
Informatica 35 (2011) 29-37 29 

Component Reconfiguration in Presence of Mismatch 

Carlos Canal and Antonio Cansado 
Department of Computer Science, University of Málaga, Spain 
E-mail: canal@lcc.uma.es 

Keywords: component substitution, dynamic reconfiguration, software adaptation 

Received: February 20, 2010 

This paper discusses how to reconfigure systems in which components present mismatch in both their 
signature and behavioural interfaces. We are interested in performing component substitution without 
stopping the system, though we assume components are not designed with reconfiguration capabilities in 
mind. We also consider that components may need to be adapted before interacting with the system. In 
this work we identify the basic requirements for achieving runtime component substitution, and define 
several different interchangeability notions that are adequate to component substitution under behavioural 
adaptation. Our approach is illustrated with a case-study of a client/server system where the serverneeds to 
be substituted by a new one. Classic equivalence and compatibility notions fail to find a new server because 
the only one available implements a different interface. We show how our interchangeability notions could 
be used in order to let the system keep on working. 

Povzetek: Opisanoje preoblikovanje sistemov, ko se zgodi neskladje. 

1 Introduction 

Software reuse is of great interest because it reduces costs 
and speeds up development time. Indeed, a vast number 
of software components are already available through the 
Internet, and many research and development efforts are 
being invested in devising techniques for combining them 
safely and efficiently. In particular, Software Adaptation 
promotes the use of adaptors in order to compensate mis-
match among component interfaces. In fact, this is the 
only known way to adapt off-the-shelf components since 
designers usually only have access to their public inter-
faces. Without adaptation, components could not be put 
together or their execution could lead to deadlocking sce-
narios [2, 9]. 

Still, one of the most challenging issues in Software 
Adaptation is that systems need to adapt to environmen-
tal changes, server upgrades or failures, or even the avail-
ability of a new component more suitable to be used in the 
system. Indeed, the need for finding a new component to 
be integrated in the system may be either reactive or proac-
tive. The reactive case is caused by the system itself. For 
instance as a consequence of connection loss or failure of 
one its components, thus creating a hole in the system that 
must be filled for its correct functioning. The proactive 
case would be caused by the availability of a new compo-
nent that is suspected to be a good candidate for being inte-
grated in the system, replacing some of its current compo-
nents. In both cases, we have first to detect the need for re-
configuration by using runtime monitoring techniques both 
on the system and on its environment. Then, the interface 
of the candidate components —and its compatibility with 
the rest of the system— must be evaluated, attending not 

only to its signature interface (names of services, opera-
tions, messages, etc.), but also to its behavioural interface 
(the order in which the elements in the signature interface 
are expected to be used) and the QoS features provided/ex-
pected by the component and the system. 

When dealing with this kind of dynamic reconfigura-
tion [14], component substitution must be applied without 
stopping the complete system, and trying to affect mini-
mally its performance, in particular the functioning of those 
of its parts that are not directly involved in the reconfigura-
tion. That means that components must collaborate to sup-
port reconfiguration capabilities. In fact, it is important to 
determine when the system can be reconfigured and which 
kind of properties the system holds after reconfiguration. 

Few works have studied the interplay of behavioural 
adaptation and reconfiguration so far. In most approaches 
to reconfiguration, substituting a component by another 
one requires the new component to implement the same 
functionality as the former one. This means that substitu-
tion is usually limited to instances (or subtypes) of a given 
component. However, it is possible that a component can-
not substitute another one, but an adapted version can. 

