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Abstract

An explicit form for the perturbation effect on the matrix of regression coeffi-
cients on the optimal solution in multiresponse surface methodology is obtained in
this paper. Then, the sensitivity analysis of the optimal solution is studied and the
critical point characterisation of the convex program, associated with the optimum
of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the
optimal solution is derived by the standard methods.

1 Introduction
The multiesponse surface methodology explores the relationships among several explana-
tory variables and more than one response variables. The addressed methodology consid-
ers a sequence of designed experiments in order to obtain a simultaneous optimal re-
sponse. To reach this aim the method uses a second-degree polynomial model for each
response variable. With that constraint the technique is just an approximation, but they are
succeed in literature because such models can be easily interpreted, estimated and applied;
moreover they perform well under the usual uncertainty about the process or phenomenon
under consideration. In fact, a number of laws in sciences are usually explained with
second-degree polynomial models, given that the first and second corresponding flows
are well understood and they explain some crucial intrinsic property of the phenomenon.

In recent decades, the multiresponse surface methodology has attracted the attention
of many quality engineers in different industries. Quality improvement or optimization
for such process or phenomenons, needs precise identification of the operation stages
and their effects on the response variables. Therefore, multistage systems require spe-
cial methods and solutions, since applying uni-response surface techniques may lead to
suboptimal or even inaccurate results. Some examples of the mentioned industries are:
agricultural, pharmaceutical, chemical, assembly, semiconductor, textile, and petroleum
industries as well as queuing, healthcare, traffic control, and transportation systems.

Start by assuming that a researcher knows a process or phenomenon and a corre-
sponding set of observable responses variables Y1, · · · , Yr which depends on some input
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variables, x1, . . . xn. Suppose also that the input variables xi′s can be controlled by the
researcher with a minimum error.

Typically, we have that

Yk(x) = ηk(x1, . . . xn), k = 1, . . . , r, and x = (x1, . . . xn)
′, (1.1)

where the form of the functions ηk(·)’s, usually termed as the true response surface, are
unknown and perhaps, very complex. The success of the response surface methodology
depends on the approximation of ηk(·) by a polynomial of low degree in some particular
region.

As it was mentioned, in the context of this paper we will assume that ηk(·) can be
soundly approximated by a polynomial of second order, that is

Yk(x) = β0k +
n∑
i=1

βikxi +
n∑
i=1

βiikx
2
i +

n∑
i=1

n∑
j>i

βijkxixj (1.2)

where the unknown parameters βj′s can be estimated via regression’s techniques, as it
shall be described in the subsequent section.

We also study the levels of the input variables xi′s such that the response variables
Y1, · · · , Yr are simultaneously minimal (optimal). This can be achieved if the following
multiobjetive mathematical program is solved

min
x


Y1(x)
Y2(x)

...
Yr(x)


subject to
x ∈ X,

(1.3)

where X is certain operating region for the input variables xi′s .
Now, two questions, closely related, can be observed:

1. When the estimations of (1.2) for k = 1, . . . , r are considered into (1.3), the critical
point x∗ obtained as solution shall be a function of the estimators β̂j′s of the βj′s .
Thus, given thatβ̂j′s are random variables, then x∗ ≡ x∗(β̂j′s) is a random vector
too. So, under the assumption that the distribution of β̂ is known, then, we ask for
the distribution of x∗(β̂j′s).

2. And, given that a point estimate of x∗(β̂j′s) should not be sufficient, then we would
ask also for an estimated region or an estimated interval.

In particular, the distribution of the critical point in a univariate response surface model
was studied by (Dı́az Garcı́a and Ramos-Quiroga, 2001, 2002), when y(x) is defined as
an hyperplane.

