81 Les/Wood, Vol. 73, No. 1, June 2024 EFFECTS OF APPLYING WAX ON THE COLOUR, GLOSSINESS, AND WHITENESS INDEX VALUES OF AMERICAN BLACK CHERRY (Prunus serotina) WOOD VPLIV NANOSA VOSKA NA BARVO, SIJAJ IN INDEKS BELINE LESA AMERIŠKE ČREMSE (Prunus serotina) Ümit Ayata 1* , Osman Çamlibel ² UDK članka: 630*829.1 Received / Prispelo: 15.5.2024 Original scientific article / Izvirni znanstveni članek Accepted / Sprejeto: 19.6.2024 . Abstract / Izvleček Abstract: In this study, the effects of applying wax on the colour, glossiness, and whiteness index (WI*) values of American black cherry (Prunus serotina Ehrh.) wood were investigated. Wax was applied to wooden material surfaces using a brush in one, two, and three layers. Tests were then conducted on surfaces with and without wax. The results were statistically significant according to the multivariate variance analysis. It was determined that the application of wax led to a decrease in L*, h°, and WI* values on the wooden material surfaces (parallel and perpendicular to the fibres), while the a*, b*, and C* parameters increased. In measurements parallel and perpendicular to the fibres, increases were observed in gloss values for two- and three-layer wax applications at 60° and 85°. The ∆L* values were negative when wax was applied in one, two, and three layers, whereas the ∆a*, ∆b*, and ∆C* values were positive. The ∆E* values were determined as 8.41 for one layer of wax, 11.29 for two layers, and 11.59 for three layers. Given the similarity between the ∆E* values of two and three layers of wax, it can be inferred that a third layer may not be necessary. Keywords: American black cherry = Prunus serotina, wood, surface treatment, wax, colour, Glossiness, whiteness index Izvleček: Proučevali smo vpliv nanosa voska na barvo, sijaj in indeks beline (WI*) lesa ameriške čremse (Prunus serotina Ehrh.). Vosek je bil nanesen na površine lesa s čopičem v enem, dveh in treh slojih. Teste smo opravili na premazanih in nepremazanih površinah. Analiza variance je pokazala statistično značilne razlike v rezultatih. Medtem ko smo po nanosu voska opazili zmanjšanje vrednosti L*, h° in WI* v smereh vzporedno in pravokotno na vlakna, smo ugotovili, da so parametri a*, b* in C* po nanosu narasli. Pri merjenju sijaja pri 60 in 85 stopinjah smo pri vzorcih z dvema in tremi plastmi voska opazili povečanje vrednosti pri merjenju vzporedno in pravokotno glede na smer lesnih vlaken. Vrednosti ∆L* so bile negativne za voskane sisteme, nanesene v 1, 2 in 3 slojih, medtem ko so bile vrednosti ∆a*, ∆b* in ∆C* pozitivne. Vrednost ∆E* je po 1-slojnem voskanju znašala 8,41, pri 2-slojnem 11,29 in pri 3-slojnem 11,59. Glede na to, da so bile vrednosti ∆E* po 2 in 3 nanosih voska podobne, lahko sklepamo, da 3. nanos voska ni potreben. Ključne besede: ameriška čremsa = Prunus serotina, les, površinska obdelava, vosek, barva, sijaj, indeks beline 1 INTRODUCTION 1 UVOD Waxes are esters resulting from the combina- tion of long-chain carboxylic acids and alcohols. Apart from organic waxes like beeswax or carnauba wax, there are also naturally occurring fossil wax- es sourced from petroleum or lignite. Additionally, synthetic variations such as hydrocarbon or amide waxes are available. These can undergo modifica- tions through oxidation or other chemical process- es (Illmann et al., 1983; Scholz et al., 2010). Vol. 73, No. 1, 81-90 DOI: https://doi.org/10.26614/les-wood.2024.v73n01a07 1 Bayburt University, Faculty of Arts and Design, Department of Interior Architecture and Environmental Design, Bayburt, Turkey 2 Kırıkkale University, Department of Interior Design, Kırıkkale Vocational School, Kırıkkale, Turkey * umitayata@yandex.com 82 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Vpliv nanosa voska na barvo, sijaj in indeks beline lesa ameriške čremse (Prunus serotina) Waxes are commonly utilized within hot melt formulations to diminish surface tension and de- crease melt viscosity. Certain wax varieties, such as microcrystalline waxes, bolster the hot melt by forming crystallites that withstand deformation un- der load. These are incorporated into formulations requiring relatively high yield strength, acting as additives to enhance overall performance (Pizzi & Kumar, 2019). In recent times, growing attention to environ- mental protection has driven advances in the wax formulations used for protecting wood. These wax- es boast low pollutant content and are sourced from renewable materials. As a result, they have gained widespread use as additives in wood pres- ervation and waterproofing (Evans et al., 2005; Schultz et al., 2007; Niu & Song, 2021). The literature reports the application of wax- based chemicals on various wood