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Abstract: Simulations of telecommunications networks have become very important tools for their evaluation. A very important influence in simulations
has network traffic. This paper introduces new concepts for the modeling of measured network traffic in simulation tools. With these new concepts, we
can improve descriptions of the random packet-size process, especially for maximal-packets of network traffic, which have a very great impact on the bit
or packet rates of network traffic. The suggested methods improve the contents of packets, especially maximal packets in modeled network traffic
simulations, which leads to smaller differences in bit and packet-rates between measured and modeled network traffics,

Nov pristop k modeliranju samo-podobnega prometa v
simulacijah

Kjuéne besede: samo-podobnost, modeliranje omreznega prometa, Pareto porazdelitev, maksimaina dolzina paketa

Izvieéek: Simulacije telekomunikacijskih omrezij postajajo pomembno orodje za ovrednotenje le teh. Zelo pomemben in velik vpliv v simulacijah ima tudi
omrezni promet. Ta Clanek predstavija novi koncept modeliranja izmerienega omreznega prometa v simulacijskih orodijih. Z tem novim konceptom lahko
izbolisamo opis nakljutnega procesa velikosti paketov omreZnega prometa, zlasti maksimalnih paketov, kateri imajo zelo velik vpliv na srednjo vrednost
celotnega prometa v bitih in paketih na casovno enoto. Predlagane metode izboljSajo opis vsebnosti paketov v omreznem prometu, e posebej maksimal-
nih paketov v modeliranem prometu,kar posledi¢no vodi do manjsih razlik v srednji vrednosti bitov in paketov na Gasovno enoto med izmerjenim in
modeliranim prometom.

cy in regard to the measured histogram and chosen distri-
bution, which is usually a consequence of maximal-pack-

1. Introduction

Statistical analysis in Ethemet networks show that, in many
cases, network traffic can be described by self-similarity /1/.
This model appeared before fifteen years as an alterna-
tive, at that time, to the used models such as Poisson and
Markov /2/. It was also shown, that heavy-tailed distribu-
tions, such as Pareto and Weibull, are more suitable for
describing network processes, such as process packet-
size and inter-arrival time /1, 3, 4, 5/.

One of the main goals of researchers was, and still is, the
modeling of network traffic in simulations, such as OPNET
/6,7, 8/. In simulation we try to model the measured net-
work traffic, which is the best possible approximation of
the measured traffic in the sense of bit or packet-rates,
bursts or variance. For evaluating discrepancies between
measured and simulated network traffic, we chose differ-
ent measures such as bit or packet rates, Hurst parame-
ter, variance and also discrepancy between histograms of
statistical network process for packet size and inter-arrival
time.

During measuring and modeling we saw that discrepan-
cies between measured and modeled fraffic are derived
from an inaccurate description of the packet-size process.
We also saw that, especially for longer and maximal length
packets (MTU- Maximal Transmission Unit), have a sub-
stantial influence on modeled network traffic. The captured
histogram of the packet-size process had great discrepan-

ets. Maximal packets are a consequence of data fragmen-
tation in TCP/IP stack. Usually with classical modeling,
where a captured histogram of packet size process is de-
scribed with distribution, we do not derive at a good enough
description regarding the packet-size process of measured
traffic, especially the content of maximal packets. This,
consequently, leads to great discrepancy between meas-
ured and modeled network traffics, especially in bit and
packet-rates, and also traffic bursts.

For this reason, we present three methods for describing
a measured traffic histogram of packet-size which achieve
more accurate descriptions of network traffic in simulations.

1. The first method is based on using “mixed distribu-
tions” for describing random processes, a similar
concept is used in the area of image processing /9/,
and already steps in the area of traffic modeling
/10, 11, 12/.

2. The second method is based on estimating data files
of a measured traffic histogram by defragmentation in
a communications network /3, 4, 5/.

