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Abstract

Understanding the relationship between interest rates and term to maturity 
of securities is a prerequisite for developing financial theory and evaluating 
whether it holds up in the real world; therefore, such an understanding lies at the 
heart of monetary and financial economics. Accurately fitting the term structure 
of interest rates is the backbone of a smoothly functioning financial market, 
which is why the testing of various models for estimating and predicting the 
term structure of interest rates is an important topic in finance that has received 
considerable attention for many decades. In this paper, we empirically contrast 
the performance of cubic splines and the Nelson-Siegel model by estimating the 
zero-coupon yields of Austrian government bonds. The main conclusion that can 
be drawn from the results of the calculations is that the Nelson-Siegel model 
outperforms cubic splines at the short end of the yield curve (up to 2 years), 
whereas for medium-term maturities (2 to 10 years) the fitting performance of 
both models is comparable. 

Keywords: Cubic splines; Nelson-Siegel; yield curve; zero-coupon bonds; term 
structure of interest rates

1 Introduction

The purpose of this paper is to construct a zero-coupon yield curve based on the 
data for coupon yields, price, and maturity of Austrian government bonds. The 
models used are the Nelson-Siegel and cubic splines. Forecasting the term struc-
ture of interest rates is a prerequisite for managing investment portfolios, pricing 
financial assets and their derivatives, calculating risk measures, valuing capital 
goods, managing pension funds, formulating economic policy, making household 
finance decisions, and managing fixed-income wealth. Prices of fixed-income 
securities such as swaps, bonds, and mortgage-backed securities depend on the 
yield curve. The yields on default-free government bonds that have different ma-
turities, when examined together, reveal information about forward rates, which 
can predict real economic activity and are, hence, of interest for policymakers, 
market participants, and economists. For instance, forward rates are often inputs to 
pricing models and may indicate market expectations of the movement of inflation 
rates and currency appreciation/depreciation rates in the future. Understanding the 
relationship between interest rates and the term to maturity of securities is a pre-
requisite for developing and testing financial theory and, therefore, lies at the heart 
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of monetary and financial economics. Accurately fitting the 
term structure of interest rates is the backbone of a smoothly 
functioning financial market, which is why refining yield 
curve modeling and forecasting methods is an important 
topic in finance that has received considerable attention for 
many decades (De Rezende & Ferreira, 2013; Diebold, Li, 
& Yue, 2008; Exterkate, van Dijk, Heij, & Groenen, 2013; 
Ioannides, 2003; Jordan & Mansi, 2003; Linton, Mammen, 
Nielsen, & Tanggaard, 2001; Rugengamanzi, 2013). 

The yield curve is a graphical representation of the term 
structure of interest rates (i.e., a one-to-one relationship 
between yields and corresponding maturities of default-free 
zero-coupon securities issued by sovereign lenders). The 
term structure of interest rates contains information about 
the yields of zero-coupon bonds1 of various maturities at a 
certain date. Constructing the term structure of interest rates 
is not a straightforward task due to the scarcity of zero-cou-
pon bonds on the market, which represent the essential part 
of the term structure of interest rates. The majority of bonds 
traded in the market bear coupons. The yields to maturity on 
coupon-bearing bonds, whose maturities or coupons differ, 
are not immediately comparable. As a result, a uniform way 
of measuring the term structure of interest rates is needed: 
The spot interest rates2 (i.e., the yields earned on bonds that 
pay no coupon) must be estimated from coupon bond prices 
of bonds with different maturities by using interpolation 
methods, such as polynomial splines (e.g., cubic splines) 
and parsimonious functions (e.g., Nelson-Siegel). This is 
how the yield curve of zero-coupon bonds is constructed 
(Christensen, Diebold, & Rudebusch, 2011; Christofi, 1998; 
Gauthier & Simonato, 2012; Luo, Han, & Zhang, 2012; 
Teichmann & Wüthrich, 2013; Yu & Zivot, 2011). 

The most widely used models for estimating the zero-cou-
pon yield curve are Nelson-Siegel and cubic splines. For 
instance, the central banks of Belgium, Finland, France, 
Germany, Italy, Norway, Spain, and Switzerland use the Nel-
son-Sigel model or some type of its enhanced extension to fit 
and forecast yield curves (BIS, 2005). The European Central 
Bank uses the Sonderlind-Svensson model, an extension of 
the Nelson-Siegel model, to estimate yield curves in the 
Eurozone (Coroneo, Nyholm & Vidova-Koleva, 2011). 

