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This paper examines the influence of three cutting parameters on the surface roughness and the cutting
force components in longitudinal turning. The cutting speed, the feed rate and the depth of cut have been
taken as influential factors. Two modelling methodologies, namely regression analysis and neural networks,
have been applied to experimentally determined data. Also, for both methodologies the ability of interpolation
and extrapolation has been tested. Results obtained by neural network models have been compared to those
obtained by regression models. Both methodologies give nearly similar results when interpolation is observed.
However, regarding extrapolation neural network models give better results. In order to find the optimum

values of the cutting parameters an optimization has been carried out.
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0 INTRODUCTION

Chip-forming machining is a multi-
disciplinary scientific area based on the theory of
plasticity, thermodynamics, tribology and material
science. Parameters that influence the machining
process can be divided into two categories:

- physical phenomena during cutting, related to
influence of material structure, chip
compression ratio, appearance of friction, heat
development, cutting angles, etc.,

- technique of machining along with the
belonging cutting parameters (cutting speed,
depth of cut and feed rate), cutting force, power,
etc.

Complex technological and manufacturing
processes nowadays demand implementation of
sophisticated mathematical and other methods for
the purpose of their efficient control. Therefore a
research is needed to obtain the mathematical
approximations of machining processes and
appearing phenomena as better as possible.
Understanding the machining principles and
mathematical relations among influential
parameters is an important prerequisite for:

- machine tool designing that corresponds to
manufacturing optimum,

- achieving product quality besides the ever-
growing demands in respect to the accurate
production and quality of surface roughness,

- machine tool play an important role in the
design of manufacturing processes, not only in
fulfilment the demands for higher productivity,
but also in the requirements for production
economy.

The goal of this paper is to obtain a
mathematical model that relates the cutting force
components and the surface roughness with the
cutting parameters in longitudinal turning. In this
search two different approaches have been used in
order to get the mathematical models. The first
approach is a design of experiment (DOE) together
with an analysis of variance (ANOVA) and
regression analysis. The second approach is
modelling by means of artificial neural networks
(ANNSs). In the past, the DOE approach has been
used to quantify the impact of various machining
parameters on various output parameters at turning
[1] to [7]. But in the last decade neural networks
have experienced real prosperity in their application
to various complex problems in different engineering
fields. A review of scientific researches dealing with
the application of ANNs to turning process can be
found in [1]. It has been reported that ANNs have
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ability for mapping very complex and nonlinear
systems. Turning process is an example of such a
system and that justifies the usage of ANNs.

1 THE SCOPE OF THE RESEARCH

It is estimated that of all machining
processes about 40% pertain to turning. Turning is
the most common way for processing rotational
(symmetrical or non-symmetrical, round or non-
round) surfaces with single-point cutting tool.
Cutting force is the basic indicator of cutting
process behaviour. Having knowledge of the cutting
force it is possible to:

- calculate the necessary power for carrying out
appropriate operation, i.e. choose appropriate
drive motor,

- calculate systems of all main and auxiliary
transmission mechanisms from motor to tool,

- calculate and design the elements and parts of
machine tools,

- define the dimensions of auxiliary devices,

- choose dimensions and types of cutting tool and
verify the stability of tool in entirety,

- determine cutting parameters and conditions in
the design of economical variants of
technological machining process,

- perform the calculation of accuracy and the
ability of machining of a workpiece at an
appropriate machine tool, cutting parameters
and conditions.

On the basis of knowledge of the cutting
force function, the rational construction and
economical efficiency of production systems, the
optimization of machining process and the
development of particular concepts for adaptively
controlled manufacturing systems are ensured.