Now, in the context of the mathematical programming problems, the sensitivity analy-
sis studies the effect of small perturbations in: (1) the parameters on the optimal objective



Multiresponse Surface Mathematical Programming 13

function value and (2) the critical point. In general, these parameters shape the objec-
tive function and constraint the approach to the mathematical programming problem. In
particular, (Jagannathan, 1977; Dupačová, 1984; Fiacco and Ghaemi, 1982) have studied
the sensitivity analysis of the mathematical programming, among many other authors. As
an immediate consequence of the sensitivity analysis, the corresponding asymptotic nor-
mality study of the critical point emerges naturally, which can be performed by standard
methods of mathematical statistics (see similar results for the case of maximum likelihood
estimates in (Aitchison and Silvey, 1958)). This last consequence makes the sensitivity
analysis as an interesting source of statistical research. However, this approach must be
fitted into the classical philosophy of the sensitivity analysis; i.e., we need to translate the
general sensitivity analysis methodology into the statistical language. This involves, for
example, to study the effect on the model estimators of adding and/or excluding variables
and/or observations, see (Chatterjee and Hadi, 1988).

This paper proposes a solution in order to establish the effect of perturbations of
the matrix of regression parameters on the optimal solution of the multiresponse surface
model and the asymptotic normality of the critical point. First, in Section 2 some notation
is proposed. Then, the multiresponse surface mathematical program is set in Section 3 as
a multiobjective mathematical programming problem and a general solution is considered
in terms of a functional. Then, the characterisation of the critical point is given in Section
4 by stating the first-order and second-order Kuhn-Tucker conditions. Finally, the asymp-
totic normality of a critical point is established in Section 5 and for a particular form of
the functional, the asymptotic normality of a critical point is also derived.

2 Notation
For the sake of completeness, the main properties and usual notations are given here.
But for a detailed discussion of the multiresponse surface methodology we recommend
references (Khuri and Cornell, 1987; Khuri and Conlon, 1981, Chap. 7).

Let N be the number of experimental runs and r be the number of response variables,
which can be measured for each setting of a group of n coded variables x1, x2, . . . , xn.
We assume that the response variables can be modeled by a second order polynomial
regression model in terms of xi, i = 1, . . . , n. Hence, the kth response model can be
written as

Yk = Xkβk + εk, k = 1, . . . , r, (2.1)

where Yk is an N × 1 vector of observations on the kth response, Xk is an N × p matrix
of rank p termed the design or regression matrix, p = 1 + n + n(n + 1)/2, βk is a p× 1
vector of unknown constant parameters, and εk is a random error vector associated with
the kth response. For purposes of this study, it is assumed that X1 = · · · = Xr = X.
Therefore, (2.1) can be written as

Y = XB+ E (2.2)

where Y =

[
Y1

...Y2
... · · · ...Yr

]
, B =

[
β1

...β2

... · · · ...βr
]

, moreover

βk = (β0k, β1k, . . . , βnk, β11k, . . . , βnnk, β12k, . . . , β(n−1)nk)
′
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and E =

[
ε1

...ε2
... · · · ...εr

]
, such that E ∼ NN×r(0, IN ⊗ Σ) i.e. E has an N × r matrix

multivariate normal distribution with E(E) = 0 and Cov(vecE′) = IN ⊗Σ, where Σ is a

r × r positive definite matrix. Now, if A =

[
A1

...A2
... · · · ...Ar

]
, with Aj , j = 1, · · · , r the

columns of A; then vecA = (A′1,A
′
2, . . . ,A

′
r)
′ and ⊗ denotes the direct (or Kronecker)

product of matrices, see (Muirhead, 1982, Theorem 3.2.2, p. 79). In addition denote

• x = (x1, x2, . . . , xn)
′: The vector of controllable variables or factors.

• B̂ =

[
β̂1

...β̂2

... · · · ...β̂r
]

: The least squares estimator of B given by

B̂ = (X′X)−1X′Y,

from where

β̂k = (X′X)−1X′Yk = (β̂0k, β̂1k, . . . , β̂n, β̂11k, . . . , β̂nnk, β̂12k, . . . , β̂(n−1)nk)
′

k = 1, 2, . . . , r. Moreover, under the assumption that E ∼ NN×r(0, IN ⊗Σ), then
B̂ ∼ Np×r(B, (X′X)−1 ⊗Σ), with Cov(vec B̂′) = (X′X)−1 ⊗Σ.