The remainder of the paper is organized as follows. Section 
2 gives an overview of the existing literature and relevant 
research studies. Section 3 presents the data; Section 4 lays 
out the methodology and the results. Section 5 concludes 
the paper. 

1 Another name for “zero-coupon bond” is discount bond.
2 The terms “yield to maturity on a zero-coupon bond,” “zero-cou-

pon interest rate,” “spot interest rate” and “zero-coupon yield” 
are synonyms; they all describe the same aspect of reality.

2 Literature Review

The yield curve estimation methods originated in McCull-
och’s (1975) cubic splines and in Nelson and Siegel’s (1987) 
parsimonious function. Most of the research studies on the 
term structure of interest rates build on these two methods 
and propose improvements and extensions. McCulloch 
(1975) modeled the discount curve with a spline. The fitted 
discount curve gives a poor fit of the yield curves, most 
notably at longer maturities. Nelson-Siegel’s parsimoni-
ous function allows for various shapes of the yield curve. 
The forward rates are a solution to a second-order differ-
ential equation. The forward rate curve under McCulloch’s 
method is not smooth, whereas the forward rate curve under 
Nelson-Siegel’s method is smooth, but still unable to accu-
rately price instruments at the longest end of the yield curve 
(Rugengamanzi, 2013).

The Nelson-Siegel type of models are relatively efficient 
in capturing the general shapes of the yield curve, which is 
why they are extensively used by central banks and market 
practitioners. Nevertheless, the Nelson-Siegel type of models 
are still inferior to the dynamic term structure models, like 
the quadratic or affine term structure models or the forward 
rate-based arbitrage-free model introduced by Heath, Jarrow, 
and Morton (1992). Jordan and Mansi (2003) used five 
distinct yield curve-smoothing methods to derive spot rates 
from on-the-run treasuries. All methods used the bootstrap-
ping3 technique either in discrete time or in continuous time. 
Yield curve-smoothing methods based on continuous-time 
bootstrapping deliver a superior approximation of the term 
structure of interest rates to those methods that employ the 
discrete-time bootstrapping technique. Of the five yield 
curve-smoothing methods, the linear spline interpolation 
produces the worst results; the second-worst method is cubic 
splines; and the two best methods are Mansi-Phillips and 
Nelson-Siegel. 

Diebold and Li (2006) developed a dynamic version of the 
Nelson-Siegel model. They showed that the three factors 
present in the Nelson-Siegel model can be interpreted as 
the level, slope, and curvature of the yield curve. They also 
corroborated that the dynamic model improves the fore-
casting accuracy. Diebold, Rudebusch, and Aruoba (2006) 
combined the Diebold-Li model with macroeconomic varia-
bles to analyze the relationship between the yield curve and 
the economy. Diebold et al. (2008) extended the dynamic 
Diebold-Li model to a global context. A large set of country 
yield curves was modeled in a setting that allows for both 
country-specific and global factors. The researchers found 
that the global yield level and slope factors exist and can 

3 “Bootstrapping” refers to calculating spot rates from bond yields 
in an iterative manner (Jordan et al., 2003). 
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explain a substantial proportion of variation in country 
bond yields. Christensen, Diebold, and Rudebusch (2009) 
proposed a generalized arbitrage-free Nelson-Siegel model 
using five factors. Christensen et al. (2011) added the ar-
bitrage-free restriction to the Diebold-Li model, thereby 
creating an affine arbitrage-free Nelson-Siegel model 
(AFNS). The results show an improvement in the model’s 
predictive performance. Yu and Zivot (2011) empirically 
tested Diebold and Li’s dynamic Nelson-Siegel three factor 
model and found that the dynamic Diebold-Li factor AR(1) 
model is superior to other models on the out-of-sample 
forecast accuracy. Luo et al. (2012) compared the fore-
casting ability of the Diebold-Li, dynamic Svennson, and 
dynamic Björk and Christensen models for the term struc-
ture of Chinese treasury yields. The results showed that all 
three models fit the data very well and that more flexible 
models produced superior in-sample fitting performance. 