Surface of a workpiece can be obtained with
various machining processes and various
machining parameters and the roughness depends
on it. Surface roughness is one of the most
important criteria for the quality of machine parts
and products. As the competition grows and
customers have the increased demands for quality,
the surface roughness becomes one of the most
important disciplines in market competition.
Optimally smooth surface is needed at seat surface
where a certain machine parts are permanently or
periodically joined with other parts (pistons and
cylinders, bearings and trunks, slide guides,
couplings, etc.), and at parts where the surface

loading is pronounced. For the first it is
endeavoured to reduce the friction between parts
and for the latter the appearance of notch effect
that reduces the strength of dynamically loaded
machine parts is avoided. Optimum surface quality
is therefore needed due to the improvement of
tribological properties, driving strength, resistance
to corrosion and aesthetic appearance of products.
The excessive surface quality requires considerably
higher machining costs. This has to be taken into
account when the optimally needful surface quality
of machined parts is determined and therefore
certain machining processes should be used when
there is a valid reason. The accurate estimation of
machined surface roughness has been brought into
the focus of research for many scientists during a
few decades.

2 INFLUENTIAL FACTORS ON CUTTING
FORCE AND MACHINED SURFACE
ROUGHNESS

2.1 Influential Factors on the Cutting Force

Figure 1 shows cutting force components
during the longitudinal turning. The resultant force
(cutting force) £, can be decomposed into:

- tangential component of cutting force, £,
- feed component of cutting force, F),

- radial component of cutting force, F,.
Expression for the resultant force is:

FR:,/(F02+Ff2+Fp2’ (1).

Fig. 1. Cutting force components in the
longitudinal turning process
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Fig. 2. Fishbone diagram with the factors that influence the cutting force

The tangential force component F, always
acts in the direction of cutting speed vector, the
feed force component F /.is opposite to the feed rate
and the radial force component F/ is perpendicular
to these two force components.

The cutting force depends on:

- workpiece: hardness, toughness, heat treatment,

- tool: geometry (clearance angle a, rake angle
y, back rake angle A, cutting edge angle k,
cutting tool nose radius r,), wear and chip
breaker,

- size and shape of chip section,

- cutting parameters: speed v, dept of cut a, feed
/.

- cooling and lubrication.

Figure 2 shows fishbone diagram with
influential factors on the cutting force.

The values of feed rate and depth of cut
define the undeformed chip cross-section. The
larger chip cross-section follows the higher cutting
force. The research [8] has shown that the cutting
force is not increased proportionally with the
increase of chip cross-section. The cause for that
phenomenon is that lesser compression gives higher
chip cross-sectional area.

Apart from the chip cross-section,
considerable influence has the depth of cut to the
feed rate ratio. The cross-section with the higher
ratio gives the larger tangential component of the
cutting force.

In the turning of steel it is observed that with
the increase of cutting speed up to 0.83 m/s the
cutting force rises a little and afterwards decreases.

This phenomenon depends not only on the cutting
force but also on the rake angle y. With the further
increase of cutting speed up to the value of 3.3 m/s
the cutting force experiences decrement. The
cutting speed values within interval 3.3 to 8.3 m/s
almost have no influence on the cutting force [8].
These results are obtained for /= 0.74 mm/rev and
a,= 2 mm.

2.2 Influential Factors on the Surface Roughness

There are a great number of factors
influencing the surface roughness. The most
important of them are:

- machining parameters,

- build-up edge,

- tool geometry,

- machining time,

- tool and workpiece material,

- tool wear,

- dynamic behaviour of machining system,

- application of cooling and lubrication agent.
Fig. 3 shows influential factors on the machined
surface roughness.

The influence of cutting speed is closely
related to emergence of build-up edge (BUE) and
that implies its effect on machined surface
roughness. At lower cutting speed (within interval
0.16 and 0.6 m/s) the generation of BUE results
with grater surface roughness. Increasing the
cutting speed the influence of BUE is reduced and
that entails the reduction of surface roughness. But
exaggeration in the increase of cutting speed does
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Fig. 3. Fishbone diagram with the factors that affect the surface roughness [9]

not influence the further reduction of surface
roughness because tool wear is simultaneously
increased and it keeps roughness nearly constant.
Feed rate influence is directly proportional to surface
roughness with the power of two. Larger feed rate
causes higher machined surface roughness. The
influence of feed rate is closely related to cutting
tool nose radius. The reduction of feed even if its
value is very small, does not result with the further
reduction of surface roughness. At some boundary
feed rate, which depends on cutting tool nose radius,
roughness remains approximately constant at
minimum possible level. Cutting tool nose radius
influences surface roughness inversely
proportionally, i.e. its increment causes the reduction
of surface roughness. This reduction of roughness
is also limited with some minimum value because
the further increase of cutting tool nose radius causes
vibrations that influence negatively on surface
roughness. From a geometrical point of view, the
depth of cut does not influence surface roughness
because it has no influence on size and form of
bumps. On the other hand, the depth of cut has the
influence indirectly through the BUE generation,
deformation of separated chips, cutting temperature,
cutting force, vibrations, etc. [10].