This paper identifies some basic requirements for run-
time component substitution and we describe the opera-
tions required to achieve this reconfiguration. We also 
define several different interchangeability notions that are 
well fitted for component substitution under behavioural 
adaptation. The paper is structured as follows: Firstly, 
Section 2 provides some background on behavioural inter-
faces and adaptation. Then, Section 3 introduces a clien-
t/server system that is used as running example through 
all this document. Section 4 presents our reconfiguration 
model, for describing systems as a collection of static ar-
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chitectural views (configurations), and reconfiguration op-
erations for moving from one configuration to another one; 
it also shows how reconfiguration states can be defined at 
certain points of system execution, and how new compo-
nents must be initialised for arriving to these states. Next, 
Section 5 defines different notions of substitutability that 
we believe are adequate for component replacement under 
behavioural adaptation. Then, Section 6 outlines the plat-
form that we plan to implement for validating our results. 
Finally, Section 7 presents related works on reconfigura-
tion and behavioural adaptation, and Section 8 concludes 
the paper. 

This paper builds on our previous work in the field. It 
is an extension of our position paper [10], developing the 
ideas presented there, adding many explanations and more 
detailed examples. In presents also our model for dy-
namic reconfiguration, and the notions of substitutability 
discussed in [10] are formally defined here. 

2 Background 
We assume that component interfaces are equipped both 
with a signature (set of required and provided operations), 
and a protocol. For the protocol, we model the behaviour of 
a component as a Labelled Transition System (LTS). The 
LTS transitions encode the actions that a component can 
perform in a given state. For reasons of space we omit the 
signature interface when it can be easily inferred from the 
corresponding protocol. 

Definition 1. [LTS]. A Labelled Transition System (LTS) 
is a tuple (S, s0, L, where S is the set of states, s0 G S 
is the initial state, L is the set of labels or alphabet, ^ is 
the set of transitions : ^C S x L x S. We write s s' for 
(s, a, s') G^. 

Communication between components are represented 
using actions relative to the emission and reception of mes-
sages corresponding to operation calls, or internal actions 
performed by a component. Therefore, in our model, a la-
bel is either the internal action T or a tuple (M, D) where M 
is the message name and D stands for the communication 
direction (! for emission, and ? for reception). 

LTSs are adequate as far as user-friendliness and de-
velopment of formal algorithms are concerned. However, 
higher-level behavioural languages such as process alge-
bras can be used to define behavioural interfaces in a more 
concise way. We can use for that purpose the part of the 
CCS notation restricted to sequential processes, which can 
be translated into LTS models: P ::= 0|a?P|a!P|T.P|P1 + 
P2|P/L|A, where 0 denotes a do-nothing process; a?P a 
process which receives a and then behaves as P; a!P a pro-
cess which sends a and then behaves as P; T.P a process 
which performs an internal action T and then becomes P; 
P1 + P2 a process which may act either as P1 or P2; P/L 
is the process P after hiding the names in L, preventing any 
communication on those names; and A denotes the call to 

a process defined by an agent definition equation A = P. 
Additionally, we will use the parallel operator || for repre-
senting the composition of components —represented by 
CCS processes— allowing the synchronisation of their in-
put and output actions. 

In this paper we will use LTSs or CCS expressions in-
distinctly for representing components and adaptors. Both 
could be easily obtained for standard notations such as WS-
BPEL or WWF. 

2.1 Specification of adaptation contracts 
Adaptors can be automatically generated based on an ab-
stract description of how mismatch can be solved. This is 
given by an adaptation contract (AC). In this paper, the 
adaptation contract between components is specified using 
vectors [8]. Each action appearing in a vector is executed 
by one of the components, and the overall result corre-
sponds to a loose synchronisation between all of them. A 
vector may involve any number of components and does 
not require interactions to occur on the same names of ac-
tions. For distinguishing between actions with the same 
name occurring on different components, we prefix actions 
with component names. 

For example, (C1.on!,C2.activate?) is a vector denot-
ing that the action on! performed by component C1 cor-
responds to action activate? performed by component C2. 
This does not mean that both actions have to take place si-
multaneously, nor one action just after the other; for the 
transmission of C1's action on! to C2 as activate?, the 
adaptor will take into account the behaviour of these com-
ponents as specified in their LTS, accommodating the re-
ception and sending of actions to the points in which the 
components are able to perform them (Fig. 1). 

