
ELEKTROTEHNIŠKI VESTNIK 79(5): 231–236, 2012
ENGLISH EDITION

Meta-Optimisation on a High-Performance
Computing System

Árp ád Bűrmen, Tadej Tuma, Iztok Fajfar
Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržǎska cesta 25, 1000 Ljubljana, Slovenija
E-mail: arpad.buermen@fe.uni-lj.si

Abstract. All optimisation algorithms have parameters that affect their performance and reliability. Usually
the default values of these parameters are problem-dependent. Regardless of this fact it is common practice
to use some default values that are provided with the optimisation algorithm. Finding the optimal values of
these parameters is a computationally expensive optimisation problem also known as meta-optimization. The
computational complexity comes from the fact that every cost-function evaluation in meta-optimisation involve
several runs of an optimisation algorithm that evaluate its behavior for given values of algorithm parameters.
The most common approach to making meta-optimisation feasible is the use of parallel computing. The paper
presents the construction of the cost function for meta-optimisation of direct search optimisation algorithms.
We demonstrate the approach by optimising the parameters of the Nelder-Mead simplex algorithm using a
high-performance computing system comprising 100 processing units.The results of the meta-optimisation are
surprising because the obtained values of parameters greatly differ from the values that were published 50 years
ago, but are still used despite their suboptimality.

Keywords: Meta-optimisation, global optimisation, simplex algorithm

1 INTRODUCTION

Optimisation is the search for the minimum of a real-
valued function ofn variables. The function subject
to optimisation is also referred to as the cost function
(CF). The performance of an optimisation algorithm can
be expressed with the number of CF evaluations (N)
and the quality of the final result (CF value) returned
by the optimisation algorithm. A better optimisation
algorithm obtains a lower final CF value with fewer CF
evaluations. Its performance directly depends on a set
of real-valued algorithmic parameters also referred to as
the optimisation algorithm’s strategy.

The optimal strategy generally depends on the optimi-
sation problem that is being solved. It is commonplace
to find the suggested values of the (default) strategy
published together with the algorithm. These values are
often obtained with limited numerical trials or some
(overly) simplified analysis. Despite this the published
strategies are rarely challenged by optimization prac-
titioners. Such careless choice of strategy is often the
cause for optimisation algortihms being deemed as in-
efficient.

The optimal strategy generally depends on the nature
of the optimisation problem. The only possible option
is to find the optimal strategy before the optimisation
itself. The problem of finding the optimal strategy is

Received November 19, 2012
Accepted January 9, 2013

also referred to as meta-optimisation problem while the
process of solving it is called meta-optimisation. The
basic (optimisation) algorithm is the one for which the
optimal strategy is being sought. Meta-optimisation also
involves a CF that expresses the quality of a strategy
with a real number. It maps vectors that represent strate-
gies to real numbers that represent the basic algorithm’s
performance. Lower values of the CF correspond to
better strategies. The calculation of teh CF value in-
volves several runs of the basic algorithm that capture its
performance on a family of optimisation problems. This
makes meta-optimisation a computationally intensive
task where even a single CF evaluation can take hours.

The CF in meta-optimisation is often discontinuous,
multimodal and is littered with a numerical noise. This
usually leaves no other choice, but to use a global
optimisation algorithm for finding its minimum. The
main disadvantage of these algorithms is the large numer
of CF evaluations needed for finding the solution of
a meta-optimisation problem (10000 and more). The
run times can be significantly shortened by the use of
parallel computing which is a viable option because
many global optimisation algorithms can be efficiently
parallelised.

In this paper we focus on meta-optimisation of local
optimisation algorithms. These algorithms search for
a local minimum of the CF. Usually, they require a
significantly smaller number of CF evaluations when
compared to global optimisation algorithms. Although a

232 BŰRMEN, TUMA, FAJFAR

local optimum does not represent the best possible solu-
tion of an optimisation problem, optimisation algorithms
are still often used in engineering practice. In many
engineering optimisation problems evaluation of the
CF is computationally expensive while the computing
power is limited. Is such cases local optimisation is the
only viable choice. A local optimisation algorithm is
also adequate if finding a decrease in the CF value is
sufficient for deeming the run as successfull.

