 0U = , ΔE U=

. 

 

For const.U =  we obtain a control 

curve f f ( )I I= . This takes into 

account the influence of the armature 

reaction and voltage drops. 

P
N
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N

A F1 F2 B
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INI

a cI R U+ 
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fI

f0I
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Parallel excitation generator 

The excitation voltage is equal to the rotor voltage f( )U U=  and a fI I I= + . It is also called 

self-exciting if there is remanent magnetism. rem f rem f/E I E R→ = , E  is increased 

gradually up to P0. 

  

fR  defines a line at an angle  , f

f

tan
E

R
I

 = = . 

The process is possible if f fcrR R (critical). 

An instantaneous excitation current 

raises the voltage difference. 

fi
i fi f f

d
Δ

d

i
E E i R L

t
= − =  

The external characteristic is softer 

than for a foreign-excited machine. 

f const.U U=    

P
N

I

AE BE

aI
fI

(A1) (A2)

(B1) (B2)
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(E2)

E

remE


f0I fI
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iE

E

fii

kI  NI kI a I

E
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E
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Generator with series excitation 

It is not used as a voltage source. U  is highly variable with the current I. 

It is usually a series winding combined with a parallel winding in compound generators, 

where it compensates partly for the effect of the armature reaction. 

DC motors 

Each generator can work like a motor. 

Only the direction of current at the rotor terminals is changed for the same direction of rotation. 

Motor with foreign excitation 

We are interested in the external characteristic f ( )n M=  and the current characteristic 

f ( )I M= . 

f( ) f( ) 
 load characteristics

f( ) f ( )

I M M I

n M n I

= → = 


= → = 
 

  

In stationary operation 
e m

1 E
n

c 
= . 

I
fI

A F1 F2 B

N
P

P
N

(F1)

(F2)

(A2)(A1)

(B2)(B1)
M

0n

n

I
( )n M

( )I M
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For const.I = , E  will be such that a cΔE U IR U= − −  holds, and will be: 

a c

e m

Δ1 U I R U
n

c 

− −
= . 

For m const. =  is M m   and  M c I M I=  . 

Due to the armature reaction m  decreases and the speed increases from a certain load, i.e., 

an unstable operating range. The unstable operating region occurs when the influence of the 

voltage drops becomes less than the influence of the armature reaction (which varies with 

the square of the armature current at higher load).  

Parallel excitation motor 

If the grid is sufficiently rigid, a parallel excitation motor has the same characteristics as a 

foreign excitation motor. 

 
 

Difference: grid current a f a fI I I I I I= +  = −  

The difference can be seen in the current characteristic f ( )I M= , because the current has an 

initial value f 0I I= , whereas in a foreign excitation motor it is zero. 

aI

I

fI
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n
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Series excitation motor 

The series motor is considered to be m I  , and thus: 

2
M m 1

1

1
M c I c I I M

c
= = → = , 

3

2

1 E E
n c

c I M
= = . 

 

 

In start-up (short-circuit) s k k,  I I I M M= = =  and 0n = . 

For low loads (no-load):  0,  M n→ →  

Compound excitation motor 

In most cases the series winding supports a parallel winding. The winding that has the greater 

influence determines the shape of the characteristic. The motor has a harder characteristic 

(curve a) if the parallel winding dominates, and a softer characteristic if the series winding 

dominates (curve c). 
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A D

(D1)

(D2)

(A2)(A1)

(B2)(B1)

( )I M

n

I

( )n M

kI

kM M



 
157 

 

Constructing characteristics 

Constructing the external characteristics of generators U(I) 

Assume: the "I" line is a straight line, choose, e.g., N(1/4  5/4)I I=  . 

a) Generator with foreign excitation 

0 fIf0I


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Point B on the 'I' line is defined for the rated current, i.e., the armature current N(4/4)I I= .  

The magnitude of the voltage for a given load, e.g., NI I= , is obtained from the relation: 

0 0 f0
BC / PU E I=  . 

b) Parallel generator 

A
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B

C
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fIf0I
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U

I
0 N
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Direction of self-excitation (angle) :  0 0 0 0f0
sin P / P 0 / P 0I E = =  and 0 0AC / P 0U E=  . 

Constructing motor rotational speed characteristics n(I) 

I

0n

n

NnE

D
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E
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a) Foreign-excited and parallel motor 

The characteristic designs ( )n I  for the foreign-excited and parallel motors are identical. The 

revolutions for a given load, e.g., aNI I= , are given by: 0 AB / ACn n= . From point E on 

the curve ( ) n I is the unstable operating range.  

b) Serial motor 

 

The rotations for an arbitrary load are obtained from the relation: N

AB

AC
n n= , because NLC 

is valid for Nn . 

