IMFM

Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series Vol. 48 (2010), 1118 ISSN 2232-2094

$\mathop{\mathrm{RANDI}}\nolimits\acute{\mathrm{C}}$ INDEX AND THE DIAMETER OF A GRAPH

Zdeněk Dvořák Bernard Lidický

 R iste \check{S} krekovski

Ljubljana, April 9, 2010

Randić index and the diameter of a graph^{*} Zdeněk Dvořák[†] Bernard Lidický[‡] Riste Škrekovski[§]

Abstract

The Randić index $R(G)$ of a nontrivial connected graph G is defined as the sum of the weights $(d(u)d(v))^{-\frac{1}{2}}$ over all edges $e = uv$ of G. We prove that $R(G) \geq d(G)/2$, where $d(G)$ is the diameter of G. This immediately implies that $R(G) \geq r(G)/2$, which is the closest result to the well-known Grafiti conjecture $R(G) \geq r(G) - 1$ of Fajtlowicz [4], where $r(G)$ is the radius of G. Asymptotically, our result approaches the bound $\frac{R(G)}{d(G)} \ge \frac{n-3+2\sqrt{2}}{2n-2}$ conjectured by Aouchiche, Hansen and Zheng [1].

1 Introduction

All the graphs considered in this paper are simple undirected ones. The eccentricity of a vertex v of a graph G is the greatest distance from v to any other vertex of G . The *radius* (resp. *diameter*) of a graph is the minimum (resp. maximum) over eccentricities of all vertices of the graph. The radius and diameter will be denoted by $r(G)$ and $d(G)$, respectively.

[∗]Supported by the CZ-SL bilateral project MEB 090805 and BI-CZ/08-09-005.

[†]Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague, Czech Republic. E-mail: rakdver@kam.mff.cuni.cz. Supported by Institute for Theoretical Computer Science (ITI), project 1M0545 of Ministry of Education of Czech Republic.

[‡]Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague, Czech Republic. E-mail: bernard@kam.mff.cuni.cz.

[§]Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia. Partially supported by Ministry of Science and Technology of Slovenia, Research Program P1-0297. E-mail: skrekovski@gmail.com.

There are many different kinds of chemical indices. Some of them are distance based indices like Wiener index, some are degree based indices like Randić index. The Randić index $R(G)$ of a graph G is defined as

$$
R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{\deg(u) \deg(v)}}.
$$

It is also known as connectivity index or branching index. Randi ϵ [11] in 1975 proposed this index for measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. There is also a good correlation between Randić index and several physicochemical properties of alkanes: boiling points, surface areas, energy levels, etc. In 1998 Bollobás and Erdös $[2]$ generalized this index by replacing the square-root by power of any real number, which is called the *general Randić index*. For a comprehensive survey of its mathematical properties, see the book of Li and Gutman [7], or recent survey of Li and Shi [10]. See also the books of Kier and Hall [5, 6] for chemical properties of this index.

There are several conjectures linking Randić index to other graph parameters. Fajtlowicz [4] posed the following problem:

Conjecture 1. For every connected graph G, it holds $R(G) \geq r(G) - 1$.

Caporossi and Hansen [3] showed that $R(T) \geq r(T) + \sqrt{2} - 3/2$ for all trees T. Liu and Gutman [9] verified the conjecture for unicyclic graphs, bicyclic graphs and chemical graphs with cyclomatic number $c(G) \leq 5$. You and Liu [12] proved that the conjecture is true for biregular graphs, tricyclic graphs and connected graphs of order $n \leq 10$.

Regarding the diameter, Aouchiche, Hansen and Zheng [1] conjectured the following:

Conjecture 2. Any connected graph G of order $n \geq 3$ satisfies

$$
R(G) - d(G) \ge \sqrt{2} - \frac{n+1}{2} \quad \text{and} \quad \frac{R(G)}{d(G)} \ge \frac{n-3+2\sqrt{2}}{2n-2},
$$

with equalities if and only if G is a path on n vertices.

Li and Shi [8] proved the first inequality for graphs of minimum degree at least 5. They also proved the second inequality for graphs on $n \geq 15$ vertices with minimum degree at least $n/5$.

