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Coping with backlog

If we consider the quality of our journal there is one weakness that we find more severe
than anything else: the backlog. This is the span of time between the moment a paper is
submitted up to the time the printed copy of the journal reaches the reader. Each article
is assigned three dates: received (R), accepted (A), and published on-line (P). Another
important date is the date of printed copy.

Usually the on-line version of the paper is available very much earlier than the printed
version, and because the electronic version of our journal is freely available (under so-
called diamond open access), readers are not hurt by the difference in time between the
publication of the electronic and paper versions of the paper. Part of this lag is legitimate
and is depends on the technology: it is possible to put papers on-line separately, but one
has to wait for the last article to be ready before the whole issue is sent to the printer.

When we set up the journal in 2007, our primary concern was to ensure about 20 high-
quality papers per year. It was not clear that we would get sufficiently many enthusiasts
who would be willing to submit their good papers for publication in an unknown journal
with uncertain future. At first we relied on papers arising from conference series such as
the 4-yearly Slovenian Graph Theory conference, GEMS, and SIGMAP. The rigidity of
special issues, however, proved to be a far greater problem than we initially envisaged.

When the journal’s visibility increased and its high quality became apparent, the flow
of manuscripts increased, and very quickly we had more papers accepted than we needed
for a single year. We adopted three strategies for reducing the backlog:

(a) We started opening future issues. This moved the problem into the future, and also gave
us more flexibility in numbering the papers. But this has to be done with care: once page
numbers are assigned to the electronic version of an article, they have to remain the same
in the printed version, and so we cannot open the second issue of a given volume until the
first one is completed.

(b) We increased the number of papers publishable each year (from the initial 20 to 60 or
more), by producing two volumes each year, and publishing more articles per issue.

(c) We also raised the standards for acceptance, and so now the rate of acceptance of papers
has been reduced to 20 per cent.

The increased volume of submissions has increased the workload for our editorial staff,
and in turn this has increased the length of time taken for the review stage. Next year we
will involve more Editors in managing papers. Hopefully this will reduce the backlog at
this stage of the process.

Nino Bašić, Selena Praprotnik and Gordon Williams have collected and analysed data
on all papers published so far in our journal. Back in 2008, it took on average less than
12 months to process a paper for the first issue of our journal. In contrast, it took over 21
months on the average to process a paper for issue Vol. 8, no. 2 in 2015. Our goal is to
reduce the average time to under 12 months, as soon as possible.
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The first figure (above) is a stacked plot showing the cumulative average processing time by issue:
green in the bottom is the time from receipt to accepted (RA), blue at the top is the additional time
from accepted to published online (AP), and the thick black line indicates the total time from receipt
to published online (RP).
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The second figure (above) gives plots of receipt to accepted (RA), accepted to published online (AP)
and total time from receipt to published online (RP), with linear regression lines superimposed.

Unfortunately, the length of time from accepted to published on-line continues to grow as
well, so our policy of slow growth and opening additional volumes is not enough. We hope
that moving from 20 papers per year to the current 60 papers per year, better handling of
special issues, and further management of the acceptance rate, will stabilise the backlog at
an appropriate level.

Dragan Marušič and Tomaž Pisanski
Editors In Chief
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Abstract

In this article we describe a recursive structure for the class of 4-connected triangula-
tions or – equivalently – cyclically 4-connected plane cubic graphs.

Keywords: Planar triangulation, cubic graph, generation, recursive structure.

Math. Subj. Class.: 05C10, 05C30, 05C75

Introduction
A recursive structure for a class C of graphs is a base set B ⊂ C of initial graphs together
with a set of operations on graphs that transform a graph in C to another graph in C so that
each graph in C can be constructed from a graph in B by a sequence of these operations.

E-mail addresses: Gunnar.Brinkmann@UGent.be (Gunnar Brinkmann), clarson@vcu.edu (Craig Larson),
Jasper.Souffriau@UGent.be (Jasper Souffriau), Nicolas.VanCleemput@UGent.be (Nico Van Cleemput)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



146 Ars Math. Contemp. 9 (2015) 145–149

An operation is typically the replacement of a finite substructure by another – larger –
substructure. In the ideal case, the set B as well as the set of operations are finite and
small. All graphs discussed in this article are simple.

The two main applications for recursive structures are structure generation programs
and inductive proofs, where the recursive structures describe the induction step. In this
paper we discuss planar triangulations – that is plane graphs where every face is a triangle.
For several classes of triangulations, recursive structures have been published: for all tri-
angulations (that is: 3-connected triangulations) [6], for 5-connected triangulations [1][5],
for triangulations with minimum degree 4 [2], for 3- and 4- connected triangulations with
minimum degree 5 [3], and for Eulerian triangulations [2]. In the dual, these are con-
structions for 3-connected planar cubic graphs, cyclically 5-connected planar cubic graphs,
3-connected planar cubic graphs with girth 4, 3- resp. cyclically 4-connected planar cubic
graphs with girth 5 and 3-connected bipartite planar cubic graphs.

In this article we will add the missing link between 3-connected triangulations and 5-
connected triangulations and give a recursive structure for 4-connected triangulations. The
operations necessary to construct all 4-connected triangulations are in fact the same as the
ones used in [4] to construct all triangulations with minimum degree 4 – except for the
operation inducing separating triangles. While it is obvious that an operation introducing
separating triangles does not lead to 4-connected triangulations, it is not obvious that all
4-connected triangulations can be obtained with the remaining two operations.

O5

x

O4

x

Figure 1: Two of the operations used by Eberhard [6] to generate all triangulations. Edges
and vertices outside of the bounding 4-, or 5-cycle in the figure are not drawn.

Two of the operations given by Eberhard to construct all triangulations are given in
Figure 1. We will show:

Theorem 0.1. The class C4 of all 4-connected triangulations can be generated from the
octahedron graph (depicted in Figure 2) by operations O4 and O5.
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Figure 2: The octahedron graph.

Proof. We will write C̄4 for the class C4 without the octahedron graph.
The operations O4 and O5 are in fact similar to special cases of the edge expansion

operation used by Batagelj in [2]. This can best be seen when looking at the reduction –
that is the inverse of the construction operation. If one compresses the edges marked with
an x (that is: removes the edge and identifies the endpoints) in Figure 1, the resulting graph
is the same as after replacing the vertices and their adjacent edges by one, resp. two edges.

To prove this theorem, note first that in a triangulation being 4-connected is equivalent
to not having a separating – that is: non-facial – 3-cycle. We will show that for each element
of the class C̄4 an inverse operation can be applied that does not introduce separating 3-
cycles and therefore leads to an element of C4.

This is the consequence of 3 observations;

(a) In a 4-connected triangulation no two edges in the same facial triangle belong to the
same separating 4-cycle.

This follows immediately as in that case the other edges of the separating 4-cycle to-
gether with the third edge of the triangle would form a separating 3-cycle.

(b) In a 4-connected triangulation that is not the octahedron graph, no two edges in the
same facial triangle with a common vertex v of degree 4 belong to different separat-
ing 4-cycles C,C ′.

Suppose that this was the case. Then – due to (a) – the two separating 4-cycles must
cross each other and there is an edge {v, y1} belonging to (w.l.o.g.) C so that the next
edges {v, x1}, {v, x2} in counterclockwise, resp. clockwise direction around v belong to
the separating 4-cycle C ′ formed by the vertices x1, v, x2, a. This situation is depicted in
Figure 3.

From the previous observation it follows that C cannot contain x1 or x2, so the Jordan
curve theorem gives that it must contain a and that the situation is as with the dotted edges
in Figure 3. This implies the presence of 8 triangles which must all be facial triangles – as
no non-facial triangles exist – and implies that there are no more edges than those depicted.
So the graph was the octahedron graph.

(c) In a 4-connected triangulation without vertices of degree 4, for each edge {v, x1} con-
taining a vertex v of degree 5 that belongs to a separating 4-cycle C, either the
previous or the next edge in the cyclic order around v or both do not belong to a
separating 4-cycle.
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v
x

y

a

x2
1

y
21

Figure 3: Two separating 4-cycles crossing in a vertex of degree 4.

By choosing the neighboring edge as the one that shares a triangle with both edges of C
containing v, we can follow the same line of arguments as before to get – up to symmetry –
the situation in Figure 4. In this case we don’t have 8 triangles, but we do have the triangles
(a, y1, x2), (x1, y1, a), (v, y1, x1) and (x2, y1, v) which must all be facial. This implies
that the degree of y1 is 4 – contradicting the assumption.

v
x

y

a

x2
1

y
21

Figure 4: Two separating 4-cycles crossing in a vertex of degree 5 in a triangulation with
minimum degree 5.

As in a 4-connected triangulation there are always vertices with degree 4 or degree 5,
(a),(b),(c) together imply that a triangulation in C̄4 contains an edge adjacent to a vertex of
degree 4 or 5 that does not lie on a separating 4-cycle. Using this edge as the edge x in
Figure 1 we can reduce such a triangulation to a smaller one without separating triangles.
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Abstract

In this paper, a relation between graph distance matrices and Euclidean distance matri-
ces (EDM) is considered. Graphs, for which the distance matrix is not an EDM (NEDM-
graphs), are studied. All simple connected non-isomorphic graphs on n ≤ 8 nodes are
analysed and a characterization of the smallest NEDM-graphs, i.e., the minimal forbidden
subgraphs, is given. It is proven that bipartite graphs and some subdivisions of the smallest
NEDM-graphs are NEDM-graphs, too.

Keywords: Graph, Euclidean distance matrix, distance, eigenvalue.

Math. Subj. Class.: 15A18, 05C50, 05C12

1 Introduction
A matrix D ∈ Rn×n is Euclidean distance matrix (EDM), if there exist x1,x2, . . . ,xn ∈
Rr, such that dij = ‖xi − xj‖22, i, j = 1, 2, . . . , n. The minimal possible r is called the
embedding dimension (see [2], e.g.).
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Euclidean distance matrices were introduced by Menger in 1928 and have received a
considerable attention. They were studied by Schoenberg [13], Young and Householder
[14], Gower [4], and many other authors. In recent years many new results were obtained
(see [5, 7, 8, 11] and the references therein).

They are used in various applications in linear algebra, graph theory, geodesy, bioinfor-
matics, chemistry, e.g., where frequently a question arises, what can be said about a set of
points, if only interpoint distance information is known. Some examples can be found in
[2].

EDMs have many interesting properties. They are symmetric, hollow (i.e., with only
zeros on the diagonal) and nonnegative. The sum of their eigenvalues is zero and they have
exactly one positive eigenvalue (for a nonzero matrix). Schoenberg ([13]), Hayden, Reams
and Wells ([5]) gave the following characterization of EDMs.

Theorem 1.1. Let D ∈ Rn×n be a nonzero symmetric hollow matrix and let e ∈ Rn be
the vector of ones. The following propositions are equivalent:

(a) The matrix D is EDM.

(b) For all x ∈ Rn such that xTe = 0, xTDx ≤ 0.

(c) The matrix D has exactly one positive eigenvalue and there exists w ∈ Rn such that

Dw = e (1.1)

and wTe ≥ 0.

Throughout the paper we will use the notation e for the vector of ones of appropriate
size. Vectors ei will denote the standard basis.

Let G be a graph with a vertex set V(G) and an edge set E(G). Let the distance d(u, v)
between vertices u, v ∈ V(G) be defined as their graph distance, i.e., the length of the
shortest path between them. Let G := [d(u, v)]u,v∈V(G) be the distance matrix of G.

If the graph distance matrix of a graph is EDM, the graph is called an EDM-graph.
Otherwise the graph is a NEDM-graph.

Graph distance matrices of EDM-graphs were studied in several papers. Path and cycles
were analysed in [9]. Star graphs and their generalizations were considered in [6, 10].
Some results on Cartesian products of EDM-graphs are also known (see [11]). However,
the characterization of EDM-graphs in general is still an open problem.

In this paper, all simple connected non-isomorphic graphs on n ≤ 8 nodes are analysed
and a characterization of the smallest NEDM-graphs, i.e., the minimal forbidden subgraphs,
is given.

In algebraic graph theory, a lot is known on the adjacency matrix and the Laplacian
matrix of a graph. Many results on their eigenvalues exist, but not much is known on the
graph distance matrix. Hopefully, this paper will provide a deeper insight into the relation
between general graphs or networks and EDM theory.

There are some interesting possibilities of application. Molecular conformation in
bioinformatics, dimensionality reduction in statistics, 3D reconstruction in computer vi-
sion, just to name a few.

The structure of the paper is as follows. In Section 2, all NEDM-graphs on n ≤ 8 nodes
are considered. Analysis of their properties enables us to find some larger NEDM-graphs,
which are presented in sections 3 and 4. A proof that bipartite graphs are NEDM-graphs
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is given. We present two families of subdivision graphs of the smallest NEDM-graphs that
are NEDM-graphs, too.

There exist graphs, for which the system (1.1) has no solution. Such graphs are studied
in Section 5.

The paper is concluded with an example, where we show that not all subdivisions of
graphs result in NEDM-graphs.

2 The smallest NEDM-graphs
In this section we consider simple connected non-isomorphic graphs on n ≤ 5 nodes and
find the smallest NEDM-graphs.

There is one simple connected graph on 2 nodes, the path graph P2, and there exist
only two simple connected graphs on 3 nodes, the path graph P3 and the cycle graph C3.
In [9] it was proven that path graphs and cycle graphs are EDM-graphs.

For n = 4, there are 6 simple connected graphs (see Fig. 1). First four of them are the
star graph S4, the path graph P4, the cycle graph C4 and the complete graph K4, respec-
tively, which are EDM-graphs (see [9, 10]). Therefore we only need to consider the last
two graphs, G(5)4 and G(6)4 .

G

4

H 1 L

G

4

H 2 L

G

4

H 3 L

G

4

H 4 L

G

4

H 5 L

G

4

H 6 L

Figure 1: Simple connected graphs on 4 nodes.

Let us denote vertices of graphs G(5)4 and G(6)4 counterclockwise by 1, 2, 3 and 4 starting
with the upper right vertex. The characteristic polynomials of the corresponding graph
distance matrices

G
(5)
4 =


0 1 2 2
1 0 1 1
2 1 0 1
2 1 1 0

 and G
(6)
4 =


0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0


are

p
G

(5)
4
(λ) = (λ+ 1)(λ3 − λ2 − 11λ− 7),

p
G

(6)
4
(λ) = (λ+ 1)(λ+ 2)(λ2 − 3λ− 2).

Thus matrices G(5)
4 and G(6)

4 have eigenvalues

σ
G

(5)
4

.
= {4.1,−0.7,−1,−2.4} and σ

G
(6)
4

=

{
3 +
√
17

2
,
3−
√
17

2
,−1,−2

}
.

Eigenvalues for G(5)
4 were calculated numerically. Exact values can be calculated by using

Cardano’s formula.
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One can easily verify that vectors

w
G

(5)
4

= [3/7, −1/7, 2/7, 2/7]T and w
G

(6)
4

= [1/2, 0, 1/2, 0]T

satisfy the equation G(i)
4 w

G
(i)
4

= e, i = 5, 6. Since wT

G
(i)
4

e > 0, i = 5, 6, by Theorem 1.1

graphs G(5)4 and G(6)4 are EDM-graphs. Thus there are no NEDM-graphs on 4 nodes.
In the case n = 5, there are 21 simple connected graphs (see Fig. 2).
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H 2 L

G
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H 8 L

G

5
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G
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G
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G
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H 12 L
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H 13 L
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H 14 L

G
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H 15 L
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H 16 L

G

5

H 17 L

G

5

H 18 L

G

5
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5

H 20 L

G
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Figure 2: Simple connected graphs on 5 nodes.

Graphs G(i)5 , i ≤ 5, are the path graph P5, the cycle graph C5, the complete graph K5,
the star graph S5 and the tree T5, respectively. Since they are EDM-graphs (see [1]), we
only need to analyse graphs G(i)5 , i = 6, 7, . . . , 21.

A straightforward calculation shows that the graph distance matrix G(i)
5 of the graph

G(i)5 , i = 6, 7, . . . , 19, has exactly one positive eigenvalue and that there exists w
G

(i)
5
∈ R5,

such that G(i)
5 w

G
(i)
5

= e and wT

G
(i)
5

e ≥ 0. By Theorem 1.1, graphs G(6)5 ,G(7)5 , . . . ,G(19)5

are EDM-graphs.
We are left with graphs G(20)5 and G(21)5 (see Fig. 3). The characteristic polynomials of

the corresponding graph distance matrices

G
(20)
5 =


0 2 2 1 1
2 0 2 1 1
2 2 0 1 1
1 1 1 0 2
1 1 1 2 0

 and G
(21)
5 =


0 2 2 1 1
2 0 1 1 1
2 1 0 1 1
1 1 1 0 2
1 1 1 2 0


are

p
G

(20)
5

(λ) = −(λ+ 2)3(λ2 − 6λ+ 2),

p
G

(21)
5

(λ) = −(λ+ 1)(λ+ 2)(λ3 − 3λ2 − 12λ+ 2).
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G

5

H 20 L

3

4 5

1

2

G

5

H 21 L

3

4 5

1

2

Figure 3: The graphs G(20)5 and G(21)5 .

Thus matrices G(20)
5 and G(21)

5 have spectra

σ
G

(20)
5

= {3 +
√
7, 3−

√
7,−2,−2,−2} and σ

G
(21)
5

.
= {5.2, 0.2,−1,−2,−2.4} .

Exact eigenvalues for G(21)
5 can be calculated by using Cardano’s formula. Here they were

calculated numerically. Since matrices G(20)
5 and G

(21)
5 have two positive eigenvalues,

graphs G(20)5 and G(21)5 are NEDM-graphs. These are the smallest NEDM-graphs.
An induced subgraph H of a graph G is a subset of the vertices V(G) together with all

edges whose endpoints are both in this subset.

Proposition 2.1. Let G be a simple connected graph and letH be its induced subgraph. If
H is a NEDM-graph, the graph G is a NEDM-graph as well.

Proof. Let n and m < n, denote the number of nodes in graphs G andH, respectively. Let
us order vertices of the graph G in such a way that the first m vertices are the vertices of
the graphH. Thus the distance matrix G of the graph G is of the form

G =

[
H ∗
∗ ∗

]
,

where H is the distance matrix of the graph H. Every principal submatrix of an EDM
has to be an EDM as well. Thus since H is not an EDM, neither is G. Therefore G is a
NEDM-graph.

All NEDM-graphs form a set of forbidden subgraphs of the class of EDM-graphs.
Graphs G(20)5 and G(21)5 are the minimal forbidden subgraphs. All minimal forbidden sub-
graphs on 6 and 7 nodes can be seen in Fig. 4 and Fig. 5.

G

6

H 1 L

G

6

H 2 L

G

6

H 3 L

Figure 4: NEDM-graphs for n = 6.

Let m(n) be the number of NEDM-graphs on n nodes and let mnew(n) be the number
of NEDM-graphs on n nodes for which none of the induced subgraphs is NEDM-graph.
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Figure 5: NEDM-graphs for n = 7.

We denote the number of non-isomorphic simple connected graphs on n nodes by g(n).
Table 1 shows how numbers m(n) and mnew(n) grow with n.

The calculations were done in the following way. By using program geng in Nauty
([12]) we generated all simple connected non-isomorphic graphs on n ≤ 8 nodes. Then we
applied Theorem 1.1 to determine whether a graph is an EDM-graph. Computations were
done in Mathematica.

n g(n) m(n) mnew(n)
5 21 2 2
6 112 27 3
7 853 341 13
8 11117 7946 48

Table 1: Number of NEDM-graphs compared to the number of all graphs on n nodes.

3 Bipartite graphs

A quick observation shows that the graph G(20)5 is bipartite (see Fig. 3).
Let GUk,Zn−k

be a simple connected bipartite graph on n ≥ 5 nodes, whose vertices
are divided into two disjoint sets Uk = {u1, u2, . . . , uk}, Zn−k = {uk+1, uk+2, . . . , un},
k = 2, 3, . . . , n− 2, such that every edge connects a vertex in Uk to a vertex in Zn−k (see
Fig. 6). The sets Uk and Zn−k are called the partition sets.

A graph join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V(G1), V(G2) and
edge sets E(G1), E(G2) is the graph with the vertex set V(G1) ∪ V(G2) and the edge set
E(G1) ∪ E(G2) ∪ {(u, v); u ∈ V(G1), v ∈ V(G2)}. It is the graph union G1 ∪ G2 with all
the edges that connect the vertices of the first graph with the vertices of the second graph.

The graph GUk,Zn−k
can also be written as the graph join of two empty graphs on k and

n− k vertices, i.e., GUk,Zn−k
= Ok +On−k. The corresponding graph distance matrix is

Gk,n−k =

[
2(Ek,k − Ik) Ek,n−k
En−k,k 2(En−k,n−k − In−k)

]
∈ Rn×n,
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where Ep,q ∈ Rp×q and Ip ∈ Rp×p are the matrix of ones and the identity matrix, respec-
tively.

G

u 3

u k

u k+ 1

u k+ 2

u n

u 1

u 2

Figure 6: The graph GUk,Zn−k
.

Theorem 3.1. A simple connected bipartite graph GUk,Zn−k
on n ≥ 5 nodes and with

partition sets Uk and Zn−k is a NEDM-graph.

Proof. Since graphs GUk,Zn−k
and GUn−k,Zk

are isomorphic, it is enough to see that the
theorem holds true for k = 2, 3, . . . , bn/2c.

Let us analyse the eigenvalues of the graph distance matrix of GUk,Zn−k
. A simple com-

putation shows that u1,i =
[
eT1 − eTi ,0

T
]T

solves the equation Gk,n−ku1,i = −2u1,i for

all i = 2, 3, . . . , k, and that u2,j =
[
0T , eT1 − eTj

]T
, solves the equation Gk,n−ku2,j =

−2u2,j for all j = 2, 3, . . . , n − k. Therefore Gk,n−k has an eigenvalue −2 with multi-
plicity n− 2.

Now let us take u =
[
α eT , eT

]T
. The relation Gk,n−ku = λu yields the system of

equations

2(k − 1)α+ n− k = λα,

kα+ 2(n− k − 1) = λ,

which has solutions

α1,2 =
2k − n±

√
(n− 2k)2 + k(n− k)

k
,

λ1,2 = n− 2±
√
(n− 2k)2 + k(n− k).

Relations n ≥ 5 and 2 ≤ k ≤ bn/2c imply that α1,2 and λ1,2 are well-defined. Since
λ1 > 0 and

λ1 · λ2 = 3(k − 2)(n− 2− k) + 2(n− 4) > 0,

we conclude that λ2 > 0. Thus, by Theorem 1.1, the graph GUk,Zn−k
is a NEDM-graph.

Remark 3.2. For k = 1, the graph GUk,Zn−k
is the star graph Sn, which is an EDM-graph.
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4 Graph subdivision
Let G be a graph. A subdivision of an edge in G is a substitution of the edge by a path. For
example, an edge of the cycle Cn can be subdivided into three edges, resulting in the cycle
graph Cn+2.

Recall the NEDM-graph G(20)5 . It contains a 4-cycle c connecting nodes 2, 3, 4 and
5 (see Fig. 7). We can construct larger NEDM-graphs by performing a subdivision of the
cycle c. Let G(20)5,n be a graph on n nodes, obtained by subdividing the cycle c in the graph

G(20)5 as seen in Fig. 7. Such graphs are G(20)5,6 = G(1)6 and G(20)5,7 = G(4)7 (see Fig. 4 and
Fig. 5).

G
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4

5

1

2

G

5, n
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3

4

5 n

6

7 9

1

2

8

Figure 7: Construction of graphs G(20)5,n .

Let ei denote the standard basis and let Cn be the graph distance matrix of the cycle
graph Cn (see [9]). The matrix Cn is a circulant matrix (see [3]), generated by its first row:

0, 1, . . . ,
n− 1

2
,
n− 1

2
,
n− 3

2
, . . . , 1, n odd,

0, 1, . . . ,
n− 2

2
,
n

2
,
n− 2

2
, . . . , 1, n even.

We will use the notation C(i,j)
n for the (i, j)-th element of the matrix Cn. The structure of

the matrix Cn implies

C(1,2)
n = C(2,3)

n = 1, C(1,3)
n = 2, n ≥ 4, (4.1)

and

C(`,b(n+4)/2c)
n =


b(n− 1)/2c, ` = 1,

bn/2c, ` = 2,

b(n− 2)/2c, ` = 3,

n ≥ 3. (4.2)

Theorem 4.1. Graphs G(20)5,n , n ≥ 5, are NEDM-graphs.

Proof. The graph distance matrix of the graph G(20)5,n , n ≥ 5, is

G
(20)
5,n =

[
0 eT2 (Cn−1 + 2I)

(Cn−1 + 2I)e2 Cn−1

]
.

By Theorem 1.1 it is enough to show that there exists x ∈ Rn, such that xTe = 0 and
xTG

(20)
5,n x > 0.
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Let us take x =
[
−yTe,yT

]T
, with

y =


n−1
2

(
−e1 + e2 − e3

)
+ e(n+3)/2, n odd,

n−2
2

(
−e1 + n−1

n (e2 − e3)
)
+ n−1

n e(n+2)/2, n even.

We will show that

xTG
(20)
5,n x = yTCn−1y − 2(yTe)

(
eT2 Cn−1y + 2(yTe2)

)
> 0. (4.3)

From

yTe =

{ 3−n
2 , n odd,

−n2+4n−2
2n , n even,

and yTe2 =

{ n−1
2 , n odd,

(n−2)(n−1)
2n , n even,

it follows that

xTG
(20)
5,n x = yTCn−1y +

 (n− 3)
(
eT2 Cn−1y + n− 1

)
, n odd,

n2−4n+2
n

(
eT2 Cn−1y + (n−2)(n−1)

n

)
, n even.

(4.4)

Firstly, let n be odd. Terms in the relation (4.4) simplify to

yTCn−1y = − (n− 1)2

2

(
C

(1,2)
n−1 − C

(1,3)
n−1 + C

(2,3)
n−1

)
−

− (n− 1)
(
C

(1,(n+3)/2)
n−1 − C(2,(n+3)/2)

n−1 + C
(3,(n+3)/2)
n−1

)
,

eT2 Cn−1y = C
(2,(n+3)/2)
n−1 − n− 1

2

(
C

(1,2)
n−1 + C

(2,3)
n−1

)
.

By (4.1) and (4.2),

yTCn−1y = − (n− 1)(n− 5)

2
, eT2 Cn−1y = −n− 1

2
,

and
xTG

(20)
5,n x = n− 1,

which satisfies the requirement (4.3) for all n ≥ 5.
When n is even, the terms in the relation (4.4) simplify to

yTCn−1y = − (n− 2)(n− 1)

2n2

(
(n− 2)

(
nC

(1,2)
n−1 − nC

(1,3)
n−1 + (n− 1)C

(2,3)
n−1

)
+

+ 2nC
(1,(n+2)/2)
n−1 − 2(n− 1)

(
C

(2,(n+2)/2)
n−1 − C(3,(n+2)/2)

n−1
))
,

eT2 Cn−1y =
n− 1

n
C

(2,(n+2)/2)
n−1 − n− 2

2

(
C

(1,2)
n−1 +

n− 1

n
C

(2,3)
n−1

)
.

By (4.1) and (4.2),

yTCn−1y = − (n− 1)2(n− 2)(n− 4)

2n2
, eT2 Cn−1y = −n− 2

2
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and
xTG

(20)
5,n x =

n− 2

2n
,

which satisfies the requirement (4.3) for all n ≥ 5.

Similarly, we can subdivide cycles of the graph G(21)5 and produce NEDM-graphs (see
Fig. 8). The graph G(21)5 contains a 3-cycle c connecting nodes 3, 4 and 5. Let G(21)5,n be a

graph on n nodes, obtained by subdividing the cycle c in the graph G(21)5 as seen in Fig. 8.
Such graphs are G(21)5,5 = G(21)5 , G(21)5,6 = G(3)6 and G(21)5,7 = G(6)7 (see Fig. 4 and Fig. 5).
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Figure 8: Graphs G(21)5,n .

Theorem 4.2. Graphs G(21)5,n , n ≥ 5, are NEDM-graphs.

Proof. The graph distance matrix of the graph G(21)5,n , n ≥ 5, is

G
(21)
5,n =

0 1 uT

1 0 vT

u v Cn−2

 ,
where

u = (Cn−2 + I)e2 + e− y − 1 + (−1)n

2
e(n+2)/2, v = (Cn−2 + I)e2 + y,

and y =
∑b(n+1)/2c

k=2 ek. Analogous to the proof of Theorem 4.1, we can show that for
x =

[
α,−α,zT

]T
, where

α =

{
n
2 , n odd,
n−3
2 , n even,

and z =

{
n−1
2 e1 − n−3

2 e2 − e(n+1)/2, n odd,
n−2
2 e1 − n−4

2 e2 − e(n+2)/2, n even,

the expression xTG
(21)
5,n x = zTCn−2z + 2α

(
uTz − vTz − α

)
is positive.

Relations

C
(1,2)
n−2 = 1, C

(1,(n+1)/2)
n−2 = C

(2,(n+1)/2)
n−2 =

n− 3

2
,

C
(1,(n+2)/2)
n−2 =

n− 4

2
, C

(2,(n+2)/2)
n−2 =

n− 2

2
,
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imply

uTz =

{
2, n odd,
1, n even,

vTz =

{
3− n, n odd,
4− n, n even,

and

zTCn−2z =

{
− (n−3)(n+1)

2 , n odd,

− (n−2)(n−4)
2 , n even,

which yields

xTG
(21)
5,n x =

{
3
2 , n odd,
1
2 , n even.

Thus by Theorem 1.1, the matrix G(21)
5,n is a NEDM.

5 Systems with no solution
When verifying whether a graph G with the corresponding graph distance matrix G is
an EDM-graph, by Theorem 1.1 one can check if there exists a solution of the equation
Gw = e, such that wTe ≥ 0. For n ≥ 7 there exist graphs, for which the equation
Gw = e has no solution.

Let Gk,n−k be the graph join of a complete graphKk and an empty graphOn−k, n ≥ 7,
k = 2, 3, . . . , n− 3, i.e.,

Gk,n−k = Kk +On−k.

The graphKk contains vertices 1, 2, . . . , k and the graphOn−k contains vertices k+1, k+
2, . . . , n. Thus the corresponding graph distance matrix is

Gk,n−k =

[
Ek,k − Ik Ek,n−k
En−k,k 2(En−k,n−k − In−k)

]
.

For n = 7 and k = 3 the equation G3,4w = e has no solution since the ranks of
the matrix G3,4 and its augmented matrix [G3,4|e] are different, rank(G3,4) = 6 and
rank([G3,4|e]) = 7. The same holds true if n = 7 and k = 4. Thus by Theorem 1.1 matri-
ces G3,4 and G4,3 are not EDMs. On the other hand, for n = 8 the equation Gk,8−kw = e
has a solution for all k ∈ {3, 4, 5}. In general, the matrix Gk,n−k is a NEDM.

Theorem 5.1. The graph Kk +On−k, n ≥ 7, k = 2, 3, . . . , n− 3, is a NEDM-graph.

Proof. Let Gk,n−k be the graph distance matrix of the graph Kk + On−k, n ≥ 7, k =
2, 3, . . . , n− 3. For k = 2 we take

w =
1

2

[
4− n, 4− n, 1, 1, . . . , 1

]T
.

We can verify that G2,n−2w = e and wTe = (6 − n)/2 < 0. Thus by Theorem 1.1 the
matrix G2,n−2 is a NEDM.

Now let k = 3, 4, . . . , n − 3. For n = 7 the proof has already been done above. For
n ≥ 8 let u =

[
α eT , eT

]T
, where vectors e are of sizes k and n − k, respectively. The

relation Gk,n−ku = λu yields the system of equations

α(k − 1) + n− k = λα,

αk + 2(n− k − 1) = λ,
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with solutions

α1,2 =
1

2k

(
3k − 2n+ 1±

√
4(n− k)(n− k − 1) + (k + 1)2

)
,

λ1,2 =
1

2

(
2n− k − 3±

√
4(n− k)(n− k − 1) + (k + 1)2

)
.

Relations n ≥ 8 and 3 ≤ k ≤ n − 3 imply that α1,2 and λ1,2 are well-defined. Since
λ1 > 0 and

λ1 · λ2 = (n− 3− k)(k − 3) + n− 7 > 0,

we conclude that λ2 > 0. Thus, by Theorem 1.1, graphKk+On−k is a NEDM-graph.

Remark 5.2. For k = 1 and k = n− 1, the graphs Kk +On−k are the star graph Sn and
the complete graph Kn, respectively, which are EDM-graphs.

Remark 5.3. For k = n− 2, the graph Kn−2 +O2 is an EDM-graph. The graph distance
matrix Gn−2,2 has eigenpairs(

−2,
[
0T , eT1 − eT2

]T)
,
(
−1,

[
eT1 − eTi ,0

T
]T)

, i = 2, 3, . . . , n− 2,

and (
λ1,2,

[
α1,2 e

T , eT
]T)

with

α1,2 =
n− 5±

√
n2 − 2n+ 9

2(n− 2)
and λ1,2 =

n− 1±
√
n2 − 2n+ 9

2
.

The eigenvalue λ1 is obviously positive. From λ1 · λ2 = −2 it follows that λ2 < 0. One
can easily verify that w = (1/2)

[
0T , eT

]T
solves the equation Gn−2,2w = e. Since

wTe = 1, Theorem 1.1 implies that Gn−2,2 is EDM.

6 Conclusion
In Section 4 we studied subdivisions of graphs. Not all graph subdivisions result in NEDM-
graphs. Consider subdividing graph G(20)5 as in Fig. 9 and denoting it by H. The corre-
sponding graph distance matrix

H =



0 1 2 2 3 2 1
1 0 1 2 2 1 2
2 1 0 1 2 2 2
2 2 1 0 1 2 1
3 2 2 1 0 1 2
2 1 2 2 1 0 3
1 2 2 1 2 3 0


has eigenvalues σH

.
= {10.4, 0,−0.2,−0.6,−2.2,−3.4,−4}, which were calculated nu-

merically. Exact eigenvalues could be obtained using Cardano’s formula. One can eas-
ily verify that vector wH = [1/2, −1/2, 1/2, −1/2, 1/2, 0, 0]T solves the equation
HwH = e. Since wT

He = 1/2, by Theorem 1.1 the graphH is an EDM-graph.
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Figure 9: A subdivision of the graph G(20)5 .
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Abstract

A 4-configuration is a collection of points and lines in the Euclidean plane such that each
point lies on four lines and each line passes through four points. In this paper we introduce
a new family of these objects. Our construction generalizes a 2010 result of Berman and
Grünbaum in which suitable 4-configurations from the well-understood celestial family
are altered to yield new configurations with reduced geometric symmetry groups. The con-
struction introduced in 2010 removes every other line of a symmetry class from the celestial
configuration; here we we give conditions under which every p-th line can be removed, for
p ∈ {2, 3, 4, · · · }. The geometric symmetry groups of the new configurations we obtain
are of correspondingly smaller index as subgroups of the symmetry group of the underlying
celestial configuration. These sparse constructions can also be repeated and combined to
yield a rich variety of previously unknown 4-configurations. In particular, we can begin
with a configuration with very high geometric symmetry—the dihedral symmetry of an
m-gon for m quite large—and produce a configuration whose only geometric symmetry is
180◦ rotation.
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1 Introduction

An n-configuration is a set of n points and n lines with the property that each point lies
on n lines and each line passes through n points. Configurations can be investigated as
geometric objects or more generally as combinatorial objects where the lines are abstract
sets of points. In this work we take the geometric perspective and consider points and
lines in the Euclidean plane. Although such geometric objects were studied in the 19th
century and several theorems on 3-configurations were proved, no illustration of a geomet-
ric 4-configuration appeared in print until much more recently, in [4]. Since then many
more examples have been introduced. In this paper we give a technique that produces a
large new class of 4-configurations, including 4-configurations with very few symmetries.
We emphasize that by a symmetry of a configuration we mean an isometry of the plane
which maps the configuration to itself, as opposed to the more general notion of combina-
torial symmetry. The collection of symmetries of a configuration, or its symmetry group,
partitions the points and lines into orbits, called the symmetry classes of points, and the
symmetry classes of lines.

One frequently studied class of 4-configurations is the celestial family. Its members have
the property that every point lies on exactly two lines from each of two symmetry classes
of lines, and every line is incident with two points from each of two symmetry classes
of points. Figure 2 gives an example of a celestial 4-configuration. The first published
4-configuration, in [4], was of this class, and more examples appeared in [6]. The first
discussion of celestial configurations as a family appeared in a paper called Polycyclic
Configurations by Marko Boben and Tomaž Pisanski [2], where they were investigated
as a particular class of polycyclic 4-configurations. Branko Grünbaum’s 2009 monograph
Configurations of Points and Lines [3] gives a detailed analysis of the construction method
and theory for celestial 4-configurations. In that reference Grünbaum refers to them as
k-astral 4-configurations. However, he also uses the term “k-astral” to describe configu-
rations which have k symmetry classes of points and k symmetry classes of lines; while
celestial 4-configurations have this property, there are many other 4-configurations with this
property that are not celestial. We reserve the term “k-astral” for the more general class of
configurations with k symmetry classes of points and lines, and use the term “celestial” to
refer to 4-configurations with the particular symmetry restrictions described above.

In [1], one author (LWB) developed two procedures which modify suitable celestial config-
urations to yield new 4-configurations. In the first of these, every other line from a particu-
lar symmetry class is deleted and then an equal number of new lines that pass through the
center of the configuration—diameters—are added in such a way that the resulting struc-
ture is a (noncelestial) 4-configuration. The number of points and lines remains unchanged
at the end of the construction since one diameter is added for every line removed. In the
second procedure, particular elements of certain symmetry classes of points and of lines
are both deleted and then diameters are added in such a way that every point is incident
with four lines and every line is incident with four points, with a net loss of both points and
lines.

In this paper we generalize the first of those procedures. We refer to this generalized pro-
cedure as sparse line deletion or p-sparse line deletion because in general it is possible
to delete a smaller number of lines than in the old construction. The new configurations
obtained in this way differ qualitatively from those introduced in [1] in that they exhibit a
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wider variety of symmetry groups compared to the symmetries of the underlying celestial
configurations. In particular, despite beginning with a configuration with a high degree
of geometric symmetry, we can obtain configurations of quite low symmetry by repeating
the sparse line deletion construction, in contrast to the previous construction. Figure 1 de-
picts three examples of these new objects; beginning with celestial configurations with d18,
d12 and d16 symmetry, we develop configurations with d6, d4 and d4 symmetry, respec-
tively.

The paper is organized as follows. In Section 2 we review the theory and notation for celes-
tial configurations. We correct a minor notational ambiguity from [1] and give new results
describing the incidences of the diameters in a series of lemmas. In Section 3 we describe
the p-sparse line deletion construction. In Section 4 we show how the construction may be
carried out several times simultaneously to yield a rich variety of new configurations. In
Section 5 we give examples of configurations obtained by a related, but poorly understood
technique applicable in the case where each symmetry class contains an odd number of
objects. We close by mentioning several questions that deserve further study. All figures in
this paper were generated using the free software Matplotlib [5].

2 Celestial configurations

A celestial configuration is a 4-configuration with a high degree of geometric symmetry;
specifically, such a configuration has the property that every point is incident with exactly
two lines from each of two symmetry classes, and every line is incident with exactly two
points from each of two symmetry classes. If a celestial configuration has k symmetry
classes of points and of lines, we refer to it as a k-celestial configuration. Each k-celestial
configuration consists of a composite number mk of points and mk lines for some m.
The points are the vertices of k concentric regular m-gons, and the configuration exhibits
m-fold dihedral symmetry (that is, dm symmetry).

An example of a 3-celestial configuration is shown in Figure 2. In that figure, the three
symmetry classes of points are distinguished by color (red, green and blue), and the three
symmetry classes of lines are distinguished in the same way (also red, green, and blue).
Each green line contains two red points and two green points (and similarly for the other
two classes of lines), and each blue point lies on two red and two blue lines (and similarly
for the other two classes of points).

Celestial configurations will serve as the building blocks of all of the new 4-configurations
described in this paper. One useful feature of celestial configurations is the fact that every
celestial configuration may be described by a configuration symbol

m#(s1, t1; s2, t2; · · · ; sk, tk)

which encodes a geometric construction algorithm. The integers si, ti,m in the configura-
tion symbol must satisfy several constraints for the construction to yield a 4-configuration;
in this case we say the symbol is valid. The constraints are: m ≥ 7, k ≥ 2, 1 ≤ si, ti < m

2
for all i, and

1. (order condition) adjacent entries in the sequence (s1, t1, s2, · · · , tk) (taken cycli-
cally) are distinct;
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18#(13*,7;8,6)

(a) 18#(13∗, 7; 8, 6);D∗
12#(23*,4;1,2;4,1)

(b) 12#(23∗, 4; 1, 2; 4, 1);D∗,

16#(54*,3;4,5;3,4)

(c) 16#(54∗, 3; 4, 5; 3, 4);D∗,

Figure 1: Three new 4-configurations. (a), the 3-sparse line deletion 18#(13∗, 7; 8, 6);D∗,
with d6 symmetry. (b) the 3-sparse line deletion 12#(23∗, 4; 1, 2; 4, 1);D∗, with d4 sym-
metry. (c) the 4-sparse line deletion 16#(54∗, 3; 4, 5; 3, 4);D∗, with d4 symmetry.
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(v0)0

(v0)1

(v0)2

(v0)3

(v0)4

(v0)5

(v0)6

(v0)7

(v1)0

(v1)1(v1)2

(v1)3

(v1)4

(v1)5 (v1)6

(v1)7

(v2)0

(v2)1

(v2)2

(v2)3

(v2)4

(v2)5

(v2)6

(v2)7

Figure 2: The 3-celestial configuration 8#(2, 1; 3, 2; 1, 3). The labeling updates Figure 2a
in [1]. Throughout the paper we use red for v0 and L0, blue for v1 and L1, and green for
v2 and L2.

2. (even condition)
∑k
i=1 si + ti is even; and

3. (cosine condition)
∏k
i=1 cos

(
siπ
m

)
=
∏k
i=1 cos

(
tiπ
m

)
;

4. (substring condition) the symbol m#(L) is invalid whenever L is a proper contigu-
ous substring of (s1, t1; · · · ; sk, tk).

As an example illustrating contiguity, (3, 2; 1, 4) and (4, 7; 5, 3) are contiguous substrings
of (5, 3; 2, 1; 4, 7) but (5, 2; 4, 7) is not.

The cosine condition is satisfied automatically if the sets S = {s1, . . . , sk} and T =
{t1, . . . , tk} are equal, in which case the configuration is called trivial. All the configura-
tions in this paper, with the exception of those in Figures 1a and 3, are formed from trivial
celestial configurations. More information on these conditions can be found in [3, Chapter
3].

We now turn to the construction algorithm encoded by the symbol.

2.1 Geometric construction algorithm (celestial configurations)

We write P ∨Q for the line passing through points P and Q and L∧M for the intersection
of lines L and M . In the symbols (vi)j and (Li)j , the second index j is to be interpreted
modulo m. The construction algorithm to produce a celestial configuration given a valid
configuration symbol is as follows.

1. Begin with the vertices of a regularm-gon; e.g. take (v0)i =
(
cos
(
2πi
m

)
, sin

(
2πi
m

))
,

for 0 ≤ i < m. Let v0, written without a second subscript, denote the collection of
these points.
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2. Given points vj , define (Lj)i = (vj)i ∨ (vj)i+sj+1 , for 0 ≤ i < m. We denote by
Lj the collection of these lines.

3. Given lines Lj , define (vj+1)i = (Lj)i ∧ (Lj)i−tj , for 0 ≤ i < m, and let vj+1

denote the collection of these points.

4. Repeat the previous two steps until the line class Lk−1 is obtained using the parame-
ter sk. Stop before constructing the points vk; if the symbol is valid, the set of points
vk that would be constructed in the next step would coincide setwise with the points
v0.

For future reference we list all of the incidences explicitly in Table 1.

Table 1: Incidences between members of point and line classes in the celestial configuration
m#(s1, t1; . . . ; sk, tk). The quantity δ is defined by δ = 1

2

∑k
i=1 si − ti.

Object Incidences
(Lj)i, 0 ≤ j < k − 1 (vj)i (vj)i+sj+1

(vj+1)i, (vj+1)i+tj+1

(Lk−1)i (vk−1)i (vk−1)i+sj+1
(v0)i+δ (v0)i+δ+tk

(v0)i (L0)i (L0)i−s1 (Lk−1)i−δ (Lk−1)i−δ−tk
(vj)i, 0 < j ≤ k − 1 (Lj)i (Lj)i−sj+1 (Lj−1)i (Lj−1)i−tj .

2.2 Lines through the origin

The vertices in a given point class vj of a celestial configuration form a regular m-gon.
For each integer ` it follows that the angle ∠(vj)0O(vj)` is an integer multiple of 2π/m
(that is, an even multiple of π/m). A slightly weaker statement holds for points in different
symmetry classes: for i 6= j, it is still true that the angle ∠(vi)0O(vj)` is an integer
multiple of π/m. In the constructions we consider we will add lines through the center of
the configuration (although the center is not one of the points of the configuration). We
denote by Dj the line through the origin that makes an angle of j πm radians with the line
O ∨ (v0)0 (conventionally a horizontal line) for j = 0, 1, · · · ,m− 1. For j ≥ m or j < 0
we reduce modulo m so that Dm = D0 = O ∨ (v0)0. This notation is more flexible than
the concept of diametral type introduced in [1] and does not require m to be even. We refer
to all of the Dj as diameters.

With this notation we restate some useful facts on celestial configurations.

1. Suppose that m is even and (vj)i lies on Da. Then (vj)i+m
2

also lies on Da so that
Da passes through two points of vj . However, if q is odd then Da+q passes through
no points of vj . Hence if m is even, each diameter passes through either zero or two
points from each symmetry class.

2. Suppose thatm is odd. Then each diameter is incident with exactly one point of each
symmetry class.

3. Let 0 ≤ j < k − 1. If (vj)0 lies on Da then (vj+1)0 lies on Da+sj+1−tj+1 .

By combining (1) and (3) we see that if m and (s1 + t1) are even, then the even-numbered
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diameters pass through two points from each of v0 and v1 while the odd-numbered diame-
ters miss all of the points in v0 and v1.

We now give three lemmas providing specific information on the incidences of the diame-
ters. This information is conveniently expressed in terms of the constants {βj} defined by
β0 = 0 and

βj =

j∑
q=1

sq − tq, j = 1, · · · , k − 1.

Lemma 2.1. For all i and j, the point (vj)i lies on the diameter Dβj+2i.

Proof. By definition, (v0)0 lies on D0. Applying (3) repeatedly we see that (vj)0 lies on
diameter Dβj . It follows that (vj)i lies on Dβj+2i.

Lemma 2.2. For 0 ≤ ` < m, and 0 ≤ j < k, the diameter D` passes through the
following points of vj:

none m even, βj − ` odd;
(vj) `−βj

2

, (vj)m+`−βj
2

m even, βj − ` even;

(vj)m+`−βj
2

m odd, βj − ` odd;

(vj) `−βj
2

m odd, βj − ` even.

Proof. Lemma 2.1 states that for each i the point (vj)i lies on Dβj+2i, so it suffices to
solve the congruence ` ≡ βj + 2i (m) for i. Equivalently we solve 2i ≡ `− βj (m). If m
is odd, this equation has one solution because 2 is a generator of the cyclic group Z/mZ.
This solution depends on the parity of `− βj as indicated. If m is even then 2i and 2i−m
are always even, so there is no solution if ` − βj is odd. If ` − βj is even then both `−βj

2

and m+`−βj
2 are solutions, as indicated.

Lemma 2.3. If 0 ≤ j, ` < k and 0 ≤ i < m, the points of v` sharing a diameter with (vj)i
are 

none m even, β` − βj odd;
(v`)i+ βj−β`

2

, (v`)i+m+βj−β`
2

m even, β` − βj even;

(v`)i+m+βj−β`
2

m odd, β` − βj odd;

(v`)i+ βj−β`
2

m odd, β` − βj even.

Proof. Lemma 2.1 implies that (vj)i lies on Dβj+2i. Lemma 2.2 then states which points
of v` lie on this diameter. Writing ˜̀= βj + 2i and j̃ = ` to match the notation of Lemma
2.2, we find that the following points of vj̃ lie on D˜̀:

none m even, βj̃ − ˜̀odd;
(vj̃) ˜̀−β

j̃
2

, (vj̃)m+˜̀−β
j̃

2

m even, βj̃ − ˜̀even;

(vj̃)m+˜̀−β
j̃

2

m odd, βj̃ − ˜̀odd;

(vj̃) ˜̀−β
j̃

2

m odd, βj̃ − ˜̀even.
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In other words, the following points of v` lie on Dβj+2i:

none m even, β` − βj odd;
(v`) βj+2i−β`

2

, (v`)m+βj+2i−β`
2

m even, β` − βj even;

(v`)m+βj+2i−β`
2

m odd, β` − βj odd;

(v`) βj+2i−β`
2

m odd, β` − βj even.

