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ABSTRACT
Tannins are a group of polyphenolic compounds synthesized and accumulated by higher plants as secondary metabolites. 
They are divided into hydrolysable tannins and proanthocyanidins and are found in many plant tissues in which they occur in 
diverse structures and amounts. This review provides a brief background on tannin distribution in plants, and summarizes 
the current literature on tannins in strawberries, raspberries, blueberries, currently the most commonly cultivated and 
consumed berries, and chokeberries, which have become popular in the last decades. The effects of processing and storage 
on tannin composition and levels in processed products are also provided. 
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INTRODUCTION 

Tannins belong to the complex phenolic compounds, 
defined as phenolic derivatives synthesized by higher plants 
as secondary metabolites. More than 8000 tannin compounds 
have been isolated and chemically characterized (Krzyzowska 
et al., 2017). Tannins are phenylpropanoid compounds 
often condensed to polymers of variable length (Swanson, 
2003), which have molecular weights between 300 and 3000 
daltons (Da) (Mena et al., 2015). They are unstable and can 
be converted into various compounds when the plant cells 
are damaged (for example, during processing of plant raw 
materials) (Izawa et al., 2010). Tannins are synthesized by 
many plant species and can be found mainly in roots, stems, 
bark, leaves, buds and seeds, where they take up 5 to 10% 
of dry vascular plant material (Barbehenn and Constabel, 
2011). 

Structurally, tannins are divided into two classes: 
hydrolysable and condensed tannins (Izawa et al., 2010). 
Hydrolysable tannins are water-soluble (Izawa et al., 2010), 
and include ellagitannins, gallotannins and also more 
complex tannins. The basic structure of hydrolysable tannin 
is a carbohydrate whose hydroxyl groups are esterified with 
phenolic acids, such as gallic acid (Khanbabaee and Van Ree, 
2001).

The second group are proanthocyanidins (condensed 
tannins). They are the most abundant polyphenols in 
plants (Lamy et al., 2016). Condensed tannins are polymers 
of 2-50 flavonoid units, which are not susceptible to 
hydrolysis (Khanbabaee and Van Ree, 2001). Biosynthesis of 
proanthocyanidins requires products from the shikimate and 
acetate/malonate pathways. The starter and extension units of 
proanthocyanidins are generated via the flavonoid pathway, 
which shares the same upstream pathway with anthocyanidins, 
the substrates for anthocyanin synthesis. The key enzymes 
involved in this process are well known. Anthocyanidins can 
be catalysed by anthocyanidin reductase to produce flavan-
3-ols, important substrates for proanthocyanidin synthesis. 
Recent advances in understanding the molecular genetic 
basis of proanthocyanidin biosynthesis were described by 
Dixon and Sarnala (2020). 

The majority of condensed tannins are water-soluble, 
exceptions are some molecules with higher molecular weight 
(Izawa et al., 2010). They are more resistant to microbial 
degradation and also show stronger antiviral, antifungal, 
and antibacterial activities (Krzyzowska et al., 2017). It was 
found that condensed tannins, from some legume species, 
can be beneficial for cattle and other ruminants, because they 
reduce the risk of flatulence caused by high-protein diets and 
internal parasite loads (Constabel et al., 2014). More than 
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90% of total tannins on the market are condensed tannins 
(Khanbabaee and Van Ree, 2001; Filgueira et al., 2017). 

Tannins in foods cause astringent sensations and a bitter 
taste, and play an important role, due to their potential 
beneficial effects on human health (Lamy et al., 2016). The 
highest amounts of tannins have been reported in coffee, 
cocoa, chocolate, green and black tea, red wine, nuts, legumes, 
cereal grains, fruits and vegetables (Crozier et al, 2009; 
Smeriglio et al, 2017). Berries are characterised by high levels 
of micronutrients, vitamin C, folates (Di Vittori et al., 2018), 
polyphenols like anthocyanidins, which are responsible for 
the intense colour in many berries and many other antioxidant 
phytonutrients (Milivojević et al., 2011). Pre-harvest factors 
such as cultivar, cultivation practices, environment and plant 
age have a significant impact on commercial, organoleptic 
and nutritional quality in berries (Alvarez-Suarez et al., 2014). 
Light exposure is an important environmental factor with 
positive effects on flavonoid synthesis in raspberries (Wang et 
al., 2009), strawberries (Anttonen et al., 2006), grapes (Matus 
et al., 2009), and blueberries (Uleberg et al., 2012). However, 
blueberries accumulate high levels of anthocyanins even 
when grown in shaded sites, suggesting that the stimulation of 
flavonoid biosynthesis is cultivation and cultivar dependent 
(Di Vittori et al., 2018). In such fruits the biosynthesis of 
various flavonoids depends on the developmental stage of the 
fruit, while environmental factors have little influence. The 
content of anthocyanins in strawberries is more dependent 
on the ripening stage, while the accumulation of flavonols 
and proanthocyanidins is more sensitive to environmental 
factors (Carbone et al., 2009). The effects of light exposure 
and light wavelengths on flavonoid biosynthesis in fruits are 
described in detail in the review by Zoratti et al. (2015). 