The Randić index turns out to be quite difficult parameter to work with. Also, Conjecture 1 is quite weak for graphs with small radius; for instance, $R(K_{1,n}) = \sqrt{n}$, while $r(K_{1,n}) = 1$ for all n. Instead, we work with a different parameter $R'(G)$ defined by

$$
R'(G) = \sum_{uv \in E(G)} \frac{1}{\max(\deg(u), \deg(v))}.
$$

Note that $R(G) \ge R'(G)$ for every graph G, with the equality achieved only if every connected component of G is regular. The main result of this paper is the following:

Theorem 3. For any connected graph G , $R'(G) \geq d(G)/2$.

Since $R(G) \ge R'(G)$ and $d(G) \ge r(G)$, by our theorem, we immediately obtain that $R(G) \geq r(G)/2$. This result supports Conjecture 1. Our result solves asymptotically the second claim of Conjecture 2. Let us remark that the bound of Theorem 3 is sharp, with the equality achieved for example by paths of length at least two. Since Conjecture 2 is also tight for paths, in order to prove Conjecture 2 using our technique, it would be necessary to consider the gap $R(G) - R'(G)$.

2 Proof of the main theorem

We prove the theorem by contradiction. In the rest of the paper, assume that G is a connected graph such that $R'(G) < d(G)/2$ and G has the smallest number of edges among the graphs with this property, i.e., $R'(H) \ge d(H)/2$ for every connected graph H with $|E(H)| < |E(G)|$. Let $n = |V(G)|$. For an edge uv, a weight of uv is $\frac{1}{\max(\deg(u), \deg(v))}$.

If $d(G) = 0$, then $G = K_1$ and $R'(G) = 0 = d(G)/2$. If $1 \leq d(G) \leq 2$, then G has at least one edge; observe that the sum of the weights of the edges incident with the vertex of G of maximum degree is one, thus $R'(G) \ge$ $1 \geq d(G)/2$. Therefore, $d(G) \geq 3$.

For two vertices x and y of a graph H, let $d_H(x, y)$ denote the distance between x and y in H .

Lemma 4. If v is a cut-vertex in G, then all components of $G - v$ except for one consist of a single vertex.

Proof. Assume for a contradiction that $G-v$ has two components with more than one vertex. Then, there exist induced subgraphs $G_1, G_2 \subseteq G$ such that $G_1 \cup G_2 = G$, $V(G_1) \cap V(G_2) = \{v\}$ and $G_i - v$ has a component with more than one vertex, for $i \in \{1, 2\}$.

For $i \in \{1, 2\}$, let G_i' be the graph obtained from G_i by adding $\deg_{G_{3-i}}(v)$ pendant vertices adjacent to v and let v_i be one of these new vertices. Observe that $R'(G'_1) + R'(G'_2) = R'(G) + 1$. Furthermore, consider any two vertices $x, y \in V(G)$. If $x, y \in V(G_1)$, then $d_G(x, y) = d_{G'_1}(x, y) \leq d(G'_1) \leq d(G'_1) + d(G'_2)$ $d(G'_2)-2$. By symmetry, if $x, y \in V(G_2)$, then $d_G(x, y) \leq d(G'_1) + d(G'_2) - 2$. Finally, if say $x \in V(G_1)$ and $y \in V(G_2)$, then $d_G(x, y) = d_{G_1}(x, v) +$ $d_{G_2}(y, v) = d_{G'_1}(x, v_1) - 1 + d_{G'_2}(y, v_2) - 1 \leq d(G'_1) + d(G'_2) - 2$. We conclude that $d(G) \leq d(G'_1) + d(G'_2) - 2$.

Since both G'_1 and G'_2 have fewer edges than G, the minimality of G implies that

$$
R'(G) = R'(G'_1) + R'(G'_2) - 1 \ge \frac{d(G'_1)}{2} + \frac{d(G'_2)}{2} - 1 \ge \frac{d(G)}{2},
$$

which contradicts the assumption that G is a counterexample to Theorem 3. \Box

A vertex v is *locally minimal* if its degree is smaller or equal to the degrees of its neighbors.

