
Informatica 39 (2015) 125–133 125

Using a Genetic Algorithm to Produce Slogans

Polona Tomašič
XLAB d. o. o., Pot za Brdom 100, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: polona.tomasic@xlab.si

Gregor Papa
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: gregor.papa@ijs.si

Martin Žnidaršič
Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: martin.znidarsic@ijs.si

Keywords: genetic algorithm, slogan generation, computational creativity, linguistic resources

Received: December 1, 2014

Creative tasks, such as creation of slogans for companies, products or similar entities, can be viewed from
the combinatorial perspective – as a search through the space of possible combinations. To solve such a
combinatorial optimization problem, we can use evolutionary algorithms. In this paper, we present our
solution for generation of slogans based on a genetic algorithm and linguistic resources. We also compare
it to the unguided slogan generator.

Povzetek: Na kreativne naloge, kot je snovanje sloganov za podjetja in produkte, lahko gledamo s kombi-
natoričnega vidika – kot na iskanje v prostoru možnih kombinacij. Za reševanje tovrstnih kombinatoričnih
optimizacijskih problemov lahko uporabljamo evolucijske algoritme. V tem članku predstavljamo rešitev
za generiranje sloganov na podlagi genetskega algoritma in jezikovnih virov. Predstavljeno rešitev primer-
jamo tudi z generatorjem sloganov brez vodenja.

1 Introduction
Automated generation of slogans is a problem from the
field of Computational Creativity [5]. There are very few
studies dedicated to slogan generation. In fact, the only one
we came across is the BRAINSUP framework [19], which
is based on beam search through a carefully defined space
of possible slogans. This space gets reduced by applying
user specified constraints on keywords, domain, emotions,
and other properties of slogans.

High quality slogans are often a result of group brain-
storming. Several individuals present their ideas and the
proposed slogans are then mixed into new slogans, and
some new ideas emerge. This brainstorming process is sim-
ilar to the evolution, from which we got the idea of using
evolutionary algorithms for slogan generation. The initial
slogans from brainstorming represent an initial population,
mixing the best proposed slogans represents recombina-
tion, and new included ideas represent mutations. Evolu-
tionary algorithms have already been applied to different
natural language processing problems [2].

In this paper, we present our slogan generation proce-

dure which is not influenced by the user in any way, apart
from being provided with a short textual description of
the target entity. The method is based on a genetic algo-
rithm (GA) [3]. Genetic algorithms are the most traditional
evolutionary algorithms and they ensure a good coverage
of the search space. They have been successfully used
for generating recipes [17], poetry [13] and trivial dialog
phrases [16]. However, genetic algorithms have not been
previously used for slogan generation. Our method follows
the BRAINSUP framework in the initial population genera-
tion phase, and it uses a collection of heuristic slogan func-
tions in the evaluation phase.

We tested our slogan generator and compared it to the
random slogan generator. The statistical results are in fa-
vor of our method. However, even though the generated
slogans can present a good starting point for brainstorm-
ing, their quality is not yet at the desired level.

The rest of the paper is organized as follows. In Section
2 we present the linguistic and semantic resources used in
our solution. Section 3 provides a detailed description of
the entire slogan generation process. It includes descrip-
tion of the evaluation functions and it clarifies the differ-



126 Informatica 39 (2015) 125–133 P. Tomašič et al.

ence between the slogan generator and the unguided slogan
generator. The performed experiments and the discussion
of the results are presented in Section 4. The conclusions
are drawn in Section 5.

2 Resources
Linguistic and semantic resources are a prerequisite for any
kind of text generation. We use them at several steps of
our method – for generation of initial population, mutation,
and evaluation. Some are available as extended libraries for
programming languages, others are available for download
from the Internet, and some databases were created by our-
selves. The origin of the data and the process is briefly
described in the following paragraphs.

1. Database of famous slogans: it serves as a basis for
the initial population generation and for comparison
with generated slogans. It contains 5,249 famous slo-
gans obtained from the Internet.

