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Abstract. All optimisation algorithms have parameters that affect their performaand reliability. Usually
the default values of these parameters are problem-dependentdRegeof this fact it is common practice
to use some default values that are provided with the optimisation algoritimding the optimal values of
these parameters is a computationally expensive optimisation problem radgm kas meta-optimization. The
computational complexity comes from the fact that every cost-functiatuation in meta-optimisation involve
several runs of an optimisation algorithm that evaluate its behavior f@ngwalues of algorithm parameters.
The most common approach to making meta-optimisation feasible is thef ygeadlel computing. The paper
presents the construction of the cost function for meta-optimisation oftdéarch optimisation algorithms.
We demonstrate the approach by optimising the parameters of the Neédar-BImplex algorithm using a
high-performance computing system comprising 100 processing Uiiésresults of the meta-optimisation are
surprising because the obtained values of parameters greatly difertfre values that were published 50 years
ago, but are still used despite their suboptimality.
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1 INTRODUCTION also referred to as meta-optimisation problem while the
T - process of solving it is called meta-optimisation. The
Optlmlsatlon.|s the seargh for the minimum of a .realbasic (optimisation) algorithm is the one for which the
valueq f_unc_tlon_ Ofr variables. The function SUbJe(_:t optimal strategy is being sought. Meta-optimisation also
to optimisation is also referred Fo as _the COSt_funCt'Orihvolves a CF that expresses the quality of a strategy
(CF). The performance of an optimisation algorithm Calkith a real number. It maps vectors that represent strate-

be de?hpresselqt W'tfh t:‘he f_nurlnber I?f SE evlaluatm?g ( ies to real numbers that represent the basic algorithm’s
and the quality of the final result (CF value) re umecgerformance. Lower values of the CF correspond to

by th_e optimi§ation algori_thm. A better _Optimisationbetter strategies. The calculation of teh CF value in-
algorlth_m obtains a lower final CF value with fewer CFyolves several runs of the basic algorithm that capture its
evaluations. Its performance directly depends on a s rformance on a family of optimisation problems. This
of real-valued algorithmic parameters also referred to akes meta-optimisation a computationally intensive

th(_a”? ptlm;_satllont aI?orlthms Stha t((ejgy. q h i task where even a single CF evaluation can take hours.
€ optimal strategy generally depends on Ih€ oplimi- rpq cp 4, meta-optimisation is often discontinuous,

satu_m problem that is being solved. It is Commonplacﬁnultimodal and is littered with a numerical noise. This
to fmd the suggeste'd values Of. the (default) Strategé{s:ually leaves no other choice, but to use a global
published t.ogethe'r W'Fh 'the algor|thm. Thgse values argptimisation algorithm for finding its minimum. The
often obtained with limited numerical trials or some ain disadvantage of these algorithms is the large numer

(overly) simplified analysis. Despite this the publishe f CF evaluations needed for finding the solution of

strategies are rarely challenged by optimization pracy meta-optimisation problem1@000 and more). The

titioners. Such careless choice of strategy is often tq?m times can be significantly shortened by the use of
cause for optimisation algortihms being deemed as in-

o parallel computing which is a viable option because
efficient. T . -

. many global optimisation algorithms can be efficiently

The optimal strategy generally depends on the natu”bealrallelised

of the optimisation problem. The only possible optio '

) , : N In this paper we focus on meta-optimisation of local
is to find the optimal strategy before the optimisation .. . ™. . .