species, along with tests conducted on factors such as colour and glossiness (Peker et al., 2024a; b; c; Kaplan et al., 2024; Liu et al., 2022; Akçay, 2020; Çamlıbel & Aya- ta, 2024a; b; c). However, it has been observed that to date the application of wax on American black cherry wood has not been reported in the litera- ture. American black cherry (Prunus serotina Ehrh.) is one of the most important timbers in the furni- ture and interior design sectors worldwide, thanks to its appealing reddish-brown heartwood hue and delicate texture (Schardt, 2004). Historical ac- counts suggest that black cherry was brought from North America, where it is native, to South America and Europe by colonists during the 17 th century. It gained commercial significance in Ecuador and was noted as an invasive species in numerous Europe- an countries (Starfinger et al., 2003; Popenoe & Pachano, 1922). Since the late 19th century, it has served as an auxiliary tree in forestry, primarily in Germany but also in the Netherlands (Eijsackers & Oldenkamp, 1976), Belgium (Van den Meersschaut & Lust, 1997; Godefroid et al., 2005) and Slovenia (Pintar et al., 2020). Black cherry thrives across Eastern North America, adapting well to a diverse range of soils, especially in regions with cool and humid summers. While it commonly grows near sea level in Canada, it also thrives at elevations of 1520 meters or high- er in the Appalachian Mountains (Hough, 1965). The fruit of black cherry is a vital food source for numerous non-migratory birds, squirrels, deer, turkeys, mice, moles, and various other wildlife species. However, the leaves, branches, and bark of cherry trees contain cyanogenic glycoside, primar- ily in the form of prunasin, which releases cyanide when damaged (Horsley, 1981). Pets or livestock consuming wilted leaves may thus suffer illness or death due to cyanide poisoning (Kingsbury, 1964). Black cherry seeds need a ripening period to facilitate germination (Grisez, 1974). Typically, this ripening process occurs on the forest floor during the winter months in natural settings. The typical trend is for seeds from a one-year crop to germi- nate in the subsequent three or more years (Mar- quis, 1975; Wendel, 1972). Late spring frosts have the potential to harm blossoms before they fully open, and occasionally frosts can cause a signifi- cant number of newly emerged fruits to fall from the stems before ripening (Hough, 1965). Black cherry tree flowers are white, solitary, and arranged in umbel-like clusters. They are per- fect flowers, pollinated by insects (Grisez, 1974). Various bee species, including honeybees, as well as several species of flies and a flower beetle, are known to visit the flowers for pollen and nectar (Forbes, 1973). The wood from this tree species is prized for its durability and excellent workability, making it highly sought after for furniture and cabi- net production (Kitzmiller, 1968). In this particular cherry wood (Prunus seroti- na Ehrh.), the ethanol-toluene-water solubility is determined as 3.10%, ethanol-toluene solubility as 2.02%, and ethanol-water solubility as 4.79% (Nzokou & Kamdem, 2005). This study investigates the effects of applying wax in different numbers of layers on the colour, gloss, and whiteness index (WI*) values of Ameri- can black cherry (Prunus serotina Ehrh.) wood. 2 MATERIALS AND METHODS 2 MATERIAL IN METODE 2.1 WOOD MATERIAL 2.1 LES American black cherry (Prunus serotina Ehrh.) wood was cut into samples with the dimensions of 100 mm x 100 mm x 15 mm. The samples were pre- pared following the TS ISO 13061-1 (2021) stand- 83 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Effects of applying wax on the colour, glossiness, and whiteness index values of American Black Cherry (Prunus serotina) wood ard. For each group, five samples were prepared. The samples were created from specimens that were knot-free, crack-free, and without fungal de- cay. 2.2 WAX 2.2 VOSEK A mixture of natural and synthetic waxes was used in this study. The properties of this wax were as follows: appearance: paste; colour: neutral; odour: characteristic; solubility in water: dispers- ible but not soluble; dry residue: 30%; pH value: 7.6. However, the producer of the mixture did not reveal the exact chemical composition of the waxes as this is considered a commercial secret. 2.3 APPLICATION OF WAX TO WOOD MATERIAL SURFACES 2.3 NANOS VOSKA NA POVRŠINO LESA Initially, all samples were sanded with 120, 150, and 180 grit sandpapers. Subsequently, the surfaces of the samples were cleaned of dust using a compressor. The wax mixture consisting of natu- ral and synthetic waxes was applied to wooden ma- terial surfaces in one, two and three layers with the help of a brush. 