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In the past decade the applicability of belt-drives has been extended significantly due to their 
increased reliability. With automotive engines it is now common to join a large number of belt-drives into 
a single, long belt-drive with several tensioner pulleys. However, these belt-drives can exhibit complex 
dynamic behaviors; therefore it is very important to predict the dynamics response of such systems using 
validated numerical models.

The aim of this paper is to perform the validation of a developed belt-drive model. The validation 
of this belt-drive model was performed using a two-pulley belt-drive. The numerically obtained results 
are compared with experimental data under various operational conditions. Finally, the applicability of 
the belt-drive model is presented by simulating a serpentine belt-drive, considering non-steady, belt-drive 
operational conditions. 
©2011 Journal of Mechanical Engineering. All rights reserved. 
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0 INTRODUCTION

Belt drives are commonly used to transmit 
power in many engineering applications, such 
as automotive engines, industrial machines, 
etc. V-ribbed, belt-drive systems have become 
increasingly important to the automotive industry 
since their introduction in the late 1970s. Because 
of their simple installation and low maintenance, 
together with an ability to absorb shocks, they 
are frequently used instead of chain or geared 
transmission systems. However, they can 
exhibit complex dynamic behaviors, such as the 
transverse vibrations of the belt spans, tension 
fluctuations, sliding of the belt over the pulley, 
etc. It is therefore very important to predict the 
dynamic response of such systems using validated 
numerical models.

To ensure stable working conditions the 
dynamic response of such systems has been 
studied extensively. A review of the literature 
[1] identifies two well-defined groups of studies. 
The first group deals with the transverse belt span 
response [2] to [5] and the rotational response of 
the pulleys in the belt-drive [6] to [9]. The second 
group deals with describing the belt-pulley contact 
formulation [10] and [11]. As these two groups 
suffer an unsatisfactory connection to each other, 
Leamy and Wasfy [12] and [13] bridged this gap 

by developing a general, dynamic finite-element 
model that includes frictional contact. Most 
recently, Čepon and Boltežar [14] presented an 
improved belt-drive model using the absolute 
nodal coordinate formulation (ANCF). The belt 
pulley contact forces were formulated as a linear 
complementarity problem (LCP),  which enabled 
the incorporation of the discontinuous Coulomb 
friction law.  

For any reliable simulations of belt-drives 
along with a validated numerical model, the 
proper material and contact parameters should be 
obtained. In [15], Čepon et al. presented methods 
for identifying the stiffness and damping for 
V-ribbed belts. Experimental studies of the contact 
between a grooved pulley and a V or V-ribbed belt 
are presented in [11] and [16]. In [16] the authors 
identified the contact parameters that are suitable 
for incorporation into the planar, multibody, 
belt-drive model that is presented in [14]. The 
procedure includes an experimental measurement 
of the contact-penalty parameters as well as a 
measurement of the friction coefficient.

The aim of this paper is to validate the 
belt-drive model developed by Čepon and 
Boltežar [14]. This validation involved using the 
two-pulley belt-drive. The numerically obtained 
results were compared with the experimental data 
under various operating conditions. The belt-drive 
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material and the contact parameters used in the 
numerical model were obtained from [15] and 
[16]. Finally, the applicability of the belt-drive 
mode is presented by simulating the dynamic 
response of the complex, serpentine belt-drive 
with tensioners, which are common in automotive 
engines.

This paper is organized as follows. In 
Section 1 the belt-drive model is briefly presented. 
The validation procedure of the belt-drive 
model is presented in Section 2. In Section 3 the 
dynamic simulation of the serpentine belt-drives 
is presented. Finally, the conclusions are drawn in 
Section 4. 

1 NUMERICAL BELT-DRIVE MODEL

The numerical belt-drive model is based 
on multibody system dynamics together with the 
absolute nodal coordinate system (ANCF) [14]. 
An ANCF is proposed that can be used in large 
rotation and deformation analyses of flexible 
bodies that undergo arbitrary displacements. The 
belt is modeled as a collection of two-dimensional 
beam elements that are based on the element 
originally proposed by Berzeri and Shabana [17]. 
The authors in [15] additionally supplemented the 
above-mentioned beam element with a damping 
mechanism. The system of equations of motion, 
including all the beam elements and the constraint 
equations describing the connectivity constraints, 
can be written as:
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where MB is the constant mass matrix of the belt, 
CeB is the Jacobian of the constraint equations 
and λB is the vector of Lagrange multipliers. The 
vector QeB is the generalized force vector that 
includes external forces, Qf is the generalized force 
vector due to the stiffness and damping forces, 
and e  includes the accelerations of generalized 
coordinates of all the belt elements.