2 COST FUNCTION IN
META -OPTIMISATION

Before any meta-optimisation, one has to choose the
family of the optimisation problems for which the op-
timal basic algorithm strategy is being sought. Real-
world optimisation problems are often computationally
too expensive and cannot be used for constructing the
CF for meta-optimisation. A much better choice are
mathematical test functions that are designed for the
purpose of evaluating the basic optimisation algorithm.
Two sets of test functions are commonly used: the
Moré-Garbow-Hillstrom set [1] and the CUTEr set [2].
The former comprises35 unconstrained optimisation
problems, while the latter offers over1000 unconstrained
and constrained problems. A subset of these problems
{f1, f2, ..., fm} is used for constructing the CF in meta-
optimisation. Local optimisation algorithms usually re-
quire an initial point. We denote the corresponding initial
points withx0

1, x
0
2, ..., x

0
m

.
The CF in meta-optimisation measures the perfor-

mance of a strategy with respect to the performance of
some reference strategy (or algorithm). In this e,sense a
possible choice is the performance of the basic algorithm
using a default strategy. We denote the (reference)
number of CF evaluations withN ′

1, N
′

2, ..., N
′

m
. The

quality of the final result returned by a local optimisa-
tion algorithm can be expressed with the norm of the
corresponding CF gradient. The lower values of this
norm correspond to a better approximation of a local
minimum. We denote the (reference) final results and
the CF gradient withx′

1, x
′

2, ..., x
′

m
and g′1, g

′

2, ..., g
′

m
,

respectively.
Denote the final results and the corresponding CF

gradient obtained by the basic algorithm withx1, x2, ...,
xm andg1, g2, ..., gm, respectively. LetN1, N2, ...,Nm

be the number of CF evaluations in the basic algorithm.
It can be expected that many strategies tried during
the course of meta-optimisation result in an excessive
number of CF evaluations. This results in prolonged
meta-optimisation runs. Such situations can be avoided
if one places an upper bound (Nmax

i
) on the number of

CF (fi) evaluations. A possible choice would be

Nmax
i

= max (5N ′

i
, 10000) . (1)

The goal of meta-optimisation is to find a strategy

for which the basic algorithm’s performance exceeds
that obtained with the default strategy. This requirement
represents a constraint in meta-optimisation and can be
handled with a CF that comprises several penalty contri-
butions (Ci). [3] If some strategy behaves worse than the
default strategy, the corresponding penalty contribution
is positive. On the other hand, if a strategy outperforms
the basic strategy, a small negative penalty contribu-
tion rewards its behavior. In case a strategy exhibits
same performance as the default strategy, the penalty
contribution is zero. The CF in meta-optimisation can
be expressed as a sum ofm penalty contributions
representing performance on individual test problems.

C =

m
∑

i=1

Ci. (2)

C = 0 corresponds to a strategy that exhibits the same
performance onm test problems as the defautl strategy.
The contribution of thei-th test problem to the CF in
meta-optimisation can be expressed as

Ci =

{

(Ni/N
′

i
− 1) · 10; Ni > N ′

i

(Ni/N
′

i
− 1)/10; Ni ≤ N ′

i

(3)

+

{

log10(||gi||/||g
′

i
||) · 10; ||gi|| > ||g′

i
||

log10(||gi||/||g
′

i
||)/10; ||gi|| ≤ ||g′

i
||

(4)

One can use an arbitrary constantP > 1 instead of
the fixed value (10) in the above equations. The absolute
ratio between a penalty (Ci > 0) and reward (Ci < 0)
attributed to a deterioration/improvement of the same
magnitude from the default strategy’s performance is
P 2. One CF evaluation in meta-optimisation involves
m runs of the basic optimisation algorithm.