> Q 
(sK 

® 
> Q 

(sK 
® 

Figure 1: Components C1 and C2 connected through an 
adaptor. 

2.2 Adaptor generation 
Thus, previously to the reconfiguration of the system by 
the integration of a new component, we will likely need 
to adapt the component for solving the problems of com-
patibility detected in the component discovery phase. This 
will be accomplished by generating an adaptor, that will 
play the role of wrapper or component in-the-middle, fil-
tering the interactions between the component and the sys-
tem and ensuring both a correct functioning of the system 
(verifying for instance the absence of deadlocks or other 
user defined properties) and the safety of the composition 
(i.e., that the component is behaving as stated on its inter-
face). In previous works we have developed a methodology 
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for behavioural adaptation (see [9], where our approach for 
generating adaptors is presented). Following this method-
ology, both contract specification and adaptor generation 
are tool supported [8]. 

3 Running example 
This section presents the running example used through-
out the paper. It consists of a client/server system in which 
the server may be substituted by an alternative server com-
ponent. This may be necessary in case of server failure, 
or simply for a change in the client's context or network 
connection that made unreachable the original server. Sup-
pose that the client wants to buy books and magazines as 
shown in its behavioural interface in Fig. 2(a). The server 
A can sell only one book per transaction (see Fig. 2(c)); on 
the other hand, the server B can sell a bounded number of 
books and magazines (see Fig. 3(b)). In both cases, sales 
are represented by a pair of actions (one order and its ac-
knowledgement), and with these two actions we abstract all 
the details of payment and shipment. 

Initially, the client is connected to the server A; we shall 
call this configuration cA. The client and the server agree 
on an adaptation contract A C C A (see Fig. 2(b)), which es-
tablishes action correspondences between the client and the 
server A. Obviously, under configuration cA the client can 
buy at most one book in each transaction but it is not al-
lowed to buy magazines because this is not supported by 
the server A. The latter is implicitly defined in the adapta-
tion contract (Fig. 2(b)) since there is no vector allowing 
the client to perform the action buyMagazine!. Finally, the 
server A does not send the acknowledgement ack? expected 
by the client; this must be worked out by the adaptor, too 
(see v4 in Fig. 2(b)). 

In an alternative configuration cB the client is connected 
to the server B whose protocol is depicted in Fig. 3(b). 
Similarly, the client and the server agree on an adaptation 
contract ACC,B (see Fig. 3(a)). Under configuration cB, 
the client can buy a bounded number of books and maga-
zines. In Fig. 3(a), we see that vector v5 allows the client 
to buy magazines. Moreover, the server B sends a differ-
ent acknowledgement for each product (see v4 and v6 in 
Fig. 3(a)). 

Following the methodology for behavioural adaptation 
presented in [9], adaptors can be automatically generated 
for configurations cA and cB (see adaptors AC A and AC B 
in Fig. 4). These adaptors ensure by construction that the 
interaction between the client and servers A or B will take 
place without deadlock and fulfilling the correspondences 
of actions described in the corresponding adaptation con-
tracts [9]. 

4 Reconfiguration model 
This section presents the model that enables both reconfig-
uration and behavioural adaptation. We define a reconfigu-

(a) LTS of Client C 

vi = {C.login!, A.userl) 
v2 = {C. passwd! , A. passwd?) 
v3 = {C.buyBook!, A.buy?) 
v4 = {C.ack?, A.E) 
v5 = {C .logout!, A.disconnect?) 

(b) Adaptation Contract ACC a 

Figure 2: Configuration cA. 

vi = {C.login!, B.connect?) 
v2 = {C. passwd!, B. pwd?) 
v3 = {C : buyBook! B : buyBook?) 
v4 = {C.ack?, B.bookOk!) 
v5 = {C.buyMagazine!, B .buyMagazine?) 
v6 = {C.ack?, B.magazineOk!) 
v7 = {C .logout!, B .disconnect?) 