This paper reviews the distribution of tannins in plants with 
special attention to strawberries, raspberries and blueberries, 
which are the most widely grown and consumed berries 
in the EU (Oliveira et al., 2019), as well as in chokeberry, 
which has become popular in recent decades. The effects of 
processing and storage on the composition of ellagitannins 
and proanthocyanidins and their levels in berry products are 
also provided.

DISTRIBUTION OF TANNINS IN PLANTS 
The most common composition of tannins in nature is 

a mixture of proanthocyanidins and hydrolysable tannins 
with the latter being present in lower quantities. There are 
some exceptions such as the Acacia sp. and Terminalia sp. 
species, which are an important source of condensed and 
hydrolysable tannins, and a few dicotyledons species (Furlan 
et al., 2010). 

Tannins in plants occupy up to 20% of the dry weight 
(DW), ranking them after cellulose, hemicellulose and 
lignin. The synthesis of tannins in plants is often associated 
with defence responses against microbial pathogens, harmful 
insects, herbivores (Furlan et al., 2010) and UV-A or UV-B 
radiation. Polyphenols are stored in vacuoles and cell walls 
(Fraga-Corral et al., 2020). Because of this, tannins have been 
found in many plant tissues: wood, bark, roots, leaves, fruits, 
and seeds (Sieniawska and Baj, 2017). 

The occurrence of tannins within plants varies widely 
among tissues, organs, cell types (Constabel et al., 2014) and 
varies among different species of the same genus (Prida and 
Puech, 2006). The accumulation of tannins is usually specific 
to certain cell types. During the development of O. viciifolia 
leaves, the condensed tannins shift from the abaxial to the 
adaxial side of the leaf and also into specialized cells in the 
epidermis (Lees et al., 1993). Specialized cells, which contain 
condensed tannins, have also been found in the phloem 
parenchyma in young poplars. In this case, condensed 
tannins accumulate in the hypodermal cells of older stems 
and in the epidermal cells of young stems (Kao et al., 2002). 
The accumulation tendency of condensed tannins into the 
epidermal layers has a protective function against pathogens 
and UV stress (Close and McArthur, 2002). 

Considerable quantities of tannins are present in the roots 
of some woody plants. In P. tremuloides root tips, condensed 
tannins are localized in the cortex, lateral root cap and 
epidermal tissues (Kao et al., 2002), while in eucalyptus and 
jack pine they are found in a region between the suberized 
zone and root tip (Mckenzie and Peterson, 1995). Condensed 
tannins in seeds may contribute to the endosperm and 
embryo protection by blocking the movement of molecules 
that oppose seed dormancy prior to early germination and 
stress by serving as physical and chemical barriers (Lepiniec 
et al., 2006). High tannin content has been reported in 
seed coats of Phaseolus vulgaris and other beans (Jin et al., 
2012), many nuts, sorghum cereal seeds and barley (Prior 
and Gu, 2005). Fruits containing high amounts of tannins 
continue to accumulate them until fully ripened, giving 
them a corresponding astringent taste, while fruits with low 
amounts of tannins stop their production at an early stage of 
development (Akagi et al., 2009).