Starting and changing the speed of the motors 

Starting: k

a

0    0  and  
U

n E I
R

= → = = , k M kM C I= . 

The current is reduced by adding an additional (starting) resistor, or by reducing U. 

Changing the rotational speed of foreign-excited motors: 

a a a a
m m0 m0

E E E M E M k

2π 1
U I R R M R MU U M

n
C C C C C C U M

  
 −

= = = − = − = − 
 

. 

Nn

I

Nn

n

N

1

3
I N
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3
I N

3

3
I N
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3
I0fIfresI A0

E

N3 3 I
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Options for varying the speed of foreign-excited engines: 

1. armature voltage control U , 

2. magnetic field control m ff ( )U = , 

3. with additional resistance addR . 

 

From 0 to m0 , vary U (  const.I = , const. = , const.M = ). We weaken the magnetic 

field from m0  N( )U U=  onwards. For m 0   L( )M M , we switch to generator 

braking. 

The speed control of the series engine is a particular problem. A change in U causes a change 

in fI . Therefore, we vary the speed by applying a shunt to the excitation winding. 

Non-stationary operation 

Changes are possible after a transient phenomenon determined by the excitation time 

constant f f f/T L R=  and armature a a a/T L R=  ( )f a(5 20)T T  . This is electrical inertia. 

Mechanical inertia is determined by the masses of the rotor and the load, or the total moment 

of inertia J . 

m

I
m( )M 

N

f fN

U U

I I



=

a m( )I 

N

f fN

U U

I I

=



m0
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armature voltage
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M
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U

aI
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Basic equations for non-stationary operation (drive) 

f
f f f f

d

d

i
u R i L

t
= +  

a
a a a

d

d

i
u R i e L

t
= + +   (induced voltage E me C = ) 

m
L

d

d
J m m

t


= +         (torque M am C i= ) For the motor L 0m  .  

The familiar equations in stationary operation apply for f fi I=  and a ai I=  is d/d 0t = .  

The following block scheme shows the physical picture of the effects of quantities in a 

foreign excited machine. 

 

Special DC machines 

Most of them have only historical significance. One of the remaining is amplidyne, which 

served as an exciter in synchronous generators. 
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Amplidyne 

It's a power amplifier. It has two pairs of brushes. The first − normal brushes (q-q) are short 

circuited, and a rotor excitation greater than the fundamental excitation is obtained. The 

consumer is connected to the second pair of brushes (d-d). 

 

Amplification is: d q q 1 1100 10000U I U I U I  . 

Because of the rotor (armature) reaction, it has a compensating winding ( c  compensates 

the flux of the armature reaction  ). 

AC commutator machines 

Implementation →  motors only 

Only a single-phase commutator motor of small power remains. 

Use →  for household appliances and power hand tools. Also known as a universal motor. 

Induced voltages of a single-phase commutator motor 

fU (alternating) →  m  (alternating) →  rE  (alternating) 

rE  is in phase with m . 

1U

1

c
d d

q

q
qI

I

q q 2, ,U I 

LR

d , ,U I 
1I
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If a / (2 ) / (4 )N N a z a= =  is the number of effective turns of the armature, then the rotational 

or motion voltage will be: 

r a m
ˆ2 2E p nN = . 

The alternating magnetic field also results in a transformer voltage: 

t a w m

2π ˆ 
2

E f N f = . 

The winding factor is given by w

2 2

π π

r
f

r
= =  (where r  is the radius of the potential circle) 

and therefore the transformer voltage will also be t a m
ˆ2 2  E f N = . The space position of 

the two can be seen in the Figures below. 

 

For pn f= , will r tE E= . 

The voltage across the brushes in the 

neutral zone is equal to t 0E = . 

The corresponding transformer voltage 

is also induced in the excitation winding. 

m

rE

( )− ( )+

n

re

m

t

rE

tE
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Calculation of torque 

For alternating ( )i t  and ( )t  valid: 

M m( ) ( ) ( )M t c t i t= . 

If it is ( ) 2 sin( )i t I t= , it will be m m
ˆ( ) sin( )t t   = − , 

where   is the phase shift between the current and magnetic flux. Taking the trigonometric 

transformation into account, we obtain: 

( )M
m
ˆ( ) cos cos(2 )

2

c
M t I t    = − − . 

The first component is the mean torque: 

 M
m
ˆ cos

2

c
M I =~ , 

around which the torque oscillates at double the frequency, the mean value of which is zero 

over one period. 

 

m̂ ~  at AC supplied voltage shall 

be equal to the flux at the DC 

supplied voltage 

m m=
ˆ( )B B=~ . 

That's why: 

cos

2
M M


=


=~ . 