2.4 DETERMINATION OF GLOSSINESS PROPER- TIES 2.4 DOLOČITEV SIJAJA Glossiness assessments were performed at 20°, 60°, and 85° angles, both perpendicular and parallel to the fibres, employing an ETB-0833 mod- el gloss meter device in accordance with the ISO 2813 (1994) standard. 2.5 DETERMINATION OF COLOUR PROPERTIES 2.5 DOLOČITEV BARVE The samples’ colour alteration was assessed utilizing a CS-10 (CHN Spec, China) apparatus, ad- hering to the ASTM D 2244-3 (2007) standard and employing the CIELAB colour model. The evalua- tions were conducted utilizing a CIE 10° standard observer and CIE D65 light source within an 8/d il- luminating environment (8°/diffused illumination). ΔE* colour difference visual assessment compari- son criteria (DIN 5033, 1979) are provided in Table 1. The following formulas were used to deter- mine the results of total colour differences. Ca b ** * .        22 05 (1) ha rctanb a o   */ * (2) CC C treated experimentals ample untreated experiment ** *  a al sample  (3) aa a treated experimentals ample untreated experiment ** *  a al sample  (4) LL L treated experimentals ample untreated experiment ** *  a al sample  (5) bb b treated experimentals ample untreated experiment ** *  a al sample  (6)   HELC ** ** .         22 2 05 (7)   ELab ** ** .        222 05 (8) Table 1. Comparison criteria for evaluating ΔE* val- ues (DIN 5033, 1979). Preglednica 1. Primerjalna merila za ocenjevanje vrednosti ΔE* (DIN 5033, 1979). ΔE* values Visual colour score difference <0.20 Imperceptible 0.20 - 0.50 Very weak 0.50 - 1.50 Weak 1.50 - 3.00 Noticeable 3.00 - 6.00 Very noticeable 6.00 - 12.00 Strong > 12.00 Very strong 84 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Vpliv nanosa voska na barvo, sijaj in indeks beline lesa ameriške čremse (Prunus serotina) The definitions of ∆C*, ∆a*, ∆H*, ∆b*, and ∆L* are provided below (Lange, 1999): ∆a*: Positive indicates the sample is redder than the reference, and negative indicates the sam- ple is greener than the reference. ∆L*: Positive indicates the sample is lighter than the reference, and negative indicates the sam- ple is darker than the reference. ∆b*: Positive indicates the sample is more yel- low than the reference, and negative indicates the sample is bluer than the reference. ∆H*: Represents the hue or shade difference. ∆C*: Represents the chroma or saturation dif- ference. Positive indicates the sample is clearer and brighter than the reference, while negative indicates the sample is duller and hazier than the reference. 2.6 DETERMINATION OF WHITENESS INDEX (WI*) CHARACTERISTICS 2.6 DOLOČITEV BELINE In this study, measurements of whiteness index (WI*) values were determined using the Whiteness Meter BDY-1 device and ASTM E313-15e1 stand- ard, conducted in both parallel and perpendicular directions to the fibres. 2.7 CALCULATION OF TEST DATA 2.7 OBDELAVA PODATKOV Standard deviations, maximum and minimum mean values, measurement values corresponding to the mean, homogeneity groups, multivariate analysis of variance, and percentage (%) change rates were calculated using a statistical programme and measurement values from the study. 3 RESULTS AND DISCUSSION 3 REZULTATI IN DISKUSIJA The results of the analysis of variance are pro- vided in Table 2. It is observed that the wax layer application factor was significant for all tests (Table 2). The measurement results for the colour param- eters are presented in Table 3. Upon examination of these results, it is observed that the highest L* value (54.62) is found in the samples of the control experimental group, while the lowest result (44.49) is obtained in the group treated with three layers of wax. The highest decrease rate for the L* value, at 18.55%, is observed in the samples treated with three layers of wax, while the lowest decrease rate, at 13.38%, is found in the samples treated with one layer of wax (Table 3). Table 2. Results of Analysis of Variance. Preglednica 2. Rezultati analize variance. Dependent Variable Sum of Squares df Mean Square F Sig. Lightness (L*) 668.258 3 222.753 2041.807 0.000* Red (a*) colour tone 203.047 3 67.682 1086.805 0.000* Yellow (b*) colour tone 8.533 3 2.844 15.691 0.000* Chroma (C*) value 90.189 3 30.063 195.355 0.000* Hue (h°) angle 618.653 3 206.218 502.806 0.000* Glossiness at ⊥20° 1.157 3 0.386 187.622 0.000* Glossiness at ⊥60° 110.339 3 36.780 356.699 0.000* Glossiness at ⊥85° 562.116 3 187.372 3967.878 0.000* Glossiness at | |20° 1.713 3 0.571 63.240 0.000* Glossiness at | |60° 172.093 3 57.364 1013.801 0.000* Glossiness at | |85° 1320.987 3 440.329 6940.387 0.000* WI* perpendicular to fibres 401.211 3 133.737 3933.441 0.000* WI* parallel to fibres 143.779 