TANNINS IN BERRIES
The term “berry” refers to small fruits growing in wild 

shrubs that can be bitter or sweet, with a juicy mesocarp, have 
an intense red, blue or purple colour or in some cases also a 
white colour (Hidalgo and Almajano, 2017). Berry fruits are 
usually used because of their special taste and attractive colour. 
They primarily include strawberry, blackberry, blueberry, 
raspberry, cranberry, elderberry, mulberry and currants, 
which are the most abundant berries worldwide (Manganaris 
et al., 2014; Di Vittori et al, 2018). Lesser known species 
also classified as berry fruits are: huckleberry, chokeberry, 
lingonberry, boysenberry, olallieberry, gooseberry, barberry, 
dewberry, juneberry, tayberry and exotic berries: açai berry, 
goji berry, physalis, cloudberry, pineberry and salmonberry 
(Leafy place, 2019).

Strawberry
More than 20 ellagitannins have been determined in fruits, 

leaves and roots of strawberry (Fragaria x ananassa Duch.) 
(Gasperotti et al., 2013; Karlińska et al., 2021). They consist of 
glucose esterified with hexahydroxydiphenic acid (HHDP) 
and gallic acid (Aaby et al., 2012). Their content varies with 
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cultivar, plant growth stage, and plant part. The synthesis and 
accumulation of ellagitannins are the most intensive in the 
leaves, however, a decreasing tendency in their content was 
observed throughout plant development (Karlińska et al., 
2021). The growth stage is reported to have a greater effect on 
ellagitannin content in strawberry morphological parts than 
the cultivar (Karlińska et al., 2021), however, the opposite 
was reported for strawberry fruits of different cultivars 
grown in Italy (Gasperotti et al. 2013). The ellagitannin 
level of mature strawberry fruits varies from 6.53 to 52.38 
mg/100 g FW (fresh weight) (Buendia et al. 2010; Nowicka 
et al., 2019; Karlińska et al., 2021). Studies have shown that 
the monomeric ellagitannins in strawberry fruits, roots and 
leaves are pedunculagin, casuarictin and potentillin. The 
main product of potentillin dimerization is agrimoniin, 
which has been found to prevail in strawberry fruits (Aaby et 
al., 2012; Nowicka et al., 2019), leaves and roots (Karlińska et 
al., 2021). Immature fruits have shown the highest contents 
of agrimoniin and those tended to decrease and reach lower 
values in fully mature fruits (Gasperotti et al., 2013; Aaby 
et al., 2012; Fecka et al., 2021), and even less agrimoniin 
was detected in overripe fruits (Gasperotti et al., 2013). Its 
mean values for ‘Syrena’, ‘Pandora ISK’, ‘Selvik’, and ‘Elvira’ 
cultivars vary from 0.17 mg/g in green fruits to 0.118 mg/g 
in pink and 0.111 mg/g FW in red fruits (Fecka et al., 2021). 
Agrimoniin was proposed a s chemotaxonomic marker 
for Fragaria (Okuda et al., 1992). The levels of agrimoniin 
did not show large differences between 27 cultivars grown 
in Norway (Aaby et al. 2012) with the average value of 8.8 
mg/100g FW, however, higher variability was observed for 
90 cultivars grown in Poland, with the values in the range 
from 3.60 to 30.79 mg/100 g FW (Nowicka et al., 2019). 
Woodland strawberries (Fragaria vesca) contain higher 
contents of ellagitannins and ellagic acid conjugates when 
compared to cultivated strawberries (Gasperotti et al., 2013). 
The fragariin, sanguiin H-2, ellagitannin with MW 1718, and 
β-ellagitannin with MW 1718 are generally present in much 
lower concentrations. The ratio of monomeric and dimeric 
ellagitannins in leaves and roots is relatively equal, whereas in 
fruits the dimeric forms predominate (Karlińska et al., 2021). 
The majority of ellagic acid in strawberry fruits is found 
in a bound form as a part of ellagitannins and constitutes, 
together with conjugated derivatives, less than 5% of total 
phenolics (Buendia et al. 2010).

