ACTA BIOLOGICA SLOVENICA LJUBLJANA 2019 Vol. 62, Št. 1: 3-57 ACS Mnogotere vloge silicija izboljšajo uspevanje rastlin Multiple roles of silicon benefit plants Mateja Grašič Oddelek za biologijo, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 111, 1000 Ljubljana Correspondence: mateja.grasic@bf.uni-lj.si Izvleček: Prispevek na podlagi širokega pregleda literature obravnava vlogo silicija pri rastlinah, od same pojavnosti silicija v tleh preko mehanizmov privzema in prenosa, do nalaganja in deleža silicija v rastlinah. Članek nadalje zajema evolucijski vidik pojavnosti silicija pri rastlinah ter izpostavlja njegove ključne vloge pri uspe-vanju rastlin in blaženju negativnih učinkov številnih stresnih dejavnikov ter njegovo uporabnost v kmetijstvu. Ključne besede: silicij, rastline, evolucija, blaženje stresa, kmetijstvo Abstract: This paper includes broad literature review about silicon in plants from its appearance in soils to mechanisms of uptake and transport, and finally accumulation and content of silicon in plants. Furthermore, the evolutionary aspect of silicon in plants and its key role for plant growth and development by mitigating negative effects of various stress factors is highlighted along with its application in agronomy. Keywords: silicon, plants, evolution, stress mitigation, agronomy Uvod Silicij (Si) zaseda drugo mesto med najpogostejšimi elementi, ki se pojavljajo v tleh (Epstein 1994) in v zemeljski skorji, takoj za kisikom (O) (Mason 1966). Glede na njegovo vsesplošno prisotnost lahko torej sklepamo, da ga preko korenin v svoja tkiva privzemajo tudi rastline (Ma in Takahashi 2002). Prva navedba o vsebnosti Si v rastlinah sega že v začetek 19. stoletja (de Saussure 1804). Si v rastlinah najdemo v zelo različnih, a pomembnih deležih njihove suhe mase. Te vrednosti običajno segajo vse od 0,1 do 10 % ali celo več (Epstein 1994, Epstein in Bloom 2005, Hodson in sod. 2005). Ob primerjavi z esencialnimi makrohranili (dušik (N): 0,5-6 %, fosfor (P): 0,15-0,5 %, kalij (K): 0,8-8 %, žveplo (S): 0,1-1,5 %, kalcij (Ca): 0,1-6 % in magnezij (Mg): 0,05-1 %) (Epstein 1983, 1994, Epstein in Bloom 2005) ugotovimo, da največjo variabilnost glede pojavljanja v rastlinah kaže ravno Si. Vendar pa so tudi njegove najnižje izmerjene vrednosti v rastlinah popolnoma primerljive z nizkimi vrednostmi nekaterih makrohranil (Epstein 1994, 1995, 1999). Si je torej tako pomemben gradnik tal kot tudi rastlin (Epstein 1994). Kljub njegovi veliki zastopanosti v rastlinskem svetu, predvsem pri travah (Epstein 1999), Si ne prištevamo med esencialne elemente (Jones in Handreck 1967), z izjemo presličevk (Equise-taceae) (Chen in Lewin 1969) ter kremenastih (Bacillariophyceae) in zlatorjavih alg (Chrysophy-ceae) (Darley in Volcani 1969, Lewin in Reimann 4 Acta Biologica Slovenica, 62 (1), 2019 1969, Kaufman in sod. 1981). Iz tega razloga ga pri pripravi običajnih hranilnih raztopin za gojenje rastlin pogosto izpuščajo, vendar pa so na tak način vzgojene rastline neke vrste eksperimentalni artefakti (Huang in sod. 1992, Epstein 1994, 1995, 2009, Shakoor 2014). Obstaja namreč vrsta raziskav, ki so pokazale pojav simptomov pomanjkanja pri rastlinah, gojenih v hranilnih raztopinah brez Si (Miyake in Takahashi 1978, 1983a, 1985, 1986). Epstein (1994, 1999) trdi, da je nepriznavanje Si kot esencialnega elementa po eni strani posledica težavne popolne odstranitve Si iz gojitvenega medija in s tem nezmožnosti priprave prave kontrole brez Si. Prav iz tega vzroka Woolley (1957) ni opazil razlik med rastlinami, gojenimi ob dodatku Si, ter rastlinami, gojenimi v odsotnosti Si. Glavni razlog za nepriznavanje esencialnosti Si pri rastlinah pa se po mnenju Epsteina (1994, 1999) skriva v vsesplošno sprejeti klasični definiciji esencialnosti, ki sta jo postavila Arnon in Stout (1939). Šele v zadnjem času se je definicija esencialnosti nekoliko spremenila in tako kot esencialne lahko obravnavamo elemente, ki izpolnjujejo vsaj enega od sledečih dveh kriterijev: (1) elemente, ki so del molekul, bistvenih za strukturo ali metabolizem rastline ter (2) elemente, katerih pomanjkanje povzroči odstopanja v rasti, razvoju ali razmnoževanju rastlin v primerjavi z rastlinami, ki takšnega pomanjkanja nimajo (Epstein in Bloom 2005). Glede na posodobljeno definicijo esencialnosti elementov bi morala esencialnost Si slej ko prej postati splošno priznana znotraj celotnega kraljestva rastlin (Liang in sod. 2007). Prvi pomembnejši korak na tej poti predstavlja letno srečanje združenj ASA (American Society of Agronomy), CSSA (Crop Science Society of America) in SSSA (Soil Science Society of America) leta 2012, na katerem je organizacija AAPFCO (Association of American Plant Food Control Officiais) Si uradno imenovala kot koristen element za rastline na podlagi nj egovih številnih že prepoznanih pozitivnih učinkov tako na Si-akumulirajoče kot neakumulirajoče vrste (USDA ARS 2012, Heckman 2013). Za razliko od številnih drugih elementov, ki v tleh niso tako pogosti kot Si in katerih kopičenje v rastlinah je posledično v veliki meri odvisno od razmer v okolju, je količina Si v rastlinah odvisna predvsem od njihovega načina privzema Si, ki se razlikuje med vrstami (Ma in Takahashi 2002, Cooke in Leishman 2011a). Že Jones in Handreck (1967) sta na osnovi suhe mase kulturnih rastlin predlagala ločevanje treh skupin glede na količino Si v njihovih tkivih. To so: (1) dvokaličnice s koncentracijami Si okrog 0,1 %, (2) trave sušnih območij, kot sta oves in rž z okrog 1 % Si, ter (3) trave mokrotnih območij, npr. riž, z najvišjimi koncentracijami Si - okrog 5 % in celo več. V kasnejših letih so tovrstno delitev iz zgolj kulturnih razširili tudi na nekulturne rastline (Ma in Takahashi 2002). Ma in Takahashi (2002) sta ugotovila, da s Si bogate vrste običajno hkrati odražajo tudi nizke koncentracije Ca, in obratno. Opredelila sta tri načine privzema in posledično tri tipe rastlin glede na njihovo vsebnost Si in Ca: (1) akumulatorje Si, pri katerih koncentracija Si običajno presega 1 % in imajo razmerje Si/Ca > 1, (2) izključevalce Si s koncentracijo Si pod 0,5 % in razmerjem Si/Ca < 0,5 ter (3) intermediate z zmernimi koncentracijami Si, ki jih ne moremo uvrstiti v nobenega od obeh prej navedenih tipov (Preglednica 1). Preglednica 1: Kriteriji za opredelitev tipa rastlin glede na stopnjo akumulacije silicija (Si). Podan je tudi način privzema Si pri obravnavanih tipih. Prirejeno po Ma in Takahashi (2002). Table 1: Criteria for determining plant type according to silicon (Si) accumulation rate, with type of Si uptake also defined for each plant type. Adapted from Ma and Takahashi (2002). Tip rastline Akumulatorji Si Intermediati Izključevalci Si Vsebnost Si (%) > 1 1-0,5 < 0,5 Razmerje Si/Ca > 1 1-0,5 < 0,5 Stopnja akumulacije Si + ± - Način privzema Si aktiven pasiven preprečevanje privzema Grašič: Mnogotere vloge silicija 5 Visoke koncentracije Si zaznamo tako med evolucijsko primitivnejšimi mahovi in določenimi praprotnicami (lisičjačnice, presličnice in nekatere praproti) kot tudi med evolucijsko naprednejšimi enokaličnicami (ostričevke in trave). Pri travah Si običajno predstavlja do 4 % njihove suhe mase, pri preslicah do 16 %, medtem ko pri rižu vrednosti lahko segajo vse do 20 % (Lewin in Reimann 1969). Med intermediate sodijo bučevke, koprivo-vke, murvovke in komelinovke, ostale skupine pa kopičijo manj Si (Ma in Takahashi 2002). Razlike v količini Si niso opazne le med vrstami, temveč celo med različnimi genotipi znotraj vrst (Deren in sod. 1992, Ma in sod. 2003). Ta pojav bi lahko razložili na podlagi razlik v sposobnosti korenin za privzem Si ter razlik v zmožnosti kopičenja in načina prerazporejanja Si (Ma in Takahashi 2002, Ma in sod. 2003). Najnovejše raziskave kažejo, da potencial rastlinskih vrst za kopičenje Si lahko zelo zanesljivo ocenimo na podlagi molekularnih analiz Lsil prenašalcev Si. Določene značilnosti teh prenašalcev so namreč zelo ohranjene pri vseh vrstah, kjer se pojavljajo. Posledično lahko na podlagi njihove prisotnosti oz. odsotnosti ocenimo potencial različnih rastlinskih vrst za kopičenje Si in tako obstoječi umestitvi vrst med akumulatorje Si, intermediate ali izključevalce Si dodamo molekularno podporo. Poleg tega na podlagi navedenih analiz lahko ocenimo tudi, katerim rastlinskim vrstam bi dodajanje Si najbolj koristilo (Deshmukh in sod. 2015, Cooke in sod. 2016a, Deshmukh in Bélanger 2016). Privzem, prenos in nalaganje silicija v rastlinah Privzem in prenos silicija po rastlinah V tleh se Si večinoma pojavlja v obliki Si kisline (HiSiO^, ki je rezultat kemijske erozije silikatnih mineralov (Basile-Doelsch in sod. 2005), in sicer v koncentracijah med 0,1 in 0,6 mM (Epstein 1994). Te so popolnoma primerljive s koncentracijami mnogih za rastline pomembnih anorganskih hranil, kot sta npr. K in Ca, ter celo močno presegajo koncentracije, značilne za fosfat (Epstein in Bloom 2005). Rastline Si privzemajo preko korenin v obliki nenabite in hidrirane Si kisline (Raven 1983). Privzem poteka vsaj v dveh fazah: najprej nastopi radialni prenos Si iz zunanje raztopine v celice skorje korenin, temu pa sledi faza nalaganja Si iz skorje v ksilem (Mitani in Ma 2005). Casey in sod. (2003) so v ksilemskem soku pšenice Si zaznali le v obliki mono- ter disilicijeve kisline, in sicer v razmerju 7:1. Prenos Si po rastlini poteka po apoplastni poti preko ksilema (Raven 1983) v nepolimerizirani obliki (Epstein 1994). Mehanizmi, ki preprečujejo polimerizacijo Si med prenosom po ksilemu, bi bili lahko vezani na interakcije med Si in organskimi spojinami (Kaufman in sod. 1981). Prenos Si po rastlini poganja transpiracijski tok (Yoshida in sod. 1962a, Ma in Takahashi 2002), a vseeno je pri tem vpletena tudi aktivna komponenta (Liang in sod. 2006a). Kot nakazano že v prvem poglavju, obstaja več načinov privzema Si. Poznani so trije mehanizmi. Za nekatere vrste, npr. riž, je značilen energetsko odvisen aktiven način privzema s prenašalci v celičnih membranah (Tamai in Ma 2003, Mitani in Ma 2005), za druge kot npr. oves ali kumara s transpiracijo pogojen pasiven način privzema (Jones in Handreck 1965, Faisal in sod. 2012), preostale vrste (npr. paradižnik) pa privzem Si preprečujejo (Ma in Takahashi 2002). Parry in Winslow (1977) sta kot možen razlog za nizke koncentracije ter preprečevanje privzema Si pri nekaterih vrstah navedla impregnacijo koreninskih laskov s tanko plastjo kutinu ali suberinu podobne maščobne snovi, ki ovira privzem Si. Nikolic in sod. (2007) pa so ugotovili, da je tudi preprečevanje privzema Si metabolno aktiven proces. Liang in sod. (2005a) so v svoji raziskavi prišli do zaključka, da način privzema Si v rastline ni nujno striktno določen za vsako vrsto posebej, temveč je pri nekaterih vrstah možen preklop med aktivnim in pasivnim načinom glede na razpoložljivost Si v tleh. Tako so pri kumari, za katero v splošnem velja pasiven način privzema, ugotovili, da v primeru nizkih koncentracij Si pobudo prevzame aktivna komponenta privzema (Liang in sod. 2005a). Do podobnih ugotovitev so prišli tudi pri nekaterih drugih vrstah (Van der Vorm 1980, Henriet in sod. 2006, Liang in sod. 2006a). Z aktivnim načinom privzem Si poteka hitreje kot privzem vode, zato je vsebnost Si v rastlini višja kot v zunanji raztopini. Za pasiven privzem je značilno, da je koncentracija 6 Acta Biologica Slovenica, 62 (1), 2019 Si v rastlini in v zunanji raztopini zaradi podobne hitrosti privzema Si in vode podobna, v primeru preprečevanja privzema Si pa je privzem Si v rastlino počasnejši od privzema vode ter skladno s tem koncentracija Si v rastlini nižja v primerjavi z zunanjo raztopino (Ma in sod. 2001b, Mitani in Ma 2005, Cooke in Leishman 2011a). Način privzema Si ter skladno s tem tudi njegova količina v rastlinah sta odvisna od stopnje transpiracije ter ravnovesja med potrebo rastlin po Si ter razpoložljivostjo Si v tleh (Faisal in sod. 2012). Dietrich in sod. (2003) so pokazali, da je pri travah količina nakopičenega Si v rastlinah znotraj iste vrste lahko zelo različna glede na razpoložljivost Si v tleh. Koncentracija rastlinam dostopnega Si je v prvi vrsti odvisna od samega procesa kroženja Si med tlemi in rastlinami (Haynes 2014), nanjo pa vplivajo tudi pH tal, delež gline, mineralov in organske snovi ter železovih (Fe) oz. aluminijevih (Al) oksidov oz. hidroksidov, kar se navezuje na geološko starost tal. Geološko mlajša tla vsebujejo višje koncentracije rastlinam dostopnega Si kot močno erodirana tla (Tubana in sod. 2016). Topnost rastlinam dostopnega Si v tleh se povečuje z višanjem pH tal (Haynes 2014). Ma in sod. (2001a) so v raziskavah z rižem ugotovili, da največjo vlogo pri privzemu Si igrajo stranske korenine in ne koreninski laski. Za riž je namreč značilen energetsko odvisen aktiven način privzema Si preko specifičnih prenašalcev za privzem Si kisline, ki jih v koreninskih laskih najverjetneje ni (Ma in sod. 2001a). Aktiven način privzema omogoča rižu kopičenje daleč največjih količin Si med vsemi vrstami (Ma in sod. 2002, 2004b). Razlog za nižjo vsebnost Si pri vrstah s pasivnim privzemom je nižja gostota prenašalcev (Mitani in Ma 2005). Do sedaj so odkrili že več genov, ki kodirajo prenašalce Si. Raziskovanje na temo prenašalcev Si se je pričelo z rižem, ki je skladno s tem tudi najbolj raziskana vrsta na področju prenašalcev Si (Ma in sod. 2006, 2007, Yamaji in Ma 2007, Yamaji in sod. 2008, Yamaji in Ma 2009, Sakurai in sod. 2015). Nekaj raziskav na to temo obstaja tudi pri koruzi in ječmenu (Chiba in sod. 2009, Mitani in sod. 2009a,b, Yamaji in sod. 2012), v posameznih raziskavah pa so se s prenašalci Si ukvarjali tudi pri muškatni buči, kumari, pšenici in soji (Mitani-Ueno in sod. 2011, Mitani in sod. 2011, Montpetit in sod. 2012, Deshmukh in sod. 2013, Wang in sod. 2015). Nalaganje silicija v rastlinah Do nasičenja Si kisline znotraj rastline pride pri koncentraciji 1,67 mM, čemur sledita polimeri-zacija in odlaganje (Cooke in Leishman 2011a). Si se nalaga predvsem v celičnih stenah, a tudi v medceličnih prostorih, lumnu celic ter zunanjih plasteh v trdni amorfni hidrirani obliki silicijevega dioksida (SiO2 x nH2O) (Marschner in sod. 1990, Epstein 1994). V začetnih fazah odlaganja in posledično pri nižjih koncentracijah se Si pojavlja v t.i. silicijevih celicah, sčasoma ter z naraščajočo koncentracijo pa nastaja vedno več silicijevih telesc ali fitolitov (Ma 1990). Tako imenujemo vrastke celične stene v celico, ki se bolj ali manj v celoti zapolnijo s Si (Sangster in Parry 1981). Poleg silicijevega dioksida in vode manjši delež mase fitolitov (običajno do 5 %) prispevajo tudi nekateri drugi elementi, kot so Al, Fe, mangan (Mn), Mg, P, baker (Cu), N in ogljik (C) (Beavers in Jones 1963, Jones in Milne 1963, Wilding in sod. 1967). Njihovi deleži se razlikujejo med različnimi kultivarji (Li in sod. 2014). Si se lahko pojavlja tudi samostojno ali v kombinaciji s kalcijevim karbonatom v izrastkih celičnih sten, imenovanih cistoliti (Piperno 2006). Stopnja tvorbe fitolitov v rastlinah je odvisna od številnih dejavnikov, npr. podnebja v njihovem okolju, tal in vsebnosti vode v tleh, starosti rastlin, najpomembnejši vpliv pa ima nagnjenost same vrste k tvorbi fitolitov. Vse vrste namreč ne tvorijo fitolitov. Fitoliti se v rastlinskem svetu pojavljajo v zelo različnih vrstno značilnih oblikah in velikostih (Piperno 2006), ki običajno segajo med 2 in 60 ¡¡m (Meunier in sod. 1999). Z namenom preprečevanja zmede zaradi pojavljanja različnih poimenovanj enakih oblik fitolitov so Madella in sod. (2005) postavili uradno nomenklaturo za standardizacijo poimenovanj vseh različnih oblik fitolitov. Golokhvast in sod. (2014) so našli povezavo med različnimi morfotipi fitolitov in evolucijsko starostjo rastlin. Fitoliti evolucijsko starejših taksonov so v splošnem večji kot pri evolucijsko mlajših taksonih. Poleg tega se pri evolucijsko starejših skupinah pojavlja manj različnih morfotipov fitolitov kot pri mlaj ših (Golokhvast in sod. 2014). Velikost fitolitov znotraj rodu naj bi korelirala tudi s stopnjo ploidnosti, kar so ugotovili pri poliploidnih pšenicah (Hod-son 2016). Poleg vrstno značilnih oblik in s tem možnosti uporabe na področju taksonomije (Rovner Grašič: Mnogotere vloge silicija 7 1971, Lu in sod. 2009, Lisztes-Szabo in sod. 2014, Out in Madella 2016) ter anorganskega značaja in posledično večje odpornosti na razpadanje fitolite odlikuje tudi izjemna obstojnost (Piperno 2006). Strömberg (2004) je uspešno izolirala 35 milijonov let stare fitolite, Jones (1964) pa je poročal celo o prisotnosti fitolitov v 60 milijonov let starih sedimentih. Fitoliti tako predstavljajo uporabno in zanesljivo orodje za arheološke in paleoekološke raziskave vse do začetka kenozoika (Rovner 1971, Piperno 2006). Silicij se najpogosteje kopiči v povrhnjici ali njeni bližini (Yoshida in sod. 1962a, Prychid in sod. 2004), npr. v buliformnih celicah listov trav (Sangster in Parry 1969), v tvorbah povrhnjice kot so trihomi (Kaufman in sod. 1981) in listne reže (Lu in sod. 2009), v celicah žilne ovojnice (Prychid in sod. 2004) ter tudi v mezofilu (Morikawa in Saigusa 2004). Silicijeve celice se pogosteje pojavljajo v žilah, silicijeva telesca pa se običajno nanašajo na buliformne celice (Ma 1990). Pri travah pogosto govorimo o dvojni plasti, ki jo tik nad povrhnjico tvorita odložen Si in kutikula (Yoshida in sod. 1962b, Currie in Perry 2007). Ko se Si odloži v tarčnih celicah, njegovo prerazporejanje ni več mogoče (Raven 1983, Epstein 1994). Motomura in sod. (2004) so sprva trdili, da sta možna tako pasiven kot aktiven način odlaganja Si, odvisno od tipa celic. Kasnejše raziskave so pokazale, da je odlaganje Si izključno aktiven proces, ki vključuje pozitivno kontrolo (Motomura in sod. 2006, Markovich in sod. 2015). Idioblasti, katerih notranjost je popolnoma zapolnjena s Si, so odmrle celice v procesu programirane celične smrti (Markovich in sod. 2015, Kumar in Elbaum 2018). Vzrok za njihovo smrt kljub temu ne tiči v nalaganju Si, temveč gre zgolj za eno od faz njihovega razvoja (Markovich in sod. 2015). Pri teh celicah na določeni razvojni stopnji pride do zelo nagle izgube jedra ter citoplazme in s tem priprave prostora za odlaganje Si struktur (Blackman 1969). V zgodnji fazi njihovega razvoja lahko opazimo zelo obsežno jedro ter veliko število mitohondrijev, kar nakazuje že vnaprej določeno nagnjenost teh celic k visoki stopnji aktivnosti (Sangster in sod. 2001). Law in Exley (2011) sta ugotovila, da je obarjanje in s tem nalaganje Si v rastlinah oz. biosilicifikacija tesno povezana s polisaharidom kalozo, ki sproži proces biosilicifikacije. Pred silicifikacijo nastopi še proces lignifikacije (Zhang in sod. 2013a). Piperno in sod. (2002) ter Dorweiler in Doebley (1997) so našli neposredno povezavo med ligninom in fitoliti na genetski ravni, saj so ugotovili, da nastanek fitolitov nadzorujejo isti geni kot nalaganje lignina. Si se lahko nalaga tako v koreninah (Parry in Kelso 1975, Sangster 1977, 1978a,b, Bennett 1982, Parry in sod. 1984, Hodson in Sangster 1989a,b), listih (Parry in Smithson 1964, Sangster 1968, Sangster in Parry 1969, Sangster 1970, Hayward in Parry 1975, Parry 1975, Hodson in Sangster 1988a, Lanning in Eleuterius 1989, Larcher in sod. 1991), kot tudi ovršnih listih socvetij (Parry in Smithson 1966, Soni in Parry 1973, Parry in Hodson 1982, Hodson in Bell 1986, Hodson in Sangster 1988b, 1989c). Zaznali so ga celo v iglicah iglavcev (Hodson in Sangster 1998, 2002). V obliki fitolitov ga v splošnem lahko najdemo v vseh rastlinskih delih, še najmanj pogosto v koreninah (Prychid in sod. 2004). Tudi Lux in sod. (1999) so v koreninah zaznali znatno manj Si kot v listih. Pri mladih koreninah se Si nabira izključno v endodermalni plasti, pri starejših rastlinah pa ga najdemo tudi v povrhnjici, skorji in prevajalnih tkivih korenin (Sangster 1978b). Pri koreninah so zaznali filogenetsko pogojene razlike v vzorcu nalaganja Si (Sangster 1978b, Parry in sod. 1984). Razlike v vzorcu nalaganja Si pri rastlinah so zaznavne tako na ravni družin (Currie in Perry 2007) kot tudi med posameznimi vrstami, znotraj vrst (Hartley in sod. 2015) ter celo med različnimi funkcionalnimi tipi rastlin, npr. med C3 in C4 vrstami (Kaufman in sod. 1985, Lanning in Eleuterius 1989). V primeru vrst sta ključna dejavnika, ki lahko privedeta do omenjenih razlik, povzročena škoda na rastlinah s strani rastlinojedov ali izboljšana preskrba rastlin s Si (Hartley in sod. 2015). Poleg tega na privzem in nalaganje Si zagotovo vplivajo tudi razni abiotski dejavniki, ki lahko prikrijejo vpliv rastlinojedov (Herranz Jusdado 2011). Vzorec nalaganja Si se lahko razlikuje glede na razvojno fazo rastlin. Hodson in Sangster (1988a) sta tako opazila, da se Si v primeru mladih listov pšenice nabira predvsem v celicah spodnje, v primeru starejših pa tudi v celicah zgornje povrhnjice. V ovršnih listih se največ Si nabira v zunanjih stenah celic povrhnjice (Hodson in Sangster 1989c). Poleg tega se tekom razvoja rastlin zaradi spreminjajočih se razmerij med vgrajenimi polisaharidi v novo 8 Acta Biologica Slovenica, 62 (1), 2019 nastajajočih celičnih stenah razlike kažejo tudi v smislu oblike nalaganja Si znotraj celic (Perry in sod. 1987). Primerjava vsebnosti Si v listih C3 vrste, ječmena (Grašič in sod. 2019a), in C4 vrste, prosa (Grašič in sod. 2019b), pri štirih različnih obravnavanjih (kombinacije zadostne dostopnosti vode in pomanjkanja vode ter naravne ravni UV sevanja in zmanjšane ravni naravnega UV sevanja) pri podobnih okoljskih razmerah je pokazala, da sta pomanjkanje vode in pomanjkanje naravnega UV sevanja na privzem Si bolj omejujoče vplivala pri ječmenu (Grašič in sod. 2019a,b). Razlike v vsebnosti Si v listih pri različnih obravnavanjih so bile pri prosu majhne, zato je do razlike v vsebnosti Si v listih med obema proučevanima vrstama prišlo le pri obeh ekstremnih obravnavanjih (Slika 1). Slika 2 prikazuje morfološko primerjavo lista ječmena in prosa. Slika 1: Vsebnost silicija (Si) v listih ječmena in prosa pri štirih obravnavanjih z različno dostopnostjo vode (V) in naravnega UV sevanja (UV). Prikazane vrednosti so povprečja ± standardna deviacija; n = 5 (ječmen) ali 6 (proso) za vsako obravnavanje. Statistično značilne razlike med obravnavanji pri ječmenu so označene z malimi tiskanimi črkami, pri prosu pa z velikimi tiskanimi črkami (p < 0,05; Duncanovi testi). Zvezdice prikazujejo statistično značilne razlike med ječmenom in prosom znotraj istega obravnavanja (*, p < 0,05; **, p < 0,01; ***, p < 0,001; ns, ni značilnih razlik; Studentov t-test) (Grašič in sod. 2019a,b). Figure 1: Silicon (Si) content for barley and proso millet leaves, grown under four treatments with different water availability (V) and natural UV radiation (UV). Data are means ± SD; n = 5 (barley) or 6 (millet) for each treatment. Significant differences between the four treatments are indicated with lower case letters for barley and with upper case letters for proso millet (p < 0.05; Duncan tests). Asterisks demonstrate significant differences between barley and proso millet within each treatment (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant; Student's t-test) (Grašič et al. 2019a,b). Grašič: Mnogotere vloge silicija 9 Slika 2: Figure 2: Prečni prerez lista ječmena (A) in prosa (B) ter odtis povrhnjice lista ječmena (C) in prosa (D) z vidnimi listnimi režami, bodičkami in fitoliti. Povečava, 100x; dolžina merila, 50 ^m. Cross-section of a barley (A) and proso millet leaf (B), and epidermal impression of a barley (C) and proso millet leaf (D) with visible stomata, prickle hairs and phytoliths. Magnification, 100x; scale bar length, 50 ^m. Evolucijski vidik silicija pri rastlinah Silicij za rastline z energetskega vidika predstavlja 10-20 krat manj potraten vir od C in tako predstavlja alternativo C predvsem s strukturnega in podpornega vidika, s tem pa pripomore k boljšemu ravnovesju C v rastlinah (Raven 1983, McNaughton in sod. 1985, O'Reagain in Mentis 1989, Cooke in Leishman 2011b). Schoelynck in sod. (2010) so pri travah iz mokrotnih travnikov zaznali negativno korelacijo med koncentracijo biogenega Si ter koncentracijo z energetskega vidika zahtevnejšega lignina. Rastlinam z več vgrajenega Si so pripisali tekmovalno prednost zaradi večje možnosti vlaganja