Each belt element has five possible contact 
points, which are equally spaced along the length 
of the element, Fig. 1. 

Fig. 1. Belt pulley contact formulation

In the tangential direction the discontinuous 
Coulomb friction law is used. In order to compute 
the possible sticking forces the contact problem in 
the tangential direction has to be formulated as a 
linear complementarity problem [14]. By using 
the discontinuous Coulomb friction law and linear 
complementarity problem it is possible to identify 
sticking and sliding contact. Moreover, events 
such as the transition from sticking to sliding or 
sliding to sticking are also possible. The equations 
of motion, including the contact forces between 
the belt and the pulley, can be written as:

 q H W W hr F N N T T= + +( ) ,λλ λλ  (2)

where λN and λT are the contact forces in the 
normal and tangential directions. Variable qr 
includes accelerations of generalized coordinates, 
HF matrix presents the system mass properties, 
WN is a kinematic matrix associated with normal 
contacts, WT is a kinematic matrix associated with 
tangential contacts and h is the vector of external 
forces [14]. Finally, the contact problem can be 
formulated in the form of a linear complementarity 
problem. As reported in [14], this formulation 
leads to an accurate prediction of the belt-pulley 
contact forces, even when non-steady, belt-drive 
operational conditions are considered. For a 
detailed description of the belt-drive model and 
the contact formulation between the belt and the 
pulley the interested reader is referred to [14] and 
[15]. 

2 VALIDATION OF THE BELT-DRIVE MODEL

2.1 Two-Pulley Belt-Drive Experimental Setup

The validation of the belt-drive model was 
made using a two-pulley belt-drive, as shown in 
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Fig. 2. A V-ribbed belt with five ribs and a K-rib 
section (5PK) was used. 

Fig. 2. Two-pulley belt drive experimental setup

The material properties and contact 
parameters of the belt are given in [15] and [16] 
and presented in Table 1. The measured friction 
characteristics [16] are given in Fig. 3. The 
friction coefficient depends on the normal contact 
force and the sliding velocity in the contact.

Table 1.Two-pulley belt-drive parameters

Parameter Sym. Value
Driver and driven 
pulley R 0.05 m

Belt length LJ 1.2 m
Mass moment of 
inertia of the pulley JT 0.013 kgm2

Pulley central 
distance Lc 0.45 m

Density of the belt 
material ρ 0.096 kg/m

Axial stiffness EA 30400 N/rib
Viscoelastic damping 
factor cA 4.1 Ns/rib

Bending stiffness EI 5.2·10-3 Nm2/rib
Rayleigh parameter α 2.8 s-1

Rayleigh parameter β 1.8·10-3 s

In order to verify the numerical model 
the numerical results were compared with the 
experimentally obtained results. The driver pulley 
was rotated by DC motor and the torque on the 
driven pulley was achieved by a piston hydraulic 
pump. The angular velocity of driven and driver 
pulley was measured with HAIDENHAIN 
ERN1325 2048 precise optical encoders. The 

initial tension of the belt spans was set by 
changing the mid-distance of the pulleys.

The torque on the driver and the driven 
shaft was measured with strain gages. Along with 
this measurement, the transverse displacements 
of the upper (tight) and lower (slack) spans were 
also measured using laser-displacement sensors.  
Based on the displacements we were able to 
deduce the natural frequencies of the belt spans 
for the given operational conditions. 

2.2 Comparison between the Simulated and 
Experimental Results

The comparison between the numerically 
and experimentally obtained results was 
preformed with two different initial belt tensions 
and several angular velocities of the driver pulley. 

The numerical two-pulley belt-drive model 
[14] is presented in Fig. 4 and the belt-drive 
parameters are given in Table 1.  

Points A and B denote the measurement 
location of the transverse displacement of the 
upper and lower belt spans. The discretization 
of the belt involved using 48 beam elements. 
Three contact points were proposed in the contact 
between one beam element and the pulley. 

As the beam elements have equal length, 
the contact points are equally spaced along the 
length of the belt. Thus, the periodic excitation 
due to the discretization is incorporated into the 
numerical model. This can be avoided by randomly 
changing the length of the beam elements, which 
also affects on the location of the contact points.  
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Sl
id

in
g 

ve
lo

ci
ty

 [m
/s

]

Normal contact force [N]

Fig. 3. Friction coefficient versus the normal 
contact force and the relative tangential velocity
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The random length of the beam elements was 
computed using the following equation: 
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where LJ is the length of the belt, Lrand
i  is the 

ith length of the beam segment and rand is the 
random function that generates random numbers 
in the interval [-1,1]. 