The result follows.

3 Sparse line deletion

Consider the celestial configuration 18#(5, 1; 4, 6), illustrated in Figure 3a. Suppose we
delete the lines (L0)k, k = 0, 3, 6, 9, 12, 15; the resulting structure is not a configuration
because some of the points, shown larger in Figure 3b, have lost an incidence. We say that
these points have been affected by the line deletion. Note that the affected points of v0 lie
on the same diameters as the affected points of v1, and each diameter that has any affected
point incident with it in fact is incident with two points from each of the two symmetry
classes. In addition, each affected point is missing precisely one line. Therefore, if we add
the six diameters {D0, D4, D6, D10, D12, D16}, we obtain the 4-configuration depicted in
Figure 3c. This is an example of the 3-sparse line deletion construction.

We call this construction sparse in comparison with the construction given in [1], because
we remove only one-third of the lines L0 instead of one-half. Figure 4 shows the result of
the construction technique described in [1], which was called odd deletion in that work and
which corresponds to 2-sparse deletion in the terminology of the present work, beginning
from the same celestial configuration 18#(5, 1; 4, 6). The example of Figure 4 also serves
to correct an error from [1], where it was claimed incorrectly that the construction would
work only for k-celestial configurations with k ≥ 3.

The following theorem gives necessary conditions for the procedure described above to
succeed, given parameters m, si, ti of the celestial configuration and a sparsity p. The
proof shows that the affected points all lie on a particular set of diameters, and that all
points on these diameters are affected. The case p = 2 was proven in [1].

Theorem 3.1 (p-Sparse Line Deletion). Let p ≥ 2, and let C be a celestial 4-configuration
with symbol m#(s1, t1; s2, t2; · · · ; sk, tk) satisfying the following conditions:

(i) p does not divide s1.

(ii) m is even, and either m
2 ≡ 0 (mod p) or m

2 ≡ s1 (mod p).

(iii) The points lying on even-numbered diameters are precisely those of v0 and v1, i.e.:

If k = 2, then s1 + t1 and s2 + t2 are both even.

If k ≥ 3, then si + ti is odd for i = 2, i = k, and even otherwise.

(iv) The following sets coincide when reduced modulo p:

{0, s1} =
{
s1 + t1

2
,
s1 − t1

2

}
.
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18#(53*,1;4,6)

(a) 18#(5, 1; 4, 6)

(b) 18#(53∗, 1; 4, 6)

18#(53*,1;4,6)

(c) 18#(53∗, 1; 4, 6);D∗

Figure 3: The 3-sparse line deletion construction. (a) The celestial configuration
18#(5, 1; 4, 6) with (L0)n drawn thicker for n ≡ 0 mod 3. (b) Lines (L0)n for n ≡
0 mod 3 have been deleted and the points affected by the deletion are drawn larger. This
structure is denoted 18#(53∗, 1; 4, 6) and is not a 4-configuration; the notation 53∗ is ex-
plained in Theorem 3.1. (c): The 4-configuration 18#(53∗, 1; 4, 6);D∗ obtained from (b)
by adding diameters.
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Figure 4: The 2-sparse line deletion configuration 18#(52∗, 1; 4, 6);D∗. All of the diam-
eters have been added, so the other constructions considered in this paper are sparse in
comparison. In the notation of [1] this would have been denoted 18#(5∗, 1; 4, 6);D.

Remove from C the lines (L0)np, 0 ≤ n < m
p . Add the diameters passing through the

affected points of v0, i.e. D2np, D2(np+s1), for 0 ≤ n < dm2pe. Then the resulting structure
C′ is again a 4-configuration, which we denote as m#(sp∗1 , t1; . . . ; sk, tk);D∗.

Proof. We verify that each object in the new structure has exactly four incidences.

Each line (Lj)i of C that is not deleted still has exactly four incidences in C′ since no points
are added or deleted in this construction.

The added diameters also pass through exactly four points. To see this, note that by condi-
tion (iii) the classes v0 and v1 and no others lie on even-numbered diameters. Condition (ii)
implies that m is even, so each even-numbered diameter passes through two points from
each of v0 and v1 and no others.

Consider now the points (vj)i with j > 1. By condition (iii) these lie on odd-numbered
diameters. They therefore do not gain any incidence from the added diameters, and they do
not lose any incidence either since the deleted lines are chosen from L0 and these lines are
incident only with points of v0 and v1 (again by condition (iii)).

It remains only to show that each point of v0 and v1 lies on exactly four lines after diameters
are added.

We begin with the points v0. A point (v0)i lies on two lines of L0, namely (L0)i and
(L0)i−s1 . Because s1 6≡ 0 (mod p) by condition (i), at most one of these lines is deleted.
Because we add a diameter if and only if it passes through an affected point of v0, the
affected points regain their lost incidence and have exactly four incidences. Hence all
points (v0)i have at least four incidences in C′.

We must still check that none of them have five, i.e., that no unaffected point of v0 lies
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directly across the origin from an affected point of v0 on the same diameter. We therefore
suppose that (v0)i is affected by the deletion, i.e. i ≡ 0 (mod p) or i ≡ s1 (mod p),
and we show that its reflection (v0)i+m

2
across the origin is also affected. To do so, we

must show that either i+ m
2 ≡ 0 (mod p) or i+ m

2 ≡ s1 (mod p). We consider the two
cases of condition (ii). In the first case, where m

2 ≡ 0 (mod p) the desired congruence
is immediate. In the second case we have m

2 ≡ s1 (mod p), so 2s1 ≡ m ≡ 0 (mod p).
However, i + m

2 is congruent to i + s1, since we are in the case where m
2 ≡ s1 (mod p),

and this is now congruent to either s1 or 2s1 ≡ 0 (mod p), according to whether i ≡ 0 or
i ≡ s1. Hence all of the points v0 have exactly four incidences in the new structure C′.

Now consider the points of v1. We begin by showing that a point (v1)i can lose at most one
incidence when the lines (L0)np, 0 ≤ n ≤ dm2pe, are deleted. Indeed, (v1)i lies on only
two lines from the first line class, namely (L0)i and (L0)i−t1 . Thus, we need to show that
t1 6≡ 0 (mod p). This follows from condition (iv). If t1 were congruent to 0 (mod p), we
would have s1−t1

2 ≡ s1−t1
2 + t1 ≡ s1+t1

2 (mod p). These numbers cannot be congruent,
however, since one is congruent to 0 and the other to s1. This shows that each point (v1)i
will lose either zero or one incidence when the lines (L0)np are removed. It follows that
each line deletion affects two points of v1 as well as two points of v0, so the same number
of points are affected in each of these point classes.

Finally, we argue that the affected points of class v1 are precisely those that lie on the
added diameters. Because v1 contains the same number of affected points as v0, it suffices
to show that each affected point of class v1 lies on one of the diameters added previously.
A counting argument then guarantees that no unaffected point lies on an added diameter.
Since β1 = s1 − t1 is even by condition (iii) and m is even by condition (ii), Lemma 2.3
implies that each point (v1)i shares a diameter with (v0)i+ 1

2 (s1−t1)
. The affected points of

v1 are those lying on (L0)q where q ≡ 0 (mod p), namely (v1)q and (v1)q+t1 . It therefore
suffices to show that

if i ≡ 0 or t1 (mod p), then i+
1

2
(s1 − t1) ≡ 0 or s1 (mod p),

since 0 and s1 are the remainders modulo p of the indices of affected points in v0. But this
is equivalent to condition (iv). Hence the affected points of v1 lie on added diameters in C′.
This completes the proof.

3.1 Notation

The notation of [1] may be extended to these generalized p-sparse constructions. If each
p-th line of the class L0 has been deleted from the celestial configuration m#(s1, t1; . . . ;
sk, tk), we denote the resulting incidence structure by m#(sp∗1 , t1; . . . ; sk, tk); it is not a
configuration. The notation m#(s1∗, t1; . . . ; sk, tk) that was used in [1] should now be
written as m#(s2∗1 , t1; . . . ; sk, tk) since all of those constructions were 2-sparse.

We append the symbol D∗ to the end of the sequence to indicate that for 0 ≤ i < m we
add the diameter Di if any of the points on Di have been affected by the line deletion.
For brevity we do not explicitly state the indices of the added diameters. These can be
recovered if necessary: under the conditions of Theorem 3.1, the added diameters are Di

with i
2 ≡ 0 or i

2 ≡ s1 (mod p). Hence ifm#(s1, t1; . . . ; sk, tk) is a celestial configuration,



176 Ars Math. Contemp. 9 (2015) 165–186

24#(24*,10;7,2;10,7)

(a) 24#(24∗, 10; 7, 2; 10, 7);D∗

24#(26*,10;7,2;10,7)

(b) 24#(26∗1, 10; 7, 2; 10, 7);D∗

Figure 5: The celestial symbol 24#(2, 10; 7, 2; 10, 7) satisfies the hypotheses of Theorem
3.1 for both p = 4 and p = 6, yielding two new configurations.

then m#(sp∗1 , t1; . . . ; sk, tk) is an incidence structure formed by removing each p-th line
in L0, and Theorem 3.1 asserts that m#(sp∗1 , t1; . . . ; sk, tk);D∗ is again a configuration
under certain conditions on m, si, ti, and p.

We will need more powerful notation in the next section. In our examples so far, we
deleted the lines (L0)q for all q ≡ 0 (mod p). The construction works equally well if we
delete instead the lines (L0)q for all q ≡ b (mod p), where 0 ≤ b < p (to see this, rotate
the configuration through an angle of −2πb/m radians, perform the same operation, then
rotate back). If b 6= 0 we write b following the asterisk in the superscript of s1; for clarity
we may also do this even if b = 0.

The construction outlined in Theorem 3.1 also works if instead of deleting every p-th line
in class L0, we instead delete every p-th line in class Lj−1, provided the symbol satisfies
the (suitably shifted) conditions of Theorem 3.1.

We therefore use the notation

m#(· · · ; sp∗bj , tj ; · · · )

to indicate deletion of each line (Lj−1)q , with q ≡ b (mod p). See Figure 5b for an example
with j = 0 and b = 1.

The next section details a generalization of this deletion technique, in which several dele-
tions on the same set of lines are performed simultaneously; to denote this, we write

m#(· · · ; sp∗b1,b2,b3j , tj ; · · · )

to indicate deletion of each line (Lj−1)q , with q ≡ b1 or q ≡ b2 or q ≡ b3 (mod p).
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24#(24*0,6*1,10;7,2;10,7)

Figure 6: The constructions illustrated in Figure 5 have been carried out simultaneously
to obtain 24#(24∗0,6∗1, 10; 7, 2; 10, 7);D∗. This procedure degrades the symmetry group
from d24 to d2.

4 Repetition of sparse line deletion

4.1 Multiple deletions within the first line class

Consider the celestial configuration 24#(2, 10; 7, 2; 10, 7). This symbol satisfies the con-
ditions for Theorem 3.1 for both p = 4 and p = 6. We can delete the lines (L0)q for
q = 0, 4, 8, · · · and add diameters to obtain 24#(24∗0, 10; 7, 2; 10, 7);D∗, depicted in Fig-
ure 5a. The affected points of v0 are those (v0)i with i ≡ 0 or i ≡ s1 = 2 (mod 4).
This leaves all of the (v0)i with odd i untouched. On the other hand, if we delete all
lines (L0)q with q ≡ 1 (mod 6), only points (v0)i of odd index will be affected: see Fig-
ure 5b. We may therefore perform both constructions together to obtain the configuration
24#(24∗0,6∗1, 10; 7, 2; 10, 7);D∗, depicted in Figure 6. We have now added all but two
of the even-numbered diameters, and the deletion is “sparse” only in comparison with the
construction given in [1]. The resulting configuration has only the four symmetries of a
rectangle, compared to the 48 symmetries of the underlying celestial configuration. That
is, the new symmetry group has index 12 in the original group. For 2-sparse line deletion
the index is at most 4. This indicates that the more general procedure can give qualitatively
novel configurations.

Many celestial configurations admit p-sparse line deletions for several values of p. A naı̈ve
exhaustion search by machine using the conditions of the theorem uncovered several ex-
treme examples. The celestial configuration 48#(13, 11; 20, 13; 11, 20) admits p-sparse
line deletion with p = 2, 3, 4, 6 or 12. With 80#(12, 28; 23, 12; 28, 23) we can take
p = 5, 8, 10, or 20. By repeating and combining the p-sparse line deletions for some-
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what larger values of p, we can obtain a large number of new 4-configurations. Even in the
relatively small case of 24#(2, 10; 7, 2; 10, 7) we can obtain the configurations illustrated
in Figure 7 in addition to those from Figures 5 and 6.

4.2 Combining deletions in the first and third classes in 4-celestial configurations

Another possibility for repetition of the p-sparse line deletion construction arises in the
special case of 4-celestial configurations. Suppose that the hypotheses of Theorem 3.1
hold for the celestial symbol

m#(s1, t1; s2, t2; s3, t3; s4, t4)

with p = p1. Suppose further that they hold for the symbol

m#(s3, t3; s4, t4; s1, t1; s2, t2)

with p = p2. Beginning from the first symbolm#(s1, t1; s2, t2; s3, t3; s4, t4), we may then
perform p1-sparse deletion on the lines L0 and add even-numbered diameters to recover a
configuration (as in Theorem 3.1). We may additionally perform p2-sparse deletion on the
lines L2 and add odd-numbered diameters to recover yet another configuration of a family
not available previously.

For example, the 4-celestial configuration 20#(6, 4; 3, 6; 7, 3; 4, 7) admits a 5-sparse dele-
tion on both L0 and L2. We can delete the lines (L0)q with q ≡ 0 (mod 5) and add
even-numbered diameters, or we can delete the lines (L2)q with q ≡ 0 (mod 5) and add
odd-numbered diameters to obtain a 4-configuration. We can also do both; in this case we
arrive at the configuration 20#(65∗, 4; 3, 6; 75∗, 3; 4, 7);D∗, depicted in Figure 8b. By ro-
tating the first construction we obtain 20#(65∗1, 4; 3, 6; 75∗0, 3; 4, 7);D∗, depicted in Fig-
ure 8c. These three objects are different, at least in the geometric sense that they differ by
more than an isometry, illustrating the very large number of new configurations available
through this method.

Finally we note the possibility of repeating deletions within L0 and also repeating deletions
within L2. An example is 20#(65∗0,2, 4; 3, 6; 75∗0,4, 3; 4, 7);D∗; see Figure 8a and note
again the very small symmetry group.

5 Constructions with an odd number of points per symmetry class

Let C be a k-celestial configuration with symbol m#(s1, t1; . . . ; sk, tk). Suppose that m
is odd. The hypotheses of Theorem 3.1 cannot hold; in this section we ask if there is
another way to remove some lines of C and then add an equal number of diameters to
recover a 4-configuration. We will give some examples where this succeeds and suggest
a classification of the resulting configurations. We leave open the task of giving explicit
construction algorithms with sufficient conditions on m, s, t and p.

We claim that such a construction is possible only if k = 4. Indeed, since m is odd every
diameter passes through exactly one point in each symmetry class; if the added diameters
are lines in a 4-configuration then there must be exactly four classes.
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(a) 24#(24∗0,1, 10; 7, 2; 10, 7);D∗

(b) 24#(26∗0,1, 10; 7, 2; 10, 7);D∗ (c) 24#(26∗0,3, 10; 7, 2; 10, 7);D∗

Figure 7: Three more configurations arising from multiple modifications to the same celes-
tial configuration as in Figures 5 and 6. Note that in the configuration shown in (a) we have
deleted every red line (L0)q where q is congruent to 0 or 1 (mod 4). As a result all even-
numbered diameters have been added, although this configuration cannot be constructed
via 2-sparse line deletion.
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(a) 20#(65∗0,2, 4; 3, 6; 75∗0,4, 3; 4, 7);D∗

(b) 20#(65∗, 4; 3, 6; 75∗, 3; 4, 7);D ∗ . (c) 20#(65∗1, 4; 3, 6; 75∗0, 3; 4, 7);D ∗ .

Figure 8: Three configurations obtained from 20#(6, 4; 3, 6; 7, 3; 4, 7) by performing 5-
sparse deletion on both L0 and L2. Both odd- and even-numbered diameters have been
added.
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The examples in previous sections proceeded in steps where some of the lines in one sym-
metry class were removed and diameters were added to yield a new configuration; in the
more complicated examples several intermediate configurations were formed and destroyed
along the way. With m odd such a scheme cannot work. Because each added diameter
passes through points in four symmetry classes, while the lines of any line class Lj pass
only through the two point classes vj , vj+1, we must simultaneously delete lines from more
than one symmetry class. The necessity of coordinating these different classes of removed
lines is the main challenge in this section.

We propose the following classification for line deletion constructions. The ray from the
origin through (v0)0 passes through either zero points or one point from each of the classes
v1, v2, v3. If this ray passes through a point of class vj we say that vj is a cis class; oth-
erwise we say that vj is a trans class (that is, trans classes are on the opposite side of the
origin from points v0, while cis classes are on the same side of the origin as points v0).
Hence v0 is always a cis class, and our Theorem 3.1 addresses the case where m is even
and the set of cis classes is {v0, v1}.

There are 23 = 8 possible sets of cis classes in a 4-celestial configuration. In Figures 9, 10,
and 11 we give examples where m is odd and the cis classes are {v0, v1}, {v0, v1, v2, v3},
and {v0, v2, v3} respectively. It may be that for each of the eight possibilities one can find
sufficient conditions for some line deletion procedure in the spirit of Theorem 3.1. This
problem is beyond our scope here.

6 Questions for further study

In Configurations of Points and Lines, Grünbaum wrote that “constructing new 4-configura-
tions is still more of an art than a science” [3]. We now offer several possible directions for
future work towards the ultimate goal of finding and classifying all 4-configurations.

The technique we have explored here, the replacement of some lines of a celestial config-
uration with an equal number of diameters, can be extended further. The examples given
in Section 5 should be systematized with explicit construction algorithms and sufficient
conditions. There are also possibilites with m even that are not covered by Theorem 3.1.
Figure 12 gives an example with m = 12 where v0 and v2 are of cis type, in contrast to the
situation of Theorem 3.1, where v0 and v1 are of cis type. This could be the first example
of a new infinite family obtained by a more general construction.

We also have yet to consider the “even deletion” procedure introduced in [1], in which
points as well as lines are removed. This no doubt has a p-sparse generalization and could
be worth exploring since the “even deletion” construction in [1] yielded previously un-
known (254) configurations.

We close by mentioning a related question. We say that two configurations are (combina-
torially) isomorphic if there exists an incidence-preserving bijection between the two con-
figurations. It is not clear how many of the configurations introduced here belong to new
isomorphism classes in this combinatorial sense. For example, it is not known whether or
not the configurations depicted in Figures 8b and 8c are combinatorially isomorphic. Even
for the celestial configurations this question has not been solved.
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Figure 9: The configuration 15#(43∗, 2; 1, 4; 53∗, 1; 2, 5);D∗. The ray from the origin
through (v0)0 (red) passes through (v1)−1 (blue) but no points of v2 (green) or v3 (ma-
genta), so the cis classes are v0 and v1.
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Figure 10: The configuration 27#(43∗, 2; 8, 4; 103∗, 8; 2, 10);D∗. All four points on each
added diameter lie on the same side of the origin, so all point classes are of cis type. The
diameters could be extended through the origin without hitting other points because m is
odd.
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Figure 11: The configuration 35#(125∗, 13; 3, 12; 75∗, 3; 13, 7);D∗. The cis classes are
v0, v2, and v3.
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Figure 12: The configuration 12#(23∗0, 5; 4, 3; 53∗1, 2; 3, 4);D∗. Here the cis classes are
v0 and v2.
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1 Introduction
Let G = (V,E) be a simple graph, that is, a graph having neither loops nor multiple edges.
A dominating set inG is a subset S ⊆ V such that each vertex in V \S is adjacent to at least
one vertex in S. The domination number γ(G) of G is the minimum size of a dominating
set in G. The domination number has been extensively studied in the general case [11].
Due to a variety of applications, the case of n-cubes, G ∼= Qn, is of particular interest [3];
most of the early work considered such graphs. In the current work, another specific type
of graphs is considered, namely Kneser graphs.

The Kneser graph KGn,k has one vertex for each k-subset of an n-set and edges be-
tween vertices whenever the corresponding subsets are disjoint. If n < 2k, then KGn,k has
no edges, so we assume that n ≥ 2k. We further denote the domination number of KGn,k

by γ(n, k). See [6, Chap. 7] for an in-depth discussion of Kneser graphs.
General and specific bounds on γ(n, k) have been considered in a sequence of studies,

including [2, 8, 10, 12, 18]. However, several of the best known bounds for small param-
eters were rather weak prior to this study. Indeed, the aim of the current work is to apply
combinatorial and computer-aided techniques to the problem of improving upper and lower
bounds on the domination number of Kneser graphs—and occasionally even find the exact
value when the bounds meet.

A total dominating set in a graph G = (V,E) is a subset S ⊆ V such that each vertex
in V is adjacent to at least one vertex in S. The minimum size of a total dominating set is
called the total domination number, and the total domination number of KGn,k is denoted
by γt(n, k). It is obvious that

γ(n, k) ≤ γt(n, k). (1.1)

Let C(v, k, t) denote the smallest number of k-subsets of a v-set, such that every t-subset
of the v-set occurs in at least one of the k-subsets. Then γt(n, k) = C(n, n − k, k), so by
(1.1),

γ(n, k) ≤ C(n, n− k, k). (1.2)

Exact values of and upper bounds on C(v, k, t) for v ≤ 32, k ≤ 16, and t ≤ 5 can be found
in [7].

The paper is organized as follows. Methods for obtaining upper and lower bounds on
γ(n, k) are considered in Sections 2 and 3, respectively. The results are summarized in
Section 4, where an updated table of bounds on γ(n, k) is presented for n ≤ 21 and k ≤ 5.

2 Upper Bounds and Exact Values
Upper bounds for the domination number are commonly constructive, that is, explicit dom-
inating sets prove the bounds. We here present various general results for upper bounds on
γ(n, k); in some of the theorems, the exact value is in fact obtained. If n < 2k, then
the Kneser graph consists of isolated vertices only. In the first nontrivial case, n = 2k, a
dominating set must contain one vertex from each pair of disjoint k-sets.

Theorem 2.1. For any k,

γ(2k, k) =
1

2

(
2k

k

)
.

It is easy to show that if n is large enough, then the smallest dominating set is obtained
by taking k + 1 disjoint k-sets.
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Theorem 2.2. If n ≥ k2 + k, then γ(n, k) = k + 1.

The exact value of γ(n, k) has also been determined for a range of values of n smaller
than those covered by Theorem 2.2.

Theorem 2.3 ([10]). If k ≥ 3 and 3
4k

2 + k ≤ n < k2 + k, then

γ(n, k) = k + 1 +

⌈
k2 + k − n
bk/2c

⌉
.

With increasing n, γ(n, k) turns out to be nonincreasing.

Theorem 2.4 ([8, Proposition 4.2.4]). If n ≥ 2k + 1, then γ(n+ 1, k) ≤ γ(n, k).

Theorem 2.5 ([8, Theorem 4.5.1]). If k ≥ 4 and γ(n, k) ≤ min{2k, n−k}, then γ(n, k) =
γt(n, k).

We shall next see how dominating sets in certain Kneser graphs are related to a coloring
problem for hypergraphs that has been extensively studied. We consider the case n =
2k + 1—such Kneser graphs are known as odd graphs—and view a dominating set S of
the graph KG2k+1,k as the set of hyperedges in a hypergraphG′ = (V ′, E′) with |V ′| = n,
|E′| = |S|, and edges of size k (so the hypergraph is k-uniform).

Now consider an arbitrary balanced coloring of the vertices in V ′ with two colors, that
is, k of the vertices are colored with one color and k + 1 with the other [21]. Since the
vertex in the original Kneser graph that is labelled by the subset of the k vertices with the
first color is dominated by some vertex s ∈ S, the hyperedge in E′ corresponding to s is
unicolor. Hence,G′ does not have a balanced coloring with two colors so that no hyperedge
is unicolor, that is, G′ is not 2-colorable in a balanced way.

Hypergraphs that are 2-colorable (without requiring that the colorings be balanced) are
said to have property B [13, Sect. 15.1]. Consequently, a hypergraph with appropriate
parameters that does not have property B gives a dominating set in KG2k+1,k. Actually,
this implication goes in the other direction as well.

The upward shadow of a (k − 1)-subset of an n-set is the collection of all k-subsets of
the n-set that contain the (k − 1)-subset.

Lemma 2.6 ([8, Lemma 4.2.3]). If n ≥ 2k+1, then there exists a dominating set attaining
γ(n, k) that does not contain the upward shadow of any (k − 1)-subset of the n-set.

Theorem 2.7. There exists a dominating set S attaining γ(2k + 1, k) that can be trans-
formed into a k-uniform hypergraphG′ = (V,E) with |V | = 2k+1 and |E| = |S| without
property B.

Proof. Consider the hypergraph G′ = (V ′, E′) obtained from a dominating set attaining
γ(2k+1, k) that does not contain the upward shadow of any (k−1)-set. Such a dominating
set exists by Lemma 2.6.

If the vertices in V ′ are colored in a balanced way, then since the hypergraph was
constructed from a dominating set in KG2k+1,k, there exists a unicolor hyperedge.

Now consider a coloring of the vertices V ′ with k + 2 and k − 1 vertices of the two
colors and denote the vertices in the former color class by U . If no hyperedge in E′ is
a subset of U , then the same holds for each (k + 1)-subset of U , so by the existence of
a balanced coloring we get that (V ′ \ U) ∪ v ∈ E′ for all v ∈ U . But this is then an
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upward shadow and we have a contradiction (so a hyperedge that is a subset of U is indeed
unicolor).

The colorings with classes of size a and n − a where a ≥ k + 3 are handled by
considering an arbitrary subset of the larger class of size k + 2 and using the previous
argument.

By Theorem 2.7 and results by Abbott and Liu [1] we now get that 24 ≤ γ(9, 4) ≤ 26.
Note, however, that in certain studies on uniform hypergraphs without property B a further
assumption is made that the hyperedges must contain all pairs of vertices. Results for that
variant of the problem, which is motivated by a more general question regarding property
B, are not directly applicable here. This includes the results in [16, 21].

For certain parameters, we can say a lot about γ(2k + 1, k). Let 2 ≤ t < k < v. An
S(t, k, v) Steiner system is a collection of k-sets out of a v-set with the property that every
t-subset of the v-set occurs in exactly one of the k-sets. The following result has been
discussed both in the context of hypergraphs without property B [4] and dominating sets
in KG2k+1,k [9]; see also [5, Lemma 11.8.3].

Theorem 2.8. There is a Steiner system S(k − 1, k, 2k + 1) if and only if

γ(2k + 1, k) =
1

k

(
2k + 1

k − 1

)
.

One may further use partial or exhaustive computational methods to determine bounds
on γ(n, k). Since upper bounds can be proven by finding a structure attaining the bound,
nonexhaustive methods can be applied to such cases. For lower bounds, on the other hand,
exhaustive methods are required; we shall consider such methods in the next section.

In [19], the tabu search metaheuristic is applied to the problem of finding dominating
sets in n-cubes. The algorithm takes the parameters of the instance and the desired size of
the dominating set (which is, for example, one less than the best known upper bound), and
searches for such a dominating set. The algorithm is also applicable to Kneser graphs—in
fact, it is applicable to arbitrary graphs. The reader should consult [19] for details. Struc-
tures obtained in the current work and leading to new upper bounds on γ(n, k) are listed
in the Abstract. Some of the best known structures turn out to have nontrivial symmetries;
these could further be used to narrow down the search space.

We consider symmetries of dominating sets in terms of the labels (subsets) of the ver-
tices. Two dominating sets are said to be equivalent if there is a permutation of the n-set
that maps the vertices of one dominating set onto the vertices of the other. Such a mapping
from a dominating set onto itself is an automorphism, and the set of all automorphisms
of a dominating set forms the automorphism group of the dominating set. Such an auto-
morphism group is isomorphic to a subgroup of the stabilizer subgroup of the dominating
set in Aut(KGn,k). Note that it may happen that the automorphism group is a proper
such subgroup; consider, for example, the mapping of the k-subsets of a 2k-set to their
complements. The nauty software [17] is a useful computational tool in this context.

3 Lower Bounds
Several of the bounds in the previous section can be used also to get lower bounds. We shall
here state two more general results that can be used to get best known lower bounds for
small parameters. The first of these is the well-known volume bound obtained by dividing
the total number of vertices with the number of vertices dominated by a single vertex.
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Theorem 3.1. For any n and k,

γ(n, k) ≥
(
n
k

)
1 +

(
n−k
k

) .
Theorem 3.2 ([8, Lemma 4.5.3]). Assume that n = αk, where α, k ≥ 2. Then

γ(n, k) ≥ α

α− 1
(γ(n+ k, k)− 1).

To simplify the discussion of the techniques to obtain lower bounds on γ(n, k), it is
useful to think of a dominating set as a constant weight code [20]. The codewords of this
code are of length n and have 1s in the coordinates given by the corresponding k-subset
and 0s in the other coordinates. Theory and terminology from coding theory can then be
directly applied.

There are three general approaches to exhaustively search for codes with prescribed
parameters [15, Chap. 7]: via subcodes, codeword by codeword, and coordinate by coor-
dinate. There is no obvious way of constructing the current type of codes via subcodes,
that is, codes obtained by considering the codewords with a 1 (alternatively, 0) in a given
coordinate and deleting that coordinate. Some results can indeed be obtained in a backtrack
search constructing the code word by word as in [24], which can be consulted for general
details.

The origins of the method of constructing codes coordinate by coordinate can be traced
back to the 1960s [14], after which it has been developed further and become an efficient
tool in the study of dominating sets, in particular in n-cubes and related graphs [22, 23].
See also [15, Sect. 7.2.2]. A version that has been applied to the hypergraph coloring
problem discussed in the previous section can be found in [21].

The idea in the coordinate by coordinate approach can be described as a generalization
of the following theorem.

Theorem 3.3. Let D be a dominating set in KGn,k, and let D = D0 ∪ D1 such that Di

consists of the vertices whose label has an i in the first coordinate. Then

1. |D1|+
(
n−k−1
k−1

)
|D0| ≥

(
n−1
k−1

)
,

2.
(
n−k
k

)
|D1|+

(
1 +

(
n−1−k

k

))
|D0| ≥

(
n−1
k

)
.

Proof. Let G = (V,E) be the KGn,k Kneser graph, and let V = V0 ∪ V1 so that the labels
of the vertices in Vi have an i in the first coordinate. Then |V0| =

(
n−1
k

)
and |V1| =

(
n−1
k−1

)
.

The result now follows as each vertex in D0 dominates 1 +
(
n−1−k

k

)
vertices in V0 and(

n−k
k

)
vertices in V1, and each vertex in D1 dominates

(
n−k−1
k−1

)
vertices in V0 and 1 vertex

in V1.

Theorem 3.3 can be generalized to an arbitrary number of specified coordinates. For
example, with two specified coordinates we let D = D00 ∪ D01 ∪ D10 ∪ D11, V =
V00 ∪ V01 ∪ V10 ∪ V11 and get four inequalities. For a small number of coordinates, the
inequalities can be derived by hand, but when the number gets larger, it is convenient to
form these computationally.

When a code is constructed coordinate by coordinate, one first fixes the number of
codewords and then start from the distributions of 0s and 1s in the first coordinate given by
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Theorem 3.3. In a backtrack exhaustive search, one may for the next couple of coordinates
solve larger and larger systems of equations, but at some point one may start checking all
possible candidates for the next coordinate and see whether the inequalities are fulfilled.
At each level of the search tree, isomorph rejection should be carried out. For the sake of
efficiency, one may also require that the number of 1s in the coordinates is either increasing
or decreasing. Except for minor differences in details, the approach in [21] can be used.

4 Results
Table 1 summarizes the best known bounds on and exact values for γ(n, k), n ≤ 21, k ≤ 5.
Indices are added to the entries, to give explanations of lower and upper bounds. If a bound
can be obtained in several ways, we pick the explanation that in some sense is the nicest.
We omit the index when the bound follows from Theorem 2.2.

Table 1: Bounds on γ(n, k) for n ≤ 21, k ≤ 5

n\k 2 3 4 5
4 a3a

5 c3c

6 3 a10a

7 3 e7e

8 3 c7c a35a

9 3 m7c j26l

10 3 b6b c15k a126a

11 3 b5b i15c e66e

12 3 4 i12h i37–56k

13 3 4 m10h j23–39k

14 3 4 d9h f16–31k

15 3 4 d8h g15–27h

16 3 4 b7b i12–22h

17 3 4 b7b c11–17h

18 3 4 b6b c11–15h

19 3 4 b6b c11–14h

20 3 4 5 c11–12h

21 3 4 5 d11–12h
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Key to Table 1.
Unmarked bounds are from Theorem 2.2.
Bounds:
a Theorem 2.1
b Theorem 2.3
c Theorem 2.4
d Theorem 2.5 and [7]
e Theorem 2.8
f Theorem 3.1
g Theorem 3.2
h Eq. (1.2) and [7]
i Exhaustive search, coordinate by coordinate
j Exhaustive search, word by word
k New constructive result, see Appendix
l Abbott and Liu [1] (Theorem 2.7)
m Gorodezky [8]

Appendix
We here list the structures that lead to new upper bounds on γ(n, k). We first present
structures that can be described as a set of orbits under the action of a permutation group,
and finally list some explicit structures (we do not exclude the possibility that these, or
better, bounds could also be obtained by a structure with some symmetry).

γ(10, 4) ≤ 15:
Generator of group: (1 2 3 4 5)(6 7 8 9 10)
Orbit representatives: 1110010000, 1010000110, 1000001101

γ(13, 5) ≤ 39:
Generator of group: (1 2 3 4 5 6 7 8 9 10 11 12 13)
Orbit representatives: 1101011000000, 1110001001000, 1101000100010

γ(12, 5) ≤ 56:
111000110000, 100000111100, 010001011001, 010000111010, 001010000111,
011100010001, 110101000010, 100011010100, 000011111000, 110100100001,
110011001000, 011101001000, 101011001000, 000001100111, 011000100110,
110000010110, 001001100011, 100110001100, 111110000000, 000110010110,
100001101001, 010011100001, 010100001101, 000010011011, 000111100100,
001110110000, 010101010100, 101010010001, 001110001010, 001000111010,
011011000010, 001100001101, 100101001010, 001001011001, 010110001010,
100001010011, 011010100001, 101000101100, 000100101011, 110000101100,
010010000111, 101101000010, 011001000101, 100100110001, 100010000111,
011000011100, 110010010001, 010011100100, 101000010110, 000100011101,
000101110010, 101100100001, 001011100100, 111000001010, 001101010100,
010110110000
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γ(14, 5) ≤ 31:
10000011001100, 00011110100000, 11100100100000, 00110101000010,
00110110000001, 00001011000110, 00010010100110, 01000011000011,
00000101101100, 01011000010100, 10110000010001, 00100000100111,
10001010011000, 01101010000001, 01100010011000, 01010100011000,
11000000001101, 10010000101010, 01100001010100, 00001001110001,
10001111000000, 01001010110000, 00000001011011, 10000100010110,
11001100000010, 00101000101010, 00001100001101, 10111001000000,
01010001100001, 10000110110000, 00011010001100
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[16] G. Manning, The M(4) problem of Erdős and Hajnal, Ph.D. dissertation, Northern Illinois
University, 1997.

[17] B. D. McKay, nauty user’s guide (version 1.5), Technical Report TR-CS-90-02, Computer
Science Department, Australian National University, Canberra, 1990.
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1 Introduction
Based on the electrical network theory, Klein and Randić [13] introduced the concept of
resistance distance. A connected graph G with vertex set {v1, v2, · · · , vn} is viewed as
an electrical network N by replacing each edge of G with a unit resistor, the resistance
distance between vi and vj , denoted by rG(vi, vj) or r(vi, vj), is the elective resistance
between them as computed by the methods of the theory of resistive electrical networks
based on Ohm’s and Kirchhoff’s laws in N .

The Kirchhoff index of G, denoted by Kf(G), is the sum of resistance distances be-
tween all pairs of vertices in G, namely,

Kf(G) =
∑
i<j

rG(vi, vj)

Like many topological indices, Kirchhoff index is a structure descriptor. The resistance
distance is also intrinsic to the graph with some nice purely mathematical and physical in-
terpretations [14] [15]. Also, the Kirchhoff index has been found very useful in chemistry,
such as in assessing cyclicity of polycyclic structures including fullerenes, linear hexag-
onal chains and some special molecular graphs such as circulant graphs, distance-regular
graphs and Möbius ladders [1] [18] [22] [24]. Bonchev et al. [4] used it in polymer sci-
ence and found that the Kirchhoff index in their approach is especially useful for defin-
ing the topological radius Rtop = Kf

n2 of macromolecules containing cyclic fragments.
Some closed-form formulae for Kirchhoff index have been given for circulant graphs, lin-
ear hexagonal chains and so on [1] [16] [19] [22]. The resistance distance is also well
studied in mathematical literatures. Much work has been done to compute Kirchhoff in-
dex of some classes of graphs, or give some bounds for Kirchhoff index of graphs and
characterize extremal graphs. For instance, unicyclic and bicyclic graphs with extremal
Kirchhoff index are characterized and sharp bounds for Kirchhoff index of such graphs are
obtained [6] [12] [21] [25] [26].

Polyphenyls and their derivatives, which can be used in organic synthesis, drug synthe-
sis, heat exchangers, etc., attracted the attention of chemists for many years [11] [17] [20].
Spiro compounds are an important class of cycloalkanes in organic chemistry. A spiro
union in spiro compounds is a linkage between two rings that consists of a single atom
common to both rings and a free spiro union is a linkage that consists of the only direct
union between the rings. Some results on energy, Merrifield-Simmons index, Hosoya in-
dex and Wiener index of the spiro and polyphenyl chains were reported in [2] [5] [9] [27].
Recently, Deng [7] [8] [10] gave the recurrences or explicit formulae for computing the
Wiener index and Kirchhoff index of spiro and polyphenyl chains. Yang and Zhang [23]
obtained a simple exact formula for the expected value of the Wiener index of a random
polyphenyl chain. In this paper, we will consider the expected values of the Kirchhoff index
of random polyphenyl and spiro chains.

A polyphenyl chain PPCn with n hexagons can be regarded as a polyphenyl chain
PPCn−1 with n − 1 hexagons to which a new terminal hexagon has been adjoined by a
cut edge, see Figure 1.

Let PPCn = H1H2 · · ·Hn be a polyphenyl chain with n(n ≥ 2) hexagons, where Hk

is the k-th hexagon of PPCn attached to Hk−1 by a cut edge uk−1ck, k = 2, 3, · · · , n. A
vertex v of Hk is said to be ortho-, meta- and para-vertex of Hk if the distance between v
and ck is 1, 2 and 3, denoted by ok, mk and pk, respectively. Examples of ortho-, meta-, and
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para-vertices are shown in Figure 1. Except the first hexagon, any hexagon in a polyphenyl
chain has two ortho-vertices, two meta-vertices and one para-vertex.

x1

x2 x3

x4

x5x6

un−1PPCn−1 Hn

Figure 1: A polyphenyl chain PPCn with n hexagons,

cn = x1 and ortho-vertices on = x2, x6, meta-vertices

mn = x3, x5, and para-vertex pn = x4 in Hn.

A polyphenyl chain PPCn is a polyphenyl ortho-chain if uk = ok for 2 ≤ k ≤ n− 1.
A polyphenyl chain PPCn is a polyphenyl meta-chain if uk = mk for 2 ≤ k ≤ n− 1. A
polyphenyl chain PPCn is a polyphenyl para-chain if uk = pk for 2 ≤ k ≤ n − 1. The
polyphenyl ortho-, meta- and para-chain with n hexagons are denoted by On, Mn and Pn,
respectively.

For n ≥ 3, the terminal hexagon can be attached to meta-, ortho-, or para-vertex in
three ways, which results in the local arrangements we describe as PPC1

n+1, PPC2
n+1,

PPC3
n+1, see Figure 2.

PPCn−1

PPC1
n+1

PPCn−1

PPC2
n+1

PPCn−1

PPC3
n+1

Figure 2: The three types of local arrangements in polyphenyl chains.

A random polyphenyl chain PPC(n, p1, p2) with n hexagons is a polyphenyl chain
obtained by stepwise addition of terminal hexagons. At each step k(= 3, 4, · · · , n), a
random selection is made from one of the three possible constructions:

(i)PPCk−1 → PPC1
k with probability p1,

(ii)PPCk−1 → PPC2
k with probability p2,

(iii)PPCk−1 → PPC3
k with probability 1− p1 − p2

where the probabilities p1 and p2 are constants, irrespective to the step parameter k.
Specially, the random polyphenyl chain PPC(n, 1, 0) is the polyphenyl meta-chain

Mn, PPC(n, 0, 1) is the polyphenyl orth-chain On, and PPC(n, 0, 0) is the polyphenyl
para-chain Pn, respectively.

Also, a spiro chain SPCn with n hexagons can be regarded as a spiro chain SPCn−1
with n− 1 hexagons to which a new terminal hexagon has been adjoined, see Figure 3.
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SPCn−1 Hnun−1 x1

x2 x3

x4

x5x6

Figure 3: A spiro chain SPCn with n hexagons.

For n ≥ 3, the terminal hexagon can also be attached in three ways, which results in
the local arrangements we describe as SPC1

n+1, SPC2
n+1, SPC3

n+1, see Figure 4.

SPCn−1

SPC1
n+1

SPCn−1

SPC2
n+1

SPCn−1

SPC3
n+1

Figure 4: The three types of local arrangements in spiro chains.

A random spiro chain SPC(n, p1, p2) with n hexagons is a spiro chain obtained by
stepwise addition of terminal hexagons. At each step k(= 3, 4, · · · , n), a random selection
is made from one of the three possible constructions:

(i)SPCk−1 → SPC1
k with probability p1,

(ii)SPCk−1 → SPC2
k with probability p2,

(iii)SPCk−1 → SPC3
k with probability 1− p1 − p2

where the probabilities p1 and p2 are constants, irrelative to the step parameter k.
Similarly, the random spiro chain SPC(n, 1, 0), PPC(n, 0, 1) and PPC(n, 0, 0) are

the spiro meta-chain Mn, the spiro orth-chain On and the spiro para-chain Pn, respectively.
For a random polyphenyl chain PPC(n, p1, p2) and a random spiro chain SPC(n,

p1, p2), their Kirchhoff indices are random variables. In this paper, we will obtain exact
formulas for the expected values E(Kf(PPC(n, p1, p2))) and E(Kf(SPC(n, p1, p2)))
of the Kirchhoff indices of random polyphenyl and spiro chains, respectively.

2 Main results
2.1 The Kirchhoff index of the random polyphenyl chain

In this section, we will consider the Kirchhoff index of the random polyphenyl chain.

Theorem 2.1. For n ≥ 1, the expected value of the Kirchhoff index of the random poly-
phenyl chain PPC(n, p1, p2) is

E(Kf(PPC(n, p1, p2))) = (15−p1−4p2)n
3+(3p1+12p2+8)n2−(2p1+8p2+

11

2
)n

Proof. Note that the polyphenyl chain PPCn is obtained by attaching PPCn−1 a new
terminal hexagon by an edge, we suppose that the terminal hexagon is spanned by vertices
x1, x2, x3, x4, x5, x6, and the new edge is un−1x1 (see Fig.1). Then

(i) For any v ∈ PPCn−1,
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r(x1, v) = r(un−1, v) + 1, r(x2, v) = r(un−1, v) + 1 + 5
6 ,

r(x3, v) = r(un−1, v) + 1 + 4
3 , r(x4, v) = r(un−1, v) + 1 + 3

2 ,
r(x5, v) = r(un−1, v) + 1 + 4

3 , r(x6, v) = r(un−1, v) + 1 + 5
6 ;

(ii) PPCn−1 has 6(n− 1) vertices;

(iii) For k ∈ {1, 2, 3, 4, 5, 6},
6∑

i=1

r(xk, xi) =
35
6 .

So, we have
r(x1|PPCn) = r(un−1|PPCn−1) + 1× 6(n− 1) + 35

6

r(x2|PPCn) = r(un−1|PPCn−1) + (1 + 5
6 )× 6(n− 1) + 35

6

r(x3|PPCn) = r(un−1|PPCn−1) + (1 + 4
3 )× 6(n− 1) + 35

6

r(x4|PPCn) = r(un−1|PPCn−1) + (1 + 3
2 )× 6(n− 1) + 35

6

r(x5|PPCn) = r(x3|PPCn−1)

r(x6|PPCn) = r(x2|PPCn−1)
where r(x|G) =

∑
y∈V (G)

r(x, y), and

Kf(PPCn) = Kf(PPCn−1) + 6r(un−1|PPCn−1) + 71n− 36− 1

2

6∑
i=1

6∑
j=1

r(vi, vj)

= Kf(PPCn−1) + 6r(un−1|PPCn−1) + 71n− 36− 35

2

Then

Kf(PPCn+1) = Kf(PPCn) + 6r(un|PPCn) + 71n+
35

2
(2.1)

For a random polyphenyl chain PPC(n, p1, p2), the resistance number r(un|PPC(n,
p1, p2)) is a random variable, and its expected value is denoted by

Un = E(r(un|PPC(n, p1, p2))).

By the expectation operator and (1), we can obtain a recursive relation for the expected
value of the Kirchhoff number of a random polyphenyl chain PPC(n, p1, p2)

E(Kf(PPC(n+ 1, p1, p2)) = E(Kf(PPC(n, p1, p2))) + 6Un + 71n+
35

2
(2.2)

Now, we consider computing Un.
(i) If PPCn → PPC1

n+1 with probability p1, then un coincides with the vertex x3 or
x5. Consequently, r(un|PPCn) is given by r(x3|PPCn) with probability p1.

(ii) If PPCn → PPC2
n+1 with probability p2, then un coincides with the vertex x2 or

x6. Consequently, r(un|PPCn) is given r(x2|PPCn) with probability p2.
(iii) If PPCn → PPC3

n+1 with probability 1 − p1 − p2, then un coincides with the
vertex x4. Consequently, r(un|PPCn) is given by r(x4|PPCn) with probability 1− p1−
p2.
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From (i)-(iii) above, we immediately obtain

Un =r(x3|PPCn)p1 + r(x2|PPCn)p2 + r(x4|PPCn)(1− p1 − p2)

=p1[r(un−1|PPC(n− 1, p1, p2)) + 14(n− 1) +
35

6
]

+ p2[r(un−1|PPC(n− 1, p1, p2)) + 11(n− 1) +
35

6
]

+ (1− p1 − p2)[r(un−1|PPC(n− 1, p1, p2)) + 15(n− 1) +
35

6
]

By applying the expectation operator to the above equation, we obtain

Un = Un−1 + (15− p1 − 4p2)n+ p1 + 4p2 −
55

6

And U1 = E(r(u1|PPC(1, p1, p2))) =
35
6 , using the above recurrence relation, we have

Un =
(15− p1 − 4p2)

2
n2 + (

p1
2

+ 2p2 −
5

3
)n

From (2),

E(Kf(PPC(n+ 1, p1, p2))

= E(Kf(PPC(n, p1, p2))) + 6[ (15−p1−4p2)
2 n2 + (p1

2 + 2p2 − 5
3 )n] + 71n+ 35

2
= E(Kf(PPC(n, p1, p2))) + (45− 3p1 − 12p2)n

2 + (3p1 + 12p2 + 61)n+ 35
2

and E(Kf(PPC(1, p1, p2))) =
35
2 .

Using the above recurrence relation, we have

E(Kf(PPC(n, p1, p2))) = (15−p1−4p2)n3+(3p1+12p2+8)n2−(2p1+8p2+
11

2
)n.

Specially, by taking (p1, p2) = (1, 0), (0, 1) or (0, 0), respectively, and Theorem 2.1,
we have

Corollary 2.2. ([8]) The Kirchhoff indices of the polyphenyl meta-chain Mn, the poly-
phenyl ortho-chain On and the polyphenyl para-chain Pn are

Kf(Mn) = 14n3 + 11n2 − 15

2
n

Kf(On) = 11n3 + 20n2 − 27

2
n

Kf(Pn) = 15n3 + 8n2 − 11

2
n
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2.2 The Kirchhoff index of the random spiro chain

In this section, we will consider the Kirchhoff index of the random spiro chain.

Theorem 2.3. For n ≥ 1, the expected value of the Kirchhoff index of the random spiro
chain SPC(n, p1, p2) is

E(Kf(SPC(n, p1, p2))) = (
25

4
− 25

36
p1 −

25

9
p2)n

3 + (
25

12
p1 +

25

3
p2 +

125

12
)n2

−(25
18

p1 +
50

9
p2 −

5

6
)n.