2. Database of frequent grammatical relations be-
tween words in sentences: for its acquisition we used
the Stanford Dependencies Parser [14]. Stanford de-
pendencies are triplets containing two words and the
name of the relation between them. The parser also
provides part-of-speech (POS) tags and phrase struc-
ture trees. To get representatives of frequent gram-
matical relations between words, we parsed 52,829
random Wikipedia pages, sentence by sentence, and
obtained 4,861,717 different dependencies.

3. Database of slogan skeletons: slogan skeletons were
obtained by parsing famous slogans with the Stanford
Dependencies Parser. A slogan skeleton contains in-
formation about each position in the sentence – its
POS tag and all its dependence relations with other
words in the sentence. It does not contain any content
words, only stop words. An example of a skeleton is
shown in Figure 1.

Figure 1: Example of a skeleton.

3 Slogan Generation
An input of our slogan generator is a short textual descrip-
tion about the target entity. It is the only required input
from a user. It is used to obtain the name of the target en-
tity and a set of keywords. An output is a list of generated
slogans. The whole procedure is shown in Algorithm 1.

3.1 Extraction of the Keywords and the
Main Entity

The most frequent non-negative words from the input text
are selected as keywords. Negative words are detected us-
ing the Nodebox English Linguistics library [18]. The main
entity is usually the name of the company and is obtained
by selecting the most frequent entity in the whole text using
the nltk library [4].

3.2 Generation of the Initial Population of
Slogans

The procedure of generating the initial population of slo-
gans is based on the BRAINSUP framework [19], with some
modifications. It follows the steps in Algorithm 2. Skele-
tons are obtained from the database of slogan skeletons.
Fillers are the words from the database of all grammatical
relations between words in sentences that satisfy all pre-
defined dependencies and POS tags. If there are any key-
words in a set of all possible filler words, the algorithm
assigns them higher priority for the selection phase. The
main difference between our algorithm and the BRAIN-
SUP method is in the selection of filler words. We don’t
consider any user specified constraints, while the BRAIN-
SUP framework uses beam search in the space of all possi-
ble lexicalizations of a skeleton to promote the words with
the highest likelihood of satisfying the user specifications.
Thus using our method we can produce many different slo-
gans from the same slogan skeleton, whereas BRAINSUP
produces only one for given user specifications.

3.3 Evaluation of Slogans
An aggregated evaluation function is used to evaluate the
slogans. It is composed of 9 different sub-functions, each
assessing a particular feature of a slogan, with scores in the
interval [0,1]. Parameter of the aggregation function is a
list of 9 weights that sum to 1. They define the proportions
of sub-functions in the overall score. In this subsection, we
give a short description for every one of them.

3.3.1 Bigram Function

In order to work with 2-grams, we obtained the dataset
of 1,000,000 most frequent 2-grams and 5,000 most fre-
quent words in Corpus of Contemporary American English
(COCA) [6]. We assume that slogans containing many fre-
quent 2-grams, are more likely to be semantically coherent.



Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 127

Algorithm 1: SloganGenerator

1 Input: A textual description of a company or a product T , Size of the population SP, Maximum number of iterations
MaxIterations, Crossover probability pcrossover, Mutation probability pmutation, Set of evaluation weights W .

2 Output: A set of generated slogans S.
1: Keywords,Entity ⇐ GetKeywordsAndEntity(T )
2: P ⇐ CreateInitialPopulation(SP,Keywords,Entity)
3: Evaluate(P )
4: Iteration⇐ 0
5: while Iteration < MaxIterations do
6: Parents⇐ ChooseParentsForReproduction(P )
7: Children⇐ Crossover(Parents, pcrossover)
8: Children⇐Mutation(Children, pmutation)
9: NewGeneration⇐ DeleteSimilarSlogans(P,Children)

10: while Size(NewGeneration) < SP do
11: AddRandomlyGeneratedSlogan(NewGeneration)
12: end while
13: Evaluate(NewGeneration)
14: P ⇐ SPBestSlogans(NewGeneration)
15: Iteration⇐ Iteration+ 1
16: end while
17: S ⇐ P

Algorithm 2: CreateInitialPopulation

1 Input: Size of the population SP, a set of target keywords K, and the target entity E.
2 Output: A set of initial slogans S.