3 DESIGN OF EXPERIMENTS

The planning of experiment means, on the
basis of present cognition from the literature,

experience or expected aim, beforehand prediction
of all influential factors and actions that will result
with new cognitions utilizing the rational
researches. The experiments have been carried out
using the factorial design of experiment. The
turning is characterized with many factors, which
directly or interconnected act on the course and
outcome of an experiment. It is necessary to
manage experiment with the statistical multifactor
method due to statistical character of a machining
process. In this search the design of experiment
was achieved using the rotatory central composite
design (RCCD). In the experimental research,
modelling and adaptive control of multifactor
processes the RCCD of experiment is very often
used because it offers optimization possibility [11].
The aim of this search is to find mathematical
models that describe the dependence of machined
surface roughness and cutting force components
on three cutting parameters:

- the cutting speed, v,

- the feed rate, f,

- the depth of cut, a,.

The basis of the multifactor design of
experiment can be visualized in the form of “black
box”. Figure 4 shows a “black box™ for the
longitudinal turning.

RCCD models the response using the
empirical second-order polynomial:

y:b0+zb| X, + ibu X, X, +ib|i X? (2),

1<i<j
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where:
- b(y bi, b,_j, bﬁ are the regression coefficients,
- X, are the coded values of input parameters.

In order to determine the required number
of experimental points for RCCD the following
expression is used:

N=2+2k+n,=n,+n_ +n, 3,
where:
- k is the number of parameters,
- n, is the repeated design number of the average
level,
- n,, is the design number on the central axes.

RCCD of experiment demands &
experiments (3 factors on two levels, 2%), 6
experiments on the central axes and 6 experiments
on the average level, what makes total of 20
experiments.

Adding the points to the central axes where
x, ==+d,and a, = 1.682, the 3-factorial RCCD of
experiment is obtained. The minimum and maximum
values of chosen cutting parameters as well as the
coded input factors are presented in Table 1.

4 NEURAL NETWORK MODELING

Artificial neural networks grew out of
attempts to mimic the ability of biological nervous

system to learn from the environment. Biological
nervous systems perform extremely complex tasks
using a very large number of simple processing
units (called neurons) and their numerous
interconnections. Similar structure uses ANN. The
units in an ANN are arranged in a layered feed
forward topology. Artificial neuron receives
numerous inputs (either from original data, or from
the output of other neurons in the neural network).
Each input comes via a connection that has strength
(or weight). Each neuron also has a threshold value
that is subtracted from the calculated weighted sum
of the inputs. In this way the activation signal of
the neuron is obtained. The activation signal is
passed through an activation function (also called
transfer function) in order to produce the output of
the neuron. If the number of layers and the number
of units in each layer are sufficiently large,
multilayer perception (the most popular
architecture) can model functions of arbitrary
complexity [12] to [15]. For both systems
(biological and artificial) the learning process is
achieving by altering the “strength” of synaptic
connections (weights). ANN learns the relationship
between input and output through training. In
supervised learning a set of training data needs to
be collected. The training data contains examples
of input/output pairs. Once the number of layers,
and number of units in each layer, has been selected,
the weights and thresholds of network must be
adjusted, using one of the training algorithms, so
as to minimize the prediction error made by the
network. The error of the network is determined
by comparing the outputs of the network with the
targets and then calculating an error function. The
most common error function is the sum-squared
error, where the individual errors of output units
on each training pair are squared and summed
together [14]. The network error is used to adjust
the weights, and then the process repeats. The
learning algorithm progresses through a number