3. The third method combines the first and second meth-
ods.

This paper is organized as follows. The second section
describes statistical modeling of network traffic by distri-
bution and Hurst parameter. The next section describes

41



Informacije MIDEM 39(2009)1, str. 41-45

M. Fras, J. Mohorko, Z. Cuéej:

A new Approach to the Modeling of Network Traffic in Simulations

the packet-size process of network traffic. New approach-
es with suggested methods are in the forth section. The
fifth section represents the simulation results. Finally, we
finish this paper with the conclusion.

2 Statistical modeling of measured
network traffic

Network traffic can be described as a combination of two
random processes:

1. packet-size process X({)
2. inter-arrival time Y(?)

L ets describe network traffic Z(t) as

Z( =y (X0, Y1) (1)
where \f is the function of packet-size X(t) and inter-arrival
time process Y(t). Both processes are described by prob-
ability distribution function (pdf). The choice of suitable dis-
tribution for a traffic process depend the measured net-
work traffic’s properties. For network traffic with a short-
range dependence property, light-tailed distributions (ex-
ponential) are the more suitable for describing packet-size
process, such as exponential. In the case of network traf-
fic with long-range dependence, heavy tailed distributions
are the more suitable distributions for describing such traf-
fic, such as Pareto and Weibull. The probability density
function (pdf) of Pareto distribution is

p()=ak® x ', k<x, o,k>0 2)
where k is local parameter and «is shape parameter. Prob-
ability density function of Weibull distribution is:

o—1 X
=(=)
p(x):%.(%) % x20 0k>0 )

where K is local parameter and « is shape parameter.
Definition of the self-similar random process /3, 13, 14,

15/ is based on autocorrelation function r{k), which is de-
scribed as

kY =~kPL(k), k—>wo, 0<B<l, (4)

where L1(k) is slowly varying at infinity, that is for all x > 0
(i.e., L1(t) = constant, L+{f) =log(t)). Hurst parameter H is
used for described arrival process and it is defined by

H=1—%, 0<p <1 (5)

and presents the measure of self-similarity. For describing
arrival process, beside parameter H, are also needed pa-
rameters such are average arrival-rate, fractal onset time
scale, source activity-ratio, and peak to mean ratio.

3  Problem of statistical packet size
process
From measured traffic by sniffer /8/, we can obtain infor-

mation about a packet-sizes, inter-arrival time, packet-rate. ..
Based on histograms, we can evaluate both random traffic
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process X(f) in Y({) and choose distributions, which are the
best approximations of histograms. During research, where
we estimate parameters of traffic processes we found that,
in the case of estimating packet-size process parameters
much larger discrepancies appear than in the case of in-
ter-arrival time. Discrepancy between the histogram of
measured traffic and distribution, which describe this proc-
ess, can be evaluated by goodness of fit tests, such as
Kolmogorov-Smirnov or Chi-square /16/. The greatestim-
pact on these discrepancies is MTU, which as mentioned
in the first section. MTU packets cause a strong disconti-
nuity in the histogram and it is very difficult to describe
such a histogram using the classical method. In our re-
search, we paid attention to a statistical description the
packet-size process of network traffic.
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Fig. 1:  Histogram of measured packet size process
and distribution parameters estimation with
classical method with EasyFit fitting tool.

Figure 1 shows an example of a packet-size histogram of
measured network traffic and classical distribution param-
eters’ estimation. From the captured histogram, we can
see that minimal length size packets of around 54 B pre-
vail. But there are also a lot of packets of maximal length,
which also have a great influence on the bit-rate of the
entire network traffic. The classical parameter estimation
method (Figure 1) does not describe the process very well,
especially those maximal packets, which usually lead to
great discrepancies between measured and modeled traf-
fic, in the sense of bit or packet rates. Such an estimation
method also has very big difference between the contents
of packets between measured and simulated traffic. We
cannot solve this problem by using other methods for esti-
mating distribution parameters for the packet-size process
of network traffic, such as the CCDF method /3/.

The greatest discrepancies appear when describing net-
work traffic with long-range dependence (LRD) property,
where heavy tailed-distribution is used, such as Pareto.
Smaller discrepancies also appear in the case of describ-
ing network traffic with short-range dependence (SRD),
where exponential distribution was used, but these dis-
crepancies are smaller than in the previous case.
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3 Suggested methods for estimating
distribution for packet-size process

All suggested methods are based on the transformation of
captured-traffic. The first method is based on using mixed
(multiple) distributions to the describe packet-size proc-
ess, the second method is based on defragmentation of
captured-packets and the third method is a combination
of the first and second methods.