3 47.926 3877.180 0.000* *: Significant 85 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Effects of applying wax on the colour, glossiness, and whiteness index values of American Black Cherry (Prunus serotina) wood In the control experimental group, the lowest a* value recorded was 10.48, while the group treat- ed with three layers of wax showed the highest val- ue at 16.10. Among the different wax application groups, the samples treated with three layers ex- hibited the highest increase rate for the a* value, reaching 53.63%. Conversely, the samples treated with only one layer of wax demonstrated the low- est increase rate, standing at 38.84% (refer to Table 3). The b* value was at its lowest in the samples from the control experimental group, measuring 21.20, while the group treated with two layers of wax showed the highest value at 22.46. Among the various wax application groups, those treated with two layers experienced the most significant in- crease in the b* value, reaching 5.94%. Conversely, the samples treated with three layers of wax exhib- ited the smallest increase rate, standing at 2.78%. The samples from the control experimental group yielded the lowest C* value at 23.65, while the group treated with two layers of wax showed the least value at 27.51. Among the varied wax applica- tion groups, those treated with two layers exhibited the most substantial increase rate for the C* value, reaching 16.28%. In contrast, the samples treated with only one layer of wax had the lowest increase rate, standing at 11.88%. The h° value peaked in the samples from the control experimental group, reaching 63.70, while it hit its lowest point in the group treated with three layers of wax, measur- ing 53.54. Among the wax application groups, the samples treated with three layers experienced the most significant decrease in the h° value, with a decrease rate of 15.95%. Conversely, the samples Table 3. Measurement results for colour parameters. Preglednica 3. Rezultati meritev barvnih parametrov. Test Wax Application Number of Measurements Mean Change (%) Homogeneity Group Standard Deviation Mini- mum Maxi- mum Coefficient of Variation L* Control 10 54.62 - A* 0.33 54.14 55.06 0.61 1 layer 10 47.31 ↓13.38 B 0.17 47.02 47.66 0.37 2 layers 10 44.77 ↓18.03 C 0.19 44.49 45.05 0.43 3 layers 10 44.49 ↓18.55 C** 0.51 43.78 45.09 1.14 a* Control 10 10.48 - D** 0.18 10.23 10.72 1.72 1 layer 10 14.55 ↑38.84 C 0.14 14.34 14.77 0.95 2 layers 10 15.86 ↑51.34 B 0.17 15.57 16.07 1.08 3 layers 10 16.10 ↑53.63 A* 0.41 15.51 16.70 2.55 b* Control 10 21.20 - C** 0.36 20.49 21.82 1.71 1 layer 10 22.09 ↑4.20 AB 0.30 21.65 22.58 1.34 2 layers 10 22.46 ↑5.94 A* 0.27 21.96 23.00 1.20 3 layers 10 21.79 ↑2.78 B 0.66 21.12 23.05 3.03 C* Control 10 23.65 - D** 0.39 22.90 24.32 1.64 1 layer 10 26.46 ↑11.88 C 0.22 26.08 26.86 0.85 2 layers 10 27.50 ↑16.28 A* 0.26 27.01 27.93 0.93 3 layers 10 27.09 ↑14.55 B 0.59 26.55 28.35 2.18 h° Control 10 63.70 - A* 0.29 63.29 64.26 0.45 1 layer 10 56.63 ↓11.10 B 0.52 55.98 57.27 0.92 2 layers 10 54.77 ↓14.02 C 0.40 54.40 55.45 0.72 3 layers 10 53.54 ↓15.95 D** 1.06 51.66 54.78 1.99 *: Indicates the highest value and **: Indicates the lowest value 86 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Vpliv nanosa voska na barvo, sijaj in indeks beline lesa ameriške čremse (Prunus serotina) treated with one layer of wax showed the smallest decrease rate, at 11.10% (see Table 3 for details). The findings in the literature suggest that the application of wax on various types of wood, in- cluding olive, ebony Macassar, plum, and balau red, led to alterations in colour parameters, glossiness values, and whiteness index values (Peker et al., 2024 a; b; c; Kaplan et al., 2024). Moreover, investi- gations into European walnut, European maple, as well as beech, lime, poplar, and pine woods, have documented a reduction in the L* value alongside an increase in the a* and b* values post-wax appli- cation (Liu et al., 2022; Akçay, 2020). The results for total colour differences are pro- vided in Table 4. One, two and three layers of wax resulted in negative ∆L* values (darker than the reference), while the ∆a* (redder than the refer- ence), ∆b* (yellower than the reference), and ∆C* (clearer, brighter than the reference) values were positive. The ∆E* values were determined as 8.41 for one layer of wax, 11.29 for two layers, and 11.59 for three layers, with the ∆E* values for two and three layers of wax being very close to each other. The ∆H* values were obtained as 3.08, 3.97, and 4.48 as the number of wax layers increased from one to three, respectively. Comparing the ∆E* val- ues obtained using the colour change criteria (DIN 5033, 1979), all