Proof. Note that the spiro chain SPCn is obtained by attaching SPCn−1 a new terminal
hexagon, we suppose that the terminal hexagon is spanned by vertices x1, x2, x3, x4, x5,
x6, and the vertex x1 is un−1 (see Fig.3). Then

(i) For any v ∈ SPCn−1,
r(x1, v) = r(un−1, v), r(x2, v) = r(un−1, v) +

5
6 ,

r(x3, v) = r(un−1, v) +
4
3 , r(x4, v) = r(un−1, v) +

3
2 ,

r(x5, v) = r(un−1, v) +
4
3 , r(x6, v) = r(un−1, v) +

5
6 ;

(ii) SPCn−1 has 5(n− 1) + 1 vertices;

(iii) For k ∈ {1, 2, 3, 4, 5, 6},
6∑

i=1

r(xk, xi) =
35
6 .

So, we have
r(x1|SPCn) = r(un−1|SPCn−1) +

35
6

r(x2|SPCn) = r(un−1|SPCn−1)+
5
6×(5n−4)+

5
6+

4
3+

3
2+

4
3 = r(un−1|SPCn−1)+

25
6 × (n− 1) + 35

6
r(x3|SPCn) = r(un−1|SPCn−1) +

20
3 × (n− 1) + 35

6
r(x4|SPCn) = r(un−1|SPCn−1) +

15
2 × (n− 1) + 35

6
r(x5|SPCn) = r(x3|SPCn−1)
r(x6|SPCn) = r(x2|SPCn−1)

where r(x|G) =
∑

y∈V (G)

r(x, y), and

Kf(SPCn) = Kf(SPCn−1) + 5r(un−1|SPCn−1)+ (2.3)

175(n− 1)

6
+ 35− 1

2

6∑
i=1

6∑
j=1

r(vi, vj)

= Kf(SPCn−1) + 5r(un−1|SPCn−1) +
175n

6
− 35

3

Then
Kf(SPCn+1) = Kf(SPCn) + 5r(un|SPCn) +

175n

6
+

35

2
(2.4)

For a random spiro chain SPC(n, p1, p2), the resistance number r(un|SPC(n, p1, p2))
is a random variable, and its expected value is denoted by

Un = E(r(un|SPC(n, p1, p2))).

By the expectation operator and (3), we can obtain a recursive relation for the expected
value of the Kirchhoff number of a random spiro chain SPC(n, p1, p2)

E(Kf(SPC(n+ 1, p1, p2)) = E(Kf(SPC(n, p1, p2))) + 5Un +
175n

6
+

35

2
(2.5)
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Now, we consider computing Un.
(i) If SPCn → SPC1

n+1 with probability p1, then un is the vertex x3 or x5. Conse-
quently, r(un|SPCn) is given by r(x3|SPCn) with probability p1.

(ii) If SPCn → SPC2
n+1 with probability p2, then un is the vertex x2 or x6. Conse-

quently, r(un|SPCn) is given r(x2|SPCn) with probability p2.
(iii) If SPCn → SPC3

n+1 with probability 1 − p1 − p2, then un is the vertex x4.
Consequently, r(un|SPCn) is given by r(x4|SPCn) with probability 1− p1 − p2.

From (i)-(iii) above, we immediately obtain

Un =r(x3|SPCn)p1 + r(x2|SPCn)p2 + r(x4|SPCn)(1− p1 − p2)

=p1[r(un−1|SPC(n− 1, p1, p2)) +
20

3
(n− 1) +

35

6
]

+ p2[r(un−1|SPC(n− 1, p1, p2)) +
25

6
(n− 1) +

35

6
]

+ (1− p1 − p2)[r(un−1|SPC(n− 1, p1, p2)) +
15

2
(n− 1) +

35

6
]

By applying the expectation operator to the above equation, we obtain

Un = Un−1 + (
15

2
− 5

6
p1 −

10

3
p2)n+

5

6
p1 +

10

3
p2 −

5

3

And U1 = E(r(u1|SPC(1, p1, p2))) =
35
6 , using the above recurrence relation, we have

Un = (
15

4
− 5

12
p1 −

5

3
p2)n

2 + (
25

12
+

5

12
p1 +

5

3
p2)n

From (4),
E(Kf(SPC(n+ 1, p1, p2)) =
= E(Kf(SPC(n, p1, p2))) + 5[( 154 −

5
12p1 −

5
3p2)n

2+
( 2512 + 5

12p1 +
5
3p2)n] +

175
6 n+ 35

2

and E(Kf(SPC(1, p1, p2))) =
35
2 .

Using the above recurrence relation, we have

E(Kf(SPC(n, p1, p2))) = (
25

4
− 25

36
p1 −

25

9
p2)n

3 + (
25

12
p1 +

25

3
p2 +

125

12
)n2

−(25
18

p1 +
50

9
p2 −

5

6
)n.

Specially, by taking (p1, p2) = (1, 0), (0, 1) or (0, 0), respectively, and Theorem 2.3,
we have

Corollary 2.4. ([8]) The Kirchhoff indices of the spiro meta-chain Mn, the spiro ortho-
chain On and the spiro para-chain Pn are

Kf(Mn) =
50

9
n3 +

25

2
n2 − 5

9
n

Kf(On) =
125

36
n3 +

75

4
n2 − 85

18
n

Kf(Pn) =
25

4
n3 +

125

12
n2 +

5

6
n.
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2.3 A relation between E(Kf(PPC)) and E(Kf(SPC))

Since a spiro chain can be obtained from a polyphenyl chain by squeezing off its cut edges,
it is straightforward by Rayleigh short-cut principle in the classical theory of electricity that
the Kirchhoff index of the spiro chain is less than the polyphenyl chain. In fact, a relation
between the Kirchhoff indices of a polyphenyl chain and its corresponding spiro chain
obtained by squeezing off its cut edges was given in [8]. Here, we can also obtain a relation
between the expected values of their Kirchhoff indices of the random polyphenyl chain
PPC(n, p1, p2) and the random spiro chain SPC(n, p1, p2) with the same probabilities
p1 and p2 from Theorems 2.1 and 2.3.

Theorem 2.5. For a random polyphenyl chain PPC(n, p1, p2) and a random spiro chain
SPC(n, p1, p2) with n hexagons, the expected values of their Kirchhoff indices are related
as

50E(Kf(PPC(n, p1, p2))) = 72E(Kf(SPC(n, p1, p2))) + 300n3 − 350n2 − 335n.

Theorem 2.5 also shows that the expected value of Kirchhoff index of the random
spiro chain is less than the random polyphenyl chain. In fact, for n ≥ 2, E(Kf(SPC(n,
p1, p2))) <

25
36E(Kf(PPC(n, p1, p2))). The reason is quite obvious. Dividing both sides

of the equation in Theorem 2.5 yields

E(Kf(PPC(n, p1, p2))) =
36

25
E(Kf(SPC(n, p1, p2))) + 6n3 − 7n2 − 67

10
n

and it is easily seen that for n ≥ 2, 6n3 − 7n2 − 67
10n > 0.

2.4 The average value of the Kirchhoff index

Let Gn is the set of all polyphenyl chains with n hexagons. The average value of the
Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
1

|Gn|

∑
G∈Gn

Kf(G).

In order to obtain the average value of the Kirchhoff indices with respect to Gn, we
only need to take p1 = p2 = 1

3 in the random polyphenyl chain PPC(n, p1, p2), i.e., the
average value of the Kirchhoff indices with respect to Gn is just the expected value of the
Kirchhoff index of the random polyphenyl chain PPC(n, p1, p2) for p1 = p2 = 1

3 . From
Theorem 2.1, we have

Theorem 2.6. The average value of the Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
40

3
n3 + 13n2 − 53

6
n.

Similarly, let Gn is the set of all spiro chains with n hexagons. The average value of the
Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
1

|Gn|
∑
G∈Gn

Kf(G).
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And the average value of the Kirchhoff indices with respect to Gn is just the the expected
value of the Kirchhoff index of the random spiro chain SPC(n, p1, p2) for p1 = p2 = 1

3 .
From Theorem 2.3, we have

Theorem 2.7. The average value of the Kirchhoff indices with respect to Gn is

Kfavr(Gn) =
275

54
n3 +

125

9
n2 − 40

27
n.
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Abstract

In this paper we consider fullerene patches that can be extended to pseudconvex patches.
We show that all fullerene disks with three or fewer pentagons can be extended to pseudo-
convex patches, and that all pseudoconvex patches can be extended to fullerenes.

Keywords: Fullerenes, fullerene patches, boundary codes, pseudoconvex patches.

Math. Subj. Class.: 05C10, 05C75, 92E10

1 Preliminaries
A fullerene is a trivalent planar graph whose faces consist solely of hexagons and pen-
tagons. A fullerene patch, or patch, is similar; it is a planar graph where all faces are
hexagons and pentagons except one outer face, with vertices not on the outer face hav-
ing degree 3 and vertices on the outer face having degree 2 or 3. An easy way to create a
fullerene patch from a fullerene is to trace a closed circuit on a fullerene and delete all faces
on one side of the circuit. However, it is not so easy to create a fullerene from a fullerene
patch. In fact, there are many fullerene patches that cannot be extended to a fullerene as
we will see later. We do find a family of patches that can be extended to fullerenes.
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Figure 1: A patch and its complement. The patch on the left has boundary code
223(2223)2 and side parameters [1, 0, 1, 0, 1] and the patch on the right has boundary code
332(3332)2.

An obvious characteristic of interest of a fullerene patch is the boundary. The boundary
code of a patch is a sequence of 2’s and 3’s corresponding to the valences of the vertices on
the outer face listed in cyclic order. It does not matter which vertex we start with nor which
direction we travel around the patch; hence we make no distinction between a boundary
code and its cyclic permutations or inverse. Given a boundary code S, the complement of
S, denoted Sc is a sequence of 2’s and 3’s with a 2 every place S has a 3, and a 3 every
place S has a 2.

To determine if a fullerene patch extends to a fullerene, we need to consider the follow-
ing question: Given a fullerene patch Π with boundary code S, does there exist a fullerene
patch Πc with boundary code Sc? If Πc exists, we can identify the vertices and edges on
the boundary of Π with the corresponding vertices and edges on the boundary of Πc to get
a fullerene (see Figure 1).

The general question of interest is known in the literature as the PentHex Puzzle: Given
a sequence of 2’s and 3’s, does there exist a fullerene patch with that sequence as its bound-
ary code? Some variations on this question were explored in [3], [1], [6], and [4] among
other places.

For large patches, the boundary code can be unwieldy to work with. Generalizing the
definitions from [8], [7], [5] and [2], we define the following.

Definition 1.1.

1. A break edge is an edge on the boundary whose endpoints are both of degree two.

2. A bend edge is an edge on the boundary whose endpoints are both of degree three.

3. A side of a patch is a path on the boundary between a consecutive pair of break edges,
including the break edges. The length of a side is the number of degree three vertices
on the side.
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4. A straight side is a side with no bend edges.

5. A bent side is a side containing at least one bend edge. A straight segment of a bent
side is a subpath of a bent side between either a break edge and the closest bend edge,
or between two consecutive bend edges.

We can now think of the boundary of a patch as sections of straight sides and
straight segments connected by break edges or bend edges. A patch with no bend
edges, called a pseudoconvex patch, has only straight sides and thus has boundary code
2(23)`12(23)`2 · · · 2(23)`s . Rather than writing a sequence of 2’s and 3’s to describe our
boundary, we describe the boundary by the lengths of the straight sides [`1, `2, . . . , `s],
called side parameters of the patch.

If the patch has bend edges, we would still like to consolidate the information found in
the boundary code. A bent side with consecutive straight segments of lengths a1, a2, . . . at
can be described by (a1, . . . , at). Thus, a patch with five straight sides of length 5 followed
by a bent side with five straight segments of length 1 (see Figure 3) can be described by the
side parameters [5, 5, 5, 5, 5, (1, 1, 1, 1, 1)].

A patch with no break edges has zero sides and thus cannot be described by side param-
eters. If such a patch also has no bend edges, then we describe it by its boundary code (23)`0

where `0 is the number of faces on the boundary. If a patch has no break edges but does have
bend edges, then we describe it by its boundary code 3(32)a1−13(32)a2−1 · · · 3(32)at−1

where a1, a2, . . . , at represent the lengths of the straight segments in cyclic order.
The advantage of describing a patch by its side parameters rather than its boundary

code is that this notation makes it effortless to find the number of sides (and hence break
edges) of a patch. In fact, we can also tell exactly how many pentagons a patch must have
by using Euler’s formula.

Lemma 1.2. In a fullerene patch, the number of break edges s, the number of bend edges
e, and the number of pentagons p are related by

p = 6− s + e.

Proof. It is well-known (see for instance [1]) that the number of pentagons in a patch is
equal to 6 − d2 + d3 where di is the number of degree i vertices on the boundary. By
definition, the number of degree 2 vertices and the number of degree three vertices on the
boundary are the same except on a break edge or a bend edge. Each break edge increases
the number of degree 2 vertices by 1, and each bend edge increases the number of degree
3 vertices by 1.

In this paper, we investigate two specific types of fullerene patches: pseudoconvex
patches and fullerene disks or simply disks. A disk of radius r is a fullerene patch with a
central face, and every face on the boundary is distance (measured as graph distance in the
dual) exactly r from the central face.

Our ultimate goal is to find a family of patches that can be extended to fullerenes. We
begin by showing that a pseudoconvex patch can be extended to a fullerene. We then show
that all disks with three or fewer pentagons can be extended to fullerenes.
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2 Pseudoconvex Patches
Because a pseudoconvex patch has no bend edges, its boundary can be described by its
side parameters [`1, · · · , `s] if it has s ≥ 1 sides or by the boundary code (23)`0 if it has
zero sides. The relationships between the lengths of these sides were explored in detail and
summarized in Theorem 3.6 of [8]. We include a weaker lemma here.

Lemma 2.1. The side parameters [`1, · · · , `s] of a pseudoconvex patch, excluding the
patch with side parameters [0, 0, 0, 0, 0], satisfy the inequality `1 + · · · + `s ≥ 6 − s
for 1 ≤ s ≤ 6.

Proof. If s = 1 or s = 2, the result follows directly from [8]. If s = 3, the side parame-
ters are not of the form [0, 1, k] or [0, 0, k] for k ≥ 0 so the result holds. In the case with
s = 4 sides, at least two of the side lengths are non-zero and the result holds. Finally, if
s = 5 or s = 6, all parameters are nonnegative so the sum is nonnegative. Thus the in-
equality is satisfied except in the patch consisting of a single pentagon with side parameters
[0, 0, 0, 0, 0].

To extend a pseudoconvex patch to a fullerene, we need to find a complement for each
pseudoconvex patch. The following lemma gives a constructive method for finding the
complement patch.

Lemma 2.2. There exists a patch with boundary code

3(32)`13(32)`2 · · · 3(32)`s

if `1 + `2 + · · ·+ `s ≥ 6− s and 1 ≤ s ≤ 6.

Proof. Start with the patch having boundary code 2(23)5 (i.e. one side of length 5) as
shown in Figure 2. Add `1 + `2 + · · ·+ `s + s− 6 rings of hexagons to this patch to create
a patch with side parameters [`1 + · · ·+ `s +s−1]. Next, add a pentagon to the break edge
and add hexagons on the boundary everywhere else to yield a patch with boundary code
(23)`1+···+`s+s.

We now add hexagons and pentagons to the boundary in the following way. First put
a pentagon somewhere on the boundary. Moving clockwise around the boundary, place
`1 hexagons followed by a pentagon; then place `2 hexagons followed by a pentagon, and
continue this process until the patch has a completely new outer ring of hexagons and
pentagons (see Figure 2). This constructed patch has the desired boundary.

Theorem 2.3. All pseudoconvex patches can be extended to fullerenes.

Proof. For a pseudoconvex patch consisting of one pentagon with side parameters
[0, 0, 0, 0, 0], we use a stereographic projection of the dodecahedron onto the plane as the
complement patch. For a pseudoconvex patch having side parameters [`1, . . . , `s] satisfying
the condition

`1 + · · ·+ `s ≥ 6− s,

we create the complement patch with boundary code 3(32)`13(32)`2 · · · 3(32)`s as de-
scribed in Lemma 2.2 and identify the boundaries to create a fullerene. Given a pseu-
doconvex patch with no sides and boundary code (23)`0 , we create a second patch (32)`0

identical to the first and then identify corresponding edges and vertices appropriately to
create a fullerene.
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Figure 2: Creating a patch with boundary code 3(32)23(32)33(32)0. The 2(23)5 patch is
shown on the left, the (23)8 patch in the middle, and the desired patch on the right.

3 Disks
Because pseudoconvex patches extend to fullerenes, a patch that extends to a pseudoconvex
patch also extends to a fullerene. One type of patch to explore is a fullerene disk. We will
show that all disks with three or fewer pentagons extend to pseudoconvex patches; however,
a disk with four or more pentagons may not extend to a fullerene. Consider a disk with four
pentagons having side parameters [5, 5, 5, 5, 5, (1, 1, 1, 1, 1)] as shown in Figure 3. If this
patch could be extended to a fullerene, we would need to place a face adjacent to the four
shaded pentagons. Such a face would have to have at least seven edges which is not allowed
in a fullerene. Thus we restrict our attention to disks with three or less pentagons.

Figure 3: A disk with side parameters [5, 5, 5, 5, 5, (1, 1, 1, 1, 1)]. This patch cannot be
extended to a fullerene.

Disks are a nice family of patches to study because all disks can be constructed by
repeatedly adding layers of faces to a smaller disk. A layer is a collection of faces placed
on the boundary of a disk of a radius r so that each new face is distance r + 1 from the
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Figure 4: Depiction of Lemma 3.1 and how adding hexagons changes side parameters.

central face and and no faces from the original disk are on the new boundary. The word
layer can be slightly misleading, though, because there can be faces added which are not
on the boundary of the new patch. Figures 5, 6, and 7 show partial patches with one layer
added.

Because many of the remaining arguments involve adding layers of hexagons to ex-
isting patches, it is convenient to discuss how such an action affects the side parameters.
Adding a row of hexagons to a side of a patch means that each edge of the original bound-
ary is incident with a newly added hexagon. Figure 4 and Lemma 3.1 demonstrate this
action.

Lemma 3.1.

3.1.1. Adding a row of hexagons to the boundary of a straight side increases its length by
1.

3.1.2. Adding a partial layer of hexagons to a bent side with middle parameters larger
than 1 keeps the outer parameters the same and decreases the middle parameters
by 1.

3.1.3. Adding a row of hexagons to a straight segment a2 of the bent side (a1, a2) with
a1 > 1, not including the break edge, decreases a1 by 1, keeps a2 the same, and
increases the side following a2 by 1.

3.1.4. Adding a row of hexagons to the straight segment a2 of a bent side (a1, a2, a3) with
a1, a3 > 1, decreases a1 and a3 by 1 and increases a2 by 1.
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The lemma tells us how the side parameters of a patch change when we add a layer
of hexagons for almost all situations. We will consider special cases for adding a layer of
hexagons for patches having a bent side containing a middle parameter equal to one in later
proofs.

The next three lemmas give the side parameters for all disks with three or fewer pen-
tagons.

Lemma 3.2. A disk with at most one pentagon has side parameters satisfying one of the
following:

A1. [`1, `2, `3, `4, `5, `6]

B1. [`1, `2, `3, `4, `5]

B2. [`1, `2, `3, `4, `5, (a1, a2)]

Proof. A disk consisting only of hexagons has the form [r, r, r, r, r, r]. For a disk contain-
ing one pentagon on the boundary, there are two cases. Either the disk consists of only one
face, a pentagon, and has side parameters [0, 0, 0, 0, 0], or the disk can be constructed by
adding faces to a disk containing no pentagons. Starting with a disk satisfying condition
A1, adding a layer of faces with a pentagon on a break edge and hexagons everywhere else
yields a B1 patch, and adding a layer with a pentagon on a straight side yields a B2 patch.

If a disk with one pentagon does not have its pentagon on the boundary, then the patch
can be viewed as a disk containing one pentagon on the boundary with layers of hexagons
added to it. Using Lemma 3.1, adding layers of hexagons to a B1 or B2 patch yields a B1
or B2 patch respectively.

Lemma 3.3. A disk with two pentagons has side parameters satisfying one of the following:

C1. [`1, `2, `3, `4]

C2. [`1, `2, `3, `4, (a1, a2)]

C3. [`1, `2, `3, `4, (a1, a2), (b1, b2)]

C4. [`1, `2, `3, (a1, a2), `4, (b1, b2)]

C5. [`1, `2, (a1, a2), `3, `4, (b1, b2)]

C6. [`1, `2, `3, `4, `5, (a1, a2, a3)]

Proof. We start by considering disks containing two pentagons with different distances
from the central face, and the pentagon farthest from the central face on the boundary.
Starting with a disk containing one pentagon satisfying condition B1, adding a layer of
faces with a pentagon on a break edge yields a C1 patch, and adding a layer with a pentagon
on a straight side would yield a C2 patch. Starting with a disk containing one pentagon
satisfying condition B2, adding a layer of faces with a pentagon on a break edge results in
a C2 patch, adding a layer with a pentagon on a straight side yields a C3, C4, or C5 patch,
and adding a layer with a pentagon on a straight segment of the bent side would yield a C6
patch.
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1 1 1
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Figure 5: Adding a pentagon to a bend edge. The red edges are bend edges in the new
patch.

When adding a layer of faces with a pentagon on the bend edge of a B2 patch, there are
three cases to consider. If a1 = a2 = 1, the resulting patch is a C1 patch. If 1 = a1 < a2,
the new patch is a C2 patch. Lastly, if a1, a2 > 1, the resulting patch is a C6 patch, with
the middle component of the bent edge having length 1 (see Figure 5).

Now consider disks where both pentagons are the same distance from the central face
and are both on the boundary. There are no disks of radius 0 containing two pentagons,
so we can construct these patches by starting with a disk containing no pentagons and
adding the pentagons to the same layer. Starting with a patch with no pentagons satisfying
condition A1, adding a layer with two pentagons on two different break edges yields a C1
patch, adding a layer with one pentagon on a break edge and one on a straight side would
result in a C2 patch, adding a layer with two pentagons on two different straight sides
would yield a C3, C4, or C5 patch, and adding a layer with two pentagons on the same
straight side would result in a C6 patch.

Notice every disk we have constructed has a pentagon on the boundary. To construct
disks with two pentagons neither of which is on the boundary, we simply construct a disk
with two pentagons at least one of which is on the boundary, and add layers of hexagons.
By Lemma 3.1, adding layers of hexagons to a Ci patch yields a Ci patch for 1 ≤ i ≤ 5.
When considering a C6 patch, we assume without loss of generality that a1 ≤ a3. Adding
less than a2 + a1 − 1 layers of hexagons to a C6 patch results in a C6 patch, and adding at
least a2 + a1 − 1 layers of hexagons to a C6 patch would yield a C1 or C2 patch. The C1
patch results if a1 = a3 and the C2 patch results otherwise.

Lemma 3.4. A disk with three pentagons has side parameters satisfying one of the follow-
ing:

D1. [`1, `2, `3]

D2. [`1, `2, `3, (a1, a2)]

D3. [`1, `2, `3, (a1, a2), (b1, b2)]

D4. [`1, `2, (a1, a2), `3, (b1, b2)]

D5. [`1, `2, `3, (a1, a2), (b1, b2), (c1, c2)]

D6. [`1, `2, (a1, a2), `3, (b1, b2), (c1, c2)]

D7. [`1, (a1, a2), `2, (b1, b2), `3, (c1, c2)]
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D8. [`1, `2, `3, `4, (a1, a2, a3)]

D9. [`1, `2, `3, `4, (a1, a2, a3), (b1, b2)]

D10. [`1, `2, `3, (a1, a2, a3), `4, (b1, b2)]

D11. [`1, `2, (a1, a2, a3), `3, `4, (b1, b2)]

D12. [`1, `2, `3, (a1, a2, a3, a4)]

Proof. We begin by showing that that all disks with three pentagons having at least one
pentagon on the boundary satisfy the criteria given. To show that all three-pentagon disks
have the listed side parameters, we add layers of hexagons to three-pentagon disks with a
pentagon on the boundary.

First, consider a three-pentagon disk with exactly one pentagon on the boundary. Such
disks are created by starting with a two-pentagon disk and adding a layer of faces containing
exactly one pentagon. Starting with a C1 patch, adding a layer of faces with a pentagon
on a break edge yields a D1 patch, and adding a layer with a pentagon on a straight side
yields a D2 patch. Starting with a C2 patch, adding a layer of faces with a pentagon on a
break edge yields a D2 patch, and adding a layer of faces with a pentagon on a straight side
yields a D3 or D4 patch. If a layer of faces is added to a C2 patch with a pentagon on a
bend edge, then (following the proof of Lemma 3.3) a D1, D2, or D8 patch is obtained. If
a layer is added with a pentagon on a straight straight segment of a bent side of a C2 patch,
the resulting disk is a D8 patch.

Starting with a C3 − C5 patch, adding a layer of faces with a pentagon on a straight
side yields a D5−D7 patch, and adding a layer with a pentagon on a straight segment of
a bent side yields a D9, D10, or D11 patch. Adding a layer of faces with a pentagon on
a break edge of a C3 patch yields a D3, D4, or D8 patch, with a D8 patch occurring if
the break edge is between the two bent sides. Adding a layer with a pentagon on a break
edge of a C4 or C5 patch yields a D3 or D4 patch. Finally, adding a layer of faces with
a pentagon on a bend edge on a C3 − C5 patch yields a D2, D3, D4, D9, D10, or D11
patch.

The last case involves adding a layer of faces with exactly one pentagon to a C6 patch.
Adding a layer of faces with a pentagon on a break edge results in a D8 patch, adding
a layer with a pentagon on a straight side yields a D8 − D11 patch, and adding a layer
with a pentagon on a straight segment of a bent side results in a D12 patch. When adding
a layer of faces with a pentagon on a bend edge of a C6 patch there are a few cases to
consider. Without loss of generality, assume that the pentagon is added to the bend edge
between the straight segment of length a1 and the straight segment of length a2. If a1 > 1
and a2 > 2 the resulting patch is a D12 patch with the new bent side having lengths
(a1 − 1, 1, a2 − 2, a3) (see Figure 6). In the cases were either a1 = 1 or a2 ∈ {1, 2}, some
care needs to be taken. In these cases, the length of a3 can affect the type of new patch;
however, in every case, the resulting patch is a D2 or D8 patch. Figure 7 shows these cases
in full detail.

Now consider the three-pentagon disks with exactly two pentagons on the boundary.
To create such disks, we start with either a B1 or B2 patch. Adding a layer of faces with
two pentagons to a B1 patch is very similar to adding two pentagons to an A1 patch, which
was explored in the proof of Lemma 3.3. Thus adding a layer with two pentagons on a B1
patch results in a D1−D4 or D8 patch. Using similar arguments as before, adding a layer
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Figure 6: Adding a pentagon to a bend edge in a C6 patch. The red edges are bend edges
in the new patch.
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Figure 7: Adding a pentagon to a bend edge in a C6 patch. The red edges are bend edges
in the new patch.
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with two pentagons to a B2 patch results in a D2 − D12 patch if neither pentagon is on
a bend edge. Adding a layer with one of the pentagons on a bend edge requires the cases
seen in Figure 5. Adding a layer with one pentagon on the bend edge and one pentagon on
a break edge yields a D1, D2, or D8 patch. Adding a layer with one pentagon on the bend
edge and one pentagon on a straight side results in a D2−D4 or D9−D11 patch. Finally,
adding a layer with one pentagon on the bend edge and one pentagon on a straight segment
of the bent side (which can only be done if the straight segment is greater than 1) results in
a D8 patch.

Three-pentagon disks with all three pentagons on the boundary are formed by adding a
layer to a disk of hexagons. Starting with an A1 patch, adding a layer with three pentagons
results in a D1−D11 patch using similar arguments to those above.

Notice every patch we have constructed has a pentagon on the boundary. For those that
do not, we simply construct a previous patch and add layers of hexagons. By Lemma 3.1,
adding layer of hexagons to a Di patch yields a Di patch for 1 ≤ i ≤ 7. For disks that
have a bent side with at least three straight segments, the resulting patch’s side parameters
differ based on the number of layers added. For instance, adding one layer of hexagons to
a patch with the side parameters [`1, `2, `3, `4, (a1, a2, a3)] and a2 > 1 results in a patch
with side parameters [`1 + 1, `2 + 1, `3 + 1, `4 + 1, (a1, a2 − 1, a3)]. Furthermore, adding
a layer of hexagons to a patch with side parameters [`1, `2, `3, `4, (a1, 1, a3)] yields a patch
with side parameters [`1 + 1, `2 + 1, `3 + 1, `4 + 1, (a1 − 1, 1, a3 − 1)]. Thus, adding less
than a2 + min{a1, a3} − 1 rings to a Dj patch will yield a Dj patch for 8 ≤ j ≤ 11.

Adding at least a2 + min{a1, a3}− 1 rings to a D8 patch yields a D1 patch if a1 = a3
or D2 patch otherwise. Adding at least a2 + min{a1, a3} − 1 rings to a D9 patch yields
a D2 patch if a1 = a3, a D3 patch if a1 < a3, or a D8 patch if a1 > a3. Adding at least
a2 + min{a1, a3} − 1 rings to a D10 or D11 patch yields a D2 patch if a1 = a3 or D4
patch otherwise.

Now let us consider adding rings of hexagons to a D12 patch; without loss of generality
assume a2 ≤ a3. Adding less than a2 + min{a1 − 1, ba3−a2

2 c} rings yields another D12
patch. Adding exactly a2 + min{a1 − 1, ba3−a2

2 c} rings yields a D1, D2, or D8 patch.
From arguments above, adding further rings of hexagons gives a D1, D2, or D8 patch.

Now that we have shown the side parameters of disks with three or fewer pentagons fall
into different classes, we show that any patch with these side parameters can be extended
to a pseudoconvex patch.

Lemma 3.5. Any patch with one of the following descriptions of its side parameters can
be extended to a pseudoconvex patch:

1. [`1, `2, . . . , `s]

2. [`1, `2, . . . , `s, (a1, a2)]

3. [`1, `2, . . . , `s, (a1, a2), (b1, b2)]

4. [`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2)]

5. [`1, `2, . . . , `s, (a1, a2), (b1, b2), (c1, c2)]

6. [`1, `2, . . . , `s, (a1, a2), (b1, b2), `s+1, . . . , `t, (c1, c2)]

7. [`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2), `t+1, . . . , `u, (c1, c2)]
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Figure 8: Filling in the bent side (a1, a2) and partially filling in the bent side (a1, a2, a3).

8. [`1, `2, . . . , `s, (a1, a2, a3)]

9. [`1, `2, . . . , `s, (a1, a2), (b1, b2, b3)]

10. [`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2, b3)]

11. [`1, `2, . . . , `s, (a1, a2, a3, a4)].

Proof. Let Π be a patch with one of the following descriptions above. If Π = [`1, `2, . . . ,
`s], then it has no bend edges and is pseudoconvex. If Π = [`1, `2, . . . , `s, (a1, a2)], then
adding a1 rows of a2 hexagons to the straight segment a2, not including the break edge,
yields the pseudoconvex patch [`1 + a1, `2, . . . , `s−1, `s + a2] by Lemma 3.1 (see Figure
8).

If the side parameters of Π are of the form [`1, `2, . . . , `s, (a1, a2), (b1, b2)] or
[`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2)], then adding a1 rows of a2 hexagons to the
straight segment a2, not including the break edge, yields either

[`1, `2, . . . , `s + a2, (b1 + a1, b2)]

or
[`1, `2, . . . , `s + a2, `s+1 + a1, . . . , `t, (b1, b2)]

which are both extendable by a previous case. If Π has one of the forms

[`1, `2, . . . , `s, (a1, a2), (b1, b2), (c1, c2)],

[`1, `2, . . . , `s, (a1, a2), (b1, b2), `s+1, . . . , `t, (c1, c2)],

or
[`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2), `t+1, . . . , `u, (c1, c2)],

then adding a1 rows of a2 hexagons to the straight segment a2, not including the break
edge, yields a patch with one of the descriptions

[`1, `2, . . . , `s + a2, (b1 + a1, b2), (c1, c2)],

[`1, `2, . . . , `s + a2, (b1 + a1, b2), `s+1, . . . , `t, (c1, c2)],

or
[`1, `2, . . . , `s + a2, `s+1 + a1, . . . , `t, (b1, b2), `t+1, . . . , `u, (c1, c2)]
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which are all extendable by previous cases.
Suppose Π = [`1, `2, . . . , `s, (a1, a2, a3)]. Without loss of generality, assume a1 ≤ a3.

Adding a1−1 rows of hexagons to the a2 straight segment results in a patch with parameters

[`1, `2, . . . , `s, (1, a1 + a2 − 1, a3 − a1 + 1)]

by Lemma 3.1. Adding one more row yields a patch whose parameters are

[`1, `2, . . . , `s−1, (`s + a1 + a2, a3 − a1)]

if a1 < a3 or
[`s + a1 + a2 + `1, `2, `3, . . . , `s−1]

if a1 = a3. Either of these is extendable by a previous case.
If Π has the form

[`1, `2, . . . , `s, (a1, a2), (b1, b2, b3)]

or
[`1, `2, . . . , `s, (a1, a2), `s+1, . . . , `t, (b1, b2, b3)],

then adding a1 rows of a2 hexagons to the straight segment a2, not including the break
edge, yields a patch satisfying the form

[`1, `2, . . . , `s + a2, (b1 + a1, b2, b3)]

or
[`1, `2, . . . , `s + a2, `s+1 + a1, . . . , `t, (b1, b2, b3)]

which are both extendable by previous cases.
Suppose Π = [`1, `2, . . . , `s, (a1, a2, a3, a4)]. Without loss of generality, we may as-

sume that a1 ≤ a4. Note that a1 ≤ a3 + a4. We have the following four cases to consider:
(i) 0 < a1 < a3, (ii) a1 = a3, (iii) a3 < a1 < a3 + a4, and (iv) a1 = a3 + a4. In each of
the four cases we will add a1 rows of hexagons to the straight segment a2 in order to create
a patch which is extendable by a previous case.

For (i) and (ii), we begin by adding a1 − 1 rows of hexagons to create a patch with
parameters [`1, `2, . . . , `s, (1, a1 + a2 − 1, a3 − a1 + 1, a4)] by Lemma 3.1. Adding one
more row will yield

[`1, `2, . . . , `s−1, (`s + a1 + a2, a3 − a1, a4)]

in case (i) and
[`1, `2, . . . , `s−1, (`s + a1 + a2 − 1, 1, a4 − 1)]

in case (ii).
For (iii) and (iv), we begin by adding a3 − 1 rows of hexagons to straight side a2 to

yield [`1, `2, . . . , `s, (a1− a3 + 1, a2 + a3− 1, 1, a4)] by Lemma 3.1. Adding another row
yields a [`1, `2, . . . , `s, (a1−a3, a2 +a3−1, 1, a4−1)] patch. For (iii), adding a1−a3−1
rows gives

[`1, `2, . . . , `s, (1, a2 + a3 − 1, 1, a4 + a3 − a1)]

and finally adding one more row gives a

[`1, `2, . . . , `s−1, (`s + a2 + a3 − 1, 1, a4 + a3 − a1 − 1)]
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Figure 9: Partially filling in the bent side (a1, a2, a3, a4).

patch (see Figure 9). For (iv), adding a1−a3−2 rows of hexagons gives [`1, `2, . . . , `s, (2,
a2 + a3 − 1, 1, 1)], an additional row yields

[`2, `3, . . . , `s, (1, a2 + a3, `1)],

and finally adding another row gives [`2, `3, . . . , `s−1, (`s + a2 + a3, `1)].

Theorem 3.6. All disks containing at most three pentagons extend to a fullerene.

Proof. All disks containing at most three pentagons will have side parameters satisfying
the conditions of Lemma 3.2, Lemma 3.3, or Lemma 3.4. By Lemma 3.5, these disks can
be extended to pseudoconvex patches. By Theorem 2.3, those pseudoconvex patches can
be extended to fullerenes.
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Abstract

This paper is concerned with the fast computation of a relation d on the edge set of
connected graphs that plays a decisive role in the recognition of approximate Cartesian
products, the weak reconstruction of Cartesian products, and the recognition of Cartesian
graph bundles with a triangle free basis.

A special case of d is the relation δ∗, whose convex closure yields the product relation
σ that induces the prime factor decomposition of connected graphs with respect to the
Cartesian product. For the construction of d so-called Partial Star Products are of particular
interest. Several special data structures are used that allow to compute Partial Star Products
in constant time. These computations are tuned to the recognition of approximate graph
products, but also lead to a linear time algorithm for the computation of δ∗ for graphs with
maximum bounded degree.

Furthermore, we define quasi Cartesian products as graphs with non-trivial δ∗. We
provide several examples, and show that quasi Cartesian products can be recognized in
linear time for graphs with bounded maximum degree. Finally, we note that quasi products
can be recognized in sublinear time with a parallelized algorithm.
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1 Introduction
Cartesian products of graphs derive their popularity from their simplicity, and their im-
portance from the fact that many classes of graphs, such as hypercubes, Hamming graphs,
median graphs, benzenoid graphs, or Cartesian graph bundles, are either Cartesian products
or closely related to them [5]. As even slight disturbances of a product, such as the addition
or deletion of an edge, can destroy the product structure completely [2], the question arises
whether it is possible to restore the original product structure after such a disturbance. In
other words, given a graph, the question is, how close it is to a Cartesian product, and
whether one can find this product algorithmically. Unfortunately, in general this problem
can only be solved by heuristic algorithms, as discussed in detail in [8]. That paper also
presents several heuristic algorithms for the solution of this problem.

One of the main steps towards such algorithms is the computation of an equivalence
relation d|Sv

(W )∗ on the edge-set of a graph. The complexity of the computation of
d|Sv

(W )∗ in [8] is O(n∆4), where n is the number of vertices, and ∆ the maximum de-
gree of G. Here we improve the recognition complexity of d|Sv

(W )∗ to O(m∆), where
m is the number of edges of G, and thereby improve the complexity of the just mentioned
heuristic algorithms.

A special case is the computation of the relation δ∗ = d|Sv
(V (G))∗. This relation

defines the so-called quasi Cartesian product, see Section 3. Hence, quasi products can
be recognized in O(m∆) time. As the algorithm can easily be parallelized, it leads to
sublinear recognition of quasi Cartesian products.

When the given graph G is a Cartesian product from which just one vertex was deleted,
things are easier. In that case, the product is uniquely defined and can be reconstructed in
polynomial time from G, see [1] and [3]. In other words, if G is given, and if one knows
that there is a Cartesian product graphH such thatG = Hrx, thenH is uniquely defined.
Hagauer and Žerovnik showed that the complexity of finding H is O(mn(∆2 +m)). The
methods of the present paper will lead to a new algorithm of complexity O(m∆2 + ∆4)
for the solution of this problem. This is part of the dissertation [13] of the third author, and
will be the topic of a subsequent publication.

Another class of graphs that is closely related to Cartesian products are Cartesian graph
bundles, see Section 3. In [11] it was proved that Cartesian graph bundles over a triangle-
free base can be effectively recognized, and in [14] it was shown that this can be done
in O(mn2) time. With the methods of this paper, we suppose that one can improve it to
O(m∆) time. This too will be published separately.

2 Preliminaries
We consider finite, connected undirected graphs G = (V,E) without loops and multiple
edges. The Cartesian product G1�G2 of graphs G1 = (V1, E1) and G2 = (V2, E2)

E-mail addresses: marc.hellmuth@bioinf.uni-sb.de (Marc Hellmuth), imrich@unileoben.ac.at (Wilfried
Imrich), tomas.kupka@teradata.com (Tomas Kupka)
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is a graph with vertex set V1 × V2, where the vertices (u1, v1) and (u2, v2) are adjacent
if u1u2 ∈ E1 and v1 = v2, or if v1v2 ∈ E2 and u1 = u2. The Cartesian product is
associative, commutative, and has the one vertex graph K1 as a unit [5]. By associativity
we can write G1�G2� · · ·�Gk for a product G of graphs G1, G2, . . . , Gk and can label
the vertices of G by the set of all k-tuples (v1, v2, . . . , vk), where vi ∈ Gi for 1 ≤ i ≤ k.
If v is labeled (v1, v2, . . . , vk), then we call vi its ith coordinate. One says two edges have
the same Cartesian color if their endpoints differ in the same coordinate.

A graph G is prime if it is non-trivial, and if the identity G = G1�G2 implies that G1

or G2 is the one-vertex graph K1. A representation of a graph G as a product G1�G2� · · ·
�Gk of prime graphs is called a prime factorization of G. It is well known that every
connected graph G has a prime factor decomposition with respect to the Cartesian product,
and that this factorization is unique up to isomorphisms and the order of the factors, see
Sabidussi [15]. Furthermore, the prime factor decomposition can be computed in linear
time, see [10].

Following the notation in [8], an induced cycle on four vertices is called chordless
square. Let the edges e = vu and f = vw span a chordless square vuxw. Then f is the
opposite edge of the edge xu. The vertex x is called top vertex (w.r.t. the square spanned
by e and f ). A top vertex x is unique if |N(x) ∩ N(v)| = 2, where N(u) denotes the
(open) 1-neighborhood of vertex u. In other words, a top vertex x is not unique if there are
further squares with top vertex x spanned by the edges e or f together with a third distinct
edge g. Note that the existence of a unique top vertex x does not imply that e and f span
a unique square, as there might be another square vuyw with a possible unique top vertex
y. Thus, e and f span a unique square vuxw only if |N(u) ∩ N(w)| = 2. The degree
deg(u) := |N(u)| of a vertex u is the number of edges that contain u. The maximum
degree of a graph is denoted by ∆ and a path on n vertices by Pn.

We now recall the Breadth-First Search (BFS) ordering of the vertices v0, v1, . . . , vn−1
of a graph: select an arbitrary, but fixed vertex v0 ∈ V (G), called the root, and create a
sorted list of vertices. Begin with v0; append all neighbors v1, . . . , vdeg(v0) of v0 to the list;
then append all neighbors of v1 that are not already in the list; and continue recursively
with v2, v3, . . . until all vertices of G are processed.

2.1 The Relations δ, σ and the Square Property.

There are two basic relations δ and σ, among other relations that are defined on the edge set
of a given graph, that play an important role in the field of Cartesian product recognition.
In the sequel we shall also use the notation R∗ for the transitive closure of a relation R,
that is, R∗ is the smallest transitive relation containing R.

Definition 2.1. Two edges e, f ∈ E(G) are in the relation δG, if one of the following
conditions in G is satisfied:

(i) e and f are adjacent and it is not the case that there is a unique square spanned by e
and f , and that this square is chordless.

(ii) e and f are opposite edges of a chordless square.

(iii) e = f .

Clearly, this relation is reflexive and symmetric but not necessarily transitive. The
transitive closure δ∗G is an equivalence relation.
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If adjacent edges e and f are not in relation δ, that is, if Condition (i) of Definition 2.1
is not fulfilled, then they span a unique square, and this unique square spanned by e and f
is chordless. We call such a square the unique chordless square (spanned by e and f ).

Two edges e and f are in the product relation σG if they have the same Cartesian colors
with respect to the prime factorization of G. The product relation σG is a uniquely defined
equivalence relation on E(G) that contains all information about the prime factorization1.
Furthermore, δG and δ∗G are contained in σG. If there is no risk of confusion we write δ or
σ for δG or σG, respectively.

We say an equivalence relation ρ defined on the edge set of a graph G has the square
property if the following three conditions hold:

(a) For any two edges e = uv and f = uw that belong to different equivalence classes
of ρ there exists a unique vertex x 6= u of G that is adjacent to v and w.

(b) The square uvxw is chordless.

(c) The opposite edges of any chordless square belong to the same equivalence class of
ρ.

From the definition of δ it easily follows that δ is a refinement of any such ρ. It also
implies that δ∗, and thus also σ, have the square property. This property is of fundamental
importance, both for the Cartesian and the quasi Cartesian product. We note in passing that
σ is the convex hull of δ∗, see [12].

2.2 The Partial Star Product

This section is concerned with the partial star product, which plays a decisive role in the
local approach. As it was introduced in [8], we will only define it here, list some of its most
basic properties, and refer to [8] for details.

Let G = (V,E) be a given graph and Ev the set of all edges incident to some vertex
v ∈ V . We define the local relation dv as follows:

dv = ((Ev × E) ∪ (E × Ev)) ∩ δG ⊆ δ〈NG
2 [v]〉,

where 〈NG
2 [v]〉 denotes the induced closed 2-neigborhood of v in G. In other words, dv is

the subset of δG that contains all pairs (e, f) ∈ δG, where at least one of the edges e and f
is incident to v. Clearly d∗v , which is not necessarily a subset of δ, is contained in δ∗, see
[8].

Let Sv be a subgraph of G that contains all edges incident to v and all squares spanned
by edges e, e′ ∈ Ev where e and e′ are not in relation d∗v . Then Sv is called partial star
product (PSP for short). To be more precise:

Definition 2.2 (Partial Star Product (PSP)). Let Fv ⊆ E \Ev be the set of edges which are
opposite edges of (chordless) squares spanned by e, e′ ∈ Ev that are in different d∗v classes,
that is, (e, e′) 6∈ d∗v .

Then the partial star product is the subgraph Sv ⊆ G with edge set E′ = Ev ∪ Fv

and vertex set ∪e∈E′e, which consists of the end vertices of the edges in E′. We call v the
center of Sv , Ev the set of primal edges, Fv the set of non-primal edges, and the vertices
adjacent to v primal vertices of Sv .

1For the properties of σ that we will cite or use, we refer the reader to [5] or [9].



Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 227

As shown in [8], a partial star product Sv is always an isometric subgraph or even
isomorphic to a Cartesian product graph H , where the factors of H are so-called stars
K1,n. These stars can directly be determined by the respective d∗v classes, see [8].

Now we define a local coloring of Sv as the restriction of the relation d∗v to Sv:

d|Sv
:= d∗v|Sv

= {(e, f) ∈ d∗v | e, f ∈ E(Sv)}.

In other words, d|Sv
is the subset of d∗v that contains all pairs of edges (e, f) ∈ d∗v where

both e and f are in Sv and edges obtain the same local color whenever they are in the same
equivalence class of d|Sv

. As an example consider the PSP Sv in Figure 1(d). The relation
d|Sv

has three equivalence classes (highlighted by thick, dashed and double-lined edges).
Note, δ∗ just contains one equivalence class. Hence, d|Sv

6= δ∗Sv
.

For a given subset W ⊆ V we set

d|Sv
(W ) = ∪v∈W d|Sv

.

The transitive closure of d|Sv
(W ) is then called the global coloring with respect to W . As

shown in [8], we have the following theorem.

Theorem 2.3. Let G = (V,E) be a given graph and d|Sv
(V ) = ∪v∈V d|Sv

. Then

d|Sv
(V )∗ = δ∗G.

For later reference and for the design of the recognition algorithm we list the following
three lemmas about relevant properties of the PSP.

Lemma 2.4 ([8]). Let G=(V,E) be a given graph and Sv be a PSP of an arbitrary vertex
v ∈ V . If e, f ∈ Ev are primal edges that are not in relation d∗v , then e and f span a
unique chordless square with a unique top vertex in G.

Conversely, suppose that x is a non-primal vertex of Sv . Then there is a unique chord-
less square in Sv that contains x, and that is spanned by edges e, f ∈ Ev with (e, f) 6∈ d∗v .

Lemma 2.5 ([8]). Let G=(V,E) be a given graph and f ∈ Fv be a non-primal edge of a
PSP Sv of an arbitrary vertex v ∈ V . Then f is opposite to exactly one primal edge e ∈ Ev

in Sv , and (e, f) ∈ d|Sv
.

Lemma 2.6 ([8]). Let G=(V,E) be a given graph and W ⊆ V such that 〈W 〉 is connected.
Then each vertex x ∈W meets every equivalence class of d|Sv

(W )∗ in ∪v∈WSv .

3 Quasi Cartesian Products
Given a Cartesian product G = A�B of two connected, prime graphs A and B, one can
recover the factors A and B as follows: the product relation σ has two equivalence classes,
say E1 and E2, and the connected components of the graph (V (G), E1) are all isomorphic
copies of the factor A, or of the factor B, see Figure 1(a). This property naturally extends
to products of more than two prime factors.

We already observed that δ is finer than any equivalence relation ρ that satisfies the
square property. Hence the equivalence classes of ρ are unions of δ∗-classes. This also
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(a) The Cartesian product G = P3�C4. (b) A quasi Cartesian product, which is also a
graph bundle.

(c) A quasi Cartesian product, which is not a
graph bundle.