3.1 Mixed distributions

Using this method, we will describe network-traffic by mul-
tiple~distributions, which will be implemented using multi-
ple traffic generators in the same simulation workstation.
By using mixed distributions for describing the stochastic
process of network traffic, we will achieve a smalier dis-
crepancy between the measured histogram and the fitted
distributions for packet-size process (Figure 2). Network
traffic Z(t) defined in (1) can be described as the sum or n-
th data sources:

Z() =Z,() + (1), ... Zu()
Z(0) =y (X (W1 () +. v, (X, 0. Y1) =

Z(t)= Y Z:(t)= D wi(X (0,5 ®)
1 1

where Z{t) is traffic for each traffic generator and s is a
function of two random processes Xi{t) and Y{(t), where X{t)
represent packet-size process and Y{f) inter-arrival time. So,
we can divide network traffic into separated segments mod-
eled by different distributions. Points which separate the
packet size process in multiple parties described by inde-
pendent distribution, are threshold points. The simplest way
to separate network-traffic for mixture distribution is to de-
fine the first traffic Z(f), where are packets, which are long-
er than the threshold value, and ancther traffic Zx(f), with
packets that are shorter than the threshold. In many cases,
MTU size represents the threshold point.

Brobability Density
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Fig. 2: Example of using two distributions for
describing packet size process of captured
network traffic.

Z)=Z () +Z,(1) =
_ 2@ =yi (X 0.1 (9); packet _size >threshold @)
2,0 =y, (X, (), Y (0); packet _size < threshold

We must also estimate the belonging distributions for both
inter-arrival time processes Yi(t) and Y»(f) and packet-size
processes X1{t) and Xo(?).

3.2 Defragmentation method

Whilst transmitting files across a network, {P packets are
fragmented because of MTU limitations. The fragmenta-
tion process is executed in a model of IP encapsulation in
TCP/IP stack. From the captured traffic in Figure 1, we
can see that MTU packets impact on the discontinuity in
the histogram, this causing the common distribution de-
scriptions, with the help of the classical method. This new
method is based on histogram estimation of the transmit-
ted data file before fragmentation /4/. For a distribution
estimation of the packet-size process we execute with the
addition of maximal packets, which are fragmented in the
fragmentation process during transmission. So, we com-
bine all packets from a sequence of MTU packets, includ-
ing the first packet shorter than the maximal size, from the
same source in the new bigger packet. These newly de-
rived at values, together with captured non-fragmented
packets, are used designating the histogram of data, which
will be described by new distribution.

Z(0) =y (X0, Y(®) = Z () =y (X (). 1 (1)
2() = Z,(1)

Z7 (1) represents the transformed traffic, which is a func-
tion of the transformed processes for packet-size X7 and
inter-arrival time Y7. The transformed histogram represents
the originally transmitted files Z{t). We spray the distribu-
tion of maximal packets in the captured histogram over a
new range, using the defragmentation method, which rep-
resents the transmitted files. This method leads to more
continuous histograms, such as in Figure 3, which can be
described by the classical method more precisely using
distribution, than the histogram in Figure 1. Estimation
parameters of file sizes are used in traffic generators dur-
ing simulations. Because of the limitation of MTU, which is
a defined in model of a communication device, the files
are fragmented into maximal packets during the simulation
run. So estimate traffic is a good approximation of cap-
tured traffic.

3.3 Combination of distributions and
defragmentation

The third method is based on a combination of mixed dis-
tributions and defragmentation methods. The basic idea is
to describe captured traffic with two or more distributions,
but for captured-traffic we can also execute the defrag-
mentation process. For example, we can execute the de-
fragmentation process of captured-traffic Z(f), and then
describe with one distribution X(t) fraffic of packets Z4(f),
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Prohability Density

TRANSFORMED HISTOGRAM OF CAPTURED PACKETS
WITH DEFRAGMENTATION METHOD

Fig. 3:  Transformed histogram of captured histogram
on Figure 1 with chosen distribution.

which are shorter than the maximal packets. With the sec-
ond distribution Xo(f), we can describe the traffic of the
fragmentation packets Z(t), which was equal to the maxi-
mal values before fragmentation.