1: S ⇐ ∅
2: while SP > 0 do
3: SloganSkeleton⇐ SelectRandomSloganSkeleton()
4: while not AllEmptySlotsFilled(SloganSkeleton) do
5: EmptySlot⇐ SelectEmptySlotInSkeleton(SloganSkeleton)
6: Fillers⇐ FindPossibleFillerWords(EmptySlot)
7: FillerWord⇐ SelectRandomFillerWord(Fillers)
8: FillEmptySlot(SloganSkeleton, F illerWord)
9: end while

10: AddFilledSkeleton(S, SloganSkeleton)
11: SP ⇐ SP − 1
12: end while

3.3.2 Length Function

The length function is very strict, it assigns score 1 to slo-
gans with less than eight words, and score 0 to longer ones.
The threshold between 0 and 1 was set according to the re-
sults of the experiments, which showed that a large major-
ity of the generated slogans that contained more than seven
words were grammatically incorrect and semantically in-
coherent. Also, more than 90% of the famous slogans are
less than eight words long. This function acts as an abso-
lute constraint and that is why no values between 0 and 1
are allowed.

3.3.3 Diversity Function

The diversity function evaluates a slogan by counting the
number of repeated words. The highest score goes to a slo-

gan with no repeated words. If a slogan contains identical
consecutive words, it receives score 0.

3.3.4 Entity Function

It returns 1, if slogan contains the main entity, and 0, if it
doesn’t.

3.3.5 Keywords Function

If one up to half of the words in a slogan belong to the set
of keywords, the keywords function returns 1. If a slogan
doesn’t contain any keyword, the score is 0. If more than
half of the words in the slogan are keywords, the score is
0.75.



128 Informatica 39 (2015) 125–133 P. Tomašič et al.

3.3.6 Word Frequency Function

This function prefers slogans with many frequent words. A
word is considered to be frequent, if it is among 5,000 most
frequent words in COCA. The frequency score is obtained
by dividing the number of frequent words by the number of
all words in the slogan.

3.3.7 Polarity and Subjectivity Functions

Polarity of a slogan indicates whether slogan contains pos-
itive or negative words. For instance, the adjective “happy"
is a positive word. In a similar way subjectivity of a slogan
indicates whether slogan contains words that express the
attitude of the author. For instance, the adjectives “good"
and “bad" both represent the opinion of the author and are
therefore subjective. The polarity and subjectivity scores
are calculated based on the adjectives in the slogan, using
the sentiment function from pattern package for Python [7].

3.3.8 Semantic Relatedness Function

This function computes the relatedness between all pairs
of content words in a slogan. Stop words are not taken into
account. Each pair of words gets a score based on the path
distance between corresponding synsets (sets of synonyms)
in WordNet [15]. The final score is the sum of all pairs’
scores divided by the number of all pairs.

3.4 Production of a New Generation of
Slogans

A list of all generated slogans is ordered descending with
regard to the evaluation score. We use 10% elitism [8]. The
other 90% of parent slogans are selected using a roulette
wheel [11].

A new generation is built by pairing parents and per-
forming the crossover function followed by the mutation
function, which occur with probabilities pcrossover and
pmutation, respectively. Offspring are then evaluated and
compared to the parents, in order to remove very similar
ones. If the number of the remaining slogans is smaller
than the size of the population, some additional random
slogans are generated using the method for creation of ini-
tial population. After that, slogans proceed into the next
generation. These steps are repeated until the predefined
number of iterations is achieved.

