
Informática 35 (2011) 3-13 3

A Framework for Automatic Generation of Processes for Self-Adaptive
Software Systems

Carlos Eduardo da Silva and Rog6rio de Lemos
School of Computing, University of Kent
Canterbury, Kent, CT2 7NF, UK
E-mail: {ces26, r.delemos}@kent.ac.uk

Keywords: self-adaptive systems, workflow generation, planning, process, architectural reconfiguration

Received: May 10, 2010

The self-adaptation of software systems is a complex process that depends on several factors that can
change during the system operational lifetime. Hence, it is necessary to define mechanisms forproviding
a self-adaptive system the capability of generating during run-time the process that controls its adapta-
tion. This paper presents a framework for the automatic generation of processes for self-adaptive software
systems based on the use of workflows, model-based and artificial intelligence planning techniques. Our
approach can be applied to different application domains, improves the scalability associated with the gen-
eration of adaptation plans, and enables the usage of different planning techniques. For evaluating the
approach, we have developed a prototype forgenerating during run-time the workflows that coordinate the
architectural reconfiguration of a web-based application.

Povzetek: Opisanoje okolje za generiranje procesov za prilagodljive sisteme.

1 Introduction
It is commonly agreed that self-adaptive software systems
should have the capability of modifying their own structure
and/or behaviour at run-time due to changes in the system,
its requirements, or the environment. In order to deter-
mine the actions to be taken to adapt itself, a self-adaptive
software system observes and analyses itself and its envi-
ronment, and if an adaptation is deemed to be necessary,
a plan is generated for altering the system in a controlled
manner. These systems are usually implemented in terms
of a feedback control loop, and one of its key activities is
the generation of adaptation plans [6].

The self-adaptation of a software system is a complex
process that depends on several factors that may change
during the system operational lifetime. In this context, an
adaptation plan should respect the relationships and depen-
dencies among the elements that compose the system, tak-
ing into account the actual state of the system and its en-
vironment. Thus, it is expected that self-adaptive software
systems should be able to generate adaptation plans during
run-time, in order to deal effectively with the variability
and uncertainty involved in the adaptation. Otherwise, the
self-adaptation process would cease to be consistent with
the actual system that it controls, since the adaptation pro-
cess would not be able to consider the actual system state,
thus restricting what and how can be adapted. Some ex-
isting approaches for software self-adaptation (such as [7]
[15]) explore mechanisms for the selection of adaptation
plans, where each available plan and the conditions asso-
ciated with the selection of that plan are defined at design-
time through the use of adaptation policies. However, it is

difficult to anticipate, at design-time, all the possible con-
texts of adaptation for some types of systems. For example,
resources considered during the design of the adaptation
policies may not be available during the system execution,
or new adaptation possibilities that have not been consid-
ered at design-time may become feasible due the availabil-
ity of new resources. To deal with this problem, it is nec-
essary the definition of mechanisms for providing a self-
adaptive software system the capability of generating, dur-
ing run-time, the process that controls and coordinates soft-
ware adaptation. In a previous work [8], we have outlined
an approach based on the use of dynamic workflows for co-
ordinating the self-adaptation of software systems. In this
paper, we detail that approach by defining a framework that
enables the dynamic generation of processes during run-
time. This framework consists of a process and collection
of languages, mechanisms and techniques, and its support-
ing computational infrastructure, consisting of open source
and in-house tools,

Currently, there is a wide range of techniques for gen-
erating processes in different application domains, such
as, web service composition [13], grid computing [11],
software management [3], and architectural reconfigura-
tion [4], [20]. These approaches present different solutions
that are very specific to their respective domains. More-
over, they are difficult to be reused in other domains [11],
and in some cases, in other applications inside the same
domain [4]. Compared with existing similar approaches,
our main contribution is a generic framework for the au-
tomatic generation of processes for self-adaptive software
systems. The objective is to define a framework that can be

4 Informatica 35 (2011) 3-13 C.E. da Silva et al.

applied to different application domains, and that can han-
dle the scalability associated with the generation of adapta-
tion plans. In order to achieve this, our framework is based
on a combination of techniques, such as, workflows, arti-
ficial intelligence (AI) planning and model transformation.
Workflows are used as a means to implement the processes,
AI planning is used to dynamically generate the processes,
while model transformation is employed in the translation
between domain specific models into planning problems.
A more specific contribution, which is an integral part of
the framework, is the use of model-based technology for
the generation of adaptation plans, thus enabling the usage
of different planning techniques according to the needs of
the application domain. In order to increase the scalability
of the framework, the generation of processes is split into
two levels of abstraction, namely, strategic and tactical, and
to reduce the complexity of the overall interaction between
these levels, the framework depends on the explicit repre-
sentation of feedback loops [6], [18]. In order to evaluate
the proposed approach, we have implemented a prototype
where the proposed framework is being applied for gener-
ating adaptation plans that manage the architectural recon-
figuration of a web-based self-adaptive application.

The rest of this paper is organised as follows. Section 2
presents some preliminary information that constitute the
basis of the defined framework. Section 3 describes the
proposed framework. Section 4 presents the application of
the framework in the context of architectural reconfigura-
tion of self-adaptive software systems, and evaluates the
overall effectiveness of the proposed framework. Section 5
discuss some related work, while the conclusions and fu-
ture directions of research are presented on Section 6.

2 Background

This section presents a brief overview of some of the key
technologies on which the proposed framework for dy-
namic process generation is based.