3 COMPUTER HARDWARE

Meta-optimisation is a computationally intensive proce-
dure. To make it viable one has to take advantage of
parallel processing. A sufficient computing power can
be obtained by utilizing contemporary high-performance
computing (HPC) systems. Such systems comprise a
large number of processing units. The role of a proces-
sign unit can be taken by ordinary desktop computers.
Nowadays, the price of a typical desktop computer with
a quad-core CPU is arounde 600 (ore 150 per CPU
core). Such computers usually come with a built-in
network adapter (most commonly1Gb Ethernet). By
adding a network switch (its cost is usually lower than
the price of a single desktop computer), one gets a
fully functional HPC system. The price of a system
comprising100 CPU cores is arounde 15000.

The interconnection between the processing units is
the main bottleneck. Despite its speed (1Gbit/s), the
latency in quite high (around20µs). Part of the latency
is inherent to Ethernet, while the rest (around10µs,
[4]) is caused by inefficient drivers. This is quite large

META-OPTIMISATION ON A HIGH-PERFORMANCE COMPUTING SYSTEM 233

PC 1

Ethernet switchEthernet switch

PC 2 PC M

Controlling PC Internet

(1Gbit)

Figure 1. Block diagram of a HPC system based on desktop
computers and gigabit Ethernet.

when compared to the latency of the HPC systems using
InfiniBand (e.g. [5]) where it can be as low as1µs. The
throughput is also much higher in the InfiniBand systems
(2Gb/s for a basic SDR link). The cost, however,
is much greater if the InfiniBand links are used for
interconnecting the processing units.

Regardless of the lower throughput and higher latency,
a HPC system with the Ethernet interconnection is
capable of running parallel optimisation algorithms. Let
R denote the throughput of the interconnection whileτ
denotes the latency. The interconnection does not behave
as the system’s bottleneck if two conditions are satisfied.
The time it takes for a processing unit to complete a
task (T) must be significantly higher than the latency.
Secondly, the total amount of dataD associated with a
task (data sent to a processing unit describing the task
and data sent from a processing unit with the results of a
task) must be small enough so that it can be transferred
in the fraction of time it takes for the task to complete.
Both conditions can be formulated mathematically as

T ≫ τ, (5)

D/R ≪ T. (6)

Meta-optimisation along with most engineering opti-
misation problems satisfies conditions (5)-(6). Condition
(5) is satisfied becauseT is in the 1s order of the
magnitude or greater, whileτ is in the 10µs order of
the magnitude (even for ”slow” gigabit Ethernet links).
Because every task (CF evaluation) can be specified
with n′ real numbers (wheren′ is the dimension of the
meta-optimisation problem, i.e. the number of the basic
algorithm’s parameters). A task produces a result which
is a CF value and can be represented as a single real-
valued number. Assuming that64-bit real numbers are
used, the amount of data transferred to and from every
task is64 ·(n′+1). This gives usD/R = (n′+1) ·64ns.
If completing one task takesT = 1ms, condition (6) is
satisfied for alln′ < 15624.

4 OPTIMISATION SOFTWARE

Parallel optimisation algorithms on HPC systems consist
of multiple programs (tasks) running in parallel. Every

program runs on a single processor and solves a part
of the problem. Programs communicate among them-
selves and coordinate their work. The communication is
usually implemented as messages. When a task receives
a message, it processes the message by performing a
(lengthy) computation upon which it sends back a mes-
sage with results. Implementing parallel algorithms can
be significantly simplified if one uses a library that wraps
the process of sending and receiving messages into a
simple application programming interface (API). This
hides the details of communication protocols. Currently,
two solutions are available: PVM [6] and MPI [7].
PVM is a somewhat older library, while MPI is only an
API specification. Several implementations of the MPI
specification are available.

Developement of optimisation algorithms requires an
environment that 1) simplifies implementation of com-
plex matematical concepts and 2) speeds up debugging
of the implemented code. The first requirement is satis-
fied by several programming laguages in combination
with appropriate mathematical libraries. The second
requirement is usually fulfilled by various scripting
languages. We chose Python [8] in combination with
NumPy/SciPy [9] mathematical libraries for implement-
ing all the described algorithms due to its simplicity,
generality and the large number of available extensions.