From the equation for rotational voltage rE , we express m , and note that 

a / (2 ) / (4 )N N a z a= =  and the constant M / (2π )c pz a= . The torque value is then: 

( )I t
( )M t

m ( )t M

t
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r

m

cos
E

M I 


=  and r cosmP M E I = = . 

Commutation of a single-phase commutator machine 

Physically, the events during commutation are the same as in a DC machine. For the 

commutation time: c 1/T T f = . 

The current remains alternating after commutation. The problem is the transformation 

voltage tE . This is greatest in the coil that commutates. It therefore worsens the commutation 

process. 

 

Single-phase commutator motor in series connection 

The torque is maximum for cos 1  ( 0)  = = , if I  and m  are in phase, i.e., in series 

connection. 

Application example: small universal motors in household appliances or hand tools with 

power 5 1000 W  and up to 20000 rpm. The advantage is the high starting torque. It has no 

compensating winding and no commutating poles. The name universal is used because it can 

be connected to DC or AC voltages of the same peak value. 

Current a f fI I I = = →  

cT cT cT

t

i
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The excitation winding with fN  turns excite the main flux: 

f f f f
m

f f f f

ˆ 2 2 2ˆ
 

L I L I X I

N N N N

 


 
= = = = , m r t

ˆ   and  E E → . 

Equivalent scheme 

 

Taking the equation for m̂ , it will be: 

 a
r f

f s

2

π

Npn n
E X I c I

f N n
= = , 

where c  is the constant of the unsaturated machine 

a
f

f

2

π

N
c X

N
= . 

rE  is in phase with I, and is, therefore, rE R I= . s/R cn n =  is the equivalent (fictitious) 

resistance. 

The result is a similar replacement circuit as for the rotor of an induction machine. 

 

The equivalent resistance R  also 

represents the internal mechanical power: 

2
m rP I E I R= = . 

The current is through an equivalent 

circuit: 

s

j

U
I

n
R c X

n

=

+ +

. 

 For 0n = , i.e., short-circuited, the following applies: 

 k
2 2

U
I

R X
=

+
. 

U~

fN

m

I f aR R R= + f aj j( )X X X= +

rE
R

I
 =U
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Such a machine, like an induction machine, has a maximum current value at 0n = , i.e., at a 

standstill. 

Phasor diagram 

We draw it for two examples: 

a) 0n =  (short-circuited motor), 

b) 0n   (any number of revolutions). 

 

For 0n =  it is also r 0E = , and so k

k

U
I I

Z
= = . 

For 0n  , rE  will be in phase with m( )I   for kI I  and kcos cos  . The power factor 

Ncos 0,95  . 

 

a) b)

kI I=

mk
k

U

j I X

IR
U

r
s

n
E IR Ic

n
= =

IR

j I X
m

I


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COMPLEX CALCULATION 

The time-sine quantity of magnitude "v ", whose waveform is shown in the Figure, can be 

expressed as a function of time t  or as a function of the argument t  as follows: 

v
ˆ cos( )t = +v v . 

The amplitude v̂  represents the maximum value of a 

sinusoidal quantity. The proportionality factor before 

time in the argument of the cosine function is the 

electric angular frequency  . During the period T , the 

argument increases by the value of the angle 2 . From 

the condition 2t =   we get: 

2
2 f

T



= =  . 

Frequency is defined in the equation as: 
1

f
T

= . 

 

The phase angle v  gives the negative displacement of the maximum of the cosine quantity 

from the origin of the time coordinate. The cosine function is taken to use complex calculus. 

Using the Euler notation 
je cos jsinx x x= + , the complex equation can be expressed as: 

( ) ( )v vj( ) j jˆ ˆRe e Re e e
t t   +

= =v v v . 

There are now three equal quantities in the equation: the amplitude v̂ , the phase factor vj
e
  

and the frequency factor je t . Of interest are the amplitude and the phase position, which, 

together, represent a complex quantity:  

 vjˆ e


=v v . 

The corresponding instantaneous value of the complex quantity is given by the following 

basic equation using the previous equation: 

( )jRe e t=v v . 

The Figure on the right shows a complex 

quantity v  as a phasor in the complex plane. 
 

Mathematical operations of complex quantities 

Multiplying a sine quantity by a constant 

For multiplication of a complex quantity, the equation: 

( ) ( )j j
1 1Re e Re et ta a = = =v v  v v . 

2

v̂

v

v

t

T

v̂

v


v

t

+

j+
v̂

v

v



 

 

169 

 

From it we get 1 a=v v , respectively 

v1 vj j
1̂

ˆe ea
 

=v v .  

We can see that multiplying a complex quantity by a 

constant, changes its amplitude and preserves its phase 

position. Multiplication by a constant is illustrated in 

the Figure on the right.  