(a) Adaptation Contract ACC,B 

(b) LTS of Server B 

Figure 3: Configuration cB. 

ration contract to determine how the system may evolve in 
terms of structural changes. 

First, a system architecture consists of a finite number of 
components. Each configuration is a subset of these com-
ponents connected together by means of adaptation con-
tracts. 

Definition 2. [Configuration]. A configuration 
c = {P, AC, S*) is a static structural representation 

(c) LTS of Server A 
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Figure 4: Adaptors 

of a system's architecture. P is an indexed set of compo-
nents. AC is an adaptation contract of components in P. 
S* is a set of reconfiguration states defined upon P; these 
are the states in which reconfiguration is allowed. 

Changing a configuration by another is what we call a re-
configuration. A reconfiguration is specified in a reconfig-
uration contract which separates reconfiguration concerns 
from the business logic of the system. This way, each con-
figuration can be thought of as a static view of the system, 
while its dynamic view is specified by a reconfiguration 
contract. 

Definition 3. [Reconfiguration Contract]. A reconfigu-
ration contract R = (C, c0, Ar) is defined as: 

C is a set of static configurations, c0 G C is the initial 
configuration. Ar C C X Rop xC is a set of reconfiguration 
operations, with reconfiguration operation Rop C S* X S 
S* G ci, S** G cj, ci, j G C. 

From the definition above, reconfiguration can only take 
place at predefined states, for guaranteeing system consis-
tency. One certain state of the source configuration (s*) 
defines when an architecture can be reconfigured. On the 
other hand, one state of the target configuration (s*) says 
what is the starting state in the target configuration to re-
sume the execution. Notice also that the target configura-
tion may require a new adaptation contract (allowing re-
placing a component by another one that implements a dif-
ferent behavioural interface). 

Example. In our running example, there are two config-
urations: 
ca = ({C, A}, A C C,A, SA ),and 
CB = ({C, B}, AC C,B, SB ). 
The reconfiguration contract R = (C, cA, AR) is given by: 
C = {CA, CB}, and AR = {CA A cb}, with 
r = OA sB). 

Hence, r specifies pairs of reconfiguration states on which 
reconfiguration can be performed. Since both servers have 
different behavioural interfaces, it is not straight-forward to 
determine how reconfiguration can take place after a trans-
action between the client and the server has started. 
In the simplest scenario, we may consider that reconfig-
uration from cA to cB and back is only allowed at the 
initial states of the client and the server. This is spec-
ified as a unique reconfiguration state s0 G S*, i G {A,B} 
for each configuration, (where sA = {C.s0,A.s0} and sB = 
{C.s0, B.s0}), and a pair of reconfiguration operations 

rA,B , rB,A . . , 0 0 , . 

ca —> CB and CB —> ca, with rA,B = {sA,sB} and rB,A = 
{s0

B, s0
A} (subindexes in states always refer to state numbers 

as depicted in Figs. 2 and 3). 

In the next section, we will study how other pairs of re-
configuration states —apart from the initial states here— 
can be obtained. 

4.1 Reconfiguration at runtime 

In the previous section we have presented our reconfigura-
tion model considering that reconfiguration could be only 
performed at the initial state of the system (i.e. at static 
time). Now we will generalise our working scenario allow-
ing reconfiguration to occur when the interactions have al-
ready started and the components are in intermediate states 
(i.e. at dynamic time). 

Interactions already performed with the component be-
ing substituted cannot be merely ignored; they must be ei-
ther reproduced up to an equivalent state with the new com-
ponent, transparently to the rest of the system, or rolled 
back and compensated when the reproduction of the state 
is not possible. Both fault-tolerance algorithms, exception 
handling and roll-back techniques must be developed to 
this effect, and compensation procedures must be defined 
when the initiated interactions cannot be correctly finished. 