energije tudi v druge procese (Schoelynck in sod. 2010). Podobno sta razmišljali tudi Cooke in Leishman (2011b) na podlagi ugotovitve, da listi s krajšo življenjsko dobo vsebujejo večje količine Si v primerjavi z bolj dolgoživimi listi. Sklepali sta, da se jim zaradi kratkoživosti vgrajevanje Si kot metabolno cenejše surovine izplača bolj kot vključevanje C v svoja tkiva (Cooke in Leishman 2011b). V splošnem je o številnih koristih Si za rastline znanega že veliko, kar bo natančneje opisano v sledečih poglavjih. S tem se poraja vprašanje, zakaj se Si ne pojavlja v večjih količinah pri vseh rastlinskih vrstah (Raven 1983, Piperno 2006). Za odgovor na to vprašanje je potrebno ovrednotiti tudi ceno vgrajevanja Si namesto C, o čemer pa za zdaj vemo dokaj malo (Cooke in Leishman 2011a). Cena, ki jo morajo rastline plačati ob vgrajevanju Si namesto C, je najverjetneje povezana s povečanjem gostote in s tem večjim stroškom za izgradnjo mase (Raven 1983) ter z zmanjšano prožnostjo. Dodatno slabost Si v primerjavi s C bi lahko predstavljala omejitev glede prerazporejanja Si struktur po njihovem odlaganju v rastlinah ter glede sposobnosti tvorbe različnih kompleksnejših spojin. Exley (1998) je namreč v svoji raziskavi ugotovil, da v naravi povezave Si-O-C ter Si-C ne obstajajo. V nasprotju s tem sta Weiss in Herzog 10 Acta Biologica Slovenica, 62 (1), 2019 (1978) poročala o prisotnosti organskih Si kompleksov pri vrsti Thuja plicata Donn ex D.Don. Še ena možna omejevalna okoliščina v povezavi s Si je razvidna v stresnih razmerah, ko je za učinkovito doseganje blažilnih učinkov Si potrebna s pojavom stresnih simptomov sočasna zadostna preskrba rastlin s Si (Cooke in Leishman 2011a). Znano je, da se je sposobnost aktivnega kopičenja Si v rastlinah pojavila večkrat neodvisno tekom evolucije, iz česar lahko sklepamo na konvergenten razvoj rabe Si pri rastlinah. Pravih vzročnih in časovnih povezav med temi dogodki zaenkrat še ne poznamo (Strömberg in sod. 2016). Večkraten neodvisen pojav sposobnosti aktivnega kopičenja Si v rastlinah podpira raziskava, ki so jo opravili Trembath-Reichert in sod. (2015). Ugotovili so, da sta visoka vsebnost Si ter prisotnost prenašalcev Si značilni tako za evolucijsko stare (mahovi in praprotnice) kot tudi najmlajše kopenske taksone rastlin (predvsem trave). Golosemenke, ki so razmah doživele vmes, večinoma zaznamujejo majhne količine Si ter redka pogostost pojavljanja prenašalcev Si. Iz tega lahko sklepamo na izgubo sposobnosti aktivnega kopičenja Si pri zadnjem skupnem predniku semenk ter njen ponoven kasnejši pojav pri kritosemenkah (Trembath-Reichert in sod. 2015). Najnovejše molekularne analize so hkrati razkrile tudi široko razširjenost procesa biosilicifikacije znotraj kopenskih rastlin in s tem pokazale na prvobitnost tega procesa pri kopenskih rastlinah (Trembath-Reichert in sod. 2015, Marron in sod. 2016) ter posledično na izreden pomen Si za metabolizem rastlin tudi pri linijah, kjer se ta ne poj avlja v znatnih količinah predvsem z namenom mehanske opore (Marron in sod. 2016). Trembath-Reichert in sod. 2015 so vsesplošno razširjenost procesa biosilicifikacije pri kopenskih rastlinah ugotovili predvsem na podlagi analize vsebnosti Si pri različnih taksonih, Marron in sod. (2016) pa so ta pojav povezali med drugim s sprva prav tako široko razširjenostjo Lsi2 podobnih prenašalcev Si. Ti naj bi se razvili z namenom razstrupljanja previsokih koncentracij Si v predkambriju in kasneje pri večini linij kopenskih rastlin zaradi splošnega upada njegove koncentracije izginili (Marron in sod. 2016). Lastnost aktivnega kopičenja Si pri rastlinah naj bi postala pogostejša v pozni kredi (Katz 2015). Kot omenjeno že v prvem poglavju, trave so v splošnem znane po visoki vsebnosti Si (Ma in Takahashi 2002). Njihov izvor je vezan na zgodnji terciar, in sicer paleocen. Razmah so najprej doživele C3 trave, v srednjem miocenu pa so se razvile C4 trave, ki naj bi se močno razširile v poznem miocenu na račun upada koncentracije atmosferskega CO2 zaradi večje tolerance do nižje koncentracije CO2 v primerjavi s C3 travami (Jacobs in sod. 1999). Osborne (2008) je idejo o razmahu C4 trav na račun upada koncentracije CO2 postavil pod vprašaj, saj je med obdobjem največjega upada koncentracije CO2 ter pojava prvih C4 rastlin kar okoli 10 milijonov let razlike. Njihovo širjenje v tem obdobju bi lahko povezali tudi s povečanjem sezonskosti padavinskega režima ter frekvence pojavljanja požarov (Osborne 2008). Dejstvo pa je, da je z upadom CO2 močno pridobila na pomenu sposobnost trav za kopičenje večjih količin Si (Cooke in Leishman 2011a). McNaughton in Tarrants (1983) ter McNaughton in sod. (1985) so na podlagi izmerjenih višjih koncentracij Si pri objedenih listih prišli do zaključka, da bi silicifikacija lahko predstavljala inducirano zaščito trav pred objedanjem rastlinojedih sesalcev in s tem igrala pomembno vlogo pri koevoluciji med travami ter rastlinojedimi sesalci. Podobno sta razmišljala tudi Stebbins (1981) ter Katz (2015). Pravkar omenjeni koevolucijski odnos med travami in rastlinojedimi sesalci bi torej lahko deloval kot ena od gonilnih sil za povečanje stopnje silicifikacije pri travah tekom evolucije (McNaughton in sod. 1985). Nekoliko drugačne rezultate so objavili Cid in sod. (1989), ki so pri objedenih rastlinah zaznali nižje koncentracije Si. To opažanje so razložili na osnovi nižje povprečne starosti listov in s tem manj razpoložljivega časa za njihovo silicifikacijo. Na ta način so omajali idejo o silicifikaciji kot inducibilnem tipu zaščite pred rastlinojedi. Pri neobjedenih rastlinah so sicer v splošnem višjo koncentracijo Si zaznali pri rastlinah iz objedanju izpostavljenih populacij v primerjavi s tistimi iz neizpostavljenih populacij, kar so pripisali razlikam v mikroklimi ter določenim morfološkim prilagoditvam rastlin iz objedanju izpostavljenih populacij (Cid in sod. 1989). Grašič: Mnogotere vloge silicija 11 Vloga silicija pri rastlinah Silicij rastlinam nudi številne koristi. Pomem-benje za uspešno rast vseh rastlin, vendar njegov doprinos k njihovemu uspevanju pride do izraza šele v stresnih razmerah, saj ga v ugodnih razmerah v zadostnih količinah lahko pridobijo že iz tal (Ma 1990, Ma in Takahashi 2002). Rastline v različnih stresnih razmerah imajo ob prisotnosti Si višjo stopnjo fotosintezne aktivnosti ter nižjo stopnjo transpiracije v primerjavi z rastlinami v tovrstnih razmerah v odsotnosti Si, kar skupaj pripomore k povečani tvorbi suhe mase in hkrati tudi večji odpornosti teh rastlin na različne abiotske in bi-otske stresne dejavnike (Ma in Takahashi 2002). Poleg tega se z vključevanjem Si v rastlinska tkiva poveča tudi njihova trdnost (Adatia in Besford 1986, Ma in sod. 2001b, Hattori in sod. 2003), kar preprečuje poleganje in lomljenje stebel ob močnih vetrovih (Ma in sod. 2001b). Pri Si je za razliko od esencialnih elementov mehanska vloga bolj poudarjena od fiziološke. Koristi Si za rastline namreč večinoma izhajajo iz njegovega kopičenja v listih, steblih in semenskih ovojnicah (Ma in Takahashi 2002). Vseeno pa je znano, da Si spodbuja rast in razvoj rastlin ter pomaga blažiti stresne razmere tudi preko fizioloških mehanizmov, npr. s spodbujanjem metabolizma fenolnih snovi in izboljšanjem antioksidativnega potenciala rastlin (Ribera-Fonseca in sod. 2018), ter preko genske regulacije (Frew in sod. 2018). Pomen silicija za rast in pogosti simptomi ob njegovem pomanjkanju Dobro je dokumentiran spodbujajoč učinek Si na rast in uspevanje rastlin. Povečuje se skladno z naraščajočo koncentracijo Si in je bolj opazen pri rastlinah, ki so ga sposobne kopičiti več. Ogromno raziskav o koristnih učinkih Si na uspevanje rastlin je zato vezanih na akumulatorje Si (npr. riž). Na ta način je namreč lažje zaznati razliko med testnimi rastlinami, gojenimi ob prisotnosti Si ter testnimi rastlinami, ki rastejo ob pomanjkanju Si. Raziskave učinka Si na rast rastlin največkrat potekajo na osnovi vodnih kultur, saj je odstranjevanje Si iz medija na ta način najbolj enostavno. Koncentracija Si v rastlinskih tkivih se običajno tekom življenja rastlin povečuje (Ma in Takahashi 2002, Zhang in sod. 2013a, Grašič in sod. 2019c), zato je razlika v prirastu rastlin ob prisotnosti in odsotnosti Si bolj očitna v reproduktivni kot v vegetativni fazi (Ma in sod. 1989). Mnogi raziskovalci so opisali številne simptome ob pomanjkanju Si pri rastlinah. Opisani simptomi vključujejo upad suhe mase poganjkov, zmanjšanje pridelka, pojav nekroz in kloroz, zvijanje, otrdevanje, odebelitev, sušenje, povešanje in venenje listov, večjo podvrženost različnim boleznim, motnje pri oprašitvi in razvoju plodov ter pospešeno senescenco. Tovrstne raziskave se večinoma nanašajo na riž, kumaro, paradižnik, sojo, jagodo in preslice (Mitsui in Takatoh 1963, Chen in Lewin 1969, Miyake in Takahashi 1978, 1983a,b, 1985, Adatia in Besford 1986, Miyake in Takahashi 1986, Marschner in sod. 1990, Ma in Takahashi 2002). Preslice ob dolgoročnem pomanjkanju Si lahko celo dokončno propadejo (Chen in Lewin 1969). Simptomi pomanjkanja se velikokrat pokažejo šele v fazi cvetenja ob razvoju prvega cvetnega popka (Miyake in Takahashi 1978, 1983a, Ma in Takahashi 2002), kar nakazuje potencialen vpliv Si na hormone, ki nadzorujejo razvoj rastlin (Ma in Takahashi 2002). Običajno se simptomi najprej izrazijo na starejših listih in sčasoma napredujejo k mlajšim listom (Chen in Lewin 1969, Miyake in Takahashi 1978, 1983a,b, Adatia in Besford 1986). Pri rastlinah, od vsega začetka gojenih ob pomanjkanju Si, se simptomi pomanjkanja s kasnejšim dodatkom Si omilijo. Kadar rastline pomanjkanju Si izpostavimo v kasnejši fazi, se simptomi njegovega pomanjkanja pojavijo le na novih listih (Miyake in Takahashi 1978, 1983a). Fotosintezna aktivnost Nalaganje Si v listih pomaga pri vzdrževanju listov v pokončnem položaju, s čimer se zmanjša stopnja senčenja v gostih sestojih ter izboljša učinkovitost rabe svetlobe pri rastlinah. Oba učinka v končni fazi prispevata k višji stopnji fotosintezne aktivnosti (Ma in Takahashi 2002). Si strukture v listih naj bi služile kot nekakšna okna za lažje prehajanje svetlobe skozi list in s tem omogočale boljšo rabo svetlobe ter posledično večjo fotosintezno aktivnost, vendar Agarie in sod. (1996) pri listih riža tega niso dokazali. Si lahko spodbujajoče vpliva na proces fotosinteze tudi preko povečanja stopnje asimililacije CO2 (Ma in Takahashi 2002). Sposobnost povečanja 12 Acta Biologica Slovenica, 62 (1), 2019 fotosintezne aktivnosti na račun Si lahko prispeva k zadostni oskrbi rastlin s snovjo in energijo za premagovanje različnih stresnih dejavnikov, ki negativno vplivajo na njihovo uspevanje (Zuccarini 2008, Shen in sod. 2010b, Nezami in Bybordi 2011, Ali in sod. 2013, Bharwana in sod. 2013, Rios in sod. 2014, Sanglard in sod. 2014, Shen in sod. 2014a, Song in sod. 2014, MihaMová Matóovská in sod. 2014b, Maghsoudi in sod. 2015, Rodrigues in sod. 2015, Maghsoudi in sod. 2016, Qin in sod. 2016, Tripathi in sod. 2017). Zaščita pred sušo Zmanjšana fotosintezna aktivnost je med drugim lahko povezana s povečano stopnjo izgube vode oz. transpiracije, saj ta privede do zapiranja listnih rež, ki igrajo pomembno vlogo pri fotosintezi (Ma in Takahashi 2002). Suša ima negativen vpliv na rast in fotosintezno aktivnost tudi v smislu zniževanja vsebnosti klorofila in vpliva na celovitost tilakoidnih membran klo-roplastov ter zmanjševanja učinkovitosti rastlin za rabo svetlobe. Vse naštete simptome rastline lahko rešujejo s pomočjo Si (Maghsoudi in sod. 2015, Ma in sod. 2016, Madi in Al-Mayahi 2016, Ouzounidou in sod. 2016). Ta zmanjša negativne posledice suše na njihovo uspevanje predvsem na račun višje stopnje fotosintezne aktivnosti preko različnih mehanizmov za izboljšanje relativne vsebnosti vode v rastlini (Gong in sod. 2003, Ma in sod. 2004a, Hattori in sod. 2005, Ahmed in sod. 2011a, Habibi in Hajiboland 2013, Habibi 2014, Saud in sod. 2014, Amin in sod. 2016, Maghsoudi in sod. 2016). Transpiracija ne poteka le skozi listne reže, temveč deloma tudi skozi kutikulo (Ma in Takahashi 2002). Učinek transpiracije skozi kutikulo se lahko zmanjša zaradi povečanega nalaganja voskov nad kutikulo ob dodatku Si (Madi in Al-Mayahi 2016), ali pa neposredno z nalaganjem Si pod kutikulo, kjer Si ustvari dodatno plast za zaščito pred izgubo vode (Yoshida in sod. 1962b, Postek 1981, Davis 1987, Ma in Takahashi 2002, Ma 2004). Podobno funkcijo Si opravlja tudi v koreninah, kjer spodbuja podaljševanje korenin in krepi celične stene v endodermisu ter preprečuje izgubo vode iz korenin v primeru nižj ega vodnega potenciala tal in na ta način deluje kot mehanska in fiziološka ovira (Hattori in sod. 2003, Lux in sod. 2002). Si blaži učinek suše tudi na ta način, da poveča ksilemski vodni potencial (Marques in sod. 2016). Z nalaganjem Si na različnih mestih si rastline v splošnem izboljšajo svojo zadrževalno sposobnost za vodo in hkrati optimizirajo učinkovitost rabe vode (Gao in sod. 2004, Ma in sod. 2004a, Eneji in sod. 2005, Ahmed in sod. 2011b, Janislampi 2012, Kurdali in sod. 2013, Ouzounidou in sod. 2016). Dodatni opisani učinki Si ob pomanjkanju vode so povečanje prevodnosti listnih rež (Silva in sod. 2012, Habibi in Hajiboland 2013) ter zmanjšanje njihove gostote (Putra in sod. 2015), odebelitev povrhnjice (Asmar in sod. 2013), izboljšanje hidravlične prevodnosti korenin (Shi in sod. 2016) ter uravnavanje privzema vode preko povečanega izražanja določenih genov, ki kodirajo akvaporine oz. vodne kanalčke (Liu in sod. 2014) ali preko povečanega izražanja določenih transkripcijskih faktorjev za odziv ob suši (Khattab in sod. 2014). Poročali so tudi o njegovi vlogi pri osmotski regulaciji, ki je vidna na podlagi spremembe koncentracije osmotskih regulatorjev, kot so npr. prolin in topni sladkorji (Kaya in sod. 2006, Gunes in sod. 2008, Crusciol in sod. 2009, Sonobe in sod. 2010, Shen in sod. 2010b, Tale Ahmad in Haddad 2011, Pereira in sod. 2013, Khattab in sod. 2014, Karmollachaab in Gharineh 2015, Madi in Al-Mayahi 2016, Mauad in sod. 2016) ter pri uspevanju kserofitov z visoko vsebnostjo Na+ (Kang in sod. 2014) in nadalje o zakasnitvi senescence v sušnih razmerah (Ouzounidou in sod. 2016, Hosseini in sod. 2017) preko uravnavanja razmerja med poliamini in etilenom (Yin in sod. 2014), izboljšani rasti ob suši na račun povišanja koncentracij ustreznih rastlinskih hormonov (Hamayun in sod. 2010, Abdalla 2011), povečanju trdnosti tkiv v listih in plodovih (Ouzounidou in sod. 2016) in s tem zmanjšanju prepustnosti membran (Agarie in sod. 1998) ter izboljšanem uspevanju v sušnih razmerah zaradi povečanja antioksidativne sposobnosti (Ma in sod. 2004a, Gong in sod. 2005, 2008, Gunes in sod. 2008, Pei in sod. 2010, Abdalla 2011, Habibi in Hajiboland 2013, Emam in sod. 2014, Habibi 2014, Shi in sod. 2014, 2015a, Jafari in sod. 2015, Ma in sod. 2016, Madi in Al-Mayahi 2016, Ouzounidou in sod. 2016, Shi in sod. 2016). Pozitiven učinek Si v sušnih razmerah ni zaznaven le na ravni odraslih rastlin, temveč tudi v fazi kalitve (Hameed in sod. 2013, Shi in sod. 2014). Grašič: Mnogotere vloge silicija 13 Zmanjševanje škodljivih učinkov povišane slanosti Povišana slanost tal ima na rastline vsaj v začetni fazi zelo podoben učinek kot suša, saj prav tako omejuje privzem vode v rastline (Munns 2002). Posledično so tudi mehanizmi Si za izboljšanje uspevanja rastlin pri povišanih koncentracijah soli podobni kot v primeru suše (Tripathi in sod. 2017). V splošnem se v njegovi prisotnosti poveča relativna vsebnost vode, s čimer pride do učinka redčenja soli v tkivih, optimizacije transpiracije in prevodnosti rež ter v končni fazi izboljšanja fotosintezne aktivnosti (Romero-Aranda in sod. 2006, Reezi in sod. 2009, Haghighi in Pessarakli 2013, Rohanipoor in sod. 2013, Muneer in sod. 2014, Liu in sod. 2015, Ouzounidou in sod. 2016). Ob presežku soli, ki zavira rast rastlin, Si pomaga ohranjati celovitost celičnih membran (Hashemi in sod. 2010, Qados 2015, Ouzounidou in sod. 2016) ter omejuje privzem in prenos natrija (Na) in s tem ublaži negativen vpliv povišane slanosti (Matoh in sod. 1986, Ahmad in sod. 1992, Liang 1999, Zhao in sod. 2007, Saqib in sod. 2008, Zuccarini 2008, Hashemi in sod. 2010, Farshidi in sod. 2012, Batool in sod. 2015, Mahdieh in sod. 2015, Li in sod. 2016, Yin in sod. 2016, Garg in Bhandari 2016b). Zhao in sod. (2007) ter Yin in sod. (2016) zmanjšan privzem in prenos Na ob dodatku Si pripisujejo njegovemu vplivu na aktivnost nekaterih ionskih kanalčkov preko povišanja koncentracije poliaminov, Ahmad in sod. (1992) pa njegovi sposobnosti za vezavo z Na. Poročali so tudi o hkratnem zmanj šanju privzema Na ter povečanju privzema K ob dodatku Si (Liang in sod. 1996, Liang in Ding 2002, Tahir in sod. 2007, Levent Tuna in sod. 2008, Ali in sod. 2009, Ashraf in sod. 2009, 2010, Farooq in sod. 2015, Ghassemi-Golezani in Lotfi 2015, Khan in sod. 2015, Xu in sod. 2015), oz. o povečanju razmerja K+/Na+ kljub naraščajoči koncentraciji Na+ (Gengmao in sod. 2015). Liang in sod. (1996) ter Levent Tuna in sod. (2008) so upad koncentracije Na povezali s sposobnostjo Si za zmanjšanje prepustnosti membran. Povečanje razmerja K+/Na+ bi bilo lahko tudi rezultat vpliva Si na povečano izražanje genov, ki kodirajo K kanalčke (Muneer in Jeong 2015). Dodatek Si se kaže tudi v povečanem privzemu Ca (Levent Tuna in sod. 2008, Habibi in sod. 2014, Garg in Bhandari 2016a), Mg (Garg in Bhandari 2016b), Fe in cinka (Zn) (Batool in sod. 2015) ter privzemu in prenosu N iz korenin v poganjke in povečanju aktivnosti encimov za razstrupljanje amonijaka (Kochanova in sod. 2014, Tantawy in sod. 2015, Mahdavi in sod. 2016, Garg in Bhandari 2016b). Številni raziskovalci so poudarili pomen Si za učinkovitejše delovanje antioksidativnih mehanizmov pri povišanih koncentracijah soli (Liang 1999, Liang in sod. 2003, Al-Aghabary in sod. 2004, Zhu in sod. 2004, Moussa 2006, Saqib in sod. 2008, Reezi in sod. 2009, Hashemi in sod. 2010, Tale Ahmad in Haddad 2011, Ali in sod. 2012, Farshidi in sod. 2012, Kim in sod. 2014b, Farooq in sod. 2015, Gengmao in sod. 2015, Liu in sod. 2015, Qados 2015, Zhang in sod. 2015, Bybordi 2016, Garg in Bhandari 2016a, Li in sod. 2016, Ouzounidou in sod. 2016). O ugodnih vplivih Si na uspevanje rastlin ob povišani slanosti so poročali tudi Yeo in sod. (1999), ki so kot vzrok izboljšanja njihove rasti navedli omejevanje transpiracijskega toka na račun odlaganja Si v endodermisu in najbolj zunanji plasti korenin ter njegove polimerizacije v apoplastu korenin. Do podobnih zaključkov so prišli tudi Gong in sod. (2006) ter Savvas in sod. (2007, 2009). Si privzem vode ob povišani slanosti izboljša tudi preko povečanega izražanja nekaterih genov, ki kodirajo akvaporine (Liu in sod. 2015), ali spodbujanja aktivnosti H+-ATPaz ter H+-PPaz, ki omogočijo prenos in shranjevanje Na v vakuolah skozi Na+/H+ antiporterje na tonoplastu vakuol (Liang in sod. 2005c, 2006b, Xu in sod. 2015). Almutairi (2016) je poročal o povečanju tolerance rastlin do povišane slanosti na podlagi spremembe izražanj a različnih genov ob dodatku Si. Nekateri raziskovalci so izboljšanje uspevanja rastlin ob dodatku Si v razmerah s povišano slanostjo povezali z njegovo vlogo pri uravnavanju koncentracij rastlinskih hormonov (Hamayun in sod. 2010, Lee in sod. 2010). Zaščito pred povišano slanostjo Si prav tako kot v primeru suše nudi s povečanjem trdnosti tkiv (Stamatakis in sod. 2003, Ouzounidou in sod. 2016) in s tem zakasnitvijo procesa senescence (Ouzounidou in sod. 2016). Podobno lahko Si tudi ob povišani slanosti igra pomembno vlogo pri osmotski regulaciji preko uravnavanja koncentracije osmotskih regulatorjev, kot so npr. prolin ter različni topni sladkorji (Levent Tuna in sod. 2008, Yin in sod. 2013, 14 Acta Biologica Slovenica, 62 (1), 2019 Kalteh in sod. 2014, Abbas in sod. 2015, Zhang in sod. 2015, Abdel Latef in Tran 2016, Qin in sod. 2016). Tudi v primeru povišane slanosti se pozitiven učinek Si kaže tako v fazi kalitve kot pri kasnejših razvojnih fazah (Solatni in sod. 2012, Sabaghnia in Janmohammadi 2014, Khan in sod. 2015, Almutairi 2016), vsaj kadar gre za nizke koncentracije Si (Zhang in sod. 2015). Vloga pri povečani stopnji UVsevanja Povečana stopnja UV sevanja pri rastlinah povzroča poškodbe tako na ravni celotne rastline v smislu negativnega vpliva na rast in produktivnost (Lizana in sod. 2009, Shen in sod. 2010a,b), kot na ravni DNA (kar se lahko z dednimi mutacijami prenaša v naslednje generacije) ter fizioloških procesov (Stapleton 1992), kar se kaže v tvorbi strupenih reaktivnih kisikovih zvrsti (v nadaljevanju ROS) in posledično pojavu oksidativnega stresa (Mackerness 2000, Yao in sod. 2011). Do danes se je nabralo že lepo število raziskav, ki Si pripisujejo pomembno vlogo pri povečanju tolerance rastlin do visoke jakosti UV sevanja, vidne na podlagi višje stopnje fotosintezne aktivnosti in nižje stopnje transpiracije (Shen in sod. 2010b, Yao in sod. 2011, Shen in sod. 2014a), povečane antioksidativne sposobnosti (Yao in sod. 2011, Shen in sod. 2014a, Chen in sod. 2016) ali nižje koncentracije tako škodljivih ROS kot tudi zaščitnih fenolnih substanc (Goto in sod. 2003, Shen in sod. 2010a,b, Mihaličova Malčovska in sod. 2014a). Na podlagi obratno sorazmernega odnosa med količino nakopičenega Si v rastlinskih tkivih pri povečani stopnji UV sevanja ter količino zaščitnih fenolnih snovi lahko sklepamo, da Si rastlinam nudi enako zaščito kot z vidika izgradnje energetsko bolj potratne fenolne snovi (Schaller in sod. 2012, 2013). Li in sod. (2004) ter Chen in sod. (2016) so v nasprotju s prej omenjenimi raziskavami pri rastlinah, izpostavljenih povečani stopnji UV sevanja, ob dodatku Si zaznali porast koncentracije zaščitnih fenolnih UV-absorbirajočih snovi. Zelo pomembno zaščitno vlogo pred povečano stopnjo UV sevanja imajo tudi Si strukture v kutikuli, laskih in povrhnjici listov, saj povečajo odboj UV dela svetlobnega spektra ter razpršijo sevanje vidnega dela svetlobnega spektra, s čimer zmanjšajo prodiranje UV sevanja v globlja tkiva in tako vplivajo na notranji svetlobni gradient (Goto in sod. 2003, Schaller in sod. 2013, Klančnik in sod. 2014a,b). Zaščito v smislu optičnih lastnosti Si v listih predstavlja tudi na podlagi majhne stopnje absorpcije v UV delu spektra (Goto in sod. 2003, Fang in sod. 2006). Kljub vsemu še vedno ni popolnoma jasno, ali se je vloga Si pri krojenju optičnih lastnosti listov tekom evolucije razvila z namenom aktivne zaščite, ali pa gre le za stranski učinek njegovega kopičenja v listih (Schaller in sod. 2013). Še eden od mehanizmov rastlin za povečanje tolerance do povečane stopnje UV sevanja s pomočjo Si je povezan z izražanjem gena Lsil, ki kodira prenašalce za privzem Si v rastline (Ma in Yamaji 2008). Povečano izražanje tega gena se ne kaže le v povečanem privzemu Si, temveč omogoči tudi povečano izražanje nekaterih za toleranco rastlin do povečane stopnje UV sevanja pomembnih genov, vpletenih tako pri popravljanju fotopoškodb kot tudi pri fotosintezi in razstrupljanju (Fang in sod. 2011a,b, Chen in sod. 2016). Blaženje stresa zaradi ekstremnih temperatur Previsoke temperature škodljivo vplivajo na rast, metabolizem in produktivnost rastlin, saj privedejo do oksidativnega stresa in s tem povišane stopnje tvorbe ROS, poškodb celic in membran, zmanjšane stopnje fotosintezne aktivnosti in še mnogih drugih učinkov (Ruelland in Zachowski 2010, Tan in sod. 2011, Hasanuzzaman in sod. 2013). Wang in sod. (2005) so v svoji raziskavi predstavili možnost učinkovitega ohlajanja pregretih listov preko oddajanja sevanja v srednje-valovnem infrardečem spektru zaradi Si struktur v povrhnjici listov. Si naj bi hkrati omogočal tudi hlajenje korenin (Wang in sod. 2005). Björn in Li (2011) nasprotno nista zaznala večjih razlik med oddanim sevanjem pri listih s Si revnih ter s Si bogatih rastlin in ovrgla to možnost ohlajanja listov. Agarie in sod. (1998) so Si pripisali vlogo pri ohranjanju stabilnosti maščob v celičnih membranah ob visokih temperaturah in s tem ohranjanju celovitosti celičnih membran. Dodatek Si omogoča boljšo rast rastlin ob visokih temperaturah na račun povečanja vsebnosti proteinov, ki domnevno izboljšajo odpornost rastlin na visoke temperature, ter povečanja stopnje aktivnosti nekaterih antioksidativnih