Table 1. Physical values and coded indexes of input factors

Coded values of input parameters
Input factors X.ia X_i,min X.io Xi;max Xig
-1.682 -1 0 +1 +1.682
X1 =V, m/min 1159 150 200 250 284.1
X; =a, mm 0.4 0.6 0.9 1.2 1.4
X3 =f, mm/rev 0.12 0.16 0.22 0.28 0.32
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of epochs. The training process stops when a given
number of epochs is exceeded, or when the error
reaches a desirable value, or when the error stops
improving. The most desirable property of a
network is its ability to generalize to new (unseen)
cases. A network with more weights models a more
complex function, and is therefore prone to over-
fitting. A network with fewer weights may not be
sufficiently powerful to model the underlying
function [12], [13] and [15].

In order to mathematically model the
influence of cutting parameters on the cutting force
components and the surface roughness a three layer
feed-forward ANN has been chosen. In accordance
with the aim of this research the chosen ANN model
had three neurons in the input layer, twenty neurons
in the hidden layer and one neuron in the output
layer (Fig. 5).

The same network architecture has been
used for modelling the each of four physical
relations separately. Namely, in this way the three
cutting parameters (cutting speed, depth of cut and
feed) are related with the tangential component of
cutting force, feed component of cutting force,
radial component of cutting force and surface
roughness. The network models are named as
follows:

- Model 1 - relates cutting parameters and
tangential component of cutting force,

- Model 2 - relates cutting parameters and feed
component of cutting force,

- Model 3 - relates cutting parameters and radial
component of cutting force,

- Model 4 - relates cutting parameters and surface
roughness.

In the hidden and output layer sigmoid and linear

activation function has been used, respectively. The
resilient back-propagation (Rprop) learning
algorithm [16] and [17], with supervised learning
mechanism, was used for all models. During the
training, the initial weight change value for Rprop
learning algorithm was taken 0.07 for all models.
Before training, input and output variables were
normalized within the range of —0.9 and 0.9. In
order to avoid over-fitting or under-fitting the
weight decay regularization [18] have been applied
to all models. The choice of appropriate values for
the regularization parameter is essential since it
determines the degree of fitting. The leave-one-out
cross-validation procedure was used to estimate the
regularization parameter of all models. Data set for
training and testing the network consisted of 22
data pairs for each of the models. The 15 data pairs
were taken from the conducted design of
experiment and 7 additional data pairs were
measured separately. Out of the data set 4 data pairs
were selected randomly and the testing data set was
obtained. Training data set consisted of 18 training
pairs. After the training, all models were tested to
their generalization ability. Testing was performed
with the testing data that had not been used in the
training process. Results of training and testing, in
the form of regression analysis, for Model 1 are
shown in Figure 6.

R is a measure of agreement between the
outputs and targets. The aim is to get R-value very
close or equal to 1. In the example on Figure 6, R-
values are very close to 1 and that indicates very
good fit. For the other models the R-values are 0.98
or higher for both training and testing. In order to
conduct the training, testing and simulation of the
neural network models, a neural network toolbox
embedded in MATLAB [19] was used.

Hidden layer
Input layer
PRI | 'S
Output layer
Cutting speed |
Tangential force, Feed
Depth of cut force, Radial force or
Surface roughness
Feed rate
—

Fig. 5. Neural network model
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Fig. 6. Result of training (a) and testing for generalization ability (b) of Model 1

5 EXPERIMENT PERFORMANCE

The experiments for measuring the cutting
force components and surface roughness were
carried out on the universal lathe “Prvomajska” D-
420/1500. The cutting force components were
measured utilizing force transducer KISTLER
(Type: 9257 A) produced in Winterthur Switzerland.
The roughness measurements were performed with
the “SURTRONIC 3+” instrument, produced by
Rank Taylor Hobson. Before the measurements had
been carried out all the measuring instruments were
calibrated. The longitudinal turning experiments
were performed by a tool for the external machining.
The tool has been composed of the tool holder
PTGNR2020K16 and the cutting insert
TNMG160408-PF4015, produced by SANDVIK
Coromant. The material of workpiece was carbon
steel Ck45. The workpiece was in a form of axle
with bored centering holes. On the lathe the
workpiece was prepared in order to remove rust,
grooves and all damages from the surface and to
obtain the workpiece with wanted dimensions. All
experiments were carried out without the cooling
and lubrication agents.