three wax treatments fell under the “strong (6.0 to 12.0)” category (Table 4). The measurement results for the whiteness index (WI*) values are presented in Table 5. As the number of layers increased, the WI* values decreased in both parallel and perpendicular di- rections to the fibres. The highest results for WI* values in both parallel and perpendicular directions to the fibres were observed in the samples from the control experimental group (13.52 and 7.58, respectively), while the lowest results were found in the group treated with 3 layers of wax (5.48 and 2.94, respectively). The highest decrease rates for WI* values in both directions were 59.47% and 61.21%, respectively, observed in the samples treated with 3 layers of wax, while the lowest de- crease rates were 37.72% and 54.22%, respectively, Table 4. Results for Total Colour Differences. Preglednica 4. Rezultati za skupne barvne razlike. Wax Application ∆L* ∆a* ∆b* ∆C* ∆H* ∆E* Colour Criterion (DIN 5033, 1979) 1 layer -7.30 4.07 0.89 2.80 3.08 8.41 Strong (6.00 to 12.00) 2 layers -9.85 5.38 1.26 3.84 3.97 11.29 3 layers -10.12 5.62 0.59 3.43 4.48 11.59 Table 5. Measurement results for whiteness index (WI*) values. Preglednica 5. Rezultati meritev vrednosti indeksa beline (WI*). Test Wax Application Number of Measurements Mean Change (%) Homogeneity Group Standard Deviation Mini- mum Maxi- mum Coefficient of Variation WI* ⊥ Control 10 13.52 - A* 0.32 13.00 13.90 2.39 1 layer 10 8.42 ↓37.72 B 0.08 8.30 8.50 0.94 2 layers 10 6.08 ↓55.03 C 0.12 5.90 6.20 2.02 3 layers 10 5.48 ↓59.47 D** 0.10 5.40 5.60 1.88 WI* || Control 10 7.58 - A* 0.12 7.40 7.70 1.62 1 layer 10 3.47 ↓54.22 B 0.05 3.40 3.50 1.39 2 layers 10 3.26 ↓56.99 C 0.17 3.10 3.50 5.25 3 layers 10 2.94 ↓61.21 D** 0.05 2.90 3.00 1.76 *: Indicates the highest value and **: Indicates the lowest value 87 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Effects of applying wax on the colour, glossiness, and whiteness index values of American Black Cherry (Prunus serotina) wood found in the samples treated with 1 layer of wax (Table 5). The measurement results for glossiness values are provided in Table 6, and it can be seen that de- creases in these were observed for samples with one layer of wax at 20°, both parallel and perpen- dicular to the fibres (reductions of 53.33% and 50.00%, respectively). Additionally, increases in glossiness values were observed for samples with two and three layers of wax at 60° and 85°, both parallel and perpendicular to the fibres (Table 6). It was determined that the glossiness values changed compared to the control samples with ap- plication of wax. While a decrease was observed in glossiness values for samples with a single layer of wax compared to control samples at 60° and 85° parallel to the fibres (10.71% and 31.82%, respec- tively), a contrasting situation was observed for the same angular directions in samples with one lay- er of wax perpendicular to the fibres (13.25% and 280.00%, respectively). Additionally, glossiness val- ues for all degrees parallel to the fibres were higher than those perpendicular to the fibres (Table 6). Table 6. Measurement results for glossiness values. Preglednica 6. Rezultati meritev za vrednosti sijaja. Test Wax Application Number of Measurements Mean Change (%) Homogeneity Group Standard Deviation Mini- mum Maxi- mum Coefficient of Variation ⊥20° Control 10 0.20 - C 0.00 0.20 0.20 0.00 1 layer 10 0.10 ↓50.00 D** 0.00 0.10 0.10 0.00 2 layers 10 0.45 ↑125.00 B 0.05 0.40 0.50 11.71 3 layers 10 0.51 ↑155.00 A* 0.07 0.40 0.60 14.47 ⊥60° Control 10 1.51 - C** 0.09 1.40 1.60 5.80 1 layer 10 1.71 ↑13.25 C 0.09 1.60 1.80 5.12 2 layers 10 4.75 ↑214.57 B 0.14 4.60 4.90 2.85 3 layers 10 5.09 ↑237.09 A* 0.62 4.30 5.90 12.09 ⊥85° Control 10 0.25 - C** 0.14 0.10 0.40 54.16 1 layer 10 0.95 ↑280.00 B 0.14 0.80 1.10 14.25 2 layers 10 8.17 ↑3168.00 A* 0.20 7.90 8.40 2.45 3 layers 10 7.99 ↑3096.00 A 0.33 7.40 8.30 4.19 | | 20° Control 10 0.30 - B 0.00 0.30 0.30 0.00 1 layer 10 0.14 ↓53.33 C** 0.05 0.10 0.20 36.89 2 layers 10 0.65 ↑116.67 A* 0.14 0.50 0.80 20.83 3 layers 10 0.58 ↑93.33 A 0.12 0.40 0.70 21.19 | | 60° Control 10 1.96 - C 0.27 1.60 2.30 13.86 1 layer 10 1.75 ↓10.71 C** 0.14 1.60 1.90 7.74 2 layers 10 5.44 ↑177.55 B 0.25 5.00 5.60 4.52 3 layers 10 6.44 ↑228.57 A* 0.27 6.00 6.80 4.22 | | 85° Control 10 2.20 - C 0.23 1.90 2.50 10.50 1 layer 10 1.50 ↓31.82 D** 0.08 1.40 1.60 5.44 2 layers 10 11.86 ↑439.09 B 0.13 11.80 12.10 1.07 3 layers 10 14.50 ↑559.09 A* 0.42 13.80 15.00 2.91 *: Indicates the highest value and **: Indicates the lowest value 88 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Vpliv nanosa voska na barvo, sijaj in indeks beline lesa ameriške