encimov (Soundararajan in sod. 2014). Omili se tudi učinek zmanjšane plodnosti Grašič: Mnogotere vloge silicija 15 zaradi previsokih temperatur na račun povečane kakovosti peloda (Wu in sod. 2014). Ekstremno nizke temperature prav tako omejujejo uspevanje rastlin, saj med drugim povzročajo oksidativni stres, kloroze, nekroze, zavirajo rast, zmanjšajo vsebnost vode v tkivih, stopnjo foto-sintezne aktivnosti ter učinkovitost rabe vode (Steponkus 1984, Zhu in sod. 2006, Liang in sod. 2008, Sanghera in sod. 2011). Glavni mehanizem Si za povečano toleranco rastlin proti mrazu je vezan na povečanje stopnje antioksidativne zaščite preko izboljšanja sposobnosti rastlin za zadrževanje vode, kar pozitivno vpliva na njihovo stopnjo rasti in sposobnost ohranjanja stabilnosti in celovitosti celičnih membran (Liang in sod. 2008, Liu in sod. 2009b, Habibi 2015b, 2016). Zaščito pred ekstremno nizkimi temperaturami Si rastlinam nudi tudi na račun povečane trdnosti celičnih sten in s tem oviranja nastanka ledenih kristalov (Larcher in sod. 1991). Sivanesan in sod. (2014) so ugotovili, da fotokemična učinkovitost rastlin, izpostavljenih nižjim ali višjim temperaturam, ob dodatku Si ne upade bistveno v primerjavi z rastlinami, rastočimi pri običajnih temperaturah. Na podlagi tega so zaključili, da Si pri rastlinah ob temperaturnem stresu omogoča normalno delovanje fotosinteznega aparata (Sivanesan in sod. 2014). Vpliv silicija na uravnavanje neravnovesja nekaterih pomembnejših hranil V različnih stresnih razmerah, kot so npr. povečana slanost tal, pomanjkanje vode ali ekstremne temperature, se pogosto poruši tudi ravnovesje hranil v rastlinah. To vodi v osmotski in oksidativni stres ter v končni fazi celo do propada rastlin (Tripathi in sod. 2017). Uravnavanje neravnovesja hranil je še eden od mnogih pomembnih vidikov Si (Neu in sod. 2017, Greger in sod. 2018), ki pripomore k bolj šemu uspevanju rastlin. Dušik (N) Prenizka koncentracija N v rastlinah povzroči upad fotosintezne aktivnosti ter rasti celic, s čimer v končni fazi zavira rast listov (Fallah 2012). Pride tudi do kloroz, nekroz in celo propada rastlin (Hartz in sod. 2009). Eden izmed možnih virov N za rastline ob premagovanju stresnih razmer je prolin (Fukutoku in Yamada 1984), katerega koncentracija se ob dodatku Si poveča (Crusciol in sod. 2009, Shahnaz in sod. 2011). Obstaja nemalo raziskav, ki vsaj do določene mere kažejo na pozitiven učinek dodajanja Si na metabolizem N (Watanabe in sod. 2001, Mali in Aery 2008b, Kurdali in sod. 2013, Pereira in sod. 2013, Kochanova in sod. 2014, Castro de Souza in sod. 2016). Si ima na koncentracijo N lahko tudi obraten vpliv. Deren (1997) je v svoji raziskavi ob zadostnih koncentracijah N poročal o zniževanju koncentracije N z dodajanjem Si. Ob prisotnosti Si se rastlinam poviša prag optimalne vsebnosti N, zaradi česar se ob močno povišani koncentraciji N njihov prirast lahko še vedno povečuje v prim-erj avi z rastlinami, ki rastejo v enakih razmerah, a ob odsotnosti Si. Slednjim se namreč ob izredno visokih koncentracijah N listi pričnejo povešati, s čimer lahko pride do medsebojnega senčenja in posledično zmanjšane fotosintezne aktivnosti. Takšne rastline postanejo tudi bolj dovzetne za različne okužbe (Ma in Takahashi 2002). Si k izboljšanju uspevanja rastlin s povešenimi listi zaradi presežka N lahko prispeva tudi na račun povečanja trdnosti in s tem vzdrževanja listov v bolj pokončnem položaju (Yoshida in sod. 1969, Idris in sod. 1975). Fosfor (P) Pozitivni učinki Si se pokažejo tudi ob pomanjkanju P. Tipični znaki njegovega pomanjkanja so zavrta rast in zapoznelo dozorevanje ter vijolična obarvanost listov (Uchida 2000). Ob vnosu Si v tla z nezadostno količino P se poveča pridelek rastlin, saj Si zmanjša njihovo potrebo po P (Roy in sod. 1971). Ma in Takahashi (2002) sta prišla do podobnega zaključka z ugotovitvijo, da se ob dodajanju Si pri pomanjkanju P poveča suha masa poganjkov. Pri nižjih koncentracijah Pje učinek Si večji. P ima visoko afiniteto do kovin, kot sta Fe in Mn. Ob nizkih koncentracijah P ti dve kovini vplivata na njegov privzem (Ma in Takahashi 2002). Do pozitivnega učinka Si na rast ob pomanjkanju P pride na račun izboljšanja dostopnosti P znotraj samih rastlin na račun zmanjšanja privzema Mn in Fe ter s tem povišanja razmerja P/Mn in P/Fe v rastlinah (Ma in Takahashi 1990a,b, 1991). Deren (1997) je poročal o povišanju koncentracije P v rastlinah na račun gnojenja s Si ob pomanjkanju P, Cheong in Chan (1973) pa sta ob dodatku Si zaznala povišano stopnjo fosforilacije in s tem 16 Acta Biologica Slovenica, 62 (1), 2019 tvorbe organskih P spojin, kar se je navzven odražalo v povečani stopnji rasti. Khalid in Silva (1980) sta ugotovila, da se ob dodatku Si nekoliko poviša dostopnost P v vrhnji plasti tal. Ta učinekje večinoma posledica vezave Si s Fe in Al, ki se sicer pogosto vežeta s P in s tem zmanjšujeta njegovo dostopnost (Roy 1969, Khalid in Silva 1980). Si je koristen tudi ob previsokih koncentracijah P, ki povzročajo različne kloroze na rastlinah. Z dodajanjem Si se namreč ob dolgoročni zadostni preskrbi rastlin s P, predvsem pa ob presežku P, zmanjšata stopnja njegovega privzema v rastline ter koncentracija v rastlinah preko odlaganja Si v koreninah in znižane stopnje transpiracije (Ma in Takahashi 1989, 1990a, Marschner in sod. 1990, Ma in Takahashi 2002). Kalij (K) Pomanjkanje K se pri rastlinah kaže predvsem skozi nekroze na robovih in končnih delih listov (Joiner in sod. 1983), negativen vpliv na vodni režim in transport po rastlini ter zmanj šano stopnj o fotosintezne aktivnosti in s tem prirast (Zhao in sod. 2001, Pettigrew 2008, Gerardeaux in sod. 2010). Ob visokih koncentracijah NaCl se običajno poveča prepustnost celičnih membran, posledica česar je med drugim tudi znižana koncentracija K v rastlinah (Liang in sod. 1996, Ashraf in sod. 2009). Si v tovrstnih razmerah zmanjša prepustnost celičnih membran in izbolj ša sposobnost rastlin za privzem K (Liang in sod. 1996, Liang 1999, Kaya in sod. 2006, Mali in Aery 2008a, Levent Tuna in sod. 2008) ter s tem pomaga pri vzdrževanju zadostne koncentracije K v rastlinah (Liang in sod. 1996). Poleg povečanja koncentracije (Ashraf in sod. 2009, Miao in sod. 2010) in izboljšanja učinkovitosti rabe K ob njegovem pomanjkanju Si izboljša tudi antioksidativno aktivnost rastlin (Miao in sod. 2010). Kalcij (Ca) Nezadostna koncentracija Ca se navzven odraža preko nekroz (Marinos 1962, Simon 1978, Uchida 2000), na celični ravni pa negativno vpliva na celovitost in prepustnost celičnih membran (Marinos 1962, Poovaiah 1979). Ob zmanjšanju koncentracije Ca zaradi previsoke slanosti in posledični povečani prepustnosti celičnih membran Si poskrbi za ponovno zmanjšanje prepustnosti celičnih membran in s tem za ohranjanje njihove celovitosti (Liang in sod. 1996, Liang 1999, Levent Tuna in sod. 2008). Ugotovitve različnih raziskav glede vpliva Si na koncentracijo Ca v rastlinah se zelo razlikujejo, pri čemer tega vpliva ne moremo povezati z dostopnostjo Ca pred dodajanjem Si. Liang (1999) namreč ob pomanjkanju Ca ni zaznal bistvenega vpliva Si na koncentracijo Ca v rastlinah, Ma in Takahashi (1993) ter Brackhage in sod. (2013) so poročali o nižanju koncentracije Ca na račun višanja koncentracije Si, medtem ko se je v nekaterih raziskavah koncentracija Ca vsaj do določene mere povečevala z naraščajočo koncentracijo Si (Kaya in sod. 2006, Mali in Aery 2008a,b, Levent Tuna in sod. 2008), pri čemer je bila pri dveh od slednjih raziskav koncentracija Ca znižana na račun suše ali povišane slanosti (Kaya in sod. 2006, Levent Tuna in sod. 2008), v preostalih dveh pa normalna (Mali in Aery 2008a,b). Brackhage in sod. (2013) so zmanjševanje koncentracije Ca ob visoki razpoložljivosti Si povezali s strategijo rastlin za premagovanje stresa zaradi previsokih količin Ca ter z nadomeščanjem Ca kot strukturnega elementa z energetsko cenejšim Si. Zmanjševanje negativnih učinkov različnih kovin Toksične kovine za kulturne rastline glavno oviro predstavljajo z vidika zmanjševanja njihove produktivnosti. Prvi odziv rastlin se pokaže v tvorbi ROS, ki negativno vplivajo na njihov metabolizem (Yadav 2010). Do sedaj se je nabralo že veliko število raziskav o vlogi Si pri blaženju posledic zaradi toksičnih koncentracij vrste različnih kovin, ki so opisane v sledečih podpoglavjih (Preglednice 2-9). Pozitivni učinki Si se najpogosteje kažejo v zmanjšanju dostopnosti, privzema in prenosa kovin iz korenin v poganjke, njihovem odlaganju v celičnih stenah, povečanju elastičnosti in plastičnosti celičnih sten ter povečanju antiok-sidativne sposobnosti (Tripathi in sod. 2017). Železo (Fe) Povečana koncentracija Fe v obliki Fe2+ se na rastlinah v največji meri odraža v zavrti rasti, nekrozah in rjavenju (Snowden in Wheeler 1993, De Dorlodot in sod. 2005), zmanjšani vsebnosti vode in določenih hranil (Majerus in sod. 2007), pridelka (Sahrawat 2004), poškodbi membran in tvorbi ROS (Sinha in sod. 1997, Thongbai in Goodman 2000). Grašič: Mnogotere vloge silicija 17 Aluminij (Al) Pri nizkih pH vrednostih Al za rastline pogosto postane toksičen (Mossor-Pietraszewska 2001). Presežek Al3+ ionov omejuje rast korenin ter privzem hranil (Matsumoto 2000, Ma in Takahashi 2002; Panda in sod. 2009). Negativen vpliv previsokih koncentracij Al se pri rastlinah kaže tudi preko povečane tvorbe ROS, zaviranja procesa celičnega dihanja (Matsumoto 2000, Yamamoto in sod. 2002, Kao in Kuo 2003, Panda in sod. 2009), povečanja togosti tako celičnih sten kot DNA in posledično zmanjšanja stopnje podvajanja DNA (Foy 1992), oviranja prenosa znotraj rastlin zaradi povečanega kopičenja polisaharida kaloze v plazmodezmah ter motenj v strukturi citoskeleta (Matsumoto 2000, Panda in sod. 2009). Preglednica 2: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij železa (Fe). Table 2: The role of silicon (Si) in alleviation of negative effects caused by toxic iron (Fe) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Fe Viri povečanje oksidativne sposobnosti korenin z dovajanjem O iz poganjkov v korenine in s tem Ma in Takahashi (2002) zmanjšan privzem zaradi oksidacije Fe2+ v Fe3+ na površini korenin zmanjšanje koncentracije Fe preko zaviranja njegovega prenosa iz korenin v poganjke ter Chalmardi in sod. (2014) izboljšana antioksidativna zaščita zmanjšanje kopičenja in privzema Fe, povečanje prenosa Fe med koreninami in poganjki, Fu in sod. (2012) odebelitev celičnih sten zmanjšanje privzema Fe iz kislih tal preko povečanja sproščanja OH" ionov iz korenin in s Wallace (1992) tem zvišanja pH tal Preglednica 3: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij aluminija (Al). Table 3: The role of silicon (Si) in alleviation of negative effects caused by toxic aluminium (Al) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Al Viri povečanje koncentracije fenolnih snovi in prolina ter Shahnaz in sod. (2011) zmanjšanje stopnje lipidne peroksidacije povečana aktivnost antioksidativnih encimov, izboljšanje Shen in sod. (2014b) procesa fotosinteze povečana tvorba fenolnih snovi Kidd in sod. (2001) skupno obarjanje Al in Si, tvorba inertnih Al-Si kompleksov Galvez in Clark (1991), Barcelo in sod. (1993), Hodson ter zmanjšan privzem Al in Sangster (1993), Baylis in sod. (1994), Corrales in sod. (1997), Ma in sod. (1997), Cocker in sod. (1998a), Rahman in sod. (1998), Cocker in sod. (1998b), Hodson in Sangster (1999), Vashegyi in sod. (2002), Ryder in sod. (2003), Wang _in sod. (2004), Liang in sod. (2007), Prabagar in sod. (2011) pozitiven učinek na rast, obnovitev koncentracije Ca v Hammond in sod. (1995) rastlinah ter zmanjšan privzem Al večja stopnja rasti na račun manjšega kopičenja Al ter Singh in sod. (2011) vzdrževanja ravnovesja nekaterih hranil zmanjšana dostopnost Al na podlagi zvišanja pH in s tem Galvez in sod. (1987), Li in sod. (1996) izboljšanje rasti rastlin znižanje koncentracije prostega oz. reaktivnega Al Li in sod. (1989), Prabagar in sod. (2011) zmanjšanje privzema Al iz kislih tal preko povečanja Wallace (1992) sproščanja OH" ionov iz korenin in s tem zvišanja pH tal preprečevanje nastanka škodljivih polimeriziranih Al spojin Lumsdon in Farmer (1995) 18 Acta Biologica Slovenica, 62 (1), 2019 Liang in sod. (2001) ob dodatku Si pri zelo visokih koncentracijah Al niso opazili izboljšanja uspevanja rastlin, medtem ko je bil pri nekoliko nižjih, a še vedno previsokih koncentracijah Al pozitiven učinek Si na rast rastlin zaznaven. Blažilni učinek Si pri rastlinah ob toksičnih koncentracijah Al je najverjetneje odvisen od same vrste oz. kultivaija, koncentracije Al in trajanja stresa (Hodson in Evans 1995, Liang in sod. 2001) ter pH (Cocker in sod. 1997). Mangan (Mn) Presežek Mn v listih povzroči upad fotosin-tezne aktivnosti (Kitao in sod. 1997). Povišane koncentracije Mn se navzven kažejo v klorozi mladih listov, saj povzročijo pomanjkanje Fe, ki predstavlja pomemben člen v procesu izgradnje klorofila (Clairmont in sod. 1986). Pride tudi do pojava nekroz in poškodb korenin (Wu 1994, Foy in sod. 1995). Jarvis in Jones (1987) za razliko od številnih ostalih raziskav učinka Si na Mn nista zaznala, v nekaterih drugih raziskavah pa so poročali le o delnem učinku Si v povezavi z Mn (Kluthcouski in Nelson 1980, Galvez in sod. 1987, 1989). Svinec (Pb) Povišane koncentracije svinca (Pb) vplivajo na zgradbo, rast in fotosintezno aktivnost rastlin, poleg tega pa spremenijo tudi encimsko aktivnost, vodni režim in ravnovesje hranil v rastlinah (Sharma in Dubey 2005). Preglednica 4: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij mangana (Mn). Table 4: The role of silicon (Si) in alleviation of negative effects caused by toxic manganese (Mn) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Mn Viri omejevanje privzema Mn v rastline preko povečanja Ma in Takahashi (2002) oksidativne sposobnosti korenin za njegovo oksidacijo povečana notranja toleranca do količine Mn v tkivih Horiguchi (1988) bolj enakomerno razporejanje Mn v listih v posledično nižjih Williams in Vlamis (1957), Horst in Marschner (1978), in manj toksičnih koncentracijah Horiguchi in Morita (1987) višja toleranca zaradi znižanja koncentracije in aktivnosti Mn2+ Horst in sod. (1999) v apoplastu preko redoks reakcij povečanje tolerance z vezavo Mn2+ v celične stene, znižanjem Iwasaki in sod. (2002a), Iwasaki in sod. (2002b), Rogalla koncentracije Mn v simplastu ter vzdrževanjem reduciranega in Römheld (2002) stanja apoplasta in s tem preprečevanjem oksidacije fenolnih snovi v apoplastu kopičenje Si skupaj z Mn na bazi trihomov in s tem Iwasaki in Matsumara (1999) omejevanje metabolne aktivnosti Mn povečana tvorba biomase, zmanjšana stopnja lipidne Shi in sod. (2005a), Shi in Zhu (2008) peroksidacije ter povečana antioksidativna sposobnost odebelitev povrhnjice in skladiščenje Mn v tkivih brez Doncheva in sod. (2009) fotosintezne aktivnosti zmanjšanje prenosa Mn iz korenin v poganjke Shi in Zhu (2008) izboljšanje fotosintezne aktivnosti ter spremenjeno izražanje Li in sod. (2015) genov, vpletenih pri procesu fotosinteze Grašič: Mnogotere vloge silicija 19 Kadmij (Cd) Kadmij (Cd) je za večino rastlin toksičen že pri nizkih koncentracijah (Lux in sod. 2011). Njegov vpliv na rastline se kaže v zmanjšani fotosintezni aktivnosti ter znižani stopnji privzema vode in hranil, pride pa tudi do kloroz, nekroz, zavrte rasti in poškodb korenin (Kim in sod. 2003, Veselov in sod. 2003, Wojcik in Tukiendorf2004, Wahid in sod. 2008, Lukačova Kulikova in Lux 2010). Preglednica 5: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij svinca (Pb). Table 5: The role of silicon (Si) in alleviation of negative effects caused by toxic lead (Pb) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Pb Viri izboljšana rast ter zmanjšan privzem Pb z vezavo Pb v tleh, Li in sod. (2012), Bharwana in sod. (2013) omejevanjem njegovega prenosa iz korenin v poganjke in razstrupljanjem Pb ter večja aktivnost antioksidativnih encimov v koreninah zmanjšan privzem Pb zaradi zmanjšanja njegove mobilnosti Yan in sod. (2014) in dostopnosti v tleh Preglednica 6: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij kadmija (Cd). Table 6: The role of silicon (Si) in alleviation of negative effects caused by toxic cadmium (Cd) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Cd Viri zmanjšana koncentracija Cd, njegov privzem in prenos iz Treder in Cieslinski (2005), Shi in sod. (2005b), Zhang in korenin v poganjke ter preprečevanje oksidativnih poškodb sod. (2008), Liu in sod. (2013), Zhang in sod. (2013b), Kim in sod. (2014a), Greger in Landberg (2015), Hussain et al. _(2015), Tang in sod. (2015), Greger in sod. (2016)_ povečana elastičnost in plastičnost celičnih sten Vaculik in sod. (2009) zmanjšana dostopnost v celicah poganjkov preko znižanja Vaculik in sod. (2012) koncentracije v simplastu in povišanja v apoplastu povečan razvoj apoplastnih barier in prevodnih tkiv v Vaculik in sod. (2009, 2012), Vatehova in sod. (2012) koreninah omejitev privzema in prenosa Cd v poganjke preko Vatehova in sod. (2012), Lukačova in sod. (2013) povečane tvorbe lignina in suberina v endodermisu povečana stopnja antioksidativne zaščite, izboljšana Song in sod. (2009), Shi in sod. (2010), Amiri in sod. celovitost membran in zmanjšana koncentracija Cd (2012), Liu in sod. (2013), Lukačova in sod. (2013) izboljšana fotosintezna aktivnost, metabolizem N in Feng in sod. (2010), Mihaličova Malčovska in sod. (2014b), povečanje koncentracije prolina Hussain in sod. (2015) izboljšana tvorba tilakoidnih membran v kloroplastih in s Vaculik in sod. (2015) tem izboljšana fotosintezna aktivnost ter povečana tvorba biomase povišana toleranca do Cd preko obarjanja Si v endodermisu da Cunha in do Nascimento (2009) in periciklu korenin zmanjšana koncentracija Cd preko vezave v celičnih stenah Liu in sod. (2009a) zmanjšana dostopnost in koncentracija Cd na račun zvišanja Liang in sod. (2005b) pH tal in s tem njegove vezave povečanje biomase rastlin in vezava Cd v različnih spojinah da Cunha in sod. (2008) uravnavanje metabolizma različnih proteinov ter uravnavanje izražanja genov, povezanih s Cd Nwugo in Huerta (2011), Greger in sod. (2016) 20 Acta Biologica Slovenica, 62 (1), 2019 Silicij izboljša uspevanje rastlin tudi v primeru pomanjkanja Cd, saj pripomore k boljši učinkovitosti rabe vode in svetlobe (Nwugo in Huerta 2008). Cink (Zn) Presežek Zn se pri rastlinah kaže predvsem v zaviranju rasti korenin in poganjkov ter pojavu kloroz na mladih listih (Ebbs in Kochian 1997). Zn je kemijsko zelo podoben Cd, zaradi česar med njima pogosto pride do tekmovanja za različna vezavna mesta tako na ravni tal kot rastlin (Christensen 1987, Christensen in Haung 1999, Welch in Norvell 1999, Zhao in sod. 2005). Povečana koncentracija Zn se posledično pogosto kaže v zmanjšanju koncentracije Cd, in obratno (Oliver in sod. 1994, Grant in Bailey 1997, Welch in Norvell 1999, Hart in sod. 2002, Zhao in sod. 2005, Grant in Sheppard 2008). Silicij omogoča boljše uspevanje rastlin tudi v primeru nezadostne preskrbe s Zn, saj se z dodajanjem Si poveča dostopnost Zn (Marschner in sod. 1990). V dveh raziskavah učinka Si ob toksičnih koncentracijah Zn splošnega izboljšanja uspevanja rastlin niso zaznali (Masarovič in sod. 2012, Bokor in sod. 2014). Tvorba biomase ter antioksidativna sposobnost sta se v prisotnosti Si celo zmanjšali (Masarovič in sod. 2012), poleg tega pa so kljub zmanjšani koncentraciji Zn poročali tudi o povečanem fiziološkem stresu (Bokor in sod. 2014). Baker (Cu) Cu v presežku zavira rast rastlin ter povzroča nastanek kloroz (Yruela 2005), poleg tega pa negativno vpliva tudi na proces fotosinteze in povzroča oksidativni stres ter s tem nastanek škodljivih ROS (Sandmann in Boger 1980). Preglednica 7: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij cinka (Zn). Table 7: The role of silicon (Si) in alleviation of negative effects caused by toxic zinc (Zn) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Zn Viri povečanje biomase ter povečanje tolerance preko obarjanja Zn in Cd skupaj s da Cunha in do Nascimento (2009) Si v endodermisu in periciklu korenin izboljšana rast preko vzdrževanja ustrezne stopnje prepustnosti membran Kaya in sod. (2009) povečanje biomase rastlin in vezava Zn v različnih spojinah da Cunha in sod. (2008) začasna vezava Zn s Si v veziklih ali citoplazmi pred shranjevanjem Zn v Neumann in Zur Nieden (2001), vakuolah Neumann in De Figueiredo (2002) povečanje antioksidativne sposobnosti in ohranjanje celovitosti celičnih Song in sod. (2011) membran ter zmanjšan prenos Zn iz korenin v poganjke izboljšana fotosintezna aktivnost preko povečanega izražanja genov, vpletenih Song in sod. (2014) pri procesu fotosinteze Preglednica 8: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij bakra (Cu). Table 8: The role of silicon (Si) in alleviation of negative effects caused by toxic copper (Cu) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Cu Viri povečanje biomase in vsebnosti vode ter zmanjšanje koncentracije Cu v Nowakowski in Nowakowska (1997) poganjkih in koreninah razstrupljanje Cu na račun njegove vezave v manj strupenih organskih in Collin in sod. (2014) anorganskih CuS spojinah v poganjkih povečana izgradnja molekul, ki vežejo Cu ter izražanje encimov, ki Khandekar in Leisner (2011) odstranjujejo ROS zmanjšanje negativnega učinka na rast in fotosintezni aparat preko Mateos-Naranjo in sod. (2015) preprečevanja prenosa Cu iz korenin v poganjke zmanjšana koncentracija in privzem Cu ter preprečevanje oksidativnih Kim in sod. (2014a) poškodb vzdrževanje ustreznih koncentracij različnih makro- in mikrohranil Frantz in sod. (2011) Grašič: Mnogotere vloge silicija 21 Krom (Cr) Negativni učinki Cr se pri rastlinah kažejo na številnih fizioloških procesih. Zaradi preprečevanja izgradnje klorofila zavira proces fotosinteze (Vajpayee in sod. 2000), vpliva na vodni režim, ravnovesje hranil, zmanjšuje stopnjo rasti, povzroča kloroze in poškodbe koreninskega sistema (Sharma in sod. 2003, Gopal in sod. 2009, Truta in sod. 2014). Preglednica 9: Vloga silicija (Si) pri blaženju učinkov toksičnih koncentracij kroma (Cr). Table 9: The role of silicon (Si) in alleviation of negative effects caused by toxic chromium (Cr) concentrations. Mehanizmi Si za blaženje simptomov toksičnosti Cr Viri znižana koncentracija Cr ter povečana stopnja rasti in fotosintezne aktivnosti Tripathi in sod. (2015) preprečevanje privzema in prenosa Cr ter izboljšana sposobnost zaščite pred oksidativnim stresom Zeng in sod. (2011) povečana stopnja rasti in fotosintezne aktivnosti preko razstrupljanja Cr Ali in sod. (2013) Zaščita pred škodljivimi učinki nekaterih drugih elementov Arzen (As) Škodljivi učinki As na rastline se kažejo tako na morfološki kot fiziološki ravni, in sicer preko zaviranja rasti korenin in poganjkov, zmanjšane fotosintezne aktivnosti, spremenjenega metabo-lizma ogljikovih hidratov in aminokislin ter pojava oksidativnega stresa (Hoffmann in Schenk 2011, Finnegan in Chen 2012, Tripathi in sod. 2012). Ob prisotnosti Si se zmanjša koncentracija As v rastlinah na račun omej evanj a njegovega privzema (Guo in sod. 2005, 2007, Bogdan in Schenk 2008, Greger in sod. 2015, Greger in Landberg 2015, Suda in sod. 2016). Ta mehanizem temelji na tekmovanju med omenjenima elementoma (Guo in sod. 2009, Seyfferth in Fendorf 2012, Fleck in sod. 2013, Tripathi in sod. 2013). Kljub temu, da prenos Si in As poteka preko istih prenašalcev v celičnih membranah (Ma in sod. 2008), se elementa razlikujeta v vzorcu nalaganja znotraj celic (Moore in sod. 2011). Stopnja pozitivnega vpliva Si se lahko nekoliko razlikuje med različnimi kultivaiji (Marmiroli in sod. 2014). Si ima pri rastlinah, izpostavljenih visokim koncentracijam As, pozitiven vpliv na razvoj korenin (Pandey in sod. 2016). Sanglard in sod. (2014) so poročali še o vlogi Si pri izboljšanju fotosintezne aktivnosti rastlin, Tripathi in sod. (2013) pa o njegovi sposobnosti povečanja antioksidativne sposobnosti in s tem zmanj šanj a oksidativnega stresa rastlin, podvrženih toksičnim koncentracijam As. Bor (B) Presežek B zavira rast rastlin (Nable in sod. 1990a). Si lahko negativen vpliv previsokih koncentracij B na rastline blaži na več načinov, in sicer preko tvorbe kompleksov B-Si ter posledičnega zmanjšanja dostopnosti B (Gunes in sod. 2007a), zmanjšanja privzema B in povišanja tolerance do višjih koncentracij B v tkivih (Liang in Shen 1994, Inal in sod. 2009, Farooq in sod. 2015), omejevanja prenosa B iz korenin v poganjke (Gunes in sod. 2007a, Soylemezoglu in sod. 2009) in blaženja oksidativnega stresa zaradi previsokih koncentracij B (Gunes in sod. 2007a,b, Inal in sod. 2009, Soylemezoglu in sod. 2009, Kaya in sod. 2011, Farooq in sod. 2015). Liang in Shen (1994) sta poročala o tekmovalnem odnosu na ravni privzema v rastline med Si in B, medtem ko Nable in sod. (1990b) tega učinka niso zaznali. Pozitiven učinek Si se navzven kaže v izboljšanju uspevanja rastlin (Gunes in sod. 2007a, Inal in sod. 2009, Soylemezoglu in sod. 2009, Kaya in sod. 2011). Pozitiven učinek Si na rast rastlin so opazili tudi ob nezadostnih koncentracijah B. Ob dodatku Si v tovrstnih razmerah se namreč povišata stopnja fotosintezne aktivnosti ter stopnja privzema B v rastline (Liang in Shen 1994, Hanafy Ahmed in sod. 2008). Zaščita pred boleznimi in objedanjem Poleg blaženja negativnih vplivov številnih abiotskih dejavnikov Si rastlinam nudi zaščito tudi v primeru stresnih biotskih dejavnikov, kamor spadajo tako bolezni kot objedanje (Ma in Takahashi 2002, Tripathi in sod. 2017). 