Altogether 33 experiments were conducted.
Twenty experiments were conducted in order to
allow performing ANOVA and regression analysis,
and additional 13 experiments to obtain additional
data for neural network training and verification
of modelling.

6 RESULTS OF BOTH STATISTICAL
ANALYSIS AND NEURAL NETWORKS
SIMULATION

The twenty measured values of cutting force
components and surface roughness, (Table 2), are
input data for the second-order regression models
and ANOVA. The ANOVA and regression analysis
have been carried out using program package
“Design Expert 6”. The ANOVA has shown which
factors and interactions had an important influence
on the cutting force components and the surface
roughness.

Applying the regression analysis the
coefficients of regression, multi-regression factors,
standard false evaluation and the value of #-test have
been determined. After omitting insignificant
factors and interactions the mathematical models
for the tangential component of cutting force, feed
component of cutting force, radial component of
cutting force and surface roughness are obtained
as follows:

Tangential component of cutting force:

F. =-144.76 +0.595 1\, +198.9114, +

(4).
+550.714 0 -2.526 [y, [T +366.041 Bp O
Feed component of cutting force:
F, = 353.15- 0.8081Y, - 180.064 (& - )

- 817.523F + 152.182 @i + 3047.996 [T *

Radial component of cutting force:
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Table 2. Experimental data

Exp. Ve a, f F, Fy F, Ra
number |(m/min)| (mm) (mm/rev) o) ON) N) (pm)
1 284.1 0.90 0.224 456 175 155 2.23
2 250 0.60 0.160 242 94 120 1.81
3 250 1.20 0.280 743 260 230 3.65
4 250 1.20 0.160 466 210 170 1.96
5 250 0.60 0.280 382 126 178 3.13
6 200 0.90 0.125 327 162 145 1.43
7 200 0.40 0.224 227 78 163 2.39
8 200 1.40 0.224 692 300 234 2.44

9 200 0.90 0.315 620 209 225 443
10 200 0.90 0.224 464 184 165 2.38
11 200 0.90 0.224 459 181 160 2.34
12 200 0.90 0.224 465 185 168 241
13 200 0.90 0.224 468 188 162 2.40
14 200 0.90 0.224 466 182 164 2.39
15 200 0.90 0.224 460 180 169 2.36
16 150 1.20 0.280 750 320 250 3.60
17 150 0.60 0.160 255 105 150 1.65
18 150 0.60 0.280 447 160 218 3.44
19 150 1.20 0.160 470 230 208 1.71
20 115.9 0.90 0.224 475 193 178 2.39

F, = 17.237- 01841y, + 2.5991(a, + ©) Table 3 shows 13 additional measured

+769.93[F + 1560.196 (4, [f

Surface roughness:

Ra=2.67-1.81[a, -14.875[f +

+73.662F 2 -0.0285 [\, [T
The squares of regression coefficient (%) for
F,F, F and Ra are 0.9827, 0.978, 0.9935 and

0.993 regpectively.

Table 3. Additional measured experimental data

experimental data. Data marked with asterisk (*)
were not used either in the network training or in
the regression analysis. These data were utilized
for the validation of both regression analysis and

ANN modelling.
Table 4 shows the values of cutting force

components and surface roughness obtained from
the both type of modelling, i.e. from the regression

Exp. Ve a, f F, F F, Ra
number |(m/min)| (mm) (mm/rev) N) N) N) (pm)
21* 300 1.60 0.400 1105 392 425 5.80
22% 280 0.50 0.315 355 95 201 3.97
23 240 0.70 0.200 343 123 128 2.04
24 230 1.10 0.160 445 200 160 1.63
25% 225 1.00 0.250 555 207 190 2.90
26 220 0.85 0.280 510 194 198 3.43
27 210 0.65 0.250 320 120 185 2.63
28%* 190 1.00 0.280 610 230 216 3.48
29 170 0.80 0.200 381 161 173 2.05
30 160 1.00 0.180 438 204 170 1.82
31* 150 0.70 0.180 325 130 160 1.80
32 140 1.30 0.140 530 250 205 1.45
33%* 100 0.30 0.125 117 29 110 1.60