Lemma 5. Let $v \in V(G)$ be a locally minimal vertex. Then $\deg(v)=1$, the neighbor of v has degree at least three and $d(G - v) = d(G) - 1$.

Proof. Suppose first that $deg(v) > 1$. Let w be a neighbor of v and k the number of neigbors of w distinct from v whose degree is smaller than deg(w). Note that $k \leq \deg(w) - 1$. We have

$$
R'(G - vw) = R'(G) - \frac{1}{\deg(w)} + k \left(\frac{1}{\deg(w) - 1} - \frac{1}{\deg(w)} \right)
$$

= $R'(G) - \frac{1}{\deg(w)} + \frac{k}{\deg(w)(\deg(w) - 1)}$
 $\leq R'(G).$

Since v is locally minimal, every neighbor of v has degree at least deg(v) ≥ 2 , thus by Lemma 4, v is not a cut-vertex. It follows that $G - vw$ is connected, hence $d(G - vw) \geq d(G)$. By the minimality of G, we obtain $R'(G) \geq$ $R'(G-vw) \geq d(G-vw)/2 \geq d(G)/2$, which is a contradiction.

Let us now consider the case that $deg(v) = 1$. Then $d(G - v)/2 \le R'(G (v) \le R'(G) < d(G)/2$, and thus $d(G - v) < d(G)$. Removing the pendant vertex v cannot decrease the diameter by more than one, thus $d(G - v) =$ $d(G)$ −1. Since $d(G)$ > 3, the neighbor w of v has degree at least two, and if $deg(w) = 2$, then v is the only neighbor of w of degree smaller than $deg(w)$. It follows that if $deg(w) = 2$, then $R'(G - v) = R'(G) - 1/2$. We conclude that $R'(G) = R'(G - v) + 1/2 \ge d(G - v)/2 + 1/2 = d(G)/2$, which is a contradiction. This implies that $deg(w) \geq 3$.

Let L be the set of vertices of G of degree one. Note that a vertex of G of the smallest degree is locally minimal, thus by Lemma 5, $L \neq \emptyset$.

Lemma 6. If the distance between two vertices u and v in G is $d(G)$, then $L \subseteq \{u, v\}.$

Proof. Suppose that there exists a vertex $w \in L \setminus \{u, v\}$. Then w is locally minimal and $d(G - w) = d(G)$, contradicting Lemma 5. minimal and $d(G - w) = d(G)$, contradicting Lemma 5.

Lemma 6 implies that $|L| < 2$. Lemma 5 shows that all vertices of degree $d > 1$ are incident with an edge whose weight is $1/d$; thus, if many vertices have small degree, then these edges contribute a lot to $R'(G)$. On the other hand, if many vertices have large degree, then G has many edges and $R'(G)$ is large. Let us now formalize this intuition.

Lemma 7. $d(G) > \sqrt{8(n-3)} - 1$, and thus $n \le \left| \frac{d^2(G) + 2d(G)}{8} \right|$ $\frac{+2d(G)}{8}$ + 3.

Proof. Let $d_1 \geq d_2 \geq \ldots \geq d_n$ be the degree sequence of G. For $1 \leq i \leq n$, let v_i be the vertex of G of degree d_i . For each $i \geq 1$, the sum of the weights of the edges incident with v_i , but not incident with v_j for any $j < i$, is at least $1 - (i - 1)/d_i$. We conclude that the edges incident with the vertices v_1, v_2, \ldots, v_t contribute at least $t - \sum_{i=1}^t \frac{i-1}{d_i} \geq t - \frac{t(t-1)}{2d_t}$ to $R'(G)$. Let t_0 be the largest integer such that $d_{t_0} \geq t_0 - 1$; thus, for each $i > t_0$, $d_i \leq d_{t_0+1} < (t_0+1)-1 = t_0$. Then the sum of the weights of the edges incident with the vertices $v_1, v_2, \ldots, v_{t_0}$ is at least $t_0 - \frac{t_0(t_0-1)}{2(t_0-1)} = \frac{t_0}{2}$.