• z(x) = (1, x1, x2, . . . , xn, x
2
1, x

2
2, . . . , x

2
n, x1x2, x1x3 . . . , xn−1xn)

′.

• β̂1k = (β̂1k, . . . , β̂nk)
′ and

B̂k =
1

2


2β̂11k β̂12k · · · β̂1nk
β̂21k 2β̂22k · · · β̂2nk

...
... . . . ...

β̂n1k β̂n2k · · · 2β̂nnk


• Ŷk(x) = z′(x)β̂k

= β̂0k +
n∑
i=1

β̂ikxi +
n∑
i=1

β̂iikx
2
i +

n∑
i=1

n∑
j>i

β̂ijkxixj

= β̂0k + β̂
′
1kx + x

′
B̂kx :

The response surface or predictor equation at the point x for the kth response vari-
able. For the aim of this paper it is assumed that B̂k, k = 1, . . . , r, are positive
definite matrices. Note that this last assumption is not always true and should be
verified, for example via the canonical analysis, see (Khuri and Cornell, 1987, Sub-
section 5.5.1, pp. 180-186). 2

• Ŷ(x) =
(
Ŷ1(x), Ŷ2(x), . . . , Ŷr(x)

)′
= B̂′z(x): The multiresponse surface or pre-

dicted response vector at the point x.

2Observe that, alternatively can be assumed that B̂k, k = 1, . . . , r, are negative definite matrices and
then in equation (3.1) the minimization should be replaced by maximization.
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• Σ̂ =
Y′(IN −X(X′X)−1X′)Y

N − p
: The estimator of the variance-covariance matrix

Σ such that (N − p)Σ̂ has a Wishart distribution with (N − p) degrees of freedom
and the parameter Σ; this fact is denoted as (N − p)Σ̂ ∼ Wr(N − p,Σ). Here, Im
denotes an identity matrix of order m.

• Finally, notice that
E(Ŷ(x)) = E(B̂′z(x)) = B′z(x) (2.3)

and
Cov(Ŷ(x)) = z′(x)(X′X)−1z(x)Σ. (2.4)

An unbiased estimator of Cov(Ŷ(x)) is given by

Ĉov(Ŷ(x)) = z′(x)(X′X)−1z(x)Σ̂. (2.5)

3 Multiresponse surface mathematical programming
In the following sections, we make use of the multiresponse mathematical programming
and multiobjective mathematical programming. For convenience, the concepts and nota-
tions required are listed below in terms of the estimated model of multiresponse surface
mathematical programming, but further detailed properties can be found in (Khuri and
Conlon, 1981; Khuri and Cornell, 1987; Rı́os et al., 1989; Steuer, 1986; Miettinen, 1999).

The multiresponse mathematical programming or multiresponse optimisation (MRO)
problem is proposed, in general, as follows

min
x

Ŷ(x) = min
x


Ŷ1(x)

Ŷ2(x)
...

Ŷr(x)


subject to
x ∈ X.

(3.1)

It is a nonlinear multiobjective mathematical programming problem, see (Steuer, 1986;
Rı́os et al., 1989; Miettinen, 1999); and X denotes the experimental region, usually taken
as a hypersphere

X = {x|x′x ≤ c2, c ∈ <},
where, c is set according to the experimental design model under consideration, see (Khuri
and Cornell, 1987). Alternatively, the experimental region can be taken as a hypercube

X = {x|li < xi < ui, i = 1, 2, . . . , n},

where
l = (l1, l2, . . . , ln)

′ ,

defines the vector of lower bounds of factors and

u = (u1, u2, . . . , un)
′ ,
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gives the vector of upper bounds of factors. Alternatively (3.1) can be written as

min
x∈X

Ŷ(x).

In the response surface methodology context, the multiobjective mathematical pro-
grams rarely contain a point x∗ which can be considered as an optimum, i.e. few cases
satisfy the requirement that Ŷk(x) is minimum for all k = 1, 2, . . . , r. From the viewpoint
of multiobjective mathematical programming, this justifies the following notion of the
Pareto point:

We say that Ŷ∗(x) is a Pareto point of Ŷ(x), if there is no other point
Ŷ1(x) such that Ŷ1(x) ≤ Ŷ∗(x), i.e. for all k, Ŷ 1

k (x) ≤ Ŷ ∗k (x) and
Ŷ1(x) 6= Ŷ∗(x).