. L . ._optimisation algorithms. These algorithms search for
itself. The problem of finding the optimal strategy is

a local minimum of the CF. Usually, they require a
Received November 19, 2012 significantly smaller number of CF evaluations when
Accepted January 9, 2013 compared to global optimisation algorithms. Although a
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local optimum does not represent the best possible solfor which the basic algorithm’s performance exceeds
tion of an optimisation problem, optimisation algorithmsthat obtained with the default strategy. This requirement
are still often used in engineering practice. In manyepresents a constraint in meta-optimisation and can be
engineering optimisation problems evaluation of théandled with a CF that comprises several penalty contri-
CF is computationally expensive while the computingutions (;). [3] If some strategy behaves worse than the
power is limited. Is such cases local optimisation is théefault strategy, the corresponding penalty contribution
only viable choice. A local optimisation algorithm isis positive. On the other hand, if a strategy outperforms
also adequate if finding a decrease in the CF value the basic strategy, a small negative penalty contribu-

sufficient for deeming the run as successfull. tion rewards its behavior. In case a strategy exhibits
same performance as the default strategy, the penalty
2 COST FUNCTION IN contribution is zero. The CF in meta-optimisation can
META -OPTIMISATION be expressed as a sum af penalty contributions

o representing performance on individual test problems.
Before any meta-optimisation, one has to choose the

family of the optimisation problems for which the op- - i C.
timal basic algorithm strategy is being sought. Real- P v
world optimisation problems are often computationally

too expensive and cannot be used for constructing the C = 0 corresponds to a strategy that exhibits the same
CF for meta-optimisation. A much better choice arderformance omn test problems as the defautl strategy.
mathematical test functions that are designed for thEne contribution of the-th test problem to the CF in
purpose of evaluating the basic optimisation algorithmineta-optimisation can be expressed as

()

Two, sets of test functions are commonly used: the (N;/N!/ —=1)-10; N; > N/
Moré-Garbow-Hillstrom set [1] and the CUTET set [2]. Ci = (N;/N! —=1)/10; N; < N! (3)
The former comprises35 unconstrained optimisation tog o (lgsll/1111) - 10 [lgsll > 114I]
roblems, while the latter offers ovéd00 unconstrained + 10T/ T2 S 1 (4
P A A P

and constrained problems. A subset of these problems
{f1, f2, ..., fm} is used for constructing the CF in meta- One can use an arbitrary constant> 1 instead of
optimisation. Local optimisation algorithms usually re-the fixed value 10) in the above equations. The absolute
quire an initial point. We denote the corresponding initiatatio between a penaltyC{ > 0) and reward ¢; < 0)
points withz?, 29, ..., 20 . attributed to a deterioration/improvement of the same
The CF in meta-optimisation measures the perfomagnitude from the default strategy’s performance is
mance of a strategy with respect to the performance @t2. One CF evaluation in meta-optimisation involves
some reference strategy (or algorithm). In this e,sensepna runs of the basic optimisation algorithm.
possible choice is the performance of the basic algorithm
using a default strategy. We denote the (reference)
number of CF evaluations witiV{, Nj,..., N/ . The
quality of the final result returned by a local optimisa-Meta-optimisation is a computationally intensive proce-
tion algorithm can be expressed with the norm of thelure. To make it viable one has to take advantage of
corresponding CF gradient. The lower values of thiparallel processing. A sufficient computing power can
norm correspond to a better approximation of a locdbe obtained by utilizing contemporary high-performance
minimum. We denote the (reference) final results andomputing (HPC) systems. Such systems comprise a
the CF gradient withe, x5, ...,2), and ¢},45,...,9,,, large number of processing units. The role of a proces-

3 COMPUTER HARDWARE

respectively. sign unit can be taken by ordinary desktop computers.
Denote the final results and the corresponding CRowadays, the price of a typical desktop computer with
gradient obtained by the basic algorithm with, xs, ..., a quad-core CPU is aroun@ 600 (or€ 150 per CPU

Ty, andgi, g2, ..., gm, respectively. LetVy, Ns, ..., N,,,  core). Such computers usually come with a built-in
be the number of CF evaluations in the basic algorithmetwork adapter (most commonlyGb Ethernet). By
It can be expected that many strategies tried duringdding a network switch (its cost is usually lower than
the course of meta-optimisation result in an excessivilie price of a single desktop computer), one gets a
number of CF evaluations. This results in prolongedully functional HPC system. The price of a system
meta-optimisation runs. Such situations can be avoidemmprising100 CPU cores is aroun& 15000.
if one places an upper bound[***) on the number of  The interconnection between the processing units is
CF (f;) evaluations. A possible choice would be the main bottleneck. Despite its speedspit/s), the
max / latency in quite high (arounf@Ous). Part of the latency