Example. In our running example, if the login phase has 
already been performed with the system in configuration 
cA, and then we need to move to configuration cB, the server 
B should be initialised such that the client does not need to 
re-log in the system. Suppose that the client C has per-
formed a trace {login!,passwd!}: Then, the initialisation 
trace for the server B would be {connect?, pwd?}. Once the 
server B is initialised as indicated, the system can be recon-
figured in order to use the new component. The substitution 
of the server A by the server B does not affect the client C 
in the sense it does not need to re-log in the system. In fact, 
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the client continues working on transparently, though it is 
warned that the adaptation contract has changed. 
This way, we have implicitly defined two new reconfig-
uration states: sA = {C.s2, A.s2} for configuration cA and 
s2

B = {C.s2,B.s2} for cB, and one reconfiguration operation 
CA CB, with r2 = {sA, s2

B}. 

In the next section, we will present several notions of 
substitutability that will help us defining additional recon-
figuration states and operations for our system. 

5 Notions of substitutability 
One of the key elements in allowing safe reconfiguration 
is to determine whether a certain component can be easily 
replaced by another one. 

A relation of equivalence —such as bisimulation (~) 
in CCS— cannot be used for these purposes. Indeed, 
since there is mismatch among the interfaces of the com-
ponents, a test based on bisimulation would immediately 
reject servers A and B as equivalent (A ̂  B). Even if we ac-
commodated name mismatch between both servers by us-
ing the adaptation contracts ACC ,A and ACC ,B for build-
ing name substitutions aA, oB according to the correspon-
dence of names described in those contracts, the renamed 
components AGa and BGb would still remain not bisimilar, 
due to behavioural mismatch between them. Thus, we need 
to define a notion of substitutability adequate for our pur-
poses, indicating whether the replacement of the server A 
by the server B (or vice versa) is suitable in a certain system 
willing to perform this reconfiguration. 

5.1 Contextual equivalence 
As we have seen, an equivalence relation like bisimulation 
is not well suited for our purposes since it takes into ac-
count all visible actions possibly performed by the compo-
nents and ignores the context in which those components 
operate, and how this context affects them. A proof of 
equivalence would yield whether two components are in-
terchangeable in any system, while we just need to prove if 
they can be exchanged in a given system. 

Hence, we need to take into account the influence of the 
context and to ignore the actions performed by the former 
and novel components such that the rest of the system con-
tinues working transparently. This allows both former and 
novel components to have different behavioural interfaces 
as far as their adapted versions provide the same function-
ality from the point of view of the context. For representing 
how the context affects the behaviour of a component, we 
will use the adaptor generated for this component within 
this context, as described in section 2. 

Definition 4. [Contextual interchangeability]. Two com-
ponents A and B are interchangeable in the context of an-
other component C i f f : 

(A\\ACA)/LA ~ (A\\AC,B)/LB 

where AC A, (resp. AC ,B) is the adaptor necessary for mak-
ing A (resp. B) interact successfully with C, and LA (resp. 
LB) is the alphabet or set of labels used by A (resp. B) in 
its communications. 

In the definition above, for checking contextual inter-
changeability we just have to compose the components A 
and B involved, together with the corresponding adaptors 
generated for interacting with the context C, and to hide 
the labels (LA or LB) through which the components and 
their adaptors communicate. The resulting processes rep-
resent the components as seen from the point of view of 
the context C. If they are equivalent —which can be easily 
checked with CCS tools like the Concurrency Workbench 
(CWB)—, they can be freely substituted one by another. 
Any action performed by one of them in the context of C 
can be exactly reproduced by the other one. 

Example. In our running example, consider now a client 
C2 that buys exactly one book in each transaction: 
C2 = login! passwd! buybook! ack? logout! 0 
C2 can interact with server A or B indistinctly. Therefore, 
the client C2 (here playing the role of the context) enforces 
a behaviour that makes both servers A and B equivalent in 
the sense above. Hence, we should be able to build a sys-
tem that is able to reconfigure at any point from the server 
A to the server B (or from the server B to the server A). 
Similarly, it is easy to find out that servers A and B are not 
equivalent in the context of the client C, as originally de-
fined in Fig. 2(a). 