Examination and Modelling of the Influence of Cutting Parameters on the Cutting Force
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Table 4. Values obtained by regression analysis and neural network models

Regression Neural network
nﬁ’l‘;’l;. F. F, F, Ra F. F, F, Ra
™) ™) ™) (um) ™) ™) ™) (pm)
21 1272.31 | 367.04 | 447.5 7.76 1064.67 | 399.87 | 433.77 | 6.19
22 336.2 91.64 218.53 3.84 369.67 | 100.02 196.8 391
23 333.79 | 130.22 | 134.05 329.18 | 112.88 | 124.91 2
24 434.55 | 198.12 | 161.69 1.78 441.88 | 198.36 | 162.86 1.77
25 560.81 | 211.76 | 181.17 2.83 549.4 213.94 | 215.04 [ 2.82
26 532.53 | 188.92 | 192.28 3.39 529.11 | 188.47 | 208.72 | 3.4
27 385.12 | 136.47 | 166.73 2.73 374.59 | 132.79 | 172.47 | 2.7
28 624.43 | 236.62 | 209.64 3.51 629.88 | 235.51 2243 3.52
29 391.57 | 160.48 | 155.61 2.02 377.71 | 159.32 | 173.88 | 2.06
30 434.76 | 196.57 | 169.31 1.79 440.09 | 199.39 | 182.81 1.84
31 324.89 | 131.77 | 153.81 1.81 316.97 | 135.58 | 161.39 1.83
32 44441 | 239.51 | 222.44 1.42 510.06 254.3 219.86 1.47
33 143.18 17.78 188.84 1.68 111.22 37.85 125.63 1.58
Table 5. Relative error for data taken within interval limited with the min and max values of cutting
parameters
Relative error using Relative error using
Exp. regression (%) neural network (%)
number | F, F, Ra F. F, F, Ra
25 1.05 2.30 4.65 2.41 1.01 3.35 13.18 2.76
28 2.37 2.88 2.94 0.86 3.26 2.40 3.84 1.15
31 0.03 1.36 3.87 0.56 2.47 4.29 0.87 1.67
Average: 1.15 2.18 3.82 1.28 2.25 3.35 5.96 1.86
Total average: 2.11 % Total average: 3.35 %

Equations (4) to (7) and from the simulation of
neural network models.

In order to test which modelling method
gives better prediction, a relative error of deviations
from measured values have been calculated. In
these calculations only experimental data that were
not used for modelling either the regression
equations or neural network models were utilized.

These experimental data have been also
divided into two sets. The first data set consists of
three randomly chosen experiments (experiments
25, 28 and 31) for which the values of the cutting
parameters (Table 4) have been taken from the
interval limited with maximum and minimum
values (Table 1) used in this study. The second data
set consists of randomly chosen experiments 21,
22 and 33 for which the cutting parameters have
been taken outside the min/max interval. In this
way the both methods of modelling have been
tested for the possibility of both interpolation and
extrapolation. The reason for choosing the only
three experiments in both sets is the costs reduction

330

and the attention to show that with the small number
of experiments neural network modelling is able
to give similar results as the DOE approach. The
results of relative error calculations for the values
of the cutting parameters inside and outside the
interval are shown in Table 5 and Table 6,
respectively.

From the presented results it can be seen
that the modelling with regression analysis gives
the lesser total average relative error for the data
taken within the interval. Although the total error
for both modelling is quite low, the regression
analysis is able to give somewhat better prediction
when the interpolation is considered. It should be
noticed that ANN models have learned and tested
from only 22 data pairs. This implies that more data
pairs would give better results. Regarding the
extrapolation, the neural network modelling gives
much better results, although the total average
relative error is much larger when comparing to
the results obtained in the interpolation.