0

1 2

v 3

45

(d) The approximate product and PSP Sv ,
which is neither a quasi product nor a graph
bundle.

Figure 1: Shown are several quasi Cartesian products, graph bundles and approximate
products.

holds for σ. It is important to keep in mind that σ can be trivial, that is, it consists of a
single equivalence class even when δ∗ has more than one equivalence class.

We call all graphs G with a non-trivial equivalence relation ρ that is defined on E(G)
and satisfies the square property quasi (Cartesian) products. Since δ∗ ⊆ ρ for every such
relation ρ, it follows that δ∗ must have at least two equivalence classes for any quasi prod-
uct. By Theorem 2.3 we have d|Sv

(V (G))∗ = δ∗. In other words, quasi products can be
defined as graphs where the PSP’s of all vertices are non-trivial, that is, none of the PSP’s
is a star K1,n, and in addition, where the union over all d|Sv

yields a non-trivial δ∗.

Consider the equivalence classes of the relation δ∗ of the graph G of Figure 1(b). It
has two equivalence classes, and locally looks like a Cartesian product, but is actually
reminiscent of a Möbius band. Notice that the graph G in Figure 1(b) is prime with respect
to Cartesian multiplication, although δ∗ has two equivalence classes: all components of the
first class are paths of length 2, and there are two components of the other δ∗-class, which
do not have the same size. Locally this graph looks either like P3�P3 or P2�P3.

In fact, the graph in Figure 1(b) is a so-called Cartesian graph bundle [11], where Carte-
sian graph bundles are defined as follows: Let B and F be graphs. A graph G is a (Carte-
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sian) graph bundle with fiber F over the base B if there exists a weak homomorphism2

p : G→ B such that

(i) for any u ∈ V (B), the subgraph (induced by) p−1(u) is isomorphic to F , and

(ii) for any e ∈ E(B), the subgraph p−1(e) is isomorphic to K2�F.

The graph of Figure 1(c) shows that not all quasi Cartesian products are graph bundles.
On the other hand, not every graph bundle has to be a quasi product. The standard example
is the complete bipartite graph K3,3. It is a graph bundle with base K3 and fiber K2, but
has only one δ∗-class.

Note, in [8] we considered ”approximate products” which were first introduced in [7, 6].
As approximate products are the graphs that have a (small) edit distance to a non-trivial
product graph, it is clear that every bundle and quasi product can be considered as an
approximate product, while the converse is not true. For example, consider the graph in
Figure 1(d). Here, δ∗ has only one equivalence class. However, the relation d|Sv

has, in
this case, three equivalence classes (highlighted by thick, dashed and double-lined edges).

Because of the local product-like structure of quasi Cartesian products we are led to the
following conjecture:

Conjecture 3.1. Quasi Cartesian products can be reconstructed in essentially the same
time from vertex-deleted subgraphs as Cartesian products.

4 Recognition Algorithms
4.1 Computing the Local and Global Coloring

For a given graph G, let W ⊆ V (G) be an arbitrary subset of the vertex set of G such that
the induced subgraph 〈W 〉 is connected. Our approach for the computation is based on the
recognition of all PSP’s Sv with v ∈ W , and subsequent merging of their local colorings.
The subroutine computing local colorings calls the vertices in BFS-order with respect to an
arbitrarily chosen root v0 ∈W .

Let us now briefly introduce several additional notions used in the PSP recognition
algorithm. At the start of every iteration we assign pairwise different temporary local colors
to the primal edges of every PSP. These colors are then merged in subroutine processes to
compute local colors associated with every PSP. Analogously, we use temporary global
colors that are initially assigned to every edge incident with the root v0.

For any vertex v of distance two from a PSP center c we store attributes called first
and second primal neighbor, that is, references to adjacent primal vertices from which v
was ”visited” (in pseudo-code attributes are accessed by v.F irstPrimalNeighbor and
v.SecondPrimalNeighbor). When v is found to have at least two primal neighbors we
add v to Tc, which is a stack of candidates for non-primal vertices of Sc. Finally, we use
incidence and absence lists to store recognized squares spanned by primal edges. Whenever
we recognize that two primal edges span a square we put them into the incidence list. If we
find out that a pair of primal edges cannot span a unique chordless square with unique top
vertex, then we move it into the absence list. Note that the above structures are local and
are always associated with a certain PSP recognition subroutine (Algorithm 4.1). Finally,
we will ”map” local colors to temporary global colors via temporary vectors which helps
us to merge local with global colors.

2A weak homomorphism maps edges into edges or single vertices.
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Algorithm 4.1 computes a local coloring for a given PSP and merges it with the global
coloring d|Sv

(W )∗ where W ⊆ V (G) is the set of treated centers. Algorithm 4.2 summa-
rizes the main control structure of the local approach.

Algorithm 4.1 (PSP recognition)

Input: Connected graph G = (V,E), PSP center c ∈ V , global coloring d|S(W )∗,
where W ⊆ V is the set of treated centers and where the subgraph induced
by W ∪ c is connected.

Output: New temporary global coloring d|S(W ∪ c)∗.
1. Initialization.

2. FOR every neighbor u of c DO:

(a) FOR every neighbor w of u (except c) DO:

i. IF w is primal w.r.t. c THEN add pair of primal edges (cu, cw) to absence list.
ii. ELSEIF w was not visited THEN set w.F irstPrimalNeighbor = u.

iii. ELSE (w is not primal and was already visited) DO:

A. IF only one primal neighbor v (v 6= u) of w was recognized so far, then
DO:

• Set w.SecondPrimalNeighbor = u.
• IF (cu, cv) is not in incidence list, then add w to the stack Tc and add

the pair (cu, cv) to incidence list.
• ELSE (cu and cv span more squares) add pair (cu, cv) to absence list.

B. ELSE:

• Add all pairs formed by primal edges cv1, cv2, cu to absence list, where
v1, v2 are first and second primal neighbors of w.

3. Assign pairwise different temporary local colors to primal edges.

4. FOR any pair (cu, cv) of primal edges cu and cv DO:

(a) IF (cu, cv) is contained in absence list THEN merge temporary local colors of cu
and cv.

(b) IF (cu, cv) is not contained in incidence list THEN merge temporary local colors
of cu and cv.

(Resulting merged temporary local colors determine local colors of primal edges in Sc.
We will reference them in the following steps.).

5. FOR any primal edge cu DO:

(a) IF cu was already assigned some temporary global color d1 THEN

i. IF local color b of cu was already mapped to some temporary global color d2,
where d2 6= d1, THEN merge d1 and d2.

ii. ELSE map local color b to d1.

6. FOR any vertex v from the stack Tc DO:

(a) Check local colors of primal edges cw1 and cw2 (where w1, w2 are first and second
primal neighbor of v, respectively).

(b) IF they differ in local colors THEN

i. IF there was defined temporary global color d1 for vw1 THEN
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A. IF local color b of cw2 was already mapped to some temporary global
color d2, where d2 6= d1 THEN merge d1 and d2.

B. ELSE map local color b to d1.

ii. IF there was already defined temporary global color d1 for vw2 THEN:

A. IF local color b of cw1 was already mapped to some temporary global
color d2, where d2 6= d1 THEN merge d1 and d2.

B. ELSE map local color b to d1.

7. Take every edge e of the PSP Sc that was not colored by any temporary global color up to
now and assign it d, where d is the temporary global color to which the local color of e or
the local color of its opposite primal edge e′ was mapped.
(If there is a local color b that was not mapped to any temporary global color, then we
create a new temporary global color and assign it to all edges of color b.)

Algorithm 4.2 (Computation of d|Sv
(W )∗)

Input: A connected graph G, W ⊆ V (G) s.t. the induced subgraph 〈W 〉 is connected,
and an arbitrary vertex v0 ∈W .

Output: Relation d|Sv (W )∗.

1. Initialization.
2. Set sequence Q of vertices v0, v1, . . . , vn that form W in BFS-order with respect to v0.
3. Set W ′ := ∅.
4. Assign pairwise different temporary global colors to edges incident to v0.
5. FOR any vertex vi from sequence Q DO:

(a) Use Algorithm 4.1 to compute d|Sv (W
′ ∪ vi)∗.

(b) Add vi to W ′.

In order to show that Algorithm 4.1 correctly recognizes the local coloring, we define
the (temporary) relations αc and βc for a chosen vertex c: Two primal edges of Sc are

• in relation αc if they are contained in the incidence list and

• in relation βc if they are contained in the absence list

after Algorithm 4.1 is executed for c. Note, we denote by αc the complement of αc, which
contains all pairs of primal edges of PSP Sc that are not listed in the incidence list.

Lemma 4.1. Let e and f be two primal edges of the PSP Sc. If e and f span a square with
some non-primal vertex w as unique top-vertex, then (e, f) ∈ αc.

Proof. Let e = cu1 and f = cu2 be primal edges in Sc that span a square cu1wu2 with
unique top-vertex w, where w is non-primal. Note, since w is the unique top vertex, the
vertices u1 and u2 are its only primal neighbors. W.l.o.g. assume that for vertex w no first
primal neighbor was assigned and let first u1 and then u2 be visited. In Step 2a vertex w
is recognized and the first primal neighbor u1 is determined in Step 2(a)ii. Take the next
vertex u2. Since w is not primal and was already visited, we are in Step 2(a)iii. Since only
one primal neighbor of w was recognized so far, we go to Step 2(a)iiiA. If (cu1, cu2) is not
already contained in the incidence list, it will be added now and thus, (cu1, cu2) ∈ αc.
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Corollary 4.2. Let e and f be two adjacent distinct primal edges of the PSP Sc. If (e, f) ∈
αc, then e and f do not span a square or span a square with non-unique or primal top
vertex. In particular, αc contains all pairs (e, f) that do not span any square.

Proof. The first statement is just the contrapositive of the statement in Lemma 4.1. For the
second statement observe that if e = cx and f = cy are two distinct primal edges of Sc that
do not span a square, then the vertices x and y do not have a common non-primal neighbor
w. It is now easy to verify that in none of the substeps of Step 2 the pair (e, f) is added to
the incidence list, and thus, (e, f) ∈ αc.

Lemma 4.3. Let e and f be two primal edges of the PSP Sc that are in relation βc. Then
e and f do not span a unique chordless square with unique top vertex.

Proof. Let e = cu1 and f = cu2 be primal edges of Sc. Then pair (e, f) is added to the
absence list in:

a) Step 2(a)i, when u1 and u2 are adjacent. Then no square spanned by e and f can be
chordless.

b) Step 2(a)iiiA (ELSE-condition), when (e, f) is already listed in the incidence list and
another square spanned by e and f is recognized. Thus, e and f do not span a unique
square.

c) Step 2(a)iiiB, when e and f span a square with top vertex w that has more than two
primal neighbors and at least one of the primal vertices u1 and u2 are recognized as
first or second primal neighbor of w. Thus e and f span a square with non-unique
top vertex.

Lemma 4.4. Relation β∗c contains all pairs of primal edges (e, f) of Sc that satisfy at least
one of the following conditions:

a) e and f span a square with a chord.

b) e and f span a square with non-unique top vertex.

c) e and f span more than one square.

Proof. Let e = cu1 and f = cu2 be primal edges of the PSP Sc.

a) If e and f span a square with a chord, then u1 and u2 are adjacent or the top vertex w
of the spanned square is primal and thus, there is a primal edge g = cw. In the first
case, we can conclude analogously as in the proof of Lemma 4.3 that (e, f) ∈ βc. In
the second case, we analogously obtain (e, g), (f, g) ∈ βc and therefore, (e, f) ∈ β∗c .

b) Let e and f span a square with non-unique top vertex w. If at least one of the primal
vertices u1, u2 is a first or second neighbor ofw then e and f are listed in the absence
list, as shown in the proof of Lemma 4.3. If u1 and u2 are neither first nor second
primal neighbors of w, then both edges e and f will be added to the absence list in
Step 2(a)iiiB, together with the primal edge g = cu3, where u3 is the first recognized
primal neighbor of w. In other words, (e, g), (f, g) ∈ βc and hence, (e, f) ∈ β∗c .
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c) Let e and f span two squares with top vertices w and w′, respectively and assume
w.l.o.g. that first vertex w is visited and then w′. If both vertices u1 and u2 are
recognized as first and second primal neighbors ofw andw′, then (cu1, cu2) is added
to the incidence list when visiting w in Step 2(a)iiiA. However, when we visit w′,
then we insert (cu1, cu2) to the absence list in Step 2(a)iiiA, because this pair is
already included in the incidence list. Thus, (e, f) ∈ βc. If at least one of the
vertices w,w′ does not have u1 and u2 as first or second primal neighbor, then e and
f must span a square with non-unique top vertex. Item b) implies that (e, f) ∈ β∗c .

Lemma 4.5. Let f be a non-primal edge and e1, e2 be two distinct primal edges of Sc. Let
(e1, f), (e2, f) ∈ dc. Then (e1, e2) ∈ β∗c .

Proof. Since the edge f is non-primal, f is not incident with the center c. Recall, by the
definition of dc, two distinct edges can be in relation dc only if they have a common vertex
or are opposite edges in a square. To prove our lemma we need to investigate the three
following cases, which are also illustrated in Figure 2:

a) Suppose both edges e1 and e2 are incident with f . Then e1 and e2 span a triangle
and consequently (e1, e2) will be added to the absence list in Step 2(a)i.

b) Let e1 and e2 be opposite to f in some squares. There are two possible cases (see
Figure 2 b)). In the first case e1 and e2 span a square with non-unique top vertex.
By Lemma 4.4, (e1, e2) ∈ β∗c . In the second case e1 and e2 span triangles with
other primal edges e3 and e4. As in Case a) of this proof, we have (e1, e3) ∈ βc,
(e3, e4) ∈ βc, (e4, e2) ∈ βc and consequently, (e1, e2) ∈ β∗c

c) Suppose only e1 has a common vertex with f and e2 is opposite to f in a square.
Again we need to consider two cases (see Figure 2 c)). Since e1 and f are adjacent
and (e1, f) ∈ dc, we can conclude that either no square is spanned by e1 and f , or
that the square spanned by e1 and f is not chordless or not unique. It is easy to see
that in the first case the edges e1 and e2 are contained in a common triangle and thus
will be added to the absence list in Step 2(a)i. In the second case e1, e2 span a square
which has a chord or has a non-unique top vertex. In both cases Lemma 4.4 implies
that e1 and e2 are in relation β∗c .

Lemma 4.6. Let e and f be distinct primal edges of the PSP Sc. Then (e, f) ∈ (αc ∪ βc)∗
if and only if (e, f) ∈ d∗c .

Proof. Assume first that (e, f) ∈ αc ∪ βc. By Corollary 4.2, if (e, f) ∈ αc, then e and f
do not span a common square, or span a square with non-unique or primal top vertex. In
the first case, e and f are in relation δG and consequently also in relation dc. On the other
hand, if e and f span square with non-unique top vertex then, by Lemma 2.4, e and f are
in relation d∗c as well. Finally, if e and f span a square with primal top vertex w, then this
square has a chord cw and (e, f) ∈ d∗c . If (e, f) ∈ βc, then Lemma 4.3 implies that e and
f do not span a unique chordless square with unique top vertex. Again, by Lemma 2.4, we
infer that (e, f) ∈ d∗c . Hence, αc ∪ βc ⊆ d∗c , and consequently, (αc ∪ βc)∗ ⊆ d∗c .
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Figure 2: The three possible cases a), b), and c) that are investigated in the proof of Lemma
4.5.

Now, let (e, f) ∈ d∗c . Then there is a sequence U = (e = e1, e2, . . . , ek = f), k ≥ 2,
with (ei, ei+1) ∈ dc for i ∈ {1, 2, . . . , k − 1}. By definition of dc, two primal edges are
in relation dc if and only if they do not span a unique and chordless square. Corollary
4.2 and Lemma 4.4 imply that all these pairs are contained in (αc ∪ βc)∗. Hence, any two
consecutive primal edges ei and ei+1 contained in the sequenceU are in relation (αc∪βc)∗.
Assume that there is an edge ei ∈ U that is not incident to the center c and thus, non-primal.
By the definition of dc, and since (ei−1, ei), (ei, ei+1) ∈ dc, we can conclude that the edges
ei−1 and ei+1 must be primal in Sc. Lemma 4.5 implies that ei−1 and ei+1 must be in
relation β∗c . Thus, if we remove the edge ei from U , we still can claim that all consecutive
primal edges in U \ {ei} are in relation (αc ∪ βc)∗. By removing all non-primal edges
from U we therefore obtain a sequence U ′ = e = e1, e

′
2, . . . , e

′
j = f of primal edges. By

analogous arguments as before, all pairs (e′i, e
′
i+1) of U ′ must be contained in (αc ∪ βc)∗.

By transitivity, e and f are also in (αc ∪ βc)∗.

Corollary 4.7. Let e and f be primal edges of the PSP Sc. Then (e, f) ∈ (αc∪βc)∗ if and
only if e and f have the same local color in Sc.

Proof. This is an immediate consequence of Lemma 4.6, the local color assignment, and
the merging procedure (Step 3 and 4) in Algorithm 4.1.

Lemma 4.8. Let d|Sv
(W )∗ be a global coloring associated with a set of treated centers

W and assume that the induced subgraph 〈W 〉 is connected. Let c be a vertex that is not
contained in W but adjacent to a vertex in W . Then Algorithm 4.1 computes the global
coloring d|Sv

(W ∪ c)∗ by taking W and c as input.

Proof. Let W ⊆ V (G) be a set of PSP centers and let c ∈ V (G) be a given center of PSP
Sc where c 6∈ W and 〈W ∪ c〉 is connected. In Step 2 of Algorithm 4.1 we compute the
absence and incidence lists. In Step 3, we assign pairwise different temporary local colors
to any primal edge adjacent to c. Two temporary local colors b1 and b2 are then merged
in Step 4 if and only if there exists some pair of primal edges (e1, e2) ∈ (αc ∪ βc) where
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e1 is colored with b1 and e2 with b2. Therefore, merged temporary local colors reflect
equivalence classes of (αc ∪ βc)∗ containing the primal edges incident to c. By Corollary
4.7, (αc ∪ βc)∗ classes indeed determine the local colors of primal edges in Sc.

Note, if one knows the colors of primal edges incident to c, then it is very easy to de-
termine the set of non-primal edges of Sc, as any two primal edges of different equivalence
classes span a unique and chordless square. In Step 6, we investigate each vertex v from
stack Tc and check the local colors of primal edges cw1 and cw2, where w1 and w2 are the
first and second recognized primal neighbors of v, respectively. If cw1 and cw2 differ in
their local colors, then vw1 and vw2 are non-primal edges of Sc, as follows from the PSP
construction. Recall that the stack contains all vertices that are at distance two from center
c and which are adjacent to at least two primal vertices. In other words, the stack contains
all non-primal top vertices of all squares spanned by primal edges. Consequently, we claim
that all non-primal edges of the PSP Sc are treated in Step 6. Note that non-primal edges
have the same local color as their opposite primal edge, which is unique by Lemma 2.5.

As we already argued, after Step 4 is performed we know, or can at least easily deter-
mine all edges of Sc and their local colors. Recall that local colors define the local coloring
d|Sc

. Suppose, temporary global colors that correspond to the global coloring d|Sv
(W )∗

are assigned. Our goal is to modify and identify temporary global colors such that they will
correspond to the global coloring d|Sv

(W ∪ c)∗. Let B1, B2, . . . , Bk be the classes of d|Sc

(local classes) and D1, D2, . . . , Dl be the classes of d|Sv
(W )∗ (global classes). When a

local class Bi and a global class Dj have a nonempty intersection, then we can infer that
all their edges must be contained in a common class of d|Sv

(W ∪ c)∗. Note, by means of
Lemma 2.6, we can conclude that for each local class Bi there is a global class Dj such
that Bi ∩Dj 6= ∅, see also [8]. In that case we need to guarantee that edges of Bi and Dj

will be colored by the same temporary global color. Note, in the beginning of the iteration
two edges have the same temporary global color if and only if they lie in a common global
class.

In Step 5 and Step 6, we investigate all primal and non-primal edges of Sc. When we
treat first edge e that is colored by some local color bi, that is e ∈ Bi, and has already
been assigned some temporary global color dj , and therefore e ∈ Dj , then we map bi to
dj . Thus, we keep the information that e ∈ Bi ∩Dj . In Step 7, we then assign temporary
global color dj to any edge of Sc that is colored by the local color bi. If the local color
bi is already mapped to some temporary global color dj , and if we find another edge of
Sc that is colored by bi and simultaneously has been assigned some different temporary
global color dj′, then we merge dj and dj′ in Step 5(a)i. Obviously this is correct, since
Bi∩Dj 6= ∅ and Bi∩Dj′ 6= ∅, and hence Dj , Dj′ and Bi must be contained in a common
equivalence class of d|Sv

(W ∪ c)∗. Recall, for each local class Bi there is a global class
Dj such that Bi ∩ Dj 6= ∅. This means that every local color is mapped to some global
color, and consequently there is no need to create a new temporary global color in Step 7.

Therefore, whenever local and global classes share an edge, then all their edges will
have the same temporary global color at the end of Step 7. On the other hand, when edges
of two different global classes are colored by the same temporary global color, then both
global classes must be contained in a common class of d|Sv

(W ∪ c)∗.
Hence, after the performance of Step 7, the merged temporary global colors determine

the equivalence classes of d|Sv
(W ∪ c)∗.

Lemma 4.9. Let G be a connected graph, W ⊆ V (G) s.t. 〈W 〉 is connected, and v0
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an arbitrary vertex of G. Then Algorithm 4.2 computes the global coloring d|Sv
(W )∗ by

taking G, W , and v0 as input.

Proof. In Step 2 we define the BFS-order in which the vertices will be processed and store
this sequence in Q. In Step 4 we assign pairwise different temporary global colors to
all edges that are incident with v0. In Step 5 we iterate over all vertices of the given in-
duced connected subgraph 〈W 〉 of G. For every vertex we execute Algorithm 4.1. Lemma
4.8 implies that in the first iteration we correctly compute the local colors for Sv0 , and
consequently also d|Sv

({v0})∗. Obviously, whenever we merge two temporary local col-
ors of two primal edges in the first iteration, then we also merge their temporary global
colors. Consequently, the resulting temporary global colors correspond to the global col-
oring d|Sv

({v0})∗ after the first iteration. Lemma 4.8 implies that after all iterations are
performed, that is, all vertices in Q are processed, the resulting temporary global colors
correspond to d|Sv

(W )∗ for the given input set W ⊆ V (G).

For the global coloring, Theorem 2.3 implies that d|Sv
(V (G))∗ = δ∗G. This leads

immediately to the following theorem.

Theorem 4.10. Let G be a connected graph and v0 an arbitrary vertex of G. Then Algo-
rithm 4.2 computes the global coloring δ∗G by taking G, V (G), and v0 as input.

4.2 Time Complexity

We begin with the complexity of merging colors. We have global and local colors, and will
define local and global color graphs. Both graphs are acyclic temporary structures. Their
vertex sets are the sets of temporary colors in the initial state. In this state the color graphs
have no edges. Every component is a single vertex and corresponds to an initial temporary
color. Recall that we color edges of graphs, for example the edges of G or Sv . The color
of an edge is indicated by a pointer to a vertex of the color graph. These pointers are not
changed, but the colors will correspond to the components of the color graph. When two
colors are merged, then this will be reflected by adding an edge between their respective
components.

The color graph is represented by an adjacency list as described in [5, Chapter 17.2]
or [9, pp. 34 -37]. Thus, working with the color graph needs O(k) space when k colors
are used. Furthermore, for every vertex of the color graph we keep an index of the con-
nected component in which the vertex is contained. We also store the actual size of every
component, that is, the number of vertices of this component.

Suppose we wish to merge temporary colors of edges e and f that are identified with
vertices a, respectively b, in the color graph. We first check whether a and b are contained
in the same connected component by comparing component indices. If the component in-
dices are the same, then e and f already have the same color, and no action is necessary.
Otherwise we insert an edge between a and b in the color graph. As this merges the com-
ponents of a and b we have to update component indices and the size. The size is updated
in constant time. For the component index we use the index of the larger component. Thus,
no index change is necessary for the larger component, but we have to assign the new index
to all vertices of the smaller component.

Notice that the color graph remains acyclic, as we only add edges between different
components.
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Lemma 4.11. Let G0 = (V,E) be a graph with V = {v1, . . . , vk} and E = ∅. The com-
ponents of G0 consist of single vertices. We assign component index j to every component
{vj}. For i ∈ {1, . . . , k − 1} let Gi+1 denote the graph that results from Gi by adding an
edge between two distinct connected components, say C and C ′. If |C| ≤ |C ′|, we use the
component index of C ′ for the new component and assign it to every vertex of C.

Then every Gi is acyclic, and the total cost of merging colors is O(k log2 k).

Proof. Acyclicity is true by construction.
A vertex is assigned a new component index when its component is merged with a

larger one. Thus, the size of the component at least doubles at every such step. Because the
maximum size of a component is bounded by k, there can be at most log2 k reassignments
of the component index for every vertex. As there are k vertices, this means that the total
cost of merging colors is O(k log2 k).

The color graph is used to identify temporary local, resp., global colors. Based on this,
we now define the local and global color graph.

Assigned labels of the vertices of the global color graph are stored in the edge list,
where any edge is identified with at most one such label. Notice that the original graph is
represented by an extended adjacency list, where for any vertex and its neighbor a reference
to the edge (in the edge list) that connects them is stored. This reference allows to access a
global temporary color from adjacency list in constant time.

In every iteration of Algorithm 4.2, we recognize the PSP for one vertex by calling
Algorithm 4.1. In the following paragraph we introduce several temporary attributes and
matrices that are used in the algorithm.

Suppose we execute an iteration that recognizes some PSP Sc. To indicate whether a
vertex was treated in this iteration we introduce the attribute visited, that is, when vertex
v is visited in this iteration we set v.visited = c. Any value different from c means
that vertex v was not yet treated in this iteration. Analogously, we introduce the attribute
primal to indicate that a vertex is adjacent to the current center c. The attribute tempLabel
maps primal vertices to the indices of rows and columns of the matrices incidenceList
and absenceList. For any vertex v that is at distance two from the center c we store its
first and second primal neighbor w1 and w2 in the attributes FirstPrimalNeighbor and
SecondPrimalNeighbor. Furthermore, we need to keep the position of vw1 and vw2

in the edge list to get their temporary global colors. For this purpose, we use attributes
firstEdge and secondEdge. Attribute mapLocalColor helps us to map temporary local
colors to the vertices of the global color graph. Any vertex that is at distance two from
the center and has a least two primal neighbors is a candidate for a non-primal vertex. We
insert them to the stack. The temporary structures help to access the required information
in constant time:

• v.visited = c
vertex v has been already visited in the current iteration.

• v.primal = c
vertex v is adjacent to center c.

• incidenceList[v.tempLabel, u.tempLabel] = 0
pair of primal edges (cv, cu) is missing in the incidence list.

• absenceList[v.tempLabel, u.tempLabel] = 1
pair of primal edges (cv, cu) was inserted to the absence list.
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• v.firstPrimalNeighbor = u
u is the first recognized primal neighbor of the non-primal vertex v.

• v.firstEdge = e
edge e joins the non-primal vertex v with its first recognized primal neighbor (it is
used to get the temporary global color from the edge list).

• b.mapLocalColor = d
local color b is mapped to temporary global color d (i.e. there exists an edge that is
colored by both colors).

Note that the temporary matrices incidenceList and absenceList have dimension
deg(c) × deg(c) and that all their entries are set to zero in the beginning of every itera-
tion.

Theorem 4.12. For a given connected graph G = (V,E) with maximum degree ∆ and
W ⊆ V , Algorithm 4.2 runs in O(|E|∆) time and O(|E|+ ∆2) space.

Proof. Let G be a given graph with m edges and n vertices. In Step 1 of Algorithm 4.2 we
initialize all temporary attributes and matrices. This consumesO(m+n) = O(m) time and
space, since G is connected, and hence, m ≥ n− 1. Moreover, we set all temporary colors
of edges in the edge list to zero, which does not increase the time and space complexity
of the initial step. Recall that we use an extended adjacency list, where every vertex and
its neighbors keep the reference to the edge in the edge list that connects them. To create
an extended adjacency list we iterate over all edges in the edge list, and for every edge
uv = e ∈ E(G) we set a new entry for the neighbor v for u and, simultaneously, we add
a reference v.edge = e. The same is done for vertex v. It can be done in O(m) time and
space.

In Step 2 of Algorithm 4.2, we build a sequence of vertices in BFS-order starting with
v0, which is done in O(m + n) time in general. Since G is connected, the BFS-ordering
can be computed in O(m) time. Step 3 takes constant time. In Step 4 we initialize the
global color graph that has deg(v0) vertices (bounded by ∆ in general). As we already
showed, all operations on the global color graph take O(∆ log2 ∆) time and O(∆) space.
We proceed to traverse all neighbors u1, u2, . . . , udeg (v0) of the root v0 ∈ V (G) (via the
adjacency list) and assign them unique labels 1, 2, . . . ,deg(v0) in edge list, that is, every
edge v0ui gets the label i. In this way, we initialize pairwise different temporary global
colors of edges incident with v0 , that is, to vertices of the global color graph. Using the
extended adjacency list, we set the label to an edge in the edge list in constant time. In Step
5 we run Algorithm 4.1 for any vertex from the defined BFS-sequence.

In the remainder of this proof, we will focus on the complexity of Algorithm 4.1. Sup-
pose we perform Algorithm 4.1 for vertex c to recognize the PSP Sc. The recognition pro-
cess is based on temporary structures. We do not need to reset any of these structures, for
any execution of Algorithm 4.1 for a new center c, except absenceList and incidenceList.
This is done in Step 1. Further, we set here the attribute tempLabel for every primal vertex
v, such that every vertex has assigned a unique number from {1, 2, . . . ,deg(c)}. Finally,
we traverse all neighbors of the center c and for each of them we set primal to c. Hence,
the initial step of Algorithm 4.1 is done in O(deg(c)2) time.

Step 2a is performed for every neighbor of every primal vertex. The number of all
such neighbors is at most deg(c)∆. For every treated vertex, we set attribute visited to c.
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This allows us to verify in constant time that a vertex was already visited in the recognition
subroutine Algorithm 4.1.

If the condition in Step 2(a)i is satisfied, then we add primal edges cu and cw to the
absence list. By the previous arguments, this can be done in constant time by usage of
tempLabel and absenceList.

If the condition in Step 2(a)ii is satisfied, we set vertex u as first primal neighbor of
vertex w. For this purpose, we use the attribute firstPrimalNeighbor. We also set
w.firstEdge = e, where e is a reference to the edge in the edge list that connects u and
w. This reference is obtained from the extended adjacency list in constant time. Recall,
the edge list is used to store the labels of vertices of the global color graph for the edges
of a given graph, that is, the assignment of temporary global colors to the edges. Using
w.firstEdge, we are able to directly access the temporary global color of edge uw in
constant time.

Step 2(a)iii is performed when we try to visit a vertex w from some vertex u where
w has been already visited before from some vertex v. If v is the only recognized primal
neighbor of w, then we perform analogous operations as in the previous step. Moreover. if
(cu, cv) is not contained in the incidence list, then we set u as second primal neighbor of
w, add (cu, cv) to the incidence list and add w to the stack. Otherwise we add (cu, cv) to
the absence list. The number of operations in this step is constant.

If w has more recognized primal neighbors we process case B. Here we just add all
pairs formed by cv1, cv2, cu to absence list. Again, the number of operations is constant by
usage of tempLabel and matrices incidenceList and absenceList.

In Step 3 we assign pairwise different temporary local colors to the primal edges.
Assume the neighbors of the center c are labeled by 1, 2, . . . ,deg (c), then we set value
u.tempLabel to cu. In Step 4a we iterate over all entries of the absenceList. For all pairs
of edges that are in the absence list we check whether they still have different temporary lo-
cal colors and if so, we merge their temporary local colors by adding a respective edge in the
local color graph. Analogously we treat all pairs of edges contained in the incidenceList
in Step 4b. Here we merge temporary local colors of primal edges cu and cv when the pair
(cu, cv) is missing. To treat all entries of the absenceList and incidenceList we need
to perform deg(c)2 iterations. Recall, the temporary local color of the primal edge cu is
equal to the index of the connected component in the local color graph, in which vertex
u.tempLabel is contained. Thus, the temporary local color of this primal edge can be ac-
cessed in constant time. As we already showed, the number of all operations on the local
color graph is bounded by O(deg(c) log2 deg(c)). Hence, the overall time complexity of
both Steps 3 and 4 is O(deg(c)2).

In Step 5 we map temporary local colors of primal edges to temporary global colors.
For this purpose, we use the attribute mapLocalColor. The temporary global color of
every edge can be accessed by the extended adjacency list, the edge list and the global
color graph in constant time. Since we need to iterate over all primal vertices, we can
conclude that Step 5 takes O(deg(c)) time.

In Step 6 we perform analogous operations for any vertex from Stack Tc as in Step 5.
In the worst case, we add all vertices that are at distance two from the center to the stack.
Hence, the size of the stack is bounded by O(deg(c)∆). Recall that the first and second
primal neighbor w1 and w2 of every vertex v from the stack can be directly accessed by the
attributes firstPrimalNeighbor and secondPrimalNeighbor. On the other hand, the
temporary global colors of non-primal edges vw1 and vw2 can be accessed directly by the
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attributes firstEdge and secondEdge. Thus, all needful information can be accessed in
constant time. Consequently, the time complexity of this step is bounded by O(deg(c)∆).

In the last step, Step 7, we iterate over all edges of the recognized PSP. Note, the list
of all primal edges can be obtained from the extended adjacency list. To get all non-primal
edges we iterate over all vertices from the stack and use the attributes firstEdge and
secondEdge, which takes O(deg(c)∆) time. The remaining operations can be done in
constant time.

To summarize, Algorithm 4.1 runs in O(deg(c)∆) time. Consequently, Step 5 of Al-
gorithm 4.2 runs in O(

∑
c∈W deg(c)∆) = O(m∆) time, which defines also the total time

complexity of Algorithm 4.2. The most space consuming structures are the edge list and
the extended adjacency list (O(m) space) and the temporary matrices absenceList and
incidenceList (O(∆2) space). Hence, the overall space complexity is O(m+ ∆2).

Since quasi Cartesian products are defined as graphs with non-trivial δ∗, Theorem 4.10
and 4.12 imply the following corollary.

Corollary 4.13. For a given connected graph G = (V,E) with bounded maximum de-
gree Algorithm 4.2 (with slight modifications) determines whether G is a quasi Cartesian
product in O(|E|) time and O(|E|) space.

4.3 Parallel Processing

The local approach allows the parallel computation of δ∗(G) on multiple processors. Con-
sider a graph G with vertex set V (G). Suppose we are given a decomposition of V (G) =
W1∪W2∪· · ·∪Wk into k parts such, that |W1| ≈ |W2| ≈ · · · ≈ |Wk|, where the subgraphs
induced by W1,W2, . . . ,Wk are connected, and the number of edges whose endpoints lie
in different partitions is small (we call such a decomposition good).

Algorithm 4.3 (Parallel recognition of δ∗)

Input: A graph G, and a good decomposition V (G) =W1 ∪W2 ∪ · · · ∪Wk.
Output: Relation δ∗G.

1. For every partition Wi concurrently compute global coloring d|Sv (Wi) (i ∈ {1, 2, . . . ,
k}):

(a) Take all vertices of Wi and order them in BFS to get sequence Qi.
(b) Set W ′ := ∅.
(c) Assign pairwise different temporary global colors to edges incident to first vertex in

Qi.
(d) For any vertex v from sequence Qi do:

i. Use Algorithm 4.1 to compute d|Sv (W
′ ∪ v)∗.

ii. Move all edges that were treated in previous step and have at least one endpoint
not in partition Wi to stack Ti.

iii. Add v to W ′.

2. Run concurrently for every partition Wi to merge all global colorings (i ∈ {1, 2, . . . , k}):

(a) For each edge from stack Ti, take all its assigned global colors and merge them.
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Figure 3: Example - Parallel recognition of δ∗.

Then algorithm 4.2 can be used to compute the colorings d|Sv
(W1)∗, d|Sv

(W2)∗, . . . ,
d|Sv

(Wk)∗, where every instance of the algorithm can run in parallel. The resulting global
colorings are used to compute d|Sv

(V (G))∗ = (d|Sv
(W1)∗∪d|Sv

(W2)∗∪· · ·∪d|Sv
(Wk)∗)∗.

The sketch of the parallelization is summarized in Algorithm 4.3.
Figure 3 shows an example of decomposed vertex set of a given graph G. The compu-

tation of global colorings associated with the individual sets of the partition can be done
then in parallel. The edges that are colored by global color when the partition is treated are
highlighted by bold black color. Thus we can observe that many edges will be colored by
more then one color.

Notice that we do not treat the task of finding a good partition. With the methods of [4]
this is possible with high probability in O(log n) time, where n is the number of vertices.
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Abstract

In this paper we consider polynomials in noncommuting variables that admit sum of
hermitian squares and commutators decompositions. We recall algorithms for finding de-
compositions of this type that are based on semidefinite programming. The main part of the
article investigates how to find such decomposition with rational coefficients if the original
polynomial has rational coefficients. We show that the numerical evidence, obtained by the
Gram matrix method and semidefinite programming, which is usually an almost feasible
point, can be frequently tweaked to obtain an exact certificate using rational numbers. In
the presence of Slater points, the Peyrl-Parrilo rounding and projecting method applies.
On the other hand, in the absence of strict feasibility, a variant of the facial reduction is
proposed to reduce the size of the semidefinite program and to enforce the existence of
Slater points. All these methods are implemented in our open source computer algebra
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1 Introduction
In this paper we consider free noncommutative (nc) polynomials that are sums of hermitian
squares (and commutators). We focus on the following important question: how to obtain
a rational certificate (i.e., a symbolic proof) for such a decomposition when the given nc
polynomial has rational coefficients and we have numerical (approximate) evidence of a
sum of hermitian squares (and commutators) decomposition obtained by mathematical op-
timization methods (e.g. by using open-source software package NCSOStools)?

1.1 Notation

Nc polynomials with real coefficients, denoted by R〈X〉, are (real) linear combinations
of words in letters X1, . . . , Xn, including the empty word 1. We shortly denote by X
the n-tuple of letters (X1, . . . , Xn). These nc polynomials form a free algebra, which we
equip with the involution ∗ that fixes R and letters point-wise and thus reverses words,
e.g. (X1X2X3 − X2

3X1)∗ = X3X2X1 − 2X1X
2
3 . Hence R〈X〉 is the ∗-algebra freely

generated by n symmetric letters. The subset of R〈X〉 consisting of all symmetric nc
polynomials is denoted by

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.

If V = (vi) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector
with components v∗i and V t denotes the row vector with components vi.

The length of the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and
is denoted by deg f . The degree of f in Xi, degi f , is the largest number of occurrences
of the letter Xi in a monomial appearing in f . Similarly, the length of the shortest word
appearing in f ∈ R〈X〉 is called the min-degree of f and denoted by mindeg f . Likewise,
mindegi f is introduced. If the variable Xi does not occur in any monomial of f , then
mindegi f = 0. The set of all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d.
Whenever an nc polynomial f involves only two variables, we write f ∈ R〈X,Y 〉.

Example 1.1. Let f = 3Y 2X + 2XYXY − 5Y 3 ∈ R〈X,Y 〉. Then

deg f = 4, degX f = 2, degY f = 3, mindeg f = 3, mindegX f = 0, mindegY f = 2,

f∗ = 3XY 2 + 2Y XY X − 5Y 3.

Positivity of nc polynomials is a core part of free real algebraic geometry. In this paper
we consider two types of positivity: (i) positivity via eigenvalues, i.e., f ∈ SymR〈X〉
is positive if f(A) is a positive semidefinite matrix for every n-tuple of real symmetric
matrices A of the same order; (ii) trace positivity, i.e., f ∈ R〈X〉 is trace positive if

E-mail addresses: kristijan.cafuta@fe.uni-lj.si (Kristijan Cafuta), igor.klep@auckland.ac.nz (Igor Klep),
janez.povh@fis.unm.si (Janez Povh)
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tr f(A) ≥ 0 for every n-tuple of real symmetric matrices A of the same order. Note that
positivity implies trace positivity while the converse is not true.

Helton [16] and McCullough [27] proved that a symmetric nc polynomial f is positive
if and only if it can be decomposed as a sum of hermitian squares (SOHS), that is, there
exist nc polynomials g1, . . . , gm such that f =

∑m
i=1 g

∗
i gi. We denote all nc polynomials

that admit SOHS decompositions as

Σ2 :=
{
f ∈ SymR〈X〉 | f =

m∑
i=1

g∗i gi, gi ∈ R〈X〉, m ≥ 1
}
.

For trace positivity there is no necessary and sufficient condition of this type but there
exists an important sufficient condition, obtained using cyclic equivalence to SOHS [18];
for a more example specific approach to certificates for trace positivity we refer to [36].
Nc polynomials f, g ∈ R〈X〉 are cyclically equivalent (f

cyc∼ g) if and only if there exist
nc polynomials pi, qi ∈ R〈X〉 such that

f − g =

k∑
i=1

(piqi − qipi).

We call an element of the form [p, q] := pq − qp, where p, q ∈ R〈X〉, a commutator.
Cyclically equivalent nc polynomials have equal trace if they are evaluated at the same n-
tuple of real symmetric matrices, since the trace of every commutator of matrices is zero.
Therefore if f is cyclically equivalent to SOHS, it is trace positive. We denote the set of nc
polynomials of this type by

Θ2 :=
{
f ∈ R〈X〉 | ∃g ∈ Σ2 : f

cyc∼ g
}
.

By definition, the elements in Θ2 are exactly the nc polynomials which can be written as
sums of hermitian squares with commutators.

Although any bivariate nc polynomial of degree at most 4 is trace positive if and only
if it is a sum of (four) squares with commutators [5, 8], there are trace positive nc polyno-
mials which are not members of Θ2. Probably the easiest example is the noncommutative
Motzkin polynomial, XY 4X+Y X4Y −3XY 2X+1 [18, Example 4.4]; see also Subsec-
tion 3.3.2. We also refer the reader to [19, Example 3.5] for more sophisticated examples
obtained by considering the BMV conjecture.

Cyclic equivalence is obviously an equivalence relation. It can be easily detected by
the following remark.

Remark 1.2 ([18]).

(a) For words v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are words v1, v2 ∈ 〈X〉

such that v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic

permutation of v.

(b) Nc polynomials f =
∑
w∈〈X〉 aww and g =

∑
w∈〈X〉 bww (aw, bw ∈ R) are cyclically

equivalent if and only if for each word v ∈ 〈X〉,∑
w∈〈X〉

w
cyc
∼ v

aw =
∑

w∈〈X〉

w
cyc
∼ v

bw. (1.1)
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Example 1.3. Let f = 1 +X2 + 2X2Y − 2XY + 2XY 2X ∈ R〈X,Y 〉. Since

f = (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X) + [X2 −X,Y ] + [XY, Y X]

it follows that

f
cyc∼ (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X),

and therefore f ∈ Θ2.

1.2 Motivation and related work

There is s surge of interest in free real algebraic geometry in the last decade, partially due
to many facets of applications. A nice survey on connections to control theory, systems
engineering and optimization is given by de Oliveira, Helton, McCullough, Putinar [13].
Applications to quantum physics are explained e.g. by Pironio, Navascués, Acín [32] who
also consider computational aspects related to sums of hermitian squares. On the theoreti-
cal level, trace positive nc polynomials arise e.g. in the Lieb-Seiringer reformulation of the
famous Bessis-Moussa-Villani (BMV) conjecture [2] from statistical quantum mechanics,
which was recently proved by Stahl [39]. This connection will be explained in detail later
to demonstrate the usage of our proposed algorithm. In addition, trace positive nc poly-
nomials occur naturally in von Neumann algebras and functional analysis. For instance,
Connes’ embedding problem [12] on finite II1-factors is a question about the existence of
a certain type of sum of hermitian squares certificates for trace positive nc polynomials
[18]. Motivated by this intensive research in free real algebraic geometry we have devel-
oped NCSOStools [10] – an open source Matlab toolbox for solving such problems using
semidefinite programming. As a side product our toolbox implements symbolic computa-
tion with free noncommuting variables in Matlab.

1.3 Contribution

The main contribution of this paper is the following. Once we know that a given rational nc
polynomial f can be decomposed as a sum of hermitian squares (with commutators), i.e.,
we have numerical evidence for the existence of such a decomposition, we aim to obtain an
exact (rational) certificate. Following ideas from [31] (see also [17]) we propose an algo-
rithm which under a strict feasibility assumption theoretically and practically always yields
a rational certificate. On the other hand, in the absence of strict feasibility, a variant of the
facial reduction [3] (in our case projecting onto the orthogonal complement of the nullspace
of the analytic center) is used to reduce the size of the semidefinite program and enforce
the existence of Slater points. We employ the noncommutative version of Motzkin’s poly-
nomial to demonstrate how the proposed algorithm as implemented in NCSOStools is
used and provide new rational certificates for some instances of nc polynomials related to
the Bessis-Moussa-Villani conjecture.

2 Nc polynomials and semidefinite programming
2.1 Semidefinite programming

Semidefinite programming (SDP) is a generalization of linear programming (LP) where
one looks for the optimum of a linear function over the intersection of an affine subspace
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with the cone of positive semidefinite matrices. Although this is a far-reaching extension of
LP, there exists several methods that can solve semidefinite programs efficiently in theory
and practice. Given s×s self-adjoint matrices C, A1, . . . , Am of the same size over R and
a vector b ∈ Rm, we formulate a semidefinite program in standard primal form as follows:

inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)

Here 〈·, ·〉 stands for the standard inner product of matrices: 〈A,B〉 = tr(B∗A), andG � 0
means that G is positive semidefinite. If C = 0 or if C is not important, we call such a
problem a semidefinite programming feasibility problem:

G � 0,
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m.

(FSDP)

The complexity of solving semidefinite programs is mainly determined by the order s
of matrix variable G and the number of linear constraints m. Given ε > 0, the interior
point methods can find an ε-optimal solution with polynomially many iterations, where
each iteration takes polynomially many real number operations, provided that (PSDP) and
its dual both have non-empty interiors of feasible sets and we have good initial points.
The variables appearing in these polynomial bounds are s,m and log ε (cf. [40, Chapter
10.4.4]).

Many problems in control theory, system identification and signal processing can be
formulated using SDPs [4, 30, 1]. Combinatorial optimization problems can often be mod-
eled or approximated by SDPs [14, 23, 34, 35, 33]. SDP has important role in real algebraic
geometry, where it is used e.g. for finding sums of squares decompositions of polynomials
or approximating the moment problem [22, 21, 26, 24], and in free real algebraic geometry
[18, 20, 6], as is recalled in the following subsection.

2.2 Sums of hermitian squares (with commutators) and semidefinite programming

Testing whether a given nc polynomial f ∈ R〈X〉 is an element of Σ2 can be done ef-
ficiently by using semidefinite programming [20, 10]. This is the Gram matrix method,
which is based on the following proposition [16, 28], the noncommutative version of the
classical result for commuting variables.

Proposition 2.1. Suppose the nc polynomial f ∈ SymR〈X〉 is of degree ≤ 2d and let Wd

be the vector of all words w ∈ 〈X〉 of degree ≤ d. Then f ∈ Σ2 if and only if there exists
a positive semidefinite matrix Gf (called a Gram matrix for f) satisfying f = W ∗dGfWd.

Example 2.2. Take f = 1 +X2 +XY +Y X+ 4Y X2Y +Y 2 and let V = [1 X Y
XY ]t be a subvector of W2. Then the Gram matrix for nc polynomial f corresponding to
the vector V is

G(u) :=


1 0 0 u
0 1 1− u 0
0 1− u 1 0
u 0 0 4

 .
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The question is: does there exist (at least one) u such that G(u) is a positive semidefinite
matrix? Since G(2) = CtC for

C =

[
1 0 0 2
0 1 −1 0

]
,

it follows that f = (1 + 2XY )∗(1 + 2XY ) + (X − Y )∗(X − Y ) ∈ Σ2.

As we saw in the last example we can sometimes replace Wd with a smaller subvector
in the Gram matrix method. An algorithm (the Newton chip method) for reducing the size
of needed word vector is presented in [20] and is implemented in NCSOStools. See also
[29] for a strengthening.

Similarly we can use semidefinite programming to test whether a given nc polynomial
f ∈ R〈X〉 is an element of Θ2 as first observed in [19], see also [10, 7, 6]. The method
behind it is a variant of the Gram matrix method:

Proposition 2.3. Suppose that an nc polynomial f ∈ R〈X〉 is of degree ≤ 2d and let Wd

be as above. Then f ∈ Θ2 if and only if there exists a positive semidefinite matrix Gf
(called a tracial Gram matrix for f) such that f

cyc∼ W ∗dGfWd.