NG = max (5N;, 10000) . (1) is inherent to Ethernet, whiI: the rest (arouh@lus,

The goal of meta-optimisation is to find a strategy{4]) is caused by inefficient drivers. This is quite large
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program runs on a single processor and solves a part
of the problem. Programs communicate among them-
selves and coordinate their work. The communication is
usually implemented as messages. When a task receives

Ethernet switch

(1Ghit) a message, it processes the message by performing a
(lengthy) computation upon which it sends back a mes-
| PC 1 | | PC 2 | wes | PCM sage with results. Implementing parallel algorithms can

be significantly simplified if one uses a library that wraps
Otgpe process of sending and receiving messages into a
simple application programming interface (API). This
hides the details of communication protocols. Currently,
two solutions are available: PVM [6] and MPI [7].

when compared to the latency of the HPC systems usifgVM is a somewhat older library, while MPI is only an
InfiniBand (e.g. [5]) where it can be as low ags. The API specification. Several implementations of the MPI
throughput is also much higher in the InfiniBand systemgPecification are available.
(2Gb/s for a basic SDR link). The cost, however, Developement of optimisation algorithms requires an
is much greater if the InfiniBand links are used forenvironment that 1) simplifies implementation of com-
interconnecting the processing units. plex matematical concepts and 2) speeds up debugging
Regardless of the lower throughput and higher Iatencg,f the implemented code. The first requirement is satis-
a HPC system with the Ethernet interconnection i§€d by several programming laguages in combination
capable of running parallel optimisation algorithms. LetVith appropriate mathematical libraries. The second
R denote the throughput of the interconnection while requirement is usually fulfilled by various scripting
denotes the latency. The interconnection does not beha@@guages. We chose Python [8] in combination with
as the system’s bottleneck if two conditions are satisfie®UmPY/SciPy [9] mathematical libraries for implement-
The time it takes for a processing unit to complete 419 all the described algorithms due to its simplicity,
task () must be significantly higher than the latency9enerality and the large number of available extensions.
Secondly, the total amount of dafa associated with a ~ Meéta-optimisation can be parallelised using two ap-
task (data sent to a processing unit describing the tadKkoaches. .The f|r_st approach distributes the evalqatlon
and data sent from a processing unit with the results of@f the basic algorithm's performance for one candidate
task) must be small enough so that it can be transferr&fategy among multiple processors. Every processor
in the fraction of time it takes for the task to completeUns the basic algorithm on one of thetest problems.

Both conditions can be formulated mathematically as WWhen them optimisation runs are complete, the corre-
sponding value of the CF is computed using (2). The

T > T, (5) meta-optimisation algorithm then determines the next
D/R <« T. (6) candidate strategy and distributes its evaluation among
parallel processors. This way a speedup factor of up to
Meta-optimisation along with most engineering opti-;;, can be achieved. Unfortunately the speedup is limited
misation problems satisfies conditions (5)-(6). Conditiomy the fact that not all of then optimisation runs are
(5) is satisfied becausg' is in the 1s order of the finished at the same time. This way some processors
magnitude or greater, while is in the 10us order of remain idle until all of them processors finish the
the magnitude (even for "slow” gigabit Ethernet links).evaluation (synchronisation penalty). As consequence,
Because every task (CF evaluation) can be SpeCiﬁQHe actual Speedup factor is smaller than
with n’ real numbers (Wher&’ is the dimension of the To avoid Synchronisation pena“:y, one can use
meta-optimisation problem, i.e. the number of the basign asynchronous optimisation a|gorithm for meta-
algorithm’s parameters). A task produces a result whichptimisation. Such algorithms keep all processors busy
is a CF value and can be represented as a single reglt the time. The evaluation the meta-optimisation CF
valued number. Assuming théti-bit real numbers are s not distributed among processors. This brings an
used, the amount of data transferred to and from eveggditional advantage by greatly increasifighus mak-
task is64-(n'+1). This gives usD/R = (n'+1)-64ns.  ing conditions (5) and (6) satisfied even for the HPC
If completing one task takef = 1ms, condition (6) is systems with slow interconnections. An example of such
satisfied for alln’ < 15624. a|gorithm can be found in [10]

Figure 1. Block diagram of a HPC system based on deskt
computers and gigabit Ethernet.