We have adopted as a basis for generating processes
the three-layer reference model for architecture-based self-
managed systems adopted by Kramer and Magee [18]. In
their model, the component control layer (the bottom layer)
consists of the components that accomplish the system
function, and includes facilities for supporting the manipu-
lation of components (e.g., status query, creation and inter-
connection). The change management layer modifies the
component architecture in response to changes that occur
at the bottom layer, or in response to new goals from the
layer above. The goal management layer (top layer) deals
with high level goals of the system by changing manage-
ment plans according to requests from the layer below and
in response to the introduction of new goals.

The techniques for the generation of workflows can be
divided into static and dynamic [13]. Static techniques
for generating workflows are employed during design or
compile-time, when workflows are not expected to change

during run-time. On the other hand, dynamic techniques
support the generation or modification of workflows at run-
time in order to handle changes that may occur. Static tech-
niques can receive as input an abstract model of the tasks
that should be carried out, without identifying the resources
to be used during execution, and workflow generation con-
sists of selecting the actual resources for the abstract model.
While dynamic techniques are able to automatically create
the abstract model and select the appropriate resources for
its execution. Our approach is classified as a dynamic gen-
eration technique where we apply AI planning for create
the abstract model.

AI planning endeavours to find from a particular initial
state a sequence of actions that are able to achieve an objec-
tive. In order to use AI planning, it is necessary to define a
domain representation, which identifies among other things
the available actions (or tasks) that can be used for gener-
ating a plan, and a problem representation, which includes
the initial state and the desired goal. Currently, there is a
wide variety of planners available that employ different al-
gorithms and techniques, and support different heuristics.
These planners allow tasks to be represented in different
ways, including, pre- and post-conditions, temporal infor-
mation (time for executing the task), and hierarchical task
networks (tasks that can be decomposed in further tasks).
For supporting this wide range of planning systems, there
is a standard language called the Planning Domain Defini-
tion Language (PDDL), which is used to specify domain
and problem representations [14].

Model-based technology explores the use of models
at different levels of abstraction, and transformations be-
tween levels to manage complexity. These models con-
form to specific meta-models, which define the relation-
ships among the concepts that can be used in a particular
domain. Transformations allow the generation of different
artefacts (e.g., source code) based on high level models, en-
suring consistency between the models and the generated
artefacts [19].

3 Framework for process generation

In our approach, processes are represented through work-
flows that are dynamically generated. Our framework di-
vides the generation and execution of workflows in three
phases: strategic, tactical and operational. At the strate-
gic phase, AI planning is used to generate abstract work-
flows. An abstract workflow describes the set of tasks and
the data dependencies among them, but without identifying
the actual resources that will be used during the workflow
execution. At the tactical phase, an abstract workflow is
mapped into a concrete workflow which identifies the ac-
tual resources associated with the tasks. It is important to
note that an abstract workflow can be mapped into differ-
ent concrete workflows by using different combinations of
resources. At the operational phase, the concrete work-
flow is executed. Figure 1 presents a simplified view of our

A FRAMEWORK FOR AUTOMATIC . Informatica 35 (2011) 3-13 5

approach for the dynamic generation of workflows.

Figure 1: Overview of workflow generation.

The proposed approach can be placed in the context of
the three layers reference model for self-managed system
adopted by Kramer and Magee [18]. At the goals manage-
ment layer, corresponding to our strategic phase, abstract
workflows are generated according to a particular objective
(or goal). These workflows are used as a basis for gen-
erating the concrete workflows at the change management
layer, corresponding to our tactical phase. Once a concrete
workflow has been generated, it is executed at the compo-
nent control layer, corresponding to the operational phase.
In our approach, similar to the three layers reference model,
if errors occur at a particular phase and that phase is not
able to handle the error, these are propagated to the previ-
ous phase in which they should be dealt with. In case of a
problem occurs during the execution of the concrete work-
flow, a new concrete workflow is generated at the tactical
phase, without the need to generate a new abstract work-
flow. If it is not possible to generate a concrete workflow
(e.g., there are not enough resources), the generation goes
back to the strategic phase, where a new abstract workflow
is generated. In the eventuality it is not possible to generate
an abstract workflow, the generation finishes with an error.

In the rest of this section, we provide more details con-
cerning key aspects of the proposed framework. The first
step, though, is to elaborate on the type of workflows sup-
ported by our approach, then we describe the task tem-
plates that are used for generating workflows, and finally,
we present the actual process that enables the dynamic gen-
eration of workflows.

3.1 Types of workflows
In the context of the proposed framework for the dynamic
generation of processes during run-time, it is important to
distinguish how workflows are related to the system itself.
Workflows can either be an integral part of the system or
they can be peripheral to the system.

A workflow is an integral part of a system if its execu-
tion constitutes the system itself. This is the case of work-
flows that implement business processes, where each exe-
cuted task contributes to the service to be delivered by the
business (the goal of the workflow). In these workflows,
the non-functional properties associated with the workflow
may influence the non-functional properties of the system
itself. For example, the execution time associated with a

particular task should influence the time it takes for the
workflow to execute. Moreover, the criteria for selecting
which tasks should be part of a workflow and how they
should be composed should be dictated by the requirements
associated with the system. For example, in the case of web
service orchestration, depending on the expected overall
execution time of the workflow, the appropriate combina-
tion of tasks should be identified to compose the workflow.