By Lemma 5, any vertex $v \notin L$ has a neighbor $s(v)$ with strictly smaller degree. Let $X = \{v_i s(v_i) | i \ge t_0 + 1, v_i \notin L\}$. Note that the edges in X are pairwise distinct, thus $|X| \geq n - t_0 - 2$. None of the edges in X is incident

with the vertices v_1, \ldots, v_{t_0} , hence each of them has weight at least $\frac{1}{t_0-1}$, and

$$
R'(G) \geq \frac{t_0}{2} + \frac{n - t_0 - 2}{t_0 - 1}
$$

=
$$
\frac{t_0 - 1}{2} + \frac{n - 3}{t_0 - 1} - \frac{1}{2}
$$

$$
\geq \sqrt{2(n - 3)} - \frac{1}{2},
$$

where the last inequality holds since $x + y \ge 2\sqrt{xy}$ for all $x, y \ge 0$. As G is a counterexample to Theorem 3, $d(G) > 2R'(G) \geq \sqrt{8(n-3)} - 1$. This is equivalent to $d^2(G)+2d(G)+1>8(n-3)$. Since both sides of this inequality are integers, $d^2(G) + 2d(G) \geq 8(n-3)$, and thus

$$
n \le \left\lfloor \frac{d^2(G) + 2d(G)}{8} \right\rfloor + 3.
$$

Let w be a neigbor of a vertex of degree one. By Lemma 5, w has degree at least three, and since $d(G) \geq 3$, at least one vertex of G is not adjacent to w. We conclude that $n \geq 5$, and by Lemma 7, $d(G) > 3$. Lemma 5 also implies that the vertices of G of small degree must be close to L :

Lemma 8. If the distance of a vertex v from L is at least $k > 0$, then $deg(v) \geq k+2$.

Proof. By Lemma 5, each vertex not in L has a neighbor of strictly smaller degree, thus there exists a path P from v to L such that the degrees on P are decreasing. Also, the vertex in P that has a neighbor in L has degree at least three. Since P has length at least k, we have $\deg(v) \geq 3+\ell(P)-1 \geq k+2$.

Choose a vertex $v_0 \in L$, and for each integer i, let L_i be the set of vertices of G at the distance i from v_0 , as illustrated in Figure 1. Let δ_i be the minimum and Δ_i the maximum degree of a vertex in L_i , and let $n_i = |L_i|$. Observe that $n_0 = n_1 = 1$, $n_{d(G)} \ge 1$ and $n = \sum_{i=0}^{d(G)} n_i$. Furthermore, by Lemma 6, if $|L| > 1$ then $n_{d(G)} = 1$ and $L = L_0 \cup L_{d(G)}$.

For an integer i, let $\overline{i} = \min(i, d(G)-i)$. Note that the distance between L and L_i is at least \overline{i} . By Lemma 8, we have $\Delta_i \ge \delta_i \ge \overline{i}+2$ for $1 \le i \le d(G)-1$.

 \Box

Figure 1: A graph G with vertices partitioned into layers L_0, L_1, \ldots, L_d .

Also, since all neighbors of a vertex in L_i belong to $L_{i-1} \cup L_i \cup L_{i+1}$, it follows that $\Delta_i \leq n_{i-1} + n_i + n_{i+1} - 1$, and thus $n_{i-1} + n_i + n_{i+1} \geq \overline{i} + 3$.

By Lemma 4, $n_i \geq 2$ for $2 \leq i \leq d(G) - 2$, and thus $n \geq 2d(G) - 2$. Together with Lemma 7, we obtain

$$
2d(G) - 2 \le n \le \frac{d^2(G) + 2d(G)}{8} + 3,
$$

which implies $d(G) \leq 4$ or $d(G) \geq 10$. If $d(G) = 4$, then $n_1 + n_2 + n_3 \geq$ $\overline{2}+3=5$, and thus $n \geq 7 > \frac{d^2(G)+2d(G)}{8}+3$. This contradicts Lemma 7, hence $d(G) \geq 10$.

Let us now derive some formulas dealing with \overline{i} that we later use to estimate the sizes of the layers L_i .