Gauthier and Simonato (2012) developed linearized algo-
rithms for estimating spot interest rate term structures. These 
algorithms converge much faster while retaining the important 
characteristics of the original approaches. These algorithms are 
superior in that they enable the inclusion of prior information 
about some of the parameters, thereby enhancing the precision 
of the estimated spot rate curves. Using the Brazilian yield curve 
data, De Rezende and Ferreira (2013) compared the in-sample 
adjustment and the out-of-sample forecasting performance of 
four different Nelson-Siegel type models: Nelson-Siegel, Bliss, 
Svensson, and a new five-factor model that is an extension of the 
Svensson model and could improve the fitting flexibility. The 
introduction of the fifth factor into the model produced the best 
in-sample fitting, but poor out-of-sample forecasting. Exterkate 
et al. (2013) investigated whether the inclusion of additional 
macroeconomic information into the Nelson-Siegel model 
results in improved yield curve forecasts. In general, the fore-
casts could not be improved in stable times (e.g., 1994–1998): 
When the yields are not volatile, the dynamic Nelson-Siegel 
model produces good yield curve forecasts. The inclusion of 
additional macroeconomic variables can substantially improve 
the yield curve forecast accuracy when the yields are volatile 
(e.g., 2008–2009). 

3 Data

We empirically tested the fitting performance of the Nel-
son-Siegel model and cubic splines on the data for Austrian 
government bonds. The data were retrieved from Bloomb-
erg4 on October 8, 2013(see Table 1). All prices are in euros.

4 We do not have access to more recent data, as Bloomberg 
terminal subscription costs around $20,000 per user per annum, 
which is why the license is mostly bought by and available in 
major institutions only.

The raw data given in Table 1 was used to calculate the 
accrued interest and the dirty price (i.e., the market value, 
the present value). The dirty price is a sum of the clean price 
(i.e., the average of the “bid quote” and the “ask quote”) and 
the accrued interest. The accrued interest is the interest that 
a bond holder would have obtained in theory between the 
last coupon date of each bond and the current date (which 
we assumed to be October 8, 2013—the day the data were 
extracted).

The Nelson-Siegel model and cubic splines were applied to 
the data in Table 1 to estimate the zero-coupon bond yield 
curve.

4 Methodology and Results

The two main categories of methods for estimating a yield 
curve are the spline methods and the parsimonious methods. 
The spline methods use a piecewise polynomial function 
(usually a cubic one) to approximate the yield curve. Cubic 
splines were first introduced by McCulloch (1975) and sub-
sequently improved by Fisher, Nychka, and Zervos (1995), 
Waggoner (1997), and Anderson and Sleath (1999). The par-
simonious methods (such as Nelson-Siegel model [1987]; 
Nelson-Siegel-Svensson model [Sevensson, 1995], and 
models described by Wiseman [1994] and Bjork and Chris-
tensen [1997]) approximate the yield curve by estimating 
the parameters in a single parametric function. With spline 
methods, it is possible to capture almost any shape of the 
yield curve, whereas parsimonious methods can capture 
only yield curves obeying certain financial constraints. Both 
groups of methods have specific advantages and disadvan-
tages, but none of them seems to be able to consistently 

Table 1. Data on Austrian Government Bonds (retrieved from 
Bloomberg on October 8, 2013).

AT - 
Benchmark Maturity Coupon 

(%)
Bid  

(EUR)
Ask  

(EUR)

1Y BUND 20.10.2014 3,40 103,32 103,35

2Y BUND 15.07.2015 3,50 105,72 105,77

3Y BUND 15.09.2016 4,00 110,14 110,18

4Y BUND 15.09.2017 4,30 113,39 113,46

5Y BUND 15.01.2018 4,65 115,53 115,58

6Y BUND 15.03.2019 4,35 116,25 116,29

7Y BUND 15.07.2020 3,90 114,85 114,91

8Y BUND 15.09.2021 3,50 112,44 112,50

9Y BUND 20.04.2022 3,65 113,35 113,42

10Y BUND 20.10.2023 1,75 95,98 96,02

13Y BUND 15.03.2026 4,85 125,63 125,81

Source: Bloomberg.
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outperform the other (Manousopoulos & Michalopoulos, 
2009). In this paper, we employed the most representative 
type of each method (cubic splines and Nelson-Siegel) with 
the goal of estimating the zero-coupon yield curve.