A workflow is a peripheral part of a system if its exe-
cution has as an outcome the system that is expected to
deliver the actual services. This is the case of workflows,
for example, that coordinate architectural reconfiguration
of software systems, where the goal of the workflow is to
generate a system that can deliver the actual services. In
these workflows, the non-functional properties associated
with the workflow have almost no relation with the proper-
ties of the system being generated by the workflow. Thus,
it is expected that the criteria for generating the workflow,
and the criteria for generating the system from the execu-
tion of the workflow to be distinct. For example, in the
architectural configuration of a software system, reliability
could be a key property for that system, and it may not be
considered when generating the workflow that would pro-
duce the actual system.

3.2 Defining task templates
In order to use AI planning, it is necessary to define task
templates to be used by the planner in terms of their pre-
and post-conditions. In our work we have used Planning
Domain Definition Language (PDDL) to define task tem-
plates, and these templates are implemented as workflows.
These implementations are structured in terms of atomic
actions [10], as a means for incorporating fault tolerance,
based on exception handling, into the workflow execution.
Figure 2 presents the base structure defined for implement-
ing task templates. Following the task templates specifica-
tion, task template implementations include pre- and post-
conditions checks, respectively, before and after the execu-
tion of the associated task.

Key: 0 start (0) End | | Activity " Normal flow
' Exceptional flow

Figure 2: General structure for task templates implementa-
tion.

Task templates can have two possible outcomes: Suc-
cess, representing the successful execution of the task, and
Failure, representing failure in the execution of the task. A
task template implementation may incorporate a recovery
path, which is activated when there is a failure during exe-
cution of the task, or a violation of its post-condition. The

6 Informatica 35 (2011) 3-13 C.E. da Silva et al.

recovery can be implemented in different ways (forward
or backward) according to the application domain, and the
task only finishes successfully when the post-condition is
fully satisfied. In our approach, it is the system developer
who decides how to implement the recovery. For now, we
are restricting the implementation of our approach to back-
ward error recovery, where the effects of a task are undone
before finishing with a failure.

3.3 Workflow generation process
As previously mentioned, our framework is partitioned into
three different phases, where the two first phases are associ-
ated with the generation of workflows, and the last phase is
related to the workflow execution. Each phase of the gen-
eration process is composed by several activities1, where
some of these activities are dependent on the application
domain in which the generation framework is being used,
while others are completely independent of the application
domain. In the following, we detail the activities associated
with the strategic and tactical phases, while focusing on the
domain independent activities.

3.3.1 Strategic phase

The main objective at this phase is to find the sequence
of tasks that will compose an abstract workflow. This is
achieved by means of AI planning techniques. In order to
generate a workflow, an AI planner receives as input the
goal to be achieved, the initial state, and a set of available
task templates (with associated pre- and post-conditions).

Figure 3 presents an overview of how a workflow is gen-
erated at the strategy phase. In order to use AI planning,
it is necessary, first, to obtain the initial state and the goals
associated with the workflow, which are represented by the
Obtain current state and Obtain workflow goals activity.
These activities are dependent of the application domain in
which the generation framework is being used.

Obtain
current
state

T T

Obtain
workflow

goals

, Translate
Into pre/post

Run
planner

Translate
into

workflow

To tactical phaie

Key: Start 10) End (| Activity | Normal flow
' Exceptional flow

Figure 3: Overview of the activities of the strategic phase.

The Translate into pre/post represents the activity of
translating the goal and the initial state from the notation
(or representation format) used by the application domain
to the notation employed by the planning technique. This
translation receives as input one or more models and pro-
duces a planning problem representation in PDDL. These
input models describe the goal and the initial state associ-
ated with the workflow in a domain dependent format. For

Activities refer to the steps of the generation, while tasks are associ-
ated with the generated workflow.

example, goal-oriented models can be used to represent the
objective associated with business processes [16], while ar-
chitectural models can be used when considering software
reconfiguration [20].

Once the pre- and post-conditions have been defined, the
next step is the execution of the planner being used (Run
planner activity). Depending on the planning technique
used, there are several possibilities for generating work-
flows, and one workflow must be selected based on certain
criteria. This selection can be incorporated in the planning
technique through the use of different heuristics (such as
the number of tasks in the generated workflow, or the time/-
cost for executing the generated workflow), or can be a
second step after the several possible workflows have been
identified. In our approach, we have decided to represent it
as a single activity, since it is affected by the planning tech-
nique used. Since most planners support PDDL, and re-
ceive as input pre- and post-conditions in this language, we
can easily change the planner used with no, or very small
impact in the task templates specification and the other ac-
tivities of the strategy level. In case it is not possible to find
a plan for a given set of pre- and post-conditions, the Run
planner activity finishes with an error, and the strategic
phase is restarted.

The Translate into workflow activity receives the out-
put of the planner and translates it into an abstract workflow
in the format used for specifying workflows in the execu-
tion platform, in our case, the YAWL workflow modelling
language [23]. This translation involves the instantiation of
each action identified in the PDDL plan as a YAWL work-
flow task, where the names identified in the action are used
for populating the associated workflow task.

It is important to mention that the tasks that compose an
abstract workflow are referred to as strategic tasks, and the
resources associated with these tasks are referred to using
logical names, which are sufficient to identify the actual
resources at the next phase. In case of a problem at the
tactical phase, or during the Run planner activity, the cur-
rent state is updated (Obtain current state activity) and
the Obtain workflow goals activity is activated to decide
whether a new goal should be tried, or if the generation
finishes with an error.