3.4.1 Crossover

We use two types of crossover functions, the big and the
small one. Both inspect POS tags of the words in both par-
ents, and build a set of possible crossover locations. Each
element in the set is a pair of numbers. The first one pro-
vides a position of crossover in the first parent and the sec-
ond one in the second parent. The corresponding words
must have the same POS tag. Let the chosen random pair
from the set be (p, r). Using the big crossover, the part of

the first parent, from the p-th position forward, is switched
with the part of the second parent, from the r-th position
forward. For the small crossover only the p-th word in
the first parent and the r-th word in the second parent are
switched. Examples for the big and the small crossover are
illustrated in Figure 2.

We [PRP] bring [VBP] good [JJ] things [NNS] to [DT] life [NN].

Fly [VB] the [DT] friendly [JJ] skies [NNS].

We bring friendly skies.

Fly the good things to life.

Just [RB] do [VB] it [PRP]. 

Drink [VB]more [JJR] milk [NN].

Just drink it.

Do more milk.

big:

small:

Figure 2: Examples for the big and the small crossover.1

3.4.2 Mutation

Two types of mutation are possible. Possible big muta-
tions are: deletion of a random word; addition of an ad-
jective in front of a noun word; addition of an adverb in
front of a verb word; replacement of a random word with
new random word with the same POS tag. Small mutations
are replacements of a word with its synonym, antonym,
meronym, holonym, hypernym or hyponym. A meronym
is a word that denotes a constituent part or a member of
something. The opposite of a meronym is a holonym – the
name of the whole of which the meronym is a part. A hy-
pernym is a general word that names a broad category that
includes other words, and a hyponym is a subdivision of
more general word.

Functions for obtaining such replacements are embedded
into the Nodebox English Linguistics library and are based
on the WordNet lexical database.

3.4.3 Deletion of Similar Slogans

Every generated slogan is compared to all its siblings and
to all the evaluated slogans from the previous generation.
If a child is identical to any other slogan, it gets removed.
If more than half of child’s words are in another slogan, the
two slogans are considered similar. Their evaluation scores
are being compared and the one with higher score remains
in the population while the other one is removed. The child
is also removed if it contains only one word or if it is longer
than 10 words. Deletion of similar slogans prevents the
generated slogans to converge to the initial ones. This has
been checked by testing our method without the deletion of
similar slogans phase.

1Slogans used in the examples were or still are official slogans of the
following companies: General Electric, United Airlines, Nike, and BC
Dairy Association.



Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 129

3.5 Correction of Grammatical Errors
Crossover and mutation functions may cause grammatical
errors in generated slogans. For instance, incorrect usage
of determiners (e.g., “a apple" instead of “an apple"), se-
quence of incompatible words (e.g., “a the"), and others.
Spelling mistakes were much less frequent.

In order to remove both types of errors in the final slo-
gans, we tested different spell- and grammar checkers. One
example of a spell-checker is Hunspell [12]. Its downside
is that it works on one word at a time and does not take
the word’s context into account. As the majority of er-
rors in slogans originated from grammar, we tested sev-
eral grammar checkers. They, on the other hand, work on
the sentence level rather than on the word level. Most of
these grammar checkers are available as online services,
and don’t support API calls. One that does is python-
ginger [10] – a Python package for fixing grammar mis-
takes. It comes with an unofficial Ginger [9] API. This tool
corrects different types of grammatical mistakes. It is also
used for contextual spelling correction. We used python-
ginger only on final slogans, the ones that are displayed
to the user, because the corrected slogan may not have the
same structure anymore. Possible added words, or replac-
ing a word with another one with different POS tag would
cause errors while executing crossover, mutation and eval-
uation functions.