4 OPTIMISATION SOFTWARE 5 EXAMPLE

Parallel optimisation algorithms on HPC systems consigthe Nelder-mead simplex algorithm [11] searches for a
of multiple programs (tasks) running in parallel. Everylocal minimum of a function of. variables by moving
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n + 1 points (also referred to as simplex). We assume The description in [11] does not explicitly state the

that the points are ordered so that the largest and smallgstint ordering in case multiple points share the same
function value corresponds tg,,; (worst point) andr;  value of f. In such case, the points are ordered with the
(best point), respectively. Most of the time the simpleoldest point appearing last.

moves around by replacing the worst point with one There are several published examples (e.g. [12]),
of the points lying on a ray withx,,,; for origin that for which the Nelder-Mead simplex algorithm fails to

runs through the centroigf of the n best points = converge to a local minimum. Despite this fact, it is still
(x14...+xy)/n). The valuey > —1 determines a point very popular due to its simplicity. The goal of meta-
2 on this ray according to optimisation will be to find the optimal strategy for
the Nelder-Mead simplex algorithm that is given by its

=T+ (T — Tny1) (") w = 5 parameters.

The set of test functions comprisd€ problems from
[13] of which most come from [1]. According to the
recommendations in [1] every problem was tested with
three different starting pointsz®, 10z°, and 1002°,
wherez? denotes the problem’s standard starting point
given in [1] or [13]. An exception to this rule was the
Jennrich and Sampson function which is not defined at
. . . _ _1002°. The set compriseth = 3 -39 — 1 = 116 test
Figure 2. Reflection, expansion, outer contraction, and mn%roblems. The reference number of the CF evaluations
contraction steps in the Nelder-Mead simplex algorithm. and final gradient norm were obtained with the conver-

gent variant of the algorithm given in [13] by using the

The values ofy denoted by, e, Yoc, ANdYie COMME- gy ya g starting points:{). The initial simplex and the
spond {0 poinis#;, e, Zoc, @ndu;c) that represent the jtopping conditions were identical to those published in

possible replacements for the worst point (see Fig. 2
The corresponding steps are also referred to as reflecti NiThe following constraints were imposed on the values

expansion, outer contraction, and inner contraction. Iéf the algorithm’s parameters (strategy)
none of these steps improves the worst function value

(atz,1), the simplex is shrinked towards its best point 0.001 < Ve <2, (10)
(z1) according to 0< Yo—7 <4, (12)
x; = x1 + sz — ), 1=2,..,n+ 1. (8) 0.001 < Yoc/7% < 0.999, 12)
denotes the shrink factor. The values -pfthat DS e S 0999, 3)
~s denotes the shrink factor. The values pftha
correspond to the above-mentioned steps must satisfy 0.001 = s < 0.999. (14)
0 < % < % iN0 < Yoe, Yie;¥s < 1. The rec- The meta-optimisation was performed on a HPC
ommended values of these parameters found in [1¥ystem comprisingl/ = 25 computers with an Intel
represent the default strategy Core i5 750 processor running at66GHz and one
control computer that was responsible for connecting the
[¥e:Yer Yoes Yies %] = [1,2,1/2,=1/2,1/2]. ©) system to the internet (Fig. 1). The theoretical perfor-

mance limit is1Tflops (assuming that every processor

The algorithm can be described with the fOIIOWIngcore is capable of performing up to four floating point

steps. _ _ operations per clock cycle). The set of the problems for

1) Order points so that they satisfy which such a system can be used is limited by conditions
f(@1) < f2) < oo < f@nga) - (5)-(6).