Lemma 9. The following holds:

(a)

$$
\sum_{i=0}^{d(G)} \bar{i} \ge \frac{d^2(G) - 1}{4}.
$$

(b)

$$
\sum_{i=0}^{d(G)} \bar{i}^2 \ge \frac{d^3(G) - d(G)}{12}.
$$

Proof. We use the well-known formulas $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$ and $\sum_{i=0}^{k} i^2 =$ $\frac{k(k+1)(2k+1)}{6}$.

If $d(G)$ is odd, then

$$
\sum_{i=0}^{d(G)} \overline{i} = 2 \sum_{i=0}^{(d(G)-1)/2} i = \frac{d^2(G)-1}{4}
$$

and

$$
\sum_{i=0}^{d(G)} \bar{i}^2 = 2 \sum_{i=0}^{(d(G)-1)/2} i^2 = \frac{d^3(G) - d(G)}{12}.
$$

If $d(G)$ is even, then

$$
\sum_{i=0}^{d(G)} \overline{i} = \frac{d(G)}{2} + 2\sum_{i=0}^{d(G)/2 - 1} i = \frac{d^2(G)}{4} > \frac{d^2(G) - 1}{4}
$$

and

$$
\sum_{i=0}^{d(G)} \overline{i}^2 = \frac{d^2(G)}{4} + 2\sum_{i=0}^{d(G)/2-1} i^2 = \frac{d^3(G) + 2d(G)}{12} > \frac{d^3(G) - d(G)}{12}.
$$

Let R_i be the sum of the weights of the edges induced by L_i plus half of the weights of the edges joining vertices of L_i with vertices of L_{i-1} and L_{i+1} . Observe that $R'(G) = \sum_{i \geq 0} R_i$. Also, the weight of each edge incident with a vertex of L_i is at least $\frac{1}{\max(\Delta_{i-1}, \Delta_i, \Delta_{i+1})}$, thus $R_i \geq \frac{n_i \delta_i}{2 \max(\Delta_{i-1}, \Delta_i, \Delta_{i+1})}$. Let $s_i = n_{i-1} + n_i + n_{i+1}$ and $W_i = \frac{n_i(\bar{i}+2)}{\max(s_{i-1}, s_i, s_{i+1})-1}$. Since $\Delta_i \leq s_i - 1$ and $\delta_i \geq \bar{i} + 2$ for $1 \leq i \leq d(G) - 1$, we have $R_i \geq W_i/2$ for $2 \leq i \leq d(G) - 2$. Note also that $s_i \geq \delta_i + 1 \geq \overline{i} + 3$ for $1 \leq i \leq d(G) - 1$.

We can now show that it suffices to consider graphs of small diameter.

Lemma 10. The diameter of G is at most 35.

Proof. Suppose that $3 \leq i \leq d(G) - 3$. Let

$$
X_i = \frac{s_i(\overline{i} + 1)}{\max(s_{i-2}, s_{i-1}, s_i, s_{i+1}, s_{i+2}) - 1}.
$$

Observe that $W_{i-1} + W_i + W_{i+1} \geq X_i$. Let

$$
M_i = s_{i-2} + s_{i-1} + 2s_i + s_{i+1} + s_{i+2} + \alpha X_i,
$$

where $\alpha \geq 0$ is a constant to be chosen later. Let $j \in \{i-2,\ldots,i+2\}$ be the index such that $s_j = \max(s_{i-2}, s_{i-1}, s_i, s_{i+1}, s_{i+2}).$

Recall that $s_i \ge \tilde{i} + 3$, and thus $s_{i-2}, s_{i+2} \ge \tilde{i} + 1$ and $s_{i-1}, s_{i+1} \ge \tilde{i} + 2$. If $j = i$, then $\frac{s_i}{\max(s_{i-2}, s_{i-1}, s_i, s_{i+1}, s_{i+2})-1} > 1$, and thus

$$
M_i > 6\bar{i} + 12 + \alpha(\bar{i} + 1) \ge (6 + \alpha)\bar{i} + 12 + \alpha.
$$
 (1)