3.6 Unguided Slogan Generator
For the purpose of evaluation of our slogan generation
method, we also implemented an unguided slogan gener-
ator (USG). This generator produces random slogans, such
as the ones in the initial population. The only difference
between our method and the unguided slogan generation
method is in the production of a new generation. USG has
no crossover and the mutation steps. Instead it produces a
new generation using a method for creation of initial popu-
lation. Thus children are independent of the previous gen-
eration. The algorithmic steps are shown in Algorithm 3.

4 Experiments
We tested the slogan generation method on different input
texts and for different values of algorithm parameters. We
analyzed the results of every iteration of the genetic algo-
rithm to see how the slogans’ scores changed and made
further assessment of the generator by comparing its results
with the results of the unguided slogan generator.

4.1 Experimental Setting
4.1.1 Input Text

In the presented experiments, we use a case of the Croatian
provider of marine solutions, Sentinel. Sentinel is a control
module that provides more security to boat owners, and is

comprised of a network of sensors and a central informa-
tion hub. It ensures the vessel is monitored at all times. The
input text was obtained from the Sentinel’s web-page [21].

4.1.2 Algorithm Parameters

Different combinations of weights of the evaluation func-
tion were tested on a set of manually evaluated slogans. We
added one constraint – the weight of the keywords function
had to be at least 0.2 in order to include keywords in the slo-
gans. Without this constraint the computed weight for the
keywords was almost zero. The comparison of the com-
puted and the manually assigned scores showed that the
highest matching was achieved with the following weights:
[bigram: 0.25, length: 0.01, diversity: 0.01, entity: 0.1,
keywords: 0.2, frequent words: 0.25, polarity: 0.01, sub-
jectivity: 0.02, semantic relatedness: 0.15].

Probabilities for crossover and mutation were set to
pcrossover = 0.8 and pmutation = 0.7. The probability
for mutation was set very high, because it affects only one
word in a slogan. Consequently the mutated slogan is still
very similar to the original one. Thus the high mutation
probability does not prevent population from converging to
the optimum solution. For the algorithm to decide which
type of crossover to perform, we set probabilities for the
big, the small and both crossovers to 0.4, 0.2 and 0.4, re-
spectively. The mutation type is chosen similarly. Proba-
bilities of the big and the small mutation were set to 0.8 and
0.2. These algorithm parameters were set according to the
results of testing on a given input text, as their combination
empirically leads to convergence.

We performed three experiments and for each of them
we executed 20 runs of the algorithm using the same input
parameter values. The difference between these three tests
was in the size of the population (SP) and the number of it-
erations (NIt). Those were chosen according to the desired
number of all evaluations (≈ 6, 800 NoE), and the NoE was
set according to the desired execution time for one run of
the algorithm – approximately 2 hours.

1. SP: 25, NIt: 360
2. SP: 50, NIt: 180
3. SP: 75, NIt: 120

4.1.3 Comparison with the Unguided Slogan
Generator

For comparison, we performed three experiments with the
unguided slogan generator. For each of them we executed
20 runs of the algorithm using the same input parameter
values as in the experiments with slogan generator. The
initial populations were also identical. The number of iter-
ations were again chosen so as to match the number of all
evaluations (≈ 6, 800 NoE) in the experiments with slogan
generator:

1. SP: 25, NIt: 300
2. SP: 50, NIt: 150
3. SP: 75, NIt: 100



130 Informatica 39 (2015) 125–133 P. Tomašič et al.

Algorithm 3: UnguidedSloganGenerator

1 Input: A textual description of a company or a product T , Size of the population SP, Maximum number of iterations
MaxIterations, Set of evaluation weights W .