(Steuer, 1986; Rı́os et al., 1989; Miettinen, 1999) established the existence criteria for
Pareto points in a multiobjective mathematical programming problem and the extension
of scalar mathematical programming (Kuhn-Tucker’s conditions) to the vectorial case.

Methods for solving a multiobjective mathematical program are based on the existing
information about a particular problem. There are three possible scenarios: when the
investigator possesses either complete, partial or null information, see (Rı́os et al., 1989;
Miettinen, 1999; Steuer, 1986). In a response surface methodology context, complete
information means that the investigator understands the population, in such a way, that it
is possible to propose a value function reflecting the importance of each response variable.
In partial information, the investigator knows deeply the main response variable of the
study and this is a sufficient support for the research. Finally, under null information,
the researcher only possesses information about the estimators of the response surface
parameter, and with this elements, an appropriate solution can be found too.

In general, an approach for solving a multiobjective mathematical program consist of
studying an equivalent nonlinear scalar mathematical program, i.e. as a solution of (1.3)
is proposed the following problem

min
x

f (Y(x))

subject to
x ∈ X,

(3.2)

and as a solution of (3.1) is stated the following problem

min
x

f
(
Ŷ(x)

)
subject to
x ∈ X,

(3.3)

where f(·) defines a functional (f(·) is a function that takes functions as its argument, i.e.
a function whose domain is a set of functions). Moreover, in the context of multiobjective
mathematical programmming, the functional f(·) is such that if M ⊂ <r denotes a set of
multiresponse surface functions, then

The functional is a function f : M → < such that min Ŷ(x∗) <

min Ŷ(x1)⇔ f(Ŷ(x∗)) < f(Ŷ(x1)), x∗ 6= x1.
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In order to consider a greater number of potential solutions of (3.1), usually studied in the
multicriteria mathematical programming, the following alternative problem to (3.3) can
be proposed

min
x

f
(
Ŷ(x)

)
subject to

x ∈ X ∩S,

(3.4)

where S is a subset generated by additional potential constraints, generally derived by
a particular technique used for establishing the equivalent scalar mathematical program
(3.3). In some particular cases of (3.3), a new fixed parameter may appear, a vector of
response weights w = (w1, w2, . . . , wr)

′, and/or a vector of target values for the response
vector τ = (τ1, τ2, . . . , τr)

′. Particular examples of this equivalent univariate objective
mathematical programming are the use of goal programming, see (Kazemzadeh et al.,
2008), and of the ε-constraint model, see (Biles, 1975), among many others. In particular,
under the ε-constraint model, (3.4) is proposed as

min
x

Ŷj(x)

subject to
Ŷ1(x) ≤ τ1

...
Ŷj−1(x) ≤ τj−1
Ŷj+1(x) ≤ τj+1

...
Ŷr(x) ≤ τr

x ∈ X.

(3.5)

4 Characterisation of the critical point

In the rest of the paper we shall develop the theory of the problem (3.3); it is easy to see
that this problem can be extended with minor modifications to the problem (3.4).

Hereinafter it is assumed that each possible functional f(·) considered in (3.3) is such
that the nonlinear scalar mathematical program

min
x

f
(
Ŷ(x)

)
subject to
x ∈ X,

defines a convex program.
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Remark 1. For example, suppose that such functional f(·) is defined as

f
(
Ŷ(x)

)
=

r∑
k=1

wkŶk(x)

=
r∑

k=1

wk

(
β̂0k + β̂

′
1kx + x

′
B̂kx

)
=

r∑
k=1

wkβ̂0k +

(
r∑

k=1

wkβ̂
′
1k

)
x + x

′

(
r∑

k=1

wkB̂k

)
x,

that is, f(·) is defined as a weight value function, such that, wk ≥ 0, k = 1, . . . , r, with∑r
k=1wk = 1, see (Rı́os et al., 1989). And observe that, as B̂k, k = 1, . . . , r, are positive

definite matrices, then
∑r

k=1 δkB̂k is a positive definite matrix too. Then the equivalent
nonlinear scalar mathematical program defined in this manner is a quadratic program,
and hence a convex program, see (Rao, 1979, p. 662). �

Let x∗(B̂) ∈ <n be the unique optimal solution of program (3.3) with the correspond-
ing Lagrange multiplier λ∗(B̂) ∈ <. The Lagrangian is defined by

L(x, λ; B̂) = f
(
Ŷ(x)

)
+ λ(||x||2 − c2). (4.1)

Similarly, x∗(B) ∈ <n denotes the unique optimal solution of program (1.3) with the
corresponding Lagrange multiplier λ∗(B) ∈ <.

Now we establish the local Kuhn-Tucker conditions that guarantee that the Kuhn-

Tucker point r∗(B̂) =
[
x∗(B̂), λ∗(B̂)

]′
∈ <n+1 is a unique global minimum of convex

program (3.3). First recall that for f : <n → <,
∂f

∂x
≡ ∇x denotes the gradient of

function f .

Theorem 1. The necessary and sufficient conditions that a point x∗(B̂) ∈ <n for arbitrary
fixed B̂ ∈ <p, be a unique global minimum of the convex program (3.3) is that, x∗(B̂) and
the corresponding Lagrange multiplier λ∗(B̂) ∈ <, fulfill the Kuhn-Tucker first order
conditions

∇xL(x, λ; B̂) = ∇xf
(
Ŷ(x)

)
+ 2λ(B̂)x = 0 (4.2)

∇λL(x, λ; B̂) = ||x||2 − c2 ≤ 0 (4.3)

λ(B̂)(||x||2 − c2) = 0 (4.4)

λ(B̂) ≥ 0 (4.5)

In addition, assume that strict complementarity slackness holds at x∗(B) with respect
to λ∗(B), that is

λ∗(B) > 0⇔ ||x||2 − c2 = 0. (4.6)

Analogously, the Khun-Tucker condition (4.2) to (4.5) for B̂ = B are stated next.
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Corollary 1. The necessary and sufficient conditions that a point x∗(B) ∈ <n for ar-
bitrary fixed B ∈ <p, be a unique global minimum of the convex program (3.2) is that,
x∗(B) and the corresponding Lagrange multiplier λ∗(B) ∈ <, fulfill the Kuhn-Tucker first
order conditions

∇xL(x, λ;B) = ∇xf
(
Ŷ(x)

)
+ 2λ(B)x = 0 (4.7)

∇λL(x, λ;B) = ||x||2 − c2 ≤ 0 (4.8)
λ(B)(||x||2 − c2) = 0 (4.9)

λ(B) ≥ 0 (4.10)

and λ(B) = 0 when ||x||2 − c2 < 0 at [x∗(B), λ∗(B)]′.

Observe that, due to the strict convexity of the constraint and objective function, the
second-order sufficient condition is evidently fulfilled for the convex program (3.3).

The next result states the existence of a once continuously differentiable solution to
program (3.3), see (Fiacco and Ghaemi, 1982).

Theorem 2. Assume that (4.6) holds and the second-order sufficient condition is satisfied
by the convex program (3.3). Then

1. x∗(B) is a unique global minimum of program (3.2) and λ∗(B) is also unique.

2. For B̂ ∈ Vε(B) (is an ε−neighborhood or open ball), there exist a unique once
continuously differentiable vector function

r∗(B̂) =

[
x∗(B̂)
λ∗(B̂)

]
∈ <n+1

satisfying the second order sufficient conditions of problem (3.2), such that r∗(B) =
[x∗(B), λ∗(B)]′ and hence, x∗(B̂) is a unique global minimum of problem (3.3) with
associated unique Lagrange multiplier λ∗(B̂).