2) Evaluatef, = f(z:). The role of the meta-optimisation algorithm was taken
If fr < f1, evaluatef. = f(z.). . by the global optimisation algorithm described in [10].
If fe < fi, replacez, ., with z., otherwise Thjs aigorithm is a combination of simulated annealing
replace it withz,. _ and differential evolution. The algorithm was stopped

3) It fi < fv < fn, replacer, 1 with z,. after 200000 CF evaluations. The results were obtained

4) I fo < fr < fupr, evaluatefoc = f(zoc)- after two days. The following optimal strategy was
If foc < fat1, replacex, 1 with z,., obtained

5) If fnr1 < fi, evaluatefic = f(xic).
If fie < fag1, replacer, .1 with . 7 = 0.983, (15)

6) Steps 2-5 did not replacs, . 1, shrink the simplex. Yo = 1.27, (16)

7) If stopping conditions are not satisfied, return to Yoo = 0.734, (17)

step 1.
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The process of finding their optimal values can be auto-

mated by applying an outer optimisation loop. This outer

Ve = —0.609, (18) optimisation is also referred to as meta-optimisation. We
~s = 0.385. (19) gave an example of how to construct the cost function

for meta-optimisation. The cost function is based on the

Parameters, andy;. are close to the values suggesteq,,ic aigorithm's performance measured on several test
by Nelder and Mead in [11]. It is interesting to note thatproblems.

the obtained value of., = 1.27 is close tol.2 which is

; : Meta-optimisation is a computationally intensive task
the value suggested in [14]. The obtained valueyQf

) that usually cannot be finished in a feasible time without
and -, dlf_fers from thg default _value0(5). _the help of high-performance computing systems. We
To verify the obtained optimal strategy, the bas'cgave a low-cost example of such system with 100
algorithm was run on thg9 test problems with unscaled cpy cores. The system is based on standard desktop
initial points 2%. The number of the CF evaluations cmpters connected with a gigabit Ethernet network.
was limited t0100000. The results are given in Table g,ch systems can be efficient if the time a task takes to
1. For two test problems the default strategy usefympiete is significantly longer than the latency of the

all the available CF evaluations without satisfying the,qyork and the time it takes for the data to be trasferred
stopping conditions. The optimal strategy satisfied thg)/from the task.

stopping conditions for all test problems. Cases where We gave an example of meta-optimisation that

one strategy outperforms the other (in terms of thggarches for the optimal values of the Nelder-Mead sim-
number of CF evaluqtmns and final gradient normjg, algorithm’s five algorithmic parameters. The results
are doneted by asterisks. The default strategy madg,, that the optimal strategy significantly differs from

fewer CF evaluations than the optimal strategy for 2§, b blished by Nelder and Mead. An interesting fact
test problems, while the opposite was true for 16 tegf ot the optimal value of the expansion parameter
problems. With respect to the final grad|ent norm, th% almost identical to that suggested in the paper de-
default strategy outperfo.rmed the optimal strategy on 1é’cribing the convergent variant of the algorithm based
problems, while the optimal strategy was better on 23, grid-restrainment [14]. The results also suggest that

problems. Considering both CF evaluations and the fing| . optimal strategy depends on the dimension of the
gradient norm, the default strategy was better on eig'?)tptimisation problem.

problems, while the optimal strategy outperformed the” \, teresting task for future research would be to

default one on ten prgblems. . find the dependence of the optimal strategy on the
_Columns marked with #r, #e, #09' and #ic I'S{t the re|'|oroblem dimension and whether that dependence can be

ative number of successfull reflection, expansion, Ouwéxplained theoretically.

contraction and inner contraction steps. The columns

marked with #s list the number of shrink steps. If

the optimal strategy is used, the relative number of ACKNOWLEDGEMENT

successfull reflection steps slightly decreases, while thghe research has been supported by the Ministry of
number of successful expansion steps increases. W cation, Science, Culture and Sport of the Republic of
assume that this is part of the reason why the optima|yenia within the research program P2-0246 - Algo-

strategy outperforms the default strategy. The numbefi,ms and optimisation methods in telecommunications.
of functions on which the optimal strategy outperforms

the defautl strategy (density of the asterisk symbols) R
increases as the dimension of the problem increases. EFERENCES