2 Output: A set of generated slogans S.
1: Keywords,Entity ⇐ GetKeywordsAndEntity(T )
2: P ⇐ CreateInitialPopulation(SP,Keywords,Entity)
3: Evaluate(P )
4: Iteration⇐ 0
5: while Iteration < MaxIterations do
6: Children⇐ CreateInitialPopulation(SP,Keywords,Entity)
7: NewGeneration⇐ DeleteSimilarSlogans(P,Children)
8: while Size(NewGeneration) < SP do
9: AddRandomlyGeneratedSlogan(NewGeneration)

10: end while
11: Evaluate(NewGeneration)
12: P ⇐ SPBestSlogans(NewGeneration)
13: Iteration⇐ Iteration+ 1
14: end while
15: S ⇐ P

In USG, children in new generations are frequently identi-
cal to parents, and therefore need no evaluation (we already
have the scores of the parents). We wanted to compare the
two generators based on the number of evaluations, not the
number of iterations. For our slogan generator to reach the
same number of evaluations as the unguided slogan gen-
erator, it needs to perform more iterations of genetic algo-
rithm. That is why the numbers of iterations in SG and
USG differ.

4.2 Results and Discussion
Comparing the statistical results of the initial and final pop-
ulations of slogans, there were no major differences be-
tween the 20 runs of the algorithm on the same input data
for all 6 experiments. The number of evaluations for each
run is approximately 6, 800.

Statistics of average initial slogans’ scores are in Table 1.
The numbers are the same for both generators. Average fi-
nal slogans’ scores are in Table 2. The average minimum
score is much higher using the unguided slogan generator
(USG). This is because in our slogan generator (SG) many
slogans get deleted in the deletion phase of the algorithm.
Consequently some new random slogans are automatically
included in a new generation, and they can have very low
evaluation scores. However, SG has higher maximum slo-
gan scores. This suggests that the usage of crossover and
mutation functions actually increases the slogan scores.
The average score of the 10 best slogans is higher using
the SG.

Numbers in both tables show that average slogans’
scores increased a lot from the initial population to the fi-
nal one. Figures 3 and 4 show the relation between average
slogan scores and the number of performed evaluations in
a genetic algorithm using SG and USG. Using the USG
causes the scores to increase immensely already in the first

few iterations of the genetic algorithm. After that, they do
not increase much anymore. In SG slogans’ scores increase
a little bit slower, but at some point they exceed the USG
scores.

From the two graphs in Figures 3 and 4 one might con-
clude that the unguided slogan generator is at least as good
as our developed slogan generation method. However, the
numbers are calculated on slogans from a whole genera-
tion. In practice we don’t expect the user to go through all
75 final slogans, but only a few. Thus only the best few
slogans from the final list are important. Table 3 shows the
average scores for the 10 best final slogans. In this case the
slogan generator outperforms the unguided slogan genera-
tor.

In the following two lists, there are examples of slogans
for one specific run of the algorithm. The first list contains
10 best-rated initial slogans and the second one contains
10 best-rated final slogans for the case when the size of
the population was set to 50. Evaluation scores are in the
brackets. The final slogans list contains the corrected ver-
sions of slogans using the Ginger API.

Initial Population:

1. Former offices for all its members houses. (0.692)
2. The lowest water to play Sentinel build. (0.664)
3. Land routes to better places. (0.663)
4. The Sentinel performance is topic. (0.662)
5. On day to perform. (0.642)
6. The side take in region. (0.639)
7. Even now right as not. (0.638)
8. A precise application consists with a pair. (0.632)
9. Draft the choice of allowing. (0.629)

10. The initiative in pursuing systems and weapons.
(0.623)



Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 131

Table 1: Comparison of average initial slogans’ scores for population sizes 25, 50 and 75.

Size of the population Minimum Maximum Average Median Standard deviation
25 0.000 0.713 0.287 0.359 0.257
50 0.000 0.740 0.289 0.302 0.257
75 0.000 0.730 0.274 0.295 0.251

Table 2: Comparison of average final slogans’ scores using our slogan generator (SG) and the unguided slogan generator
(USG) for population sizes 25, 50 and 75
Size of the population Minimum Maximum Average Median Standard deviation