čremse (Prunus serotina) 4 CONCLUSION 4 ZAKLJUČKI This study is important because it shows whether there is any negative interaction between the wood of a particular tree species and the wax coating used. Furthermore, the following conclusions were derived from the results: - ∆L* values were negative for the samples with wax applied in one, two and three layers, while ∆a*, ∆b*, and ∆C* values were positive. ∆E* values were determined as 8.41 for one lay- er of wax, 11.29 for two layers, and 11.59 for three. - It was found that the application of wax on wooden surfaces led to a decrease in L*, h°, and WI* values (for both parallel and perpen- dicular directions), while the a*, b*, and C* pa- rameters increased. - Multivariate analysis of variance results were significant for all tests. - Increases in glossiness values were observed for both parallel and perpendicular directions to the fibres at 60° and 85° angles for surfaces treated with two and three layers of wax. - The ∆E* values for two and three layers of wax were very close to each other, suggesting that the application of a third layer may not be nec- essary. 5 SUMMARY 5 POVZETEK Preučili smo učinke različnih nanosov voska na barvo, sijaj in vrednost indeksa beline (WI*) lesa ameriške vrste Prunus serotina Ehrh., s slovenskimi imeni ameriška čremsa (Pintar et al., 2020) in tudi pozna čremsa ali ameriška črna češnja (Brus, oseb- na komunikacija). Zaradi privlačnega rdečkasto-rja- vega odtenka jedrovine in nežne teksture je ta vr- sta lesa trenutno ena pomembnih uvoženih lesnih vrst za proizvodnjo pohištva in notranje opreme (Schardt, 2004). Vzorce lesa ameriške čremse smo pripravili v dimenzijah 100 mm x 100 mm x 15 mm. Mešanica naravnih in sintetičnih voskov je bila s čopičem na- nesena na površino lesa v 1, 2 in 3 slojih, kontrolni vzorci pa so bili brez površinske obdelave. Na voskanih in nevoskanih površinah so bili opravljeni preskusi sijaja (ISO 2813, 1994), spre- membe barve (ASTM D 2244-3, 2007) in indeksa beline (WI*) v vzporedni in pravokotni smeri na vla- kna (ASTM E313-15e1, 2015). Rezultate smo med- sebojno primerjali. Glede na rezultate analize variance je bilo ugo- tovljeno, da je bilo število nanesenih plasti voska pomembno za vse preskuse. Pri pregledu rezultatov je bilo ugotovljeno, da je bila najvišja vrednost svetlosti barve (L*) ugoto- vljena pri vzorcih kontrolne skupine, najnižja pa pri skupini, obdelani s tremi plastmi voska. Največje zmanjšanje vrednosti L*, 18,55 %, je bilo ugotovljeno pri vzorcih s tremi plastmi voska, najmanjše zmanjšanje, 13,38 %, pa pri vzorcih z eno plastjo voska. V kontrolni skupini je bila najnižja zabeležena barvna vrednost, ki predstavlja rdeče-zeleno os v sistemu a* 10,48, medtem ko je bila v skupini, obdelani s tremi plastmi voska, najvišja vrednost 16,10. Med skupinami z nanosom voska se je vred- nost a* najbolj povečala pri vzorcih s tremi plastmi, in sicer za 53,63 %, medtem ko se je pri vzorcih z eno plastjo povečala najmanj, in sicer za 38,84 %. Barvna vrednost b*, ki predstavlja rumeno- modro os v sistemu, je bila najnižja pri vzorcih kon- trolne skupine in je znašala 21,20, najvišja pa pri skupini, obdelani z dvema plastema voska, in sicer 22,46. Vrednost b* se je najbolj povečala pri vzor- cih z dvema plastema voska, in sicer za 5,94 %, naj- manj, za 2,78 %, pa pri vzorcih s tremi plastmi. Kontrolna skupina je imela najnižjo vrednost kromatičnosti C*, 23,65, skupina z dvema plastema voska pa najvišjo, 27,51. Med skupinami z nanosom voska se je vrednost C* najbolj povečala pri vzorcih z dvema plastema, in sicer za 16,28 %, pri vzorcih z eno plastjo pa je bilo povečanje najmanjše, in sicer za 11,88 %. Vrednost h° je bila najvišja pri 63,70 v kontrolni skupini, najnižja pa pri 53,54 v skupini, obdelani s tremi plastmi voska. Pri vzorcih s tremi plastmi se je vrednost h° najbolj zmanjšala, in sicer za 15,95 %, medtem ko se je pri vzorcih z eno plastjo zmanjšala najmanj, in sicer za 11,10 %. Kar zadeva sijaj, je bilo pri vzorcih z enim slo- jem voska opaženo zmanjšanje pri 20 stopinjah, tako vzporedno kot pravokotno na vlakna. Naspro- 89 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Effects of applying wax on the colour, glossiness, and whiteness index values of American Black Cherry (Prunus serotina) wood tno se je sijaj povečal pri vzorcih z dvema in tremi plastmi voska pri 60 in 85 stopinjah v obe smeri. Uporaba voska je spremenila vrednosti sijaja v primerjavi s kontrolnimi vzorci. Pri vzorcih z enim slojem voska pri 60 in 85 stopinjah vzporedno z vla- kni se je sijaj zmanjšal, pri istih vzorcih pravokotno na vlakna pa se je povečal. Vrednosti sijaja vzpored- no z vlakni so bile višje kot pravokotno na vlakna. Z