Meta-optimisation can be parallelised using two ap-
proaches. The first approach distributes the evaluation
of the basic algorithm’s performance for one candidate
strategy among multiple processors. Every processor
runs the basic algorithm on one of them test problems.
When them optimisation runs are complete, the corre-
sponding value of the CF is computed using (2). The
meta-optimisation algorithm then determines the next
candidate strategy and distributes its evaluation among
parallel processors. This way a speedup factor of up to
m can be achieved. Unfortunately the speedup is limited
by the fact that not all of them optimisation runs are
finished at the same time. This way some processors
remain idle until all of them processors finish the
evaluation (synchronisation penalty). As consequence,
the actual speedup factor is smaller thanm.

To avoid synchronisation penalty, one can use
an asynchronous optimisation algorithm for meta-
optimisation. Such algorithms keep all processors busy
all the time. The evaluation the meta-optimisation CF
is not distributed among processors. This brings an
additional advantage by greatly increasingT thus mak-
ing conditions (5) and (6) satisfied even for the HPC
systems with slow interconnections. An example of such
algorithm can be found in [10].

5 EXAMPLE

The Nelder-mead simplex algorithm [11] searches for a
local minimum of a function ofn variables by moving

234 BŰRMEN, TUMA, FAJFAR

n + 1 points (also referred to as simplex). We assume
that the points are ordered so that the largest and smallest
function value corresponds toxn+1 (worst point) andx1

(best point), respectively. Most of the time the simplex
moves around by replacing the worst point with one
of the points lying on a ray withxn+1 for origin that
runs through the centroidx of the n best points (x =
(x1+ ...+xn)/n). The valueγ ≥ −1 determines a point
x on this ray according to

x = x+ γ(x− xn+1). (7)

x1

xn+1

xn

xxic
xoc

xr
xe

Figure 2. Reflection, expansion, outer contraction, and inner
contraction steps in the Nelder-Mead simplex algorithm.

The values ofγ denoted byγr, γe, γoc, andγic corre-
spond to points (xr, xe, xoc, andxic) that represent the
possible replacements for the worst point (see Fig. 2).
The corresponding steps are also referred to as reflection,
expansion, outer contraction, and inner contraction. If
none of these steps improves the worst function value
(at xn+1), the simplex is shrinked towards its best point
(x1) according to

xi → x1 + γs(xi − x1), i = 2, ..., n+ 1. (8)

γs denotes the shrink factor. The values ofγ that
correspond to the above-mentioned steps must satisfy
0 < γr < γe in 0 < γoc,−γic, γs < 1. The rec-
ommended values of these parameters found in [11]
represent the default strategy

[γr, γe, γoc, γic, γs] = [1, 2, 1/2,−1/2, 1/2]. (9)

The algorithm can be described with the following
steps.

1) Order points so that they satisfy
f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1) .

2) Evaluatefr = f(~xr).
If fr < f1, evaluatefe = f(xe).
If fe < fr, replacexn+1 with xe, otherwise
replace it withxr.

3) If f1 ≤ fr < fn, replacexn+1 with xr.
4) If fn ≤ fr < fn+1, evaluatefoc = f(xoc).

If foc < fn+1, replacexn+1 with xoc,
5) If fn+1 ≤ fr, evaluatefic = f(xic).

If fic < fn+1, replacexn+1 with xic.
6) Steps 2-5 did not replacexn+1, shrink the simplex.
7) If stopping conditions are not satisfied, return to

step 1.

The description in [11] does not explicitly state the
point ordering in case multiple points share the same
value off . In such case, the points are ordered with the
oldest point appearing last.

There are several published examples (e.g. [12]),
for which the Nelder-Mead simplex algorithm fails to
converge to a local minimum. Despite this fact, it is still
very popular due to its simplicity. The goal of meta-
optimisation will be to find the optimal strategy for
the Nelder-Mead simplex algorithm that is given by its
n′ = 5 parameters.

The set of test functions comprised39 problems from
[13] of which most come from [1]. According to the
recommendations in [1] every problem was tested with
three different starting points:x0, 10x0, and 100x0,
wherex0 denotes the problem’s standard starting point
given in [1] or [13]. An exception to this rule was the
Jennrich and Sampson function which is not defined at
100x0. The set comprisedm = 3 · 39 − 1 = 116 test
problems. The reference number of the CF evaluations
and final gradient norm were obtained with the conver-
gent variant of the algorithm given in [13] by using the
standard starting points (x0). The initial simplex and the
stopping conditions were identical to those published in
[13].