2.3 Angular Speed Loss

The angular speed loss between the driver 
and the driven pulley has a significant effect on the 
efficiency of the power-transmission. Therefore, 
an accurate prediction of angular speed loss is 
of great importance, especially in the automotive 
industry. There are three contributions to consider 
when dealing with angular speed loss [11]: 
• the creep along belt,
• the radial compliance,
• the shear deflection. 

Creep represents the belt stretching in 
the slip contact region between the belt and the 
pulley. Radial compliance represents the radial 
deformation as the rubber layer is subjected to a 
radial load when it is pressed against the pulley 
(Fig. 5). 

Fig. 5. Radial compliance

For this reason the radius at the entry and 
exit regions of the belt-pulley contact are not 
equal, which then affects the angular speed loss. 
The shear deflection along the belt is caused by 
the frictional forces that are transferred from the 
belt-pulley contact though the rubber to the cord 
layer (Fig. 6).  

Fig. 6. Shear deflection of the rubber layer

Usually, the analytical equation that 
estimates the angular speed loss is given as [10]:
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where T0 is the initial tension, R is the radius of 
the pulley, M is the torque on the pulley, k is the 
stiffness of the belt and ω1 is the angular velocity 
of the driver pulley. Eq. (4) only accounts for the 
creep theory and neglects all the other phenomena 
that impact the angular speed loss.  However, in 
our numerical model, along with creep, the radial 
compliance is also taken into account.

In Fig. 7 the computed angular speed 
losses with the analytical Eq. (4) and the 
developed numerical model are compared with the 
experimentally obtained angular speed losses. The 
measured speed losses are much higher than those 
predicted by the analytical model or our numerical 
model. The grey region in Fig. 7 presents the 
difference between the results obtained with 
the numerical model of the belt-drive and the 
experimentally obtained results.

Fig. 4. Numerical belt-drive model
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This difference is due to the tangential 
deformation of the belt-rubber layer, which is 
not accounted for in the numerical belt-drive 
model. It can be seen that the effect of the shear 
deformation becomes significant at higher torque 
values. The blue region presents the difference 
between the numerical model and the analytical 
model. This difference is the effect of the radial 
compliance, which is not accounted for in the 
analytical solution.  In our numerical model this 
radial deformation is taken into account through 
the elastic component of the penalty contact force. 

Fig. 7. Angular speed loss between the driver and 
the driven pulley (ω = 62.8 rad/s, T0= 310N)

Fig. 8. Angular speed loss between the driver and 
the driven pulley (ω = 22.6 rad/s, T0 = 310 N)

From the comparisons presented in Fig. 7 
and Fig. 8 it is evident that the analytical model 
gives the poorest prediction of the angular speed 
loss. Moreover, the point of belt slippage is not 
correctly determined. However, our numerical 
model gives more reliable predictions of the 
angular speed loss, especially at low torques. In 
addition, the numerical model can quite accurately 
predict the point of the belt slippage. This accurate 

prediction is the result of a well-identified friction 
coefficient and the rigidity of the belt bending [16] 
and [17]. At high values of torque, which occur 
near the slippage point, the axial force in the slack 
span results mainly due to the bending of the belt 
span. The belt bending stiffness forces the belt to 
bulk outwards, which generates additional axial 
forces in the belt. This acts as a tensioner, which 
supplies the minimal axial force in the slack span. 

Fig. 9. Belt normal contact force versus wrapping 
angle

Fig. 10. Belt tangential contact force versus 
wrapping angle

The normal and frictional forces between 
the belt and the driven pulley obtained using the 
numerical model are presented in Figs. 9 and 10. 
It can be seen that the numerical model predicts 
the peaks of the normal and tangential forces at 
the entry and exit section of the belt, which was 
also reported in [14]. 

2.4 Belt Span Transverse Response

The transverse belt-span response was 
measured with two laser sensors positioned at the 
upper and lower belt spans. The experimentally 
obtained results were compared with the result 
obtained using the numerical belt-drive model. 
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The excitation of the belt span is caused by the 
roughness of the belt surface, the radial clearance, 
of the bearing, the wear of the belt grooves, etc. 

a) 

b) 

Fig. 11. Magnitude spectra of the slack belt 
span response at point A versus the torque on 
the driven pulley; a) experiment, b) numerical 

simulation
a) 

b) 

Fig. 12. Magnitude spectra of the tight belt 
span response at point B versus the torque on 
the driven pulley; a) experiment, b) numerical 

simulation

Due to the random nature of the excitation 
it is practically impossible to model all these 
phenomena in a numerical belt-drive model.