3.3.2 Tactical phase

The main concern at this phase is to allocate the appropri-
ated resources to the tasks of the abstract workflow. The
way in which the resources are identified is dependent on
the application domain, and on the type of workflow be-
ing considered. When dealing with workflows that are an
integral part of the system, the resources of the tactical
phase are called tactical tasks, which are used for replac-
ing the strategic tasks of the abstract workflow. In case
of workflows that are a peripheral part of the system, we
consider the strategic tasks as parametrised tasks, where
logical names are used as the task parameters. In this case,
the resources of the tactical phase are called concrete pa-

A FRAMEWORK FOR AUTOMATIC . Informatica 35 (2011) 3-13 7

rameters. Considering those two types of workflows, we
have structured the activities of this phase in a way that al-
lows the use of any of the cases (or both at the same time)
according to the application domain. Figure 4 presents an
overview of the activities at this phase.

Extract Select Replace Select
Replace

tasks strategic concrete tasks tactical
Replace

tasks
tasks parameters parameters tasks

Replace
tasks

From strategic phase To operational ptiaHC

To strategic phaae From operational

Key: (Activity ~ Normal flow
' Exceptional flow

Figure 5: Overview of the infrastructure for supporting pro-
cess generation.

Figure 4: Activities of the tactics level.

The first activity at the tactical phase consists in ex-
tracting the strategic tasks that compose the received ab-
stract workflow (Extract strategic tasks). The next activ-
ity (Select concrete parameters) is responsible for iden-
tifying the concrete parameters of a peripheral workflow.
These concrete parameters are then used as replacement
for the logical parameters in the extracted tasks (Replace
tasks parameters). These tasks, with the concrete param-
eters identified, are then used in the next activity (Select
tactical tasks) for selecting the tactical tasks of an inte-
gral workflow. Once the tactical tasks have been selected,
they are used as replacement in the tasks of the abstract
workflow (Replace tasks), resulting in a concrete work-
flow that can be executed at the next phase.

In case of failure during the execution of the generated
workflow, new tactical tasks are selected for generating a
new concrete workflow. If no tactical tasks are selected
based on the concrete parameters, new concrete parame-
ters are selected and the process repeated. If there are no
available resources for the concrete parameters, the tacti-
cal phase finishes with a failure, and the process goes back
to the strategical phase. It is important to note that it is
necessary to control the relationship between the selection
of concrete parameters, and the selection of tactical tasks.
For example, in case there are no tactical tasks for a de-
termined set of parameters, this set must be identified, and
eliminated from the possible parameters in order to avoid
an infinite loop. The same thing happens in the interaction
between the execution of a concrete workflow and the se-
lection of new tactical tasks, and between the strategic and
tactical phase.

Apart from the changes in the task template implemen-
tation, the tactical phase is also customised according with
the considered type of workflow. In this way, it is possible
to deal with peripheral workflows by eliminating the Se-
lect tactical tasks activity, only with integral workflows
by eliminating the Select concrete parameters and the
Replace tasks parameters activities, or with both types
by not eliminating any of the activities. This decision must
be made during the instantiation of the framework into a
particular domain. For example, different web service in-
stances could be captured as tactical tasks of an integral
workflow.

3.4 Infrastructure
In the sequence, we describe the tools and techniques of
the infrastructure that provides the basis for dynamically
generating workflows. We present the infrastructure's main
components, and identifying those components that must
be modified according with the application domain.

Figure 5 presents the infrastructure that underpins the
proposed framework. The generation process is managed
through a workflow. Workflow specifications are modelled
using the YAWL workflow modelling language [23], and
are executed in the YAWL Workflow Management Sys-
tem (WfMS). All elements have been implemented using
the Java programming language, and the communication
among them uses web service technology. The Model
translator component must be customised based on the ap-
plication domain by providing the transformation rules that
translates domain specific models into planning problems.
We have successfully used different planners, implemented
in C and Python (Satplan, Sgplan6, LPG-td, LAMA)2 by
building Java wrappers for each one of them. When deal-
ing with planning based only on pre- and post-conditions,
the replacement of the planner used has no impact in the
other components of the framework. We also used tempo-
ral based planning, requiring the modification of the task
template specification for including the appropriated non-
functional property (e.g., the cost of each action), and the
transformation rules of the Model translator component
for including the metric used by the planner (e.g., mini-
mize the total execution time of the generated plan) in the
problem representation. The Workflow translator com-
ponent is responsible for translating a PDDL plan into an
YAWL workflow specification. It does that by parsing a
PDDL plan and recovering the task implementation associ-
ated with each task of the plan. These task implementations
are them composed together as the tasks of a new work-
flow specification using the services of the Workflow spec
handler component. The Workflow spec handler pro-
vides different services for manipulating workflow speci-
fications, and has been implemented based on the API of
the YAWL WfMS. All repositories have been implemented
as Java classes. The Workflow spec repository interacts
with the YAWL WfMS and its worklets service [1] for load-

2 Participants of different editions of the International Planning Com-
petition: http://ipc.icaps-conference.org/

http://ipc.icaps-conference.org/

8 Informatica 35 (2011) 3-13 C.E. da Silva et al.

ing concrete workflows into the WfMS engine. The Tac-
tical tasks selector is responsible for implementing the
decision making associated with the selection of tasks in
the tactical phase, while the Tactical tasks repository is
used for storing all available tactical tasks.