Adding two sinusoidal quantities 

This is an example of the law of nodes or the law of the loop. Using the basic equation, we 

derive 

( ) ( ) ( )j j j j
1 2 1 2 1 2Re e Re e e Re ( )et t t t   = = + = + = +v v v v v  v  v v , it is: 

1 2= +v v v . 

With the introduction of real and imaginary 

parts, it applies: 

1 2Re( ) jIm( Re( ) Re( )+ = + +v  v v v  

( )1 2j Im( ) Im( )+ +v v . 

The Figure shows the phasors in the complex 

plane, which are summed geometrically 

(vectorially). 

 

Differentiating a sinusoidal quantity by time 

This is the case for the law of induction. Using the basic equation, we derive: 

( ) ( ) ( )j j jd d
Re e Re e Re j e

d d

t t t

t t

  
 

 = = = = 
 

v
v v  v v  

and it is  

j =v v . 

Differentiating by time in the domain of instantaneous values means, in the complex domain, 

multiplying by j . Taking into account 
j /j e  =  and 

v vj j( /ˆe e
  + ) =v v  

we get the ratio between the amplitudes   ˆ ˆ=v v  

and phase angles   v v /  = +   . 

The differentiated quantity overtakes the original quantity by 90 . 

+

j+

v

1 a=v v

+

j+

1v 1Im( )v

2v 2v

1 2= +v v v

2Re( )v

2Im( )v

2Re( )v

1Re( )v

1Im( )v
2Im( )v
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Corresponding to the derivative equation, draw a 

phasor diagram of the derivative v  and the 

original quantity v . 
 

Time integration of a sine quantity 

Such a use case occurs in a voltage − current coupling on a capacitor such as: 

(1/ ) dC t= u i . 

The basic equation gives: 

( ) ( )j j j
1 1

1
Re e d Re e d Re e

j

t t tt t  



 
= = = =  

 
 v v  v v v  and it is  

1

1

j
=v v . 

Integrating over time in the domain of instantaneous values means, in a complex domain, 

dividing by j . For 
j /1/ j e−  = , the equation can also be represented as: 

v1 vj j( /
1

1
ˆ ˆe e

 



− )
=v v . 

The following is the relationship between the amplitudes   

1

1
ˆ ˆ


=v v  and phase angles   v1 v / = −  . 

The integrated quantity lags the original quantity by 90 . Plot the 

corresponding equations on the phasor diagram of the integrated 

quantity 1v  and the original quantity v . 
 

The feasibility of a computational operation in the complex domain fails in the case of 

multiplication of two sinusoidal quantities corresponding to the expression, as required in the 

case of determining the instantaneous power value. 

The cause of the failure is conditional on the term: 

( ) ( ) ( )j j j j
1 2 1 2Re e Re e Re e et t t t   v  v  v  v  . 

To determine the instantaneous value, we need to consider the individual instantaneous 

values. 

Calculation of power 

Calculating single-phase power in complex calculus 

The power flowing into the terminals of the converter at the applied voltage 

u2 sin( )u U t = +  and current i2 sin( )i I t = +  is calculated using the equation: 

u i u icos( ) cos(2 )p u i U I U I t    = = − − + +  

+

j+

vj =v v

+

j+

v

1

1

j
=v v
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The power oscillates at twice the frequency of the voltage or current around the mean value  

cosP U I =   

and is known as the working (watt) power. The phase angle between voltage and current is 

u i  = − . 

The time waveform of power when the 

current and voltage are sinusoidal 

quantities of the same frequency is 

shown in the Figure for the case where 

the current lags voltage. 

 

Without taking into account the phase shift of the current with respect to the voltage, we 

obtain an expression for the total or apparent power: 

S U I= . 

In addition to the total or apparent power, there is, quite formally, the reactive power, which is 

calculated as: 

sinQ U I = . 

It is not possible to determine the instantaneous power value from the complex voltage and 

current, but the power components can be determined. Complex power S  is introduced by 

multiplying the complex voltage by the conjugate complex current. This is the case: 

u u ii* j( + ) j( )j( )
e e e cos j sin j

t t
S U I U I U I U I U I P Q

      −− +
= = = = + = + . 

It is necessary to emphasize that this complex power is a complex quantity of a different kind, 

and behind it is not subject to the basic equation. 

Calculation of three-phase working power for different winding connections 

The three-phase (symmetrical) winding is connected in a delta or star connection. A zigzag or 

broken star is also used in transformers. In all three cases, the equation for the working power 

applies:  

ph ph3 cosP U I = , 

where ph ph and U I  are the phase quantities, i.e., the RMS values of the voltages and currents in the 

winding. 