4.1 Cubic splines model

The cubic splines method, developed by McCulloch (1971) 
and McCulloch (1975), divides the zero-coupon yield curve 
into distinct intervals. In each of these intervals, a cubic 
spline acts as vertebra in the vertebrate spinal column. If the 
yield curve is divided into k–1 knots, then we need k pa-
rameters to describe the entire zero-coupon yield curve. The 
optimal parameters are obtained by constructing the matrix 
A, defined in the continuation of the paper. The optimal pa-
rameters and the optimal zero-coupon yield curve minimize 
the discrepancy (the error) between the model price and 
the market price of government bonds (McCulloch, 1975; 
Jankowitsch & Pichler, 2003; Rugengamanzi, 2013). 

To fit the observed market data for government bond yield 
curve, McCulloch (1971) used the discount function pre-
sented in (1):

 (1)

where aj are the parameters that need to be estimated.  
For j < k, fj (t) is a cubic polynomial defined as follows:

I. When t < dj-1: 

fj (t) = 0 (2)

II. When dj-1 ≤ t < dj:

 (3)

III. When dj ≤ t < dj+1:

  (4)

where c = dj– dj-1 and e = t – dj.

IV. When dj+1 ≤ t:

 (5)

Two additional conditions have to be met:

a. When j = 1: 
 dj = dj-1 = 0 (6)

b. When j = k: 
 fj (t) = t (7)

In fj (t), t stands for time and j is a knot number (j = 1, …, 
k–1). Because the number of knots is equal to k–1, we need 
k parameters. The knots are denoted as dj. We used four pa-
rameters (k = 4) and three knots (k–1 = 3). We set the first 
knot equal to zero (d1 = 0), the second knot equal to five (d2 
= 5), and the third knot equal to 13 (d3 = 13), which corre-
sponds to the maturity of the last bond (McCulloch, 1975; 
Jankowitsch & Pichler, 2003; Rugengamanzi, 2013).

The zero-coupon yields are calculated from the discount 
function defined by (1) as follows:

 (8)

In order to calculate the parameters aj (which are needed in  
(1) and (8)), we first need to construct matrix A:

 (9)

where X is a matrix and Y is a matrix. XT and YT are the 
transposed matrices of matrices X and Y. The matrix A has j 
rows and one column. The element aj1 of matrix A (where j = 
1, …, k) is an optimal parameter aj, needed to calculate the 
discount function, as defined by (1).

The matrix X is given as follows:

  (10)

for every i=1,…,n and for every j=1,…,k,

where  Ri = the number of future cash flows of bond i,
 Zi (h) = a future cash flow h of bond i,
  wi (h) = the time to maturity of a next cash flow  

h of bond i in years, and
  fj (t) = a function of time t, defined by equations  

(2) to (5).

The matrix Y is given as follows:

 for every i = 1,…,n, (11)
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where Pi = the dirty price (the present value, the market 
value) of bond i.

The dirty price (the present value, the market value) Pi of 
bond is defined as follows:
Pi=clean price from Bloomberg+accrued interest.  (12)

The accrued interest is defined as follows:

accrued 
interest

the next cash flow 
(coupon amount) ×=

time that has passed 
between the last coupon 

payment and today
time between two 

consecutive coupon 
payments

 (13)

The estimated zero-coupon yield curve is displayed in 
Figure 1. 

4.2 Nelson-Siegel model

Nelson and Siegel (1987) developed a parsimonious 
function to model forward rates. The zero-coupon yield (the 
spot rate) can be derived as follows:

 (14)

where  t = time to maturity of a bond (in years),
 β1 = parameter beta 1 (the level factor),
 β2 = parameter beta 2 (the slope factor),
 β3 = parameter beta 3 (the curvature factor),
  τ1 = parameter tau 1 (the rate of exponential decay), 

and
 e = exponential function.

The parameters β1, β2, β3, and τ1 can be calculated with the 
Excel add-in “Solver” by minimizing the sum of squared re-
siduals between the dirty price (market value, present value) 
of the bonds and the model price of the bonds. (The dirty 
price is a sum of the clean price, retrieved from Bloomberg, 
and accrued interest.) The price of zero-coupon securities 
for time t is calculated as follows:

 (15)

The market value (MV) of a bond i according to the Nel-
son-Siegel model is calculated as follows: 

 (16)

where  Ri = the number of future cash flows of bond i,
 Zi (h) = a future cash flow h of bond i,
  wi (h) = the time to maturity of a future cash flow h 

of bond i in years, and
  P(t) = the present value of a zero-coupon security 

with nominal value 1 and maturity in time t. 