The following constraints were imposed on the values
of the algorithm’s parameters (strategy)

0.001 ≤ γr ≤ 2, (10)

0 ≤ γe − γr ≤ 4, (11)

0.001 ≤ γoc/γr ≤ 0.999, (12)

0.001 ≤ −γic ≤ 0.999, (13)

0.001 ≤ γs ≤ 0.999. (14)

The meta-optimisation was performed on a HPC
system comprisingM = 25 computers with an Intel
Core i5 750 processor running at2, 66GHz and one
control computer that was responsible for connecting the
system to the internet (Fig. 1). The theoretical perfor-
mance limit is1Tflops (assuming that every processor
core is capable of performing up to four floating point
operations per clock cycle). The set of the problems for
which such a system can be used is limited by conditions
(5)-(6).

The role of the meta-optimisation algorithm was taken
by the global optimisation algorithm described in [10].
This algorithm is a combination of simulated annealing
and differential evolution. The algorithm was stopped
after 200000 CF evaluations. The results were obtained
after two days. The following optimal strategy was
obtained

γr = 0.983, (15)

γe = 1.27, (16)

γoc = 0.734, (17)

META-OPTIMISATION ON A HIGH-PERFORMANCE COMPUTING SYSTEM 235

γic = −0.609, (18)

γs = 0.385. (19)

Parametersγr andγic are close to the values suggested
by Nelder and Mead in [11]. It is interesting to note that
the obtained value ofγe = 1.27 is close to1.2 which is
the value suggested in [14]. The obtained value ofγoc
andγs differs from the default value (0.5).

To verify the obtained optimal strategy, the basic
algorithm was run on the39 test problems with unscaled
initial points x0. The number of the CF evaluations
was limited to100000. The results are given in Table
1. For two test problems the default strategy used
all the available CF evaluations without satisfying the
stopping conditions. The optimal strategy satisfied the
stopping conditions for all test problems. Cases where
one strategy outperforms the other (in terms of the
number of CF evaluations and final gradient norm)
are doneted by asterisks. The default strategy made
fewer CF evaluations than the optimal strategy for 23
test problems, while the opposite was true for 16 test
problems. With respect to the final gradient norm, the
default strategy outperformed the optimal strategy on 14
problems, while the optimal strategy was better on 25
problems. Considering both CF evaluations and the final
gradient norm, the default strategy was better on eight
problems, while the optimal strategy outperformed the
default one on ten problems.

Columns marked with #r, #e, #oc, and #ic list the rel-
ative number of successfull reflection, expansion, outer
contraction and inner contraction steps. The columns
marked with #s list the number of shrink steps. If
the optimal strategy is used, the relative number of
successfull reflection steps slightly decreases, while the
number of successful expansion steps increases. We
assume that this is part of the reason why the optimal
strategy outperforms the default strategy. The number
of functions on which the optimal strategy outperforms
the defautl strategy (density of the asterisk symbols)
increases as the dimension of the problem increases.
This suggests that the optimal strategy depends on
the problem dimension. The number of shrink steps is
small and decreases even further if the obtained optimal
strategy is used. The outer contraction steps constitute
only a small percentage of CF evaluations. The obtained
value ofγoc is therefore not reliable. On the other hand,
the inner contraction steps represent10% − 20% of all
the CF evaluations which validates the obtained value
of γic = −0.609.

6 CONCLUSIONS

The values of algorithmic parameters (strategy) deter-
mine the behavior of a (basic) optimisation algorithm.

The process of finding their optimal values can be auto-
mated by applying an outer optimisation loop. This outer
optimisation is also referred to as meta-optimisation. We
gave an example of how to construct the cost function
for meta-optimisation. The cost function is based on the
basic algorithm’s performance measured on several test
problems.