Again we can sometimes replace the full word vector Wd with a smaller subvector. An
algorithm (the Newton cyclic chip method) for reducing the size of needed word vector is
presented in [6] and is implemented in NCSOStools.

Following Proposition 2.1, we can decide whether an nc polynomial f is a sum of
hermitian squares by solving a semidefinite programming feasibility problem in the matrix
variable G, where the constraints 〈Ai, G〉 = bi are implied by the fact that for each product
of monomials w ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q=w

Gp,q = aw, (2.1)

where aw is the coefficient of w in f (aw = 0 if the monomial w does not appear in f ).
Since any input nc polynomial f is symmetric (so aw = aw∗ for all w), the corresponding
SDP feasibility problem is as follows:

G � 0
s. t. 〈Aw, G〉 = aw + aw∗ ∀w ∈ {p∗q | p, q ∈W}, (SOHSSDP)

where Aw = Aw∗ is the symmetric matrix defined by

(Aw)u,v =

 2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Similarly, following Proposition 2.3, an nc polynomial f is cyclically equivalent to a
sum of hermitian squares if and only if there exists a positive semidefinite matrix G such
that f

cyc∼ W ∗GW . Again, this is an SDP feasibility problem (FSDP) in the matrix variable
G, where the constraints 〈Ai, G〉 = bi are essentially equations (1.1), i.e., for each product
of monomials v ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q

cyc∼ v

Gp,q =
∑
w

cyc∼ v

aw. (2.2)
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The SDP feasibility problem is as follows [6, Corollary 4.5]:

G � 0,

s. t.
∑

p,q, p∗q
cyc
∼ v

∨ p∗q
cyc
∼ v∗

〈Av, G〉 =
∑
w

cyc∼ v

(aw + aw∗), ∀v ∈W (CSOHSSDP)

where Av = Av∗ is the symmetric matrix defined by

(Av)p,q =

 2; if p∗q
cyc∼ v & p∗q

cyc∼ v∗,

1; if p∗q
cyc∼ v & p∗q 6cyc∼ v∗,

0; otherwise.

Remark 2.4. Finding a Gram matrix for the sum of hermitian squares (and commuta-
tors) decomposition problem by solving (SOHSSDP) and (CSOHSSDP) gives a solution of
highest rank since under a strict feasibility assumption the interior point methods yield so-
lutions in the relative interior of the optimal face, which is in our case the whole feasibility
set. If strict complementarity is additionally provided, the interior point methods lead to
the analytic center of the feasibility set [15].

Alternately, we can consider these SDP problems as usual SDP problems by using a
non-zero choice of C. The choice C = I is a commonly used heuristic for matrix rank
minimization [37], and it tends to give sum of hermitian squares (and commutators) with a
small number of hermitian squares.

Even though the above assumptions do not always hold for the instances of SDPs we
construct, in our experiments the choiceC = 0 in the objective function almost always gave
a solution of higher rank than the choiceC = I . High ranks are desired and exploited when
trying to compute a rational (exact) Gram matrix from numerical solution of (SOHSSDP)
and (CSOHSSDP).

3 Rational sums of hermitian squares and facial reduction
In this section particular emphasis is given to the extraction of rational certificates if the
input data is rational. We present several examples illustrating our results, e.g. concerning
the recently proven BMV conjecture [39] from statistical physics (Subsection 3.3.1) and
the noncommutative Motzkin polynomial (Subsection 3.3.2).

3.1 Rational sums of hermitian squares

Consider a feasibility SDP in primal form (FSDP) and assume the input data Ai, bi is
rational for i = 1, . . . ,m. If the problem is feasible, does there exist a rational solution? If
so, can one use a combination of numerical and symbolic computation to produce one?

Example 3.1. Some caution is necessary, as a feasible SDP of the form (FSDP) need not
admit a rational solution. For a simple concrete example, note that[

2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

 � 0 ⇔ x =
√

2.

In fact there are commutative polynomials with rational coefficients that are sums of squares
of polynomials over the reals, but not over the rationals (see [38]). Adapting an example of
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Scheiderer, we obtain an nc polynomial with rational coefficients that is cyclically equiv-
alent to a sum of hermitian squares of nc polynomials over the reals, but not over the
rationals:

f = 1 +X3 +X4 − 3

2
XY − 3

2
Y X − 4XYX + 2Y 2 + Y 3 +

1

2
XY 3 +

1

2
Y 3X + Y 4.

This is a dehomogenized and symmetrized noncommutative version of the (commutative)
polynomial from [38, Theorem 2.1] (setting x0 = 1, x1 = X and x2 = Y ). So f is
not cyclically equivalent to a sum of hermitian squares with rational coefficients. By [38,
Theorem 2.1], f |R2 ≥ 0. Together with the fact that f is cyclically sorted, [18, Proposition
4.2] implies that f is trace positive. Since f is of degree 4 in two variables it is a sum of
hermitian squares with commutators [5, 8] (with real coefficients).

On the other hand, if (FSDP) admits a feasible positive definite solution, then it admits
a (positive definite) rational solution. More exactly, we have the following:

Theorem 3.2 (Peyrl & Parrilo [31]). If an approximate feasible point G0 for (FSDP) sat-
isfies

δ := min(eig(G0)) > ‖(〈Ai, G0〉 − bi)i‖ =: ε, (3.1)

then a (positive definite) rational feasible point G exists. It can be obtained from G0 in the
following two steps (cf. Figure 1):

(1) compute a rational approximation G̃ ofG0 with τ := ‖G̃−G0‖ satisfying τ2+ε2 < δ2;

(2) project G̃ onto the affine subspace L given by the equations 〈Ai, G〉 = bi to obtain G.

δ

τG̃

G

PsD

L

ε
G0

Figure 1: Rounding and projecting to obtain a rational solution

Note that the results in [31] are stated for SDPs arising from sum of squares problems,
but their results carry over verbatim to the setting of (the seemingly more) general SDPs.
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The rationalization scheme based on this Peyrl-Parrilo technique has been implemented in
NCSOStools; see Example 3.5 for a demonstration.

3.2 Facial reduction

Not all is lost, however, if the SDP solver gives a singular feasible point G0 for (FSDP).
Suppose that z is a rational nullvector forG0. Let P be a change of basis matrix containing
z as a first column and a (rational) orthogonal basis for the orthogonal complement {z}⊥
as its remaining columns. Then

P tG0P =

[
0 0

0 Ĝ0

]
,

i.e.,

G0 = P−t
[
0 0

0 Ĝ0

]
P−1

for some symmetric Ĝ0. Hence

bi = 〈Ai, G0〉 = tr(AiG0) = tr

(
AiP

−t
[
0 0

0 Ĝ0

]
P−1

)
= tr

(
P−1AiP

−t
[
0 0

0 Ĝ0

])
.

So if

P−1AiP
−t =

[
ai cti
ci Âi

]
then Âi is a symmetric matrix with rational entries and

bi = tr

([
ai cti
ci Âi

] [
0 0

0 Ĝ0

])
= tr(ÂiĜ0) = 〈Âi, Ĝ0〉.

We have established a variant of the facial reduction [3] which applies whenever the
original SDP is given by rational data and has a singular feasible point with a rational
nullvector:

Theorem 3.3. Let (FSDP), Âi and Ĝ0 be as above. Consider the feasibility SDP

Ĝ � 0

s. t. 〈Âi, Ĝ〉 = bi, i = 1, . . . ,m
(FSDP’)

(1) (FSDP’) is feasible if and only if (FSDP) is feasible.

(2) (FSDP’) admits a rational solution if and only if (FSDP) does.

3.3 Examples

3.3.1 BMV conjecture

In their 2004 paper [25], Lieb and Seiringer gave the following purely algebraic reformula-
tion of the Bessis-Moussa-Villani (BMV) conjecture [2] from quantum statistical physics,
which was recently proved in the original formulation by Stahl [39]:
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Conjecture 3.4. For all positive semidefinite matrices A and B and all m ∈ N, the poly-
nomial p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a givenm is the trace of Sm,k(A,B), where Sm,k(A,B)
is the sum of all words of length m in the letters A and B in which B appears exactly k
times. For example, S4,2(A,B) = A2B2 +ABAB+AB2A+BABA+B2A2 +BA2B.
Thus Sm,k(X,Y ) is an nc polynomial; it is the sum of all words in two variables X,Y of
degree m in which Y appears exactly k times.

Even though the motivating conjecture was proved, the related questions concerning nc
polynomials remain interesting. In the last few years there has been much activity around
the following question: which pairs (m, k) does Sm,k(X2, Y 2) ∈ Θ2 or Sm,k(X,Y ) ∈
Θ2 hold for? An affirmative answer (for all m, k) to the former would imply the BMV
conjecture. This question has been resolved completely (see e.g. [19, 11, 9]), however
only finitely many nontrivial Sm,k(X2, Y 2) admit a Θ2-certificate. Adding to the current
state of knowledge (nicely summarized in [11]), we shall use our computer algebra system
NCSOStools to establish S10,2(X,Y ) ∈ Θ2 and S14,6(X,Y ) 6∈ Θ2. We also show that
S2m,2(X,Y ) ∈ Θ2 holds for all m ∈ N.

Example 3.5. Consider the nc polynomial f = S10,2(X,Y ), i.e., the sum of all words of
degree 10 in the nc variables X and Y in which Y appears exactly twice. To prove that
f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(10,2). For a numerical test whether
f ∈ Θ2, run

>> p.obj = 0;
>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(10,2),p);

Using the SDP solver SDPT3, this yields a floating point Gram matrix G0

G0 =


5.0000 2.5000 −1.8851 0.8230 −0.0899
2.5000 8.7702 1.6770 −2.7313 0.8230
−1.8851 1.6770 10.6424 1.6770 −1.8851
0.8230 −2.7313 1.6770 8.7702 2.5000
−0.0899 0.8230 −1.8851 2.5000 5.0000


for the word vector

W =
[
X4Y X3Y X X2Y X2 XYX3 Y X4

]t
.

The rest of the output: IsCycEq= 1 since f is (numerically) an element of Θ2; sohs
is a vector of nc polynomials gi with f

cyc∼
∑
i g
∗
i gi = g; SDP_data is the SDP data

for (2.2) constructed from f .

(3) To round and project the obtained floating point solution G0 following Theorem 3.2,
feed G0 and SDP_data into RprojRldlt:
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>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

This produces a rational Gram matrix G for f with respect to W and its LDU decom-
position PLDLtP t, where P is a permutation matrix, L lower unitriangular, and D
a diagonal matrix with positive entries. We caution the reader that L,D, and G are
cells, each containing numerators and denominators separately as a matrix. Finally, the
obtained rational sum of hermitian squares certificate for f = S10,2(X,Y ) is

f
cyc∼

5∑
i=1

λig
∗
i gi

for

g1 = X2Y X2 +
7

44
X3Y X +

7

44
XYX3 − 2

11
X4Y − 2

11
Y X4

g2 = X3Y X − 577

1535
XYX3 +

408

1535
X4Y +

188

1535
Y X4

g3 = XYX3 +
11909

45984
X4Y +

7613

15328
Y X4

g4 = X4Y − 296301

647065
Y X4

g5 = Y X4

and

λ1 = 11, λ2 =
1535

176
, λ3 =

11496

1535
, λ4 =

647065

183936
, λ5 =

1242629

647065
.

This example is not surprising, as it is a particular instance of a larger pattern:

Proposition 3.6. For all m ∈ N we have: S2m,2(X,Y ) ∈ Θ2.

Proof. We first point out that for all m ∈ N we have

S2m,2(X,Y ) =
∑

α+β≤2m−2

XαY XβY X2m−2−α−β

cyc∼
2m−2∑
t=0

(2m− 2− t+ 1)Y XtY X2m−2−t

cyc∼
1

2

2m−2∑
t=0

(2m− 2− t+ 1)(Y XtY X2m−2−t + Y X2m−2−tY Xt)

=
1

2

2m−2∑
t=0

(
(2m− 2− t+ 1)Y XtY X2m−2−t + (t+ 1)Y XtY X2m−2−t

)
cyc∼ m

2m−2∑
t=0

Y XtY X2m−2−t.
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Note that for t = 2s we have Y XtY X2m−2−t cyc∼ Xm−s−1Y X2sY Xm−s−1 ∈ Σ2, hence
we next turn our attention to words Y XtY X2m−2−t for odd t. In such cases we write
t = 2s+ 1 and observe that

Y X2s+1Y X2m−3−2s

cyc∼
1

2

(
(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗(Xs+1Y Xm−s−2 +XsY Xm−s−1)

)
− 1

2
Xm−s−2Y X2s+2Y Xm−s−2 − 1

2
Xm−s−1Y X2sY Xm−s−1.

Therefore each word with odd t is cyclically equivalent to a hermitian square minus two
hermitian squares. These two negative hermitian squares cancel out with the “even” words
for t = 2s and t = 2s+ 2. In fact, each word with odd t cancels one half of these two even
terms, hence all even terms finally cancel out and only one half of the first and the last even
term remains (these two terms are cyclically equivalent). Finally we get

S2m,2(X,Y )

cyc∼
m

2

2m−2∑
t=0

(Xs+1Y Xm−s−2 +XsY Xm−s−1)(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗

+Xm−1Y 2Xm−1.

Example 3.7. We conclude this subsubsection by showing S14,6(X,Y ) 6∈ Θ2. We define
two noncommuting variables and run NCcycSos as in the previous examples:

>> NCvars x y
>> [IsCycEq,G0,V,sohs,g,SDP_data] = NCcycSos(BMV(14,6));

However, this seems to be an infeasible problem. In fact, we shall use the generated data
SDP_data to prove it is strongly infeasible by computing a rational hyperplane separating
Θ2 and S14,6(X,Y ). LetP be the set of all nc polynomials pwith degX p = mindegX p =
8 and degY p = mindegY p = 6. Obviously, S14,6(X,Y ) ∈ P . Each p ∈ P can be repre-
sented by a 35×35 Gram matrix using the basis V from given as output of NCcycSos. An
important observation is that p ∈ Θ2 if and only if there is a positive semidefinite matrix G
satisfying p

cyc∼ V ∗GV , cf. Proposition 2.3.
Let L : P → R be a linear ∗-map nonnegative on Θ2 ∩ P . It can be represented as

p 7→ 〈M,Gp〉 for a symmetric 35× 35 matrix M , where Gp is a Gram matrix for p. Since
L(Σ2) ⊆ [0,∞), the matrix M is positive semidefinite. The fact that L(f) = 0 for all
f

cyc∼ 0, can be modeled with constraints 〈M,H〉 = 0 for all H ∈ A⊥, cf. [9, Section
2.2]. Here, A⊥ is the orthogonal complement of the span of the Av from Section 2.2 in the
set of symmetric matrices. Clearly, it suffices to consider H from a linearly independent
generating subset C of A⊥.

To express L(S14,6(X,Y )) < 0, we first compute a Gram matrix for S14,6(X,Y ). The
matrix A = SDP_data.A and vector b = SDP_data.b model the linear constraints
〈Av, G〉 = bv for v ∈ 〈X,Y 〉 with degX v = 8,degY v = 6. Hence a symmetrized
solution of the linear system

>> SDP_data.A\SDP_data.b
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will be a Gram matrix G for S14,6(X,Y ). Now consider the feasibility SDP

M � 0
s. t. 〈M,G〉 = −35, ∀H ∈ C : 〈M,H〉 = 0.

(Here, −35 is just a convenient scaling factor.) Every feasible point induces a hyperplane
separating Θ2 and S14,6(X,Y ). Solving this SDP with SeDuMi (using the trivial objective
function C = 0) yields a floating point solution M0 in the relative interior of the optimal
face, see Remark 2.4, with minimal eigenvalue δ = 0.3426 and residual norm ε = 6.8 ·
10−9. Thus we can find a rational feasible solution M as explained in Theorem 3.2, using
RprojRldlt. This proves S14,6(X,Y ) 6∈ Θ2.

3.3.2 Noncommutative Motzkin polynomial

The nc polynomial

fMot(X,Y ) = XY 4X + Y X4Y − 3XY 2X + 1 ∈ R〈X,Y 〉

is a noncommutative version of the (commutative) Motzkin polynomial. The Motzkin poly-
nomial is a well-known example of a (commutative) polynomial which is nonnegative on
R2 but is not a sum of squares of polynomials. Similarly, fMot is an example of trace
positive nc polynomial which is not a member of Θ2 [18, Example 4.4]. Indeed, since the
(commutative) Motzkin polynomial is not a sum of squares of polynomials, fMot is not a
member of Θ2. An alternative proof for trace positivity of fMot(X,Y ) follows from the
fact that fMot(X

3, Y 3) ∈ Θ2, as we can show with the aid of the facial reduction procedure
from Subsection 3.2.

Example 3.8. Consider f = fMot(X
3, Y 3) = X3Y 12X3 + Y 3X12Y 3− 3X3Y 6X3 + 1.

To prove that f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables and the nc polynomial f :

>> NCvars x y
>> f = x^3*y^12*x^3 + y^3*x^12*y^3 - 3*x^3*y^6*x^3 + 1;

(2) Define a custom vector of monomials W

>> W = {’’; ’x*y*y’; ’x*x*y’; ’x*x*y*y*y*y’;
’x*x*x*x*y*y’; ’x*x*x*y*y*y*y*y*y’; ’x*x*x*x*y*y*y*y*y’;
’x*x*x*x*x*y*y*y*y’; ’x*x*x*x*x*x*y*y*y’};

(3) For a numerical test whether f ∈ Θ2, run

>> param.V = W;
[IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(f,param);

This yields a floating point Gram matrix G0 that is singular.

(4) Try to round and project the obtained floating point solution G0, feed G0 and
SDP_data into RprojRldlt:
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>> [G,L,D,P,err] = RprojRldlt(G0,SDP_data)

This exits with an error, since unlike in Example 3.5, the rounding and projecting alone
does not yield a rational feasible point.

(5) Instead, let us reexamine G0. A detailed look at the matrix reveals three nullvectors.
We thus run our interactive procedure which aids the computer in reducing the size of
the SDP as in Theorem 3.3.

>> [G,SDP_data] = fac_reduct(f,param)

This leads the computer to return a floating point feasible point G0 ∈ R9×9 and the
data for this SDP, SDP_data. It also stays in interactive mode and the user can inspect
the matrix and enter the nullvector z to be used in the dimension reduction. We feed in
three nullvectors as a matrix of three columns:

K>> z = [0 -1 0; -1 0 0; 0 0 1; 0 -1 0; 0 -1 0; -1 0 0;
0 0 1; -1 0 0; 0 0 1];

return

Inside the interactive routine this enables the computer to produce a positive definite
feasible Ĝ0 ∈ R6×6. Hence we exit the interactive routine.

K>> stop = 1; return

Now, NCSOStools uses Ĝ0 to produce a rational positive semidefinite Gram matrix
G for f , which proves f ∈ Θ2. Like in the Example 3.5, the solution G is a cell
containing two matrices with numerators and denominators of the rational entries of
G. The reader can verify that f

cyc∼ W ∗GW exactly by doing rational arithmetic or
approximately by computing floating point approximation for G and using floating
point arithmetic.

(6) To compute the LDU decomposition PLDLtP t for the rational Gram matrix G of f
with respect to W (where G,L,D are cells, each containing numerators and denomi-
nators separately as a matrix) run

>> [L,D,P] = Rldlt(G)

The obtained rational sum of hermitian squares certificate for fMot(X
3, Y 3) is then

fMot(X
3, Y 3)

cyc∼
6∑
i=1

λig
∗
i gi
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for

g1 = 1− 1

2
X2Y 4 − 1

2
X4Y 2

g2 = XY 2 − 1

2
X3Y 6 − 1

2
X5Y 4

g3 = X2Y − 1

2
X4Y 5 − 1

2
X6Y 3

g4 = X2Y 4 −X4Y 2

g5 = X3Y 6 −X5Y 4

g6 = X4Y 5 −X6Y 3

and
λ1 = λ2 = λ3 = 1, λ4 = λ5 = λ6 =

3

4
.

Remark 3.9. We point out that this yields a rational sum of squares certificate for f̌(x3, y3)
where f̌(x, y) = 1 + x4y2 + x2y4 − 3x2y2 is the commutative Motzkin polynomial.

4 Conclusions
In this paper we considered nc polynomials p in freely noncommuting variables which can
be decomposed as a sum of hermitian squares (and commutators) with a special focus on
nc polynomials with rational coefficients that admit rational decompositions.

We explained how to obtain rational decompositions in theory and practice: if the re-
lated semidefinite programming problems have strictly feasible solutions then the algorithm
we proposed - a variant of Peyrl-Parrilo rounding and projecting method - always yields
a rational (i.e., exact symbolic) decomposition. In the absence of strict feasibility we pro-
posed a variant of the facial reduction to reduce the size of the semidefinite program and
enforce the existence of Slater points.

We implemented both methods in our open source software package NCSOStools
[10] and demonstrated them on several illustrative examples.
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Abstract

In the paper, some new inequalities for the mixed discriminants of positively definite
matrix are established, which are the matrix analogues of inequalities of the well-known
mixed volumes function.
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1 Introduction
Let x1, . . . , xn be a set of nonnegative quantities and let Ei(x) be the i-th elementary
symmetric function of an n-tuple x = x(x1, . . . , xn) of non-negative reals is defined by
E0(x) = 1 and

Ei(x) =
∑

1<j1<···<ji≤n

xj1xj2 · · ·xji , 1 ≤ i ≤ n.

An interesting inequality for the symmetric function was established ([1], also see [2], p.
33) as follows.

Ei(x+ y)

Ei−1(x+ y)
≥ Ei(x)

Ei−1(x)
+

Ei(y)

Ei−1(y)
. (1.1)
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A matrix analogue of (1.1) is the following result of Bergstrom [3].
Let K and L be positive definite matrix, and let Ki and Li denote the sub-matrices

obtained by deleting the i-th row and column. Then

det(K + L)

det(Ki + Li)
≥ det(K)

det(Ki)
+

det(L)

det(Li)
. (1.2)

An interesting proof is due to Bellman [4] (also see [2], p. 67). A generalization of (1.2)
was established by Ky Fan [5] (also see [6-7]). Moreover, we assume all positive definite
matrix are supposed to be symmetric in the article.

There is a remarkable similarity between inequalities for symmetric functions (or deter-
minants of symmetric matrices) and inequalities for the mixed volumes of convex bodies.
In 1991, V. Milman asked if there is version of (1.1) or (1.2) in the theory of mixed volumes
and it was stated as the following open question (see [8]):

Question 1.1. For which values of i is it true that for very pair of convex bodies K and L
in Rn,

Wi(K + L)

Wi+1(K + L)
≥ Wi(K)

Wi+1(K)
+

Wi(L)

Wi+1(L)
? (1.3)

The convex body is the compact and convex subsets with non-empty interiors in Rn.
Wi(K) denotes the quermassintegral of convex body K and Wi+1(K) denotes the mixed
volumes V (K, . . . ,K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i+1

). The sum + is the usual Minkowski vector sum and B

denotes the unit ball.
A theorem by Minkowski provides a fundamental relation between volume and opera-

tions of addition and multiplication of convex bodies by nonnegative reals: If K1, . . . ,Km

are convex bodies, m ∈ N, then the volume of t1K1 + · · · + tmKm is a homogeneous
polynomial of degree n in ti > 0 (see [14]). That is

V (t1K1 + · · ·+ tmKm) =
∑

1≤i1,...,in≤m

V (Ki1 , . . . ,Kin)ti1 · · · tin ,

where the coefficients V (Ki1 , . . . ,Kin) are chosen to be invariant under permutations of
their arguments. The coefficient V (Ki1 , . . . ,Kin) is called the mixed volume of the n-tupe
(Ki1 , . . . ,Kin). Steiner’s formula is a special case of Minkowski’s theorem; the volume of
K + tB, t ≥ 0, can be expanded as a polynomial in t:

V (K + tB) =

n∑
i=0

(n
i

)
Wi(K)ti,

where Wi(K) := V (K, . . . ,K︸ ︷︷ ︸
n−i

, B, . . . , B︸ ︷︷ ︸
i

) is the quermassintegral of convex body K.

A partial answer (L must be a ball) of (1.3) was established by Gianopoulos, Hart-
zoulaki and Paouris [9]).

If K is a convex body and D is a ball in Rn, then for i = 0, . . . , n− 1

Wi(K +D)

Wi+1(K +D)
≥ Wi(K)

Wi+1(K)
+

Wi(D)

Wi+1(D)
. (1.4)
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The answer to the above question is negative; it can be proved that (1.3) is true in full
generality only when i = n − 1 or i = n − 2 (the details see [10]). Moreover, a dual
inequality of (1.4) for the dual quermassintegral of star bodies was proved by Li and Leng
[11].

In the paper, we establish some inequalities for mixed discriminants of positively defi-
nite matrix which are matrix analogues of some mixed volumes inequalities.

2 Mixed discriminants and Aleksandrov’s inequality
Recall that for positive definite n × n matrices K1, . . . ,KN and λ1, . . . , λN ≥ 0, the
determinant of the linear combination λ1K1 + · · ·+λNKN is a homogeneous polynomial
of degree n in the λi (see e.g. [12]),

det(λ1K1 + · · ·+ λNKN ) =
∑

1≤i1,......,in≤N

D(Ki1 , . . . ,Kin)λi1 · · ·λin , (2.1)

where the coefficient D(Ki1 , . . . ,Kin) are chosen to be invariant under permutations of
their arguments. The coefficient D(Ki1 , . . . ,Kin) is called the mixed discriminant of
Ki1 , . . . ,Kin .

The mixed discriminant D(K, . . . ,K, I, . . . , I), with n − k copies of K and k copies
of the identity matrix, I , will be abbreviated by Dk(K). From (2.1), we have

Di(K + λI) =

n−i∑
j=0

(n−i
j

)
λjDi+j(K). (2.2)

Note that the elementary mixed discriminants D0(K), . . . , Dn(K) are thus defined as the
coefficients of the polynomial

det(K + λI) =

n∑
i=0

(n
i

)
λiDi(K). (2.3)

Obviously, D0(K) = det(K) while nDn−1(K) is the trace of K.
The well-known Aleksandrov’s inequality for mixed discriminants can state as follows

(see [13], also see [14], p.383 or [15], p.35):

Lemma 2.1. IfK1,K2, . . . ,Kn are real symmetric positively definite n×n matrices, then

D(K1,K2,K3, . . . ,Kn)
2 ≥ D(K1,K1,K3, . . . ,Kn)D(K2,K2,K3, . . . ,Kn), (2.4)

with equality if and only if K1=λK2 with positive number λ.

3 Inequalities for mixed discriminants of positively definite matrix
Theorem 3.1. Let K be symmetric positively definite matrix and I stands for the identity
matrix and t ≥ 0. If 0 ≤ i ≤ n− 1 and i ∈ N, then the function

g(t) =
Di(K + tI)

Di+1(K + tI)
(3.1)

is an increasing and concave function on [0,+∞).
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Proof. If fi(s) = Di(K + sI), then by the linearity of the mixed discriminant we see that

fi(s+ ε) =

n−i∑
j=0

(n−i
j

)
εjDi+j(K + sI)

= fi(s) + ε(n− i)fi+1(s) + o(ε2).

Hence
dfi(s)

ds
= lim

ε→0

f(s+ ε)− f(s)
ε

= (n− i)fi+1(s). (3.2)

Similarly, we obtain
dfi+1(s)

ds
= (n− i− 1)fi+2(s). (3.3)

From (2.4), we obtain for all 0 ≤ i < n

f2i+1(s)− fi(s)fi+2(s) ≥ 0, (3.4)

with equality if and only if K = µI.
From (3.2), (3.3) and (3.4), we have

dfi(s)

ds
fi+1(s)− f(s)

dfi+1(s)

ds

= f2i+1(s) + (n− i− 1)(f2i+1(s)− fi(s)fi+2(s))

≥ f2i+1(s).

Therefore
dg(s)

ds
=

(
fi(s)

fi+1(s)

)′
=
f ′i(s)fi+1(s)− f(s)f ′i+1(s)

f2i+1(s)

= (n− i)− (n− i− 1)
fi(s)fi+2(s)

f2i+1(s)
. (3.5)

Hence

f(t) =
Di(K + tI)

Di+1(K + tI)

is an increasing and concave function on [0,+∞).

Theorem 3.2. Let K be symmetric positively definite matrix and I stands for the identity
matrix. If 0 ≤ i < n, then

(n− i)Di+2(K)(Di+1(K)2 −Di(K)Di+2(K))

≥ (n− i− 2)Di(K)(Di+2(K)2 −Di+1(K)Di+3(K)). (3.6)
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Proof. Let fi(t) = Di(K + tI) for t ≥ 0 and g(t) = fi(t)
fi+1(t)

, then

dg(s)

ds
= (n− i)− (n− i− 1)

fi(t)fi+2(t)

f2i+1(t)
. (3.7)

By differentiating the both sides of (3.6) again, we have

d2g(s)

ds2
= −(n− i− 1)

×
(n− i)fi+2(t)f

2
i+1(t) + (n− i− 2)fi(t)fi+1(t)fi+3(t)− 2(n− i− 1)fi(t)f

2
i+2(t)

f3i+1(t)
.

(3.8)
From (3.8) and in view of g(s) being a concave function, we obtain

(n− i)fi+2(t)f
2
i+1(t) + (n− i− 2)fi(t)fi+1(t)fi+3(t)− 2(n− i− 1)fi(t)f

2
i+2(t) ≥ 0,

for t ∈ (0,+∞).
This can be equivalently written in the form

(n− i)fi+2(t)
(
f2i+1(t)− fi(t)fi+2(t)

)
≥ (n− i− 2)fi(t)

(
f2i+2(t)− fi+1(t)fi+3(t)

)
.

(3.9)
Hence

(n− i)Di+2(K + tI)
(
Di+1(K + tI)2 −Di(K + tI)Di+2(K + tI)

)
≥ (n− i− 2)Di(K + tI)

(
Di+2(K)2−Di+1(K + tI)Di+3(K + tI)

)
. (3.10)

Notice that fi(t) is continuous function, letting t → 0+ in (3.10), (3.10) reduces to the
inequality in Theorem 3.2.
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Abstract

An edge coloring of a graph G is said to be an odd edge coloring if for each vertex v
of G and each color c, the vertex v uses the color c an odd number of times or does not use
it at all. In [5], Pyber proved that 4 colors suffice for an odd edge coloring of any simple
graph. Recently, some results on this type of colorings of (multi)graphs were successfully
applied in solving a problem of facial parity edge coloring [3, 2]. In this paper we present
additional results, namely we prove that 6 colors suffice for an odd edge coloring of any
loopless connected (multi)graph, provide examples showing that this upper bound is sharp
and characterize the family of loopless connected (multi)graphs for which the bound 6 is
achieved. We also pose several open problems.
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1 Introduction
Throughout the article we mainly follow the terminology and notation used in [1]. A graph
is denoted by G = (V (G), E(G)), where V (G) is the vertex set and E(G) is the edge
set. A graph G is always regarded as being finite (i.e. having finite number of vertices
n(G), and finite number of edges m(G)) with loops and multiple edges allowed. The
parameters n(G) and m(G) are usually called order and size of G, respectively. Whenever
n(G) = 1 we say that G is trivial and whenever m(G) = 0 we say that G is empty. For
X ⊆ V (G) ∪ E(G), the subgraph obtained by removing the vertices and edges from the
set X is denoted by G−X . We refer to the vertices having even (resp. odd) degree as even
(resp. odd) vertices. A graph is called even (resp. odd) whenever all of its vertices are even
(resp. odd).

An odd edge coloring of G is a (not necessarily proper) edge coloring such that each
color class induces an odd subgraph ofG. An odd edge coloring ofG using at most k colors
is referred to as an odd k-edge-coloring, and we say that G is odd k-edge-colorable. If G
admits an odd edge coloring, the odd chromatic index χ′o(G) is defined to be the minimum
integer k for which G is odd k-edge-colorable.

By definition, each loop at a vertex v colored with c contributes 2 to the count of
appearances of c at v. Thus, it is obvious that a necessary and sufficient condition for the
existence of an odd edge coloring of G is the absence of vertices incident only to loops.
Apart from this, the presence of loops does not influence the existence nor changes the value
of the index χ′o(G). Therefore, we choose to restrict our attention to loopless connected
graphs throughout the article.

As a notion, odd edge coloring was first introduced by Pyber in his survey on graph
coverings [5] as an edge decomposition of a graph into (edge disjoint) odd subgraphs. Such
decompositions represent a counterpart to decompositions into even subgraphs, which were
mainly used while proving various flow problems (see e.g. [6]).

In the mentioned work, Pyber considered simple graphs and proved the following result.

Theorem 1.1 (Pyber, 1991). For every simple graph G, it holds that

χ′o(G) ≤ 4 .

He also remarked that the upper bound is realized by a wheel on four spokes W4

and asked whether there is an infinite family of connected graphs for which this bound
is achieved. In 2006, Mátrai [4] presented such a construction, taking an even number of
copies of W4 and an additional vertex v. Choosing an arbitrary edge from the wheel, he
removed the same edge from every copy and connected its two end-vertices with v (see
Fig. 1). From χ′o(W4) = 4 readily follows that the obtained graph has χ′o equal to 4.

A generalization of Theorem 1.1 was successfully applied in solving a problem of facial
parity edge colorings in [2], and its improvement in [3]. In this paper, an analogous result
to Theorem 1.1 is proved for loopless graphs. Namely, in Theorem 11 we prove that 6
colors suffice for an odd edge coloring of any loopless connected graph, and characterize
the family of loopless connected graphs needing 6 colors.

2 Preliminary results
It is an easy matter to characterize the graphs having χ′o ≤ 1 : namely, χ′o(G) = 0 if and
only if G is empty, while χ′o(G) = 1 if and only if G is nonempty and the subgraph of G
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v

Figure 1: A graph with odd chromatic index equal to 4.

induced by its non-isolated vertices is odd. The following result was initially stated in [5],
but for the sake of completeness we present it here with a proof.

Proposition 2.1. For every forest F , it holds that χ′o(F ) ≤ 2.

Proof. It is enough to prove this for an arbitrary tree T . If T is trivial or odd, then χ′o(T ) ≤
1, so suppose this is not the case. We construct an odd 2-edge-coloring of T . Take an even
vertex r as the root of T . To begin with, color the edges incident to r by using the color 1
for all but one such edge, and color this remaining edge by the color 2.

Continue by coloring the incident edges to each vertex v which has one incident edge
already colored as follows:

• if v has even degree in T , then we complete the coloring of its incident edges by
coloring them in the other color (if color 1 was used for the already colored edge,
then we use color 2 for the remaining edges, and vice versa);

• if v has odd degree in T , then we complete the coloring of its incident edges by
coloring them with the same color as the already colored edge.

Since there are no cycles in T , every vertex u 6= r eventually is in a position to have exactly
one of its incident edges colored. Namely, consider the vertices along the unique ru-path
in T and suppose the opposite, i.e. suppose there exist at least one vertex on this path that
never gets in the stated position. Choose the first such vertex after r (denote it by w) on the
tracing of this path. Thus, the predecessor of w gets in the stated position. But this implies
that w also gets in position, a contradiction.

Therefore, the above procedure produces an odd 2-edge-coloring of T .

Let G be a graph and T be an even-sized subset of V (G). Following [1], a spanning
subgraph H of G is said to be a T -join if dH(v) is odd for all v ∈ T and even for all
v ∈ V (G)\T . For example, if P is an xy-path in G, the spanning subgraph of G with edge
set E(P ) is an {x, y}-join. Note that by removing (resp. adding) a cycle (as an edge set)
from (resp. to) a T -join we again obtain a T -join. Thus, whenever a T -join exists, there
also exists such a forest (resp. coforest).

A classical result about T -joins (see [1]) is that whenever G is connected, there exists
a T -join for every even-sized subset T of V (G). Consider a connected graph G of even
order, and let T be the set of its even vertices. The handshake lemma assures that T has
even size, hence there exists a T -join H . By putting K := G − E(H) we obtain an odd
factor of G, i.e. a spanning odd subgraph. Note that if the T -join H was chosen to be a
forest, then the obtained odd factor K satisfies the following statement.
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Proposition 2.2. Given a connected graph G of even order, there exists an odd factor K
of G such that G− E(K) is a forest.

3 Tight upper bound for χ′
o

In this section, through a number of propositions we derive the main result of the paper, a
general tight upper bound χ′o ≤ 6 with a characterization of the loopless connected graphs
for which the bound is achieved.

Proposition 3.1. Given a loopless connected graph G of even order, it holds that

χ′o(G) ≤ 3 .

If furthermore G is even, then χ′o(G) ≤ 2 .

Proof. By Proposition 2.2, we can take an odd factor K of G such that G − E(K) is a
forest denoted by F . From Proposition 2.1 we infer that

χ′o(G) ≤ χ′o(F ) + χ′o(K) ≤ 2 + 1 = 3 .

If in addition G is even, then F is a spanning odd forest of G, giving

χ′o(G) ≤ χ′o(F ) + χ′o(K) ≤ 1 + 1 = 2 ,

which completes the proof.

Let G be a loopless graph. By a bouquet of parallel edges in G we refer to a subset of
E(G) consisting of all the edges linking a pair of adjacent vertices.

Figure 2: A loopless graph (left) and its reduction (right).

The reduction red(G) of a loopless graph G is defined to be a spanning subgraph of
G obtained by the following change at every bouquet of parallel edges: remove maximum
possible even number of edges without altering the adjacency relation in V (G) (see Fig. 2
for an example). Obviously, up to isomorphism, each loopless graph has a unique reduc-
tion. We say that a loopless graph G is reduced whenever its multiplicity is at most 2, i.e.
when G ∼= red(G).

It was already remarked in [2] that an odd k-edge-coloring of its reduction readily
provides an odd k-edge-coloring of any loopless graphG, since the removed edges between
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any two adjacent vertices may all adopt one arbitrary color used on the remaining edges
between them in red(G). Hence,

χ′o(G) ≤ χ′o(red(G)) . (3.1)

Remark 1. Regarding the inequality (3.1), suppose that a graph G satisfies χ′o(G) <
χ′o(red(G)). In respect of the reduced graph red(G), assume G is minimal such graph
in terms of size. Consider an arbitrary optimal odd edge coloring of G. Then, by the
minimality ofG, on each bouquet of parallel edges no color appears more than once, unless
possibly on a bouquet of size 2. In other words, in every optimal odd edge coloring, on any
bouquet of parallel edges in G that reduces in size for red(G), no color is repeated. Hence,
whenever the inequality (3.1) is strict, it holds that χ′o(red(G)) ≥ 4.

A loopless graph G on three pairwise adjacent vertices is referred to as a Shannon triangle.
Denote the sizes of its bouquets of parallel edges by p, q, r in non-increasing order. We
say that the considered Shannon triangle is of type (p, q, r). In particular, whenever p, q, r
are even, we speak of a Shannon triangle of even type. Observe that there are exactly four
different types of reduced Shannon triangles and only one of them is of even type (depicted
in Fig. 3).

Next, we prove that (3.1) is always an equality for the case of Shannon triangles. Fur-
thermore, we prove that the reduced Shannon triangles of different types attain odd edge
chromatic indices for all integer values between 3 and 6.

Proposition 3.2. Given a Shannon triangle G, let (p, q, r) be the type of red(G). Then

χ′o(G) = χ′o(red(G)) = p+ q + r. (3.2)

(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 3: The four types of Shannon triangles with odd chromatic indices 3, 4, 5, and 6, respec-
tively. The last one is of even type.

Proof. Observe that in an arbitrary odd edge coloring of a Shannon triangle, no color ap-
pears altogether an even number of times on any bouquet. Namely, denote the vertices of
the triangle by u, v, and w and suppose that on the edges between u and v some color,
say 1, appears in total an even number of times. This implies that 1 appears overall an odd
number of times on each of the remaining two bouquets. Thus, 1 appears an even number
of times at the vertex w, a contradiction.

This clearly implies that no color is repeated in an arbitrary odd edge coloring of a
reduced Shannon triangle. Hence the second equality in (3.2) is established.
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Next, we prove the first equality. Suppose there exists a Shannon triangle G for which
χ′o(G) < χ′o(red(G)). In respect of the reduced graph red(G), assume G is minimal such
graph in terms of size. Then, Remark 1 and the above observation imply that no color is
repeated in an optimal odd edge coloring of G. This readily gives χ′o(G) > χ′o(red(G)), a
contradiction.

In the following, we give several other propositions leading to the main theorem of
this article, but first we introduce some additional notation. Let v be a vertex of a reduced
graph G and Sv be the subgraph of G induced by the set of edges incident to v, i.e. Sv :=
G[E(v)]. Each pair of parallel edges from this subgraph is said to be a petal of v. Each
edge of a petal is referred to as a petal edge of v. The other edges incident to v are called
leaf edges of v. Denote by p(v) and l(v) the number of petals and number of leaf edges of
v, respectively.

Proposition 3.3. If a connected reduced graph G has a non-cutvertex v for which either
p(v) is odd or l(v) 6= 0, then χ′o(G) ≤ 5.

Proof. By Proposition 3.1, we may assume n(G) is odd. Suppose v is a non-cutvertex of
G such that either p(v) is odd or l(v) 6= 0. We consider the four possible cases according
to the parities of p(v) and l(v):

(i) p(v) is odd and l(v) is even. By Proposition 3.1, there exists an odd 3-edge-coloring
ϕ of G− v with color set {1, 2, 3}. We extend ϕ to G by using two additional colors
4 and 5: color by 4 each leaf edge of v and precisely one petal edge from each petal
of v; color by 5 the remaining petal edges of v. We obtain an odd 5-edge-coloring of
G.

(ii) p(v) is odd and l(v) is odd. Let e be a leaf edge of v. Let F be a forest in G − v
(as in the proof of Proposition 3.1), and add v together with the leaf edge e to F . We
obtain a forest F ′ in the subgraph G′ := G− (E(v)\e). Since two colors suffice for
an odd edge coloring of F ′ and the edge set E(G′)\E(F ′) induces an odd subgraph
of G′, by using a third color for the edges from E(G′)\E(F ′) we obtain an odd
3-edge-coloring ϕ of G′. We extend ϕ to an odd 5-edge-coloring of G as in (i).

(iii) p(v) is even and l(v) is odd. In this case, we use a similar approach as in (ii), but
take a petal edge of v as the edge e, instead. Again, we finish as in (i).

(iv) p(v) is even and l(v) is even and positive. Let ϕ be an odd 3-edge-coloring of G− v
with color set {1, 2, 3}. Extend ϕ to G by coloring with 4 one leaf edge of v and
precisely one petal edge of each petal of v, and moreover, by coloring with 5 all the
remaining uncolored edges incident to v. We obtain an odd 5-edge-coloring of G.

Whenever l(v) = 0, we refer to Sv as the orchid at v. According to the parity of p(v),
we distinguish between even and odd orchids.

A graph obtained from a path of length k ≥ 1 in which every edge is replaced by two
parallel edges is called an open k-necklace. Observe that every open k-necklace is an even
graph of order k + 1. Similarly, a graph obtained from a cycle of length k ≥ 2 in which
every edge is replaced by two parallel edges is called a closed k-necklace. Every closed
k-necklace is an even graph of order k.
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Proposition 3.4. The odd chromatic index of an open k-necklace G satisfies

χ′o(G) =

{
2 if k is odd ,
4 if k is even .

Proof. Assume k is odd. Since G needs at least two colors for an odd edge coloring,
Proposition 3.1 implies χ′o(G) = 2. We construct a particular odd 2-edge-coloring of G
that we will use in Proposition 8. Fix one of the two natural orders for the bouquets of
parallel edges of G, and color as follows:

1) for the edges of the first, third, fifth,. . . , k-th such bouquet use each of the colors 1
and 2 once;

2) for the edges of the second, fourth, sixth,. . . , (k− 1)-st such bouquet use the color 1
twice.

Assume now k is even. First we establish the inequality χ′o(G) ≤ 4 by constructing an
odd 4-edge-coloring of G. Again, by fixing one of the two natural orders for the bouquets
of G: on the edges of the first (k − 1) bouquets apply the odd 2-edge-coloring of 1) and
2); for the edges of the k-th bouquet use each of the colors 3 and 4 once.

Second we prove χ′o(G) = 4. Suppose χ′o(G) < 4 and consider an optimal odd edge
coloring of G. Fix one of the two natural orders for the bouquets of G. Obviously, the first
bouquet is dichromatic, i.e. two colors are used for its edges. Hence, χ′o(G) < 4 implies
that the second bouquet is monochromatic. But then the third bouquet is dichromatic,
etc. We deduce that the k-th bouquet is monochromatic. This is a contradiction, hence
χ′o(G) = 4.

Proposition 3.5. The odd chromatic index of a closed k-necklace G satisfies

χ′o(G) =


2 if k is even ,
4 if k is odd , k ≥ 5,

6 if k = 3 .

Proof. Assume k is even. Since G needs at least two colors for an odd edge coloring,
Proposition 3.1 implies χ′o(G) = 2.

Assume next k is odd and k ≥ 5. First we prove χ′o(G) ≤ 4 by constructing an odd
4-edge-coloring of G. Remove a vertex v from G to obtain the open (k − 2)-necklace
G− v. Use the odd 2-edge-coloring of G− v constructed in Proposition 3.4 with a single
change of color: for one edge from the last bouquet instead of using the color 2 use the
color 3. Now color the edges of the orchid at v:

• for the uncolored petal of v “neighboring” a bouquet from G− v colored by 1 and 2,
use the color 2 for both edges;

• for the remaining uncolored petal of v use the colors 2 and 4 once each.

Now, suppose χ′o(G) < 4 and consider an optimal odd edge coloring of G. Obviously, at
each vertex the orchid is dichromatic with three of its edges having the same color. Thus,
any two consecutive bouquets in G are such that one is monochromatic and the other is
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dichromatic. Hence, precisely half of the k bouquets in G are monochromatic. This is a
contradiction with the parity of k.

Finally, note that for k = 3, the closed k-necklace G is the Shannon triangle of type
(2, 2, 2) and thus χ′o(G) = 6 (see Proposition 3.2).

We are now in a position to prove our main result for loopless 2-connected graphs.

Proposition 3.6. Let G be a loopless 2-connected graph which is not isomorphic to a
Shannon triangle of even type. Then χ′o(G) ≤ 5 .

Proof. By Proposition 3.1, inequality (3.1) and Proposition 3.3, we may assume that G
has odd order n and is a 2-connected reduced graph with an even orchid at every vertex.
Denote by v a vertex of maximum degree in G. If the orchid Sv has precisely two petals,
then G is a closed n-necklace with n ≥ 5 (namely, if n = 3 then G would be the Shannon
triangle of type (2, 2, 2)). Hence, in this case Proposition 3.5 implies χ′o(G) = 4.

So, we may assume Sv has at least four petals. Consider the graph G − v and denote
by u1, u2, . . . , u2s the neighbors of v in G. By Proposition 3.1, we have χ′o(G − v) = 2.
Consider an initial odd 2-edge-coloring of G − v with color set {1, 2} such that the edges
of the spanning odd forest F constructed in the proof of Proposition 3.1 are colored by 1.

Denote byM the collection of maximal paths in F that have non-empty intersection
with the set {u1, u2, . . . , u2s}. Note that every member ofM is non-trivial and has both
end-vertices among the leaves of F . We distinguish between the following three cases:

(i) At least one P ∈M does not have both end-vertices in the set {u1, u2, . . . , u2s}. Start
a tracing of one such path P from an end-vertex not belonging to {u1, u2, . . . , u2s}.
Let u be the first vertex from V (P ) ∩ {u1, u2, . . . , u2s} met on this tracing, and
denote by P0 the traced subpath of P . Beginning at the edge incident to u, recolor
the edges of P0 by the colors 3 and 4, alternatingly. Color the petal edges of v in the
following way: use the color 4 for one vu-edge, while using the color 1 for all the
remaining petal edges incident to v. Thus, we obtain an odd 4-edge-coloring of G.

(ii) Each member of M has both end-vertices in the set {u1, u2, . . . , u2s} and there is
such a path P ∈ M of length at least 2. Denote by ui and uj the end-vertices of P .
We recolor the edges of P by using the colors 3, 4 and 5 as follows: the edge incident
to ui is recolored by 3 and the edge incident to uj is recolored by 4. The other edges
along P are recolored in such a way to obtain a proper edge coloring of P , which is
clearly achievable. Color the petal edges of v in the following way:

• use color 4 for both vuj-edges;
• use color 4 for one vui-edge;
• use color 1 for the remaining petal edges of v.

Thus, we obtain an odd 5-edge-coloring of G.