5.2 Minimal Disruption 
Contextual interchangeability requires that once adapted 
the components being considered are undistinguishable 
from the point of view of the context they interact with. A 
more relaxed notion of substitutability is what we call min-
imal disruption. Here, only the future actions performed 
by the environment are taken into account as far as the 
current system execution —but not any possible previous 
interaction— can be simulated in the new configuration. 
This is useful when the new configuration has an incom-
patible behaviour up to a certain point and a compatible 
one afterwards, but for some specific trace —the current 
execution— the incompatible part of the behaviour works 
fine. 

Before defining minimal disruption, we have to show 
how can we enforce a certain component to execute a given 
trace. This is the purpose of the Definition 5 below. 

Definition 5. [Trace-enforcing processes]. Let t = 
{(a0 , a 0 ) , . . . (an,an}} be a trace of actions pairs, where 
each di states for the complementary action of at (i.e. if at 
is a! then di is a? and vice versa). Then, we define Left(t) 
andRight(t) as the processes: 
Left(t) = a0 ... an 0 
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Right(t) = a0 ••• an 0 
obtained by the sequential composition of the left (resp. 
right) actions from each pair )ai, a) in t. 

Definition 6. [Minimal disruption]. Two components A 
and B are minimal disrupting replaceable in the context of 
another component C, and given a trace of actions t, i f f 
there exist At, Bt, Ct such that: 

- At ~Right(t)\\(A\\AC,A)/LA, 

- Bt ~Right(t)\\(B\\AC,B)/LB, 

- Ct ~Left(t)\\C, and 

- At andBt are equivalent in the context ofCt. 

where as in Definition 4 ACA, (resp. AC,B) is the adaptor 
necessary for making A (resp. B) interact successfully with 
C. 

Hence, for finding out if two components A, B are in-
terchangeable up to minimal disruption in a certain context 
C, and given a trace t already executed in that system, we 
just have to make A, B (composed with their correspond-
ing adaptors), and C execute the corresponding part (left or 
right actions) of the trace, and then prove if the future be-
haviour of these components is equivalent from the point of 
view of the context. Again, all this can be easily checked 
with the CWB. In that case, we can freely perform the sub-
stitution of A by B (or the other way round) at the execution 
point defined by the trace. 

Notice that the trace t used in this notion of minimal dis-
ruption shows us how to define a reconfiguration state for 
each configuration ({C.si,A.sj) for cA, and {C.si,B.sk) for 
cB) which denote the states in which A, B and C are after be-
ing enforced to reproduce the trace t, and the corresponding 
reconfiguration operations (from cA to cB and vice versa). 

Example. In our running example, consider now that we 
are in configuration cB —where the client C is interact-
ing with the server B (adapted through AC B)— and they 
have already executed the trace {{C.login!,B.connect?), 
{C.passwd!,B.pwd?), {C.buybook!,B.buybook?)}. If at 
that point we have to replace the server B with a fresh ver-
sion of this server (let us call it B') due to server break-
down or connection failure, we have to initialise the new 
server B' (still adapted through BC B) , with the process 
connect! pwd! buybook! 0. Then, the reconfigured system 
would be able to go on normally. 

5.3 History-aware interchangeability 
When dealing with component upgrade it is more useful 
to define a notion of substitutability that we could name as 
history-aware. Only the current execution needs to be sim-
ulated in the new configuration; future actions are allowed 
to be different. After reconfiguration, the environment may 
access the new services provided by the new component, 
or be denied to others that cannot be handled in the new 
configuration. 