Aaby et al. (2012) reported that the most abundant 
class of polyphenolic compounds in mature strawberry 
fruits are anthocyanins, which account for 41% of the 
total phenolic content, followed by flavan-3-ols (28 %) 
and ellagitannins (14%). However, Buendia et al. (2010) 
found proanthocyanidins to be the predominant phenolic 
compounds in Spanish strawberry cultivars with the values 
ranging from 0.539 to 1.632 mg/g FW. Similar findings 
were reported for strawberry fruits (Fragaria x ananassa 
Duch.) grown in Trentino in which proanthocyanidins 
represented between 54.8 and 77.4% of polyphenolic 
compounds (Gasperotti et al., 2015). Proanthocyanidin 
profile in strawberry fruit is complex. The terminal flavan-
3-ol in oligomers is (epi)catechin, and the extension units 
are (epi)catechin (60-70% of the proanthocyanidins) and 
(epi)afzelechin (propelargonidin). It has been reported that 

the degree of polymerization varies within cultivars. It is 
proposed that cultivars characterized with higher contents of 
monomers and dimers can potentially have better biological 
activity, because they can be better absorbed than larger 
proanthocyanidins oligomers (Buendia et al. 2010). Many 
potential health effects of ellagitannins have been listed in the 
literature. Their effect on the brain’s hippocampus is reducing 
the effect of aging in spatial orientation (Shukitt-Hale et 
al., 2007). They also influence the gastric epithelial cells 
by inhibiting the inflammatory response to TNF through 
NF-B dependent and independent mechanisms (Fumagalli 
et al., 2016), reduce the level of specific biomarkers for 
cardiovascular diseases, inflammation, blood pressure, lowers 
LDL cholesterol, controls glycaemia and promote antitumor 
activity in esophageal, lung and colon cancers (Desjardins, 
2014). A more detailed discussion of potential biological 
functions of ellagitannins and their metabolites is provided 
in the review paper by Landete (2011).

Strawberries as well as other Rosaceae fruits are stored 
frozen or processed in purees, juices, syrups and jams, 
because of their short shelf life. It has been reported that 
the transfer of ellagitannins from fresh fruits to products 
depends on the technological process used. The production 
of purees seems to be superior to the production of juices, 
since 56 to 92% of the total ellagitannins present in fresh 
fruits are transferred to purees, while they are lost in juice 
production, were 65 to 90% are present. The losses have been 
attributed to the high molecular weight compounds (1871-
2038 Da) that remain in pomace from unclarified juice 
production (Milczarek et al. 2021). It has been proposed 
that in the course of fruit processing, high molecular weight 
ellagitannins are depolymerized or degraded to conjugates, 
and that some ellagitannins could be exposed to hydrolysis 
leading to elevated ellagic acid levels in pomaces (Oszmiański 
and Wojdylo, 2009; Milczarek et al. 2021).

Raspberry
A major class of polyphenols in raspberries are ellagitannins 

which represent 53.5% to 75.9% of the total polyphenol 
content, with 100% being the sum of ellagitannins, 
anthocyanins, flavanols and flavonols (Mullen et al., 2002a; 
Sójka et al., 2016). Ellagitannins in raspberries are a mixture 
of monomeric and oligomeric tannins, which structure 
is characterized by ellagic and gallic acid moieties and 
sanguisorboyl linking ester group (Vrhovsek et al., 2006). 
Free ellagic acid represents a small fraction of the total ellagic 
acid released during hydrolysis of plant material, mainly 
from sanguiin H-6 and lambertianin C (Määttä-Riihinen et 
al., 2004; Mullen et al., 2002a). Relatively large variations in 
free ellagic acid (1.98-5.24 mg/kg FW) and total ellagitannins 
content (94.15-326 mg/100 g FW) have been reported for 
fruits of different cultivated raspberry (R. idaeus) cultivars 
(Milivojević et al., 2010; Bobinaité et al., 2012; Smeriglio et 
al., 2017; Vrhovsek et al., 2008), with higher levels of free 
ellagic acid detected in wild Rubus berries (12.71 mg/kg), 
which are usually characterized with smaller fruits of a more 
intensive colour (Çekiç and Őzgen, 2010).

The ellagitannin profile of raspberries usually consists of two 
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compounds. The main ellagitannin present in red (R. idaeus) 
and black (R. occidentalis) raspberries is the dimer, sanguiin 
H-6 with values ranging from 135 to 1743 mg/100 g DW and 
1537 mg/100 g DW, respectively (Sparzak et al., 2010; Kula et 
al., 2016). The trimer, lambertianin C, which consists of six 
HHDP, three glucosyl and three galloyl moieties, occurs in 
much lower concentrations with notable differences between 
certain cultivars (Mullen et al., 2003; Kula et al., 2016). The 
sanguiin H-6 (5% of DW) and also free ellagic acid (1% of 
DW) dominate in shoots of R. idaeus which are commonly 
used in folk medicine as herbal remedies (Krauze-Baranowska 
et al., 2014). Proanthocyanidins are B-type polymers and are 
composed of catechin, epicatechin and epiafzelechin. Their 
content in raspberries amounts to 79 mg/100 g FW (Gu et al., 
2004) and prevail in seeds and in insoluble parts of the skin.

