
ImageAnal Stereol2001;20:203-206
Original Research Paper

SPATIAL STATISTICS FOR SIMULATED PACKINGS OF SPHERES

ALEXANDER BEZRUKOV1, DIETRICH STOYAN1 AND MONIKA BARGIEŁ2

1Institut für Stochastik,TU BergakademieFreiberg, 09596Freiberg, Germany, 2Instituteof ComputerScience,
AGH Krakow, al. Mickiewicza30,30-059Krakow, Poland
e-mail: stoyan@orion.hrz.tu-freiberg.de
(AcceptedAugust24,2001)

ABSTRACT

This paperreportson spatial-statisticalanalysesfor simulatedrandompackingsof sphereswith random
diameters. The simulation methodsare the force-biasedalgorithm and the Jodrey-Tory sedimentation
algorithm.Thespherediametersaretakenasconstantor following abimodalor lognormaldistribution.
Standardcharacteristicsof spatialstatisticsareusedto describethesepackingsstatistically, namelyvolume
fraction,pair correlationfunctionof the systemof spherecentresandsphericalcontactdistribution function
of theset-theoreticunionof all spheres.Furthermore,thecoordinationnumbersareanalysed.

Keywords:contactdistribution, coordinationnumber, pair correlationfunction, simulation,spherepacking,
volumefraction.

INTRODUCTION

Randompackingsof sphereswith constantand
random diametersplay an important role in many
branches of physics and engineering. Simulated
packingsserveasmodelsfor realpackingsof particles,
e.g. in thecontext of particlescience,where,however,
the assumptionthat the particlesare spheresis often
a simplification. Also many porous media can be
representedaspackedarrangementsof spheres.

In theseand other cases,the characteristicsof
the simulated packings should be at least similar
to those of the real structures investigated.This
concernsprimarily mean value characteristicssuch
as porosity and mean coordination number and,
additionally, functions such as coordinationnumber
distribution, pair correlation function and spherical
contactdistribution function.

There is a wide variety of sphere packing
algorithms.Thispaperusestheforce-biasedalgorithm
(Mościńskietal., 1989;MościńskiandBargieł, 1991),
and the Jodrey-Tory sedimentationalgorithm (Jodry
and Tory, 1979). The first algorithm starts with a
very denseconfigurationof large sphereswhich can
even overlap. It reducesstepwisethe diametersand
moves the spheresin order to reduce the degree
of overlappings.The secondalgorithm simulatesthe
successivepackingof a containerwith spheresfalling
in thegravitationalfield. A spherewith threecontacts
with earlier packed spheresis consideredas being
in its final position.While the first algorithm is able
to producevery densenearly isotropic packings,the
secondoneyields loosepackingsof volume fraction
VV = 0.58 in the caseof equalspheres,which show

a light gradient in vertical direction. Other known
packingalgorithmsuse the discreteelementmethod
(StroevenandStroeven,2000).

For thephysicist,engineerandstatisticianthenthe
questionariseswhich of thesealgorithmsto choose.
Thedecisionshouldbe basedon statisticalproperties
of thepackingsproduced,i.e.assaidabove,themodel
characteristicsshould be as close as possibleto the
empirical counterpartsand the diameterdistributions
should be identical. Therefore, this paper presents
resultsof thetwo algorithmsfor someinterestingcases
of diameterdistributionsandpackingdensities.

Fig. 1. A simulatedsphere packing with a lognormal
diameterdistributionandvolumefractionVV=0.70.
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Fig. 2. A simulated sphere packing with bimodal
diameter distribution with diameters 1 and 10 and
VV=0.80.

POROSITY

First the most important parameterof sphere
packings is considered,packing density or volume
fraction VV of the spaceoccupied by the spheres
for two important cases,lognormal and two-point
distributions. The caseof a two-point distribution is
of particular interestsince in the literature just such
packingswerestudiedexperimentallyfor realspheres
(Sohnand Moreland,1968; Yu and Standish,1987).
Here one diameteris assumedto be 1 and the other
is k. The probabilitiesof occurrenceof thesevalues
are p1

� p and pk
� 1 � p. Fig. 3 shows porosity

η � 1 � VV as a function of k and v for packings
obtainedby thesedimentationalgorithm,where

v � p
p
�

k3 � 1 � p��� (1)

It is interestingto comparetheseresultswith the
empiricalresults,whicharealsoshown in Fig. 3.