(iii) Each member ofM has both end-vertices in the set {u1, u2, . . . , u2s} and there is no
such path of length at least 2. In this case, the edges of F incident to at least one of
the vertices u1, u2, . . . , u2s form a matching on the set {u1, u2, . . . , u2s}. Without
loss of generality, suppose this matches u2i−1 with u2i, for every i ∈ {1, 2, . . . , s}.
From the initial odd 2-edge-coloring of G− v, we obtain an odd 5-edge-coloring of
G as follows:
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• recolor the edge u1u2 in F with the color 5;
• use both the colors 1 and 4 once for the petal vu1-edges;
• use both the colors 3 and 4 once for each of the petals vu2, vu3, . . . , vu2s−1;
• use both the colors 3 and 5 once for the petal vu2s-edges (here we make use of

the fact that s ≥ 2).

This establishes the inequality χ′o(G) ≤ 5 , which completes the proof of the state-
ment.

1

2

3 4
3

3

3

4

1 1 2

1

Figure 4: An odd 4-edge-coloring.

Next we prove that 5 colors suffice for an odd edge coloring of any loopless connected
graph which is not a block.

Proposition 3.7. If G is a loopless graph of connectivity κ = 1, then χ′o(G) ≤ 5 .

Proof. We may restrict to reduced graphs of connectivity κ = 1. Suppose the statement
is not valid, and let G be a minimal counterexample in terms of the number of blocks.
By Propositions 3.1 and 3.3, G has odd order and is a connected reduced graph with an
even orchid at every non-cutvertex. Observe that n(G) ≥ 4 (for otherwise κ = 1 implies
m(G) ≤ 4).

Choose an end-block B of G, with s being the relevant cut-vertex, such that the graph
G′ := G−V (B−s) satisfies the inequality χ′o(G

′) ≤ 5 . Namely, if the graphG has more
than two blocks then we merely choose B to be an arbitrary end-block of G : since G′ is
of connectivity 1 and has one block less than G, the choice of G assures that χ′o(G

′) ≤ 5 .
And, if G has only two blocks, Proposition 3.6 and Fig. 4 assure that at least one of these
two blocks will do: G cannot be the odd 4-edge-colorable graph depicted in Fig. 4.

Observe that B is an even graph having odd order. Namely, every v ∈ V (B)\{s} has
an even orchid Sv . Hence, the same is true for the vertex s in B, proving that B is an even
graph. Regarding the order, an even n(B) would imply that n(G′) is also even and hence
the inequalities χ′o(B) ≤ 2 and χ′o(G

′) ≤ 3 would yield the bound χ′o(G) ≤ 5 , which is
a contradiction.

So, B − s is an even graph of even order. Take an odd factor K of B − s and color the
edges from B − s by using the color 1 for E(K) and the color 2 for E(B − s − E(K)).
Extend this to an edge coloring of B by using the color 1 for each edge incident to s in
B. Use an odd 5-edge-coloring of G′ with color set {1 , 2 , . . . , 5} such that the color 1
is used for at least one edge incident to s in G′. These two edge colorings of B and G′

together constitute an odd 5-edge-coloring of G. This is in contradiction with the choice of
G, which completes the proof of the statement.
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By now, we have assembled all the parts for a proof of the main theorem in this article.
It characterizes the Shannon triangles of even type as the only loopless connected graphs
needing the maximum 6 colors for an odd edge coloring.

Theorem 3.8. For every loopless connected graph G, it holds that

χ′o(G) ≤ 6 .

Equality is achieved only for the Shannon triangles of even type.

Proof. Straightforward from Propositions 3.6 and 3.7.

4 Concluding remarks and further work
Based on several additional observations, we propose three conjectures.

Conjecture 4.1. For every loopless graph G, it holds that

χ′o(G) = χ′o(red(G)) . (4.1)

From Remark 1, we infer that Conjecture 4.1 is true whenever χ′o(red(G)) ≤ 3 and
Theorem 3.8 assures its validity whenever χ′o(red(G)) = 6. Furthermore, Propositions 3.4
and 3.5 imply that whenever red(G) is a necklace (open or closed), (4.1) stands. Namely,
it is readily deduced from Remark 1 that if χ′o(red(G)) ≤ 4 and every bouquet of red(G)
has size 2, then the equality (4.1) is fulfilled.

In regard to Proposition 3.6, we propose the following

Conjecture 4.2. For every loopless 2-connected graph G whose reduction is neither the
Shannon triangle of type (2, 2, 1) nor of type (2, 2, 2), it holds that

χ′o(G) ≤ 4 .

Furthermore, we believe that an even stronger statement is true. Namely, we propose
that the bound in Theorem 3.8 could be further reduced, by excluding the graphs whose
reductions are isomorphic to the Shannon triangle of type (2, 2, 1).

Conjecture 4.3. For every loopless connected graph G whose reduction is neither the
Shannon triangle of type (2, 2, 1) nor of type (2, 2, 2), it holds that

χ′o(G) ≤ 4 .

Assuming the validity of Conjecture 3, note that any possible counterexample G to
Conjecture 4.1 must satisfy χ′o(G) = 3 and χ′o(red(G)) = 4.

Another direction for further work is to provide an answer to the following open prob-
lem.

Problem 4.4. Characterize the loopless graphs which are odd 2-edge-colorable.
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Abstract

A face of an edge colored plane graph is called e-loose if the number of colors used
on its edges is at least three. The e-looseness of a plane graph G is the minimum positive
integer k such that any edge coloring of G with k colors involves an e-loose face. In this
paper we determine tight lower and upper bounds for the e-looseness of connected plane
graphs. These bounds are expressed by linear polynomials of the number of faces.

Keywords: Plane graph, edge coloring.

Math. Subj. Class.: 05C10, 05C15

1 Introduction
We use the standard terminology according to Bondy and Murty [1]. All considered graphs
are undirected, finite, loopless, multiple edges are allowed.

Let G = (V,E, F ) denote a connected plane graph with the vertex set V , the edge set
E and the face set F . We say that two edges of G are face-independent if they are not
incident with the same face. Two edges of G are face-adjacent if they are consecutive
edges of a facial trail of some face. The medial graph M(G) of G is the simple graph
obtained as follows. For each edge e of G insert a vertex m(e) in M(G). Join two vertices
of M(G) if the corresponding edges are face-adjacent in G. The embedding of G induces
the embedding of M(G).

Edge colorings of graphs embedded on surfaces with face-constrains have recently
drawn a substantial amount of attention, see [5, 6, 7, 12] and references therein. There are
two questions derived from hypergraph colorings that one may ask in this setting:

Question 1.1. What is the minimum number of colors needed to color the edges of a
connected plane graph in such a way that each of its faces is incident with edges of at least
two different colors?

E-mail address: julius.czap@tuke.sk (Július Czap)
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Question 1.2. What is the maximum number of colors that can be used in an edge coloring
of a connected plane graph in such a way that each of its faces is incident with edges of at
most two different colors?

The following result gives the answer to Question 1.1.

Theorem 1.3. Every connected plane graph (on at least two edges) has an edge coloring
with at most 3 colors such that each of its faces is incident with edges of at least two different
colors. Moreover, if G is simple, then 2 colors are sufficient.

Proof. First we show that every connected plane graph without faces of size two has an
edge coloring with 2 colors such that these two colors appear on every face. Let G be such
a plane graph and let M(G) be its medial graph. Add edges to M(G) to obtain a plane
triangulation T . By the Four Color Theorem, T has a proper vertex coloring which uses 3
or 4 colors. Combine the first color class with the second, and combine the third with the
fourth. This yields a 2-coloring of the graph T . It is easy to check that each face of T is
incident with vertices of two different colors. This vertex coloring induces a required edge
coloring of G.

Now assume that the claim does not hold for a connected plane graph with faces of size
two. Let G be a counterexample on minimum number of edges. Let e be an edge which
is incident with faces f and g, where f has size two. Let G − e be the graph obtained
from G by removing the edge e. The graph G − e is not a counterexample because it has
fewer edges than G. Consequently, it has a required coloring. Let h be the face in G − e
corresponding to the faces f and g in G. Extend the coloring of G− e to a coloring of G in
the following way. If two colors appear on h, then color e with the third color. Otherwise
(three colors appear on h) we color e with a color which does not appear on the second
edge of f . This means that the minimum counterexample does not exist.

There are graphs which require three colors for such a coloring, for example the
connected graph on two vertices and three edges.

In this paper, we focus on Question 1.2. A face of an edge colored plane graph is called
monochromatic or bichromatic if the number of colors used on its edges is one or two,
respectively. A face which is neither monochromatic nor bichromatic is called edge loose
(or shortly e-loose). The edge looseness (or shortly e-looseness) of a plane graph G is the
minimum positive integer k such that any surjective k-edge-coloring involves an e-loose
face. This parameter of G will be denoted by els(G). The e-looseness is well defined for
all plane graphs having at least one face incident with at least three different edges. (Note
that every connected plane graph on at least four vertices has such a face.) Throughout the
paper, we will consider only such graphs.

2 Upper bounds
2.1 1-connected plane graphs

Theorem 2.1. Let G = (V,E, F ) be a connected plane graph. Then els(G) ≤ |F | + 2.
Moreover, this bound is sharp.

Proof. Let ϕ be an edge coloring of G such that each of its faces is either monochromatic
or bichromatic. First we show that ϕ uses at most |F |+ 1 colors. Clearly, we can assume
that ϕ uses at least two colors. This means that at least one face is bichromatic, say f1. Let
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f2 be a face of G adjacent to f1. There is at most one color which appears on f2 and does
not appear on f1, since the faces f1 and f2 share an edge and at most two colors occur on
f2. The graphG is connected, therefore we can number the faces f1, f2, . . . , f|F | ofG such
that for every i ≥ 2 the face fi is adjacent to a face fj for some j < i. Using the argument
described above, there is at most one color which appears on fj and does not appear on
f1, . . . , fj−1. Consequently, ϕ uses at most 2 + (|F | − 1) colors. This means that every
edge coloring with at least |F |+ 2 colors involves an e-loose face.

Now we prove that this upper bound is tight. Let H be a connected plane graph on at
least three vertices. We insert a new vertex into each face ofH and join each new vertex by
an edge inside the corresponding face to exactly one of its vertices. In this way we obtain
a 1-connected plane graph H̃ . Clearly, we added |F (H)| edges to H and these new edges
are face-independent in H̃ . If we color these face-independent edges with distinct colors
and all other edges with the same color, then we obtain an edge coloring of H̃ such that
every face is bichromatic. Hence, els(H̃) ≥ |F (H)|+ 2 = |F (H̃)|+ 2.

2.2 2-connected plane graphs

When G is 2-connected, the bound from Theorem 2.1 can be improved by one.
Let us recall that the (geometric) dual G∗ = (V ∗, E∗, F ∗) of a plane graph G =

(V,E, F ) can be defined as follows: Corresponding to each face f of G there is a vertex
f∗ of G∗, and corresponding to each edge e of G there is an edge e∗ of G∗; two vertices f∗

and g∗ are joined by the edge e∗ in G∗ if and only if their corresponding faces f and g are
separated by the edge e in G (an edge separates the faces incident with it).

Theorem 2.2. Let G = (V,E, F ) be a 2-connected plane graph. Then els(G) ≤ |F |+ 1.
Moreover, this bound is sharp.

Proof. Let ϕ be an edge coloring of G such that every face is either monochromatic or
bichromatic. This coloring induces a coloring of the dual G∗ in a natural way. Observe
that at most 2 colors appear at any vertex of G∗. Let us choose one edge from each
color class, and let the chosen edges induce the subgraph H of G∗. Each component of
H is either a path or a cycle, since the graph G∗ does not contain any loop. Therefore,
2|E(H)| =

∑
v∈V (H) degH(v) ≤ 2|V (H)| ≤ 2|V (G∗)| = 2|F (G)|. Since the number of

colors used by ϕ equals |E(H)|, we deduce that ϕ uses at most |F (G)| colors.
To see that the bound is tight consider the plane embedding of the complete bipartite

graph K2,n, see Figure 1. This plane graph has n faces and an n-edge-coloring such that
every face is bichromatic.

1

1 2

2

3

3

n − 2

n − 2

n − 1

n − 1 n

n

Figure 1: A plane drawing of K2,n.
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2.3 3-connected plane graphs

Lemma 2.3. Let G = (V,E, F ) be a 3-connected plane triangulation. Let t denote the
maximum number of disjoint cycles in its dual. Then els(G) = 1

2 |F |+ 1 + t.

Proof. AnyM2-edge coloring (being an edge coloring of a graph such that at most 2 colors
appear at any vertex, see [2, 3]) of the dual graph G∗ corresponds to an edge coloring of G
with property that every face ofG is incident with edges of at most two different colors and
vice versa. The graph G∗ is cubic, since G is a plane triangulation. In [3], it was proved
that the maximum number of colors that can be used in an M2-edge coloring of a cubic
plane graph H is equal to |V (H)|

2 + t, where t is the maximum number of disjoint cycles in
H . Consequently, els(G) = |V (G∗)|

2 + t+ 1 = |F (G)|
2 + t+ 1.

Theorem 2.4. Let G = (V,E, F ) be a 3-connected plane triangulation. Let g denote the
girth of its dual. Then

• els(G) ≤ 5
6 |F |+ 1 if g ≥ 3,

• els(G) ≤ 3
4 |F |+ 1 if g ≥ 4,

• els(G) ≤ 7
10 |F |+ 1 if g ≥ 5.

Moreover, these bounds are sharp.

Proof. It follows from Lemma 2.3, since the number of disjoint cycles in the dual G∗ is
not greater than |V (G∗)|

g = |F (G)|
g .

By Lemma 2.3 we can easily prove that the bounds are attained on the duals of graphs
shown in Figure 2.

Figure 2: The duals of these graphs show that the bounds are tight.

Conjecture 2.5. Let G = (V,E, F ) be a 3-connected plane graph. Then els(G) ≤
5
6 |F |+ 1.

3 Lower bounds
A matching of G is a set of pairwise disjoint edges, and a maximum matching is one of
maximum cardinality.

Let c(H) denote the number of components of a graph H .

Lemma 3.1. Let G be a connected plane graph and let G∗ be its dual. Let M∗ be a
matching in G∗. Then els(G) ≥ |M∗|+ c(G∗ −M∗) + 1. Moreover, this bound is sharp.
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Proof. We color the edges of the matching M∗ with distinct colors and use an additional
new color for the edges of each component of G∗−M∗. Thus, we obtain an edge coloring
of the dual graph G∗ such that at most 2 colors appear at any vertex of G∗. This coloring
induces a coloring of G in which every face is either monochromatic or bichromatic.

To see that the bound is sharp, letG be a plane graph whose dual is a 2r-sided prism. The
2r-sided prismH2r, r ≥ 2, consists of the vertex setV = {u1, u2, . . . , u2r, v1, v2, . . . , v2r}
and the edge set E = {uiui+1, vivi+1, uivi|i = 1, . . . , 2r}, where 2r + 1 := 1. The set
of faces consists of two 2r-gonal faces f1 = [u1, . . . , u2r] and f2 = [v1, . . . , v2r] and 2r
quadrangles [uiui+1vi+1vi] for i = 1, 2, . . . , 2r, see Figure 3 for illustration.

Figure 3: A 2r-sided prism.

Let M = {uiui+1, vivi+1|i = 1, 3, 5, . . . , 2r− 1} be a matching of H2r. Observe that
|M | = 2r and c(H2r −M) = r. Therefore els(G) ≥ 3r+1. On the other hand, the graph
H2r is a simple 3-connected cubic plane graph, hence its dual (the graph G) is a simple
triangulation. By Theorem 2.4 we have els(G) ≤ 3

4 · 4r + 1.

Corollary 3.2. Let G be a connected plane graph and let G∗ be its dual. Let M∗ be a
maximum matching in G∗. Then els(G) ≥ |M∗|+ 2.

Proof. It immediately follows from Lemma 3.1, since c(G∗ −M∗) ≥ 1.

Since there are 2-connected (and 1-connected) graphs G with arbitrarily many faces
which have els(G) ≤ 4 (Take a plane drawing of the cycle C = v1v2 . . . v3n. Add n
vertices u1, u2, . . . , un to the inner part of C and join ui with v3i−2 and v3i as it is depicted
in Figure 4. It is easy to see that the e-looseness of the obtained graph is four.), there is
no nontrivial lower bound on els(G) expressed by a linear polynomial of |F | if G is not
3-connected. Hence, in the remaining part of the paper we will investigate e-looseness
of 3-connected plane graphs G. Since the dual of G is a simple plane graph, we may
apply structural properties of planar graphs on the dual graph; in particular, we will use the
following one.

u2

v6v4

v5

v2

v1

u1

v3

v9

v8

v7

u3

Figure 4: A graph G with ”many” faces and els(G) = 4.
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Theorem 3.3. [11] Let G be an n-vertex 3-connected planar graph with n ≥ 78. Let δ
denote the minimum degree of G and let M be a maximum matching in G. Then,

• |M | ≥ n+4
3 if δ ≥ 3,

• |M | ≥ 3n+8
7 if δ ≥ 4,

• |M | ≥ 9n+20
19 if δ ≥ 5.

Note that, if a planar graph G is 4-connected, then it has a matching of size
⌊
|V (G)|

2

⌋
.

This immediately follows from Tutte’s result [14]: every 4-connected planar graph contains
a Hamiltonian cycle.

Lemma 3.4. LetG = (V,E, F ) be a 3-connected plane graph. Then it has at least |V |2 +2
faces. Moreover, this bound is tight.

Proof. The minimum degree of G is at least 3, since it is 3-connected. Using the hand-
shaking lemma we have 2|E| =

∑
v∈V deg(v) ≥ 3|V |. Consequently, |E| ≥ 3

2 |V |. Using
this fact and the Euler’s polyhedral formula |V | − |E|+ |F | = 2 we obtain |F | ≥ 2 + |V |2 .

This bound is attained for every 3-connected cubic plane graph.

Using Corollary 3.2, Theorem 3.3 and Lemma 3.4 we can prove the following.

Theorem 3.5. Let G = (V,E, F ) be a 3-connected plane graph on at least 152 vertices.
Let g be the girth of G. Then,

• els(G) ≥ |F |+4
3 + 2 if g ≥ 3,

• els(G) ≥ 3|F |+8
7 + 2 if g ≥ 4,

• els(G) ≥ 9|F |+20
19 + 2 if g ≥ 5.

Moreover, these bounds are sharp.

Proof. The 3-connectedness of G implies that its dual G∗ is also 3-connected, hence we
can use Theorem 3.3 for G∗. By Lemma 3.4, |V (G∗)| = |F (G)| ≥ |V (G)|

2 + 2 ≥ 78. It is
easy to check that n+4

3 ≤ 3n+8
7 ≤ 9n+20

19 for n ≥ 2. As g(G) ≤ δ(G∗), the result follows
from Corollary 3.2 and Theorem 3.3. The sharpness of these bounds follows from Theorem
3.6.

Theorem 3.6. For any integer n ≥ 4 there exists a 3-connected cubic plane graph G =
(V,E, F ) with girth g such that

• g = 3, |F | = 3n− 4 and els(G) = n+ 2,

• g = 4, |F | = 7n− 12 and els(G) = 3n− 2,

• g = 5, |F | = 19n− 36 and els(G) = 9n− 14.

Proof. Let T be a simple plane triangulation on n ≥ 4 vertices. Let Gi be the graph
obtained from T by inserting the configurationHi, shown in Figure 5, into each of its faces,
for i = 3, 4, 5.

Any plane triangulation on n vertices has 2n− 4 faces, therefore
|F (G∗3)| = |V (G3)| = n+ 2n− 4 = 3n− 4,
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H3 H4 H5

Figure 5: A construction of triangulations with edge-connectivity 3, 4 and 5.

|F (G∗4)| = |V (G4)| = n+ 3(2n− 4) = 7n− 12 and
|F (G∗5)| = |V (G5)| = n+ 9(2n− 4) = 19n− 36.
In [2] it was proved that K2(G3) = n+1, K2(G4) = 3n− 3 and K2(G5) = 9n− 15,

where K2(Gi) denotes the maximum number of colors used in an M2-edge coloring of
Gi, i = 3, 4, 5. Consequently, for the duals of these graphs it holds els(G∗3) = n + 2,
els(G∗4) = 3n− 2 and els(G∗5) = 9n− 14.

Observe, that each minimum edge-cut of size g in Gi corresponds to a cycle in G∗i and
vice versa, therefore, the edge connectivity of the graph Gi is equal to the girth of the dual
graph G∗i . The edge connectivity of Gi is equal to i, for i = 3, 4, 5, since the tetrahedron,
octahedron and icosahedron have edge connectivities 3, 4 and 5, respectively.

Finally, note that the vertex version of Question 1.2 was investigated in [4], where it
was proved that the vertex looseness of a connected plane graph G equals the maximum
number of vertex disjoint cycles in the dual graph G∗ increased by 2. Vertex looseness of
triangulations on closed surfaces was studied in [8, 9, 10, 13].
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Abstract

Bargraphs are lattice paths in N2
0, which start at the origin and terminate immediately

upon return to the x-axis. The allowed steps are the up step (0, 1), the down step (0,−1)
and the horizontal step (1, 0). The first step is an up step and the horizontal steps must
all lie above the x-axis. An up step cannot follow a down step and vice versa. In this
paper we consider levels, which are maximal sequences of two or more adjacent horizontal
steps. We find the generating functions that count the total number of levels, the leftmost
x-coordinate and the height of the first level and obtain the generating function for the mean
of these parameters. Finally, we obtain the asymptotics of these means as the length of the
path tends to infinity.

Keywords: Bargraphs, levels, generating functions, asymptotics.

Math. Subj. Class.: 05A15, 05A16

1 Introduction
Bargraphs are lattice paths in N2

0, starting at the origin and ending upon first return to the
x-axis. The allowed steps are the up step, u = (0, 1), the down step, d = (0,−1) and the
horizontal step, h = (1, 0). The first step has to be an up step and the horizontal steps must
all lie above the x-axis. An up step cannot follow a down step and vice versa. It is clear
that the number of down steps must equal the number of up steps. Related lattice paths
such as Dyck paths and Motzkin paths have been studied extensively (see [4, 9]) whereas
until now bargraphs which are fundamental combinatorial structures, have not attracted the
same amount of interest.
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Bousquet-Mélou and Rechnitzer in [2] and Geraschenko in [8] have studied bargraphs
which were named skylines in the latter, and wall polyominoes as per the study of Feretić,
in [6]. Bargraphs models arise frequently in statistical physics, see for example [3, 5, 10,
12, 15, 17]. In addition, bargraphs are commonly used in probability theory to represent
frequency diagrams and are also related to compositions of integers [11].

In this paper, we consider levels, which are maximal sequences of two or more adjacent
horizontal steps. We find different generating functions in each of the following sections
where x counts the horizontal steps, y counts the up vertical steps and w counts one of the
following parameters: the total number of levels and the horizontal position or the height
of the first level. To facilitate these computations, we also find the generating function for
paths with no levels.

The study of levels in bargraphs is related to the modelling of tethered polymersunder
pulling forces, see [13, 14]. These pulling forces have vertical and horizontal compo-
nents and tend to be resisted by what is known as the stiffness of the polymers. The
polymers undergo phase changes, called the stretched (adsorption) phase, where the poly-
mer is stretched vertically. The free (desorbed) phase occurs only when the vertical force
is zero. In the bargraph models of polymers positive or negative energy is added to points
in levels on the bargraph (called stiffness sites), they tend to keep the polymer horizontal
or cause it to bend.

As an example of a bargraph we have

-

6

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 1: A bargraph with 12 up steps, 13 horizontal steps and 4 levels

Often in the lattice walk and polygon literature, ”bargraphs” refer to polygon structures
(which would be obtained from the objects considered here by joining the first and last
vertices with horizontal steps). The objects discussed here are sometimes called ”partially
directed walks above a wall” depending on the context (in polymer modelling work for
example).

The main tool for elucidating the statistics of interest in this study is a decomposition
of bargraphs which is based on the first return to level one. This was described initially
by Prellberg and Brak in [16] and more recently in [2], where it is called the wasp-waist
decomposition. The present authors have also discussed it in [1].

It follows from the wasp-waist decomposition that the generating function B(x, y)
which counts all bargraphs is

B := B(x, y) =
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

2x
. (1.1)
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= + + + +

1 2 3 4 5

Figure 2: Wasp-waist decomposition of bargraphs

Here x counts the number of horizontal steps and y counts the number of up steps (see
Theorem 1 in [1]) or [2, 7]).

The series expansion, B(x, y) begins

x(y + y2 + y3 + y4) + x2(y + 3y2 + 5y3 + 7y4) + x3(y + 6y2 + 16y3 + 31y4)

+ x4(y + 10y2 + 40y3 + 105y4 + 219y4).

The bold coefficient of x4y2 is illustrated below with the full set of 10 bargraphs with 4
horizontal steps and 2 vertical up steps.
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Figure 3: The 10 graphs with 4 horizontal steps and 2 vertical up steps

In [1, 2] the authors found an asymptotic expression for B(z, z), where z marks the semi-
perimeter of the bargraphs. This is known as the generating function for the isotropic case.
The dominant singularity ρ is the positive root of

D := 1− 4z + 2z2 + z4 = 0, (1.2)

given by

ρ =
1

3

(
−1− 4× 22/3

(13 + 3
√
33)1/3

+
(
2(13 + 3

√
33)
)1/3)

= 0.295598 · · · . (1.3)

We have B(z, z) ∼ −
√

1−ρ−ρ3
√
ρ (1− z

ρ )
1/2 as z → ρ. Hence

[zn]B(z, z) ∼
√
1− ρ− ρ3

2
√
π ρn3

ρ−n. (1.4)
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The following definitions will be used:
A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps

denoted by hr where r ≥ 2. It is preceded and followed by either an up step or a down
step. The length of the level is the number r of horizontal steps in the sequence. The height
of a level is the y-coordinate of the horizontal steps in the sequence.

Thus, the graph in Figure 1 has four levels, three of length 2 and one of length 3.
In all the generating functions of the following sections, the horizontal steps are counted

by x, the vertical up steps are counted by y and the parameter that is under investigation by
w. In each section, we use G(x, y, w) or F (x, y, w) for the generating function where the
definition of G or F applies only to the section under consideration.

2 Total number of levels
2.1 Generating function for the number of levels

A level is a sequence of two or more adjacent horizontal steps as defined in the previous
section. Let F (x, y, w) be the generating function where w marks the total number of
levels. Using the wasp-waist decomposition in Figure 2, we have

F := F (x, y, w) = xy︸︷︷︸+ F2︸︷︷︸+ yF︸︷︷︸+xyF︸︷︷︸+FF2︸︷︷︸ (2.1)

1 2 3 4 5

The numbers below the terms refer to the cases in the wasp-waist decomposition. This will
be done throughout the paper. The generating function F2 := F2(x, y, w) is the analogous
function restricted to case 2. We use the following symbolic decomposition for F2

---- ︸ ︷︷ ︸ ︸ ︷︷ ︸
FR FR

= + +

Figure 4: Decomposition for F2

where FR is the generating function for bargraphs in which the first column is of height
2 or more. The function FR is easily obtained by considering all bargraphs except those
starting with a column of height one. Thus

FR = F − xy − F2. (2.2)

From Figure 4, we get

F2 = x(F − xy − xFR) + wx2y + wx2FR. (2.3)
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So, combining equations (2.1), (2.2) and (2.3), we find

F =
1

2(x− x2 + wx2)

(
1− x− y − xy + 2x2y − 2wx2y−

√
4(−x+ x2 − wx2)(xy − x2y + wx2y) + (1− x− y − xy + 2x2y − 2wx2y)2

)
.

(2.4)

In order to find the generating function for the total number of levels in bargraphs, we
differentiate F with respect to w and then put w = 1 to obtain

FLevels :=
∂F

∂w

∣∣∣∣
w=1

=
(1− x)(1− y)

(
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

)
2
√
(1− x− y − xy)2 − 4x2y

,

where z marks the semiperimeter.
The series expansion begins

x2(y + y2 + y3 + y4) + x3(y + 5y2 + 9y3 + 13y4) + x4(y + 12y2 + 38y3 + 79y4).

There are in total 12 levels in our example in Figure 3. This is shown in bold in the series
expansion.

2.2 Asymptotics in the isotropic case

We consider bargraphs with respect to the semiperimeter by substituting z for x and y in F
to obtain

FLevels(z, z) =
(1− z)2(1− 2z − z2 −

√
1− 4z + 2z2 + z4)

2
√
1− 4z + 2z2 + z4

.

In order to compute the asymptotics for the coefficients, we use singularity analysis as
described in [7]. Let ρ be as in (1.2) and (1.3). We find that as z → ρ

FLevels ∼
1− 4ρ+ 4ρ2 − ρ4

4
√
ρ(1− ρ− ρ3)

√
1− z

ρ

.

By singularity analysis we have

[zn]FLevels ∼
1− 4ρ+ 4ρ2 − ρ4

4
√
π n
√
ρ (1− ρ− ρ3)

ρ−n.

Then after dividing by the asymptotic expression for the total number of bargraphs
found in (1.4), we get the following result:

Theorem 2.1. The average number of levels in bargraphs of semiperimeter n is asymptotic
to

1− 4ρ+ 4ρ2 − ρ4

2(1− ρ− ρ3)
n = C n,

as n→∞ where C = 0.117516 · · · .
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3 Bargraphs with no levels
3.1 Generating function for the number of graphs with no level

Because we require it later, we begin by enumerating a special class of bargraphs, namely
one in which an adjacent sequence of horizontal steps does not occur (i.e. the only se-
quences of horizontals are single). This is denoted by F0 := F (x, y, 0) where F is the
generating function (2.4) from the previous section.

We use the wasp-waist decomposition in Figure 2 to obtain

F0 = xy︸︷︷︸+ F0,2︸︷︷︸+ yF0︸︷︷︸+ yF0x︸ ︷︷ ︸+F0F0,2︸ ︷︷ ︸ . (3.1)

1 2 3 4 5

Case 2 is explained below in Figure 5.

= -- --

Figure 5: Explanation for case 2, decomposition of F0,2

Thus
F0,2 = x

(
F0 − xy − F0,2

)
,

which leads to

F0,2 =
x
(
F0 − xy

)
1 + x

. (3.2)

The exclusions in case 2 are because we are not allowing adjacent horizontal steps.
Hence, from (3.1) and (3.2), we have:

F0 = xy︸︷︷︸+ x(F0 − xy)
1 + x︸ ︷︷ ︸+ yF0︸︷︷︸+ yF0x︸ ︷︷ ︸+ F0x(F0 − xy)

1 + x︸ ︷︷ ︸ .
1 2 3 4 5

Solving this for F0, we obtain

F0 =
1− y − 2xy −

√
1− y

√
1− y − 4xy − 4x2y

2x
. (3.3)

The series expansion for F0 begins

x(y + y2 + y3 + y4) + x2(2y2 + 4y3 + 6y4)

+ x3(y2 + 7y3 + 18y4) + x4(6y3 + 32y4 + 92y5).

Our example in Figure 3, shows that indeed there are no bargraphs having 4 horizontal and
2 up steps and no levels, which is confirmed by the lack of x4y2 term.
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3.2 Asymptotics in the isotropic case

As before we substitute z for x and y in F0 and obtain

F0(z, z) =
1− z − 2z2 −

√
1− z

√
1− z − 4z2 − 4z3

2z
.

Let τ be the dominant root of 1− z − 4z2 − 4z3 = 0, its value is

τ =
1

12

(
−4 + (224− 24

√
87)1/3 + 2(28 + 3

√
87)1/3

)
= 0.34781 · · · .

Using singularity analysis we have as z → τ

F0(z, z) ∼ −
√
1− τ

√
τ(1 + 8τ + 12τ2)

√
1− z

τ

2τ
.

Extracting coefficients will yield the asymptotic number of bargraphs with no levels.

[zn]F0(z, z) ∼
√
1− τ

√
τ(1 + 8τ + 12τ2)

4
√
π n3

τ−n,

as n→∞.
For n = 100, there are 3.20775×1042 bargraphs whereas the asymptotics give 3.24376

× 1042.

4 Horizontal position of the first level
4.1 Generating function for the mean

Now we derive a generating function Gx for bargraphs in which the leftmost x-coordinate
of the first level is counted by w. In the case where the bargraph has no level, we define
the horizontal position to be 0. In Figure 6, the start of the first level is the point with
coordinates (2, 5) and therefore the x-coordinate of the start of the first level here is 2.
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Start of first level
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7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 6: Horizontal position of the start of the first level

By the wasp-waist decomposition we have

Gx = xy︸︷︷︸+ F2︸︷︷︸+ yGx︸︷︷︸+ yGxx︸ ︷︷ ︸+ F5︸︷︷︸ (4.1)

1 2 3 4 5

To calculate the generating function for case 2, we use Figure 7 below. The part labelled
L in Figure 7 indicates a bargraph with at least one level.

L L

a

L --= + +

Figure 7: Decomposition for FL,2

Note that FL,2 is the generating function for case 2, (paths which have at least 1 level).
The generating function for the graph labelled “a” in Figure 7 is therefore Gx − F0,

since F0 is the generating function for graphs with no levels from Section 3.
Thus, using Figure 7, we have:

FL,2 := FL,2(x, y, w) = wx
(
Gx − F0 − FL,2

)
+ x2y + x2B

where B is the generating function for all bargraphs from equation (1.1). Hence,

FL,2 =
wxGx − wxF0 + x2y + x2B

1 + wx
, (4.2)

and from (3.2)

F0.2 =
x

1 + x
(F0 − xy) =

x

(
−xy + 1−y−2xy+

√
1−y
√

1−y−4xy−4x2y

2x

)
1 + x

.
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So, for case 2
F2 = FL,2 + F0,2.

Thus finally, the decomposition for case 5 requires Figure 8 below:

α β

Figure 8: Case 5

For case 5, we have the concatenation of two bargraphs labelled α and β. There are three
cases depending on whether the graphs α and β have levels or not.

i. Graph α has levels with generating function y(Gx−F0), in which case the generating
function for β is xB

y .

ii. Neither graph has levels, thus the generating function is F0F0,2 where F0,2 is as in
(3.2) or

iii. Graph α has no levels but graph β has, so the generating function is F0(xw, y)F2

where F0(w) := F0(xw, y) indicates that x has been replaced by xw in F0(x, y).

Thus

Gx = xy︸︷︷︸+ F2︸︷︷︸+ yGx︸︷︷︸+ yGxx︸ ︷︷ ︸+ ((Gx − F0)xB + F0F0,2 + F0(xw, y)F2

)︸ ︷︷ ︸
1 2 3 4 5

where in all but one case, the parameters have been omitted.
We solve for Gx, leading to

Gx(x, y, w)

=
−Bx2F0

wx+1
+BxF0 − Bx2

wx+1
− F0F0,2 − x2yF0(w)

wx+1
+ wx(F0)

2

wx+1
+ F0wx

wx+1
− F0,2 − x2y

wx+1
− xy

Bx+ wxF0(w)
wx+1

+ wx
wx+1

+ xy + y − 1

(4.3)

where

F0(w) =
1− y − 2wxy −

√
1− y

√
1− y − 4wxy − 4w2x2y

2wx
.

Remark: We note that from (3.3) F0(w)|w=1 = F0.
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Now, in order to find the mean horizontal position, we calculate:

∂Gx
∂w

∣∣∣∣
w=1

=
x

(Bx(x+ 1) + F0x+ (x+ 1)2y − 1)
2

× {F0((x+ 1)F ′0 + F0 + 1)(F0,2 + xy + y − 1) + F0,2((x+ 1)F ′0 + F0 + 1)

+B2x2(x(−F ′0 + F0 + 1)− F ′0) +Bx(2x2y(−F ′0 + F0 + 1)− (y − 1)F ′0

+x(F 2
0 − 3yF ′0 + F ′0 + F0y + F0 + y)) + xy(x2y(−F ′0 + F0 + 1)− yF ′0 + 2F ′0

+x(F 2
0 − 2yF ′0 + 2F ′0 + F0y + F0 + y) + F0 + 1)

}
where

F ′0 =
∂F0(w)

∂w

∣∣∣∣
w=1

=
y
(
−2x
√
y − 1 +

√
(2x+ 1)2y − 1−

√
y − 1

)
−
√
(2x+ 1)2y − 1 +

√
y − 1

2x
√
(2x+ 1)2y − 1

.

(4.4)

The series expansion of ∂Gx

∂w

∣∣
w=1

begins

x3
(
2y2 + 4y3 + 6y4

)
+ x4

(
5y2 + 25y3 + 60y4

)
.

In our example in Figure 3, the sum of the horizontal positions of the first levels is 5.

4.2 Asymptotics in the isotropic case

Using singularity analysis and computer algebra we find that

∂Gx
∂w

∣∣∣∣
w=1

∼ −2 c1(ρ)
√
ρ (1− ρ− ρ3)

(
1− z

ρ

)1/2

where ρ is as in (1.3) and

c1(ρ) =
1− ρ(

(−1 + ρ)ρ2 +
√
−1 + ρ

√
Y (ρ)

)3√
Y (ρ)

×
(√
−1 + ρ(1− ρ− 12ρ2 − 4ρ3 + 13ρ4 + 27ρ5 + 18ρ6 + 18ρ7 + 4ρ8)

+(−1 + ρ+ 4ρ2 + 8ρ3 − 5ρ4 + ρ5 − 6ρ6 − 2ρ7)
√
Y (ρ)

)
as z → ρ and Y (ρ) = −1 + ρ+ 4ρ2 + 4ρ3.

The coefficient is

[zn]
∂Gx
∂w

∣∣∣∣
w=1

∼
c1(ρ)

√
ρ (1− ρ− ρ3)√
π n3

ρ−n.

After dividing by the asymptotic number of bargraphs we get
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Theorem 4.1. The average horizontal position of the first level in bargraphs is asymptotic
to the constant

2 ρ c1(ρ) = 2.38298, as n→∞.

For n = 200, the exact average is 2.35787 · · · .

5 Height of the first level
5.1 Generating function for the mean

Let Gy(x, y, w) be the generating function for the y-coordinate of the first level for bar-
graphs where w marks this coordinate. If there are no levels then there is no w, so we have
a contribution to w0. As in the previous section, the first level in Figure 9 begins at the
point (2, 5), with y-coordinate 5.

-

6

•-Height of first level

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 9: Height of the first level

Using the wasp-waist decomposition, this yields:

Gy = xy︸︷︷︸+ F2︸︷︷︸+ F3︸︷︷︸+ xF3︸︷︷︸+ F5︸︷︷︸ . (5.1)

1 2 3 4 5

Considering case 2 separately, we have for F2:

-- --= + +

Figure 10: Decomposition for F2
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Thus
F2 = x(Gy − xy − F2) + x2yw + x2wB.

So

F2 =
x(Gy − xy + xyw + xwB)

1 + x
(5.2)

and
F3 = yw

(
Gy − F0

)
+ yF0 (5.3)

where the first and second terms distinguish between the cases where there are levels (which
are therefore multiplied by w) and no levels.

Also separately, for the last case F5 we can use Figure 8. If α has levels, then the
generating functions for α and β are w

(
Gy − F0

)
and xB(x, y) respectively. On the other

hand, if α has no levels, the generating functions are yF0 and F2.
Thus

F5 = w(Gy − F0)xB(x, y) + yF0F2. (5.4)

Substituting (5.2), (5.3), and (5.4) in (5.1) and solving for Gy , we obtain

Gy =
T

Bwx+ F0x
x+1 + w(x+ 1)y + x

x+1 − 1
(5.5)

where

T =− BF0wx
2

x+ 1
+BF0wx−

Bwx2

x+ 1
− F0wx

2y

x+ 1
+ F0w(x+ 1)y

+
F0x

2y

x+ 1
− F0(x+ 1)y − wx2y

x+ 1
+

x2y

x+ 1
− xy.

The generating function for the sum of the heights of the first levels is obtained from
the derivative of Gy with respect to w and then setting w = 1.

Using the following substitutions{
X(x, y) = −1 + (1 + 2x)2y,

Y (x, y) = (−1 + y)(−1 + x2(−1 + y) + y + 2x(1 + y)),
(5.6)

we have
∂Gy

∂w

∣∣∣∣
w=1

=

(
−1 + x+ y − xy +

√
Y (x, y)

)
(
x2(1− y) + x

√
Y (x, y)−

√
X(x, y)

√
y − 1 +

√
Y (x, y)

)2
×
(
4x2(y − 1)y + x

(
−2
√
X(x, y)

√
y − 1y +

√
X(x, y)

√
y − 1 + 4y2 − 3y − 1

)
+y
(
−
√
X(x, y)

√
y − 1 + y − 1

))
. (5.7)

The series expansion of ∂Gy

∂w

∣∣
w=1

begins

x2
(
y + 2y2 + 3y3 + 4y4

)
+x3

(
y + 8y2 + 21y3 + 40y4

)
+

x4
(
y + 15y2 + 71y3 + 198y4

)
.
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Figure 3 illustrates that the sum of the heights of the first levels is 15 as shown in bold
above.

5.2 Asymptotics in the isotropic case

Substituting z for both x and y in the above equation (5.7) and using X(z, z) := X(z) =
−1 + z + 4z2 + 4z3 and Y (z, z) := Y (z) = 1− 4z + 2z2 + z4, we obtain

∂Gy

∂w

∣∣∣∣
w=1

=

(
−1 + 2z − z2 +

√
Y (z)

)
(
(1− z)z2 −

√
z − 1

√
X(z) +

√
Y (z) + z

√
Y (z)

)2
×
[
4z3(z − 1) + z

(
−1 + z −

√
z − 1

√
X(z)

)
+z
(
−1− 3z + 4z2 +

√
z − 1

√
X(z)− 2z

√
z − 1

√
X(z)

)]
∼ −2 c2(ρ)

√
ρ(1− ρ− ρ3)

(
1− z

ρ

)1/2

,

by using computer algebra as z → ρ, where

c2(ρ) = 2ρ

(
−2 + 2ρ+ ρ2 − ρ3 +

√
−1 + ρ

√
X(ρ)

)(
1 + ρ− 2ρ3 + ρ

√
−1 + ρ

√
X(ρ)

)
(
ρ2(−1 + ρ) +

√
−1 + ρ

√
X(ρ)

)3 .

Hence

[zn]
∂Gy
∂w

∣∣∣∣
w=1

∼
c2(ρ)

√
ρ(1− ρ− ρ3)√
π n3

ρ−n as n→∞

where
Thus after dividing by the asymptotic number of bargraphs we obtain

Theorem 5.1. The average height of the first level in bargraphs is asymptotic to the con-
stant

2 ρ c2(ρ) ≈ 6.15883 · · · , as n→∞.

For n = 300, the exact average is 6.00066 · · · .
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Abstract

In less than five years a surprisingly high level of attention has built up in the possible
connection between internet search data and stock prices. It is the main aim of this paper
to point out how this connection may depend heavily on different regimes of the market,
i.e. the bear market vs. the bull market. We consider three types of internet search data
(relative Google search frequencies of company tickers, relative Google search frequencies
of company names and page visits of Wikipedia articles about individual companies) and
a substantial sample of companies which are members of the S&P 500 index. We discover
two inverse patterns in stock prices: in the bear market what we propose to term a “merry
frown” and in bull market a “sour smile”, both clearly seen especially for the Wikipedia
data. We propose market neutral strategies that exploit these new patterns and yield up to
17% in average annual return during our sample period from 2008 to 2013.

Keywords: Stock returns, internet search data, market regimes, trading strategies.

Math. Subj. Class.: 91G70, 97K80

1 Introduction
A byproduct of the increasingly widespread use of the internet is the data on internet ac-
tivity of individual users. While most of this data is retained by the website owners and
unavailable to the public either due to privacy or business reasons there are some excep-
tions. One such example is the Google Trends service which enables users to view the
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relative frequencies of search queries entered into Google’s search engine. Since becoming
publicly available in 2006 Google Trends have attracted attention of researchers in various
fields. In [12] the authors show that analysis of health-related search queries can lead to
accurate estimates of influenza epidemics with a reporting lag of only one day which is
almost two weeks sooner than traditional surveillance systems. Choi and Varian [6] apply
a similar approach to estimating a number of economic indicators such as automobile sales
or unemployment claims.

The relevance of internet search data for financial data analysis was first explored by
Da, Engelberg and Gao [6] who considered the relative search frequencies of company
tickers and names as proxies for investor attention in the US stock market. They show that
search frequencies outperform existing measures of investor attention and that an increase
in a company ticker’s search frequency predicts a higher stock price in the following two
weeks. In [2, 14] the authors obtain similar results in terms of future returns and addition-
ally observe that an increase in a company name’s search frequency is associated with a rise
in trading activity and stock liquidity. The prevailing explanation for positive correlation
between future stock returns and company-related relative search frequencies is based on
the theory of Barber and Odean [3]. They suggest that attention-grabbing stocks experience
short-term buying pressure from individual investors. This might simply be due to the fact
that a single investor faces a difficult decision when deciding which of the thousands of
available stocks to buy, while the decision of which stock to sell is much easier since it is
usually limited to the few stocks that are part of his existing portfolio.

Google trends data has also been used in assessing investor sentiment. In [8] the authors
construct the index which is a sum of relative search frequencies of economy-related terms
associated with negative sentiment. This new index is able to predict values of existing
investor sentiment indicators and has a perceptible impact on short-term future stock prices.
In [18] a number of stock market index strategies are tested that profit from fluctuations of
relative search frequencies of individual economy-related terms. Strategies of the same
type are further explored in a related work [17] where Google trends data is replaced by the
numbers of page visits to economy-related Wikipedia pages.

The main contribution of our paper is the addition of market regimes into the study of
the connection between stock returns and internet search. If the reason for positive cor-
relation between future returns and search frequencies is in fact in the cognitive bias of
individual investors then we would expect that the effect would be even stronger in periods
when investors face greater uncertainty and are even more prone to irrational decisions.
We present a two-state hidden Markov model for the returns of the S&P 500 index. The
model parameters are estimated by the Baum-Welch algorithm after which the most likely
sequence of hidden states is found by the Viterbi algorithm. The first of the two states
is characterized by low returns and high volatility and corresponds to what is commonly
refered to as the “bear market” regime by investors. Conversely, the second state is charac-
terized by high returns and low volatility and we label it the “bull market” regime.

We choose a sample of stocks that are members of the S&P 500 index and study the
relation between their future short term returns and three different types of internet search
data: the page visits of company-related articles on Wikipedia, the relative frequency of
Google searches for company tickers and the relative frequency of Google searches for
company names. To the best of our knowledge ours is the first study of this kind that
takes Wikipedia data for individual companies into consideration. We also perform our
analysis on daily data which is in contrast to most of the existing literature where financial
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applications of internet search is studied using weekly data.
We perform a number of cross-sectional Fama-MacBeth regressions where future stock

returns are the explained variable and a single internet search variable is the regressor. This
regressions are performed on a subsample of observations that belong to either the bear
regime or the bull regime as well as on the entire sample. Our main result is that the
market regime indeed has a strong influence on the relation between future stock returns
and internet search data. In all three cases of internet search variables the future returns
are higher in the bear regime compared to the bull regime given the same increase of the
chosen internet search variable. This effect remains evident even after controlling for the
factors of the Carhart four-factor model [5].

After controlling for the Carhart factors the Wikipedia page visits variable emerges as
the one with the greatest influence on future stock returns. In fact, both of the Google
search variables prove to be statistically insignificant. To our surprise, we also find very
little evidence supporting the theory that an increase of investor attention to a given stock
translates into a short term rise of the stock’s price due to increased buying pressure. Instead
we observe two different price patterns for which we propose the terms “merry frown”
and “sour smile”. A merry frown is a pattern of positive correlation between future stock
returns and Wikipedia page visits that is observed only during the bear market. A sour
smile is a pattern of negative correlation between future stock returns and Wikipedia page
visits that is observed only during the bull market. Both patterns might be explained as
a corrective investor counter-reaction to initial overpessimism in the bear market and to
initial overoptimism in the bull market.

Economic significance of the merry frown and the sour smile is explored by construct-
ing a market neutral strategy with long positions in stocks that are in the highest decile
and short positions in stocks that are in the lowest decile with regard to Wikipedia page
visits during the bear market. In the bull market the positions are reversed. We backtest
the strategy for different trading frequencies (from 1 to 10 days) and observe that they
generate positive returns which decrease with the length of trading frequency. The returns
of the strategies are compared to random market neutral strategies generated by a Monte
Carlo simulation and their statistical significance is established. We also find that returns
of the strategies strongly increase if they are restricted to a subsample of stocks that are
preferred by individual investors such as high volatility stocks, low market capitalization
stocks or low price-to-book ratio stocks. In the best case, a trading strategy with daily
trading frequency that is restricted to stocks with higher than median volatility yields an
average annual return of 17% in our sample period.

The paper is organized as follows: Section 2 describes the data. The market regime
model is presented in Section 3. In Section 4 we discuss the results of the Fama-MacBeth
regressions. The trading strategies and backtest results are presented in Section 5. Section
6 concludes the paper.