Fig. 7 shows the tangential component of cutting
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Table 6. Relative error for data taken outside the interval limited with the min and max values of cutting

parameters
Relative error using Relative error using
Exp. regression (%) neural network (%
number | p F F, Ra F. F F, Ra
21 15.14 6.37 5.29 33.79 3.65 2.01 2.06 6.72
22 5.30 3.54 8.72 3.72 4.13 5.28 2.09 1.51
33 22.38 38.69 | 71.67 5.00 4.94 30.52 14.21 1.25
Average: 14271 16.20 | 28.56 14.02 4.24 12.60 6.12 3.16
Total average: 18.26 % Total average: 6.53 %
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Fig. 7. Response surface for tangential component of cutting force as a function of feed rate and depth of
cut obtained from neural network (a) and regression analysis (b); for constant cutting speed of 200 m/min

force as a function of feed rate and depth of cut.
The shown results have been obtained from neural
network simulation (Fig. 7a) and regression
analysis (Fig. 7b) with the constant cutting speed
of 200 m/min. Response surfaces on Fig. 7 show
that in both cases similar results are obtained.
Namely, both modelling predict the minimum value
of the tangential component of cutting force when
both feed rate and depth of cut are minimized.

Figure 8 shows the results obtained from
neural network simulation (Fig. 8a) and regression
analysis (Fig. 8b) for the feed component of cutting
force and its dependence on feed rate and depth of
cut. Again it can be seen that both methods predict
that the feed component of cutting force linearly
depends on both, feed rate and depth of cut. The
minimum value of the feed component of cutting
force is achieved at minimum both feed rate and
depth of cut.

On Figure 9 it can be seen the response
surfaces for radial component of cutting force as a
function of feed rate and depth of cut obtained from
neural network (Fig. 9a) and regression analysis

(Fig. 9b). Cutting speed has been kept constant at
200 m/min. Both modelling methodologies predict
similar behaviour of the radial component of cutting
force with change in feed rate and depth of cut.
Again the minimum value of the radial component
of cutting force is achieved when feed rate and
depth of cut reach their minimum values.

Figure 10 shows the dependence of surface
roughness on feed rate and depth of cut for neural
network (Fig. 10a) and regression analysis (Fig.
10b) modelling methodology when cutting speed
is constant 200 m/min. Both methodologies give
the similar results. They both predict that dept of
cut has no at all or has slight influence on the
surface roughness. Feed rate has dominant
influence on Ra. It is evident that the minimum
surface roughness is obtained at minimum feed rate.

From the conducted optimization the optimum
values of cutting parameters that give the minimum
values for the cutting force components and surface
roughness were obtained. The optimization was
carried out using Genetic algorithm [20] and the
results of optimization are presented in Table 7.
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Fig. 8. Response surface for feed component of cutting force as a function of feed rate and depth of cut
obtained from neural network (a) and regression analysis (b); for constant cutting speed of 200 m/min
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Fig. 9. Response surface for radial component of cutting force as a function of feed rate and depth of cut
obtained from neural network (a) and regression analysis (b); for constant cutting speed of 200 m/min

Fig. 10. Response surface for surface roughness as a function of feed rate and depth of cut obtained
from neural network (a) and regression analysis (b); for constant cutting speed of 200 m/min

7 CONCLUSION

The aim of this paper is the examination of
possibility of the cutting force components and the
surface roughness modelling. In order to model
dependency of the cutting force components and the
surface roughness on the cutting speed, the depth of
cut and the feed rate, regresson analysis and neural

network methodology were used. Both methodologies
were tested for interpolation and extrapolation
capability. Regarding the interpolation, both
methodologies are found to be capable for accurate
predictions (gpproximately relative error of 3%) of the
cutting force components and the surface roughness,
although regression models give somewhat better
predictions. In the case of the extrapolation neura
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Table 7. Optimum cutting parameters

Optimum cutting parameters Minimum values of
Ve a, f output parameters
(m/min) (mm) (mm/rev)
206.3 0.6 0.16 F.=2492 N
192 0.6 0.16 Fr=102 N
250 0.6 0.16 F,=120 N
150 1.11 0.16 Ra =1.59 ym

network models give significantly better predictions.
Neural network models were trained with 18
experimenta dataso evenwiththesmall dataset ANNS
are cgpable to achieve predictions nearly as accurate
as regresson models.
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