The total content of ellagitannins and proanthocyanidins 
in maturing raspberry fruit decreases as maturity approaches 
(Beekwilder et al., 2005). Beside cultivar and stage of maturity, 
the content of phenolic compounds, including tannins, 
depends on cultivation practices, environmental conditions, 
and storage time (Bobinaité et al., 2012; Mazur et al., 2014).

Raspberries are perishable soft fruits and are preserved by 
deep freezing or processed into juice, jam or syrup. The fruits 
are also preserved by various drying techniques such as hot 
air-drying, freeze-drying, microwave-drying, and hot pump-
drying. The advantages and disadvantages of these methods 
are discussed in the review paper prepared by Piccolo et 
al. (2020). The authors concluded that the freeze-drying 
method is most likely the best choice for the preservation of 
bioactive compounds. Industrial processing of raspberries 
into juice causes losses of bioactive compounds. This is a 
consequence of the processing conditions which result in 
a polyphenol transformation or degradation and changes 
in fruit morphological characteristics. An interesting study 
was published by Sójka et al. (2016) reporting that raspberry 
fruit juice, when compared to fresh fruits, retains on average 
11.8% of ellagitannins. The majority of the ellagitannins 
remains in the press cake, especially in its seedless fraction, 
which is characterized by high levels of ellagitannins and 
proanthocyanidins. The phenolic composition of juices 
depends on the processed cultivar. The juice prepared from 
certain cultivars retains more anthocyanins and others 
more ellagitannins, when compared to fresh fruits. Further 
information highlighting the steps in juice processing, 
which cause significant losses and compositional changes 
of ellagitannins, are provided by Howard et al. (2012). 
The authors also discussed the possible mechanisms for 
ellagitannins losses during the processing into juices, purees, 
and canned products. Processing of raspberries into jams 
does not affect the ellagic acid glycoside content, which 
remains quite stable, while an increase in free ellagic acid 
content is usually observed, probably because of its release 
from ellagitannins with thermal treatment (Zafrilla et al., 
2001). However, the content of total ellagic acid in raspberry 
jams is much lower, 23-36% of those being present in the 
unprocessed berries (Koponen et al., 2007; Zafrilla et al., 
2001). When raspberries are frozen within 3 hours of 
harvest and stored at -30 °C for short time (4-5 days), no 
discernible difference in lambertianin C and sanguiin H-6 is 
observed, whereas storage of fruit at 4 °C for 3 days resulted 

in an increase in both ellagitannins (Mullen et al., 2002b). 
Therefore, consummation of freshly picked, freshly frozen or 
fresh commercial fruits, provides the intake of similar levels 
of phytochemicals. Prolonged storage in the freezer (one 
year) maintains total phenolics content, although ellagic acid 
decreases (De Ancos et al., 2000; Tϋrkben et al., 2010).

Blueberry
The highest amount of polyphenols in blueberries 

(Vaccinium cormymbosum L.) represents flavonoids, 
especially 25 individual anthocyanins (1000 mg/100 g 
FW), while flavonols, flavan-3-ols and proanthocyanidins, 
follow in considerably lower amounts. Blueberries are 
almost devoid of ellagitannins, while proanthocyanidins 
are present in a varying amounts with different degrees of 
polymerization; from monomeric flavanols to oligomers 
(degree of polymerization (DP) 2-10), and to high molecular 
weight polymers (DP > 10) (Gu et al., 2004). Oligomers in 
blueberries consist of catechin and epicatechin units that 
are singly linked [B1 (monomer) through B8 (octamer)] 
(Prior et al., 2001). Terminal units of blueberry polymeric 
proanthocyanidins consists of epicatechin and catechin, 
while extension units consist of epicatechin (Gu et al., 2002). 
The total amount of tannins in blueberries is on average 160 
mg/100 g FW (Diaconeasa et al., 2015). Highly polymerized 
forms of proanthocyanidins dominate in blueberry extracts, 
accounting for 72% of the total extractable proanthocyanidins 
(DP > 10) (Hellström et al., 2009).