Definition 7. [History awareness]. Two components A 
andB are history-awareness interchangeable in the context 
of another component C, and given a trace of actions t, i f f 
there exists At, Bt, Ct such that: 

- At ~Right(t)\\(A\\ACA)/LA, 

- Bt ~Right(t)\\(B\\AC,B)/LB, 

- Ct ~ Left(t)\\C. 

where all the processes involved in the definition above are 
the same as indicated in Definitions 5 and 6. 

As we can see, history-aware interchangeability is a pre-
condition for minimal disruption. However, we have pre-
ferred to present the notions in this order, from the finest 
grained to more relaxed notions. 

Example. Consider in our running example that we 
initially are in configuration cA, with the client logged 
to the server A (adapted through AC A) and that they 
have already executed the trace {(C.login!,A.user?), 
(C.passwd!, A.passwd?) , (C.buybook!, A.buy?)}. If at that 
point we have to move to configuration cB, replacing the 
server A by the server B (for instance because the latter 
just became available and the client prefers it since it offers 
a wider functionality), we can check that both servers are 
history-aware interchangeable in the context of C and for 
the trace given. Thus, for performing the reconfiguration, 
we will have to initialise the new server B (adapted through 
BC,B), with the process connect ! pwd! buybook! 0 and then 
the reconfigured system would proceed without problems 
(possibly with the client taking advantage of the extended 
functionality provided by the new server). 

Example. Consider now that we are in con-
figuration cB, and the trace already executed 
is {(C.login!, B.connect?), (C.passwd!, B.pwd?), 
(C.buymagazine!,B.buymagazine?)}. If at that point 
the server B became unavailable, we could not move 
to configuration cA since for the trace already executed 
both configurations do not fulfil the conditions of history 
awareness substitutability (in fact, they would not fulfil 
any of the notions of substitutability we have defined so 
far). 

5.4 Advanced notions of substitutability 
Apart from those presented in previous sections, more ad-
vanced notions of substitutability could be envisioned. For 
instance, we have identified that it would be useful to en-
dow components with (possibly nested) transactions. Once 
a transaction is finished, there is no need to reproduce it 
if the component is substituted. This would lead to a no-
tion of transaction-aware substitutability, whose utility is 
shown with the following example: 
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Example. In our client/server example, the servers would 
specify two nested transactions: one covers the full 
servers' protocol, from the login (either with A.user 
or B.connect) to the logout phase (in both cases with 
disconnect ?). The other one, would be a sub-transaction, 
that starts when receiving a buy order, and ends when 
the acknowledgement has been sent to the client (e.g. 
from B.buybook to B.bookok for the server B). Then, 
it would be possible to start the system in config-
uration cB, buy some magazines from the server B 
(which is not supported by the server A) executing 
the trace {(C.login!,B.connect?), (C.passwd!,B.pwd?), 
(C.buymagazine!,B .buymagazine?), (C.ack?,B.bookok!)} 
and then move to configuration cA, substituting B by A. As 
the sale sub-transaction has finished, it can now be safely 
ignored when substituting the server A. Hence, the trace 
we would have to consider is just {(C.login!,B.connect?), 
(C.passwd!,B.pwd?)}, corresponding to the unfinished 
full session transaction. Now we can find that the move 
from configuration cB to cA fulfils the conditions of history-
awareness. Moreover, this would also prevent the client 
from buying again an already bought product. 

6 Component model support 

We plan to validate the ideas presented above through real-
world applications on implementations using the Fractal 
component model [5]. 

Fractal is a modular, extensible, and programming lan-
guage independent component model for designing, imple-
menting, deploying, and reconfiguring systems and appli-
cations. We consider that it is a suitable setting for showing 
the benefits of our proposals because it deals explicitly with 
system reconfiguration, and has been the origin of many in-
teresting formal underpinnings that can be applied to anal-
ysis of interface compatibility and verification of system 
properties [6, 3]. 