According to the Figure for a three-phase winding connected in a delta circuit, the currents in the 

terminals (lines) are considered to be the difference of two adjacent phase currents, depending 

on the sequence of the phases. Therefore, the equations for the currents in the supply lines apply: 

A C 2 cos30 3I I I I I   = − = = , B 3I I I I  = − =  and C C C 3I I I I  = − = . 

u

p

iP

t

u
i
p

S
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The equations apply to a symmetrical system where the currents in the individual phases are 

equal to each other: A CphI I I I  = = =  respectively ph / 3I I= . 

In a delta connection, phU U=  gives the equation for the working power in a three-phase 

system, expressed in terms of the effective magnitudes at the terminals: 3 cosP U I =  

 
 

In a symmetrical star or zigzag connection, the relationship for the voltages is: 

AB BC CA ph ph2 cos30 3U U U U U U= = = = =  or ph / 3U U= . 

The currents in a star or zigzag connection are the same in the windings as in the supply ph( )I I= . 

Taking the values for the phase quantities gives the equation for the working power:  

3 cosP U I = . 

We find that the working power in a three-phase system can also be calculated from the input (line) 

quantities using the same equation, i.e., independently of the type of winding connection. 

Calculation of losses for different winding connections 

Assume a symmetrical three-phase winding, connected in a delta, star or zigzag connection. 

The resistances are given between the supply terminals t AB BC CAR R R R= = =  and the current 

in the supply terminals A B CI I I I= = = . The winding losses are calculated using the equation
2

Cu ph ph3P I R= , i.e., from the phase quantities. For a delta circuit, the phase currents are 

assumed to be given by the preceding derivations: ph / 3I I= . 

The phase resistance is obtained from the resistance between the terminals with respect to the 

parallel connection of one phase and the two series connected resistances of the adjacent 

phases according to the equation: 

U

CI I=

A B C

ph C / 3I I I= =

ΔI 

I

BI 

CI

phC ΔCI I=

AIΔCI−

30

ABU U=

A C

B

ph
3

U
U =

phI I=

Y

A

C B

ABU U=CAU

BCU

ph bU U=

cU

aU

30
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AB ph ph ph

1 1 1 3

2 2R R R R
= + = → ph AB

3

2
R R=  and the losses for a delta connection are 

2

2 2 2
Cu ph ph AB AB t

3
3 3 1,5 1,5

23

I
P I R R I R I R

 
= = = = 

 
. 

For a star or zigzag, phI I=  and ph AB t/ 2 / 2R R R= =  apply, and we calculate the losses using 

equation: 

2 2 2t
Cu ph ph t3 3 1,5

2

R
P I R I I R= = = . 

The same equation (independent of the connection) is used to calculate the winding losses as a 

function of the input quantities. 

The power losses in a three-phase winding in the complex region are calculated by 

multiplying the complex current (in the terminals) by the conjugate complex current value. 

That is: 

( )*

Cu t1,5 ReP I I R= . 

The law of induction in complex calculus 

The induced voltage in the turn is governed by Faraday's law of electromagnetic induction: 

d

d
e

t


= − = − . 

As a rule of thumb, the magnetic field (or flux) is usually given as the "maximum", i.e., the 

peak value of the time sine function: 

jˆ e t = . 

Considering the differentiation − derivative equation, we derive: 

je  = − . 

Flux multiplied by j− , means that the induced voltage lags the flux by an angle of 90 . The 

effective value of the induced voltage of one turn (the turn voltage) will thus be: 

 
ˆ ˆ ˆ2 / 2ˆ ˆ ˆ ˆ4 4,44 1,11 1,11

/ 22 2 2 2

E
E f f f

T t

  
   

   
= = = = = = =


. 

The induced voltage is equal to twice the change in flux over the half-period ( / 2T ). 

In the equation ( ) ( )1,11 / 2 / / (1/ 2)=    =  ( )   is the form factor for alternating 

quantities of the sinusoidal shape. The ratio of the mean value to the peak value is /  , 2  

the ratio of the peak value to the RMS value. (Note: ̂  is the peak mean flux.) 
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Calculating the mean and RMS value of an alternating quantity 

To calculate the mean value of an alternating quantity of sinusoidal shape (amplitude) for half 

the period (Figure), the equation is used: 

0

0

1 1 2
sin d ( cos )Y Y x x Y x Y




= = − =
   . 

 

To calculate the RMS value of a sinusoidal quantity from the peak value, use the following 

derivation: 

( )2 2

00 0

ˆ1 1 1 1ˆ ˆ ˆ( sin ) d 1 cos(2 ) d sin(2 )
2 2

Y
Y Y x x Y x x Y x x

 
 

= = − = − = 
    
  . 