25 (SG) 0.578 0.906 0.801 0.823 0.088
50 (SG) 0.511 0.927 0.793 0.807 0.090
75 (SG) 0.488 0.939 0.773 0.791 0.094

25 (USG) 0.763 0.840 0.795 0.796 0.021
50 (USG) 0.723 0.837 0.767 0.761 0.032
75 (USG) 0.707 0.840 0.750 0.743 0.036

Table 3: Comparison of average scores of 10 best final slogans, using our slogan generator (SG) and the unguided slogan
generator (USG) for population sizes 25, 50 and 75

Size of the population Minimum Maximum Average Median Standard deviation
25 (SG) 0.833 0.906 0.869 0.870 0.023
50 (SG) 0.877 0.927 0.895 0.892 0.019
75 (SG) 0.871 0.939 0.902 0.902 0.023

25 (USG) 0.799 0.840 0.816 0.813 0.013
50 (USG) 0.804 0.837 0.819 0.813 0.011
75 (SG) 0.801 0.840 0.818 0.814 0.013

Final Slogans:

1. Enjoy the part like water for sentinel. (0.958)
2. Enjoy a take of routine on sentinel. →

Enjoy a track of routine on sentinel. (0.958)
3. Make all safety in safe for sentinel. →

Make all safety in safe for a sentinel. (0.958)
4. Demand and enjoy the use in sentinel. →

Demand and enjoy the ease in sentinelthe sentinel.
(0.958)

5. Write a base for demand on sentinel. (0.948)
6. Demand the of potential as sentinel. (0.945)
7. Enjoy a sentinel performance show. (0.922)
8. Themes for head on sentinel. (0.913)
9. Contents with application on sentinel. →

Contents with application of sentinel. (0.913)
10. Make the sentinel performance plays. (0.897)

The analysis of initial populations and final slogans in
all runs of experiments shows that the majority of slogans
are semantically incoherent and have grammatical errors.
However, slogans produced with the unguided slogan gen-
erator seemed more structured and semantically coherent.
This is understandable, since the crossover and mutation
functions in our slogan generator affect the sentence struc-
ture a lot. The percentage of corrected final slogans is also
in favor of the unguided slogan generator: 24.6% of final
slogans produced with USG got corrected with the Ginger

API, while the percentage of corrected final slogans for SG
is 33.9%. But we need to take into account the fact that
Ginger API does not work without mistakes. Some of the
corrections are strange or unnecessary (e.g., see example 4
in the final slogans list).

5 Conclusion
The proposed slogan generation method works and could
be potentially useful for brainstorming. It produces slo-
gans solely from the textual description of the target en-
tity. No other user specifications are needed. The genetic
algorithm ensures higher slogan scores with each new iter-
ation. Our method outperforms the unguided slogan gen-
erator whose best 10 final slogans have significantly lower
average scores. The unguided slogan generator also needs
more than six times more time to produce and evaluate the
same number of slogans as our slogan generator.

The evaluation function is inherently hard to formalize
and seems not yet fully aligned with human evaluation.
The definitions of evaluation sub-functions need further
improvement in order to increase the quality of slogans,
not only their scores.

The current algorithm is suitable only for production of
slogans in English. The lack of resources and different lan-
guage properties would require a lot of work in order to
adapt our algorithm to another language.



132 Informatica 39 (2015) 125–133 P. Tomašič et al.

0 1,000 2,000 3,000 4,000 5,000 6,000
0.2

0.4

0.6

0.8

Number of Evaluations

A
ve

ra
ge

Sl
og

an
s’

Sc
or

es

Population size: 25
Population size: 50
Population size: 75

Figure 3: Slogan generator: average scores of slogans in a relation to the number of evaluations.

0 1,000 2,000 3,000 4,000 5,000 6,000
0.2

0.4

0.6

0.8

Number of Evaluations

A
ve

ra
ge

Sl
og

an
s’

Sc
or

es

Population size: 25
Population size: 50
Population size: 75

Figure 4: Unguided slogan generator: average scores of slogans in a relation to the number of evaluations.