2O =Z()+24(1) =
_{ZI O=w(X( X)), packet _size# threshold (9)
a0=v,(X,0), %), defragmentaion _packets

For both processes Xi(t) and Xo(t) we also define and es-
timate distributions and their parameters for the belonging
processes of inter-arrival time Yi(t), Ya(f), and also Hurst
parameter, which can also be used in the modeling of ar-
rival process.

4. Simulation results

We model the captured self-similar network traffic, which
is shown on Figure 4, with short-range dependence by
simulations with both classical and presented methods.

packet-rate {pfs)

a 30 140 130 200
time {s}
Fig. 4: Measured test network traffic captured by
Wireshark sniffer.

In the case of classical estimation, we chose exponential
distribution for describing the packet-size process, because
the value of Hurst parameter is near 0.5 and also has short-
range dependence. For the first and third methods we
define threshold, which is equal to MTU size, because the
bin with MTU packets is withdrawing from other neighbor-
ing local bins in the packet-size histogram (Figure 1). This
bin is described by separated distribution, for the first and
third methods. Table 1 shows parameters of measured
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network traffic and all estimated parameters for presented
methods, which was used in OPNET simulations tool.

Table 1: Parameters of measured and simulated network
traffic

acket size inter-arrival
;’rocess time pls kb/s a MSE
?:;.f:“ed X X 356 | 1145 | 058 | X
classical exponential Wfibull
method 1i=4165 a=0.57326 334 113.4 0.53 0.024
’ £ =0.01895
packets <MTU
1. exponential ;Vzlgu61§792
method VA=23041 | o 002587 | 341 | 1249 | 054 | 0016
packets = MTU
Rayleigh
constant 1482 o= 0.17435
2 exponential :V Sgusnszl 310 | 1145 | 052 | 0.026
method 1/4=452,48 B=0.0244
packets < MTU
exponential W:ﬂo)ué;,/
3, /4 =106.7 ="
method £=0.02932 37.2 120.0 0.57 0.003
defragmentation data
Rayleigh Rayleigh
o=2181.7 oc=10.1871

Table 1 shows the comparison between measured and
modeled signals in bit and packet-rates, without method
and suggested methods. There are also estimated param-
eters H, which are measure of a self-similarity. There are
also mean square errors (MSE) between the measured and
modeled histograms of the packet-size process, which also
show the contents of the packets, shown in Figure 5. Us-
ing this test, we proved that presented methods impact
the minimal discrepancy between measured and modeled
signals and better describe measured traffic than classical
estimation (without method).
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6 7

Sy 8 g

# histogram of measured traffic Dins (bin = 1508) 10
# histogram of modeled traffic withou method

& histogram of modeled trafficwith 2. method

Fig. 5:  Histograms of packets size process of
measured traffic and modeled traffic with
classical and 3.method

Figure 6 present the three simulated network traffics, which
were modeled by estimated parameters from Table 1.
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Fig. 6: Simulated network traffics in OPNET simulation

tool. First graph presents simulated traffic,
which was model by first method. Second graph
presents simulated traffic, which was model by
second method. Third graph presents
simulated traffic, which was model by third
method.

5. Conclusion

The presented methods show very good results in the case
of modeling network traffic with short-range dependence,
where we achieved better contents of packets, sometimes
even better bit or packet-rates in the modeled traffic and a
more accurate description of captured-traffic, then in the
case of using classical manner of modeling the measured
traffic. For future research we plan modeled network traf-
fic with long-range dependence with purposeful methods,
because in these cases classical estimation (without any
methods) totally failed and lead to great discrepancy be-
tween measured and modeled traffic in the sense of bit
and packet-rates, and also in bursts’ intensities.
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