2 Data description

The most important choice in the beginning of every statistical research is the choice of
statistical population. We decided to limit our study to a sample of stocks that are included
in the index S&P 500. More precisely, the stocks that were members of this index on
June 7, 2013. Our choice is primarily motivated by the fact that the publicly accessible
and freely available data on individual stocks is of highest quality for stocks listed on the
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US stock market. Of course, the extension of our study to stocks listed on some less
common stock markets remains a challenge for future investigation. We choose a sampling
period from October 1, 2007, up to June 30, 2013. We restrict ourselves to this specific
sampling period primarily because of the availability of website search data. Fortunately,
this period includes very diverse market conditions including one of the greatest market
crashes in history and the following rebounding growth. This gives us confidence that our
findings would easily extend to future periods. For every stock in our sample we obtain
the daily dividend and split adjusted closing prices from the Yahoo Finance website1. We
additionally remove all stocks for which data is not available for the entire sample period.
This mostly includes stocks that were members of the S&P 500 index on June 7, 2013, but
were not yet publicly traded at the begining of our sample period.

We get the daily closing values of the index S&P 500 in the economic data section
of the website of Federal Reserve Bank of St. Louis2. This data is obtained for a longer
period from January 1, 2000, up to June 30, 2013, as required by the regime-switching
model described in Section 3.

There are various choices for website search data that are worth testing for possible
relations with fluctuations in stock prices. One of the possibilities is Google search data
which is publicly available via the Google Trends Service3. In related studies, authors most
commonly use relative search frequencies of stock tickers [7, 14] while some also consider
relative search frequencies of company names [2]. The majority of studies rely on weekly
data for these frequencies. This might be based on availability problems with Google data.
When one requests a search frequency time series for a certain term the format of the
returned series depends on the length of the period. For periods no longer than 3 months
one gets the daily data, but for longer periods only weekly data is returned. An additional
feature of the data so obtained is that it is normalized within the series to have a maximum
value of 100. This has some advantages but also makes it difficult to compare values of
series in different periods. This may have been the reason for most authors to restrict their
studies to weekly data.

In order to overcome this difficulty, we acquire the three-month-period data every two
months. From the data for the overlapping month we compute the quotient between the
normalized factors of the two consecutive periods thus enabling us to concatenate the short
period time series into one long period time series with the daily data. An additional prob-
lem arises with company names. Namely, one would need to know which name people are
using for the company when searching for information about it. For instance, it is unlikely
that most people would search for American Express Company by typing its full name
into the search window but would instead just type American Express or simply AmEx.
Accordingly, we replace company names in our sample with suitable abbreviations. By
following the concatenating procedure described above we obtain a daily time series of rel-
ative search frequencies for both a company ticker and an abbreviated company name for
each company in our sample. The sample period for this data is chosen to be from January
1, 2008, up to May 31, 2013.

Another source of internet search data that has recently been studied related to financial
data is Wikipedia. For every article on Wikipedia, a time series of daily unique page visits

1http://www.finance.yahoo.com
2http://research.stlouisfed.org/fred2
3http://www.google.com.au/trends
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can be obtained from the website Stats.Grok.Se4. This source of information has not gained
as much attention as the Google Trends Data and the reason for this may lie in the fact that
the available time series only span from January 2008. For every company in our sample,
we find the Wikipedia article associated to the company and obtain a time series of unique
daily page visits to this article in a sample period from January 1, 2008, up to May 31,
2013.

There are some comments we have to make that relate to data preprocessing of both
Google search and Wikipedia page visits data. We first note that this data is not available
throughout the chosen period for each company in our sampling period. Therefore, we
have to exclude the companies with too much missing data. Our rule is to allow no more
than 10% of missing data, while for the missing values we apply an imputation procedure
that takes into account the weekly seasonality. Next we perform a detrendization of data
using a sort of “longitudinal normalization”, i.e. we divide the number for a given day by
the average of the numbers for the last 56 days. The choice of length for this normalization
period is similar to choices made by authors in related studies, for example in [7] where
the length of the normalization period is 8 weeks. We also have to take care of the outliers.
Their influence is reduced by taking a logarithm transformation of our data. Additionally,
for each stock in our sample and each of the three variables, we perform a winsorization of
the corresponding time series by limiting the range of data to its first percentile from below
and to its 99th percentile from above.

There are strong seasonal effects on the weekly basis in both Google and Wikipedia
data. We want to make data collected on different days of the week comparable by intro-
ducing a seasonal adjustment in the following way. We regress the data to the days-of-the-
week (but one) as dummy variables to get average differences between the different days
of the week which we add to the data of this particular day.

3 Market regimes
We intend to study the influence of market regimes on the relation between internet search
data and stock returns. A market regime may be considered as a phase of persistent at-
tributes observed in financial time series. This concept is most commonly used by investors
when classifying the market into two phases: the bear market characterized by low returns
and high volatility and the bull market characterized by high returns and low volatility. This
dichotomous approach also lies at the core of our view on market dynamics. A systematic
regime-switching time series model was first proposed by Hamilton [13] and the variants
of this model are still being overwhelmingly used to study the regimes of economic and
financial time series. However, recently, the problem of parameter estimation in financial
regime-switching models has also been tackled by the Baum-Welch algorithm [19] which
has previously been mostly used in engineering applications. We also decided to base our
market regime estimation model on the Baum-Welch algorithm and refer the reader to [15]
for a discussion of its advantages over Hamilton’s algorithm.

We will determine the actual switching of the regimes only on the cumulative level
and base it on the returns data of the S&P 500 index. The background of the model is
a hidden Markov chain (denoted by Q = (qt)

T
t=1, where T is the length of the period)

so that the market regimes are seen as states of this chain, the bear market becomes say
state i = 1 and the bull market state i = 2. As a consequence the model has a 2 × 2

4http://stats.grok.se
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transition matrix A defined in the usual way: aij = p(qt+1 = j | qt = i). Given an initial
distribution of the states Π = (π1, π2) we then have the Markov chain uniquely determined.
Furthermore, we assume that the observations form a random sequence denoted by O =
(ot)

T
t=1 where each ot is the index return at time t and is determined randomly following

a normal distribution N(µi, σi), for i = 1, 2, where the two parameters of this distribution
depend on the state of the hidden Markov chain, i.e. on the market regime. We will call
them the observation distributions and denote the corresponding sequence of distributions
by B. The entire model will be denoted byM := {A,Π,B}.

We first present the forward algorithm which helps computing the so called forward
variable

κt(i) = p(o1o2 . . . ot, qt = i |M),

Here, κ is defined recursively:
κ1(i) = πibi(o1),

for i = 1, 2, where bi(o1) is the density of N(µi, σi) at the point o1. Furthermore,

κt+1(j) =

[
2∑

i=1

κt(i)aij

]
bj(ot+1), .

for j = 1, 2 and t = 1, 2, . . . T − 1 and bj(ot+1) is defined by analogy with the above.
Likelihood p(O|M) can be computed using the forward variable in the following manner:

p(O|M) =

2∑
i=1

κT (i).

In the Baum-Welch algorithm we also need the backward variable

%t(i) = p(ot+1ot+2 . . . oT | qt = i,M)

which we compute recursively using the backward algorithm. We first initialize %T (i) = 1
for i = 1, 2, and then let

%t(i) =

2∑
j=1

aijbj(ot+1)%t+1(j)

for i = 1, 2 and t = T − 1, T − 2, . . . , 1. Likelihood p(O|M) can be computed using the
backward variable in the following manner:

p(O|M) =

2∑
i=1

πi%1(i)bi(o1).

To initialize the Baum-Welch algorithm we choose a starting estimate of the model
denoted by M̂0, and then we compute the likelihood p(O |M̂0) using the forward variable.

At this stage we start the iterative procedure consisting of four steps. The first step is to
compute the forward variable κ̂t(i) and the backward variable %̂t(i) based on the estimate
of the model obtained on the previous iteration step M̂k. The final result of this step is
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the likelihood of transition from the state i to the state j given the model M̂k and the
observations O when time goes from t to t+ 1:

ψ̂t(i, j) = p(qt = i, qt+1 = j|O,M̂k)

=
p(qt = i, qt+1 = j,O |M̂k)

p(O |M̂k)

=
κ̂t(i)aijbj(ot+1)%̂t+1(j)

p(O |M̂k)
.

The first equation above is just the definition, in the second one we use the conditional
formula and in the third one we express the likelihood with (the estimates of) the forward
and backward variable. Next, we express the denominator of the last fraction above also
using (the estimates of) the forward and backward variable:

p(O |M̂k) =

2∑
i=1

2∑
j=1

κ̂t(i)aijbj(ot+1)%̂t+1(j).

On the second step of the iteration procedure we need to estimate another likelihood,
i.e.

Γi(i) = p(qt = i | O,M) =

R∑
j=1

ψt(i, j).

Using the estimates of the first step ψ̂t(i, j) we compute the next estimate of the model
M̂k+1. First, we compute the elements of the transition matrix A

âij =

∑T−1
t=1 ψ̂t(i, j)∑T−1
t=1 Γt(i)

,

followed by the initial distribution Π

π̂i = Γ1(i)

and finally the observation distributions B

b̂j(s) =

∑T
t=1 Γt(j)

′∑T
t=1 Γt(i)

.

Here we understand Γt(j)
′ given ot = s.

On the third step of the iteration procedure we compute the likelihood using the new
model M̂k+1. The fourth step is decisive: we compare the estimates of these likelihoods
on the last two steps. If they are close enough, we stop the algorithm. If not, we proceed
with another iteration starting with step one.

So, the final result of this algorithm is an estimate of the hidden Markov modelM :=
{A,Π,B}. Based on this estimate, we want to give a prediction of the most probable state
(bull or bear regime) for each point of time in the period. This will be done using the Viterbi
algorithm. We first introduce, for i = 1, 2, the Viterbi variable

δt(i) = max
q1,q2,...,qt−1

p(q1, q2, . . . , qt−1, qt = i, o1, o2, . . . , ot |M)
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which means the conditional likelihood of the most likely path of length t ending in state i
given the model, where ot are the the actual observed values of the index under considera-
tion. We also need the value of the last but one state in this optimal path that ends in state i
which we denote by τt(i).

We initialize by letting δ1(i) = πibi(o1) and τ1(i) = 0 (an “empty state” on which
nothing really depends) for i = 1, 2. The inductive steps of the algorithm go for t =
2, 3, . . . , T . The dynamic programming approach yields

δt(i) = bi(ot) max
i=1,2

(δt−1(i)aij)

together with
τt(j) = arg max

i=1,2
(δt−1(i)aij).

At the end of the algorithm we terminate with the final optimal regime

q∗T = arg max
1=1,2

(δT−1(i)aij)

and then backtrack the whole optimal path

q∗t = τt+1(q∗t+1)

for t = T − 1, T − 2, . . . , 1.
Both the Baum-Welch algorithm and the Viterbi algorithm are not what we usually call

online algorithms that would process the input data in the sequence they would be fed to
the algorithm. This is a shortcoming since we are looking for a way to determining the
market regime as a stopping time in the sense of martingale theory, i.e. the decision about
a certain point in time can be made only based on the data of previous points in time. We
are overcoming this obstacle by implementing it in an expanding window approach. The
starting window in our approach will be the period from January 2, 2000 to January 2, 2008
(because January 2 is the first trading day in a year). On each step we expand the window
by one trading day until we reach May 31, 2013 where the period that we are interested
in ends. In each of these windows we run the Baum-Welch and the Viterbi algorithm and
retain only the final optimal regime q∗T . This way we determine the optimal market regime
for each trading day of the period we are interested in a stopping time manner.

In Figure 1 we present the results of the algorithm described above. In this figure the
daily values of the S&P 500 index are superimposed over two backgrounds – the red one
corresponds to days of the bear market and the blue to days of the bull market according
to our estimation. It is clear that our model is able to recognize quite well the bear market
of 2008/2009 as well as the more pronounced market corrections in the following years.
However it does perform less admirably when recognizing the beginning of the bull market
in 2009. This is not unexpected since this period was characterized by extremely high
returns as well as high, albeit decreasing, volatility. Such conditions are not well aligned
with our model which assumes only two market regimes - the one with high returns and
low volatility and the one with low returns and high volatility. An obvious solution to this
problem would be extending our model to 4 regimes. However, fitting such a model would
require a much larger data sample than we have available. For example, the authors of [16]
fit a 4-regime model on 123 years of data. Due to this limitation, we decided for the more
parsimonous 2-regime model.
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Figure 1: S&P 500 index during the bear regime (red background) and the bull regime
(blue background)

4 Linear regression
In this section we study the connection between the stock returns and the data described
in Section 2. Our main statistical tool will be the Fama-Macbeth cross-sectional linear
regression [9]. This is a two-step procedure where a cross-sectional regression is performed
for each time unit and then the time-series average of the estimated regression coefficients
is calculated.

We first present the results of an analysis in which the explained variables are the cumu-
lative future returns, while the search data is used as the regressor. For each k running from
1 to 15 we perform a Fama-Macbeth regression for the cumulative return from the time
T = t+ 1 to the time T = t+ k as the explained variable which we denote ri,t+k where i
is the index spanning our entire selection of stocks. This way we allow for different periods
of time that may be of interest ranging from 1 trading day to roughly 1 trading month. We
perform an additional regression to test the contemporary return, i.e. the return observed on
T = t. As described before we use three types of search data: Wikipedia page visits (de-
noted by wikii,t), Google search queries for company tickers (denoted by goog tickersi,t)
and Google search queries for company names (denoted by goog namesi,t). All this data
is taken at time T = t. The cross-sectional regressions performed for each time unit t and
each k = 0, 1, . . . , 15 are described by the following equations:

ri,t+k = αi,t + βwiki,t wikii,t + εi,t+k,

ri,t+k = αi,t + βgoog tickers,t goog tickersi,t + εi,t+k,

ri,t+k = αi,t + βgoog names,t goog namesi,t + εi,t+k.
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There is an additional regressor we want to test for its influence which has a form of a
dummy variable, i.e. the market regime. So, in practice we perform three actual regressions
for each case of interest, one for the bear markets, one for the bull markets and one for the
joint data independent of the regime. The results are presented in Table 1.

To make the presentation clearer we standardized the search data on every fixed date
under consideration so that the regression coefficient has a simple interpretation. It gives an
increase in the average return (positive or negative) given that the average internet search
variable increases by one standard deviation. When we want to present the relation of these
data to the length of the period we run into another difficulty, namely that the cumulative re-
turns computed for different periods are not immediately comparable since their magnitude
trivially depends on the period, so we decided to annualize them. There are three graphs
in Figure 2. The first one presents dependence of annualized returns (based on regression
coefficients) for the Wikipedia page visits, where the red line presents the data of the bear
market, the blue one the data of the bull market and the purple one the joint data. A similar
graph is presented for the Google search data for company tickers and the third one for the
Google search data for company names.

Figure 2: Changes in annualized future returns over k days after we observe a one standard
deviation increase in individual search variables.

We first observe that the regression results in the case when market regimes are not
taken under consideration differ substantially from the results when we do take them into
account. Actually, in all the three cases of internet search variables we observe that a raise
in the internet search variable is associated with higher future returns in the bear market
compared to future returns in the bull market. This is confirming our starting hypothesis
that market regimes have a strong influence on the connection between internet search data
and stock returns. We also observe that there is a substantial difference between the impor-
tance of distinct internet search variables. Based on the analysis performed so far it seems
that the possible influence of search data on stock returns is statistically the strongest for
Google company tickers, followed by Google company names and finally Wikipedia page
visits. It is also evident that the influence of search data on future returns is mostly short
term with the largest absolute values of annualized returns (based on regression coeffi-
cients) attained for cases where k 6 10.
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Wikipedia Google tickers Google names
k Both Bear Bull Both Bear Bull Both Bear Bull

0 0.018* 0.010 0.027*** 0.017** 0.041** 0.003 0.006 0.019 0.004
(0.006) (0.009) (0.007) (0.008) (0.017) (0.008) (0.008) (0.015) (0.007)

1 0.002 0.005 -0.003 0.019** 0.022 0.011 0.000 0.014 -0.014*
(0.004) (0.008) (0.004) (0.009) (0.020) (0.008) (0.008) (0.014) (0.007)

2 0.009 0.031** -0.018*** 0.042*** 0.061* 0.016 0.010 0.048** -0.026**
(0.008) (0.016) (0.007) (0.016) (0.032) (0.015) (0.013) (0.021) (0.012)

3 0.015 0.044** -0.022** 0.082*** 0.125*** 0.040* 0.028 0.089*** -0.030*
(0.012) (0.022) (0.010) (0.024) (0.044) (0.022) (0.018) (0.030) (0.017)

4 0.020 0.057** -0.026** 0.131*** 0.205*** 0.056** 0.046** 0.121*** -0.022
(0.014) (0.026) (0.012) (0.032) (0.058) (0.026) (0.022) (0.037) (0.021)

5 0.018 0.053* -0.027* 0.156*** 0.235*** 0.079** 0.059** 0.148*** -0.021
(0.017) (0.031) (0.014) (0.039) (0.069) (0.031) (0.027) (0.047) (0.025)

6 0.018 0.046 -0.021 0.186*** 0.280*** 0.098*** 0.075** 0.184*** -0.019
(0.020) (0.035) (0.016) (0.047) (0.083) (0.037) (0.033) (0.056) (0.029)

7 0.017 0.042 -0.021 0.221*** 0.320*** 0.128*** 0.078** 0.191*** -0.018
(0.024) (0.040) (0.019) (0.055) (0.095) (0.045) (0.037) (0.061) (0.033)

8 0.027 0.056 -0.018 0.251*** 0.363*** 0.152*** 0.077* 0.198*** -0.024
(0.026) (0.044) (0.022) (0.062) (0.104) (0.052) (0.040) (0.066) (0.036)

9 0.032 0.063 -0.018 0.277*** 0.387*** 0.181*** 0.077* 0.205*** -0.028
(0.029) (0.048) (0.023) (0.066) (0.112) (0.057) (0.044) (0.070) (0.040)

10 0.040 0.076 -0.015 0.292*** 0.398*** 0.198*** 0.075 0.208*** -0.031
(0.031) (0.051) (0.025) (0.072) (0.122) (0.061) (0.046) (0.075) (0.043)

11 0.047 0.091* -0.018 0.312*** 0.414*** 0.223*** 0.074 0.206** -0.030
(0.033) (0.054) (0.027) (0.076) (0.128) (0.066) (0.049) (0.080) (0.046)

12 0.052 0.100* -0.021 0.314*** 0.392*** 0.243*** 0.059 0.169** -0.025
(0.035) (0.058) (0.029) (0.079) (0.135) (0.070) (0.052) (0.085) (0.048)

13 0.053 0.099 -0.020 0.325*** 0.371*** 0.278*** 0.054 0.168* -0.035
(0.037) (0.061) (0.031) (0.084) (0.143) (0.076) (0.054) (0.089) (0.051)

14 0.056 0.107* -0.022 0.334*** 0.372** 0.290*** 0.042 0.148 -0.042
(0.039) (0.063) (0.033) (0.088) (0.150) (0.081) (0.056) (0.092) (0.053)

15 0.061 0.109 -0.016 0.353*** 0.394** 0.306*** 0.034 0.137 -0.049
(0.042) (0.068) (0.035) (0.094) (0.159) (0.087) (0.059) (0.097) (0.056)

Table 1: Regression coefficients of internet search variables in Fama-MacBeth regressions
where cumulative future stock returns are the explained variable. Table columns corre-
spond to different regressor-regime combinations and table rows correspond to different
horizons of future returns. Standard errors for regression coefficients are given in paren-
theses. Statistical significance at levels of 10%, 5% and 1% is denoted by *,**, and ***,
respectively. Additionally, statistically significant results are printed in bold.



312 Ars Math. Contemp. 9 (2015) 301–320

We observe another phenomenon which is best seen in the case of Wikipedia page
visits. In the bear market the values of returns first go up and then go back down so that
they form a shape of a frown. During the bull market, on the other hand, we observe
a mirror shape, i.e. a shape of a smile. Now, the interpretation of these shapes is in some
sense the opposite of the usual meaning conveyed by these shapes. While the frown noticed
means good news in bear times, the smile means bad news in bull times. So, we propose
the two shapes to be called the “merry frown” and the “sour smile”. These shapes are not
so easy to interpret. A possible explanation (taking into account also some other details of
the Wiki shape) is that in bear markets investors are pessimistic and their overpessimistic
reaction after increased attention perceived via the number of Wikipedia page visits on the
first day, results in a counter-reaction in the days to follow and creates the merry frown. In
the bull markets though investors are optimistic and their overoptimistic immediate reaction
on the increased attention overturns into a sour smile.

In the next step we investigate whether the observed connection between internet search
data and stock returns can be explained by including additional factors into our model.
We replace our initial explained variable ri,t (future cumulative returns) by the so-called
abnormal cumulative returns ari,t. These returns are obtained as residuals in a variant of
the Carhart [5] four factor asset pricing model which is an extension of the well known
Fama-French model [10]. The model is defined by the following equation:

ri,t+k = rrft + β1,i(r
mkt
t − rrft ) + β2,i HMLt + β3,i SMBt + β4,i UMDt + ari,t+k,

where rrft is the risk-free rate of return (approximated by the daily rate of one month U.S.
Treasury bills), rmkt

t − rrft is the excess return of the entire stock market over the risk-
free return, HMLt is the return difference between a portfolio of stocks with high and low
book-to-market stocks, SMBt is the return difference between a portfolio of small and big
stocks in terms of their market capitalization and UMDt is the return difference between a
portfolio of stocks with high and low returns in the past year. The betas are estimated on a
daily basis, using a rolling window of 120 days.

We repeat the cumulative return regressions described above for the case of abnormal
cumulative returns and report the results in Table 2. The period dependencies of annualized
abnormal returns are displayed in Figure 3. We see that results in the case of Wikipedia
page visits variable are quite similar to those obtained before accounting for the Carhart
factors. However the influence of Google search queries for company tickers and company
names is greatly diminished. In fact, no statistically significant results at the 5% level are
obtained for the company tickers variable regardless of the bear or bull market. This is in
contrast to previous research which was performed on samples taken from earlier periods.
Furthermore, we find little evidence that a rise in internet search variables corresponding
to individual companies might directly translate into short-term buying pressure and con-
sequently higher stock prices. The differences between the bear market and the bull market
remain clearly visible, especially in the case of Wikipedia page visits. While our results
show that a statistically significant dependence between future stock returns and internet
search variables exists, we do note that the explanatory power of all the tested regressions
as measured by the R2 statistic is very low and only rises above 1% in a few cases. This is
not unexpected if we take into account the fact that the regressions are predictive, that we
are only using a single explanatory variable and that future stock returns are notoriously
hard to predict. The questions whether our observations can nevertheless be used to obtain
economic gains will be explored in Section 5.
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Wikipedia Google tickers Google names
k Both Bear Bull Both Bear Bull Both Bear Bull

0 0.014*** 0.006 0.022*** 0.011* 0.010 0.015** -0.000 -0.006 0.006
(0.004) (0.007) (0.006) (0.006) (0.012) (0.006) (0.005) (0.008) (0.006)

1 0.002 0.006 -0.003 0.002 0.004 0.003 -0.010** -0.012 -0.009
(0.003) (0.006) (0.003) (0.006) (0.011) (0.006) (0.005) (0.008) (0.005)

2 0.005 0.018* -0.013** 0.005 0.006 0.003 -0.016* -0.009 -0.022**
(0.006) (0.011) (0.006) (0.010) (0.019) (0.010) (0.009) (0.014) (0.009)

3 0.012 0.034** -0.015** 0.003 0.001 0.005 -0.024** -0.018 -0.028**
(0.008) (0.015) (0.008) (0.015) (0.027) (0.013) (0.012) (0.020) (0.013)

4 0.018* 0.048** -0.016* 0.017 0.030 0.006 -0.022 -0.009 -0.031*
(0.011) (0.019) (0.009) (0.019) (0.035) (0.016) (0.015) (0.026) (0.016)

5 0.019 0.048** -0.017 0.019 0.034 0.005 -0.022 0.000 -0.038**
(0.013) (0.021) (0.011) (0.023) (0.042) (0.019) (0.019) (0.031) (0.019)

6 0.020 0.046* -0.013 0.024 0.042 0.009 -0.024 0.004 -0.044**
(0.014) (0.024) (0.013) (0.026) (0.050) (0.023) (0.021) (0.036) (0.022)

7 0.024 0.054** -0.015 0.038 0.064 0.018 -0.021 0.011 -0.043*
(0.016) (0.027) (0.014) (0.030) (0.056) (0.027) (0.024) (0.040) (0.025)

8 0.027 0.059** -0.015 0.046 0.072 0.027 -0.025 0.012 -0.052*
(0.018) (0.029) (0.016) (0.033) (0.062) (0.032) (0.027) (0.045) (0.028)

9 0.029 0.062** -0.014 0.059 0.084 0.044 -0.032 0.007 -0.062**
(0.019) (0.031) (0.017) (0.038) (0.070) (0.036) (0.029) (0.048) (0.030)

10 0.031 0.068** -0.016 0.057 0.076 0.050 -0.043 -0.006 -0.070**
(0.020) (0.033) (0.019) (0.041) (0.077) (0.039) (0.032) (0.052) (0.032)

11 0.034 0.074** -0.016 0.066 0.089 0.058 -0.051 -0.017 -0.075**
(0.022) (0.036) (0.021) (0.045) (0.084) (0.043) (0.034) (0.056) (0.034)

12 0.036 0.077** -0.017 0.066 0.084 0.061 -0.058 -0.029 -0.079**
(0.023) (0.039) (0.022) (0.048) (0.087) (0.046) (0.037) (0.061) (0.036)

13 0.039 0.081* -0.013 0.070 0.081 0.072 -0.067* -0.041 -0.085**
(0.025) (0.042) (0.023) (0.051) (0.094) (0.048) (0.039) (0.064) (0.039)

14 0.040 0.086* -0.018 0.070 0.076 0.078 -0.077* -0.060 -0.087**
(0.027) (0.044) (0.024) (0.054) (0.101) (0.050) (0.041) (0.067) (0.040)

15 0.039 0.084* -0.018 0.072 0.074 0.085 -0.085* -0.075 -0.088**
(0.029) (0.047) (0.026) (0.057) (0.107) (0.053) (0.044) (0.070) (0.043)

Table 2: Regression coefficients of internet search variables in Fama-MacBeth regressions
where cumulative abnormal future stock returns are the explained variable. Table columns
correspond to different regressor-regime combinations and table rows correspond to dif-
ferent horizons of future returns. Standard errors for regression coefficients are given in
parentheses. Statistical significance at levels of 10%, 5% and 1% is denoted by *,**, and
***, respectively. Additionally, statistically significant results are printed in bold.
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Figure 3: Changes in abnormal annualized future returns over k days after we observe a
one standard deviation increase in individual search variables.

Based on these tests we conclude that the influence of the kind of attention noticed by
Google search queries (either for company tickers or names) can be perceived also by other
data that are more commonly applied by financial practitioners. On the other hand, it shows
that Wikipedia page visits do indeed provide new information about the behavior of stock
prices. Also, we perceive that the merry frown and sour smile effects persist for Wikipedia
page visits even after controlling for the most commonly used asset pricing factors.

5 Trading strategies
In this section we want to verify how the results of Section 4 can be used, if at all, in forming
trading strategies. In other words, we want to either statistically prove or disprove that
internet data can increase our profits in financial markets. The evidence for the influence
of internet search data on future stock returns is most compelling in the case of Wikipedia
data, as shown in Section 4. Since we were also not able to find any examples in existing
literature of this type of data being used in construction of trading strategies based on
individual stocks, we decided to limit our analysis in this chapter only to Wikipedia page
visits.

Our results show that in bear markets higher Wikipedia page visits are positively cor-
related with short term future return while in bull markets the corresponding correlation
is negative. So we propose the strategy for bear markets to enter long position at the end
of the trading day for stocks in the upper decile with respect to the most recent available
data on Wikipedia page visits; and similarly to enter the short position at the end of the
trading day for stocks in the lower decile with respect to these visits. In the bull market,
the strategy is to do exactly the opposite. We propose that all the long positions and all the
short positions are entered using the same weights with respect to the wealth that we are
prepared to invest into this strategy. Since the data on Wikipedia page visits for any given
day is only made available the following day we lag our Wikipedia variable for one day to
ensure that the data would have been available at the time of our trading decision.

Of course there is a problem of determining the actual frequency of trading, this means
for how long we should hold our positions. We know that we are talking about a short term
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effect, but what does short really mean in this particular context? To make this dilemma
as clear as possible we are making a number of tests using some alternatives. Let f be the
number of trading days between two consecutive trading decisions. For f = 1, 2, . . . , 8 we
are testing the f th strategy and give the result for three options. The first option is that we
allow only trading in the bear market, the second one is that we allow trading only in the
bull market and the third one is that we allow trading during both markets. In Table 3 we
present the results obtained in percentage points of the annual return. It is clear that f = 1
is the best of the proposed strategies in all the three cases. It is also clear that the results
are getting smaller with f increasing in the case of combined strategy and the bull-only
strategy. However in the case of the bear strategy f = 2 and f = 3 are slightly better
than f = 1. For f big enough the results of the strategies seem to become more or less
random. The best of the three options tested is the combined application of both bear and
bull strategy. It is also clear that the results of the bear strategy are better than the results of
the bull strategy.

Trading frequency (days) 1 2 3 4 5 6 7 8
Bear 5.28 5.50 6.10 4.02 2.30 0.94 -0.55 2.21
Bull 2.76 1.33 -0.15 0.91 0.59 1.02 1.08 -2.53

Joint Bear & Bull 8.19 6.91 5.94 4.97 2.91 1.97 0.52 -0.37

Table 3: Average annual returns (in percentage points) of proposed trading strategies in
relation to the trading frequency.

We also want to compare our strategies to suitable benchmark strategies. However,
as we believe, the most usual benchmarks such as various indices are long-only strategies
and the comparative testing with our strategies which include both long and short positions
would not be fair. So we decided to compare it with random strategies using a Monte Carlo
approach. Our control strategy is to choose in a uniformly random way 10 % stocks to be
put in a long position and 10 % to be put in a short position. We created 1000 strategies of
this type and computed the average yearly return for each of them. This produces a random
sample of possible average yearly returns which we compare statistically to the average
return of each of the strategies under consideration. As usual in this kind of situation, we
perform a one-sample one-way Student t-test where we test the null hypothesis that the
mean yearly return for the population of random strategies is equal to the return of our
strategies against the alternative hypothesis which states that the mean yearly return for the
population of random strategies is lower to the return of our strategies. As can be seen from
results given in Table 4 we can reject this hypothesis for our joint bear and bull strategies
for most of the trading frequencies considered.

In Figure 4 we want to present a slightly different view on the results of our strategies
compared to the random approach. Assume we invest a certain equity in the strategies
above to be compared; and that we invest the same amount into each of the random strate-
gies described in the previous paragraph. We compare the average of the randomly invested
equity to the equity gained via the strategy under consideration for each day of our sample
period. More interesting than the averages as such are the bands created around the aver-
ages using the daily standard deviation and its small multiples. We can see that the equity
invested in our joint bear and bull strategy mostly stays in the area that is beyond the band
which is three standard deviations above the average equity of random strategies.
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Trading frequency (days) 1 2 3 4 5 6 7 8
µ0 8.19 6.91 5.94 4.97 2.91 1.97 0.52 -0.37
µ -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25

t value -64.55 -54.78 -47.34 -39.91 -24.18 -16.96 -5.89 0.92
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82

Table 4: The results of a one-way Student t-test for testing the null hypothesis that the
mean yearly return (µ) for the population of random strategies is equal to the return (µ0)
for our joint bear and bull strategy against the alternative hypothesis µ < µ0. The p values
are given in percentage points and rounded to two decimals.

Figure 4: Equity curve of joint bear and bull strategy with trading frequency of one day
compared to equities of random strategies represented by standard deviation bands around
the mean equity.

In most cases the Wikipedia pages on individual S&P 500 companies contains only the
most basic information. It is therefore safe to assume that this information source will
mostly be utilized by individual investors since institutional investors have access to more
sophisticated tools offering greater depth of information. Our hypothesis is that the in-
fluence of Wikipedia page visits on future stock returns will be higher for stocks that are
likely to attract a higher proportion of individual investors. According to Barber and Odean
[4] the individual investors generally have a tendency to tilt their stock investments towards
high-beta, small and value stocks. In light of this result we construct three additional strate-
gies based on our joint bear and bull strategy. In all these strategies we restrict our trading
decision to a subsample of stocks that fall above or below the median of one of the follow-
ing variables: volatility, market capitalization and price-to-book ratio. In the first strategy
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we choose a subsample of high volatility stocks, in the second one we choose a subsam-
ple of low market capitalization stocks and in the last one we chose a subsample of low
price-to-book ratio. Volatility is calculated in a 20 trading day rolling window approach.
The market capitalization and price-to-book ratio variables are obtained from the ADVFN
service5. We present the results in Table 5. The results strongly support our hypothesis
since all three subsample strategies outperform the full sample joint bear and bull strategy
in cases of the most relevant trading frequencies (1 ≤ f ≤ 5).

Trading frequency (days) 1 2 3 4 5 6 7 8
Full sample 8.19 6.91 5.94 4.97 2.91 1.97 0.52 -0.37

High volatility subsample 15.35 16.40 10.13 8.53 4.12 7.15 -0.78 1.32
Low market cap subsample 17.43 13.41 9.07 6.86 4.53 5.49 0.31 1.12

Low price to book subsample 13.57 9.99 7.16 8.15 5.87 0.81 -0.64 3.30

Table 5: Average yearly returns (in percentage points) of subsample strategies compared to
average yearly return of full sample joint bear and bull strategy.

All of the strategies presented up to this point have included both long and short po-
sitions. Since many investors face restrictions with respect to opening short positions in
stocks, the question naturally arises whether our strategies can be adapted to be long-only.
Let us consider the simplest possible adaptation which is the strategy where the investment
rule during the bear market is to enter long positions at the end of each trading day for
stocks in the upper decile with respect to the most recent available data on Wikipedia page
visits. During the bull market, the strategy enters long positions for stocks which are in
the lower decile with respect to the Wikipedia page visits. The annualized return of such
a strategy in our sample period is 20.36%. Since the strategy is long-only, it is reasonable
to compare its performance to that of the S&P 500 index whose annualized return during
our sample period is merely 4.36%. The equity curves obtained by investing the same
amount of wealth in both our adapted long-only strategy and the S&P 500 index are shown
in Figure 5. The backtesting results favor the conclusion that even those investors who
are restricted to only opening long positions might benefit from including the information
about Wikipedia page visits in their investment decisions.

6 Conclusion
The key point of our paper is that it is essential to incorporate information about the market
regime when studying the influence of internet search data on stock returns. This is clearly
true for all the search variables considered since all show markedly higher correlations with
future stock returns in the bear regime than in the bull regime. However, the distinction
between the two regimes is especially singnificant in the case of the Wikipedia variable
where we observe two inverse price patterns - a merry frown in the bear regime and a sour
smile in the bull regime. Our regime estimation method is based on a hidden Markov model
that only accounts for information revealed to us through the price fluctuations of the S&P
500 index. We suspect that even more interesting results might be obtained if search data
were somehow included into the regime switching model itself, perhaps by building upon
existing research into estimation of investor sentiment by internet search data such as [8].

After controlling for the Carhart factors the Wikipedia page visits variable emerges

5http://www.advfn.com
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Figure 5: Equity curve of adapted long-only joint bear and bull strategy with trading fre-
quency of one day compared to equity curve of S&P 500 index.

as the one with the most significant influence on future stock returns. Until recently this
data set has been largely overlooked by researchers however we believe that it holds great
potential for future applications. In a surprising turn, both of the Google search variables
prove to be statistically insignificant for most periods of future return for stocks in our
sample. This result is at odds with previous studies performed on earlier sample periods
and warrants further research that would explain this discrepancy. We suggest that this
might be caused by arbitrageurs already taking advantage of the effect of company-related
Google search frequencies in line with the weak-form market-efficiency hypothesis.

We would like to make an additional point about Google Trends data with regard to fu-
ture research. We noticed that previous studies have almost exclusively focused on relative
search frequencies which is most likely due to the fact that individual time series obtained
from the Google Trends service are normalized within series so that their values always
span the interval from 0 to 100. In Section 2 we describe a straightforward approach that
enables us to obtain full sample daily trends data regardless of normalization. A quite
similar approach might be used to obtain data where non-relative search frequencies of
two different terms can be compared. It would be interesting to know whether such data
provides us with an even better proxy for investors’ attention.

We also believe that the results presented in our paper may be of benefit to financial
practitioners in at least two ways. Firstly, we show that Wikipedia can provide investors
with insights into a stock’s risk profile that are overlooked by existing asset pricing models
such as the Carhart four-factor model. Secondly, the trading strategies presented in Sec-
tion 5 may be of interest to speculative investors who are comfortable executing trading
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strategies with target investment holding periods of less than a week.
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Abstract

An i-packing in a graph G is a set of vertices at pairwise distance greater than i. For
a nondecreasing sequence of integers S = (s1, s2, . . .), the S-packing chromatic number
of a graph G is the least integer k such that there exists a coloring of G into k colors
where each set of vertices colored i, i = 1, . . . , k, is an si-packing. This paper describes
various subdivisions of an i-packing into j-packings (j > i) for the hexagonal, square and
triangular lattices. These results allow us to bound the S-packing chromatic number for
these graphs, with more precise bounds and exact values for sequences S = (si, i ∈ N∗),
si = d+ b(i− 1)/nc.

Keywords: Packing chromatic number, i-packing, hexagonal lattice, square lattice, triangular lattice,
distance coloring.

Math. Subj. Class.: 05C15, 05C63, 05C70.

1 Introduction
Let G = (V,E) be a (finite or infinite) graph and let N(u) = {v ∈ V (G)| uv ∈ E(G)} be
the set of neighbors of vertex u. A set Xi ⊆ V (G) is an i-packing if for any distinct pair u,
v ∈ Xi, d(u, v) > i, where d(u, v) denotes the usual shortest path distance between u and
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v. We will use Xi to refer to an i-packing in a graph G. A k-coloring c of G is a map from
V (G) to {1, . . . , k} such that for every pair of adjacent vertices (u, v), we have c(u) 6=
c(v). For a graph G and a k-coloring c of G, let ci be {u ∈ V (G)| c(u) = i}. The smallest
integer k such that there exists a k-coloring of G for which for every i, with 1 ≤ i ≤ k,
ci is a i-packing, is called the packing chromatic number of G and is denoted by χρ(G).
This concept was introduced by Goddard et al. [7] under the name of broadcast chromatic
number. More generally, for a nondecreasing sequence of integers S = (s1, s2, . . .), an
S-packing k-coloring is a k-coloring c of V (G) such that for every i, with 1 ≤ i ≤ k, ci
is a si-packing. Such a coloring will also simply be called an (s1, . . . , sk)-coloring. The
S-packing chromatic number of G denoted by χSρ (G), is the smallest k such that G admits
an S-packing k-coloring. For the sequences S = (si, i ∈ N∗), with si = d+ b(i− 1)/nc,
we call χSρ (G) the (d, n)-packing chromatic number and denote it by χd,nρ (G). For any
connected graph G such that |V (G)| ≥ d + 1, χd,nρ (G) ≥ d + 1 and χ1,1

ρ (G) = χρ(G).
For every bipartite graph G, χ1,2

ρ (G) = 2 (a bipartite graph is 2-colorable). Moreover, the
smallest n such that χd,nρ (G) = n corresponds to the d-distant chromatic number [12], i.e.
the minimum number of d-packings that form a partition of the vertices.

Let P∞ denote the two-way infinite path, let Z2 = P∞�P∞ denote the planar square
lattice (where � is the Cartesian product), T denote the planar triangular lattice and H

denote the planar hexagonal lattice. In this article, for an (s1, s2, . . .)-coloring of a graph,
we prefer to map vertices to the color multiset {s1, s2, . . .} even if two colors can then be
denoted by the same number. This notation allows the reader to directly see to which type
of packing the vertex belong depending on its color. When needed, we will denote colors
of vertices in different i-packings by ia, ib, . . ..

1.1 Motivation and related work

Packing colorings in graphs are inspired from frequency planning in wireless systems. The
concept of S-packing coloring emphasizes the fact that signals can have different powers
similar to the packing coloring but enables the presence of several signals with the same
power, providing a more realistic model for the frequency assignment problem.

The packing chromatic number of lattices has been studied by several authors: Soukal
and Holub [13] proved that χρ(Z2) ≤ 17, Ekstein et al. [1] that 12 ≤ χρ(Z2); Fiala et al.
[4] showed that χρ(H) ≤ 7, χρ(Z2�P2) =∞ and χρ(H�P6) =∞ and Finbow and Rall
[5] proved that χρ(T) =∞.

S-packing colorings with sequences S other than (1, 2, . . . , k) first appear in [7, 3].
Goddard and Xu [8] have recently studied S-packing colorings for the infinite path and for
square and triangular lattices, determining conditions on the first elements of the sequence
for which the graph is or is not S-packing-colorable.

Regarding the complexity, Goddard et al. [7] proved that the problem of (1, 2, 3)-
packing coloring is polynomial while (1, 2, 3, 4)-packing coloring and (1, 2, 2)-packing
coloring are NP-complete. Fiala and Golovach [3] showed that the problem of (1, 2, . . . , k)-
coloring is NP-complete for trees. The NP-completeness of (1, 1, 2)-coloring was proved
by Goddard and Xu [9] and afterward by Gastineau [6].

While the packing coloring corresponds to an S-packing coloring with a strictly in-
creasing sequence and the d-distant chromatic number corresponds to a constant one, the
sequence in the (d, n)-packing coloring also tends to infinity, but the parameter n allows us
to control its growth.
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d\n 1 2 3 4 5 6
1 7[4, 11] 2 2 2 2 2
2 ∞ 5 - 8 5 4 4 4
3 ∞ 15 - 35 9 - 13 8 - 10 7 - 8 6
4 ∞ 61 - ? 20 - 58 15 - 27 13 - 21 12 - 18
5 ∞ ∞ 37 - ? 25 - ? 21 - ? 19 - ?
8 ∞ ∞ ∞ ? ? ?

11 ∞ ∞ ∞ ∞ ? ?
13 ∞ ∞ ∞ ∞ ∞ ?
16 ∞ ∞ ∞ ∞ ∞ ∞

Table 1: Bounds for (d, n)-packing chromatic numbers of the hexagonal lattice.

Moreover, one can note that all the S-packing colorings of square and hexagonal lat-
tices published so far have the property that the s1-packing is maximum and the other
si-packings are obtained by subdivisions of s1-packings (and are not always maximum).
Therefore, we find it interesting to study subdivision of an i-packing into j-packings, j > i,
in lattices. These subdivisions can in turn be used to describe patterns to obtain an S-
packing coloring of a lattice. However, determining the families of graphs G for which
for any S such that G is S-colorable, the S-coloring satisfies the above property remains
an open question. Recently Goddard and Xu [8] proved that there exist nondecreasing se-
quences S such that P∞ is S-colorable and in any (s1, . . . , χ

S
ρ (P∞))-packing coloring of

P∞, the s1-packing is not maximum, showing that for P∞, there are sequences S for which
the above property is not satisfied.

1.2 Our results

The second section introduces some definitions and results related to density. The third
section introduces some subdivision of the lattices into i-packings. The fourth and fifth
sections give lower bounds resulting from Section 2 and upper bounds resulting from Sec-
tion 3 for the S-packing chromatic number and the (d, n)-packing chromatic number of the
lattices H, Z2 and T. Tables 1 , 2 and 3 summarize the values obtained in this paper for the
(d, n)-packing chromatic number, giving an idea of our results. The emphasized numbers
are exact values and all pairs of values are lower and upper bounds. Lower bounds have
been calculated from Proposition 2.2 and Propositions 2.5, 2.7 and 2.9. Some of the results
for square and triangular lattice have been found independently by Goddard and Xu [8].

2 Density of i-packings

2.1 Density of an i-packing in a lattice

Let G = (V,E) be a graph, finite or infinite and let n be a positive integer. For a vertex x
of G, the ball of radius n centered at x is the set Bn(x) = {v ∈ V (G)|dG(x, v) ≤ n} and
the sphere of radius n centered at x is the set ∂Bn(x) = {v ∈ V (G)|dG(x, v) = n}. The
density of a set of vertices X ⊆ V (G) is d(X) = lim sup

l→∞
max
x∈V
{ |X∩Bl(x)|
|Bl(x)| }.

The notion of k-area was introduced by Fiala et al. [4]. We propose here a slightly modified
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d\n 1 2 3 4 5 6
1 12 - 17 [1, 13] 2 2 2 2 2
2 ∞ 11 - 20 7 - 8 6 [8] 5 [8] 5
3 ∞ 57 - ? 16 - 33 12 - 20 10 - 17 10 - 14
4 ∞ ∞ 44 - ? 25 - 56 20 - 34 18 - 28
5 ∞ ∞ 199 - ? 50 - ? 35 - ? 29 - ?
6 ∞ ∞ ∞ ? ? ?
8 ∞ ∞ ∞ ∞ ? ?
10 ∞ ∞ ∞ ∞ ∞ ?
12 ∞ ∞ ∞ ∞ ∞ ∞

Table 2: Bounds for (d, n)-packing chromatic numbers of the square lattice.

d\n 1 2 3 4 5 6
1 ∞[5] 5 - 6 [8] 3 3 3 3
2 ∞ 127 - ? 14 - ? 10 - 16 9 - 13 8 - 10
3 ∞ ∞ 81 - ? 28 - 72 20 - 38 17 - 26
4 ∞ ∞ ∞ 104 - ? 49 - ? 36 - ?
5 ∞ ∞ ∞ ∞ ? ?
7 ∞ ∞ ∞ ∞ ∞ ?
8 ∞ ∞ ∞ ∞ ∞ ∞

Table 3: Bounds for (d, n)-packing chromatic numbers of the triangular lattice.
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A(2)=7 A(1)=3

Figure 1: Examples of k-area in T.

definition:

Definition 2.1. Let G be a graph, x ∈ V (G), and let k be a positive integer. The k-area
A(x, k) assigned to G is defined by :

A(x, k) =

 |Bk/2(x)| for k even;
|Bbk/2c(x)|+

∑
u∈∂Bdk/2e(x)

|N(u)∩Bbk/2c(x)|+|N(u)∩∂Bdk/2e(x)|/2
deg(u) for k odd.

For vertex-transitive graphs, the k-areas are the same for all vertices, hence we denote
it by A(k).
The motivation for our modification of the notion of k-area with the introduction of the set
of neighbors inside the sphere is to have sharper density bounds than the ones obtained by
the initial notion of k-area. For the square and the hexagonal lattice the notion coincide
as the relation is empty. However, for the triangular lattice, the density bound is smaller:
the definition of Fiala et al. [4] gives A(1) = 2 whereas A(1) = 3 in our case since there
are adjacent vertices in the sphere (as for every u ∈ ∂B1(x), |N(u) ∩ ∂B1(x)|/2 = 1,
then it adds one to the initial definition of k-area). Figure 1 illustrates this example giving
a coverage of the triangular lattice by balls of radius 1. In one case (on the left) the balls
are disjoint and in the second case (on the right) each sphere can be shared by several balls.
Observe that in the second case, each vertex u in a sphere centered at x has two neighbors,
and hence |N(u) ∩ ∂B1(x)|/2 = 1.

Proposition 2.2. Let G be a vertex-transitive graph with finite degree, and i be a positive
integer. If Xi is an i-packing in G, then

d(Xi) ≤
1

A(i)
.

Proof. Observe that for arbitrary vertices x and y of an i-packing Xi, the sets Bbi/2c(x)
and Bbi/2c(y) are disjoint, since the vertices x and y are at distance greater than i. Then
d(Xi) < 1/|Bbi/2c(x)|. Assume that i is an odd number and let u be a vertex at distance
di/2e from x, then u has deg(u) neighbors. If among these deg(u) neighbors, k neighbors
are in Bbi/2c(x) then u can be at distance di/2e from only k/deg(u) vertices in Xi. Hence

d(Xi) < 1/(|Bbi/2c(x)|+
∑

u∈∂Bdk/2e(x)

|N(u)∩Bbk/2c(x)|
deg(u) ).

Moreover u and a neighbor v of u in Bbi/2c(x) cannot be both at distance di/2e from more
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than 2 vertices in Xi, therefore uv can only belong to two spheres of radius di/2e centered
at a vertex in Xi. Hence it follows that d(Xi) < 1/A(i).

Corollary 2.3. Let G be a vertex-transitive graph with finite degree, and i be a positive
integer. If G has a finite S-packing chromatic number, then

∞∑
i=1

1

A(si)
≥ 1.

Corollary 2.4. Let G be a vertex-transitive graph with finite degree, and i be a positive
integer. If G has a finite (d, n)-packing chromatic number, then

∞∑
i=d

n

A(i)
≥ 1.

An i-packingXi is called a maximized i-packing if for any other i-packingX
′

i , d(Xi) ≥
d(X

′

i).