Following are some ideas for the future work that would
improve the quality of slogans. One is detecting and cor-
recting grammatical errors already during the generation
phase. New weights for the evaluation could be com-
puted periodically with semi-supervised learning on manu-
ally assessed slogans. The parallelization of GA [1] might
provide gains in performance. Also, the GA parameters
could be adaptively calculated during the optimization pro-
cess [20].

Acknowledgement
This research was partly funded by the European Union,
European Social Found, in the framework of the Opera-
tional Programme for Human Resources Development, by
the Slovene Research Agency and supported through EC
funding for the project ConCreTe (grant number 611733)
and project WHIM (grant number 611560) that acknowl-
edge the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Frame-

work Programme for Research of the European Commis-
sion.

References
[1] E. Alba, J. M. Troya (1999) A survey of parallel dis-

tributed genetic algorithms, Complexity, vol. 4, pp.
31–52.

[2] L. Araujo (2009) How evolutionary algorithms are
applied to statistical natural language processing, Ar-
tificial Intelligence Review, vol. 28, pp. 275–303.

[3] T. Bäck (1996) Evolutionary Algorithms in Theory
and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford Univer-
sity Press.

[4] S. Bird, E. Klein, E. Loper (2009) Natural language
processing with Python, O’Reilly Media.



Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 133

[5] S. Colton, R. Mantaras, O. Stock (2009) Computa-
tional Creativity: Coming of age, AI Magazine, vol.
30, no. 3, pp. 11–14.

[6] M. Davies, N-grams data from the Corpus of Contem-
porary American English (COCA), www.ngrams.
info, downloaded on April 15, 2014.

[7] T. De Smedt, W. Daelemans (2012) Pattern for
Python, Journal of Machine Learning Research, vol.
13, pp. 2063–2067.

[8] D. Dumitrescu, B. Lazzerini, L. C. Jain, A. Du-
mitrescu (2000) Evolutionary Computation, CRC
Press.

[9] Ginger, www.gingersoftware.com/
grammarcheck, accessed on October 17, 2014.

[10] Ginger API, github.com/zoncoen/
python-ginger, accessed on October 17,
2014.

[11] J. H. Holland (1992) Adaption in Natural and Artifi-
cial Systems, MIT Press.

[12] Hunspell, hunspell.sourceforge.net, ac-
cessed on October 20, 2014.

[13] R. Manurung, G. Ritchie, H. Thompson (2012) Using
genetic algorithms to create meaningful poetic text,
Journal of Experimental & Theoretical Artifcial In-
telligence, vol. 24, pp. 43–64.

[14] M. Marneffe, B. MacCartney, C. Manning (2006)
Generating typed dependency parses from phrase

structure parses, Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC), pp. 449–454.

[15] G. A. Miller (1995) WordNet: A Lexical Database
for English, Communications of the ACM, vol. 38, pp.
39–41.

[16] C. S. Montero, K. Araki (2006) Is it correct?: Towards
web-based evaluation of automatic natural language
phrase generation, Proceedings of the Joint Confer-
ence of the International Committee on Computa-
tional Linguistics and the Association for Computa-
tional Linguistics (COLING/ACL), pp. 5–8.

[17] R. G. Morris, S. H. Burton (2012) Soup over bean
of pure joy: Culinary ruminations of an artifcial chef,
Proceedings of the International Conference on Com-
putational Creativity (ICCC), pp. 119–125.

[18] NodeBox, nodebox.net/code/index.php/
Linguistics, accessed on October 17, 2014.

[19] G. Özbal, D. Pighin, C. Strapparava (2013) BRAIN-
SUP: Brainstorming Support for Creative Sentence
Generation, Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, pp.
1446–1455.

[20] G. Papa (2013) Parameter-less algorithm for
evolutionary-based optimization, Computational
Optimization and Applications, vol. 56, pp. 209–229.

[21] Sentinel, sentinel.hr, accessed on October 10,
2014.