This suggests that the optimal strategy depends Ofy jj. Mo, B.S. Garbow, K.E. Hillstrom, “Testing Unconstrained
the problem dimension. The number of shrink steps is  Optimization Software,”ACM Transactions on Mathematical

small and decreases even further if the obtained optimaL%] Softwarg vol. 7, no. 1, pp. 17-41, 1981.
t

. . . N.L.LM. Gould, D. Orban, P.L. Toint, “CUTEr and SifDec: a
strategy is used. The outer contraction steps constitu constrained and unconstrained testing environment, teisi

only a small percentage of CF evaluations. The obtained ACM Transactions on Mathematical Softwasel. 29, no. 4,
value of,, is therefore not reliable. On the other hand, _ PP- 373-394, 2003.

. . [3] A. Blrmen et al., “Automated robust design and optimization
the inner contraction steps represeﬁ% —20% of all of integrated circuits by means of penalty functiong\EU,

the CF evaluations which validates the obtained value International Journal of Electronics and Communicatiprsl.
of Ve = —0.609. 57, no. 1, pp. 47-56, 2003.
1 [4] “Myrinet Express over Generic Ethernet Hardware,” httpen-
mx.gforge.inria.fr, april 2012.
[5] “Visokozmogljivi ratunski sestav HPCFS,” http://hpc.fs.uni-lj.si,
6 CONCLUSIONS april 2012,
The values of algorithmic parameters (strategy) deter_[6] V.S. Sunderam, “PVM: A Framework for Parallel Distributed
g p )% Computing,”Concurrency: Practice and Experienceol. 2, no.

mine the behavior of a (basic) optimisation algorithm. 4, pp. 315-339, 1990.



236 BURMEN, TUMA, FAJFAR

Table 1. Comparison of the default strategy and optimal strategy for géh@eNMead simplex algorithm.

default strategy optimal strategy
function dim. N [lg]] #r #e  #oc #ic #s N 9]l #r #e  #oc #ic  #s
Rosenbrock 2 *231 4.8e-09 0.13 0.08 0.07 025 0.00 366 *1.4e-09 0.15 0.10 0.06 0.23 0.00

Freudenstein&Roth 2 * 174 *7.1e-07 0.09 0.07 0.05 0.27 345 315 1.3e-06 0.16 0.10 0.05 0.20 1.90

Powell 2| *752 *2.7e-08 0.24 0.11 0.02 0.18 0.0 1073 5.4e-08 0.22 0.16 0.03 0.14 0.00
Brown 2| *320 *7.0e-02 0.09 0.12 0.06 0.25 0.0 713 1.1e-01 0.18 0.16 0.03 0.16 0.00
Beale 2| *170 1.7e-09 0.11 0.05 0.08 0.28 0.00 241 *3.8e-10 0.09 0.07 0.05 0.30 0.00

Jennrich&Sampson 2 * 154 *1.2e-05 0.10 0.03 0.05 0.31 260 191 1.8e-05 0.07 0.04 0.06 0.34 1.05
McKinnon *195 *1.7e-08 0.12 0.10 0.04 0.24 205 318 2.4e-08 0.12 0.17 0.02 0.21 1.26
McKinnon (alt) 247  1.0e+00 0.00 0.00 0.00 049 0.00*217 *3.3e-08 0.11 0.01 0.05 034 1.84
Helical Valley * 369 9.6e-09 0.15 0.11 0.04 025 0.00 561 *85e-09 0.11 0.16 0.04 0.22 0.00