Meta-optimisation is a computationally intensive task
that usually cannot be finished in a feasible time without
the help of high-performance computing systems. We
gave a low-cost example of such system with 100
CPU cores. The system is based on standard desktop
computers connected with a gigabit Ethernet network.
Such systems can be efficient if the time a task takes to
complete is significantly longer than the latency of the
network and the time it takes for the data to be trasferred
to/from the task.

We gave an example of meta-optimisation that
searches for the optimal values of the Nelder-Mead sim-
lex algorithm’s five algorithmic parameters. The results
show that the optimal strategy significantly differs from
that published by Nelder and Mead. An interesting fact
is that the optimal value of the expansion parameter
is almost identical to that suggested in the paper de-
scribing the convergent variant of the algorithm based
on grid-restrainment [14]. The results also suggest that
the optimal strategy depends on the dimension of the
optimisation problem.

An interesting task for future research would be to
find the dependence of the optimal strategy on the
problem dimension and whether that dependence can be
explained theoretically.

ACKNOWLEDGEMENT

The research has been supported by the Ministry of
Education, Science, Culture and Sport of the Republic of
Slovenia within the research program P2-0246 - Algo-
rithms and optimisation methods in telecommunications.

REFERENCES

[1] J.J. Moŕe, B.S. Garbow, K.E. Hillstrom, “Testing Unconstrained
Optimization Software,”ACM Transactions on Mathematical
Software, vol. 7, no. 1, pp. 17–41, 1981.

[2] N.I.M. Gould, D. Orban, P.L. Toint, “CUTEr and SifDec: a
constrained and unconstrained testing environment, revisited,”
ACM Transactions on Mathematical Software, vol. 29, no. 4,
pp. 373–394, 2003.

[3] Á. Bűrmen et al., “Automated robust design and optimization
of integrated circuits by means of penalty functions,”AEÜ,
International Journal of Electronics and Communications, vol.
57, no. 1, pp. 47–56, 2003.

[4] “Myrinet Express over Generic Ethernet Hardware,” http://open-
mx.gforge.inria.fr, april 2012.

[5] “Visokozmogljivi računski sestav HPCFS,” http://hpc.fs.uni-lj.si,
april 2012.

[6] V.S. Sunderam, “PVM: A Framework for Parallel Distributed
Computing,”Concurrency: Practice and Experience, vol. 2, no.
4, pp. 315–339, 1990.

236 BŰRMEN, TUMA, FAJFAR

Table 1. Comparison of the default strategy and optimal strategy for the Nelder-Mead simplex algorithm.
default strategy optimal strategy