4 Process generation for
architectural reconfiguration

This section describes how the proposed framework is be-
ing used for generating the workflows that manage the ar-
chitectural reconfiguration of a self-adaptive application,
presenting the case study application used for its evalua-
tion, its prototype implementation and a brief discussion
about some experiments results.

4.1 The reconfiguration process
In the context of the Collect/Analyse/Decide/Act (CADA)
feedback control loop [12], our reconfiguration process is
related to the decide and act phases, while we assume the
existence of mechanisms responsible for the collect and
analyse phases. The decide phase of the feedback loop is
responsible for identifying what to adapt (the selection of a
configuration), and how to adapt (the generation of a work-
flow for connecting this configuration), while the act phase
is responsible for executing the generated workflow. In this
scenario, it is important to mention that we are not con-
cerned with the selection of an architectural configuration
for the system. This is outside the scope of our work, and
there are several existing approaches that can be used to
implement this (e.g., [2]). Instead, our focus is in demon-
strating how adaptation plans can be generated based on
the selected configuration.

In our approach, we divided a configuration model in
two different levels of concerns, reflecting the division be-
tween abstract and concrete workflows. In this way, an
abstract configuration describes a system configuration in
terms of its components, identified by a logical names, their
types and connections, identifying the structure of the sys-
tem, but abstracting away from the actual component in-
stances. A concrete configuration, on the other hand, de-
scribes a system configuration in terms of actual compo-
nent instances, and their respective attributes. Similar to an
abstract workflow, an abstract configuration can be instan-
tiated into different concrete configurations depending on
the availability of actual component instances.

Figure 6 presents an overview of the reconfiguration pro-
cess. At the strategic phase, the initial state and goal cor-
respond, respectively, to the current and selected configu-
rations. The selected configuration is an abstract configu-
ration, where the affected elements are treated as abstract
elements. For example, when dealing with the replacement
of a component, the new component can be treated as an
abstract component, allowing the reuse of the abstract con-
figuration by replacing this abstract component. If the pro-

cess is being applied to establish a new configuration, all
elements are treated as abstract elements. The Translate
into Pre/post activity generates the planner inputs from
architectural models using a translation algorithm based
on model comparison techniques, where the architectural
models are compared, and the results of this comparison
are translated into a problem specification in PDDL using
a set of model transformation rules. This algorithm fol-
lows the idea of model transformation employed in model-
driven engineering, where a model (the comparison results)
is transformed into another model (pre- and post-conditions
expressed in PDDL) [19]. In case the planner can not find a
plan for a given set of pre- and post-conditions, a new con-
figuration is selected, or the reconfiguration finishes with a
failure.

At the tactical phase, the Obtain concrete configura-
tion is responsible for finding a concrete configuration for
the system, which is used for generating a concrete work-
flow. This activity corresponds to the Select concrete
parameters activity presented in Section 3.3.2. It is im-
portant to mention that in the present context, the gener-
ated workflows are a peripheral part of the system, where
abstract workflows are characterised by the use of logical
names as tasks parameters. In this way, we do not consider
the Selection of tactical tasks activity at the tactics phase.

The generated workflow is then executed changing the
target system. In case of a failure during its execution (e.g.,
a failure while connecting two components), a new con-
crete configuration is selected, and a new concrete work-
flow is generated and executed. For now, we are assuming
the existence of exception handling mechanisms capable of
undoing the effects of the failed workflow before returning
to the tactical phase. In case there are not enough resources
for establishing a new concrete configuration based on the
selected abstract configuration, a new abstract configura-
tion is selected, and a new abstract workflow is generated.
If it is not possible to find a new configuration for the sys-
tem, the process finishes with an error.

4.2 Case study
In the sequence, we present an example scenario of a dis-
tributed system that was used to evaluate our work.

The developed prototype application provides stock
quotes portfolio reports with suggestions of investments
based on historical and current information about the client,
and the actual stock quotes values. In this scenario, we con-
sider the existence of different resources that are captured
by different component types, which can be combined in
different configurations for the provision of the mentioned
service. For each of these component types, there are sev-
eral component instances that can be used. New instances
and resource types can become available, resulting in con-
figurations not envisioned at design-time.

Figure 7 presents an example of a configuration for the
provision of this service. The Front end component rep-
resents the user access point to the service. Report ser-

A FRAMEWORK FOR AUTOMATIC . Informatica 35 (2011) 3-13

Operational phase

Obtain
current

configuration.
nr

Select
configuration

Translate
into pre/post

Run
planner

Translate
Into

workflow

Extract
strategic

Obtain
concrete

Configuration

Replace
tasks

parameters

Replace
tasks

Execute
concrete
workflow

Key: % start End I] Activity Normal flow
Exceptional flow

Figure 6: Overview of the process for generating reconfiguration plans.

vice logic represents the application logic of the offered
service (stock quote portfolio report), and requires services
from internal and external providers. External providers
are used for obtaining stock quote values, which can be ob-
tained from different sources. These are captured through
Bridge components. A bridge component handles archi-
tectural mismatches between the service providers and the
system, providing an uniform interface for the different on-
line providers. The Client info logic component, an in-
ternal service, provides information about the client, and
requires a Database component.

Figure 7: Example of a configuration.

Follow the division between abstract and concrete con-
figurations, each component instance of a concrete con-
figuration is associated to a logical name and type. In
this way, GUI1 :C1 :Front End indicates that the com-
ponent instance GUI1 is associated with logical name C1
with functional requirements associated with components
of type Front End.