22 Acta Biologica Slovenica, 62 (1), 2019 Bolezni Silicij ščiti rastline pred okužbami mnogih večinoma glivnih patogenov (Preglednica 10). Pogosto je mehanizem, s katerim rastline preko Si preprečujejo napade patogenov, povezan s povišanjem razmerja C/N na račun znižanja koncentracije topnega N v rastlinah. Napade patogenov rastline onemogočajo tudi z odlaganjem Si na površini tkiv. Na ta način se ustvari zaščitna plast, ki patogenom neposredno preprečuje fizični prodor (Ma in Takahashi 2002) na račun otrdevanja teh tkiv (Hattori in sod. 2003), ali zavira encimsko razgradnjo in s tem posreden prodor patogenov v njihova tkiva (Ma in Takahashi 2002). Si nudi zaščito pred patogeni tudi preko sprožitve delovanja različnih zaščitnih encimov, kot sta npr. peroksidaza in polifenol oksidaza, povečane tvorbe lignina (Cai in sod. 2008), sprožitve kaskadnih reakcij in povečanega izražanja zaščitnih genov, povečanja koncentracije različnih zaščitnih (predvsem fenolnih) snovi (Chérif in sod. 1994, Fawe in sod. 1998, Bélanger in sod. 2003, Rodrigues in sod. 2003a, 2004, Fauteux in sod. 2005, Rémus-Borel in sod. 2005, Fauteux in sod. 2006, Rémus-Borel in sod. 2009, Song in sod. 2016) ter povišane stopnje fotorespiracije pri napadenih rastlinah, s čimer zaščiti njihov fotosintezni aparat (Van Bockhaven in sod. 2015). Liang in sod. (2005d) so ugotovili, da foliarno dodajanje Si zaščito omogoča le v fizičnem smislu ali na račun osmotskega učinka, medtem ko odziv na molekularni ravni lahko dosežemo z vnosom Si preko korenin. Tudi Guevel in sod. (2007) so podobno poročali, da je foliarno dodajanje Si manj učinkovito od vnosa preko korenin. Carver in sod. (1998) so v svoji raziskavi prišli do nekoliko drugačnih zaklj učkov kot prej omenj ene raziskave. Aktivnost encima fenilalanin amonij liaze in s tem koncentracija fenolnih snovi pri okuženih rastlinah je bila večja v odsotnosti Si, kar so utemeljili kot nadomeščanje zaščite pred patogeni, ki jo sicer nudi Si (Carver in sod. 1998). Djamin in Pathak (1967) sta poročala o tem, da je stopnja zaščite pred patogeni sorazmerna s količino Si, ki se razlikuje med različnimi genotipi iste vrste. Veliko kasneje so Deren in sod. (1994) v svoji raziskavi prišli do drugačnega zaključka, in sicer da večja količina Si pri različnih genotipih iste vrste ne pomeni nujno tudi večje stopnje zaščite pred napadi patogenov. Preglednica 10: Patogeni, katerih napade na naštete rastlinske vrste omejuje silicij (Si). Vrste patogenov, ki se ponovijo pri različnih rastlinskih vrstah, imajo poleg imena dodatno številčno oznako (1 2, 3...). Table 10: Pathogens, whose attacks on the listed plant species are restricted by silicon (Si). Pathogen species that appear with multiple plant species have an additional numerical sign (1 2, 3...). Rastlinska vrsta Patogen Viri Magnaporthe grisea (T.T. Hebert) M.E. Barr 1 Cochliobolus miyabeanus (S. Ito & Kurib.) Drechsler ex Dastur Rhizoctonia solani J.G. Kühn Chilo suppressalis Walker Xanthomonas oryzae (ex Ishiyama) Swings et al. emend. van den Mooter and Swings Sarocladium attenuatum W. Gams & D. Hawksw. Cochliobolus lunatus R.R. Nelson & F.A. Haasis Monographella albescens (Thüm.) V.O. Parkinson, Sivan. & C. Booth Datnoff in sod. (1991), Seebold in sod. (2000, 2001), Kim in sod. (2002), Rodrigues in sod. (2003a, 2004), Seebold in sod. (2004), Rodrigues in sod. (2005), Ranganathan in sod. (2006), Cai in sod. (2008), Hayasaka in sod. (2008), Nakata in sod. (2008), Sun in sod. (2010) Datnoff in sod. (1991), Winslow (1992), Dallagnol in sod. (2014), Van Bockhaven in sod. (2015) Winslow (1992), Deren in sod. (1994), Rodrigues in sod. (2001, (2003b), Schurt in sod. (2014, 2015) Djamin in Pathak (1967) Song in sod. (2016) Winslow (1992) Winslow (1992) Winslow (1992), Tatagiba in sod. (2014) pšenica Blumeria graminis (DC.) Speer 2 Phaeosphaeria nodorum (E. Müll.) Hedjar. Mycosphaerella graminicola (Fuckel) J. Schröt. Bélanger in sod. (2003), Rodgers-Gray in Shaw (2004), Rémus-Borel in sod. (2005), Guével in sod. (2007), Rémus-Borel in sod. (2009) Rodgers-Gray in Shaw (2004) Rodgers-Gray in Shaw (2004)_ Grašič: Mnogotere vloge silicija 23 Rastlinska Patogen Viri vrsta Oculimacula yallundae (Wallwork & Spooner) Rodgers-Gray in Shaw (2004) Crous & W. Gams Magnaporthe grisea 1 Aucique Perez in sod. (2014), Debona in sod. (2014), Rios in sod. (2014), Antunes da Cruz in sod. (2015a,b), da Silva in sod. (2015a) oves Blumeria graminis 2 Carver in sod. (1998) ječmen Blumeria graminis 2 Carver in sod. (1987), Wiese in sod. (2005) proso Sclerospora graminicola (Sacc.) J. Schröt. Deepak in sod. (2008), Sapre in sod. (2013) sirek Colletotrichum sublineolum Henn. ex Sacc. & Trotter Resende in sod. (2013) bananovec Cylindrocladium spathiphylli Schoult., El-Gholl & Alfieri Vermeire in sod. (2011) Fusarium oxysporum Schltdl. Fortunato in sod. (2012, 2014) Mycosphaerella fijiensis M. Morelet Kablan in sod. (2012) oljna palma Ganoderma boninense Pat. Najihah in sod. (2015) mormodika Pythium aphanidermatum (Edson) Fitzp. 3 Heine in sod. (2007) paradižnik Pythium aphanidermatum 3 Heine in sod. (2007) krompir Fusarium sulphureum Schltdl. Li in sod. (2009) fižol Pseudocercospora griseola (Sacc.) Crous & U. Braun Rodrigues in sod. (2010) Colletotrichum lindemuthianum (Sacc. & Magnus) Polanco in sod. (2013), Antunes da Cruz in sod. Briosi & Cavara (2014), Polanco in sod. (2014), Rodrigues in sod. (2015) grah Mycosphaerella pinodes (Berk. & A. Bloxam) Vestergr. Dann in Muir (2002) soja Phakopsora pachyrhizi Syd. & P. Syd. Arsenault-Labrecque in sod. (2012), Antunes Cruz in sod. (2014b) Cercospora sojina Hara Nascimento in sod. (2014) kumara Pythium aphanidermatum 3 Chérif in sod. (1994) Pythium ultimum Trow Chérif in sod. (1992, 1994) Cladosporium cucumerinum Ellis & Arthur Fawe in sod. (1998) Sphaerotheca fuliginea (Schltdl.) Pollacci 4 Adatia in Besford (1986), Menzies in sod. (1991), Samuels in sod. (1991a,b), Menzies in sod. (1992), Fawe in sod. (1998), Liang in sod. (2005d) melona Sphaerotheca fuliginea 4 Menzies in sod. (1992) Podosphaera xanthii (Castagne) U. Braun & Shishkoff 5 Dallagnol in sod. (2012) Acidovorax citrulli Schaad et al. Ferreira in sod. (2015) oljna buča Podosphaera xanthii 5 Heckman in sod. (2003), Torlon in sod. (2016) Erysiphe cichoracearum DC. 6 Menzies in sod. (1992) Sphaerotheca fuliginea 4 Mohaghegh in sod. (2015) paprika Phytophthora capsici Leonian French-Monar in sod. (2010) vinska trta Uncinula necator (Schwein.) Burrill Bowen in sod. (1992), Reynolds in sod. (1996) repnjakovec Erysiphe cichoracearum 6 Ghanmi in sod. (2004), Fauteux in sod. (2006), Vivancos in sod. (2015) kavovec Hemileia vastatrix Berk. & Broome Carré-Missio in sod. (2014) bombaž Colletotrichum gossypii Southw. Nogueira de Moura Guerra in sod. (2014) jagodnjak Podosphaera aphanis (Wallr.) U. Braun & S. Takam. Kanto in sod. (2006), Fatema (2014) češnja Penicillium expansum Link Qin in Tian (2005) Monilinia fructicola (G. Winter) Honey Qin in Tian (2005) vrtnica Diplocarpon rosae F.A. Wolf Gillman in sod. (2003) Podosphaera pannosa (Wallr.) de Bary Shetty in sod. (2012) 24 Acta Biologica Slovenica, 62 (1), 2019 Objedanje Z nalaganjem Si v rastlinska tkiva se zmanjša pogostost napadov številnih rastlinojedov iz razreda insektov ter sesalcev (Preglednica 11). Si namreč povečuje stopnjo obrabe obustnega aparata napadalcev, zavira njihove napade na račun zmanj šane tvorbe N spojin (Ma in Takahashi 2002, Massey in Hartley 2006), poveča trdnost tkiv, izražanje zaščitnih genov in stopnjo aktivnosti določenih zaščitnih encimov ter koncentracijo različnih zaščitnih snovi (Gomes in sod. 2005, Ye in sod. 2013, Han in sod. 2016). Cote-Beaulieu in sod. (2009) so v svoji raziskavi raziskali možnost uporabe organskih Si spojin za zaščito pred rastlinojedi in ugotovili, da kljub njihovi večji topnosti in s tem večjim potencialom uporabe Si kislina ostaja edina možna oblika Si, ki lahko služi kot zaščita pred rastlinojedi. Organske Si spojine namreč po določenem času postanejo fitotoksične (Cote-Beaulieu in sod. 2009). Objedanje sproža nalaganje Si v rastlinah, kar se nato zrcali v boljši fizični zaščiti rastlin pred objedanjem (Hartley in DeGabriel 2016). Cooke in Leishman (2012) sta prišli so ugotovitve, da je zaščita s Si pred objedanjem v primeru nekaterih rastlinojedov bolj učinkovita od običajne in energetsko zahtevnejše zaščite rastlin s C spojinami (kot je npr. lignin). Vseeno se izkaže, da najučinkovitejšo zaščitno strategijo predstavlja kombinacija Si in lignina (Piperno 2006), zato pogosto prihaja do kompromisa ter iskanja ravnovesja med koncentracijo Si in zaščitnimi C spojinami (Cooke in Leishman 2012). Podobno kot sta Djamin in Pathak (1967) pokazala glede soodvisnosti med količino Si in stopnjo zaščite pred napadi patogenov, so Katz in sod. (2014) ugotovili, da je tudi stopnja zaščite pred objedanjem nižja pri rastlinah, ki že v osnovi vsebujejo nižje koncentracije Si. Različna zmožnost rastlinskih vrst za privzem in kopičenje Si ob napadih rastlinojedov pomeni različno stopnjo tekmovalne prednosti posameznih vrst. Iz tega sledi, da Si ne igra pomembne vloge le na ravni posameznih osebkov, temveč kroji tudi strukturo rastlinskih združb (Garbuzov in sod. 2011), saj močno vpliva na populacijsko dinamiko rastlinojedih napadalcev (Reynolds in sod. 2012). V raziskavi, ki so jo objavili Dogramaci in sod. (2013), se ob dodatku Si stopnja objedanja na paprikah ni zmanjšala. Kot razlog za to so navedli nezadostno količino nakopičenega Si v tkivih teh rastlin (Dogramaci in sod. 2013). Podobno tudi Lanning (1966) ni ugotovil neposredne povezave med količino Si in zaščito pred boleznimi ali objedanjem. Sanson in sod. (2007) so ob preizkušanju trdote Si fitolitov in sesalske sklenine ugotovili, da je slednja trdnejša in iz tega sklepali, da Si ni glavni razlog za povečano obrabo zob pri sesalcih. Shewmaker in sod. (1989) so pokazali, da količina Si ne narekuje izbire krme pri ovcah. Slednji raziskavi nakazujeta, da Si najverjetneje boljšo zaščito pred rastlinojedi nudi v primeru nevretenčarjev kot v primeru vretenčarjev (Vicari in Bazely 1993). Tudi novejše in bolj evolucijsko obarvane raziskave se nagibajo k dejstvu, da Si nima tako odločilne vloge pri odvračanju objedanja s strani rastlinojedih sesalcev, kot je sprva veljalo (Stromberg 2002, Prasad in sod. 2005, Stromberg in sod. 2016). Stromberg (2002) ter Stromberg in sod. (2016) to domnevo utemeljujejo na podlagi ugotovitev, da je ponekod travnata pokrajina prevladovala že vsaj 7 milijonov let pred domnevnim pojavom prilagoditev zobovja rastlinojedih sesalcev na trave ter da so trave postale akumulatorji Si že 37 milijonov let preden so se ti sploh razvili (Stromberg 2002, Stromberg in sod. 2016), Prasad in sod. (2005) pa na podlagi nizke vsebnosti fitolitov v fosilnih iztrebkih takratnih rastlinojedih sesalcev in posledično ugotovitve, da trave v takratnem obdobju niso predstavljale glavnega vira hrane za to živalsko skupino. Kot glavne krivce za selekcijski pritisk na trave v smislu kopičenja Si so označili rastlinojede žuželke ali le manjše rastlinojede sesalce (Prasad in sod. 2005). Grašič: Mnogotere vloge silicija 25 Preglednica 11: Rastlinojedi, katerih napade na naštete rastlinske vrste omejuje silicij (Si). Vrste rastlinojedov, ki se ponovijo pri različnih rastlinskih vrstah, imajo poleg imena dodatno numerično oznako C, 2, 3...). Table 11: Herbivores, whose attacks on the listed plant species are restricted by silicon (Si). Herbivore species that appear with multiple plant species have an additional numerical sign (', 2, 3...). Rastlinska Rastlinojedi Viri vrsta riž Cnaphalocrocis medinalis Guenée (Insecta, Lepidoptera) Ye in sod. (2013), Han in sod. (2016) Scirpophaga incertulas Walker (Insecta, Lepidoptera) Ranganathan in sod. (2006), Jeer in sod. (2016) Sogatella furcifera Horvath (Insecta, Hemiptera) Salim in Saxena (1991) Agriolimax reticulatus Müller (Mollusca, Gastropoda) Wadham in Parry (1981) Nilaparvata lugens Stal (Insecta, Hemiptera) He in sod. (2015) pšenica Schizaphis graminum Rondani (Insecta, Hemiptera, Aphididae) Basagli in sod. (2003), Moraes in sod. (2004), Gomes in sod. (2005), Goussain in sod. (2005) Oryctolagus cuniculus Linnaeus (Mammalia, Leporidae) Cotterill in sod. (2007) koruza Ostrinia nubilalis Hübner (Insecta, Lepidoptera) Coors (1987) sladkorni trs Eldana saccharina Walker (Insecta, Lepidoptera) Kvedaras in sod. (2005, 2007a,b) Diatraea saccharalis Fabricius Insecta, Lepidoptera) Sartori de Camargo in sod. (2014) stoklasa Microtus ochrogaster Wagner (Mammalia, Cricetidae) Gali-Muhtasib in sod. (1992) ljuljka Schistocerca gregaria Forsskal (Insecta, Orthoptera) 1 Massey in sod. (2007), Hunt in sod. (2008), Garbuzov in sod. (2011) Microtus agrestis Linnaeus (Mammalia, Cricetidae) 2 Massey in Hartley (2006), Massey in sod. (2007) Oscinella frit Linnaeus (Insecta, Diptera) Moore (1984) Spodoptera exempta Walker (Insecta, Lepidoptera) 3 Massey in Hartley (2009) bilnica Schistocerca gregaria (Insecta, Orthoptera) 1 Massey in sod. (2007), Hunt in sod. (2008) Microtus agrestis (Mammalia, Cricetidae) 2 Massey in Hartley (2006), Massey in sod. (2007) Spodoptera exempta (Insecta, Lepidoptera) 3 Massey in Hartley (2009) masnica Microtus agrestis (Mammalia, Cricetidae) 2 Massey in sod. (2008) Spodoptera exempta (Insecta, Lepidoptera) 3 Massey in Hartley (2009) kumara Bemisia tabaci Gennadius (Insecta, Hemiptera) Correa in sod. (2005) krizantema Macrosiphoniella sanborni Gillette (Arthropoda, Hemiptera, Aphididae) Jeong in sod. (2012) kavovec Meloidogyne exigua Göldi (Nematoda) da Silva in sod. (2015b) Raziskave ter uporaba silicija v kmetijstvu Z raziskovanjem učinkov Si na rastline so se zelo intenzivno ukvarjali na Japonskem. Največ raziskav so izvedli v povezavi z rižem, ki je njihova najpomembnejša poljščina. Riž za svoje uspevanje potrebuje ogromne količine Si, ki si jih po naravni poti pri obstoječem načinu pridelovanja ne more zagotoviti. Tako je leta 1955 Japonska postala prva država na svetu, ki je odobrila gnojenje s Si. Sprva so kot gnojilo uporabljali jalovino iz železarn in jeklarn, ki vsebuje veliko Ca silikata in s tem Si. Zaradi veliko večje vsebnosti Ca kot Si ter pojavljanja drugih kovin v jalovini, ki imajo kljub nižjim koncentracijam lahko večji vpliv na različne fiziološke procese, so sčasoma pričeli razvijati alternativna Si gnojila, kot so običajno Mg fosfatno gnojilo z višjo vsebnostjo Si, K silikat ter silika gel, ki poleg Si ne vsebuje drugih primesi, a je znatno dražji (Ma in Takahashi 2002). Poleg naštetih gnojil kot vir Si za rastline lahko uporabimo tudi naravni volastonit ali diatomejsko zemljo (Heckman 2013), ga dodajamo v obliki nanodelcev nano-SiO2 (Saxena in sod. 2015), ali pa enostavno vzdržujemo zadostno količino Si v 26 Acta Biologica Slovenica, 62 (1), 2019 tleh s puščanjem odvečne biomase na pridelovalnih površinah. S tem omogočimo vračanje Si nazaj v tla preko postopnega razgrajevanja rastlinskega materiala (Ma in Takahashi 2002). Si rastlinam lahko dodajamo preko tal ali foliarno (Bowen in sod. 1992, Menzies in sod. 1992). Slednji način je najverjetneje bolj učinkovit za rastline s pasivnim ali izključevalnim načinom privzema Si iz tal (Ma in Takahashi 2002). Kljub vsesplošnemu pojavljanju Si tako v tleh kot v rastlinah so se raziskovalci z vlogo Si v rastlinah pričeli ukvarjati dokaj pozno (Ma in Takahashi 2002). Poleg že omenjene globoko zakoreninjene stare definicije esencialnosti elementov in s tem nepriznavanja Si kot pomembnega elementa za rast in razvoj rastlin (Epstein 1994, 1999, 2009) bi to neskladnost lahko pojasnili na podlagi njegove velike zastopanosti v tleh, saj iz tega vzroka zelo redko pride do pomanjkanja Si v rastlinah, poleg tega pa simptomi pomanjkanja Si niso tako opazni kot v primeru nekaterih drugih elementov (Ma in Takahashi 2002). Človeška populacija dandanes narašča izredno hitro, sorazmerno s tem pa raste tudi naša potreba po hrani. Posledično vse bolj primanjkuje optimalnih obdelovalnih površin za pridelavo, zaradi česar smo vedno pogosteje rastline prisiljeni gojiti tudi na manj rodovitnih tleh in v bolj stresnih razmerah (Tripathi in sod. 2017). K vedno večji pogostosti pojavljanja različnih motenj in stresnih razmer za rastline ter v povezavi s tem za okolje in zdravje vseh živih bitij obremenjujoče pretirane uporabe umetnih pesticidov in fungicidov še dodatno pripomore naše intenzivno globalno spreminjanje okolja v današnjem času (Ma in Takahashi 2002). Glede na trenutne razmere in obete za prihodnost bo Si s svojimi vsestranskimi koristnimi funkcijami zagotovo postal vse pomembnejši na področju gojenja kmetijskih rastlin (Cooke in sod. 2016b, Tripathi in sod. 2017). Njegov potencial se zrcali predvsem v dejstvu, da 7 od 10 najbolj gojenih poljščin na svetu spada med akumulatorje Si (Guntzer in sod. 2012). Z genetsko modifikacijo izključevalcev Si na ta način, da bi privzemali več Si (Ma in Takahashi 2002, Ma 2004, Ma in Yamaji 2006), bi se njegova uporabnost v kmetijstvu še povečala. En primer tovrstne genetske modifikacije je opisan v raziskavi, ki so jo opravili Sahebi in sod. (2015). Ugotovili so, da so transgene rastline z vstavljenim genom za protein, bogat s serinom, zaradi povečane vsebnosti serina privzemale in kopičile več Si ter s tem pokazali na potencial tega postopka pri povečanju tolerance rastlin do različnih stresnih dejavnikov (Sahebi in sod. 2015). Potrebno pa se je zavedati, da smo skozi stoletja s stalnim odnašanjem pridelka z obdelovalnih površin ponekod že izdatno izčrpali zaloge rastlinam dostopnega Si v tleh, zato bo v prihodnosti za povečanje pridelka določenih kmetij sko pomembnih vrst naj verj etnej e potrebno tudi dodajanje Si v tla (Haynes 2014). Prispevkov o Si v povezavi z rastlinami se je do danes nabralo že mnogo, predvsem v zadnjem času, in njihovo število še vedno skokovito narašča. Sorazmerno s tem se krepi tudi naše zavedanje o pomenu Si. O vsem tem priča dejstvo, da od leta 1999 naprej vsaka tri leta poteka mednarodna konferenca na temo Si v kmetijstvu, kjer se zberejo raziskovalci s celega sveta in predstavijo svoje najnovejše izsledke na tem področju. Do sedaj je se je tako zvrstilo že sedem tovrstnih konferenc. Naslednja bo pod okriljem združenja ISSAG (The International Society for Silicon in Agriculture and Related Disciplines) potekala oktobra 2020 v Združenih državah Amerike (ISSAG 2019). Povzetek Silicij je drugi najbolj zastopan element v tleh, v rastlinah pa njegov delež sega vse od 0,1 do 10 % njihove suhe mase ali celo več. To kaže, da ni le pomemben gradnik tal, temveč tudi rastlin. Glede na način privzema silicija iz tal rastline uvrščamo v tri tipe, in sicer akumulatorje silicija z aktivnim privzemom in vsebnostjo silicija > 1 %, intermediate s pasivnim privzemom silicija ter izključevalce silicija z vsebnostjo silicija < 0,5 % in zavračanjem njegovega privzema. Privzem silicija v obliki silicijeve kisline iz tal v rastline poteka preko korenin, njegov prenos po sami rastlini pa nadalje poganja transpiracijski tok. Na vsebnost silicija v rastlinah vpliva tudi njegova dostopnost v tleh ter nekateri drugi abiotski in biotski dejavniki. Ko se silicij odloži v tarčnih celicah, njegovo prerazporejanje ni več možno. Nalaga se predvsem v celičnih stenah celic povrhnjice listov v obliki silicijevega dioksida, pri čemer z naraščajočo koncentracijo nastajajo vrstno značilni fitoliti različnih oblik in velikosti. Grašič: Mnogotere vloge silicija 27 Razlike v vzorcu nalaganja silicija v rastlinah se kažejo tako na filogenetskem nivoju kot tudi med različnimi funkcionalnimi tipi rastlin. Vsebnost silicija v rastlinskih tkivih se običajno povečuje tekom življenja rastlin. Silicij predstavlja alternativo ogljiku s strukturnega in podpornega vidika, saj za rastline predstavlja 10-20 krat manj potraten vir od ogljika. Sposobnost aktivnega kopičenja silicija v rastlinah se je tekom evolucije razvila večkrat neodvisno, saj akumulatorje silicija najdemo tako med evolucijsko starimi kot tudi mladimi taksoni. Pri travah je ta lastnost močno pridobila na pomenu z upadom koncentracije atmosferskega ogljikovega dioksida v poznem miocenu. Eno od gonilnih sil za večjo stopnjo silicifikacije pri travah bi lahko predstavlj al tudi koevolucij ski odnos med travami in rastlinojedimi sesalci. Silicij je pomemben za normalno uspevanje vseh rastlin, poleg tega pa jim nudi številne koristi v stresnih okoliščinah preko mnogih različnih mehanizmov. Pripomore k večji fotosintezni aktivnosti, pomaga pri uravnavanju neravnovesja nekaterih pomembnejših hranil, ščiti rastline pred sušo, povišano slanostjo in povečano stopnjo UV sevanja, blaži stres zaradi ekstremnih temperatur in zmanjšuje negativne učinke različnih kovin ter nekaterih drugih elementov. Rastlinam omogoča tudi učinkovito zaščito pred boleznimi in objedanjem. Z vlogo silicija pri rastlinah so se prvi začeli intenzivno ukvarjati Japonci. Izvedli so ogromno raziskav na rižu kot svoji najpomembnejši poljščini, ki za svoje uspevanje zahteva ogromno silicija, in kot prva država na svetu odobrili gnojenje s silicijem. Rastlinam silicij lahko dodajamo preko tal ali foliarno. Ob današnjem skokovitem povečevanju potreb hitro naraščajočega prebivalstva ter s tem tudi vedno večjim obremenjevanjem okolja ustvarjamo vedno manj ugodne razmere za gojenje kmetijskih rastlin. Silicij bo tako s svojimi vsestranskimi koristmi za rastline v stresnih razmerah zagotovo v kmetijstvu postajal vse pomembnejši. Njegov potencial je zelo velik že ob dejstvu, da 7 od 10 najpomembnejših poljščin sveta spada med akumulatorje silicija, z genetsko modifikacijo izključevalcev silicija na ta način, da bi privzemali več silicija, pa bi se njegova uporabnost v kmetijstvu še dodatno povečala. Summary Silicon is the second most abundant element in soil, and in plants its proportion ranges from 0.1 to 10% of their dry weight, or even more. This shows that it is not only an important constituent of soil, but also of plants. Depending on the mode of silicon uptake from soil, plants are classified into three types, namely silicon accumulators with active uptake and silicon contents of > 1%, intermediates with passive silicon uptake, and silicon excluders with silicon contents of < 0.5%, which reject its uptake. Silicon is taken up by plants from soil in the form of silicic acid via roots, and its transfer along the plant is driven by transpiration flow. The content of silicon in plants is also affected by its availability in the soil and some other abiotic and biotic factors. When silicon is deposited in target cells, its redistribution is no longer possible. It mainly accumulates in cell walls of leaf epidermal cells in the form of silicon dioxide, with increasing silicon contents resulting in formation of species-specific phytoliths of various shapes and sizes. Silicon loading patterns vary not only according to different phylogenetic level, but also between different plant functional types. Silicon content in plant tissues usually increases during plants' lifetime. Being 10-20-fold less expensive as a source for plants, silicon represents an alternative to carbon in terms of structure and support. The ability of plants to actively accumulate silicon evolved many times independently, as silicon accumulators are found both among evolutionary old and young taxons. In grasses, silicon has gained importance with the decrease in atmospheric carbon dioxide concentration in the late Miocene. One of the major driving forces for a greater degree of silicifica-tion in grasses could also be the revolutionary relationship between grasses and herbivorous mammals. Silicon is crucial for normal growth of all plants, and offers many benefits to plants in stressful conditions through numerous different mechanisms. It helps to increase photosynthetic activity and equilibrate the unbalance of some important nutrients, protects plants against drought, increased salinity, and increased UV radiation, ameliorates stress due to extreme temperatures, and mitigates negative effects of various metals and some other elements. It also provides effective 28 Acta Biologica Slovenica, 62 (1), 2019 protection against plant diseases and herbivory. Japanese researchers were the first to start dealing intensively with the role of silicon in plants. They carried out enormous research on rice as their most important crop plant, which requires great amounts of silicon for successful growth, and were the first country in the world to approve fertilisation with silicon. Silicon can be applied to plants by soil or foliarly. With today's rapidly growing world population and consequently steeply rising demands of the mankind, we are Viri continuously creating less and less favourable conditions for cultivation of agricultural plants. Silicon will thus become more and more important in agriculture due to its manifold beneficial roles in plants under stressful conditions. Its potential is already very high considering the fact that 7 out of the 10 most important crops of the world are silicon accumulators. However, with genetic modification of silicon excluders in a way that they as well would absorb more silicon, the need for silicon in agriculture would further increase. Abbas, T., Balal, R.M., Shahid, M.A., Pervez, M.A., Ayyub, C.M., Aqueel, M.A., Javaid, M.M., 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plan-tarum, 37, 1-15. Abdalla, M.M., 2011. Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America, 2, 207-220. Abdel Latef, A.A., Tran, L.-S.P., 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science, 7, 243. Adatia, M.H., Besford, R.T., 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58, 343-351. Agarie, S., Agata, W., Uchida, H., Kubota, F., Kaufman, P.B., 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. Journal of Experimental Botany, 47, 655-660. Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W., Kaufman, P.B., 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1, 96-103. Ahmad, R., Zaheer, S.H., Ismail, S., 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science, 85, 43-50. Ahmed, M., Hassan, F.-U., Qadeer, U., Aslam, M.A., 2011a. Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6, 594-607. Ahmed, M., Hassen, F.-U., Khurshid, Y., 2011b. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricultural Water Management, 98, 1808-1812. Al-Aghabary, K., Zhu, Z., Shi, Q., 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101-2115. Ali, A., Basra, S.M.A., Ahmad, R., Wahid, A., 2009. Optimizing silicon application to improve salinity tolerance in wheat. Soil and Environment, 28, 136-144. Ali, A., Basra, S.M.A., Iqbal, J., Hussain, S., Subhani, M.N., Sarwar, M., Haji, A., 2012. Silicon mediated biochemical changes in wheat under salinized and non-salinzed solution cultures. African Journal of Biotechnology, 11, 606-615. Ali, S., Farooq, M.A., Yasmeen, T., Hussain, S., Arif, M.S., Abbas, F., Bharwana, S.A., Zhang, G., 2013. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety, 89, 66-72. Almutairi, Z.M., 2016. Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant OMICS, 9, 106-114. Grašič: Mnogotere vloge silicija 29 Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M., Lee, D.J., 2016. Influence of silicon fertilization on maize performance under limited water supply. Silicon, 1-7. Amiri, J., Entesari, S., Delavar, K., Saadatmand, M., Rafie, N.A., 2012. The effect of silicon on cadmium stress in Echium amoenum. World Academy of Science, Engineering and Technology, 6, 51-54. Antunes da Cruz, M.F., Arantes Freitas Silva, L., Rios, J.A., Debona, D., Rodrigues, F.Á., 2015a. Microscopic aspects of the colonization of Pyricularia oryzae on the rachis of wheat plants supplied with silicon. Bragantia, 74, 1-8. Antunes da Cruz, M.F., Araujo, L., Rodriguez Polanco, L., de Ávila Rodrigues, F., 2014a. Aspectos microscdpicos da interaçao feijoeiro-Colletotrichum lindemuthianum mediados pelo silicio. Bragantia, 73, 284-291. Antunes da Cruz, M.F., Debona, D., Rios, J.A., Barros, E.G., Rodrigues, F.Á., 2015b. Potentiation of defense-related gene expression by silicon increases wheat resistance to leaf blast. Tropical Plant Pathology, 40, 394-400. Antunes da Cruz, M.F., Rodrigues, F.Á., Cardoso Diniz, A.P., Alves Moreira, M., Gonçalves Barros, E., 2014b. Soybean resistance to Phakopsora pachyrhizi as affected by acibenzolar-S-methyl, jasmonic acid and silicon. Journal of Phytopathology, 162, 133-136. Arnon, D.I., Stout, P.R., 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology, 14, 371-375. Arsenault-Labrecque, G., Menzies, J.G., Bélanger, R.R., 2012. Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Disease, 96, 37-42. Ashraf, M., Rahmatullah, Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A., Ali, L., 2010. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326, 381-391. Ashraf, M., Rahmatullah, Ahmad, R., Afzal, M., Tahir, M.A., Kanwal, S., Maqsood, M.A., 2009. Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. Journal of Agronomy and Crop Science, 195, 284-291. Asmar, S.A., Castro, E.M., Pasqual, M., Pereira, F.J., Soares, J.D.R., 2013. Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Scientia Horticulturae, 161, 328-332. Aucique Perez, C.E., Rodrigues, F.Á., Moreira, W.R., DaMatta, F.M., 2014. Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology, 104, 143-149. Barceló, J., Guevara, P., Poschenrieder, C., 1993. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant and Soil, 154, 249-255. Basagli, M.A.B., Moraes, J.C., Carvalho, G.A., Ecole, C.C., Gonçalves-Gervâsio, R. de C.R., 2003. Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology, 32, 659-663. Batool, M., Saqib, M., Murtaza, G., Basra, S.M.A., Nawaz, S., 2015. Silicon application improves Fe and Zn use efficiency and growth of maize genotypes under saline conditions. Pakistan Journal of Agricultural Sciences, 52, 445-451. Baylis, A.D., Gragopoulou, C., Davidson, K.J., Birchall, J.D., 1994. Effects of silicon on the toxicity of aluminium to soybean. Communications in Soil Science and Plant Analysis, 25, 537-546. Beavers, A.H., Jones, R.L., 1963. Some mineralogical and chemical properties of plant opal. Soil Science, 96, 375-379. Bélanger, R.R., Benhamou, N., Menzies, J.G., 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93, 402-12. Bennett, D.M., 1982. Silicon deposition in the roots of Hordeum sativum Jess, Avena sativa L. and Triticum aestivum L. Annals of Botany, 50, 239-245. Bharwana, S.A., Ali, S., Farooq, M.A., Iqbal, N., Abbas, F., Ahmad, M.S.A., 2013. Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Journal of Bioremediation and Biodegradation, 4, 1-11. 30 Acta Biologica Slovenica, 62 (1), 2019 Björn, L.-O., Li, S., 2011. Near-surface silica does not increase radiative heat dissipation from plant leaves. Applied Physics Letters, 99, 1-3. Blackman, E., 1969. Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Canadian Journal of Botany, 47, 827-838. Bogdan, K., Schenk, M.K., 2008. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environmental Science and Technology, 42, 7885-7890. Bokor, B., Vaculik, M., Slovâkovâ, E., Masarovic, D., Lux, A., 2014. Silicon does not always mitigate zinc toxicity in maize. Acta Physiologiae Plantarum, 36, 733-743. Bowen, P.A., Menzies, J.G., Ehret, D.L., Samuels, L., Glass, A.D.M., 1992. Soluble silicon sprays inhibit powdery mildew on grape leaves. Journal of the American Society for Horticultural Science, 117, 906-912. Brackhage, C., Schaller, J., Bäucker, E., Dudel, E.G., 2013. Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. Silicon, 5, 199-204. Bybordi, A., 2016. Influence of zeolite, selenium and silicon upon some agronomic and physiologic characteristics of canola grown under salinity. Communications in Soil Science and Plant Analysis, 47, 832-850. Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J., Zhu, X., 2008. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134, 324-333. Carré-Missio, V., Rodrigues, F.A., Schurt, D.A., Resende, R.S., Souza, N.F.A., Rezende, D.C., Moreira, W.R., Zambolim, L., 2014. Effect of foliar-applied potassium silicate on coffee leaf infection by Hemileia vastatrix. Annals of Applied Biology, 164, 396-403. Carver, T.L.W., Robbins, M.P., Thomas, B.J., Troth, K., Raistrick, N., Zeyen, R.J., 1998. Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis. Physiological and Molecular Plant Pathology, 52, 245-257. Carver, T.L.W., Zeyen, R.J., Ahlstrand, G.G., 1987. The relationship between insoluble silicon and success or failure of attempted primary penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiological and Molecular Plant Pathology, 31, 133-148. Casey, W.H., Kinrade, S.D., Knight, C.T.G., Rains, D.W., Epstein, E., 2003. Aqueous silicate complexes in wheat, Triticum aestivum L. Plant, Cell and Environment, 27, 51-54. Castro de Souza, L., da Silva Lima, E.G., de Almeida, R.F., Galvao Neves, M., dos Santos Nogueira, G.A., Ferreira de Oliveira Neto, C., Soares da Costa, A., Corrêa Machado, L., Coelho do Nascimen-to, S.M., de Araüjo Brito, A.E., 2016. Nitrogen metabolism in sorghum under salinity and silicon treatments in Brazil. African Journal of Agricultural Research, 11, 199-208. Chalmardi, Z.K., Abdolzadeh, A., Sadeghipour, H.R., 2014. Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiologiae Plantarum, 36, 493-502. Chen, C.-H., Lewin, J., 1969. Silicon as a nutrient element for Equisetum arvense. Canadian Journal of Botany, 47, 125-131. Chen, J., Zhang, M., Eneji, A.E., Li, J., 2016. Influence of exogenous silicon on UV-B radiation-induced cyclobutane pyrimidine dimmers in soybean leaves and its alleviation mechanism. Journal of Plant Physiology, 196-197, 20-27. Cheong, Y.W.Y., Chan, P.Y., 1973. Incorporation of P32 in phosphate esters of the sugarcane plant and the effect of silicon and aluminum on the distribution of these esters. Plant and Soil, 38, 113-123. Chérif, M., Asselin, A., Bélanger, R.R., 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 84, 236-242. Chérif, M., Benhamou, N., Menzies, J.G., Bélanger, R.R., 1992. Silicon induced resistance in cucumber plants against Pythium ultimum. Physiological and Molecular Plant Pathology, 41, 411-425. Chiba, Y., Mitani, N., Yamaji, N., Ma, J.F., 2009. HvLsi1 is a silicon influx transporter in barley. Plant Journal, 57, 810-818. Christensen, T.H., 1987. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water, Air, and Soil Pollution, 34, 293-303. Grašič: Mnogotere vloge silicija 31 Christensen, T.H., Haung, P.M., 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. In: McLaughlin, M.J., Singh, B.R. (eds.): Cadmium in Soils and Plants. Springer, Dordrecht, pp. 65-96. Cid, M.S., Detling, J.K., Brizuela, M.A., Whicker, A.D., 1989. Patterns in grass silicification: response to grazing history and defoliation. Oecologia, 80, 268-271. Clairmont, K.B., Hagar, W.G., Davis, E.A., 1986. Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiology, 80, 291-293. Cocker, K.M., Evans, D.E., Hodson, M.J., 1998a. The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiologia Plantarum, 106, 608-614. Cocker, K.M., Evans, D.E., Hodson, M.J., 1998b. The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta, 204, 318-323. Cocker, K.M., Hodson, M.J., Evans, D.E., Sangster, A.G., 1997. Interaction between silicon and aluminum in Triticum aestivum L. (cv. Celtic). Israel Journal of Plant Sciences, 45, 285-292. Collin, B., Doelsch, E., Keller, C., Cazevieille, P., Tella, M., Chaurand, P., Panfili, F., Hazemann, J.-L., Meunier, J.-D., 2014. Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution, 187, 22-30. Cooke, J., DeGabriel, J.L., Hartley, S.E., 2016a. The functional ecology of plant silicon: geoscience to genes. Functional Ecology, 30, 1270-1276. Cooke, J., Leishman, M.R., 2011a. Is plant ecology more siliceous than we realise? Trends in Plant Science, 16, 61-68. Cooke, J., Leishman, M.R., 2011b. Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Functional Ecology, 25, 1181-1188. Cooke, J., Leishman, M.R., 2012. Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos, 121, 2052-2060. Cooke, J., Leishman, M.R., Hartley, S., 2016b. Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Functional Ecology, 30, 1340-1357. Coors, J.G., 1987. Resistance to the European corn borer, Ostrinia nubilalis (Hubner), in maize, Zea mays L., as affected by soil silica, plant silica, structural carbohydrates, and lignin. In: Gabelman, H.W., Loughman, B.C. (eds.): Genetic Aspects of Plant Mineral Nutrition. Martinus Nijhoff Publishers, Dordrecht, pp. 445-456. Corrales, I., Poschenrieder, C., Barcelô, J., 1997. Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant and Soil, 190, 203-209. Correa, R.S.B., Moraes, J.C., Auad, A.M., Carvalho, G.A., 2005. Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotropical Entomology, 34, 429-433. Côté-Beaulieu, C., Chain, F., Menzies, J.G., Kinrade, S.D., Bélanger, R.R., 2009. Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on growth and powdery mildew control. Environmental and Experimental Botany, 65, 155-161. Cotterill, J.V., Watkins, R.W., Brennon, C.B., Cowan, D.P., 2007. Boosting silica levels in wheat leaves reduces grazing by rabbits. Pest Management Science, 63, 247-253. Crusciol, C.A.C., Pulz, A.L., Lemos, L.B., Soratto, R.P., Lima, G.P.P., 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49, 949-954. Currie, H.A., Perry, C.C., 2007. Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100, 1383-1389. da Silva, W.L., Antunes da Cruz, M.F., Fortunato, A.A., Rodrigues, F.A., 2015a. Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Scientia Agricola, 72, 322-327. da Silva, R.V., D'Arc de Lima Oliveira, R., da Silva Ferreira, P., Castro, D.B., Rodrigues, F.A., 2015b. Effects of silicon on the penetration and reproduction events of Meloidogyne exigua on coffee roots. Bragantia, 74, 10-13. 32 Acta Biologica Slovenica, 62 (1), 2019 Dallagnol, L.J., Rodrigues, F.Â., Mielli, M.V.B., Ma, J.F., 2014. Rice grain resistance to brown spot and yield are increased by silicon. Tropical Plant Pathology, 39, 56-63. Dallagnol, L.J., Rodrigues, F.Â., Tanaka, F.A.O., Amorim, L., Camargo, L.E.A., 2012. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology, 61, 323-330. Dann, E.K., Muir, S., 2002. Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and ß-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australasian Plant Pathology, 31, 9-13. Darley, W.M., Volcani, B.E., 1969. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Experimental Cell Research, 58, 334-342. Datnoff, L.E., Raid, R.N., Snyder, G.H., Jones, D.B., 1991. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Disease, 75, 729-732. Davis, R.W., 1987. Ultrastructure and analytical microscopy of silicon in the leaf cuticle of Ficus lyrata. Botanical Gazette, 148, 318-323. De Dorlodot, S., Lutts, S., Bertin, P., 2005. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. Journal of Plant Nutrition, 28, 1-20. de Saussure, N.T., 1804. Recherches chimiques sur la végétation. Nyon, Paris, 359 pp. Debona, D., Rodrigues, F.Â., Rios, J.A., Nascimento, K.J.T., Silva, L.C., 2014. The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. Plant Pathology, 63, 581-589. Deepak, S., Manjunath, G., Manjula, S., Niranjan-Raj, S., Geetha, N.P., Shetty, H.S., 2008. Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/ hydroxyproline-rich glycoproteins. Australasian Plant Pathology, 37, 498-504. Deren, C.W., 1997. Changes in nitrogen and phosphorus concentrations of silicon-fertilized rice grown on organic soil. Journal of Plant Nutrition, 20, 765-771. Deren, C.W., Datnoff, L.E., Snyder, G.H., 1992. Variable silicon content of rice cultivars grown on Everglades histosols. Journal of Plant Nutrition, 15, 2363-2368. Deren, C.W., Datnoff, L.E., Snyder, G.H., Martin, F.G., 1994. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic histosols. Crop Science, 34, 733-737. Deshmukh, R., Bélanger, R.R., 2016. Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology, 30, 1277-1285. Deshmukh, R.K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F., Bélanger, R.R., 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 83, 303-315. Deshmukh, R.K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., Labbé, C., Isenring, P., Belzile, F.J., Bélanger, R.R., 2015. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant Journal, 83, 489-500. Dietrich, D., Hinke, S., Baumann, W., Fehlhaber, R., Bäucker, E., Rühle, G., Wienhaus, O., Marx, G., 2003. Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Analytical and Bioanalytical Chemistry, 376, 399-404. Djamin, A., Pathak, M.D., 1967. Role of silica in resistance to Asiatic rice borer, Chilo suppressalis in rice varieties. Journal of Economic Entomology, 60, 347-351. Dogramaci, M., Arthurs, S.P., Chen, J.J., Osborne, L., 2013. Silicon applications have minimal effects on Scirtothrips dorsalis (Thysanoptera: Thripidae) populations on pepper plant, Capsicum annum L. Florida Entomologist, 96, 48-54. Doncheva, S., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., Barcelô, J., 2009. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65, 189-197. Dorweiler, J.E., Doebley, J., 1997. Developmental analysis of Teosinte glume architecture1 : a key locus in the evolution of maize (Poaceae). American Journal of Botany, 84, 1313-1322. Grašič: Mnogotere vloge silicija 33 Ebbs, S.D., Kochian, L.V., 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal of Environment Quality, 26, 776-781. Emam, M.M., Khattab, H.E., Helal, N.M., Deraz, A.E., 2014. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science, 8, 596-605. Eneji, E., Inanaga, S., Muranaka, S., Li, J., An, P., Hattori, T., Tsuji, W., 2005. Effect of calcium silicate on growth and dry matter yield of Chloris gayana and Sorghum sudanense under two soil water regimes. Grass and Forage Science, 60, 393-398. Epstein, E., 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11-17. Epstein, E., 1983. Crops tolerant of salinity and other mineral stresses. In: Nugent, J., O'Connor, M. (eds.): Better Crops for Food. Pitman, London, pp. 61-82. Epstein, E., 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641-664. Epstein, E., 1995. Photosynthesis, inorganic plant nutrition, solutions, and problems. Photosynthesis Research, 46, 37-39. Epstein, E., 2009. Silicon: its manifold roles in plants. Annals of Applied Biology, 155, 155-160. Epstein, E., Bloom, A.J., 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed. Sinauer Associates, Inc., Sunderland, MA, 400 pp. Exley, C., 1998. Silicon in life: a bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry, 69, 139-144. Faisal, S., Callis, K.L., Slot, M., Kitajima, K., 2012. Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability. Botany, 90, 1058-1064. Fallah, A., 2012. Study of silicon and nitrogen effects on some physiological characters of rice. International Journal of Agriculture and Crop Sciences, 4, 238-241. Fang, C.-X., Wang, Q.-S., Yu, Y., Huang, L.-K., Wu, X.-C., Lin, W.-X., 2011a. Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agronomica Sinica, 37, 1005-1011. Fang, C.-X., Wang, Q.-S., Yu, Y., Li, Q.-M., Zhang, H.-L., Wu, X.-C., Chen, T., Lin, W.-X., 2011b. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regulation, 65, 1-10. Fang, J.-Y., Wan, X.-C., Ma, X.-L., 2006. Nanoscale silicas in Oryza sativa L. and their UV absorption. Spectroscopy and Spectral Analysis, 26, 2315-2318. Farooq, M.A., Saqib, Z.A., Akhtar, J., Bakhat, H.F., Pasala, R.-K., Dietz, K.-J., 2015. Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon, 1-5. Farshidi, M., Abdolzadeh, A., Sadeghipour, H.R., 2012. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiologiae Plantarum, 34, 1779-1788. Fatema, K., 2014. The Effect of Silicon on Strawberry Plants and Its Role in Reducing Infection by Podosphaera aphanis. University of Hertfordshire, School of Life and Medical Sciences, 211 pp. Fauteux, F., Chain, F., Belzile, F., Menzies, J.G., Bélanger, R.R., 2006. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 17554-17559. Fauteux, F., Rémus-Borel, W., Menzies, J.G., Bélanger, R.R., 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1-6. Fawe, A., Abou-Zaid, M., Menzies, J.G., Bélanger, R.R., 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 88, 396-401. Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F., Xu, H., 2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123, 521-530. 34 Acta Biologica Slovenica, 62 (1), 2019 Ferreira, H.A., Araújo do Nascimento, C.W., Datnoff, L.E., de Sousa Nunes, G.H., Preston, W., de Souza, E.B., de Lima Ramos Mariano, R., 2015. Effects of silicon on resistance to bacterial fruit blotch and growth of melon. Crop Protection, 78, 277-283. Finnegan, P.M., Chen, W., 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3, 1-18. Fleck, A.T., Mattusch, J., Schenk, M.K., 2013. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. Journal of Plant Nutrition and Soil Science, 176, 785-794. Fortunato, A.A., da Silva, W.L., Ávila Rodrigues, F., 2014. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Biochemistry and Cell Biology, 104, 597-603. Fortunato, A.A., Rodrigues, F.Á., Parpaiola Baroni, J.C., Barbosa Soares, G.C., Rodriguez, M.A.D., Liparini Pereira, O., 2012. Silicon suppresses Fusarium wilt development in banana plants. Journal of Phytopathology, 160, 674-679. Foy, C.D., 1992. Soil chemical factors limiting plant root growth. In: Hatfield, J.L., Stewart, B.A. (eds.): Limitations to Plant Root Growth. Springer, New York, pp. 97-149. Foy, C.D., Weil, R.R., Coradetti, C.A., 1995. Differential manganese tolerances of cotton genotypes in nutrient solution. Journal of Plant Nutrition, 18, 685-706. Frantz, J.M., Khandekar, S., Leisner, S., 2011. Silicon differentially influences copper toxicity response in silicon-accumulator and non-accumulator species. Journal of the American Society for Horticultural Science, 136, 329-338. French-Monar, R.D., Rodrigues, F.Á., Korndorfer, G.H., Datnoff, L.E., 2010. Silicon suppresses Phyto-phthora blight development on bell pepper. Journal of Phytopathology, 158, 554-560. Fu, Y.-Q., Shen, H., Wu, D.-M., Cai, K.-Z., 2012. Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa L.) roots. Pedosphere, 22, 795-802. Fukutoku, Y., Yamada, Y., 1984. Sources of proline-nitrogen in water-stressed soybean (Glycine max). II. Fate of 15N-labelled protein. Physiologia Plantarum, 61, 622-628. Gali-Muhtasib, H.U., Smith, C.C., Higgins, J.J., 1992. The effect of silica in grasses on the feeding behavior of the prairie vole,Microtus ochrogaster. Ecology, 73, 1724-1729. Galvez, L., Clark, R.B., 1991. Effects of silicon on growth and mineral composition of sorghum (Sorghum bicolor) grown under toxic levels of aluminium. In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (eds.): Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH. Springer, pp. 815-823. Galvez, L., Clark, R.B., Gourley, L.M., Maranville, J.W., 1987. Silicon interactions with manganese and aluminum toxicity in Sorghum. Journal of Plant Nutrition, 10, 1139-1147. Galvez, L., Clark, R.B., Gourley, L.M., Maranville, J.W., 1989. Effects of silicon on mineral composition of sorghum grown with excess manganese. Journal of Plant Nutrition, 12, 547-561. Gao, X., Zou, C., Wang, L., Zhang, F., 2004. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 27, 1457-1470. Garbuzov, M., Reidinger, S., Hartley, S.E., 2011. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species. Annals of Botany, 108, 1355-1363. Garg, N., Bhandari, P., 2016a. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 78, 371-387. Garg, N., Bhandari, P., 2016b. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma, 253, 1325-1345. Gengmao, Z., Shihui, L., Xing, S., Yizhou, W., Zipan, C., 2015. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Scientific Reports, 5, 1-11. Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S., Dingkuhn, M., 2010. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany, 67, 451-459. Grašič: Mnogotere vloge silicija 35 Ghanmi, D., McNally, D.J., Benhamou, N., Menzies, J.G., Bélanger, R.R., 2004. Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions. Physiological and Molecular Plant Pathology, 64, 189-199. Ghassemi-Golezani, K., Lotfi, R., 2015. The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian Journal of Plant Physiology, 62, 611-616. Gillman, J.H., Zlesak, D.C., Smith, J.A., 2003. Applications of potassium silicate decrease black spot infection in Rosa hybrida "Meipelta" (Fuschia Meidiland™). HortScience, 38, 1144-1147. Golokhvast, K.S., Seryodkin, I.V., Chaika, V.V., Zakharenko, A.M., Pamirsky, I.E., 2014. Phytoliths in taxonomy of phylogenetic domains of plants. BioMed Research International, 2014, 1-9. Gomes, F.B., de Moraes, J.C., dos Santos, C.D., Goussain, M.M., 2005. Resistance induction in wheat plants by silicon and aphids. Scientia Agricola, 62, 547-551. Gong, H.-J., Chen, K.-M., Chen, G.-C., Wang, S.-M., Zhang, C.-L., 2003. Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313-321. Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., Zhou, W.J., 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biologia Plantarum, 52, 592-596. Gong, H.J., Randall, D.P., Flowers, T. J., 2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell and Environment, 29, 1970-1979. Gopal, R., Rizvi, A.H., Nautiyal, N., 2009. Chromium alters iron nutrition and water relations of spinach. Journal of Plant Nutrition, 32, 1551-1559. Goto, M., Ehara, H., Karita, S., Takabe, K., Ogawa, N., Yamada, Y., Ogawa, S., Yahaya, M.S., Morita, O., 2003. Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science, 164, 349-356. Goussain, M.M., Prado, E., Moraes, J.C., 2005. Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology, 34, 807-813. Grant, C.A., Bailey, L.D., 1997. Effects of phosphorus and zinc fertiliser management on cadmium accumulation in flaxseed. Journal of the Science of Food and Agriculture, 73, 307-314. Grant, C.A., Sheppard, S.C., 2008. Fertilizer impacts on cadmium availability in agricultural soils and crops. Human and Ecological Risk: An International Journal, 14, 210-228. Greger, M., Bergqvist, C., Sandhi, A., Landberg, T., 2015. Influence of silicon on arsenic uptake and toxicity in lettuce. Journal of Applied Botany and Food Quality, 88, 234-240. Greger, M., Kabir, A.H., Landberg, T., Maity, P. J., Lindberg, S., 2016. Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution, 211, 90-97. Greger, M., Landberg, T., 2015. Silicon decreases cadmium and arsenic in field grown crops. Silicon, 1-5. Guével, M.-H., Menzies, J.G., Bélanger, R.R., 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology, 119, 429-436. Gunes, A., Inal, A., Bagci, E.G., Coban, S., Pilbeam, D.J., 2007a. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Scientia Horticulturae, 113, 113-119. Gunes, A., Inal, A., Bagci, E.G., Coban, S., Sahin, O., 2007b. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum, 51, 571-574. Gunes, A., Pilbeam, D.J., Inal, A., Coban, S., 2008. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis, 39, 1885-1903. Guntzer, F., Keller, C., Meunier, J.-D., 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32, 201-213. 36 Acta Biologica Slovenica, 62 (1), 2019 Guo, W., Hou, Y.L., Wang, S.G., Zhu, Y.G., 2005. Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant and Soil, 272, 173-181. Guo, W., Zhang, J., Teng, M., Wang, L.H., 2009. Arsenic uptake is suppressed in a rice mutant defective in silicon uptake. Journal of Plant Nutrition and Soil Science, 172, 867-874. Guo, W., Zhu, Y.G., Liu, W.J., Liang, Y.C., Geng, C.N., Wang, S.G., 2007. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environmental Pollution, 148, 251-257. Habibi, G., 2014. Silicon supplementation improves drought tolerance in canola plants. Russian Journal of Plant Physiology, 61, 784-791. Habibi, G., 2015a. Contrastive response of Brassica napus L. to exogenous salicylic acid, selenium and silicon supplementation under water stress. Archives of Biological Sciences, 67, 397-404. Habibi, G., 2015b. Exogenous silicon leads to increased antioxidant capacity in freezing-stressed pistachio leaves. Acta Agriculturae Slovenica, 105, 43-52. Habibi, G., 2016. Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta Agriculturae Slovenica, 107, 33-43. Habibi, G., Hajiboland, R., 2013. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Horticulturae, 25, 21-29. Habibi, G., Noruuzi, F., Hajiboland, R., 2014. Silicon alleviates salt stress in pistachio plants. Progress in Biological Sciences, 4, 189-202. Haghighi, M., Pessarakli, M., 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117. Hamayun, M., Sohn, E.-Y., Khan, S.A., Shinwari, Z.K., Khan, A.L., Lee, I.-J., 2010. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pakistan Journal of Botany, 42, 1713-1722. Hameed, A., Sheikh, M.A., Jamil, A., Basra, S.M.A., 2013. Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L .) under water deficit stress induced by polyethylene glycol. Pakistan Journal of Life and Social Sciences, 11, 19-24. Hammond, K.E., Evans, D.E., Hodson, M.J., 1995. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and Soil, 173, 89-95. Han, Y., Li, P., Gong, S., Yang, L., Wen, L., Hou, M., 2016. Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PloS ONE, 11, 1-14. Hanafy Ahmed, A.H., Harb, E.M., Higazy, M.A., Morgan, S.H., 2008. Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research, 3, 1-26. Hart, J.J., Welch, R.M., Norvell, W.A., Kochian, L.V., 2002. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum, 116, 73-78. Hartley, S.E., Fitt, R.N., McLarnon, E.L., Wade, R.N., 2015. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Frontiers in Plant Science, 6, 1-8. Hartz, C., Petty, P., Ouertani, K., Burgado, S., Lawrence, C., Kasem, A., 2009. Influence of iron, potassium, magnesium, and nitrogen deficiencies on the growth and development of sorghum (Sorghum bicolor L.) and sunflower (Helianthus annuus L.) seedlings. Journal of Biotech Research, 1, 64-71. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643-9684. Hashemi, A., Abdolzadeh, A., Sadeghipour, H.R., 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56, 244-253. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M., Lux, A., 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459-466. Grašič: Mnogotere vloge silicija 37 Hayasaka, T., Fujii, H., Ishiguro, K., 2008. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology, 98, 1038-1044. Hayward, D.M., Parry, D.W., 1975. Scanning electron microscopy of silica deposition in the leaves of barley (Hordeum sativum L.). Annals of Botany, 39, 1003-1009. He, W., Yang, M., Li, Z., Qiu, J., Liu, F., Qu, X., Qiu, Y., Li, R., 2015. High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Protection, 67, 20-25. Heckman, J., 2013. Silicon: a beneficial substance. Better Crops, 97, 14-16. Heckman, J.R., Johnston, S., Cowgill, W., 2003. Pumpkin yield and disease response to amending soil with silicon. HortScience, 38, 552-554. Heine, G., Tikum, G., Horst, W.J., 2007. The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. Journal of Experimental Botany, 58, 569-577. Henriet, C., Draye, X., Oppitz, I., Swennen, R., Delvaux, B., 2006. Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil, 287, 359-374. Herranz Jusdado, J.G., 2011. Silica Accumulation in Grasses in Reponse to a Large Scale Herbivore Exclosure Experiment. University of Troms0, 31 pp. Hodson, M.J., Bell, A., 1986. The mineral relations of the lemma of Phalaris canariensis L., with particular reference to its silicified macrohairs. Israël Journal of Botany, 35, 241-253. Hodson, M.J., Evans, D.E., 1995. Aluminium/silicon interactions in higher plants. Journal of Experimental Botany, 46, 161-171. Hodson, M.J., Sangster, A.G., 1989a. Subcellular localization of mineral deposits in the roots of wheat (Triticum aestivum L.). Protoplasma, 151, 19-32. Hodson, M.J., Sangster, A.G., 1989b. X-ray microanalysis of the seminal root of Sorghum bicolor with particular reference to silicon. Annals of Botany, 64, 659-667. Hodson, M.J., Sangster, A.G., 1988a. Observations on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L.), with particular reference to silicon. Annals of Botany, 62, 463-471. Hodson, M.J., Sangster, A.G., 1988b. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). I. Scanning electron microscopy and light microscopy. Canadian Journal of Botany, 66, 829-838. Hodson, M.J., Sangster, A.G., 1989c. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). II. X-ray microanalysis and backscattered electron imaging. Canadian Journal of Botany, 67, 281-287. Hodson, M.J., Sangster, A.G., 1998. Mineral deposition in the needles of white spruce [Picea glauca (Moench.) Voss]. Annals of Botany, 82, 375-385. Hodson, M.J., Sangster, A.G., 2002. X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Annals of Botany, 89, 367-374. Hodson, M.J., Sangster, A.G., 1993. The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and x-ray microanalysis. Annals of Botany, 72, 389-400. Hodson, M.J., Sangster, A.G., 1999. Aluminium/silicon interactions in conifers. Journal of Inorganic Biochemistry, 76, 89-98. Hodson, M.J., White, P. J., Mead, A., Broadley, M.R., 2005. Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027-1046. Hoffmann, H., Schenk, M.K., 2011. Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo. Environmental Pollution, 159, 2398-2404. Horiguchi, T., 1988. Mechanism of manganese toxicity and tolerance of plants VI. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Science and Plant Nutrition, 34, 65-73. Horiguchi, T., Morita, S., 1987. Mechanism of manganese toxicity and tolerance of plants VI. Effect of silicon on alleviation of manganese toxicity of barley. Journal of Plant Nutrition, 10, 2299-2310. 38 Acta Biologica Slovenica, 62 (1), 2019 Horst, W.J., Fecht, M., Naumann, A., Wissemeier, A.H., Maier, P., 1999. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. Zeitschrift fur Pflanzenernährung und Bodenkunde, 162, 263-274. Horst, W.J., Marschner, H., 1978. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant and Soil, 50, 287-303. Huang, Z.-Z., Yan, X., Jalil, A., Norlyn Jack, D., Epstein, E., 1992. Short-term experiments on ion transport by seedlings and excised roots: technique and validity. Plant Physiology, 100, 1914-1920. Hunt, J.W., Dean, A.P., Webster, R.E., Johnson, G.N., Ennos, A.R., 2008. A novel mechanism by which silica defends grasses against herbivory. Annals of Botany, 102, 653-656. Hussain, I., Ashraf, M.A., Rasheed, R., Asghar, A., Sajid, M.A., Iqbal, M., 2015. Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Revista Brasileira de Botanica, 38, 223-234. Idris, M., Hossain, M.M., Choudhury, F.A., 1975. The effect of silicon on lodging of rice in presence of added nitrogen. Plant and Soil, 43, 691-695. Inal, A., Pilbeam, D.J., Gunes, A., 2009. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition, 32, 112-128. Iwasaki, K., Maier, P., Fecht, M., Horst, W.J., 2002a. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology, 159, 167-173. Iwasaki, K., Maier, P., Fecht, M., Horst, W. J., 2002b. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant and Soil, 238, 281-288. Iwasaki, K., Matsumura, A., 1999. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Science and Plant Nutrition, 45, 909-920. Jacobs, B.F., Kingston, J.D., Jacobs, L.L., Jacobs, B.F., Kingston, J.D., Jacobs, L.L., 1999. The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590-643. Jafari, S.R., Mohammad, S., Arvin, J., Kalantari, K.M., 2015. Response of cucumber (Cucumis sa-tivus L.) seedlings to exogenous silicon and salicylic acid under osmotic stress. Acta Biologica Szegediensis, 59, 25-33. Janislampi, K.W., 2012. Effect of Silicon on Plant Growth and Drought Stress Tolerance. Utah State University, 87 pp. Jarvis, S.C., Jones, L.H.P., 1987. The absorption and transport of manganese by perennial ryegrass and white clover as affected by silicon. Plant and Soil, 99, 231-240. Jeer, M., Telugu, U.M., Voleti, S.R., Padmakumari, A.P., 2016. Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. Journal of Applied Entomology, 141, 1-13. Jeong, K.J., Chon, YS., Ha, S.H., Kang, H.K., Yun, J.G., 2012. Silicon application on standard chrysanthemum alleviates damages induced by disease and aphid insect. Korean Journal of Horticultural Science and Technology, 30, 21-26. Joiner, J.N., Poole, R.T., Conover, C.A., 1983. Nutrition and fertilization of ornamental greenhouse crops. In: Janick, J. (ed.): Horticultural Reviews. AVI Publishing Company, Inc., Westport, CT, pp. 317-403. Jones, L.H.P., Handreck, K.A., 1967. Silica in soils, plants, and animals. Advances in Agronomy, 19, 107-149. Jones, L.H.P., Handreck, K.A., 1965. Studies of silica in the oat plant III. Uptake of silica from soils by the plant. Plant and Soil, 23, 79-96. Jones, L.H.P., Milne, A.A., 1963. Studies of silica in the oat plant I. Chemical and physical properties of the silica. Plant and Soil, 18, 207-220. Jones, R.L., 1964. Note on occurrence of opal phytoliths in some cenozoic sedimentary rocks. Journal of Paleontology, 38, 773-775. Kablan, L., Lagauche, A., Delvaux, B., Legreve, A., 2012. Silicon reduces black sigatoka development in banana. Plant Disease, 96, 273-278. Grašič: Mnogotere vloge silicija 39 Kalteh, M., Alipour, Z.T., Ashraf, S., Aliabadi, M.M., Nosratabadi, A.F., 2014. Effect of silica nanoparti-cles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4, 49-55. Kang, J., Zhao, W., Su, P., Zhao, M., Yang, Z., 2014. Sodium (Na+) and silicon (Si) coexistence promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron. Soil Science and Plant Nutrition, 60, 659-669. Kanto, T., Miyoshi, A., Ogawa, T., Maekawa, K., Aino, M., 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. Journal of General Plant Pathology, 72, 137-142. Kao, M.C., Kuo, C.H., 2003. Aluminium effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologia Plantarum, 46, 149-152. Karmollachaab, A., Gharineh, M.H., 2015. Effect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol. Iran Agricultural Research, 34, 31-38. Katz, O., 2015. Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytologist, 208, 642-646. Katz, O., Lev-Yadun, S., Bar, P., 2014. Do phytoliths play an antiherbivory role in southwest Asian Asteraceae species and to what extent? Flora: morphology, Distribution, Functional Ecology of Plants, 209, 349-358. Kaufman, P.B., Dayanandan, P., Franklin, C.I., 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Annals of Botany, 55, 487-507. Kaufman, P.B., Dayanandan, P., Takeoka, Y, Bigelow, J.D., Jones, J.D., Iler, R., 1981. Silica in shoots of higher plants. In: Simpson, T.L., Volcani, B.E. (eds.): Silicon and Siliceous Structures in Biological Systems. Springer, New York, pp. 409-449. Kaya, C., Levent Tuna, A., Guneri, M., Ashraf, M., 2011. Mitigation effects of silicon on tomato plants bearing fruit grown at high boron levels. Journal of Plant Nutrition, 34, 1985-1994. Kaya, C., Levent Tuna, A., Higgs, D., 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29, 1469-1480. Kaya, C., Levent Tuna, A., Sonmez, O., Ince, F., Higgs, D., 2009. Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition, 32, 1788-1798. Khalid, R.A., Silva, J.A., 1980. Residual effect of calcium silicate on pH, phosphorus, and aluminum in a tropical soil profile. Soil Science and Plant Nutrition, 26, 87-98. Khan, W.-U.-D., Aziz, T., Waraich, E.A., Khalid, M., 2015. Silicon application improves germination and vegetative growth in maize grown under salt stress. Pakistan Journal of Agricultural Sciences, 52, 937-944. Khandekar, S., Leisner, S., 2011. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. Journal of Plant Physiology, 168, 699-705. Khattab, H.I., Emam, M.A., Emam, M.M., Helal, N.M., Mohamed, M.R., 2014. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plantarum, 58, 265-273. Kidd, P.S., Llugany, M., Poschenrieder, C., Gunse, B., Barcelo, J., 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, 52, 1339-1352. Kim, C.-G., Bell, J.N.B., Power, S.A., 2003. Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant and Soil, 257, 443-449. Kim, S.G., Kim, K.W., Park, E.W., Choi, D., 2002. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095-1103. Kim, Y.-H., Khan, A.L., Kim, D.-H., Lee, S.-Y., Kim, K.-M., Waqas, M., Jung, H.-Y., Shin, J.-H., Kim, J.-G., Lee, I.-J., 2014a. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPa-ses, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biology, 14, 1-13. Kim, Y.H., Khan, A.L., Waqas, M., Shim, J.K., Kim, D.H., Lee, K.Y., Lee, I.J., 2014b. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 33, 137-149. 40 Acta Biologica Slovenica, 62 (1), 2019 Kitao, M., Lei, T.T., Koike, T., 1997. Effects of manganese toxicity on photosynthesis of white birch (Betulaplatyphylla var. japonica) seedlings. Physiologia Plantarum, 101, 249-256. Klancnik, K., Vogel-Mikus, K., Gaberscik, A., 2014a. Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology B: Biology, 130, 1-10. Klancnik, K., Vogel-Mikus, K., Kelemen, M., Vavpetic, P., Pelicon, P., Kump, P., Jezersek, D., Gia-noncelli, A., Gaberscik, A., 2014b. Leaf optical properties are affected by the location and type of deposited biominerals. Journal of Photochemistry and Photobiology B: Biology, 140, 276-285. Kluthcouski, J., Nelson, L.E., 1980. The effect of silicon on the manganese nutrition of soybeans (Glycine max (L.) Merrill). Plant and Soil, 56, 157-160. Kochanova, Z., Jaskova, K., Sedlakova, B., Luxova, M., 2014. Silicon improves salinity tolerance and affects ammonia assimilation in maize roots. Biologia, 69, 1164-1171. Kurdali, F., Al-Chammaa, M., Mouasess, A., 2013. Growth and nitrogen fixation in silicon and/or potassium fed chickpeas grown under drought and well watered conditions. Journal of Stress Physiology and Biochemistry, 9, 385-406. Kvedaras, O.L., Keeping, M.G., Goebel, F.-R., Byrne, M.J., 2007a. Water stress augments siliconmediated resistance of susceptible sugarcane cultivars to the stalk borer Eldana saccharina (Lepi-doptera: Pyralidae). Bulletin of Entomological Research, 97, 175-183. Kvedaras, O.L., Keeping, M.G., Goebel, F.R., Byrne, M.J., 2007b. Larval performance of the pyralid borer Eldana saccharina Walker and stalk damage in sugarcane: influence of plant silicon, cultivar and feeding site. International Journal of Pest Management, 53, 183-194. Kvedaras, O.L., Keeping, M.G., Goebel, R., Byrne, M., 2005. Effects of silicon on the African stalk borer, Eldana saccharina (Lepidoptera: Pyralidae) in sugarcane. Proceedings of the South African Sugar Technologists Association, 79, 359-362. Lanning, F.C., 1966. Relation of silicon in wheat to disease and pest resistance. Journal of Agricultural and Food Chemistry, 14, 350-352. Lanning, F.C., Eleuterius, L.N., 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany, 64, 395-410. Larcher, W., Meindl, U., Ralser, E., Ishikawa, M., 1991. Persistent supercooling and silica deposition in cell walls of palm leaves. Journal of Plant Physiology, 139, 146-154. Law, C., Exley, C., 2011. New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biology, 11, 112. Lee, S.K., Sohn, E.Y., Hamayun, M., Yoon, J.Y., Lee, I.J., 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80, 333-340. Levent Tuna, A., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., Girgin, A.R., 2008. Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62, 10-16. Lewin, J., Reimann, B.E.F., 1969. Silicon and plant growth. Annual Review of Plant Physiology, 20, 289-304. Li, L., Zheng, C., Fu, Y., Wu, D., Yang, X., Shen, H., 2012. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biological Trace Element Research, 145, 101-108. Li, P., Song, A., Li, Z., Fan, F., Liang, Y., 2015. Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant and Soil, 397, 289-301. Li, W.-B., Shi, X.-H., Wang, H., Zhang, F.-S., 2004. Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Botanica Sinica, 46, 691-697. Li, Y.C., Alva, A.K., Sumner, M.E., 1989. Response of cotton cultivars to aluminum in solutions with varying silicon concentrations. Journal of Plant Nutrition, 12, 881-892. Li, Y.C., Bi, Y., Ge, Y.H., Sun, X.J., Wang, Y., 2009. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. Journal of Food Science, 74, 213-218. Li, Y.C., Sumner, M.E., Miller, W.P., Alva, A.K., 1996. Mechanism of silicon induced alleviation of aluminum phytotoxicity. Journal of Plant Nutrition, 19, 1075-1087. Grašič: Mnogotere vloge silicija 41 Li, Y.T., Zhang, W.J., Cui, J.J., Lang, D.Y., Li, M., Zhao, Q.P., Zhang, X.H., 2016. Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiologiae Plantarum, 38, 96. Li, Z., Song, Z., Cornelis, J.-T., 2014. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Frontiers in Plant Science, 5, 1-8. Liang, Y., 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209, 217-224. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160, 1157-1164. Liang, Y., Hua, H., Zhu, Y.G., Zhang, J., Cheng, C., Romheld, V., 2006a. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 172, 63-72. Liang, Y., Shen, Q., Shen, Z., Ma, T., 1996. Effects of silicon on salinity tolerance of two barley culti-vars. Journal of Plant Nutrition, 19, 173-183. Liang, Y., Shen, Z., 1994. Interaction of silicon and boron in oilseed rape plants. Journal of Plant Nutrition, 17, 415-425. Liang, Y., Si, J., Romheld, V., 2005a. Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist, 167, 797-804. Liang, Y., Sun, W., Zhu, Y.G., Christie, P., 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147, 422-428. Liang, Y., Wong, J.W.C., Wei, L., 2005b. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58, 475-483. Liang, Y., Yang, C., Shi, H., 2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Journal of Plant Nutrition, 24, 229-243. Liang, Y., Zhang, W., Chen, Q., Ding, R., 2005c. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53, 29-37. Liang, Y., Zhang, W., Chen, Q., Liu, Y., Ding, R., 2006b. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 57, 212-219. Liang, Y., Zhu, J., Li, Z., Chu, G., Ding, Y., Zhang, J., Sun, W., 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany, 64, 286-294. Liang, Y.C., Ding, R.X., 2002. Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Science in China Series C: Life Sciences, 45, 298-308. Liang, Y.C., Sun, W.C., Si, J., Romheld, V., 2005d. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54, 678-685. Lisztes-Szabo, Z., Kovacs, S., Peto, A., 2014. Phytolith analysis of Poa pratensis (Poaceae) leaves. Turkish Journal of Botany, 38, 851-863. Liu, C., Li, F., Luo, C., Liu, X., Wang, S., Liu, T., Li, X., 2009a. Foliar application of two silica sols reduced cadmium accumulation in rice grains. Journal of Hazardous Materials, 161, 1466-1472. Liu, J.-J., Lin, S.-H., Xu, P.-L., Wang, X.-J., Bai, J.-G., 2009b. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agricultural Sciences in China, 8, 1075-1086. Liu, J., Zhang, H., Zhang, Y., Chai, T., 2013. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiology and Biochemistry, 68, 1-7. Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., Zhang, S., 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. Journal of Experimental Botany, 65, 4747-4756. 42 Acta Biologica Slovenica, 62 (1), 2019 Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S., Tanaka, K., 2015. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environmental and Experimental Botany, 111, 42-51. Lizana, X.C., Hess, S., Calderini, D.F., 2009. Crop phenology modifies wheat responses to increased UV-B radiation. Agricultural and Forest Meteorology, 149, 1964-1974. Lu, H., Zhang, J., Wu, N., Liu, K.B., Xu, D., Li, Q., 2009. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE, 4, 1-15. Lukacova, Z., Svubova, R., Kohanova, J., Lux, A., 2013. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70, 89-103. Lukacova Kulikova, Z., Lux, A., 2010. Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 85, 243-250. Lumsdon, D.G., Farmer, V.C., 1995. Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminium solutions. European Journal of Soil Science, 46, 179-186. Lux, A., Luxova, M., Morita, S., Abe, J., Inanaga, S., 1999. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Canadian Journal of Botany, 77, 955-960. Lux, A., Martinka, M., Vaculik, M., White, P.J., 2011. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21-37. Ma, C.C., Li, Q.F., Gao, Y.B., Xin, T.R., 2004a. Effects of silicon application on drought resistance of cucumber plants. Soil Science and Plant Nutrition, 50, 623-632. Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y., Guo, T., 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35, 1-10. Ma, J.F., 1990. Studies on beneficial effects of silicon on rice plants. Kyoto University, 122 pp. Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18. Ma, J.F., Goto, S., Tamai, K., Ichii, M., 2001a. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology, 127, 1773-1780. Ma, J.F., Higashitani, A., Sato, K., Takeda, K., 2003. Genotypic variation in silicon concentration of barley grain. Plant and Soil, 249, 383-387. Ma, J.F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., Yano, M., 2004b. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology, 136, 3284-3289. Ma, J.F., Miyake, Y., Takahashi, E., 2001b. Silicon as a beneficial element for crop plants. In: Datnoff, L.E., Snyder, G.H., Korndorfer, G.H. (eds.): Silicon in Agriculture. Elsevier Science, pp. 17-39. Ma, J.F., Nishimura, K., Takahashi, E., 1989. Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition, 35, 347-356. Ma, J.F., Sasaki, M., Matsumoto, H., 1997. Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant and Soil, 188, 171-176. Ma, J.F., Takahashi, E., 2002. Soil, Fertilizer, and Plant Silicon Research in Japan, 1st edn. Elsevier, Amsterdam, 281 pp. Ma, J.F., Takahashi, E., 1990a. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil, 126, 115-119. Ma, J.F., Takahashi, E., 1990b. The effect of silicic acid on rice in a P-deficient soil. Plant and Soil, 126, 121-126. Ma, J.F., Takahashi, E., 1991. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil, 133, 151-155. Ma, J.F., Takahashi, E., 1989. Effect of silicic acid on phosphorus uptake by rice plant. Soil Science and Plant Nutrition, 35, 227-234. Grašič: Mnogotere vloge silicija 43 Ma, J.F., Takahashi, E., 1993. Interaction between calcium and silicon in water-cultured rice plants. Plant and Soil, 148, 107-113. Ma, J.F., Tamai, K., Ichii, M., Wu, G.F., 2002. A rice mutant defective in Si uptake. Plant Physiology, 130, 2111-2117. Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y., Yano, M., 2006. A silicon transporter in rice. Nature, 440, 688-691. Ma, J.F., Yamaji, N., 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049-3057. Ma, J.F., Yamaji, N., 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392-397. Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M., 2007. An efflux transporter of silicon in rice. Nature, 448, 209-212. Ma, J.F., Yamaji, N., Mitani, N., Xu, X.-Y., Su, Y.-H., McGrath, S.P., Zhao, F.-J., 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 105, 9931-9935. Mackerness, S.A.H., 2000. Plant responses to ultraviolet-B (UV-B: 280-320 nm) stress: what are the key regulators? Plant Growth Regulation, 32, 27-39. Madella, M., Alexandre, A., Ball, T., 2005. International code for phytolith nomenclature 1.0. Annals of Botany, 96, 253-260. Madi, A., Al-Mayahi, W., 2016. Effect of silicon (Si) application on Phoenix dactylifera L. growth under drought stress induced by polyethylene glycol (PEG) in vitro. American Journal of Plant Sciences, 7, 1711-1728. Maghsoudi, K., Emam, Y., Ashraf, M., 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany, 39, 625-634. Maghsoudi, K., Emam, Y., Pessarakli, M., 2016. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39, 1001-1015. Mahdavi, S., Kafi, M., Fallahi, E., Shokrpour, M., Tabrizi, L., 2016. Water stress, nano silica, and digoxin effects on minerals, chlorophyll index, and growth in ryegrass. International Journal of Plant Production, 10, 251-264. Mahdieh, M., Habibollahi, N., Amirjani, R., Abnosi, M.H., Ghorbanpour, M., 2015. Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. Journal of Soil Science and Plant Nutrition, 15, 1050-1060. Majerus, V., Bertin, P., Lutts, S., 2007. Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Science, 173, 96-105. Mali, M., Aery, N.C., 2008a. Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). Journal of Plant Nutrition and Soil Science, 171, 835-840. Mali, M., Aery, N.C., 2008b. Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. Journal of Plant Nutrition, 31, 1867-1876. Marinos, N.G., 1962. Studies on submicroscopic aspects of mineral deficiencies. I. Calcium deficiency in the shoot apex of barley. American Journal of Botany, 49, 834-841. Markovich, O., Kumar, S., Cohen, D., Addadi, S., Fridman, E., Elbaum, R., 2015. Silicification in leaves of sorghum mutant with low silicon accumulation. Silicon, 1-7. Marmiroli, M., Pigoni, V., Savo-Sardaro, M.L., Marmiroli, N., 2014. The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environmental and Experimental Botany, 99, 9-17. Marron, A.O., Ratcliffe, S., Wheeler, G.L., Goldstein, R.E., King, N., Not, F., de Vargas, C., Richter, D.J., 2016. The evolution of silicon transport in eukaryotes. Molecular Biology and Evolution, 33, 3226-3248. 44 Acta Biologica Slovenica, 62 (1), 2019 Marschner, H., Oberle, H., Cakmak, I., Romheld, V., 1990. Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. Plant and Soil, 124, 211-219. Masarovic, D., Slováková, E., Bokor, B., Bujdos, M., Lux, A., 2012. Effect of silicon application on Sorghum bicolor exposed to toxic concentration of zinc. Biologia, 67, 706-712. Mason, B., 1966. Composition of the Earth. Nature, 211, 616-618. Massey, F.P., Ennos, A.R., Hartley, S.E., 2007. Herbivore specific induction of silica-based plant defences. Oecologia, 152, 677-683. Massey, F.P., Hartley, S.E., 2006. Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proceedings of the Royal Society B: Biological Sciences, 273, 2299-2304. Massey, F.P., Hartley, S.E., 2009. Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. Journal of Animal Ecology, 78, 281-291. Massey, F.P., Smith, M.J., Lambin, X., Hartley, S.E., 2008. Are silica defences in grasses driving vole population cycles? Biology Letters, 4, 419-422. Mateos-Naranjo, E., Gallé, A., Florez-Sarasa, I., Perdomo, J.A., Galmés, J., Ribas-Carbó, M., Flexas, J., 2015. Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. Journal of Plant Physiology, 178, 74-83. Matoh, T., Kairusmee, P., Takahashi, E., 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition, 32, 295-304. Matsumoto, H., 2000. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 200, 1-46. Mauad, M., Crusciol, C.A.C., Nascente, A.S., Grassi Filho, H., Pereira Lima, G.P., 2016. Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Revista Ciencia Agronómica, 47, 532-539. McNaughton, S.J., Tarrants, J.L., 1983. Grass leaf silicification: natural selection for an inducible defense against herbivores. Proceedings of the National Academy of Sciences of the United States of America, 80, 790-791. McNaughton, S.J., Tarrants, J.L., McNaughton, M.M., Davis, R.D., 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology, 66, 528-535. Menzies, J., Bowen, P., Ehret, D., Glass, A.D.M., 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science, 117, 902-905. Menzies, J.G., Ehret, D.L., Glass, A.D.M., Samuels, A.L., 1991. The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus. Physiological and Molecular Plant Pathology, 39, 403-414. Meunier, J.D., Colin, F., Alarcon, C., 1999. Biogenic silica storage in soils. Geology, 27, 835-838. Miao, B.H., Han, X.G., Zhang, W.H., 2010. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany, 105, 967-973. Mihalicová Malcovská, S., Ducaiová, Z., Backor, M., 2014a. Impact of silicon on maize seedlings exposed to short-term UV-B irradiation. Biologia, 69, 1349-1355. Mihalicová Malcovská, S., Ducaiová, Z., Maslaftáková, I., Backor, M., 2014b. Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water, Air, & Soil Pollution, 225, 1-11. Mitani-Ueno, N., Yamaji, N., Ma, J.F., 2011. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signaling & Behavior, 6, 991-994. Mitani, N., Chiba, Y., Yamaji, N., Ma, J.F., 2009a. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The Plant Cell, 21, 2133-2142. Mitani, N., Ma, J.F., 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany, 56, 1255-1261. Grašič: Mnogotere vloge silicija 45 Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., Ma, J.F., 2011. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant Journal, 66, 231-240. Mitani, N., Yamaji, N., Ma, J.F., 2009b. Identification of maize silicon influx transporters. Plant and Cell Physiology, 50, 5-12. Mitsui, S., Takatoh, H., 1963. Nutritional study of silicon in graminaceous crops (part 1). Soil Science and Plant Nutrition, 9, 7-11. Miyake, Y., Takahashi, E., 1978. Silicon deficiency of tomato plant. Soil Science and Plant Nutrition, 24, 175-189. Miyake, Y., Takahashi, E., 1983a. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Science and Plant Nutrition, 29, 71-83. Miyake, Y., Takahashi, E., 1985. Effect of silicon on the growth of soybean plants in a solution culture. Soil Science and Plant Nutrition, 31, 625-636. Miyake, Y., Takahashi, E., 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Science and Plant Nutrition, 32, 321-326. Miyake, Y., Takahashi, E., 1983b. Effect of silicon on the growth of cucumber plant in soil culture. Soil Science and Plant Nutrition, 29, 463-471. Mohaghegh, P., Mohammadkhani, A., Tehrani, A.F., 2015. Effects of silicon on the growth, ion distribution and physiological mechanisms that alleviate oxidative stress induced by powdery mildew infection in pumpkin (Cucurbitapepo, var. Styriac). Journal of Crop Protection, 4, 419-429. Montpetit, J., Vivancos, J., Mitani-Ueno, N., Yamaji, N., Rémus-Borel, W., Belzile, F., Ma, J.F., Bélanger, R.R., 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Molecular Biology, 79, 35-46. Moore, D., 1984. The role of silica in protecting Italian ryegrass (Lolium multiflorum) from attack by dipterous stem-boring larvae (Oscinella frit and other related species). Annals of Applied Biology, 104, 161-166. Moore, K.L., Schröder, M., Wu, Z., Martin, B.G.H., Hawes, C.R., McGrath, S.P., Hawkesford, M.J., Ma, J.F., Zhao, F.-J., Grovenor, C.R.M., 2011. High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiology, 156, 913-924. Moraes, J.C., Goussain, M.M., Basagli, M.A.B., Carvalho, G.A., Ecole, C.C., Sampaio, M.V., 2004. Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neu-roptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotropical Entomology, 33, 619-624. Morikawa, C.K., Saigusa, M., 2004. Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant and Soil, 258, 1-8. Mossor-Pietraszewska, T., 2001. Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica, 48, 673-686. Motomura, H., Fujii, T., Suzuki, M., 2004. Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carrière) Rehder (Poaceae: Bambusoideae). Annals of Botany, 93, 235-248. Motomura, H., Fujii, T., Suzuki, M., 2006. Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Annals of Botany, 97, 513-519. Moussa, H.R., 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agriculture and Biology, 8, 293-297. Muneer, S., Jeong, B.R., 2015. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regulation, 77, 133-146. Muneer, S., Park, Y.G., Manivannan, A., Soundararajan, P., Jeong, B.R., 2014. Physiological and pro-teomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences, 15, 21803-21824. 46 Acta Biologica Slovenica, 62 (1), 2019 Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239-250. Nable, R.O., Cartwright, B., Lance, R.C.M., 1990a. Genotypic differences in boron accumulation in barley: relative susceptibilities to boron deficiency and toxicity. In: El Bassam, N., Dambroth, M., Loughman, B.C. (eds.): Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, pp. 243-251. Nable, R.O., Lance, R.C.M., Cartwright, B., 1990b. Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Annals of Botany, 66, 83-90. Najihah, N.I., Hanafi, M.M., Idris, A.S., Hakim, M.A., 2015. Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense. Crop Protection, 67, 151-159. Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S., Arase, S., 2008. Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Protection, 27, 865-868. Neumann, D., De Figueiredo, C., 2002. A novel mechanism of silicon uptake. Protoplasma, 220, 59-67. Neumann, D., zur Nieden, U., 2001. Silicon and heavy metal tolerance of higher plants. Phytochemi-stry, 56, 685-692. Nezami, M.T., Bybordi, A., 2011. Effects of silicon on photosynthesis and concentration of nutrients ofBrassica napus L. in saline-stressed conditions. Journal of Food, Agriculture and Environment, 9, 655-659. Nikolic, M., Nikolic, N., Liang, Y., Kirkby, E.A., Romheld, V., 2007. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiology, 143, 495-503. Nogueira de Moura Guerra, A.M., Rodrigues, F.A., Costa Lima, T., Berger, P.G., Barros, A.F., Rodrigues da Silva, Y.C., 2014. Capacidade fotossintetica de plantas de algodoeiro infectadas por ramulose e supridas com silicio. Bragantia, 73, 50-64. Nowakowski, W., Nowakowska, J., 1997. Silicon and copper interaction in the growth of spring wheat seedlings. Biologia Plantarum, 39, 463-466. Nwugo, C.C., Huerta, A.J., 2011. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. Journal of Proteome Research, 10, 518-528. Nwugo, C.C., Huerta, A.J., 2008. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant and Soil, 311, 73-86. O'Reagain, P.J., Mentis, M.T., 1989. Leaf silicification in grasses - a review. Journal of the Grassland Society of Southern Africa, 6, 37-43. Oliver, D.P., Hannam, R., Tiller, K.G., Wilhelm, N.S., Merry, R.H., Cozens, G.D., 1994. The effects of zinc fertilization on cadmium concentration in wheat grain. Journal of Environmental Quality, 23, 705-711. Osborne, C.P., 2008. Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? Journal of Ecology, 96, 35-45. Out, W.A., Madella, M., 2016. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences, 8, 505-521. Ouzounidou, G., Giannakoula, A., Ilias, I., Zamanidis, P., 2016. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Brazilian Journal of Botany, 39, 531-539. Panda, S.K., Baluška, F., Matsumoto, H., 2009. Aluminum stress signaling in plants. Plant Signaling & Behavior, 4, 592-597. Pandey, C., Khan, E., Panthri, M., Tripathi, R.D., Gupta, M., 2016. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiology and Biochemistry, 104, 216-225. Parry, D.W., 1975. The effect of poly-2-vinylpyridine 1-oxide on the deposition of silica in the leaves of Oryza sativa L. Annals of Botany, 39, 815-818. Grašič: Mnogotere vloge silicija 47 Parry, D.W., Hodson, M.J., 1982. Silica distribution in the caryopsis and inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible significance in carcinogenesis. Annals of Botany, 49, 531-540. Parry, D.W., Hodson, M.J., Sangster, A.G., Jones, W.C., O'Neill, C.H., 1984. Some recent advances in studies of silicon in higher plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 304, 537-549. Parry, D.W., Kelso, M., 1975. The distribution of silicon deposits in the roots ofMolinia caerulea (L.) Moench. and Sorghum bicolor (L.) Moench. Annals of Botany, 39, 995-1001. Parry, D.W., Smithson, F., 1964. Types of opaline silica depositions in the leaves of British grasses. Annals of Botany, 28, 169-185. Parry, D.W., Smithson, F., 1966. Opaline silica in the inflorescences of some British grasses and cereals. Annals of Botany, 30, 525-538. Parry, D.W., Winslow, A., 1977. Electron-probe microanalysis of silicon accumulation in the leaves and tendrils of Pisum sativum (L.) following root severance. Annals of Botany, 41, 275-278. Pei, Z.F., Ming, D.F., Liu, D., Wan, G.L., Geng, X.X., Gong, H.J., Zhou, W.J., 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29, 106-115. Pereira, T.S., da Silva Lobato, A.K., Tan, D.K.Y., da Costa, D.V., Uchôa, E.B., do Nascimento Ferreira, R., dos Santos Pereira, E., Ávila, F.W., Marques, D.J., Silva Guedes, E.M., 2013. Positive interference of silicon on water relations, nitrogen metabolism, and osmotic adjustment in two pepper (Capsicum annuum) cultivars under water deficit. Australian Journal of Crop Science, 7, 1064-1071. Perry, C.C., Williams, R.J.P., Fry, S.C., 1987. Cell wall biosynthesis during silicification of grass hairs. Journal of Plant Physiology, 126, 437-448. Pettigrew, W.T., 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133, 670-681. Piperno, D.R., 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Oxford, 238 pp. Piperno, D.R., Holst, I., Wessel-Beaver, L., Andres, T.C., 2002. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proceedings of the National Academy of Sciences of the United States of America, 99, 10923-10928. Polanco, L.R., Rodrigues, F.Á., Moreira, E.N., Duarte, H.S.S., Cacique, I.S., Valente, L.A., Vieira, R.F., Paula Júnior, T. J., Vale, F.X.R., 2013. Management of anthracnose in common bean by foliar spraying of potassium silicate, sodium molybdate and fungicide. Plant Disease, 98, 84-89. Polanco, L.R., Rodrigues, F.Á., Nascimento, K.J.T., Cruz, M.F.A., Curvelo, C.R.S., DaMatta, F.M., Vale, F.X.R., 2014. Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Tropical Plant Pathology, 39, 35-42. Poovaiah, B.W., 1979. Role of calcium in ripening and senescence. Communications in Soil Science and Plant Analysis, 10, 83-88. Postek, M.T., 1981. The occurrence of silica in the leaves of Magnolia grandiflora L. Botanical Gazette, 142, 124-134. Prabagar, S., Hodson, M.J., Evans, D.E., 2011. Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environmental and Experimental Botany, 70, 266-276. Prasad, V., Stromberg, C.A.E., Alimohammadian, H., Sahni, A., 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 1177-1180. Prychid, C.J., Rudall, P. J., Gregory, M., 2004. Systematics and biology of silica bodies in monocotyledons. The Botanical Review, 69, 377-440. Putra, E.T.S., Issukindarsyah, Taryono, Purwanto, B.H., 2015. Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. Journal of Agronomy, 14, 49-61. 48 Acta Biologica Slovenica, 62 (1), 2019 Qados, A.M.S.A., 2015. Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. American Journal of Experimental Agriculture, 7, 78-95. Qin, G.Z., Tian, S.P., 2005. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology, 95, 69-75. Qin, L., Kang, W.-H., Qi, Y.-L., Zhang, Z.-W., Wang, N., 2016. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiologiae Plantarum, 38, 1-9. Rahman, M.T., Kawamura, K., Koyama, H., Hara, T., 1998. Varietal differences in the growth of rice plants in response to aluminum and silicon. Soil Science and Plant Nutrition, 44, 423-431. Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Srinivasa Prasad, M., Padmakumari, A.P., Voleti, S.R., 2006. Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 50, 713-716. Raven, J.A., 1983. The transport and function of silicon in plants. Biological Reviews, 58, 179-207. Reezi, S., Babalar, M., Kalantari, S., 2009. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa xhybrida L.) "Hot Lady". African Journal of Biotechnology, 8, 1502-1508. Rémus-Borel, W., Menzies, J.G., Bélanger, R.R., 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 66, 108-115. Rémus-Borel, W., Menzies, J.G., Bélanger, R.R., 2009. Aconitate and methyl aconitate are modulated by silicon in powdery mildew-infected wheat plants. Journal ofPlant Physiology, 166, 1413-1422. Resende, R.S., Rodrigues, F.Á., Costa, R.V., Silva, D.D., 2013. Silicon and fungicide effects on anthrac-nose in moderately resistant and susceptible sorghum lines. Journal of Phytopathology, 161, 11-17. Reynolds, A.G., Veto, L.J., Sholberg, P.L., Wardle, D.A., Haag, P., 1996. Use of potassium silicate for the control of powdery mildew [Uncinula necator (Schwein) burrill] in Vitis vinifera L. cultivar Bacchus. American Journal of Enology and Viticulture, 47, 421-428. Reynolds, J.J.H., Lambin, X., Massey, F.P., Reidinger, S., Sherratt, J.A., Smith, M.J., White, A., Hartley, S.E., 2012. Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia, 170, 445-456. Rios, J.A., Rodrigues, F.Á., Debona, D., Castro Silva, L., 2014. Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiologiae Plantarum, 36, 371-379. Rodgers-Gray, B.S., Shaw, M.W., 2004. Effects of straw and silicon soil amendments on some foliar and stem-base diseases in pot-grown winter wheat. Plant Pathology, 53, 733-740. Rodrigues, F.Á., Benhamou, N., Datnoff, L.E., Jones, J.B., Bélanger, R.R., 2003a. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology, 93, 535-546. Rodrigues, F.Á., Datnoff, L.E., Korndorfer, G.H., Seebold, K.W., Rush, M.C., 2001. Effect of silicon and host resistance on sheath blight development in rice. Plant Disease, 85, 827-832. Rodrigues, F.Á., Duarte, H.S.S., Rezende, D.C., Filho, J.A.W., Korndorfer, G.H., Zambolim, L., 2010. Foliar spray of potassium silicate on the control of angular leaf spot on beans. Journal of Plant Nutrition, 33, 2082-2093. Rodrigues, F.Á., Jurick II, W.M., Datnoff, L.E., Jones, J.B., Rollins, J.A., 2005. Silicon influences cyto-logical and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66, 144-159. Rodrigues, F.Á., McNally, D.J., Datnoff, L.E., Jones, J.B., Labbé, C., Benhamou, N., Menzies, J.G., Bélanger, R.R., 2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 94, 177-183. Rodrigues, F.Á., Polanco, L.R., Duarte, H.S.S., Resende, R.S., do Vale, F.X.R., 2015. Photosynthetic gas exchange in common bean submitted to foliar sprays of potassium silicate, sodium molybdate and fungicide and infected with Colletotrichum lindemuthianum. Journal of Phytopathology, 163, 554-559. Grašič: Mnogotere vloge silicija 49 Rodrigues, F.Â., Vale, F.X.R., Korndorfer, G.H., Prabhud, A.S., Datnoff, L.E., Oliveira, A.M.A., Zam-bolim, L., 2003b. Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 22, 23-29. Rogalla, H., Romheld, V., 2002. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell and Environment, 25, 549-555. Rohanipoor, A., Norouzi, M., Moezzi, A., Hassibi, P., 2013. Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological & Environmental Sciences, 7, 71-79. Romero-Aranda, M.R., Jurado, O., Cuartero, J., 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163, 847-855. Rovner, I., 1971. Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, 343-359. Roy, A.C., 1969. Phosphorus-Silicon Interactions in Soils and Plants. University of Hawaii, 218 pp. Roy, A.C., Ali, M.Y., Fox, R.L., Silva, J.A., 1971. Influence of calcium silicate on phosphate solubility and availability in Hawaiian latosols. In: Proceedings of tne International Symposium on Soil Fertility Evaluation. New Delhi, pp. 757-765. Ruelland, E., Zachowski, A., 2010. How plants sense temperature. Environmental and Experimental Botany, 69, 225-232. Ryder, M., Gérard, F., Evans, D.E., Hodson, M.J., 2003. The use of root growth and modelling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. Journal of Inorganic Biochemistry, 97, 52-58. Sabaghnia, N., Janmohammadi, M., 2014. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Annales Universitatis Mariae Curie-Sklodowska C: Biologia, 69, 39-55. Sahebi, M., Hanafi, M.M., Siti Nor Akmar, A., Rafii, M.Y., Azizi, P., Idris, A.S., 2015. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove. Gene, 556, 170-181. Sahrawat, K.L., 2004. Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27, 1471-1504. Sakurai, G., Satake, A., Yamaji, N., Mitani-Ueno, N., Yokozawa, M., Feugier, F.G., Ma, J.F., 2015. In silico simulation modeling reveals the importance of the casparian strip for efficient silicon uptake in rice roots. Plant and Cell Physiology, 56, 631-639. Salim, M., Saxena, R.C., 1991. Nutritional stresses and varietal resistance in rice: effects on whitebacked planthopper. Crop Science, 31, 797-805. Samuels, A.L., Glass, A.D., Ehret, D.L., Menzies, J.G., 1991a. Mobility and deposition of silicon in cucumber plants. Plant, Cell and Environment, 14, 485-492. Samuels, A.L., Glass, A.D.M., Ehret, D.L., Menzies, J.G., 1991b. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal of Botany, 69, 140-146. Sandmann, G., Boger, P., 1980. Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiology, 66, 797-800. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.B., 2011. Engineering cold stress tolerance in crop plants. Current Genomics, 12, 30-43. Sanglard, L.M.V.P., Martins, S.C.V., Detmann, K.C., Silva, P.E.M., Lavinsky, A.O., Silva, M.M., Detmann, E., Araùjo, W.L., DaMatta, F.M., 2014. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiologia Plantarum, 152, 355-366. Sangster, A.G., 1977. Electron-probe microassay studies of silicon deposits in the roots of two species of Andropogon. Canadian Journal of Botany, 55, 880-887. Sangster, A.G., 1978a. Electron-probe microassays for silicon in the roots of Sorghastrum nutans and Phragmites communis. Canadian Journal of Botany, 56, 1074-1080. 50 Acta Biologica Slovenica, 62 (1), 2019 Sangster, A.G., 1978b. Silicon in the roots of higher plants. American Journal of Botany, 65, 929-935. Sangster, A.G., 1968. Studies of opaline silica deposits in the leaf of Sieglingia decumbens L. "Bernh.", using the scanning electron microscope. Annals of Botany, 32, 237-240. Sangster, A.G., 1970. Intracellular silica deposition in immature leaves in three species of the Grami-neae. Annals of Botany, 34, 245-257. Sangster, A.G., Hodson, M.J., Tubb, H.J., 2001. Silicon deposition in higher plants. In: Datnoff, L.E., Snyder, G.H., Korndorfer, G.H. (eds.): Silicon in Agriculture. Elsevier Science, pp. 85-113. Sangster, A.G., Parry, D.W., 1981. Ultrastructure of silica deposits in higher plants. In: Simpson, T.L., Volcani, B.E. (eds.): Silicon and Siliceous Structures in Biological Systems. Springer, New York, pp. 383-407. Sangster, A.G., Parry, D.W., 1969. Some factors in relation to bulliform cell silicification in the grass leaf. Annals of Botany, 33, 315-323. Sanson, G.D., Kerr, S.A., Gross, K.A., 2007. Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science, 34, 526-531. Sapre, S.S., Patel, V., Rajivkumar, Rojasara, Y.M., Rao, K.S., Patel, J.S., Talati, J.G., 2013. Biochemical traits in pearl millet (Pennisetum glaucum) against downy mildew disease. Indian Journal of Agricultural Sciences, 83, 1411-1415. Saqib, M., Zorb, C., Schubert, S., 2008. Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35, 633-639. Sartori de Camargo, M., Korndorfer, G.H., Wyler, P., 2014. Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Research, 167, 64-75. Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M., Patakioutas, G., 2009. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and Experimental Botany, 65, 11-17. Savvas, D., Gizas, G., Karras, G., Lydakis-Simantiris, N., Salahas, G., Papadimitriou, M., Tsouka, N., 2007. Interactions between silicon and NaCl-salinity in a soilless culture of roses in greenhouse. European Journal of Horticultural Science, 72, 73-79. Saxena, R., Tomar, R.S., Kumar, M., 2015. Exploring nanobiotechnology to mitigate abiotic stress in crop plants. Journal of Pharmaceutical Sciences and Research, 8, 974-980. Schaller, J., Brackhage, C., Baucker, E., Dudel, E.G., 2013. UV-screening of grasses by plant silica layer? Journal of Biosciences, 38, 413-416. Schaller, J., Brackhage, C., Dudel, E.G., 2012. Silicon availability changes structural carbon ratio and phenol content of grasses. Environmental and Experimental Botany, 77, 283-287. Schoelynck, J., Bal, K., Backx, H., Okruszko, T., Meire, P., Struyf, E., 2010. Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytologist, 186, 385-391. Schurt, D.A., Cruz, M.F.A., Nascimento, K.J.T., Filippi, M.C.C., Rodrigues, F.Á., 2014. Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. Tropical Plant Pathology, 39, 457-463. Schurt, D.A., Dutra Reis, R., Araujo, L., Carré-Missio, V., Rodrigues, F.Á., 2015. Análise microscópica da resistencia do arroz á queima das bainhas mediada pelo silicio. Bragantia, 74, 93-101. Seebold, K.W., Datnoff, L.E., Correa-Victoria, F.J., Kucharek, T.A., Snyder, G.H., 2000. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease, 84, 871-876. Seebold, K.W., Datnoff, L.E., Correa-Victoria, F. J., Kucharek, T.A., Snyder, G.H., 2004. Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Disease, 88, 253-258. Seebold, K.W., Kucharek, T.A., Datnoff, L.E., Correa-Victoria, F. J., Marchetti, M.A., 2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 91, 63-69. Seyfferth, A.L., Fendorf, S., 2012. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environmental Science and Technology, 46, 13176-13183. Grašič: Mnogotere vloge silicija 51 Shahnaz, G., Shekoofeh, E., Kourosh, D., Moohamadbagher, B., 2011. Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. Journal of Medicinal Plants Research, 5, 5818-5827. Shakoor, S.A., 2014. Silicon to silica bodies and their potential roles: an overview. International Journal of Agricultural Sciences, 4, 111-120. Sharma, D.C., Sharma, C.P., Tripathi, R.D., 2003. Phytotoxic lesions of chromium in maize. Chemo-sphere, 51, 63-68. Sharma, P., Dubey, R.S., 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35-52. Shen, X., Li, X., Li, Z., Li, J., Duan, L., Eneji, A.E., 2010a. Growth, physiological attributes and antioxidant enzyme activities in soybean seedlings treated with or without silicon under UV-B radiation stress. Journal of Agronomy and Crop Science, 196, 431-439. Shen, X., Li, Z., Duan, L., Eneji, A.E., Li, J., 2014a. Silicon mitigates ultraviolet-B radiation stress on soybean by enhancing chlorophyll and photosynthesis and reducing transpiration. Journal of Plant Nutrition, 37, 837-849. Shen, X., Xiao, X., Dong, Z., Chen, Y., 2014b. Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiologiae Plantarum, 36, 3063-3069. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E., Li, J., 2010b. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167, 1248-1252. Shetty, R., Jensen, B., Shetty, N.P., Hansen, M., Hansen, C.W., Starkey, K.R., J0rgensen, H.J.L., 2012. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathology, 61, 120-131. Shewmaker, G.E., Mayland, H.F., Rosenau, R.C., Asay, K.H., 1989. Silicon in C-3 grasses: effects on forage quality and sheep preference. Journal of Range Management, 42, 122-127. Shi, G., Cai, Q., Liu, C., Wu, L., 2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation, 61, 45-52. Shi, Q., Bao, Z., Zhu, Z., He, Y., Qian, Q., Yu, J., 2005a. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry, 66, 1551-1559. Shi, Q., Zhu, Z., 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317-326. Shi, X., Zhang, C., Wang, H., Zhang, F., 2005b. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 272, 53-60. Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., Gong, H., 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science, 7, 1-15. Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H., Gong, H., 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78, 27-36. Silva, O.N., Lobato, A.K.S., Ávila, F.W., Costa, R.C.L., Oliveira Neto, C.F., Santos Filho, B.G., Martins Filho, A.P., Lemos, R.P., Pinho, J.M., Medeiros, M.B.C.L., Cardoso, M.S., Andrade, I.P., 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant, Soil and Environment, 58, 481-486. Simon, E.W., 1978. The symptoms of calcium deficiency in plants. New Phytologist, 80, 1-15. Singh, V.P., Tripathi, D.K., Kumar, D., Chauhan, D.K., 2011. Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biological Trace Element Research, 144, 1260-1274. Sinha, S., Gupta, M., Chandra, P., 1997. Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants. Ecotoxicology and Environmental Safety, 38, 286-291. 52 Acta Biologica Slovenica, 62 (1), 2019 Sivanesan, I., Son, M.S., Soundararajan, P., Jeong, B.R., 2014. Effect of silicon on growth and temperature stress tolerance of Nephrolepis exaltata "Corditas." Korean Journal of Horticultural Science and Technology, 32, 142-148. Snowden, R.E.D., Wheeler, B.D., 1993. Iron toxicity to fen plant species. British Ecological Society, 81, 35-46. Solatni, Z., Shekari, F., Jamshidi, K., Fotovat, R., Azimkhani, R., 2012. The effect of silicon on germination and some growth characteristics of salt-stressed canola seedling. International Journal of Agronomy and Agricultural Research, 2, 12-21. Song, A., Li, P., Fan, F., Li, Z., Liang, Y., 2014. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE, 9, 1-21. Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., Liang, Y., 2011. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344, 319-333. Song, A., Li, Z., Zhang, J., Xue, G., Fan, F., Liang, Y., 2009. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials, 172, 74-83. Song, A., Xue, G., Cui, P., Fan, F., Liu, H., Yin, C., Sun, W., Liang, Y., 2016. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Scientific Reports, 6, 1-13. Soni, S.L., Parry, D.W., 1973. Electron probe microanalysis of silicon deposition in the inflorescence bracts of the rice plant (Oryza sativa). American Journal of Botany, 60, 111-116. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A.E., Kobayashi, S., Kawamura, Y., Tanaka, K., Ina-naga, S., 2010. Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition, 34, 71-82. Soundararajan, P., Sivanesan, I., Jana, S., Jeong, B.R., 2014. Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Horticulture Environment and Biotechnology, 55, 271-279. Soylemezoglu, G., Demir, K., Inal, A., Gunes, A., 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123, 240-246. Stamatakis, A., Papadantonakis, N., Lydakis-Simantiris, N., Kefalas, P., Savvas, D., 2003. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Horticulturae, 609, 141-147. Stapleton, A.E., 1992. Ultraviolet radiation and plants: burning questions. The Plant Cell, 4, 1353-1358. Stebbins, G.L., 1981. Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68, 75-86. Steponkus, P.L., 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology, 35, 543-584. Stromberg, C.A.E., 2004. Using phytolith assemblages to reconstruct the origin and spread of grassdominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 239-275. Stromberg, C.A.E., 2002. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 59-75. Stromberg, C.A.E., Di Stilio, V.S., Song, Z., 2016. Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 30, 1286-1297. Suda, A., Baba, K., Akahane, I., Makino, T., 2016. Use of water-treatment residue containing polysi-licate-iron to stabilize arsenic in flooded soils and attenuate arsenic uptake by rice (Oryza sativa L.) plants. Soil Science and Plant Nutrition, 62, 111-116. Sun, W., Zhang, J., Fan, Q., Xue, G., Li, Z., Liang, Y., 2010. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. European Journal of Plant Pathology, 128, 39-49. Grašič: Mnogotere vloge silicija 53 Tahir, M.A., Rahmatullah, Aziz, M., Ashraf, S., Kanwal, S., Maqsood, M.A., 2007. Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pakistan Journal of Botany, 38, 1715-1722. Tale Ahmad, S., Haddad, R., 2011. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47, 17-27. Tamai, K., Ma, J.F., 2003. Characterization of silicon uptake by rice roots. New Phytologist, 158, 431-436. Tan, W., Meng, Q.W., Brestic, M., Olsovska, K., Yang, X., 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168, 2063-2071. Tang, H., Liu, Y., Gong, X., Zeng, G., Zheng, B., Wang, D., Sun, Z., Zhou, L., Zeng, X., 2015. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environmental Science and Pollution Research, 22, 9999-10008. Tantawy, A.S., Salama, Y.A.M., El-Nemr, M.A., Abdel-Mawgoud, A.M.R., 2015. Nano silicon application improves salinity tolerance of sweet pepper plants. International Journal of ChemTech Research, 8, 11-17. Tatagiba, S.D., Rodrigues, F.A., Filippi, M.C.C., Silva, G.B., Silva, L.C., 2014. Physiological responses of rice plants supplied with silicon to Monographella albescens infection. Journal of Phytopathology, 162, 596-606. Telles Nascimento, K.J., Debona, D., Kelly, S., Franja, S., Gabriele, M., Gonjalves, M., Murilo Damatta, F., Rodrigues, F.A., 2014. Soybean resistance to Cercopora sojina infection is reduced by silicon. Biochemistry and Cell Biology, 104, 1183-1191. Thongbai, P., Goodman, B.A., 2000. Free radical generation and post-anoxic injury in rice grown in an iron-toxic soil. Journal of Plant Nutrition, 23, 1887-1900. Torlon, J.L., Heckman, J.R., Simon, J.E., Wyenandt, C.A., 2016. Silicon soil amendments for suppressing powdery mildew on pumpkin. Sustainability, 8, 1-8. Treder, W., Cieslinski, G., 2005. Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. Journal of Plant Nutrition, 28, 917-929. Trembath-Reichert, E., Wilson, J.P., McGlynn, S.E., Fischer, W.W., 2015. Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences of the United States of America, 112, 5449-5454. Tripathi, D.K., Singh, V.P., Ahmad, P., Chauhan, D.K., Prasad, S.M. (eds.) 2017. Silicon in Plants: Advances and Future Prospects. CRC Press, Boca Raton, FL, 384 pp. Tripathi, D.K., Singh, V.P., Prasad, S.M., Chauhan, D.K., Kishore Dubey, N., Rai, A.K., 2015. Siliconmediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicology and Environmental Safety, 113, 133-144. Tripathi, P., Tripathi, R.D., Singh, R.P., Dwivedi, S., Goutam, D., Shri, M., Trivedi, P.K., Chakrabarty, D., 2013. Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecological Engineering, 52, 96-103. Tripathi, R.D., Tripathi, P., Dwivedi, S., Dubey, S., Chatterjee, S., Chakrabarty, D., Trivedi, P.K., 2012. Arsenomics: omics of arsenic metabolism in plants. Frontiers in Physiology, 3, 1-14. Truta, E., Mihai, C., Gherghel, D., Vochita, G., 2014. Assessment of the cytogenetic damage induced by chromium short-term exposure in root tip meristems of barley seedlings. Water, Air, and Soil Pollution, 225, 1-12. Uchida, R., 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva, J.A., Uchida, R. (eds.): Plant Nutrient Management in Hawaii's Soils, Approaches for Tropical and Subtropical Agriculture. University of Hawaii at Manoa, Honolulu, pp. 31-55. Vaculik, M., Landberg, T., Greger, M., Luxova, M., Stolarikova, M., Lux, A., 2012. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110, 433-443. 54 Acta Biologica Slovenica, 62 (1), 2019 Vaculik, M., Lux, A., Luxovâ, M., Tanimoto, E., Lichtscheidl, I., 2009. Silicon mitigates cadmium inhibitory effects in young maize plants. Environmental and Experimental Botany, 67, 52-58. Vaculik, M., Pavlovic, A., Lux, A., 2015. Silicon alleviates cadmium toxicity by enhanced photosyn-thetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety, 120, 66-73. Vajpayee, P., Tripathi, R.D., Rai, U.N., Ali, M.B., Singh, S.N., 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075-1082. Van Bockhaven, J., Steppe, K., Bauweraerts, I., Kikuchi, S., Asano, T., Höfte, M., De Vleesschauwer, D., 2015. Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. Molecular Plant Pathology, 16, 811-824. Van der Vorm, P.D.J., 1980. Uptake of Si by five plant species, as influenced by variations in Si-supply. Plant and Soil, 56, 153-156. Vashegyi, A., Zsoldos, F., Pécsvâradi, A., Bona, L., 2002. Aluminium/silicon interactions in cereal seedlings. Acta Biologica Szegediensis, 46, 129-130. Vatehovâ, Z., Kollârovâ, K., Zelko, I., Richterovâ-Kucerovâ, D., Bujdos, M., Liskovâ, D., 2012. Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia, 67, 498-504. Vermeire, M.-L., Kablan, L., Dorel, M., Delvaux, B., Risède, J.-M., Legrève, A., 2011. Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem. European Journal of Plant Pathology, 131, 621-630. Veselov, D., Kudoyarova, G., Symonyan, M., Veselov, S., 2003. Effect of cadmium on ion uptake, transpiration and cytokinin conent in wheat seedlings. Bulgarian Journal of Plant Physiology: Special Issue, 353-359. Vicari, M., Bazely, D.R., 1993. Do grasses fight back? The case for antiherbivore defences. Trends in Ecology and Evolution, 8, 137-141. Vieira da Cunha, K.P., Araüjo do Nascimento, C.W., 2009. Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil Pollution, 197, 323-330. Vieira da Cunha, K.P., Araüjo do Nascimento, C.W., da Silva, A.J., 2008. Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. Journal of Plant Nutrition and Soil Science, 171, 849-853. Vivancos, J., Labbé, C., Menzies, J.G., Bélanger, R.R., 2015. Silicon-mediated resistance ofArabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Molecular Plant Pathology, 16, 572-582. Wadham, M.D., Parry, D.W., 1981. The silicon content of Oryza sativa L. and its effect on the grazing behaviour of Agriolimax reticulatus Müller. Annals of Botany, 48, 399-402. Wahid, A., Ghani, A., Javed, F., 2008. Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agronomy for Sustainable Development, 28, 273-280. Wallace, A., 1992. Participation of silicon in cation-anion balance as a possible mechanism for aluminum and iron tolerance in some Gramineae. Journal of Plant Nutrition, 15, 1345-1351. Wang, H.-S., Yu, C., Fan, P.-P., Bao, B.-F., Li, T., Zhu, Z.-J., 2015. Identification of two cucumber putative silicon transporter genes in Cucumis sativus. Journal of Plant Growth Regulation, 34, 332-338. Wang, L., Nie, Q., Li, M., Zhang, F., Zhuang, J., Yang, W., Li, T., Wang, Y., 2005. Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Applied Physics Letters, 87, 1-3. Wang, Y., Stass, A., Horst, W.J., 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology, 136, 3762-3770. Watanabe, S., Fujiwara, T., Yoneyama, T., Hayashi, H., 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. In: Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., Sch- Grašič: Mnogotere vloge silicija 55 midhalter, U., Schubert, S., von Wiren, N., Wittenmayer, L. (eds.): Plant Nutrition - Food Security and Sustainability of Agro-Ecosystems Through Basic and Applied Research. Kluwer Academic Publishers, Dordrecht, pp 174-175. Weiss, A., Herzog, A., 1978. Isolation and characterziation of a silicon-organic complex. In: Bendz, G., Lindqvist, I., Runnstrom-Reio, V. (eds.): Biochemistry of Silicon and Related Problems. Plenum Press, pp. 109-127. Welch, R.M., Norvell, W.A., 1999. Mechanisms of cadmium uptake, translocation and deposition in plants. In: McLaughlin, M.J., Singh, B.R. (eds.): Cadmium in Soils and Plants. Springer, Dordrecht, pp. 125-150. Wiese, J., Wiese, H., Schwartz, J., Schubert, S., 2005. Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew. Journal of Plant Nutrition and Soil Science, 168, 269-274. Wilding, L.P., Brown, R.E., Holowaychuk, N., 1967. Accessibility and properties of occluded carbon in biogenetic opal. Soil Science, 103, 56-61. Williams, D.E., Vlamis, J., 1957. The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley plants grown in culture solutions. Plant Physiology, 32, 404-409. Winslow, M.D., 1992. Silicon, disease resistance, and yield of rice genotypes under upland cultural conditions. Crop Science, 32, 1208-1213. Wojcik, M., Tukiendorf, A., 2004. Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regulation, 44, 71-80. Woolley, J.T., 1957. Sodium and silicon as nutrients for the tomato plant. Plant Physiology, 32, 317-321. Wu, C.-Y., Yao, Y.-M., Shao, P., Wang, Y., Wang, Z.-W., Tian, X.-H., 2014. Exogenous silicon alleviates spikelet fertility reduction of hybrid rice induced by high temperature under field conditions. Chinese Journal of Rice Science, 28, 71-77. Wu, S.-H., 1994. Effect of manganese excess on the soybean plant cultivated under various growth conditions. Journal of Plant Nutrition, 17, 991-1003. Xu, C.X., Ma, Y.P., Liu, Y.L., 2015. Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal of Botany, 98, 26-36. Yadav, S.K., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phyto-chelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167-179. Yamaji, N., Chiba, Y., Mitani-Ueno, N., Ma, J.F., 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiology, 160, 1491-1497. Yamaji, N., Ma, J.F., 2007. Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiology, 143, 1306-1313. Yamaji, N., Mitatni, N., Ma, J.F., 2008. A transporter regulating silicon distribution in rice shoots. The Plant Cell, 20, 1381-1389. Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H., 2002. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, 128, 63-72. Yan, Y.-H., Zheng, Z.-C., Li, T.-X., Zhang, X.-Z., Wang, Y., 2014. Effect of silicon on translocation and morphology distribution of lead in soil-tobacco system. Chinese Journal of Applied Ecology, 25, 2991-2998. Yao, X., Chu, J., Cai, K., Liu, L., Shi, J., Geng, W., 2011. Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biological Trace Element Research, 143, 507-517. Ye, M., Song, Y., Long, J., Wang, R., Baerson, S.R., Pan, Z., Zhu-Salzman, K., Xie, J., Cai, K., Luo, S., Zeng, R., 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences of the United States of America, 110, 3631-3639. Yeo, A.R., Flowers, S.A., Rao, G., Welfare, K., Senanayake, N., Flowers, T.J., 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment, 22, 559-565. 56 Acta Biologica Slovenica, 62 (1), 2019 Yin, L., Wang, S., Li, J., Tanaka, K., Oka, M., 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physio-logiae Plantarum, 35, 3099-3107. Yin, L., Wang, S., Liu, P., Wang, W., Cao, D., Deng, X., Zhang, S., 2014. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiology and Biochemistry, 80, 268-277. Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X., Zhang, S., 2016. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant, Cell and Environment, 39, 245-258. Yoshida, S., Navasero, S.A., Ramirez, E.A., 1969. Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant and Soil, 31, 48-56. Yoshida, S., Ohnishi, Y., Kitagishi, K., 1962a. Chemical forms, mobility and deposition of silicon in rice plant. Soil Science and Plant Nutrition, 8, 15-21. Yoshida, S., Ohnishi, Y., Kitagishi, K., 1962b. Histochemistry of silicon in rice plant. Soil Science and Plant Nutrition, 8, 1-5. Yruela, I., 2005. Copper in plants. Brazilian Journal of Plant Physiology, 17, 145-156. Zeng, F.R., Zhao, F.S., Qiu, B.Y., Ouyang, Y.N., Wu, F.B., Zhang, G.P., 2011. Alleviation of chromium toxicity by silicon addition in rice plants. Agricultural Sciences in China, 10, 1188-1196. Zhang, C., Wang, L., Nie, Q., Zhang, W., Zhang, F., 2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental and Experimental Botany, 62, 300-307. Zhang, C., Wang, L., Zhang, W., Zhang, F., 2013a. Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant and Soil, 372, 137-149. Zhang, Q., Yan, C., Liu, J., Lu, H., Wang, W., Du, J., Duan, H., 2013b. Silicon alleviates cadmium toxicity in Avicennia marina (Forsk.) Vierh. seedlings in relation to root anatomy and radial oxygen loss. Marine Pollution Bulletin, 76, 187-193. Zhang, X.H., Zhou, D., Cui, J.J., Ma, H.L., Lang, D.Y., Wu, X.L., Wang, Z.S., Qiu, H.Y., Li, M., 2015. Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity. The Journal of Horticultural Science and Biotechnology, 90, 439-443. Zhao, D., Oosterhuis, D.M., Bednarz, C.W., 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39, 103-109. Zhao, F., Song, C.-P., He, J., Zhu, H., 2007. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiology, 145, 1061-1072. Zhao, Z.Q., Zhu, Y.G., Smith, S.E., Smith, F.A., 2005. Cadmium uptake by winter wheat seedlings in response to interactions between phosphorus and zinc supply in soils. Journal of Plant Nutrition, 28, 1569-1580. Zhu, J., Liang, Y.-C., Ding, Y.-F., Li, Z.-J., 2006. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Scientia Agricultura Sinica, 39, 1780-1788. Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J., 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167, 527-533. Zuccarini, P., 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52, 157-160.