The error of the Nelson-Siegel model for bond i is defined 
as follows:

The error of the model for bond i = 
= (dirty price of bondi – MV Nelson Siegel of bondi )

2 (17)

Table 2. Estimated Discount Factors (D(t)) and Zero-coupon 
Yields for t = 1, 2, …, 10.

t D(t) r(t) r(t) in %

1 1,00056 -0,00056 -0,05606

2 0,99443 0,00279 0,27943

3 0,98238 0,00594 0,59424

4 0,96517 0,00890 0,89031

5 0,94355 0,01169 1,16896

6 0,91830 0,01431 1,43070

7 0,89024 0,01675 1,67481

8 0,86020 0,01900 1,90021

9 0,82901 0,02105 2,10539

10 0,79751 0,02288 2,28837

The final results obtained by empirically testing the cubic 
splines model (equations (1) to (13)) on data given in Table 1 
(Austrian government bonds) are summarized in Table 2.

Figure 1. The zero-coupon yield curve, estimated with the 
cubic splines model.

1,5

2

2,5

-0,5

0,5

1

0

3 421 5 6 7 8 9 10
t

r (
%

)



47

Eva Lorenčič: Testing the Performance of Cubic Splines and Nelson-Siegel Model for Estimating the Zero-coupon Yield Curve

Table 3. Estimated Zero-coupon Yields for t = 1, 2, …, 10.

t r(t) in %

1 0.11

2 0.30

3 0.57

4 0.86

5 1.15

6 1.42

7 1.67

8 1.89

9 2.09

10 2.26

Table 4. Comparison of Cubic Splines and Nelson-Siegel Estimates of Bond Prices.

Maturity
of the bond Actual bond price Cubic splines bond 

price estimation
Nelson-Siegel bond 

price estimation
Cubic splines 

squared price error*
Nelson-Siegel 

squared price error**

1 year 106.62 106.85 106.68 0.05061 0.00308

2 years 106.56 106.63 106.55 0.00532 0.00006

3 years 110.41 110.24 110.31 0.02882 0.01081

4 years 113.70 113.60 113.69 0.00949 0.00001

5 years 118.94 118.89 118.97 0.00301 0.00082

6 years 118.74 118.76 118.77 0.00058 0.00134

7 years 115.79 115.90 115.84 0.01271 0.00242

8 years 112.69 112.67 112.60 0.00038 0.00797

9 years 115.10 115.26 115.21 0.02767 0.01350

10 years 97.69 97.47 97.52 0.04878 0.02825

13 years 128.47 128.52 128.54 0.00213 0.00422

Sum: 0.18951 Sum: 0.07246

Notes. *Cubic splines squared price error is equal to the squared difference between the actual bond price and the cubic splines bond price 
estimation.

 **Nelson-Siegel squared price error is equal to the squared difference between the actual bond price and the Nelson-Siegel bond 
price estimation.

Figure 2. The zero-coupon yield curve, estimated with the 
Nelson-Siegel model.

The final results obtained by empirically testing the cubic 
splines model (equations (14) to (17)) on data given in Table 1 
(Austrian government bonds) are summarized in Table 3.

The estimated zero-coupon yield curve is displayed in 
Figure 2. 

4.3 Comparison of the two models

Our coupon bond price estimation results (Tables 4 and 5) 
are comparable with the in-sample coupon bond price es-
timation results of Jordan and Mansi (2003; see Table 2). 
Jordan and Mansi’s (2003) results show that, at the short end 
of the yield curve (0 to 5 years), the Nelson-Siegel model 
outperforms cubic splines; the same is true for the interme-
diate range (5 to 10 years). Our findings are similar to Jordan 
and Mansi’s (2003) findings in that the Nelson-Siegel model 
performed better than cubic splines at the short end of the 
yield curve (up to 5 years) and in the intermediate range 
(5–10 years); however, the supremacy of the Nelson-Siegel 
model over cubic splines was more pronounced for short-
term maturities than for medium-term maturities. 