4.3 Prototype implementation

The infrastructure for supporting the defined reconfigura-
tion process has been implemented based on the architec-
ture presented in Figure 5, and is presented in Figure 8.

In this prototype, architectural models are represented
using Eclipse Modelling Framework (EMF) models based
on xADL 2.0 [9]. In order to run our experiments, we
have implemented a simplified execution platform in which
components must be blocked (a kind of quiescent state
[17]) before being involved in a reconfiguration, blocked
components are not considered when selecting a new con-
figuration, and all architectural elements provide two dif-
ferent types of interfaces, application and configuration ser-
vices interfaces, as explained in [10]. The Model trans-
lator component has been implemented based on EMF

Figure 8: Overview of the overall system architecture.

and Atlas Transformation Language3. This component re-
ceives architectural models as input, and applies a set of
ATL transformation rules for generating a problem descrip-
tion in PDDL. Figure 9 presents an example of a PDDL
problem description generated by the Model translator
component. This example considers the establishment of
the configuration presented in Figure 7. Thus, the inputs
used are an empty xADL description, corresponding to
the current configuration, and a xADL description of the
configuration of Figure 7, corresponding to the selected
configuration. The header has an identifier for the prob-
lem (reconfigurationProblem) and a reference to the do-
main representation where the actions and predicates are
described. The list of objects involved includes all com-
ponents (identified by logical names) and their provided
and required interfaces. In this example, all involved com-
ponents are unblocked, and all connections are not estab-
lished.

Since we consider the generation of peripheral work-
flows, the Tactical tasks selector component is deacti-
vated by removing the respective activity from the work-
flow that controls the reconfiguration. The generated work-
flow changes the configuration of the Target system. The
Registry is where all available components, their respec-
tive attributes, and a current model of the target system
are stored. We assume that the Registry is responsible
for monitoring the available resources, and for providing
an accurate view of the Target system. Any changes in

3http://www.eclipse.org/atl

9

http://www.eclipse.org/atl

10 Informatica 35 (2011) 3-13 C.E. da Silva et al.

(define (problem reconfproblem)
(:domain reconfigurationDomain)
(:objects CI C2 C3 C4 C5 - component

IR_RSL IR_Bridge IR_CIL IR_DB - requiredlnterface
IP_RSL IP_Bridge IP_CIL IP_DB - providedinterface

)
(:init

(not (blocked CI)) (not (blocked C2)) (not (blocked C3))
(not (blocked C4)) (not (blocked C5))
(not (connected CI IR_RSL C2 IP_RSL))
(not (connected C2 IR_Bridge C3 IP_Bridge))
(not (connected C2 IR_CIL C4 IP_CIL))
(not (connected C4 IR_DB C5 IP_DB))

)
(:goal (and

(not (blocked CI)) (not (blocked C2)) (not (blocked C3))
(not (blocked C4)) (not (blocked C5))
(connected CI IR_RSL C2 IP_RSL)
(connected C2 IR_Bridge C3 IP_Bridge)
(connected C2 IR_CIL C4 IP_CIL)
(connected C4 IR_DB C5 IP_DB)

)

Figure 9: Example of pre- and post-conditions in PDDL.

• • • • • •

of resources available

»>B-4

A-5
[> A-4
• A-3

Figure 10: Search space variation changing the resources
available.

the resources' availability should be reflected at the Reg-
istry. The Monitor component represents the mechanisms
used for the collect and analysis phases of the feedback
control loop. This component observes the components of
the established configuration, checking the values of the
component attributes (e.g., response time) against a defined
threshold. In case of violation, it starts a reconfiguration
by starting the execution of the reconfiguration workflow.
The Configurator is responsible for selecting a configu-
ration for the system. It has been implemented based on
the use of a utility function that is a linear combination of
the utilities of the different elements. The Configurations
repository stores the configuration models used during the
reconfiguration.

4.4 Discussion
In order to demonstrate and evaluate the proposed ap-
proach, we have conducted some experiments involving the
architectural reconfiguration of a case study application.

Among the experiments, we have considered the estab-
lishment of a particular configuration, which for the plan-
ner, is the toughest scenario, since it involves all compo-
nents of the configuration. In this experiment, we have ob-
served the search space (number of possible actions) of the
LPG-td planner, changing the number of resources avail-
able and the size of the generated workflow.

The size of the generated workflow depends on the num-
ber of components and connections in the selected con-
figuration. Every component of a configuration must be
blocked before being connected, and unblocked at the end
of the reconfiguration. In this way, a configuration with n
components and n-1 connections will have 3n-1 tasks. For
example, the configuration of Figure 7, with five compo-
nents and four connections, requires a workflow with 14
tasks (blocking the five components, establishing the four
connections, and unblocking the five components). In these
experiments we have considered three different abstract
configurations, which require three, four and five compo-
nents, and contains respectively two, three and four con-
nections.

We have implemented two variations of our approach.

of resources available

Figure 11: Search space variation considering the selection
of a configuration by the planner.

The main difference between these variations is the amount
of information passed to the planner. Our approach (iden-
tified by A in the graphs) explores the division between
strategy and tactics using logical names for representing
the components of a configuration. The second approach
(identified by B) separates the selection of a configuration
from the generation of the plan, but includes all available
resources in the planner. While the third approach (iden-
tified by C), based on [4], uses the planner for selecting a
configuration for the system, including all possible config-
urations and all available resources in the planner.