2.2 Density of an i-packing in the hexagonal lattice

Proposition 2.5. Let H be the hexagonal lattice, x be a vertex in V (H) and n be a positive
integer. Then

1. |∂Bn(x)| = 3n;

2. |Bn(x)| = 3
2n

2 + 3
2n+ 1.

Proof. 1. As the set ∂Bn(x) always contains three more vertices than ∂Bn−1(x), then
|∂Bn(x)| = 3n.
2. The graph H is 3-regular and so |B1(x)| = 4. Suppose the statement is true for n, then
|Bn+1(x)| = |Bn(x)| + |∂Bn+1(x)| = 3

2n
2 + 3

2n + 1 + 3(n + 1) = ( 32n
2 + 3

2 + 3n) +
( 32n+ 3

2 ) + 1 = 3
2 (n+ 1)2 + 3

2 (n+ 1) + 1 and the result follows by induction.

Proposition 2.6. Let H be the hexagonal lattice and k be a positive integer. Then

1. A(2k) = 3
2k

2 + 3
2k + 1;

2. A(4k + 1) = 6k2 + 6k + 2;

3. A(4k + 3) = 6k2 + 12k + 6.

Proof. 1. The first property results easily from Proposition 2.5.
2. If n = 4k+1, then Proposition 2.5 gives |B2k(x)| = 3

2 (2k)
2+ 3

2 (2k)+1 = 6k2+3k+1.
For every vertex y in ∂B2k+1(x), y has no neighbor in ∂B2k+1(x) other than itself, so
|N(y) ∩ ∂B2k+1(x)| = 0. We have to distinguish two kinds of vertices: 3k vertices have
two neighbors in B2k(x) and |∂B2k+1(x)| − 3k = 3k + 3 vertices have one neighbor in
B2k(x). Therefore, |A(4k + 1)| = 6k2 + 3k + 1 + 6k

3 + 3k+3
3 = 6k2 + 6k + 2.

3. If n = 4k+3, then Proposition 2.5 gives |B2k+1(x)| = 3
2 (2k+1)2 + 3

2 (2k+1)+ 1 =
6k2+9k+4. For every vertex y in ∂B2k+2(x), y has no neighbor in ∂B2k+2(x)) other than
itself, so |N(y)∩∂B2k+2(x)| = 0. We have to distinguish two kinds of vertices: 3k vertices
have two neighbors inB2k+2(x) and |∂B2k+2(x)|−3k = 3k+6 vertices have one neighbor
inB2k(x). Hence, we have |A(4k+3)| = 6k2+9k+4+ 6k

3 + 3k+6
3 = 6k2+12k+6.

Note that this result appeared in the article of Goddard and Xu [8].
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2.3 Density of an i-packing in the square lattice

Proposition 2.7. Let Z2 be the square lattice, x be a vertex in V (Z2) and n be a positive
integer. Then

1. |∂Bn(x)| = 4n;

2. |Bn(x)| = 2n2 + 2n+ 1.

Proof. 1. As the set ∂Bn(x) always contains four more vertices than ∂Bn−1(x), then
|∂Bn(x)| = 4n.
2. The graph Z2 is 4-regular and so |B1(x)| = 5. Suppose the statement is true for n, then
|Bn+1(x)| = |Bn(x)|+|∂Bn+1(x)| = 2n2+2n+1+4n+4 = 2(n+1)2+6n+5−4n−2 =
2(n+ 1)2 + 2(n+ 1) + 1 and the result follows by induction.

Proposition 2.8. Let Z2 be the square lattice and k be a positive integer. Then

1. A(2k) = 2k2 + 2k + 1;

2. A(2k + 1) = 2k2 + 4k + 2.

Proof. 1. The first property results easily from Proposition 2.7.
2. If n = 2k + 1, then Proposition 2.7 gives |Bk(x)| = k2 + 2k + 1. For every vertex y in
∂Bk+1(x), y has no neighbor in ∂Bk+1(x) other than itself, so |N(y) ∩ ∂Bk+1(x)| = 0.
We have to distinguish two kinds of vertices: 4k vertices have two neighbors in Bk(x) and
4 vertices have one neighbor in Bk(x). Hence, we have |A(2k + 1)| = 2k2 + 2k + 1 +
2 4k

4 + 4
4 = 2k2 + 4k + 2.

Note that this result appeared implicitly in the article of Fiala et al. [4].

2.4 Density of an i-packing in the triangular lattice

Proposition 2.9. Let T be the triangular lattice, x be a vertex in V (T) and n be a positive
integer. Then

1. |∂Bn(x)| = 6n;

2. |Bn(x)| = 3n2 + 3n+ 1.

Proof. 1. As the set ∂Bn(x) always contains six more vertices than ∂Bn−1(x), then
|∂Bn(x)| = 6n.
2. The graph T is 6-regular and so |B1(x)| = 7. Suppose the statement is true for n, then
|Bn+1(x)| = |Bn(x)|+|∂Bn+1(x)| = 3n2+3n+1+6n+6 = 3(n2+1)+3n+1+6−3 =
3(n2 + 1) + 3(n+ 1) + 1 and the result follows by induction.

Proposition 2.10. Let T be the triangular lattice and k be a positive integer. Then

1. A(2k) = 3k2 + 3k + 1;

2. A(2k + 1) = 3k2 + 6k + 3.
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Figure 2: The sets X2 (2-packing), X3 (3-packing) and X4 (4-packing) in H.

Proof. 1. The first property result easily from Proposition 2.9.
2. If n = 2k+1, then Proposition 2.9 gives |Bk(x)| = 3k2+3k+1. For every vertex y in
∂Bk+1(x), y has two neighbors in ∂Bk+1(x)) other than itself, so |N(y)∩ ∂B2k+1(x)| =
2. We have to distinguish two kinds of vertices: 6k vertices have two neighbors in Bk(x)
and six vertices have one neighbor in Bk(x). Hence, we have |A(2k + 1)| = 3k2 + 3k +
1 + 6k+6

6 + 2 6k
6 + 6

6 = 3k2 + 6k + 3.

3 Subdivision of an i-packing in H, Z2 and T

3.1 Subdivision of a 2-packing in H

Let X2 be the (unique) maximized 2-packing in H represented in Figure 2. Note that
d(X2) = 1/A(2) = 1/4 and remark that four 2-packings form a partition of H if we
translate X2 three times.
The hexagonal lattice can be seen as a subgraph of the square lattice. In fact in Figure 2,
H is represented as subgraph of the usual representation of the square lattice. In the square
lattice, we can choose one vertex as the origin and all the other vertices can be nominated
by a Cartesian coordinate. In every description of H, our origin (0, 0) will be a vertex in
the packing that we want to describe such that there is no edge between (0, 0) and (0, 1). In
fact we illustrate packings with a figure in this subsection but it will not be the case after;
we will use Cartesian coordinates in order to describe a packing. For example, X2 from
Figure 2 is the set of vertices: X2 = {(2x+ 4y, x)| x ∈ Z, y ∈ Z}.
In Appendix A, we recall a proposition about distance in the hexagonal lattice from Jacko
and Jendrol [10]. This proposition is useful to verify that a set is an i-packing. These
verifications are left to the reader in the remaining propositions.

Proposition 3.1. Let k > 0 and m > 0 be integers. There exist:

1. k2 (3k − 1)-packings that form a partition of X2;

2. 2k2 (4k − 1)-packings that form a partition of X2;

3. two (3× 2k− 1)-packings that form a partition of a (4k− 1)-packings from Point 2;

4. m2 (3mk − 1)-packings that form a partition of a (3k − 1)-packing from Point 1;

5. m2 (4mk − 1)-packings that form a partition of a (4k − 1)-packing from Point 2.

Proof. 1. Let Ak be the (3k− 1)-packing defined by Ak = {(2kx+4ky, kx)| x ∈ Z, y ∈
Z}. Let F = {(2i+4j, i)|i, j ∈ {0, . . . , k− 1} be a family of k2 vectors. Make k2 copies



N. Gastineau and H. Kheddouci: Subdivision into i-packings and S-packing chromatic number . . . 329

3a

3b

3a

3b

3a

3b

3a

3b

3a

3b

3a

3b

3a

3b

3a

3b

3a

3b

5a

5b

5d

5c

5a

5b

5d

5c

5a

5b

5d

5c

5a

5b

5d

5c

5a

5b

5d

5c

5a

5b

5d

5c

Figure 3: Two 3-packings forming a partition of X2 (on the left) and four 5-packings
forming a partition of X2 (on the right).

of the set Ak and translate each one by a vector from F to obtain a partition of X2.
2. Let Bk be the (4k − 1)-packing defined by Bk = {(4kx, 2ky)| x ∈ Z, y ∈ Z}. Let
F = {(4i + 2a, 2j + a)|i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1}} be a family of 2k2 vectors.
Make 2k2 copies of the set Bk and translate each one by a vector from F to obtain a
partition of X2.
3. Note thatA2k ⊆ Bk and ifA′2k isA2k translated by the vector (0, 2k), thenA′2k∪A2k =
Bk.
4. Note that Amk ⊆ Ak. Let F = {(2mki + 4mkj,mki)|i, j ∈ {0, . . . ,m − 1}} be a
family of m2 vectors. Make m2 copies of the set Amk and translate each one by a vector
from F to obtain a partition of Ak.
5. Note that Bmk ⊆ Bk. Let F = {(4mki, 2mkj)|i, j ∈ {0, . . . ,m− 1}} be a family of
m2 vectors. Make m2 copies of the set Bmk and translate each one by a vector from F to
obtain a partition of Bk.

Figure 3 illustrates a partition of X2 from Points 1 and 2 for k = 1. In the remaining
of the section, the proofs of decomposition of a set X will be resumed in a table and the
proofs of properties similar from those from Points 3, 4 and 5 will be left to the reader.

3.2 Subdivision of a 3-packing in H

Let X3 = {(3x + 6y, x)| x ∈ Z, y ∈ Z} be the maximized 3-packing in H from Figure
2. Note that d(X3) = 1/A(3) = 1/6 and that six 3-packings form a partition of H if we
translate X3 five times.

Proposition 3.2. Let k > 0 and m > 0 be integers. There exist:

1. k2 p1,k-packings, p1,k = (4k − 1), that form a partition of X3;

2. 3k2 p2,k-packings, p2,k = (6k − 1), that form a partition of X3;

3. 8k2 p3,k-packings, p3,k = (10k − 1), that form a partition of X3;

4. 24k2 p4,k-packings, p4,k = (18k − 1), that form a partition of X3;

5. m2 pj,mk-packings that form a partition of a pj,k-packing from Point j, for j ∈
{1, . . . , 4};



330 Ars Math. Contemp. 9 (2015) 321–344

6. three (4 × 3k − 1)-packings that form a partition of a (6k − 1)-packing from Point
2;

7. two (4 × 4k − 1)-packings that form a partition of a (10k − 1)-packing from Point
3;

8. four 17-packings and six 23-packings that form a partition of every 5-packing from
Point 2.

Proof. The proof is resumed in Table B.4, this table contains: in which i-packing X will
be decomposed (Column 1), the number of i-packings needed to form a partition of X
(Column 2), the description of an i-packing with Cartesian coordinates (assuming x and
y are integers) (Column 3) and the family of translation vectors (Column 4). We assume
that if we do copies of this i-packing and we translate each one by one of these vectors.
Afterward, we obtain a partition of X in i-packings.

3.3 Subdivision of a 4-packing in H

Let X4 = {(3x + 7y, 2x + y)| x ∈ Z, y ∈ Z} be the 4-packing in H from Figure 2.
Note that d(X4) = 1/11 and that 1/A(4) = 1/10. However, we claim that a 4-packing
with density 1/10 does not exist. Note that eleven 4-packings form a partition of H if we
translate X4 ten times.

Proposition 3.3. Let k > 0 and m > 0 be integers. There exist:

1. k2 p1,k-packings, p1,k = (5k − 1), that form a partition of X4;

2. 2k2 p2,k-packings, p2,k = (6k − 1), that form a partition of X4;

3. 3k2 p3,k-packings, p3,k = (8k − 1), that form a partition of X4;

4. 6k2 p4,k-packings, p4,k = (11k − 1), that form a partition of X4;

5. m2 pj,mk-packings that form a partition of a pj,k-packing from Point j, for j ∈
{1, . . . , 4};

6. two (5× 2k− 1)-packings that form a partition of a (6k− 1)-packing from Point 2;

7. two (6k − 1)-packings that form a partition of a (5k − 1)-packing from Point 1;

8. three (5 × 3k − 1)-packings that form a partition of a (8k − 1)-packing from Point
2;

9. three (8k − 1)-packings that form a partition of a (5k − 1)-packing from Point 1.

Proof. See Table B.5.

3.4 Subdivision of a 2-packing in Z2

In the square lattice, we can choose one vertex as the origin and all the other vertices will
be nominated by Cartesian coordinates. In all our representations our origin (0, 0) will be
in the packing that we want to describe. Let X2 = {(2x + y, x + 3y)| x ∈ Z, y ∈ Z} be
the maximized 2-packing in Z2 from Figure 4. Note that d(X2) = 1/A(2) = 1/5 and that
five 2-packings form a partition of Z2 if we translate X2 four times.
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Figure 4: The sets X2 (2-packing), X3 (3-packing) and X4 (4-packing) in Z2.

Proposition 3.4. Let k > 0, m > 0 be integers. There exist:

1. k2 (3k − 1)-packings that form a partition of X2;

2. 2k2 (4k − 1)-packings that form a partition of X2;

3. two (3× 2k− 1)-packings that form a partition of a (4k− 1)-packing from Point 2;

4. two (4k − 1)-packings that form a partition of a (3k − 1)-packing from Point 1;

5. m2 (3mk − 1)-packings that form a partition of a (3k − 1)-packing from Point 1;

6. m2 (4mk − 1)-packings that form a partition of a (4k − 1)-packing from Point 2.

Proof. See Table B.6.

3.5 Subdivision of a 3-packing in Z2

Let X3 = {(2x+ 4y, 2y)| x ∈ Z, y ∈ Z} be the maximized 3-packing in Z2 from Figure
4. Note that d(X3) = 1/A(3) = 1/8 and that eight 3-packings form a partition of Z2 if we
translate X3 seven times.

Proposition 3.5. Let k > 0 and m > 0 be integers. There exist:

1. k2 (4k − 1)-packings that form a partition of X3;

2. m2 (4mk − 1)-packings that form a partition of a (4k − 1)-packing from Point 1.

Proof. See Table B.6.

3.6 Subdivision of a 4-packing in Z2

Let X4 = {(3x + 8y, 2x + y)| x ∈ Z, y ∈ Z} be the maximized 4-packing in Z2 from
Figure 4. Note that d(X4) = 1/A(4) = 1/13 and that thirteen 4-packings form a partition
of Z2 if we translate X4 twelve times.

Proposition 3.6. Let k > 0, m > 0 be integers. There exist:

1. k2 (5k − 1)-packings that form a partition of X4;

2. 2k2 (6k − 1)-packings that form a partition of X4;

3. two (5× 2k− 1)-packings that form a partition of a (6k− 1)-packing from Point 2;
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Figure 5: The sets X1 (1-packing), X2 (2-packing) and X3 (3-packing) in T.

4. two (6k − 1)-packings that form a partition of a (5k − 1)-packing from Point 1;

5. m2 (5mk − 1)-packings that form a partition of a (5k − 1)-packing from Point 1;

6. m2 (6mk − 1)-packings that form a partition of a (6k − 1)-packing from Point 2.

Proof. See Table B.6.

3.7 Subdivision of an independent set in T

The square lattice can be seen as a subgraph of the triangular lattice. In fact in Figure
5, the triangular lattice is represented as a supergraph of the square lattice. Therefore,
we can choose one vertex as the origin and all the other vertices will be nominated by
Cartesian coordinates. In all our representations our origin (0, 0) will be a vertex such that
(0, 0) has (1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1) and (1,−1) as neighbors. Let X1 =
{(x+ 3y, x)| x ∈ Z, y ∈ Z} be the (unique) maximized independent set (1-packing) in T

from Figure 5. Note that d(X1) = 1/A(1) = 1/3 and that three independent sets form a
partition of T if we translate X1 two times.

Proposition 3.7. Let k > 0 and m > 0 be integers. There exist:

1. k2 (2k − 1)-packings that form a partition of X1;

2. 3k2 (3k − 1)-packings that form a partition of X1;

3. three (3k − 1)-packings that form a partition of a (2k − 1)-packing from Point 1;

4. m2 (2mk − 1)-packings that form a partition of a (2k − 1)-packing from Point 1;

5. m2 (3mk − 1)-packings that form a partition of a (3k − 1)-packing from Point 2.

Proof. See Table B.7.

3.8 Subdivision of a 2-packing in T

Let X2 = {(2x−y, x+3y)| x ∈ Z, y ∈ Z} be the maximized 2-packing in T from Figure
5. Note that d(X2) = 1/A(2) = 1/7 and that seven 2-packings form a partition of T if we
translate X2 six times.

Proposition 3.8. Let k > 0 and m > 0 be integers. There exist:

1. k2 (3k − 1)-packings that form a partition of X2;

2. m2 (3mk − 1)-packings that form a partition of a (3k − 1)-packing from Point 1.

Proof. See Table B.7.
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3.9 Subdivision of a 3-packing in T

Let X3 = {(2x + 6y, 2x)| x ∈ Z, y ∈ Z} be the maximized 3-packing in T from Figure
5. Note that d(X3) = 1/A(3) = 1/12 and that twelve 3-packings form a partition of T if
we translate X3 eleven times.

Proposition 3.9. Let k > 0 and m > 0 be integers. There exist:

1. k2 (4k − 1)-packings that form a partition of X3;

2. 3k2 (6k − 1)-packings that form a partition of X3;

3. three (4 × 3k − 1)-packings that form a partition of a (6k − 1)-packing from Point
1;

4. m2 (4mk − 1)-packings that form a partition of a (4k − 1)-packing from Point 1;

5. m2 (6mk − 1)-packings that form a partition of a (6k − 1)-packing from Point 2.

Proof. See Table B.7.

4 S-packing chromatic number
4.1 General properties

In the previous section, we obtained several properties of subdivision of an i-packings in
a lattice. This section illustrates general properties obtained on the S-packing chromatic
number using only a small part of these properties. For a given sequence S, one can find
other colorings of a lattice using properties from the previous section.

Corollary 4.1. Let a0 = 1. If s1 = 2 and there exist three integers 1 < a1 < . . . < a3 and
three integers k1, . . . , k3 such that sai ≤ 3ki−1 and ai−ai−1 ≥ k2i or sai ≤ 4ki− 1 and
ai − ai−1 ≥ 2k2i for i ∈ {1, . . . , 3} then χSρ (H) ≤ a3.

This corollary can be useful to find upper bounds for a given sequence. For example,
if S = (2, 2, 2, 2, . . .), then taking a1 = 2, a2 = 3 and a3 = 4, Corollary 4.1 gives us
χSρ (H) ≤ 4 (this result is in fact treated in next subsection). Similarly, for the sequence
S = (2, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, . . .) , then taking a1 = 3, a2 = 7 and a3 = 15,
Corollary 4.1 gives us χSρ (H) ≤ 15. There are similar results for s1 = 3 or s1 = 4 using
Propositions 3.3 and 3.4.
For the two remaining lattices, the two following properties are given for Z2 with s1 = 2
and for T with s1 = 1. There exist similar properties for Z2 with s1 = 3 or 4 using
Propositions 3.5 and 3.6 and for T with s1 = 2 or 3 using Propositions 3.8 and 3.9.

Corollary 4.2. Let a0 = 1. If s1 = 2 and there exist four integers 1 < a1 < . . . < a4 and
four integers k1, . . . , k4 such that sai ≤ 3ki − 1 and ai − ai−1 ≥ k2i or sai ≤ 4ki − 1 and
ai − ai−1 ≥ 2k2i for i ∈ {1, . . . , 4} then χSρ (Z2) ≤ a4.

Corollary 4.3. Let a0 = 1. If s1 = 1 and there exist two integers 1 < a1 < a2 and two
integers k1 and k2 such that sai ≤ 2ki − 1 and ai − ai−1 ≥ k2i or sai ≤ 3ki − 1 and
ai − ai−1 ≥ 3k2i for i ∈ {1, . . . , 2} then χSρ (T) ≤ a2.
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4.2 S-packing chromatic number and distance coloring

Jacko and Jendrol [10], Fertin et al. [2] and Ševcıková [14] have studied distance colorings
of H, Z2 and T respectively. The following propositions comes from their work and can
be translated in S-packing coloring:

Proposition 4.4 ([10]). Let n and d be integers. The minimum n such that s1 = d, sn = d
and χSρ (H) = n is given by

n =

{
d 38 (d+ 1)2e for d odd;
d 38 (d+ 4/3)2e for d even.

Proposition 4.5 ([2]). Let n and d be integers. The minimum n such that s1 = d, sn = d
and χSρ (Z2) = n is given by

n =

{
1
2 (d+ 1)2 for d odd;
1
2 ((d+ 1)2 + 1) for d even.

Proposition 4.6 ([14]). Let n and d be integers. The minimum n such that s1 = d, sn = d
and χSρ (T) = n is given by

n =

⌈
3

4
(d+ 1)2

⌉
.

5 (d, n)-packing chromatic number
5.1 Hexagonal lattice

Proposition 5.1. χ2,1
ρ (H) = ∞, χ5,2

ρ (H) = ∞, χ8,3
ρ (H) = ∞, χ11,4

ρ (H) = ∞,
χ13,5
ρ (H) =∞ and χ16,6

ρ (H) =∞.

Proof. Let H be the hexagonal lattice and k be an integer, k ≥ 16.
k∑
i=1

1
A(i) =

n∑
i=1

1
A(2i) +

n∑
i=0

1
A(4i+1) +

k∑
i=0

1
A(4i+3) =

k∑
i=1

1
3
2 i

2+ 3
2 i+1

+
k∑
i=0

1
6i2+6i+2 +

k∑
i=0

1
6i2+12i+6 <

2
15

√
15π tanh( 16π

√
15) + 1

6

√
3π tanh( 16π

√
3) + 1

36π
2 − 1 < 1.494.

Therefore:
k∑
i=2

1
A(i) < 1.494 − 1

A(1) < 0.994 < 1,
k∑
i=5

2
A(i) < 2(1.494 −

4∑
i=1

1
A(i) ) <

0.955 < 1,
k∑
i=8

3
A(i) < 3(1.494−

7∑
i=1

1
A(i) ) < 0.935 < 1,

k∑
i=11

4
A(i) < 4(1.494−

10∑
i=1

1
A(i) ) <

0.925 < 1 and
k∑

i=13

5
A(i) < 5(1.494 −

12∑
i=1

1
A(i) ) < 0.986 < 1,

k∑
i=16

6
A(i) < 6(1.494 −

15∑
i=1

1
A(i) ) < 0.968 < 1. Corollary 2.3 allows us to conclude.

Proposition 5.2. χ2,2
ρ (H) ≤ 8, χ2,3

ρ (H) ≤ 5 and ∀n ≥ 4, χ2,n
ρ (H) = 4.

Proof. Using Proposition 3.1, we define a (2, n)-packing coloring of H for each n = 2, 3
and n ≥ 4. H can be partitioned into four 2-packings, the first two ones can be colored
by color 2, the third one by two colors 3 and the last one by four colors under 5, it will be
two 4 and two 5, to conclude χ2,2

ρ (H) ≤ 8. H can be partitioned into four 2-packings, the
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first three ones can be colored by colors 2 and the third one by two colors 3, to conclude
χ2,3
ρ (H) ≤ 5. H can be partitioned into four 2-packings, hence ∀n ≥ 4, χ2,n

ρ (H) = 4.

The following table summarizes the colorings defined in the above proof. The symbol
P in the table refers to the packings we use and how we subdivide them into i-packings (Ai
is an i-packing) and the symbol C refers to the associated colors we use for each i-packing.
By k × Ai we mean we use k i-packings, and by k × i we mean we use k colors i. In the
rest of the paper, similar proofs will be only described by a table using the same format
than this one.

(2,2)-packing P 2×X2
X2 X2

2×A3 4×A5

C 2×2 2×3 2×4, 2×5

(2,3)-packing P 3×X2
X2

2×A3

C 3×2 2×3

Proposition 5.3. χ3,2
ρ (H) ≤ 35, χ3,3

ρ (H) ≤ 13, χ3,4
ρ (H) ≤ 10, χ3,5

ρ (H) ≤ 8 and ∀n ≥ 6,
χ3,n
ρ (H) = 6.

Proof. Using Proposition 3.2, we define a (3, n)-packing coloring of H for each n =
2, 3, 4, 5 and n ≥ 6. H can be partitioned into six 3-packings, hence ∀n ≥ 6, χ3,n

ρ (H) = 6.
The other colorings are described in Table C.8.

Proposition 5.4. χ4,3
ρ (H) ≤ 58, χ4,4

ρ (H) ≤ 27, χ4,5
ρ (H) ≤ 21, χ4,6

ρ (H) ≤ 18 and from
[10] ∀n ≥ 11, χ4,n

ρ (H) = 11.

Proof. Using Proposition 3.3, we define a (4, n)-packing coloring of H for each n =
3, 4, 5, 6 and n ≥ 11. H can be partitioned into eleven 4-packings. The other colorings are
described in Table C.9.

5.2 Square lattice

Proposition 5.5. χ2,1
ρ (Z2) = ∞, χ4,2

ρ (Z2) = ∞, χ6,3
ρ (Z2) = ∞, χ8,4

ρ (Z2) = ∞,
χ10,5
ρ (Z2) =∞ and χ12,6

ρ (Z2) =∞.

Proof. Let Z2 be the square lattice and k be an integer, k ≥ 12.
k∑
i=1

1
A(i) =

k∑
i=1

1
A(2i) +

k∑
i=0

1
A(2i+1) =

k∑
i=1

1
2i2+2i+1 +

k∑
i=0

1
2i2+4i+2 < 1

2π tanh(
1
2π) +

1
12π

2 − 1 < 1.264.

Therefore:
k∑
i=2

1
A(i) < 1.264 − 1

A(1) < 0.764 < 1,
k∑
i=4

2
A(i) < 2(1.264 −

3∑
i=1

1
A(i) ) <

0.877 < 1,
k∑
i=6

3
A(i) < 3(1.264−

5∑
i=1

1
A(i) ) < 0.917 < 1,

k∑
i=8

4
A(i) < 4(1.264−

7∑
i=1

1
A(i) ) <

0.938 < 1,
k∑

i=10

5
A(i) < 5(1.264 −

9∑
i=1

1
A(i) ) < 0.951 < 1 and

k∑
i=12

6
A(i) < 6(1.264 −

11∑
i=1

1
A(i) ) < 0.959 < 1. Corollary 2.3 allows us to conclude.

Proposition 5.6. χ2,2
ρ (Z2) ≤ 20, χ2,3

ρ (Z2) ≤ 8, χ2,4
ρ (Z2) ≤ 6 and ∀n ≥ 5, χ2,n

ρ (Z2) = 5.
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3 4 8 5 3 2 3 6 12 7 3 2

2 3 7 4 6 3 2 3 5 4 8 3

3 2 3 12 5 4 3 2 3 6 5 7

5 3 2 3 7 8 6 3 2 3 4 15

4 7 3 2 3 5 4 9 3 2 3 6

8 5 4 3 2 3 7 5 6 3 2 3

3 6 13 7 3 2 3 4 8 5 3 2

2 3 5 4 8 3 2 3 7 4 6 3

3 2 3 6 5 7 3 2 3 9 5 4

6 3 2 3 4 14 5 3 2 3 7 8

4 9 3 2 3 6 4 7 3 2 3 5

7 5 6 3 2 3 8 5 4 3 2 3

11 2 3 2 13 5 4 2 3 2 9 5

6 5 2 3 2 11 7 10 2 3 2 4

10 4 9 2 3 2 5 4 16 2 3 2

2 17 5 4 2 3 2 14 5 11 2 3

3 2 11 6 10 2 3 2 4 7 5 2

2 3 2 5 4 15 2 3 2 10 4 9

4 2 3 2 9 5 11 2 3 2 12 5

7 10 2 3 2 4 6 5 2 3 2 11

5 4 16 2 3 2 10 4 13 2 3 2

2 15 5 11 2 3 2 17 5 4 2 3

3 2 4 7 5 2 3 2 11 6 10 2

2 3 2 10 4 9 2 3 2 5 4 14

Figure 6: A 24× 24 pattern [13].

Proof. Using Proposition 3.4, we define a (2, n)-packing coloring of Z2 for each n =
2, 3, 4 and n ≥ 5. Z2 can be partitioned into five 2-packings, hence ∀n ≥ 5, χ2,n

ρ (Z2) = 5.
The other colorings are described in Table C.10.

Soukal and Holub [13] have proven that χ1,1
ρ (Z2) ≤ 17, and proposed a 24×24 pattern

in order to color the square lattice. Their pattern is recalled in Figure 6.

Proposition 5.7. χ3,3
ρ (Z2) ≤ 33.

Proof. In the pattern of Figure 6, Bi denotes the set of vertices colored by i. Note that B2

and B3 are both 3-packings. It can be seen that B16 ∪B17 form a 11-packing and that four
7-packings form a partition of B2 or B3. In order to color Z2 starting with 3, we partition

B1 into sixteen i-packings, 2 ≤ i ≤ 17 (since B1 is
17⋃
i=2

Bi translated by the vector (1, 0)).

Let B′i denote a copy of Bi translated by (1, 0). We use two colors 3 to color B2 and B3,
and one color i in order to color Bi for i ∈ [4, 8]. We color B′i by one color i, for i ∈ [3, 8]
and B′2 that is a 3-packing is colored by one color 4, one color 5, one color 6 and one color
7. We use the remaining color 8 to color B9. We use two colors 9 in order to color B16,
B′16, B17 and B′17. The remaining color 9 is used to color B′9. We use two colors i in order
to color Bi and B′i for i ∈ [10, 13]. The remaining colors 10, 11 ,12 and 13 are used to
color B14, B′14, B15 and B′15.
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Proposition 5.8. χ3,4
ρ (Z2) ≤ 20, χ3,5

ρ (Z2) ≤ 17, χ3,6
ρ (Z2) ≤ 14 and ∀n ≥ 8, χ3,n

ρ (Z2) =
8.

Proof. Using Proposition 3.5, we define a (3, n)-packing coloring of Z2 for each n =
4, 5, 6 and n ≥ 8. Z2 can be partitioned into eight 3-packings, hence ∀n ≥ 8, χ3,n

ρ (Z2) =
8. The other colorings are described in Table C.11.

Proposition 5.9. χ4,4
ρ (Z2) ≤ 56, χ4,5

ρ (Z2) ≤ 34, χ4,6
ρ (Z2) ≤ 28 and ∀n ≥ 13, χ4,n

ρ (Z2)=
13.

Proof. Using Proposition 3.6, we define a (4, n)-packing coloring of Z2 for each n =
4, 5, 6 and n ≥ 13. Z2 can be partitioned into thirteen 4-packings, hence ∀n ≥ 13
χ4,n
ρ (Z2) = 13. The other colorings are described in Table C.12.

5.3 Triangular lattice

Proposition 5.10. χ1,1
ρ (T) =∞, χ3,2

ρ (T) =∞, χ4,3
ρ (T) =∞, χ5,4

ρ (T) =∞, χ7,5
ρ (T) =

∞ and χ8,6
ρ (T) =∞.

Proof. Let T be the triangular lattice and k be an integer, k ≥ 8.
k∑
i=1

1
A(i) =

k∑
i=1

1
A(2i)+

k∑
i=0

1
A(2i+1) =

k∑
i=1

1
3i2+3i+1+

k∑
i=0

1
3i2+6i+3 <

1
3

√
3π tanh( 16π

√
3)+

1
18π

2 − 1 < 0.854.

Therefore:
k∑
i=1

1
A(i) < 0.854 < 1,

k∑
i=3

2
A(i) < 2(0.854−

2∑
i=1

1
A(i) ) < 0.755 < 1,

k∑
i=4

3
A(i) <

3(0.854−
3∑
i=1

1
A(i) ) < 0.883 < 1,

k∑
i=5

4
A(i) < 4(0.854−

4∑
i=1

1
A(i) ) < 0.966 < 1,

k∑
i=7

5
A(i) <

5(0.854 −
6∑
i=1

1
A(i) ) < 0.887 < 1 and

k∑
i=8

6
A(i) < 6(0.854 −

7∑
i=1

1
A(i) ) < 0.940 < 1.

Corollary 2.3 allows us to conclude.

Proposition 5.11. χ1,2
ρ (T) ≤ 6 and ∀n ≥ 3, χ1,n

ρ (T) = 3.

Proof. Using Proposition 3.7, we define a (1, n)-packing coloring of T for each n = 2 and
n ≥ 3. T can be partitioned into three independent sets, hence ∀n ≥ 3, χ1,n

ρ (T) = 3. The
other coloring is described in the following table.

(1,2)-packing P 2×X1
X1

4×A3

C 2×1 2×2, 2×3

Proposition 5.12. χ2,4
ρ (T) ≤ 16, χ2,5

ρ (T) ≤ 13, χ2,6
ρ (T) ≤ 10 and ∀n ≥ 7, χ2,n

ρ (T) = 7.

Proof. Using Proposition 3.8, we define a (2, n)-packing coloring of T for each n = 4, 5, 6
and n ≥ 7. T can be partitioned into seven 2-packings, hence ∀n ≥ 7, χ2,n

ρ (T) = 7. The
other colorings are described in Table C.13.

Proposition 5.13. χ3,4
ρ (T) ≤ 72, χ3,5

ρ (T) ≤ 38, χ3,6
p (T) ≤ 26 and ∀n ≥ 12, χ3,n

ρ (T) =
12.
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Proof. Using Proposition 3.9, we define a (3, n)-packing coloring of T for each n = 4, 5, 6
and n ≥ 12. T can be partitioned into twelve 3-packings, hence ∀n ≥ 12, χ3,n

ρ (T) = 12.
The other colorings are described in Table C.14.

6 Conclusion
We have determined or bounded the (d, n)-packing chromatic number of three lattices H,
Z2 and T for small values of d and n. Further studies can be done with other values of
d and n or improving existing values. The (d, n)-packing chromatic number can also be
investigated for other lattices. As an example, we can prove, using color patterns defined
in [15] for distance graphs, that for the octagonal lattice O, i.e the strong product of two
infinite path (which is a supergraph of T), χ1,2

ρ (O) ≤ 58. For other finite or infinite graphs,
like k-regular infinite trees, the method has to be adapted or changed since a maximized
packing cannot be described as easily as those considered in this paper. Also, for each of
three lattices studied, finding a sequence S such that χSρ = k and there is no S-packing k
coloring where the s1-packing is maximized could be an interesting result.
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A Distances in the three lattices
Definition A.1 ([10]). Let v = (a, b) be a vertex in the hexagonal lattice. Then the type of
v is

τ(v) = a+ b+ 1 (mod 2).

As H = V0 ∪ V1 is a bipartite graph, the type of a vertex v corresponds to the index of
the set Vi to which v belongs.

Proposition A.2 ([10]). Let v1 = (a1, b1), v2 = (a2, b2) be two vertices of the hexagonal
lattice and assume that b1 ≥ b2. Then the distance between v1 and v2 is

d(v1, v2) =

{
|a1 − a2|+ |b1 − b2| if |a1 − a2| ≥ |b1 − b2|;
2|b1 − b2| − τ(v1) + τ(v2) if |a1 − a2| < |b1 − b2|.

Example A.3. The set X2 from Figure 2 is a 2-packing in H.

Proof. Let x and y be integers, then
d((2(x+1)+ 4y, x+1), (2x+4y, x)) = |2x+4y+2− 2x− 4y|+ |x+1− x| = 3 > 2
and d((2x+ 4(y + 1), x), (2x+ 4y, x)) = 4 > 2;
let i and j be integers, then d((2(x+ i) + 4(y+ j), x+ i), (2x+4y, x)) ≥ min(d((2(x+
1) + 4y, x + 1), (2x + 4y, x)), d((2x + 4(y + 1), x), (2x + 4y, x))) = 3, hence X2 is a
2-packing.

Claim A.4. Let v1 = (a1, b1) and v2 = (a2, b2) be two vertices of the square lattice. Then
the distance between v1 and v2 is

d(v1, v2) = |a1 − a2|+ |b1 − b2|.

Example A.5. The set X2 from Figure 4 is a 2-packing in Z2.

Proof. Let x and y be integers, then
d((2(x+1)+y, x+1+3y), (2x+y, x+3y)) = |2x+y+2−2x−y|+|x+1+3y−x−3y| =
3 > 2 and d((2x+ y+ 1, x− 1 + 3(y+ 1), (2x+ y, x+ 3y)) = 4 > 2, to conclude X2 is
a 2-packing.

Claim A.6. Let v1 = (a1, b1) and v2 = (a2, b2) be two vertices of the triangular lattice.
Then the distance between v1 and v2 is

d(v1, v2) =

{
max(|a1 − a2|, |b1 − b2|) if ((a1≥a2)∧(b1≤b2))∨((a1≤a2)∧(b1≥b2));

|a1 − a2|+ |b1 − b2| otherwise.

Example A.7. The set X1 from Figure 5 is an independent set in T.

Proof. Let x and y be integers, then,
d((x+ 1 + 3y, x+ 1), (x+ 3y, x)) = |x+ 1 + 3y − x− 3y|+ |x+ 1− x| = 2 > 1 and
d((x+ 3(y + 1), x), (x+ 3y, x)) = 3 > 1, to conclude X1 is an independent set.
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B Decomposition of an i-packing in the three lattices

i Number of Description of Family of
i-packings a i-packing translation vectors

4k − 1 k2 {3kx+ 6ky, kx)} (3i+ 6j, i)
i, j ∈ {0, . . . , k − 1}

6k − 1 3k2 {3kx+ 6ky, 3kx)} (3i+ 6j, 3i+ 2a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1, 2}

10k − 1 8k2 {6kx+ 12ky, 4kx)} (6i+ 12j + 3b, 4i+ 2a+ b)
i, j ∈ {0, . . . , k − 1},

a ∈ {0, 1, 2, 3}, b ∈ {0, 1}
18k − 1 24k2 {12kx+ 24ky, 6kx)} (12i+ 24j + 3b, 6i+ 2a+ b)

i, j ∈ {0, . . . , k − 1},
a ∈ {0, . . . , 5}, b ∈ {0, 1, 2, 3}

Table B.4: Decomposition of X3 in H into i-packings.

i Number of Description of Family of
i-packings a i-packing translation vectors

5k − 1 k2 {3kx− ky, 2kx+ 3ky)} (3i− j, 2i+ 3j)
i, j ∈ {0, . . . , k − 1}

6k − 1 2k2 {7kx− ky, kx+ 3ky)} (7i+ 3a− j, i+ 2a+ 3j)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1}

8k − 1 3k2 {7kx+ 2ky, kx+ 5ky)} (7i+ 2j + 3a, i+ 5j + 2a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1, 2}

11k − 1 6k2 {−2kx+ 11ky, 6kx)} (−2i+ 11j + 7a, 6i+ a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, . . . , 5}

Table B.5: Decomposition of X4 in H into i-packings.
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i Number of Description of Family of
i-packings a i-packing translation vectors

X2

3k − 1 k2 {2kx− ky, kx+ 2ky)} (2i− j, i+ 2j)
i, j ∈ {0, . . . , k − 1}

4k − 1 2k2 {4kx+ ky, 2kx+ 3ky)} (4i+ 2a+ j, 2i+ 2a+ 3j)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1}

X3
4k − 1 k2 {2kx+ 4ky, 2kx)} (2i+ 4j, 2i)

i, j ∈ {0, . . . , k − 1}

X4

5k − 1 k2 {3kx− 2ky, 2kx+ 3ky)} (3i− 2j, 2i+ 3j)
i, j ∈ {0, . . . , k − 1}

6k − 1 2k2 {6kx+ ky, 4kx+ 5ky)} (6i+ j + 3a, 4i+ 5j + 2a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1}

Table B.6: Decomposition of X2, X3 and X4 in Z2 into i-packings.

i Number of Description of Family of
i-packings a i-packing translation vectors

X1

2k − 1 k2 {kx+ 3ky, kx)} (i+ 3j, i)
i, j ∈ {0, . . . , k − 1}

3k − 1 3k2 {3kx+ 3ky, 3kx)} (3i+ 3j + a, 3i+ a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1, 2}

X2
3k − 1 k2 {2kx+ 7ky, kx)} (2i+ 7j, i)

i, j ∈ {0, . . . , k − 1}

X3

4k − 1 k2 {2kx+ 6ky, 2kx)} (2i+ 6j, 2i)
i, j ∈ {0, . . . , k − 1}

6k − 1 3k2 {6kx+ 6ky, 6kx)} (6i+ 6j + 2a, 6i+ 2a)
i, j ∈ {0, . . . , k − 1}, a ∈ {0, 1, 2}

Table B.7: Decomposition of X1, X2 and X3 in T into i-packings.
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C Decomposition and associated colors

(3,2)-packing

P 2×X3

X3 X3 X3 X3

3×X5 4×X7 4×X9, 8×X15 X5, 3×X11,
4×X17, 6×X23

C
2×3 2×4, 5 2×6, 2×7 2×8, 2×9, 5, 2×10, 2×11,

2×12, 2×13, 2×16, 2×17, 2×18,
2×14, 2×15 2×19, 20

(3,3)-packing P 3×X3
X3 X3 X3

3×X5 3×X5 4×X7

C 3×3 3×4 3×5 3×6, 7

(3,4)-packing P 4×X3
X3 X3

3×X5 3×X5

C 4×3 3×4 4, 2×5

(3,5)-packing P 5×X3
X3

3×X5

C 5×3 3×4

Table C.8: Decomposition of H into 3-packings and associated colors.
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(4,3)-packing

P 3×X4
X4 2×X4 2×X4 X4

2×A5 6×A7 A5, 6×A9 6×A11, 4×A19

C 3×4 2×5 3×6, 3×7 5, 3×8, 3×9 3×10, 3×11, 18, 3×19

P X4 X4

9×A14 11×A19, 10×A23

C 3×12, 3×13, 3×15, 3×16, 3×17,
3×14 2×18, 3×20, 3×21

3×22, 23

(4,4)-packing P 4×X4
2×X4 2×X4 2×X4 X4

4×A5 6×A7 8×A9 2×A7, 3×A14

C 4×4 4×5 4×6, 2×7 4×8, 4×9 2×7, 3×10

(4,5)-packing P 5×X4
2×X4 3×X4 X4

4×A5 9×A7 A5, 2×A9

C 5×4 4×5 5×6, 4×7 5, 7, 8

(4,6)-packing P 6×X4
3×X4 2×X4

6×A5 6×A7

C 6×4 6×5 6×6

Table C.9: Decomposition of H into 4-packings and associated colors.

(2,2)-packing
P 2×X2

X2 X2 X2

2×A3 4×A5 6×A8, 6×A11

C 2×2 2×3 2×4, 2×5 2×6, 2×7, 2×8
2×9, 2×10, 2×11

(2,3)-packing P 3×X2
X2 X2

2×A3 A3, 2×A5

C 3×2 2×3 3, 2×4

(2,4)-packing P 4×X2
X2

2×A3

C 4×2 2×3

Table C.10: Decomposition of Z2 into 2-packings and associated colors.

(3,4)-packing
P 4×X3

4×X3

16×A7

C 4×3 4×4, 4×5, 4×6, 4×7

(3,5)-packing P 5×X3
3×X3

12×A7

C 5×3 5×4, 5×5, 2×6

(3,6)-packing P 6×X3
2×X3

8×A7

C 6×3 6×4, 2×5

Table C.11: Decomposition of Z2 into 3-packings and associated colors.
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(4,4)-packing
P 4×X4

2×X4 4×X4 X4 X4 X4

4×A5 16×A9 8×A11 9×A14 3×A14, 12×A17

C 4×4 4×5 4×6, 4×7, 4×10, 4×12 3×14, 4×15,
4×8, 4×9 4×11 4×13, 14 4×16, 4×17

(4,5)-packing

P 5×X4
2×X4 5×X4 X4

4×A5 A5, 18×A9 2×A9,
4×A11

C 5×4 4×5 5, 5×6, 5×7 2×9,
5×8, 3×9 4×10

(4,6)-packing P 6×X4
3×X4 4×X4

6×A5 16×A9

C 6×4 6×5 6×6, 6×7, 4×8

Table C.12: Decomposition of Z2 into 4-packings and associated colors.

(2,4)-packing P 4×X2
3×X2

12×A5

C 4×2 4×3, 4×4, 4×5

(2,5)-packing P 5×X2
2×X2

8×A5

C 5×2 5×3, 3×4

(2,6)-packing P 6×X2
X2

4×A5

C 6×2 4×3

Table C.13: Decomposition of T into 2-packings and associated colors.

(3,4)-packing

P 4×X3
2×X3 2×X3 2×X3

6×A5 8×A7 2×A5, 12×A11

C 4×3 4×4, 2×5 4×6, 4×7 2×5, 4×9, 4×10, 4×11

P X3 X3

16×A15 4×A11, 20×A23

C 4×12, 4×13 4×8, 4×16, 4×17,
4×14, 4×15 4×18, 4×19, 4×20

(3,5)-packing P 5×X3
3×X3 2×X3 2×X3

9×A5 8×A7 18×A11

C 5×3 5×4, 4×5 5×6, 3×7 5, 2×7, 5×8, 5×9, 3×10

(3,6)-packing P 6×X3
4×X3 2×X3

12×A5 8×A7

C 6×3 6×4, 6×5 6×6, 2×7

Table C.14: Decomposition of T into 3-packings and associated colors.
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HERE’S TO JACK E. GRAVER ON HIS 80th BIRTHDAY

BRIGITTE SERVATIUS

Jack the educator. The Syracuse Mathematics Department
is housed in Carnegy Library. Imagine heavy snowfall and a
slim, tall figure approaching the Carnegy building, propping
the heavy door open with one knee while his hands are busy
shaking the snow off the Daily Orange (SU student newspaper)
and the figure seemingly freezing in this position for as long as
it takes to read the front page article. For SU students this is a
familiar image of Jack E. Graver, always interested in students
and always finding time to read their news.

Jack the administrator. A surprisingly deep dark voice res-
onating from the chairman’s office inside Carnegie singing “No-
body knows the trouble I have seen, nobody knows my sor-
rows” is another image of Jack E. Graver.

Jack the researcher. The mathematician Graver is described on MathSciNet by publica-
tion in the areas of biology and other natural sciences, combinatorics, convex and discrete
geometry, game theory, economics, social and behavioral sciences, geometry manifolds
and cell complexes, operations research, mathematical programming, probability theory
and stochastic processes.

Graver received his Ph.D. from Indiana University in 1964 under Andrew Hugh Wal-
lace. His dissertation’s title was “An Analytic Triangulation of an Arbitrary Real Analytic
Variety”, the field algebraic topology. It is remarkable that the 1964 paper [3] of the same
title is cited more than once in this millennium. In 1966 he cashed an Erdős check for
results in [8], a paper that may be called his first major work (cited more than 10 times
in this millennium!). Because of this paper, written with Jim Yackel at Dartmouth (John
Wesley Young Research Instructor), Jack Graver is known as a Ramsey Theorist. From
1966 to present, he teaches at Syracuse University. Why Syracuse? Because I felt at home
here, he says. In 1975 he published On the foundations of linear and integer linear pro-
gramming I [4], a paper that turned his name into an adjective. On Wickipedia you can
read up on Graver bases, but if you want a more reliable source, try [9], where the relation-
ship of Gröbner bases to Hilbert bases and Graver bases is presented. If you look for On
the foundations of linear and integer linear programming II, you need to read Amir Fou-
rudi’s thesis, one of Jack Graver’s 9 (so far) Ph.D. students - Jack himself was handicapped
by his 1977-1994 chairmanship. However, despite administrative duties, his collaboration
with Mark Watkins turned him to Graph Theory, with [6, 10, 7] as major contributions to
the field. A fortunate diversion into Architecture produced not only a novel and unusual
text [1], but awoke Jack’s interest in rigidity of frameworks and he promoted matroids as
a major tool in a colloquium talk that changed my life. I became his Ph.D. student, one
of four simultaneously supervised by an acting chair. We did not fight over mathematical
issues as Jack had all four of us work on totally disjoint topics, we merely fought for being
next in line to enter the chairman’s office. Combinatorial rigidity [2] (100 citations) is to
this very day the focus of my research.
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Meanwhile Jack has moved on to new Ph.D. students and new topics, namely,
Fullerenes [5]. When asked about retirement he justifies the non-existence of plans by
stating with a smile: “Normally people retire around 65, but next year will be only my 50th

year at SU, so I have some time to think about that.”
There’s more to life than math—there is family, scouting, Shakespeare, gardening, fine

dining, stories. Whenever you tell him a story, Jack will tell you a funnier and better one
than you have ever heard. We have told but a small part of an interesting life to which we
may look up to for future inspiration.
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