It is not surprising that the empirical porosities
areclearlysmaller, sincethesedimentationalgorithm
doesnot include any compressionand rearragement
step.For the force-biasedalgorithm a similar figure
is not presented,sinceit is possibleto find program
parameterswhichyield just theempiricalvaluesgiven
in Fig. 3. In the lognormalcasetwo parametersplay
a role: µ and σ2, where the meanis given by m �
exp � µ � σ2 � 2� . It canbeobservedthatvolumefraction
VV dependsonly little on themean-valueparameterµ
but heavily on thevarianceparameterσ ; VV increases
with σ .

Fig. 3. Porosity versus relative volumev of smaller
spheres.The curvesresult from simulationswith the
sedimentationalgorithm, the pointsare experimental
datatakenfromSohnandMoreland(1968).Sizeratio
1 : k: � , ——0.5; , – – – 0.39; 	 , – 
 – 0.29; � , 
�


�
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PAIR CORRELATION FUNCTION AND
SPHERICAL CONTACT DISTRIBUTION

The classicaldescriptorof spatialvariability with
respectto a homogeneoussystem of sphereswith
meannumberλ of spherespervolumeunit is thepair
correlationfunction g � r � ; (seeStoyan et al., 1995,p.
129).We have determinedg � r � statisticallyby means
of the methoddescribedin Stoyan andStoyan(2001)
for many of thesimulatedpackings.
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Fig. 4. Pair correlation function for a denserandom
packingof sphereswith equaldiametersandVV=0.65.

For the caseof packingsof spheresof constant
diameterobtainedby the force-biasedalgorithm the
result is similar to the function shown in Fig. 4.10of
(Stoyan et al., 1995) if VV

� 0 � 64, while in the case
of VV

� 0 � 70 the higherorderis clearly expressedby
peaksmuchsharperasthoseshown in Fig. 4. For two-
point distributionsthenumberof peaksis smaller, and
they resultonly from pairsof smallspheres.
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Fig. 5. Pair correlation function for the case of a
lognormaldiameterdistribution andVV=0.70.

Finally, Fig. 5 shows thepair correlationfunction
in a typical lognormal case.The given mixture of
spheresof differentdiametersleadsto the effect that
this curve doesnot have any striking peak; it looks
like the pair correlationfunction of a so-calledsoft-
corepoint process.

Fig. 6. Sphericalcontactdistribution functions.
—— equal spheres,VV=0.64; – – – equal spheres,
VV=0.70; 
�


�


 lognormaldiameters.

The sphericalcontactdistribution function Hs
� r �

is a descriptorfor spheresystemsof a quite different
nature;it describesthesizeof theporespacebetween
the spheres;Hs

� r � is the distribution function of the
randomdistancefrom a randomtestpoint in thepore
spaceto thenearestspheresurfacepoint (Stoyanetal.,
1995,p. 206).

Fig. 6 shows Hs
� r � for equalsphereswith VV

�
0 � 64 and 0.70 and for the lognormal case with
VV

� 0 � 70. The different porosities and diameter
distributions lead of course to different spherical
contactdistribution functions, but also the different
arrangementof thespheresplaysa role.

COORDINATION NUMBER

A very important featureof spherepackingsare
the contactsbetweenspheres.They determine,for
example,thetopologicalconnectivity of thesystemof
spheresor thetransferof forcesin mechanicallyloaded
systemsof hardspheres.

In theliteraturetherearereportsonthedistribution
of the numberof contactsor coordinationnumberc
of a randomly chosensphereand its meanc. It is
clearthat thesecharacteristicsdependon thediameter
distributionaswell asonporosity. For realpackingsof
equalspheres,in BernalandMason(1960)the value
of c = 6.4 is given for a ‘randomclose’ packingand
c = 5.5 for a ‘loose’ randompacking,with VV

� 0 � 62
and 0.60, respectively. For packingsobtainedby the
sedimentationalgorithm values around c = 6 were
observed.

Fig. 7 shows the histogramof contactnumbers
c for the case of equal spheresand force-biased
algorithm with VV

� 0 � 64 and 0.70. Clearly, in
the denser packing there are more contacts. The
samefigure alsoshows the empiricalcontactnumber
distribution for the caseof lognormaldiametersasin
Fig. 1.

Fig. 7. Distribution of the numberof contactsof the
spheresin threepackings.
—— equal spheres,VV

� 0 � 64; – – – equal spheres,
VV

� 0 � 70; 


�


�
 lognormaldiameters,VV
� 0 � 70.

REFERENCES

Bernal DJ, Mason J (1960). Coordination of randomly
packedspheres.Nature188:910-1.

Jodrey WS,Tory EM (1979).Simulationof randompacking
of spheres.JSimulation32:1-12.
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