Figure 10 shows the variation in the search space as we
vary the number of resources available. In this graph, A-
3 means the numbers obtained by our approach (A) for a
workflow related with a configuration that requires three
different components. Since we use logical names to rep-
resent the resources required by a configuration, and do not
consider all available resources in the planner, the number
of resources available does not affect the search space. We
notice a linear progression of the search space when we in-
clude all available resources in the planner (B-3, B-4 and
B-5). The starting points of each curve represents the min-
imum number of resources required by the correspondent
configuration.

Figure 11 presents the change in the search space when
the selection of a configuration is combined with the gen-
eration of the plan. Based on this experiment, it is clear the
overhead caused by mixing selection and plan generation.

A FRAMEWORK FOR AUTOMATIC Informatica 35 (2011)3-13 11

As expected, the search space increases with number of
resources known by the planner, and the selection of a con-
figuration by the planner further aggravate its scalability.
The division between strategy and tactics helps to reduce
the search space since the planner does not need to know
about all available resources, but only about those involved
in the reconfiguration, which are represented by logical
names.

5 Related work

The focus of this section is to review how existing ap-
proaches generate adaptation plans for self-adaptive soft-
ware, and we start with those approaches that specify adap-
tation plans at design-time. Cheng et al. [7] capture adapta-
tion plans as a set repair strategies, consisting of condition-
action rules, where conditions are evaluated based on util-
ity functions. Georgas and Taylor [15] propose the use of
adaptation policies, also captured as condition-action rules,
that indicate what actions should be taken in response to
events. Both approaches are focused on the definition of
the mechanisms for selecting one adaptation plan from the
set of available plans, where each available plan, identify-
ing what and how to adapt, is defined at design-time. A
major limitation with these approaches is the difficulty in
anticipating all possible contexts in which system adapta-
tion may take place. This has a major impact on identifying
the appropriate adaptation plans because of the combina-
torial nature between conditions and actions, which also
affects the management of the available plans. Different
from these approaches, our approach provides the means
for defining adaptation plans during run-time.

There are other approaches (such as [5]) that provide
support for selecting what to adapt at run-time. However,
there is a cost to be paid in these approaches, since the
adaptation is enacted by deactivating and reactivating the
whole software system, even for the case when a single el-
ement needs to be replaced. Moreover, the main focus of
these approaches is on the selection of what to adapt based
on the state of the environment and the resources required
for enabling it, and not on how to enact the selected adap-
tation. Differently from these approaches, our focus is on
the dynamic generation of the process that enacts the adap-
tation in a way that does not require the complete deactiva-
tion of the system.

Some approaches use model comparison techniques, in
the context of architectural reconfiguration, for generating
adaptation scripts that impact only those elements affected
by the adaptation. Alia et al [2] compare the models of
the current and the selected system configuration for iden-
tifying the actions of the adaptation script. Morin et al.
[20] build on top of model comparison by applying priority
rules for ordering the identified adaptation actions. How-
ever, model comparison and priority rules are not enough to
generate plans with complex relationships among the adap-
tation actions and the involved system components. For it,

it is necessary to consider pre- and post-conditions associ-
ated with the actions, as demonstrated in [22]. Moreover,
the focus of these approaches is not the generation of adap-
tation scripts, but the selection of the system configuration
[2], and coping with the exponential growth in the number
of possible configurations [20]. Thus, they do not consider
the possible issues associated with the generation of the
adaptation scripts. Our approach also applies model com-
parison for generating adaptation plans, but the results of
the comparison are used for identifying the inputs for an
AI planner, supporting the generation of plans that can deal
with complex relationships between its constituent tasks.

Other approaches have applied AI planning for selecting
a configuration and deciding how to change the system at
the same time [3], [4]. Both these approaches require the
inclusion of all available resources in the planner, which,
together with the mix of configuration selection and plan
generation, affects the scalability of the planer. Moreover,
both approaches require the specification of the current sys-
tem state and the target system state using PDDL. In our
approach, we are not restricted to a fixed set of resources
for generating adaptation plans, and we employ model-
based technology for translating domain specific models
into planning problems. The partition of our approach into
different levels of abstraction provides support for dealing
with variations in the resources availability and reduces the
search space considered by the planner, increasing its scal-
ability, while more specific and scalable techniques can be
used for selecting an adaptation for the system (such as
[2]).

Concerning workflow generation, several approaches ap-
ply AI planning techniques in different domains [21], such
as, grid computing [11] and web service composition [13];
however, these approaches are very specific to their respec-
tive domains. Our approach is based on ideas from [11]
[13], in which the generation is partitioned into strategi-
cal and tactical for increasing scalability. Differently from
these approaches, we are focused on providing an frame-
work that can be applied to different domains, and consider
two types of workflows, integral and peripheral, support-
ing different decision making and planning mechanisms ac-
cording with the application domain.

6 Conclusions and future work

This paper has presented a framework for the automatic
generation of processes for self-adaptive software systems
based on workflows, AI planning and model transforma-
tion. The framework can be applied to different applica-
tion domains by supporting the use of the most suitable
generation techniques according to the application domain.
Moreover, our approach reduces the search space consid-
ered by a planner by splitting the generation in two levels
of abstraction, and provides support for generating differ-
ent types of workflows. In order to evaluate the proposed
framework and its respective computational infrastructure,

12 Informatica 35 (2011) 3-13 C.E. da Silva et al.

a prototype was developed for experimenting our approach,
and comparing it with similar approaches. The effective-
ness of the whole approach was evaluated in the context of
a web-based self-adaptive application for obtaining stock
quotes reports, where the processes generated at run-time
are responsible for coordinating the architectural reconfig-
uration of the system.