večanjem števila plasti voska so se vrednosti beline WI* v obeh smereh glede na vlakna zmanj- ševale. Vzorci kontrolne skupine so imeli najvišje vrednosti WI* v obeh smereh, najnižje vrednosti pa so bile v skupini s tremi plastmi voska. Najvišja stopnja zmanjšanja vrednosti WI* je bila 59,47 % oziroma 61,21 % pri vzorcih s tre- mi plastmi voska, najnižja stopnja zmanjšanja pa 37,72 % oziroma 54,22 % pri vzorcih z eno plastjo voska. Vrednosti spremembe barve ∆E* so bile 8,41 za eno plast, 11,29 za dve plasti in 11,59 za tri plasti voska, pri čemer so bile vrednosti za dve in tri plasti zelo podobne. Vrednosti spremembe kota barvne- ga tona ∆H* so bile 3,08, 3,97 in 4,48 za eno, dve in tri plasti voska. Glede na podobnost vrednosti ∆E* pri dvosloj- nem in troslojnem nanosu voska lahko sklepamo, da tretji nanos voska morda ni potreben. REFERENCES VIRI Akçay, Ç. (2020). Determination of decay, larvae resistance, water up- take, color, and hardness properties of wood impregnated with honeybee wax. BioResources, 15(4), 8339-8354. DOI: https:// doi.org/10.15376/biores.15.4.8339-8354 ASTM D 2244-3, (2007). Standard practice for calculation or color to- lerances and color, differences from instrumentally measured color coordinates, ASTM International, West Conshohocken, PA. ASTM E313-15e1, (2015). Standard practice for calculating yel- lowness and whiteness indices from instrumentally measured color coordinates, ASTM International, West Conshohocken, PA. Çamlıbel, O., & Ayata, Ü. (2024a). Effects of modified beeswaxes on selected surface characteristics of Siberian pine (Pinus sibirica) wood. In: Latin America 8 th International Conference on Scien- tific Researches, May 1-5, 2024, Havana, 748-755. Çamlıbel, O., & Ayata, Ü. (2024b). Evaluating the effects of selected surface characteristics on ebony Afrika (Diospyros crassiflora Hiern.) wood with different wax applications. In: Latin America 8 th International Conference on Scientific Researches, May 1-5, 2024, Havana, 730-737. Çamlıbel, O., & Ayata, Ü. (2024c). Effects of different coating num- bers on selected surface properties in wax coatings applied to lemon (Citrus limon (L.) burm.) surfaces. In: EU 5 th International Conference on Health, Engineering and Applied Sciences, June 13-16, 2024, Roma. DIN 5033, (1979). Deutsche Normen, Farbmessung. Normenau- sschuß Farbe (FNF) im DIN Deutsches Institut für Normung eV, Beuth, Berlin März. Eijsackers, H., & Oldenkamp, L. (1976). Amerikaanse vogelkers; aan- vaarding of beperking. Landbouwkundig Tijdschrift, 88, 366- 374. Evans, P ., Chowdhury, M. J., Mathews, B., Schmalzl, K., Ayer, S., Ki- guchi, M., & Kataoka, Y . (2005). Weathering and surface pro- tection of wood. In: Handbook of Environmental Degradation of Materials, 277-297. DOI: https://doi.org/10.1016/B978- 081551500-5.50016-1 Forbes, D. (1973). Problems and techniques associated with natu- ral and controlled pollination of black cherry (Prunus serotina Ehrh.). In: Proceedings, Twentieth Northeastern Forest Tree Improvement Conference. p. 47-51. Northeastern Forest Expe- riment Station, Upper Darby, PA. Godefroid, S., Phartyal, S. S., Weyembergh, G., & Koedam, N. (2005). Ecological factors controlling the abundance of non-native in- vasive black cherry (Prunus serotina) in deciduous forest un- derstory in Belgium. Forest Ecology and Management, 210(1- 3), 91-105. DOI: https://doi.org/10.1016/j.foreco.2005.02.024 Grisez, T. J. (1974). Prunus L. Cherry, peach, and plum. In: Seeds of wo- ody plants in the United States. p. 658-673. C. S. Schopmeyer, tech. coord. U.S. Department of Agriculture, Agriculture Han- dbook 450. Washington, DC. Horsley, S. B. (1981). Glucose-1-benzoate and prunasin from Prunus serotina. Phytochemistry, 20, 1127-1128. Hough, A. F. (1965). Black cherry (Prunus serotina Ehrh.). In: Silvics of forest trees of the United States. p. 539-545. H. A. Fowells, camp. U.S. Department of Agriculture, Agriculture Handbook 271. Washington, DC. Illmann, G., Schmidt, H., Brotz, W., Michalczyk, G., Payer, W., Di- etsche, W., Hohner, G., & Wildgruber, J. (1983). Wachse. Ull- manns Enzyklopädie der technischen Chemie. Chemie. Wach- se bis Zündhölzer, 24. ISO 2813, (1994). Paints and varnishes–determination of specular gloss of non-metallic paint films at 20 degrees, 60 degrees and 85 degrees, International Organization for Standardization, Ge- neva, Switzerland. Kaplan, Ş., Çamlıbel, O., Bilginer, E. H., & Ayata, Ü. (2024). A study on wax application on ebony Macassar (Diospyros celebica Bakh.) wood. Journal of Green Technology and Environment, 2(1). in press. Kingsbury, J. M. (1964). Poisonous plants of the United States and Canada. Prentice-Hall, Englewood Cliffs, NJ. 626 p. 90 