The contents of proanthocyanidins in blueberries grown 
in Sweden varied from 13.9 in the ‘Camelia’ to 19.8 mg/100 
g FW in the ‘Duke’ cultivar (Liu et al., 2020). Much higher 
levels were reported by Smeriglio et al. (2017) and Gu et al., 
(2004) for cultivated blueberries (highbush) 87-274 and 179 
mg/100 g FW, respectively, and wild berries (lowbush) 311-
335 mg/100 g FW. However, the literature data is inconsistent. 
Prior et al. (2001) found that wild blueberries contain higher 
levels of total procyanidins compared to cultivated berries. 

Blueberry processing into products results in remarkable 
losses of proanthocyanidins. The losses of proanthocyanidins 
are caused during the large number and complexity of 
processing steps. Clarified blueberry juices preserve on 
average 38% of monomers, 58% of dimers, 24% of trimers, 
20% of tetramers and less than 11% of pentamers of 
proanthocyanidins present in frozen berries. Octamers were 
not detectable. Similar losses of compounds were reported for 
unclarified juices (Rodriguez-Mateos et al., 2014). Regarding 
the total levels of proanthocyanidins, nonclarified and 
clarified juices retained 19-36% and 23-47% of that in frozen 
berries (Brownmiller et al., 2009; Howard, et al., 2012). 

The greatest retention of proanthocyanidins is expected in 
simple canning processes in which thawed berries are covered 
with water or syrup and then pasteurized. In such processes, 
the berries remain intact and the enzymatic degradation 
is limited. Oligomers with DP > 3 were retained less when 
compared to proanthocyanidin monomers and dimers 
(Howard et al., 2012). The losses could be a consequence 
of a preferential binding of the large-molecular-weight 
proanthocyanidins to cell-wall polymers, which occurred 
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after cell disruption by heating and mixing. However, it is 
also possible that in response to thermal treatment, larger 
oligomers were depolymerized to monomers and dimers 
(Brownmiller et al., 2009).

Rodriguez-Mateos et al. (2014) studied the changes in 
proanthocyanidins content during the baking of a product 
with freeze-dried wild blueberry powder. They found no 
differences in total proanthocyanidin content. During 
the whole process, the content of lower molecular weight 
oligomers (dimers and trimers) increased by 36 and 28%, 
while nonamers and decamers completely disappeared. 

Proanthocyanidin content in blueberry products declined 
during 6 months of storage at 25 °C. Blueberries canned in 
water retained 38%, blueberries canned in syrup retained 
29%, while purees and juices retained less than 11% of 
proanthocyanidins. Larger oligomers in processed products 
were less stable than monomers and dimers (Brownmiller et 
al., 2009; Howard et al., 2012).

Chokeberry
The genus Aronia is represented by two species Aronia 

melanocarpa (Michx.) Elliot (black chokeberry) and Aronia 
arbutifolia (L.) Pers. known as red chokeberry. Aronia 
melanocarpa is the predominant commercial chokeberry 
cultivar and has gained increased popularity due to its 
assumed health-promoting effects, which have been reviewed 
by Sidor et al. (2019) and Kokotkiewicz et al. (2010) together 
with the berries pharmacologically relevant constituents. 
Chokeberries are very valuable as a food ingredient and are 
used in the food industry mainly for the production of juice, 
jam and wine, and as a natural colorant. 

The fruits have an astringent taste due to a high tannin 
content (Wu et al., 2004). They mainly contain polymeric 
proanthocyanidins (DP > 10) which account for about 66% 
to 82% of total polyphenolic compounds (Oszmiański and 
Wojdylo, 2005, Denev at al., 2018; Wu et al., 2004). Even 
higher amounts are present in smaller fruits (Wangensteen et 
al., 2014) and chokeberry leaves, for which 22% higher levels 
of proanthocyanidins were reported when compared to ripe 
fruits (Teleszko and Wojdylo, 2015). According to literature, 
their levels in fruits vary from 522 mg/100 g FW to 3671 
mg/100 g FW (Denev et al., 2018; Wu et al., 2004; Taheri et 
al., 2013), however, no significant differences were reported 
between black, red and purple (Aronia prunifolia) coloured 
chokeberry fruits (Taheri et al., 2013). Proanthocyanidins 
predominated in the berry flesh (70%) followed by the 
skin (25%) and kernels (5%) (Mayer-Miebach et al., 2012). 
An increasing trend in their content was observed with 
prolonged harvest time (Poyraz Engin and Mert, 2020). 
Chokeberry proanthocyanidins have been identified 
exclusively as procyanidin B-type, containing epicatechin 
as the main monomer unit (Oszmiański and Wojdylo, 
2005). Cultivated and wild A. melanocarpa fruits have a 
similar oligomeric proanthocyanidin composition (Sueiro 
et al., 2006). Different chokeberry varieties contain 80-95% 
extractable proanthocyanidins (Hellström et al., 2009; Taheri 
et al., 2013), while ellagitannins have not been detected 