function dim. N ||g|| #r #e #oc #ic #s N ||g|| #r #e #oc #ic #s

Rosenbrock 2 * 231 4.8e-09 0.13 0.08 0.07 0.25 0.00 366 * 1.4e-09 0.15 0.10 0.06 0.23 0.00
Freudenstein&Roth 2 * 174 *7.1e-07 0.09 0.07 0.05 0.27 3.45 315 1.3e-06 0.16 0.10 0.05 0.20 1.90
Powell 2 * 752 *2.7e-08 0.24 0.11 0.02 0.18 0.00 1073 5.4e-08 0.22 0.16 0.03 0.14 0.00
Brown 2 * 320 *7.0e-02 0.09 0.12 0.06 0.25 0.00 713 1.1e-01 0.18 0.16 0.03 0.16 0.00
Beale 2 * 170 1.7e-09 0.11 0.05 0.08 0.28 0.00 241 * 3.8e-10 0.09 0.07 0.05 0.30 0.00
Jennrich&Sampson 2 * 154 *1.2e-05 0.10 0.03 0.05 0.31 2.60 191 1.8e-05 0.07 0.04 0.06 0.34 1.05
McKinnon 2 * 195 *1.7e-08 0.12 0.10 0.04 0.24 2.05 318 2.4e-08 0.12 0.17 0.02 0.21 1.26
McKinnon (alt) 2 247 1.0e+00 0.00 0.00 0.00 0.49 0.00 * 217 * 3.3e-08 0.11 0.01 0.05 0.34 1.84
Helical Valley 3 * 369 9.6e-09 0.15 0.11 0.04 0.25 0.00 561 * 8.5e-09 0.11 0.16 0.04 0.22 0.00
Bard 3 * 333 4.6e-09 0.14 0.08 0.08 0.24 1.80 439 * 4.0e-09 0.10 0.11 0.05 0.24 2.73
Gaussian 3 * 245 *1.3e-10 0.12 0.06 0.07 0.29 0.00 250 2.9e-10 0.11 0.00 0.05 0.36 0.00
Meyer 3 100002 *2.2e+01 0.22 0.00 0.11 0.00 32.8* 2525 8.9e+01 0.26 0.17 0.03 0.10 2.61
Gulf R&D 3 3759 *9.8e-15 0.27 0.14 0.03 0.13 0.00* 3317 1.8e-14 0.25 0.20 0.02 0.11 0.00
Box 3D 3 * 514 4.7e-09 0.13 0.14 0.03 0.23 2.33 656 * 3.2e-11 0.12 0.16 0.04 0.22 0.00
Powell Singular 4 * 1070 6.3e-16 0.27 0.09 0.04 0.19 0.00 1444 * 4.4e-16 0.20 0.14 0.04 0.18 0.00
Wood 4 * 683 5.4e-08 0.27 0.08 0.05 0.20 0.00 945 * 1.2e-08 0.25 0.11 0.05 0.19 0.00
Kowalik&Osborne 4 * 431 9.7e-10 0.24 0.05 0.06 0.21 3.71 551 * 9.1e-10 0.19 0.08 0.07 0.22 2.18
Brown&Dennis 4 * 490 9.8e-04 0.21 0.07 0.04 0.21 5.71 573 * 6.1e-04 0.20 0.08 0.06 0.21 4.19
Quadratic 4 * 359 *5.0e-10 0.17 0.05 0.06 0.28 0.00 510 9.0e-10 0.15 0.07 0.05 0.29 0.00
Penalty I 4 1404 5.4e-11 0.28 0.12 0.04 0.15 1.71* 1227 * 9.5e-12 0.28 0.14 0.03 0.15 1.30
Penalty II 4 3768 1.5e-10 0.33 0.13 0.03 0.13 0.64* 2924 * 9.2e-11 0.30 0.17 0.02 0.11 0.55
Osborne 1 5 * 1136 *2.5e-08 0.34 0.07 0.03 0.15 3.08 1277 2.9e-07 0.31 0.11 0.03 0.16 1.96
Brown 5 820 *2.2e-10 0.27 0.08 0.05 0.20 0.00 * 791 1.2e-09 0.23 0.08 0.03 0.25 0.00
Biggs EXP6 6 * 1127 6.6e-08 0.34 0.07 0.04 0.16 3.19 1184 * 1.1e-08 0.31 0.10 0.03 0.17 2.53
Rosenbrock 6 4321 *6.8e-09 0.38 0.11 0.02 0.13 0.00* 2342 7.0e-09 0.36 0.13 0.02 0.14 0.00
Brown 7 1872 *7.6e-10 0.41 0.07 0.03 0.15 0.00* 1248 1.2e-09 0.29 0.07 0.04 0.21 0.00
Quadratic 8 1783 1.8e-09 0.46 0.05 0.03 0.14 0.00* 1166 * 1.7e-09 0.25 0.07 0.04 0.25 0.00
Rosenbrock 8 6181 7.0e-01 0.46 0.09 0.02 0.11 0.65* 4046 * 1.0e-08 0.41 0.13 0.02 0.12 0.00
Var. Dim. 8 4044 6.6e-09 0.46 0.09 0.02 0.12 0.00* 2368 * 5.6e-09 0.28 0.15 0.02 0.16 0.00
Powell 8 * 2579 1.3e-04 0.42 0.07 0.03 0.14 0.00 4770 * 6.9e-16 0.40 0.12 0.02 0.12 0.00
Watson 9 2953 *3.3e-08 0.35 0.13 0.03 0.13 1.22* 2183 7.0e-08 0.23 0.20 0.02 0.14 1.37
Rosenbrock 10 * 6786 3.0e+00 0.51 0.08 0.02 0.10 0.7411656 * 8.7e-09 0.47 0.14 0.01 0.08 0.00
Penalty I 10 * 5535 4.5e-05 0.50 0.08 0.02 0.11 1.08 6786 * 1.2e-10 0.46 0.13 0.01 0.09 0.88
Penalty II 10 * 6461 1.5e-04 0.47 0.08 0.02 0.13 0.62 9869 * 1.5e-05 0.45 0.15 0.01 0.08 0.61
Trigonometric 10 3196 1.7e-08 0.52 0.06 0.02 0.10 0.94* 1457 * 3.8e-09 0.37 0.05 0.03 0.19 2.06
Osborne 2 11 4945 6.5e-08 0.55 0.05 0.02 0.09 0.89* 2870 * 4.8e-08 0.44 0.08 0.02 0.14 1.53
Powell 12 * 7300 7.5e-04 0.55 0.06 0.02 0.10 0.00 12253 * 1.1e-15 0.50 0.12 0.01 0.08 0.00
Quadratic 16 9243 7.5e-09 0.66 0.03 0.01 0.06 0.00* 3040 * 2.5e-09 0.42 0.05 0.02 0.19 0.00
Quadratic 24 100000 1.4e+00 0.76 0.03 0.01 0.02 0.00* 6795 * 3.5e-09 0.60 0.04 0.02 0.11 0.00