The cubic splines and Nelson-Siegel estimates of zero-cou-
pon yields are summarized and compared in Table 6. The 
Nelson-Siegel model outperformed cubic splines at the short 
end of the yield curve (up to 2 years), whereas for medi-
um-term maturities (2 to 10 years), the fitting performance 
of both models was comparable. 
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The term structure of interest rates, as estimated by the two 
models, is displayed in Figure 3. 

5 Conclusion

In this paper, we empirically contrasted the performance of 
cubic splines and the Nelson-Siegel model by estimating the 
zero-coupon yields of Austrian government bonds. The main 

Table 5. Comparison of Cubic Splines and Nelson-Siegel Squared 
Price Errors for Short-term and Medium-term Maturities.

Maturity
Sum of squared 

price errors, cubic 
splines

Sum of squared 
price errors, 

Nelson-Siegel

Up to 5 years 0.0972* 0.01477*

> 5–10 years 0.09012** 0.05348**

Notes. *Sum of squared price errors for maturities from 1 to 5 years.
**Sum of squared price errors for maturities from 6 to 10 years.

Table 6. Comparison of Cubic Splines and Nelson-Siegel 
Estimates of Zero-coupon Yields.

t

Cubic splines 
estimates of 
zero-coupon 
yields in %

Nelson-Siegel 
estimates of 
zero-coupon 

yield in %

Absolute 
difference 

between the 
two model 

estimates in 
basis points

1 -0.06 0.11 17

2 0.28 0.30 2

3 0.59 0.57 2

4 0.89 0.86 3

5 1.17 1.15 2

6 1.43 1.42 1

7 1.67 1.67 0

8 1.90 1.89 1

9 2.11 2.09 2

10 2.29 2.26 3

Sum of absolute differences in basis points: 33

Figure 3. The term structure of interest rates, as estimated 
with cubic splines (grey line) and Nelson-Siegel (black line). 

conclusion drawn from the results of the calculations was 
that the Nelson-Siegel model outperformed cubic splines at 
the short end of the yield curve (up to 2 years), whereas for 
medium-term maturities (2 to 10 years) the fitting perfor-
mance of both models was comparable. In estimating the 
term structure of interest rates, we employed the simplest 
versions of the two models without any further extensions. 
In reality, Nelson-Siegel is one of the most widely used 
models for deriving the zero-coupon yield curve; however, 
the central banks and more sophisticated commercial banks 
use its enhanced versions.

Our study is limited in that we test the fitting performance 
of the models on the data of government bonds from only 
one country (Austria). In order to further substantiate our 
findings, the fitting performance of the models could be 
tested on a wider set of data, such as government bond data 
from various countries. 

As shown in the theoretical part of this paper, the research-
ers recently derived the dynamic and no-arbitrage improved 
versions of the Nelson-Siegel model, which are characterized 
by a greater estimate precision and forecast accuracy. Further 
research studies are warranted to evaluate and analyze the 
performance of the more recent versions of the model. 
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Testiranje učinkovitosti modela kubičnih zlepkov 
in Nelson-Sieglovega modela pri ocenjevanju krivulje 
donosa brezkuponskih vrednostnih papirjev

Izvleček

Razumevanje razmerja med obrestnimi merami in časom do dospelosti vrednostnih papirjev je osnovni pogoj za razvoj in 
ovrednotenje pravilnosti finančne teorije. Ta tematika je zato v osrčju monetarne in finančne ekonomije. Natančno prilagajanje 
terminske strukture obrestnih mer je hrbtenica tekoče delujočega finančnega trga. To je razlog, da je testiranje različnih 
modelov, ki ocenjujejo in napovedujejo terminsko strukturo obrestnih mer, na področju financ pomembna vsebina, ki je že 
nekaj desetletij deležna precejšnje pozornosti. V tem članku empirično primerjamo učinkovitost modela kubičnih zlepkov 
in Nelson-Sieglovega modela, tako da ocenimo donosnost brezkuponskih avstrijskih državnih vrednostnih papirjev. Ključni 
sklep, ki ga lahko izpostavimo na podlagi dobljenih rezultatov, je, da Nelson-Sieglov model bolje aproksimira brezkuponsko 
krivuljo donosa na kratkem koncu (do dveh let), na srednjem delu krivulje donosa (od dveh do desetih let) pa med rezultati 
obeh modelov ni bistvenih razlik. 

Ključne besede: kubični zlepki, Nelson-Sieglov model, krivulja donosa, brezkuponske obveznice, terminska struktura 
obrestnih mer