(Kähkönen et al., 2001). In contrast, the chokeberry leaves, 
which are not used as functional food, are characterized by 
high proportions of flavanols (Teleszko and Wojdylo, 2015). 

The total proanthocyanidin content ranges from 
approximately 1408-1579 mg/100 g DW for chokeberry juice 
to 8192-9586 mg/100 g in pomace (Oszmiański and Wojdylo, 
2005; Rodríguez-Werner et al., 2019) and depends on genetic 
attributes, harvest date, cultivation location and practice, 
processing and storage. Their levels remain stable upon 
blanching, and then increase by 11% after enzyme treatment, 
probably due to the disruption of cell wall polysaccharides 
and proteins to which polymeric procyanidins are bound. The 
higher losses of about 40% of proanthocyanidins occurred 
during the pressing operation after which the majority of 
them remains in the pomace (Mayer-Miebach et al., 2012). 
Oszmiański and Lachowicz (2016) reported that the content 
of procyanidin polymers in juices prepared from crushed 
fruits before processing was higher by over 62% higher than 
in juices prepared from non-crushed berries. Juices stored 
for 6 months at 25 °C, retained more than 90% of the total 
proanthocyanidins (Wilkes et al., 2014). They are quite stable 
as no degradation was noticed after heating purees up to 100 
°C for 20 min (Mayer-Miebach et al., 2012).

CONCLUDING REMARKS
Berry fruits are important sources of tannins. Their 

content and chemical composition depend on the species, 
variety, cultivation practice, and treatment before and 
after harvest. Ellagitannins are found in strawberries and 
raspberries, but are less common in other berry fruits. The 
major class of tannins in blueberries and chokeberries are 
proanthocyanidins, while strawberries are characterized by 
both ellagitannins and proanthocyanidins. Chokeberries are 
characterized with the highest content of condensed tannins 
among 100 plant foods investigated. All these berries can be 
consumed fresh or processed into purees, juices, syrups, and 
jams, due to their short shelf life. They also can be preserved 
by deep freezing or by different drying techniques. Currently, 
cold storage or freeze-drying is the most effective strategy to 
preserve the colour and polyphenol content in berries and 
their products. Tannins are lost during processing to varying 
degrees, depending on the production technology. In general, 
processes comprised of more steps (e.g. juice production) 
result in the greatest losses. As large amounts of bioactive 
compounds are annually discharged in food by-products, 
challenges exist to improve the most critical steps and to retain 
these compounds in berry products. During processing and 
storage of berry products, the tannin composition is altered. 
What exactly happens to the various compounds belonging 
to the class of tannins during these processes is poorly 
understood and requires further consideration.
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Tanini v jagodičevju – pregled

IZVLEČEK
Tanini so skupina polifenolnih spojin, ki jih kot sekundarne metabolite sintetizirajo in akumulirajo višje rastline. Delimo jih 

na hidrolizabilne tanine in proantocianidine. Prisotni so v številnih rastlinskih tkivih v obliki različnih struktur in v različnih 
količinah. Pregledni članek ponuja kratek pregled o porazdelitvi taninov v rastlinah in povzema trenutno znane izsledke o taninih 
v jagodah, malinah, borovnicah, ki so najpogosteje gojeno in konzumirano jagodičevje ter aroniji, ki je postala priljubljena v 
zadnjih desetletjih. Povzeti so tudi učinki predelave in skladiščenja na taninsko sestavo in njihova vsebnost v izdelkih.

Ključne besede: elagitanini, proantocianidini, jagode, maline, borovnice, aronija

A Review of Tannins in Berries


	Agricultura 2021.pdf