3. For B̂ ∈ Vε(B), the status of the constraint is unchanged and λ∗(B̂) > 0⇔ ||x||2−
c2 = 0 holds.

5 Asymptotic normality of the critical point
This section considers the statistical and mathematical programming aspects in the sensi-
tivity analysis of the optimum of a estimated multiresponse surface model.

Theorem 3. Assume that:

1. For any B̂ ∈ Vε(B), the second-order sufficient condition is fulfilled for the convex
program (3.3) such that the second order derivatives

∂2L(x, λ; B̂)
∂x∂x′

,
∂2L(x, λ; B̂)
∂x∂ vec′ B̂

,
∂2L(x, λ; B̂)

∂x∂λ
,
∂2L(x, λ; B̂)

∂λ∂x′
,
∂2L(x, λ; B̂)
∂λ∂ vec B̂
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exist and are continuous in
[
x∗(B̂), λ∗(B̂)

]′
∈ Vε([x∗(B), λ∗(B)]′) and

∂2L(x, λ; B̂)
∂x∂x′

is positive definite.

2. B̂ν , the estimator of the true parameter vector Bν , is based on a sample of size Nν

such that √
Nν(B̂ν − Bν) ∼ Np×r(B,Θ),

1

Nν

Θ = (X′X)−1 ⊗Σ.

3. (4.6) holds for B̂ = B.

Then asymptotically √
Nν

[
x∗(B̂)− x∗(B)

]
d→ Nn(0n,Ξ),

where the n× n variance-covariance matrix

Ξ =

(
∂x∗(B̂)
∂ vec B̂

)
Θ̂

(
∂x∗(B̂)
∂ vec B̂

)′
,

1

Nν

Θ̂ = (X′X)−1 ⊗ Σ̂

such that all elements of
(
∂x∗(B̂)/∂ vec B̂

)
are continuous on any B̂ ∈ Vε(B);

furthermore (
∂x∗(B̂)
∂ vec B̂

)
=
[
I−P−1Q(Q′P−1Q)−1Q′

]
P−1G,

where

P =
∂2L(x, λ; B̂)
∂x∂x′

Q =
∂2L(x, λ; B̂)

∂λ∂x

G =
∂2L(x, λ; B̂)
∂x∂ vec′ B̂

Proof. According to Theorem 1 and Corollary 1, the Kuhn-Tucker conditions (4.2)–(4.5)

at
[
x∗(B̂), λ∗(B̂)

]′
and the conditions (4.7)–(4.10) at [x∗(B), λ∗(B)]′ are fulfilled for math-

ematical programs (3.2) and (3.3), respectively. From conditions (4.7)–(4.10) of Corollary
1, the following system equation

∇xL(x, λ;B) = ∇xf
(
Ŷ(x)

)
+ 2λ(B)x = 0 (5.1)

∇λL(x, λ;B) = ||x||2 − c2 = 0, (5.2)
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has a solution x∗(B), λ∗(B) > 0, B.
The nonsingular Jacobian matrix of the continuously differentiable functions (5.1) and

(5.2) with respect to x and λ at
[
x∗(B̂), λ∗(B̂)

]′
is

∂2L(x, λ; B̂)
∂x∂x′

∂2L(x, λ; B̂)
∂λ∂x

∂2L(x, λ; B̂)
∂x′∂λ

0

 .

According to the implicit functions theorem, there is a neighborhood Vε(B) such that for
arbitrary B̂ ∈ Vε(B), the system (5.1) and (5.2) has a unique solution x∗(B̂), λ∗(B̂), B̂ and
by Theorem 2, the components of x∗(B̂), λ∗(B̂) are continuously differentiable function
of B̂, see (Bigelow and Shapiro, 1974). Their derivatives are given by

∂x∗(B̂)
∂ vec B̂
∂λ∗(B̂)
∂ vec B̂

 = −


∂2L(x, λ; B̂)
∂x∂x′

∂2L(x, λ; B̂)
∂λ∂x

∂2L(x, λ; B̂)
∂x′∂λ

0


−1 ∂2L(x, λ; B̂)

∂x∂ vec′ B̂
0

 .(5.3)

The explicit form of (∂x∗(B̂)/∂ vec B̂) follows from (5.3) and by the formula(
P Q
Q′ 0