[7] “MPI: A Message-Passing Interface Standard, Version 2.2,
September 4, 2009”, http://www.mpi-forum.org/docs/mpi-
2.2/mpi22-report.pdf, april 2012. Version 2.2

[8] “Python Programming Language”, http://www.python.org/, april
2012.

[9] “SciPy”, http://www.scipy.org/, april 2012.
[10] J. Oleňsek, T. Tuma, J. Puhan,Á. Bűrmen, “A new asynchronous

parallel global optimization method based on simulated anneal-
ing and differential evolution,”Applied Soft Computing Journal,
vol. 11, no. 1, pp. 1481–1489, 2011.

[11] J.A. Nelder, R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[12] K.I.M. McKinnon, “Convergence of the NelderâC“Mead sim-
plex method to a non-stationary point,”,SIAM Journal in Opti-
mization, vol. 9, no. 1, pp. 148–158, 1999.

[13] Á. Bűrmen, T. Tuma, “Unconstrained derivative-free optimiza-
tion by successive approximation,”Journal of computational and
applied mathematics, vol. 223, no. 1, pp. 62–74, 2009.

[14] Á. Bűrmen, j. Puhan, T. Tuma, “Grid restrained Nelder-Mead
algorithm,” Computational optimization and applications, vol.
72, no. 5, pp. 359–375, 2006.

Árp ád Bűrmen received his Ph.D. degree in electrical engineering
from the Faculty of Electrical Engineering, University of Ljubljana,
Slovenia, in 2003. Currently, he is an associate professor at the same
Faculty. His research interests include continuous and event-driven
simulation of circuits and systems, optimization methods and their

convergence theory and applications, and algorithms for parallel and
distributed computation. He is one of the principal developers of the
SPICE OPUS circuit simulator and has published over 20 papersin
peer-reviewed journals.

Tadej Tuma received his B.Sc., M.Sc. and Ph.D. degrees from
University of Ljubljana, Faculty of Electrical Engineering, in 1988,
1991, and 1995, respectively. He is a Professor at the same faculty
where he teaches four undergraduate and three postgraduatecourses.
His research interests are mainly in the field of computer-aided circuit
analysis and design.

Iztok Fajfar received his B.Sc., M.Sc., and Ph.D. degrees in electrical
engineering from the Faculty of Electrical Engineering, University of
Ljubljana, Slovenia in 1991, 1994, and 1997, respectively.In 1991
he was researcher at the Jozef Stefan Institute in Ljubljana. At the
end of the same year he was granted a research position at the
Faculty of Electrical Engineering, University of Ljubljana. Currently
he holds the position of an associate professor at the same faculty.
He teaches several introductory and advanced courses in computer
programming. He has also participated in several industrial software
projects. His research interests include design and optimisation of
electronic circuits.