To add the RMS values of the sine magnitudes of the fundamental and higher order 

frequencies, we follow the rule: 

2 2 2 2
1 3 5  ......+Y Y Y Y Y= + + + . 

In electromechanical converters, the order   (usually) contains only odd (unpaired) higher 

harmonic components ( 1,  3,  5, .... = ∞), because the quantities are (usually) symmetrical 

with respect to the y-axis . Higher harmonic components occur, e.g., in the magnetizing 

current of an electromechanical converter as a result of saturation. 

Note: To calculate the RMS value of the induced voltage, you would have to write the mean 

value of the flux (which is in fact the peak mean value) in the equation for the induced voltage 

in the form ˆ ˆ(2 / = ) . We do not write it this way, but omit the sign for the mean, and 

write only the sign for the amplitude or peak value of the flux amplitude. It is essential to 

emphasize the peak flux value, which is important for calculating the correct value of the 

magnetic flux density, and, hence, the excitation required. 

It is also a rule that alternating electrical quantities (voltage, current, etc.) are given as RMS 

values, and magnetic quantities (flux, magnetic flux density, etc.) are given as peak or peak-

mean values. 

x t=

ˆ siny Y x=



 

2 ˆY Y=


Ŷ

sinus quantity
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FOURIER ANALYSIS 

Examples for excitation curves 

In rotating electromechanical converters, a given periodic excitation curve f ( )x =  must be 

replaced by a period p2 2    of exactly or approximately the trigonometric sum: 

0 1 2

1 2

1
( ) cos cos(2 ) cos( )

2

                   sin sin(2 ) sin( ) .

s x a a x a x a x

b x b x b x





 



= + + + +

+ + + +

 

The best approximation of ( )s x  to the curve f ( )x  is to choose for the coefficients a  and b  

( 0,  1,  2,   ) =  the Fourier coefficients of the given function: 

2

0

0

1
f ( )d

2
a x x



=
 

, 

2

0

1
f ( ) cos( ) da x x x



 =
 

,  

2

0

1
f ( ) sin( )db x x x



 =
 

.  

In the case of rotating electromechanical converters, the function f ( )x  is odd, i.e. f ( ) f ( )x x− = −  

(type II symmetry), and, in addition, symmetrical with respect to the x-axis f ( ) f ( )x x+  = −  

(type III symmetry), so this is a type IV symmetry. In this case, k 2k 0a b= = and 

/2

0

4
f ( ) sin( ) db x x x



 =
 

. 

( 2 1k = + ) and it is 0,  1,  2,  k = . We see that only sinusoidal unpaired higher harmonic 

components are obtained. 

In the following examples we will learn about some of the most typical excitation curve 

functions and their mathematical solutions. Figure a) shows the most typical excitation curve 

of a single coil with excitation amplitude y A=  for 0 x   . 

 

The evolution of the function into a trigonometric series for the first seven higher harmonic 

components is as follows: 

0

y

x

A

 2

a)

0

y

x

A

 2

b)
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4 1 1 1
sin sin(3 ) sin(5 ) sin(7 )

3 5 7
y A x x x x

 
= + + + + 
  

. 

For an infinite number of coils, uniformly distributed around the circumference of the machine, 

with the excitation amplitude of y A=  for / 2 / 2x−     in Figure b), we obtain the solution: 

2 2 2 2

8 1 1 1
sin sin(3 ) sin(5 ) sin(7 )

3 5 7
y A x x x x

 
= − + −  
  

.  

In the case that a winding with an infinite number of coils is distributed over only part of the 

circumference of the converter and y A=  for x   −  (Figure c), the solution is:  

2 2

4 1 1
sin sin sin(3 ) sin(3 ) sin(5 ) sin(5 )

3 5

A
y x x x  



 
= + + + 
  

. 

 

Normally, the winding is only distributed over 2 / 3  of the circumference of the machine 

( / 3) =  , giving the equation the form: 

2 2 2

6 3 1 1
sin sin(5 ) sin(7 )

5 7
y A x x x

 
= − + 

  
. 

All unpaired harmonic components divisible by three are dropped. 

The last example in Figure d) shows the excitation of a coil for salient poles, where the pole width 

is narrower than the pole pitch and y A=  is by x   − . The solution is given by the 

equation: 

4 1 1
cos sin cos(3 ) sin(3 ) cos(5 ) sin(5 )

3 5
y A x x x  

 
= + + + 
  

.  

If the pole width is 2 / 3  and / 6 =   (usually the pole width is slightly larger), the equation 

takes the form: 

2 3 1 1
sin sin(5 ) sin(7 )

5 7
y A x x x

 
= − − 

  
. 