)−1
=

(
[I−P−1Q(Q′P−1Q)−1Q′]P−1 P−1Q(Q′P−1Q)−1

(Q′P−1Q)−1Q′P−1 −(Q′P−1Q)−1

)
,

where P is symmetric and nonsingular.
Then from assumption 2, (Rao, 1973, (iii), p. 388) and (Bishop et al., 1991, Theorem

14.6-2, p. 493) (see also (Cramér, 1946, p. 353)) we have

√
Nν

[
x∗(B̂)− x∗(B)

]
d→ Nn

(
0n,

(
∂x∗(B)
∂ vec B̂

)
Θ

(
∂x∗(B)
∂ vec B̂

)′)
. (5.4)

Finally note that all elements of (∂x∗/∂B̂) are continuous on Vε(B), so that the asymptot-
ical distribution (5.4) can be substituted by

√
Nν

[
x∗(B̂)− x∗(B)

]
d→ Nn

(
0n,

(
∂x∗(B̂)
∂ vec B̂

)
Θ̂

(
∂x∗(B̂)
∂ vec B̂

)′)
,

see (Rao, 1973, (iv), pp.388–389).

As a particular case, assume that the functional in (3.3) is defined as

f
(
Ŷ(x)

)
=

r∑
k=1

wkŶk(x),
r∑

k=1

wk = 1,

with wk known constants. Then,
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Corollary 2. Suppose the hypothesis 1 to 3 of Theorem 3 are fulfilled.
Then asymptotically √

Nν

[
x∗(B̂)− x∗(B)

]
d→ Nn(0n,Ξ)

where the n× n variance-covariance matrix

Ξ =

(
∂x∗(B̂)
∂ vec B̂

)
Θ̂

(
∂x∗(B̂)
∂ vec B̂

)′
,

1

Nν

Θ̂ = (X′X)−1 ⊗ Σ̂

such that all elements of
(
∂x∗(B̂)/∂ vec B̂

)
are continuous on any B̂ ∈ Vε(B); further-

more (
∂x∗(B̂)
∂ vec B̂

)
= S−1

(
x∗(B̂)x∗(B̂)′S−1

x∗(B̂)′S−1x∗(B̂)
− In

)
M
(
x∗(B̂)

)
,

where

S =
∂2L(x, λ; B̂)
∂x∂x′

= 2
r∑

k=1

wkB̂k − 2λ∗(B̂)In.

and

M(x) = ∇xz
′(x) =

∂z′(x)

∂x

= (0
...In

...2 diag(x)
...C1

... · · · ...Cn−1) ∈ <n×p,

with

Ci =


0′1
...

0′i−1
x′Ai

xiIn−i

 , i = 1, . . . , n− 1, 0j ∈ <n−i, j = 1, . . . , i− 1;

observing that when i = 1 (i.e. j = 0), this row does not appear in C1; and

Ai =


0′1
...
0′i

In−i

 , 0′k ∈ <n−i, k = 1, . . . , i.

Proof. The required result follows from Theorem 3 and observing that in this particular
case

∇xL(x, λ;B) =


M(x)

r∑
k=1

wkβk + 2λ(B)x

or
r∑

k=1

wk [β1k + 2Bkx] + 2λ(B)x


= 0

∇λL(x, λ;β) = ||x||2 − c2 = 0
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Conclusions
As the reader can check, the results of the paper can be computed easily from the estimates
of the parameters obtained through multivariate multiple regression and a known explicit
form of the functional f(·). A few basic routines in software R or MATLAB shall be
sufficient for achievement this objective.

In addition, as a consequence of Theorem 2 now is feasible to establish confidence
regions and intervals and hypothesis tests on the critical point, see (Bishop et al., 1991,
Section 14.6.4, pp. 498–500); it is also possible to identify operating conditions as regions
or intervals, instead of isolated points.

The results of this paper can be taken as a good first approximation to the exact prob-
lem. However, in some applications the number of observations can be relatively small
and perhaps the results obtained in this work should be applied with caution.
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