On the other hand, if $j \neq i$, then

$$
M_i \geq 5\overline{i} + 11 + (s_j - 1) + \alpha \frac{(\overline{i} + 1)(\overline{i} + 3)}{s_j - 1}
$$

\n
$$
\geq 5\overline{i} + 11 + 2\sqrt{\alpha(\overline{i} + 1)(\overline{i} + 3)}
$$

\n
$$
> 5\overline{i} + 11 + 2\sqrt{\alpha(\overline{i} + 1)}
$$

\n
$$
= (5 + 2\sqrt{\alpha})\overline{i} + 11 + 2\sqrt{\alpha}.
$$
 (2)

The expression (2) is smaller or equal to (1), giving the lower bound for M_i .

For $m \in \{0, 1, 2\}$, let B_m be the set of integers between 3 and $d(G) - 3$ (inclusive) whose remainder modulo 3 is m, and $b_m = \max B_m$. Let

$$
S = 4n_0 + 2n_1 + 2n_{d(G)-1} + 4n_{d(G)} + s_1 + s_2 + s_{d(G)-2} + s_{d(G)-1}.
$$

Notice that $S \geq 30$. On one hand, we have $X_i \leq W_{i-1} + W_i + W_{i+1} \leq$ $2(R_{i-1} + R_i + R_{i+1}),$ and thus

$$
\sum_{i \in B_m} M_i \leq s_{1+m} + s_{2+m} + s_{b_m+1} + s_{b_m+2} + 2 \sum_{i=3+m}^{b_m} s_i + 2\alpha \sum_{i=2+m}^{b_m+1} R_i
$$
\n
$$
\leq -S + 4n_0 + 2n_1 + 2n_{d(G)-1} + 4n_{d(G)} + 2 \sum_{i=1}^{d(G)-1} s_i + 2\alpha \sum_{i\geq 0} R_i
$$
\n
$$
= -S + 6n + 2\alpha R'(G)
$$
\n
$$
< -30 + 6n + \alpha d(G).
$$

On the other hand,

$$
\sum_{i \in B_m} M_i \geq \sum_{i \in B_m} \left((5 + 2\sqrt{\alpha})\overline{i} + 11 + 2\sqrt{\alpha} \right)
$$

=
$$
(11 + 2\sqrt{\alpha})|B_m| + (5 + 2\sqrt{\alpha}) \sum_{i \in B_m} \overline{i}.
$$

Summing the two inequalities above over the three choices of m , we obtain

$$
(11 + 2\sqrt{\alpha})(d(G) - 5) + (5 + 2\sqrt{\alpha})\sum_{i=3}^{d(G)-3} \overline{i} < 18n + 3\alpha d(G) - 90.
$$

Applying Lemma 9(a), we obtain $\sum_{i=3}^{d(G)-3} \overline{i} \geq \frac{d^2(G)-25}{4}$, and thus

$$
(11 + 2\sqrt{\alpha})(d(G) - 5) + (5 + 2\sqrt{\alpha})\frac{d^2(G) - 25}{4} < 18n + 3\alpha d(G) - 90
$$

$$
(5 + 2\sqrt{\alpha})d^2(G) + 4(11 + 2\sqrt{\alpha} - 3\alpha)d(G) < 72n + 90\sqrt{\alpha} - 15.
$$

By Lemma 7, $n \leq \frac{d^2(G) + 2d(G)}{8} + 3$, and thus

 $(5+2\sqrt{\alpha})d^2(G) + 4(11+2\sqrt{\alpha}-3\alpha)d(G) < 9(d^2(G)+2d(G)) + 90\sqrt{\alpha}+201$ $(2\sqrt{\alpha} - 4)d^2(G) + (26 + 8\sqrt{\alpha} - 12\alpha)d(G) < 90\sqrt{\alpha} + 201.$

Setting $\alpha = 10$, this implies that $d(G) < 35.5$, and since $d(G)$ is an integer, the claim of the lemma follows. \Box

Lemma 8 gives a lower bound for the minimum degrees δ_i in the layers L_i , which can in turn be used to bound the size of the layers and consequently the number of vertices of G . The lower bound on n obtained in this way is approximately $d^2(G)/12$, and thus it does not directly give a contradiction with Lemma 7. However, the following lemma shows that this lower bound on n can be increased if the maximum degree of G is large (let us note that $\Delta(G) \geq \delta_{\lfloor d(G)/2 \rfloor} \geq \lfloor d(G)/2 \rfloor + 2$. Together with Lemma 7, this can be used to bound $\Delta(G)$.