2

2

3
Bard 3| *333 4.6e-09 0.14 0.08 0.08 024 1.80 439 *4.0e-09 0.10 0.11 0.05 0.24 273
Gaussian 3 *245 *1.3e-10 0.12 0.06 0.07 0.29 0.00 250 2.9e-10 0.11 0.00 0.05 0.36 0.00
Meyer 3| 100002 *2.2e+01 0.22 0.00 0.11 0.00 33.8 2525 8.9e+01 0.26 0.17 0.03 0.10 261
Gulf R&D 3 3759 *9.8e-15 0.27 0.14 0.03 0.13 0.0 3317 1.8e-14 0.25 0.20 0.02 0.11 0.00
Box 3D 3| *514 47e-09 0.13 0.14 003 023 233 656 *3.2e-11 0.12 0.16 0.04 0.22 0.00
Powell Singular 4| *1070 6.3e-16 0.27 0.09 0.04 0.19 0.00 1444 *4.4e-16 0.20 0.14 0.04 0.18 0.00
Wood 4| *683 5.4e-08 0.27 0.08 0.05 020 0.00 945 *1.2e-08 0.25 0.11 0.05 0.19 0.00
Kowalik&Osborne 4| * 431 9.7e-10 0.24 0.05 0.06 0.21 3.71 551 *9.1e-10 0.19 0.08 0.07 0.22 218
Brown&Dennis 41 *490 9.8e-04 0.21 0.07 0.04 021 571 573 *6.1e-04 020 0.08 006 0.21 4.19
Quadratic 4| *359 *5.0e-10 0.17 0.05 0.06 0.28 0.0 510 9.0e-10 0.15 0.07 0.05 0.29 0.00
Penalty | 4 1404 5.4e-11 0.28 0.12 0.04 0.15 1.y¥ 1227 *9.5e-12 0.28 0.14 0.03 0.15 1.30
Penalty II 4 3768 15e-10 0.33 0.13 0.03 0.13 0.642924 *9.2e-11 030 0.17 0.02 0.11 0.55
Osborne 1 5 *1136 *2.5e-08 0.34 0.0/ 0.03 0.15 3.08 1277 29e-07 031 011 0.03 016 1.96
Brown 5 820 *2.2e-10 0.27 0.08 0.05 0.20 0.00 * 791 1.2e-09 0.23 0.08 0.03 0.25 0.00
Biggs EXP6 6| * 1127 6.6e-08 0.34 0.07 0.04 0.16 3.19 1184 *1.1e-08 0.31 0.10 0.03 0.17 253
Rosenbrock 6 4321 *6.8e-09 0.38 0.11 0.02 0.13 0.00° 2342 7.0e-09 0.36 0.13 0.02 0.14 0.00
Brown 7 1872 *7.6e-10 0.41 0.07 0.03 0.15 0.00° 1248 1.2e-09 0.29 0.07 0.04 0.21 0.00
Quadratic 8 1783 18e-09 046 0.05 003 0.14 0.06 1166 *1.7e-09 0.25 0.07 0.04 0.25 0.00
Rosenbrock 8 6181 7.0e-01 046 0.09 0.02 0.11 0.654046 *1.0e-08 0.41 0.13 0.02 0.12 0.00
Var. Dim. 8 4044 6.6e-09 046 0.09 0.02 0.12 0.p0 2368 *5.6e-09 0.28 0.15 0.02 0.16 0.00
Powell 8| * 2579 1.3e-04 0.42 0.07 0.03 0.14 0.00 4770 *6.9e-16 040 0.12 0.02 0.12 0.00
Watson 9 2953 *3.3e-08 0.35 0.13 0.03 0.13 1.2 2183 7.0e-08 0.23 0.20 0.02 0.14 1.37
Rosenbrock 10 *6786 3.0e+00 051 0.08 0.02 0.10 0.7411656 *8.7e-09 0.47 0.14 0.01 0.08 0.00
Penalty | 10| * 5535 4.5e-05 050 0.08 0.02 011 1.08 6786 *1.2e-10 0.46 0.13 0.01 0.09 0.88
Penalty Il 10| * 6461 1.5e-04 0.47 0.08 0.02 0.13 0.62 9869 *1.5e-05 0.45 0.15 0.01 0.08 0.61
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