Example for transformer no-load current 

The shape of the no-load current of a real transformer is shown in Figure a) (next page). Since 

the current is a periodic function of time with period T , the value on the abscissa axis is x t= . 

The magnetizing current is symmetrical in shape with respect to the x-axis and asymmetrical  

0

y

x

A

 2

d)
0

y

x

A

 2

c)


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with respect to the y-axis. The function is odd because it is ( ) ( )f x f x− = − , i.e. symmetry of 

the second kind and at the same time it is ( / 2) ( )f x T f x+ = − , i.e., symmetry of the third kind. 

For this form of current, only unpaired higher harmonic components ( 2 1k = + ) are obtained 

for 0,  1,  2,  k = . For respectively 0k =  or 1 = , i.e. for the harmonic component of the 

fundamental frequency, the transformer has the sine and cosine components of the current. 

One of the two components, the larger one, is the magnetizing current (the reactive 

component) and the other, the smaller one, is the losses in the iron (the working component). 

For all other higher harmonic components, according to the Figure, only the sinusoidal 

harmonic components are obtained, i.e. the magnetizing current of the higher harmonic 

components. For the case of a shift of the x coordinate system, only the cosine higher 

harmonic components are obtained, while the fundamental harmonic component of the 

current always has a sine and a cosine term. 

  

If the effect of hysteresis loop losses and eddy current in the iron core can be neglected, the 

no-load current picture of a transformer normally operating in saturation, i.e. at the knee of 

the magnetic curve, is perfectly symmetrical. Such a simplified form of the current is shown 

in Figure b). The current is symmetrical with respect to the x and y axes, i.e. a type IV 

symmetry. For the magnetizing current in Figure b), we obtain only the cosine or only the sine 

of the fundamental component and the unpaired higher harmonic components of the 

transformer magnetizing current. 

 

 









x

I

a)

I

4

T

2

T

b)

x
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LIST OF VARIABLES 

a  number of parallel branches p. 136;  (m)a  longitudinal dimension of brushes p. 148  

2 (m )A  area or cross-section p. 2 

( )2 T V s / m N / (A m)b =  =   instantaneous value of the magnetic flux density p. 8 

 (m)b  [11] width code p. 7 or pole arc (width) p. 135 

( )2 T V s / m N / (A m)B =  =   magnetic flux density p. 3 

( ) J / (kg Kc   specific heat p. 18; c  design constant p. 99; c ( )  motor constant p. 166 

( )2 4 W / (m K )C   radiant constant p. 17; ( ) N m/A or V s/radC    coefficient p. 136; 

( ) F A s / VC =   capacitance p. 170 

d  mathematical operator of the derivative of a function (differential) p. 3;  (m)d  thickness p. 16 

 (m)D  diameter (stator bores) p. 8; delta winding connection p. 54 

 (V)e  induced voltage p. 11; e 2.71828  number of p. 18;  (%)e  ratio error p. 53 

 (V / m)E  electric field intensity p. 11;  (V)E  induced voltage p. 15 

1 (Hz s )f −=  frequency p. 1; f  ratio − winding factor p. 8 and p. 65 

 (A)F  magnetomotive force p. 3;  (N)F  force (in magnetic field) p. 12 

 (A / m)H  magnetic field intensity p. 3 

 (A)i  instantaneous value (of current) p. 6 

 (A)I  RMS current p. 1; DC value p. 93 

j /2j e =  phase shift in the complex plane p. 25 

( )2 A / mJ  or 
2(A / mm )  current density p. 4; ( )2 kg mJ   Moment of inertia p. 161 

k  factor p. 127; constant p. 136 

K  ratio (transformation ratio) p. 12; constant p. 99; 

K  number of commutator lamellas p. 132; K  ( N m / A V s) =  ) coefficient p. 137 

 (m)l  length p. 3, longitudinal (axial) length (machine package) p. 67 

 (H Ω s)L =   inductance p. 3 

m  number of phases of AC machine winding p. 1;  (kg)m  mass p. 16  

 (N m)M   torque (force torque) p. 2 

1 (s )n −
 or 

1(min )−
 speed p. 2; 

N  number of turns p. 4 

p  number of pole pairs p. 8 
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 (W)P  working or loss power p. 1 

 (A s / m)q   line charge p. 12; q  relative reactive power p 46; 

q  number of slots per pole and phase p. 62 

 (A s)Q   charge p. 12; Q  number of slots p. 62;  (V A)Q  reactive power p. 46 

r  relative resistance p. 46;  (m)r  radius p. 14 or radial dimension of brushes p. 148 