Lemma 11. The following holds: $n \geq (\Delta(G) - \lfloor d(G)/2 \rfloor - 2) + \frac{d^2(G) + 12d(G) + 3}{12}$.

Proof. Let j be an index such that a vertex of the degree $\Delta(G)$ lies in L_j , and let B be the set of integers i such that $1 \leq i \leq d(G) - 1$ and $3|i - j$. Let $a = \min B - 1$ and $b = \max B + 1$. Observe that

$$
n = \sum_{i \in B} s_i + \sum_{i=0}^{a-1} n_i + \sum_{i=b+1}^{d(G)} n_i.
$$

For $i \in B$, we have that $s_i \geq \delta_i + 1 \geq \overline{i} + 3$. Furthermore, if $j < d(G)$, then $s_j \geq \Delta(G)+1 \geq (\bar{j}+3)+(\Delta(G)-|d(G)/2|-2)$, and if $j=d(G)$, then $b = d(G) - 2$ and $n_{d(G)-1} + n_{d(G)} \geq \Delta(G) + 1 > 2 + (\Delta(G) - \lfloor d(G)/2 \rfloor - 2).$ Also, $\bar{i} \geq (\bar{i} - 1 + \bar{i} + \bar{i} + 1)/3$. Using Lemma 9(a), we conclude that

$$
n \geq \Delta(G) - \lfloor d(G)/2 \rfloor - 2 + \sum_{i=a}^{b} \left(\frac{\overline{i}}{3} + 1\right) + a + (d(G) - b)
$$

\n
$$
\geq \Delta(G) - \lfloor d(G)/2 \rfloor - 8/3 + \sum_{i=0}^{d(G)} \left(\frac{\overline{i}}{3} + 1\right)
$$

\n
$$
\geq \Delta(G) - \lfloor d(G)/2 \rfloor - 5/3 + d(G) + \frac{d^2(G) - 1}{12}
$$

\n
$$
= (\Delta(G) - \lfloor d(G)/2 \rfloor - 2) + \frac{d^2(G) + 12d(G) + 3}{12}.
$$

Next, we show that the maximum degree of G is large. This, combined with the previous lemma, will give us a contradiction.

 \Box

Lemma 12. Let $k = \lceil d(G)/2 \rceil$, and let $d_1 \geq d_2 \geq \ldots \geq d_n$ be the degree sequence of G. Then $\sum_{i=1}^{k} d_i \geq \frac{d^3(G) + 12d^2(G) + 35d(G) + 288}{72}$, and thus $\Delta(G) \geq$ $\frac{d^3(G)+12d^2(G)+35d(G)+288}{4}$ $rac{G)+35d(G)+288}{72k}$.

Proof. For $1 \leq i \leq n$, let v_i be the vertex of G of degree d_i . Let k_i be the number of neighbors of v_i in $\{v_j | j > i\}$. Note that $\sum_{i=1}^n k_i = |E(G)| =$
 $\frac{1}{n} \sum_{i=1}^n d_i P(G) - \sum_{i=1}^n k_i$ and $0 \le k_i \le d_i$. $\frac{1}{2}\sum_{i=1}^n d_i, R'(G) = \sum_{i=1}^n \frac{k_i}{d_i}$ and $0 \le k_i \le d_i$.

Let m be the index such that there exists a sequence x_1, x_2, \ldots, x_n satisfying

- $x_i = d_i$ for $1 \leq i \leq m-1$,
- $0 \leq x_m < d_m$,
- $x_i = 0$ for $m + 1 \leq i \leq n$, and
- $\sum_{i=1}^n x_i = |E(G)|$.