Although the proposed approach for the dynamic gener-
ation of process for self-adaptive software systems has pro-
duced quite promising results, we have identified a couple
of limitations that if properly handled could enhance over-
all effectiveness of the approach. First, the type of work-
flows being generated are simple sequential workflows,
however, the intent is to incorporate non-determinism and
other planning techniques to capture uncertainty into the
generation of workflows, and to support different control
flow constructs, such as, conditional and parallel execu-
tion branches. Second, although the task templates for our
framework are structured using atomic actions, one issue
that was not yet fully investigated is how to exploit this
for the provision of fault tolerance. The intent is to incor-
porate exception handling mechanisms for tolerating faults
that might occur during the execution of generated work-
flows.

As future work, we would like to simplify the reuse of
the framework, and this could be achieved by using meta-
transformation languages for translating domain specific
models into pre- and post-conditions. Also in this direc-
tion, the intent is to incorporate ideas from software prod-
uct lines into our framework for dealing with the variabil-
ity of processes. Another future work would be the ap-
plication of the proposed framework into other application
areas to evaluate its overall effectiveness since our initial
idea was to see this framework applied to support software
self-adaptation whenever processes need to generated dur-
ing run-time. Concerning the domain of reconfiguration,
we intent to consider more complex scenarios in which,
for example, there exists transfer of state between compo-
nents).

Acknowledgement

Carlos Eduardo da Silva is supported by the Pro-
gramme Al^an, the European Union Programme of High
Level Scholarships for Latin America, scholarship No.
E07D401107BR.

References
[1] M. Adams et al. Worklets: A service-oriented im-

plementation of dynamic flexibility in workflows. In
Proc. of the OTM CoopIS'06, pages 291-308, 2006.

[2] M. Alia et al. A component-based planning frame-
work for adaptive systems. In Proc. of the OTM
DOA'06, pages 1686-1704, 2006.

[3] A. Andrzejak et al. Feedbackflow-an adaptive work-
flow generator for systems management. In Proc. of
the ICAC'05, pages 335-336, 2005.

[4] N. Arshad et al. Deployment and dynamic reconfigu-
ration planning for distributed software systems. Soft-
ware Quality J., 15(3):265-281, 2007.

[5] M. Autili et al. Towards self-evolving context-aware
services. In Proc. of the DisCoTec CAMPUS'08,
2008.

[6] Y. Brun et al. Engineering self-adaptive systems
through feedback loops. In Software Engineering for
Self-Adaptive Systems, pages 48-70. 2009.

[7] S.-W. Cheng et al. Architecture-based self-adaptation
in the presence of multiple objectives. In Proc. of the
ICSE SEAMS'06, pages 2-8, 2006.

[8] C. E. da Silva and R. de Lemos. Using dynamic
workflows for coordinating self-adaptation of soft-
ware systems. In Proc. of the ICSE SEAMS 2009,
pages 86-95, 2009.

[9] E. M. Dashofy et al. A comprehensive approach
for the development of modular software architec-
ture description languages. ACM Trans. Softw. Eng.
Methodol, 14(2):199-245, 2005.

[10] R. de Lemos. Architectural reconfiguration using
coordinated atomic actions. In Proc. of the ICSE
SEAMS'06, pages 44-50, 2006.

[11] E. Deelman et al. Mapping abstract complex work-
flows onto grid environments. Journal of Grid Com-
puting, 1(1):25-39, 2003.

[12] S. Dobson et al. A survey of autonomic communi-
cations. ACM Trans. Auton. Adapt. Syst., 1(2):223 -
259, 2006.

[13] S. Dustdar and W. Schreiner. A survey on web ser-
vices composition. International Journal ofWeb and
Grid Services, 1(1):1-30, 2005.

[14] M. Fox and D. Long. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. of AI
Research, 20:61-124, 2003.

[15] J. C. Georgas and R. N. Taylor. Towards a knowledge-
based approach to architectural adaptation manage-
ment. In Proc. of the WOSS'04, pages 59-63, 2004.

[16] D. Greenwood and G. Rimassa. Autonomic goal-
oriented business process management. In Proc. the
ICAS'07, page 43, 2007.

[17] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16(11):1293-1306, 1990.

A FRAMEWORK FOR AUTOMATIC . Informatica 35 (2011) 3 - 1 3 13

[18] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Proc. of the FOSE'07,
pages 259-268, 2007.

[19] J. Miller and J. Mukerji. MDA guide version 1.0.1.
Technical report, OMG, 2003.

[20] B. Morin et al. An aspect-oriented and model-driven
approach for managing dynamic variability. In Proc.
of the MoDELS'08, pages 782-796, 2008.

[21] D. Nau. Current trends in automated planning. AI
Magazine, 28(4):43-58, 2007.

[22] C. Shankar and R. Campbell. Ordering manage-
ment actions in pervasive systems using specification-
enhanced policies. In Proc. of the PERCOM'06,
pages 234-238, 2006.

[23] W. M. P. van der Aalst and A. H. M. ter Hofstede.
Yawl: Yet another workflow language. Inf. Syst.,
30(4):245-275, 2005.