Thus, the time histories obtained from the 
experiment and the numerical model cannot be 
directly compared. However, we can compare the 
frequency contents of both signals.

In Figs. 11 and 12 the magnitude spectra of 
the tight and slack and belt spans versus the torque 
on the driven pulley are presented. The belt-span 
responses are obtained at a driver pulley angular 
velocity ω = 62.8 rad/s and initial tension of the 
belt T0 = 411 N. From the magnitude spectra the 
dependence of the belt-span natural frequencies 
on the drive-pulley torque can be obtained. 
This torque correlates directly with the value 
of the axial force in the slack and tight spans. 
The increase in the torque, when slack span is 
considered, causes a decrease in the belt’s axial 
force. This can be seen from Fig. 11a, where the 
dependence of the first natural frequency versus 
the torque can be identified. From Fig. 11b, which 
presents the results of the numerical simulation, 
even higher natural frequencies can be identified. 
As in the case of the experimentally obtained 
natural frequencies, the first natural frequency is 
the most pronounced. Moreover, the agreement 
between the experimentally identified natural 
frequencies and the frequency identified from the 
simulations is good. Similar conclusions can be 
drawn when a tight belt span is considered in Fig. 
12. Here, the increase in the torque on the driven 
pulley causes an increase of the axial force of the 
belt. Thus, by increasing the torque the natural 
frequencies are increased. Also in this case, 
good agreement between the experiment and the 
numerical simulation was observed.

3 SERPENTINE BELT-DRIVE MODELING

In this section the applicability of the 
presented belt-drive model will be presented for 
modeling serpentine belt-drives with tensioners, 
which are common in automotive engines. The 
simulation will be performed for a serpentine belt-
drive with three pulleys and two tensioners, Fig. 
13. 

Non-steady, belt-drive operational 
conditions are considered with the following 
angular velocity profile: 
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Fig. 13. Serpentine belt-drive

The torque on the driven pulley is assumed 
to be constant and is equal to M = 45 Nm. The 
variables V1 and V2 denote the system of the 
spring and dashpot, which are connected in 
parallel. 

In Fig. 14 the numerically obtained 
axial force in the tight (between pulleys P1-P2) 
and slack belt spans (between pulleys P3-P5) 
is presented. Due to the non-steady, belt-drive 
operational conditions, the axial forces in the belt 
are time dependent. The variation of the belt’s 
axial force is considerably smaller in the slack belt 
span, which is due to the use of tensioners.

a) 

b) 

Fig. 14. Force in the belt span; a) force in 
the belt span between pulleys P3-P5, b) force in 

the belt span between pulleys P1-P2

In the process of the numerical simulation 
it is also possible to deduce the rotation of the 
tensioner arm, as shown in Fig. 15. 

The angular velocities of the pulley in the 
belt-drive are presented in Fig. 16. It is evident 
that the angular-speed loss between the driver (P1) 
and the pulley (P2) is practically negligible. This 
is achieved with two tensioners, which supply 
sufficient axial tension and consequently friction, 
even at high torques.  

Fig. 15. Rotation of tensioner arm T2

A dynamic simulation of belt-drives 
enables us to model the dynamic response of a 
complex serpentine belt. In this way, the belt-drive 
can be optimized from the view of the operational 
and shape parameters. 

Fig. 16. Pulley angular velocities

4 CONCLUSION

In this paper a belt-drive model using 
the absolute nodal coordinate formulation is 
presented and a validation study is performed. 
A two-pulley experimental setup was proposed. 
Good agreement between the experimental and 
numerically obtained results was found. It was also 
shown that the numerical belt-drive model gives 
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a reliable prediction of the angular-speed loss, 
especially at low torques. Moreover, it accurately 
predicts the point of belt slippage. Considering 
the belt-span vibrations, the agreement between 
the experimentally identified natural frequencies 
and the frequency obtained from the simulation is 
good.

Finally, the applicability of the belt-drive 
model was presented by simulating a complex 
belt-drive with two tensioners. 

In further work the parametric and 
sensitivity analysis should be performed in order 
to identify influential parameters. Moreover, the 
belt model should be improved by using higher 
order elements. This would lead to a reduction 
of element number and degrees of freedom and 
consequently, to computationally more efficient 
numerical algorithm. 
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