( )1 1 ( s)R H − −=   magnetic resistance p. 3;  ( )R   ohmic resistance p. 16 

s  slip (induction machine) p. 68 

 (V A)S   apparent power p. 50; 
2 (m )S  area or cross-section p. 145 

 (s)t  time p. 8;  (m)t  tangential dimension of brushes p. 148 

 (s)T  repeat period p. 9, time constant p. 18 

 (V)u  voltage p. 14; u  relative voltage p. 46 

 (V)U  RMS voltage value p. 1 

 (m / s)v  speed p. 9 

3 (m )V  volume p. 127;  (A)V  drop of excitation p. 140 

3 (J/m )w  specific magnetic energy p. 127 

 (J)W  energy p. 13 

 (m)x  coordinate (abscissa) p. 7; x  relative value of reactance p. 46 

 ( )X   inductive resistance − reactance p. 32 

y  actual to nominal value ratio factor p. 50 

Y  three-phase star winding connection p.54; Y  width of winding coils p. 63 

z  number of conductors (coils) p. 136 

 ( )Z   impedance (complex resistance) p. 40; Z three-phase zigzag winding connection p.54; 

 (rad.)  electrical or mechanical angle p. 8 

( )2 W / (m K)   coefficient (heat) p. 16,   transformation constant p. 85 

  pole form factor p. 105,   (rad) electrical or mechanical angle p. 138 

2 (S m / mm )   specific electrical conductivity p 30;  (rad.)  phase angle p. 87 

 (rad.)  wheel or pole angle p. 99 

 (m)  air gap p. 6; e  (m)  equivalent air gap p. 7 

  mathematical sign of the difference p. 17; delta winding connection p. 81 

  absorption ratio (heat) p. 17 

  efficiency p. 2 

 (rad.)  electric space angle p. 8;  ( C)  temperature p. 16 
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 (A)  instantaneous value of the magnetic voltage (excitation) p.8 

 (A)  magnetic voltage (excitation) p. 4;  (K)  absolute temperature p. 17 

  magnetic susceptibility p. 4 

( ) W / (m K)   specific thermal conductivity p. 16 

( ) H Ω s =   magnetic conductivity p. 3;  (W / K)  thermal conductivity p. 16 

  relative permeability p. 4; ( )7
0 4 10  V s/(A m) −=     vacuum permeability 

  spatial order of higher harmonic components p. 38 

  (degrees or minutes) angle error p. 53 

 =   Ludolf's number p. 7 

  field leakage factor p. 86 

  mathematical sum operator p. 4 

 (m)  arc on the perimeter of the machine p. 7;  (s)  time constant p. 88 

 (rad.)  phase angle or angle of displacement p. 25 

 (Wb V s) =   magnetic flux (instantaneous value) − flux p. 11 

 (Wb V s) =   magnetic flux − flux p. 2; t  (W)  heat flow p. 16 

 (V s)   magnetic linkage (instantaneous value) p. 12 

 (V s)   magnetic linkage (RMS value) p. 3 

1 (rad. / s) or (s ) −
 electrical angular frequency (circular speed) p. 8 

1 (rad. / s) ali (s ) −
 mechanical angular velocity (circular velocity) p. 2 

Greek alphabet 

 ,    alpha  ,    iota  ,   rho 

 ,    beta  ,   kappa  ,  ,    sigma 

 ,    gamma  ,   lambda  ,    tau 

 ,    delta  ,   mu  ,    upsilon 

 ,    epsilon  ,    nu  ,  ,   phi 

 ,   zeta  ,    xi  ,   chi 

 ,    eta  ,    omicron  ,   psi 

 ,  ,    theta  ,   pi  ,   omega 

Abbreviations 

AC alternating current, DC direct current, IM induction machine, MMF magnetomotive force, 

MMF magnetomotive field, EMF electromotive force, NZ neutral zone, RMS root mean square 
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This publication presents the basics of electromechanical conversion and 
the four basic electrical machines: the transformer, the induction machine, 
the synchronous machine and the commutator machine. The publication 
is divided into five chapters. The content of each chapter is presented 
below. Introduction: magnetic field, excitation of windings, induction of 
voltage, forces and torque, conversion of electrical power into electrical or 
mechanical power, losses, efficiency, heating and cooling. Transformer: 
construction elements, ideal and real single-phase transformer, three-phase 
transformer, special transformer designs. Induction machine: description 
of construction with windings and mode of operation, starting motors and 
varying speed and torque, induction generator, single-phase induction 
motors. Synchronous machine: description of construction and operation, 
operation on a rigid grid, approximate treatment of a saturated machine, 
excitation systems and the use of permanent magnets for excitation, and 
permanent magnet synchronous motors. Commutator machine: 
description of the construction with windings and mode of operation, 
armature reaction, commutation problems, characteristics of different 
stator-rotor winding connections, variation of rotational speed, AC 
(universal) commutator machines. 
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