Les/Wood, Vol. 73, No. 1, June 2024 Ayata, Ü., & Çamlibel, O.: Vpliv nanosa voska na barvo, sijaj in indeks beline lesa ameriške čremse (Prunus serotina) Kitzmiller, J. H. (1968). Geographic variation in seed and seedling characteristics of black cherry (Doctoral dissertation, West Vir- ginia University). Lange, D. R. (1999). Fundamentals of Colourimetry–Application Re- port No. 10e. DR Lange: New York, NY , USA. Liu, X., Timar, M. C., Varodi, A. M., Nedelcu, R., & Torcătoru, M. J. (2022). Colour and surface chemistry changes of wood surfa- ces coated with two types of waxes after seven years exposure to natural light in indoor conditions. Coatings, 12(11), 1689. DOI: https://doi.org/10.3390/coatings12111689 Marquis, D. A. (1975). Seed germination and storage under northern hardwood forests. Canadian Journal of Forest Research, 5, 478- 484. Niu, K., & Song, K. (2021). Hot waxing treatment improves the aging resistance of wood surface under UV radiation and water. Progress in Organic Coatings, 161, 106468. DOI: https://doi. org/10.1016/j.porgcoat.2021.106468 Nzokou, P ., & Kamdem, P . (2005). X-ray photoelectron spectroscopy study of red oak- (Quercus rubra), black cherry- (Prunus sero- tina) and red pine- (Pinus resinosa) extracted wood surfaces. Surface and Interface Analysis, 37, 689-694. DOI: https://doi. org/10.1002/sia.2064 Peker, H., Bilginer, E. H., Ayata, Ü., Çamlıbel, O., & Gürleyen, L. (2024a). The effects of wax application on certain surface pro- perties of olive (Olea europaea L.) wood. Journal of Marine and Engineering Technology, 4(1). In press. Peker, H., Bilginer, E. H., Ayata, Ü., Çamlıbel, O., & Gürleyen, L. (2024b). Effects of different coating layers on some surface properties of wax-applied plum (Prunus domestica L.) wood. Sivas Cumhuriyet University Journal of Engineering Faculty, In press. Peker, H., Bilginer, E. H., Ayata, Ü., Çamlıbel, O., & Gürleyen, L. (2024c). Identification of certain surface characteristics of ba- lau red (Shorea guiso) wood treated with wood bleaching che- micals followed by wax treatment. Turkish Journal of Science and Engineering, In press. Pintar, A., Brus, R., & Skudnik, M. (2020). Možnosti zaznavanja dre- vesnih vrst v okviru Monitoringa gozdov in gozdnih ekosiste- mov–Possibilities for detecting tree species in the framework of monitoring of forests and forest ecosystems. Gozdarski ve- stnik, 78 (3), 107-121. Pizzi, A., & Kumar, R. N. (2019). Adhesives for wood and lignocellu- losic materials. Hoboken, John Wiley & Sons. ISBN: 978-1-119- 60543-0. Popenoe, W., & Pachano, A. (1922). The Capulín Cherry: a superior form of the Northern black cherry develop in the highlands of tropical America. Journal of Heredity, 13, 50-62. Schardt, M. (2004). Black Cherry für Furnier immer beliebter. Holz- -Zent bl, 130, 635-638. Scholz, G., Militz, H., Gascón-Garrido, P ., Ibiza-Palacios, M. S., Oliver- Villanueva, J. V., Peters, B. C., & Fitzgerald, C. J. (2010). Impro- ved termite resistance of wood by wax impregnation. Interna- tional Biodeterioration & Biodegradation, 64(8), 688-693. DOI: https://doi.org/10.1016/j.ibiod.2010.05.012 Schultz, T. P ., Nicholas, D. D., & Ingram Jr, L. L. (2007). Laboratory and outdoor water repellency and dimensional stability of so- uthern pine sapwood treated with a waterborne water repel- lent made from resin acids. Holzforschung, 61(3). DOI: https:// doi.org/10.1515/HF.2007.044 Starfinger, U., Kowarik, I., Rode, M., & Schepker, H. (2003). From desirable ornamental plant to pest to accepted addition to the flora? the perception of an alien tree species through the centuries. Biological Invasions, 5(4), 323-335. DOI: https://doi. org/10.1023/B:BINV.0000005573.14800.07 Timar, M. C., Varodi, A. M., & Liu, X. Y . (2020). The ınfluence of arti- ficial ageing on selected properties of wood surfaces finished with traditional materials-an assessment for conservation purposes. Bulletin of the Transilvania University of Brasov. Series II: Forestry, Wood Industry, Agricultural Food Engine- ering, 13(62), 81-94. DOI: https://doi.org/10.31926/but.fwi- afe.2020.13.62.2.7 TS ISO 13061-1, (2021). Odunun fiziksel ve mekanik özellikleri–Kusur- suz küçük ahşap numunelerin deney yöntemleri–Bölüm 1: Fizi- ksel ve mekanik deneyler için nem muhtevasının belirlenmesi, Türk Standartları Enstsitüsü, Ankara, Türkiye. Van den Meersschaut, D., & Lust, N. (1997). Comparison of mechani- cal, biological and chemical methods for controlling black cher- ry (Prunus serotina) in Flanders (Belgium). Silva Gandavensis, 62, 90-109. Wendel, G. W. (1972). Longevity of black cherry seed in the forest flo- or. USDA Forest Service, Research Note NE-149. Northeastern Forest Experiment Station, Upper Darby, PA. 4 P .