The Fractal model is an open component model, and in 
that sense it allows for arbitrary classes of controllers and 
interceptor objects, including user-defined ones. This al-
lows us to define our own reconfiguration controllers that 
will take care of component discovery, adaptation, initial-
isation, and system reconfiguration. Moreover, in Fractal 
all remote invocations go through a membrane that con-
trols the component. This makes the membrane an ideal 
container for a behavioural adaptor: the membrane will in-
tercept all incoming and outgoing messages and pass them 
to the behavioural adaptor; the latter will compensate mis-
match accordingly to the adaptation rules and orchestrate 
safe executions. 

A good starting point for experimenting with our results 
is to use the framework developed in [4]. The framework is 
based on a Fractal-compliant component model and uses 
custom reconfiguration controllers in order to allow the 
system to self-adapt to changes in the environment. Their 
model supports dynamic reconfiguration, dynamic compo-

nent instantiation, and support for interception of func-
tional requests. Moreover, controllers are implemented 
in the form of a component-based system, which means 
that each of our controllers would be seen as a component 
plugged in the component's membrane. 

7 Related work 
Dynamic reconfiguration [14] is not a new topic and many 
solutions have already been proposed in the context of dis-
tributed systems and software architectures [9, 10], graph 
transformation [1, 21], software adaptation [17, 16], meta-
modelling [8, 14], or reconfiguration patterns [7]. On 
the other hand, Software Adaptation is a recent solution 
to build component-based systems accessed and reused 
through their public interfaces. Adaptation is known as 
the only way to compose black-box components with mis-
matching interfaces. However, only few works have fo-
cused so far on the reconfiguration of systems whose cor-
rect execution is ensured using adaptor components. In the 
rest of this section, we focus on approaches that tackled 
reconfiguration aspects for systems developed using adap-
tation techniques. 

First of all, in [17], the authors present some issues 
raised while dynamically reconfiguring behavioural adap-
tors. In particular, they present an example in which a cou-
ple of reconfigurations is successively applied to an adaptor 
due to the upgrade of a component in which some actions 
have been first removed and next added. No solution is 
proposed in this work to automate or support the adaptor 
reconfiguration when some changes occur in the system. 

Most of the current adaptation proposals may be con-
sidered as global, since they proceed by computing global 
adaptors for closed systems made up of a predefined and 
fixed set of components. However, notably an incremental 
approach at the behavioural level is presented in [18, 16]. 
In these papers, the authors present a solution to build step 
by step a system consisting of several components which 
need some adaptations. To do so, they propose some tech-
niques to (i) generate an adaptor for each new component 
added to the system, and (i) reconfigure the system (com-
ponents and adaptors) when a component is removed. 

8 Conclusions 
We have presented a new research track where compo-
nents must be adapted to allow the system to be dynam-
ically reconfigured. We have discussed some basic re-
quirements for a runtime component substitution, and we 
have defined new interchangeability notions that allow to 
accommodate mismatch in behavioural interfaces. These 
notions are shown adequate for verifying compatibility of 
such components. For the same reason, we believe com-
ponent discovery algorithms should also take into account 
components that have some degree of mismatch, as far as 
there is a specification of how mismatch can be worked out. 
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Finally, before reconfiguring the system, we have shown 
that the new component must be adapted and initialised ac-
cordingly to the current system state. These constitute new 
requirements for the runtime platform that we plan to ad-
dress in the short-term. 

The work presented here should be taken as an initial 
step towards dynamic reconfiguration where component 
candidates present both signature and behavioural mis-
match. For the sake of simplicity, we have constrained 
ourselves to describe component protocols using LTS and 
CCS. However, one major drawback comes from this deci-
sion: data values present in message parameters are omit-
ted. Since the protocols between components are often de-
pendent on the data values carried in message parameters 
this limits the practical use of the proposal. An obvious 
extension of this work is to consider more expressive no-
tations for describing behavioural interfaces, for instance 
Symbolic Transitions Systems (STS), or a value-passing 
process algebra. This will be part of our future work. 
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