Since $\frac{a}{b} + \frac{c}{d} \ge \frac{a+1}{b} + \frac{c-1}{d}$ when $b \ge d$, we conclude that

$$
\frac{d(G)}{2} > R'(G) = \sum_{i=1}^{n} \frac{k_i}{d_i} \ge \sum_{i=1}^{n} \frac{x_i}{d_i} \ge m - 1,
$$

i.e., $m \leq [d(G)/2]$. Furthermore, $\sum_{i=1}^{m} d_i \geq 1 + \sum_{i=1}^{n} x_i = 1 + |E(G)|$. Let $t_i = n_{i-1}\delta_{i-1} + n_i\delta_i + n_{i+1}\delta_{i+1}$. Note that

$$
t_i \ge n_{i-1}(\overline{i-1}+2) + n_i(\overline{i}+2) + n_{i+1}(\overline{i+1}+2) \ge s_i(\overline{i}+1)
$$

for $2 \le i \le d(G)-2$. Also, $t_2 \ge s_2(\overline{2}+1)+n_2$ and $t_{d(G)-2} \ge s_{d(G)-2}(\overline{d(G)-2}+1)$ $1) + n_{d(G)-2}$. Using Lemma 9(b), we obtain

$$
6|E(G)| \geq 3\sum_{i=0}^{d(G)} n_i \delta_i
$$
\n
$$
= 3\delta_0 n_0 + 3\delta_{d(G)} n_{d(G)} + 2\delta_1 n_1 + 2\delta_{d(G)-1} n_{d(G)-1} + \delta_2 n_2 + \delta_{d(G)-2} n_{d(G)-2} + \sum_{i=2}^{d(G)-2} t_i
$$
\n
$$
\geq 3(n_0 + n_{d(G)}) + 6(n_1 + n_{d(G)-1}) + 5(n_2 + n_{d(G)-2}) + \sum_{i=2}^{d(G)-2} s_i(\overline{i} + 1)
$$
\n
$$
\geq 38 + \sum_{i=2}^{d(G)-2} s_i(\overline{i} + 1)
$$
\n
$$
\geq 38 + \sum_{i=2}^{d(G)-2} (\overline{i} + 3)(\overline{i} + 1)
$$
\n
$$
\geq \frac{d^3(G) + 12d^2(G) + 35d(G) + 216}{12}.
$$

It follows that

$$
\sum_{i=1}^{m} d_i \ge \frac{d^3(G) + 12d^2(G) + 35d(G) + 288}{72}.
$$

Since $k \geq m$, the lemma holds.

We are now ready to finish the proof.

 \Box

d(G)	$LB_{d(G)}$	$\overline{U}B_{d(G)}$	d(G)	$LB_{d(G)}$	$UB_{d(G)}$
10	8	$\sqrt{6}$	23	23	19
11	8	$\overline{5}$	24	26	22
12	10	7	25	26	23
13	10	7	26	29	26
14	12	9	$27\,$	30	27
15	12	9	28	33	30
16	14	11	29	34	31
17	15	11	30	37	34
18	17	13	31	38	35
19	17	13	32	41	39
20	20	16	33	42	41
21	20	17	34	45	44
22	23	19	35	46	45

Table 1: Values of the lower bound $LB_{d(G)}$ and the upper bound $UB_{d(G)}$ for $\Delta(G)$ from proof of Theorem 3.

Proof of Theorem 3. By Lemma 10, the diameter of the minimal counterexample G is at most 35. Also, as we observed before, $d(G) \geq 10$. Lemmas 7 and 11 imply that

$$
\Delta(G) \le \lfloor d(G)/2 \rfloor + 5 + \left\lfloor \frac{d^2(G) + 2d(G)}{8} \right\rfloor - \left\lceil \frac{d^2(G) + 12d(G) + 3}{12} \right\rceil.
$$

We denote this upper bound on $\Delta(G)$ by $UB_{d(G)}$. Lemma 12 gives a lower bound on $\Delta(G)$, which we denote by $LB_{d(G)}$. For $10 \leq d(G) \leq 35$, it holds that $UB_{d(G)}$ < $LB_{d(G)}$, which is a contradiction. See Table 1 for values of $LB_{d(G)}$ and $UB_{d(G)}$. \Box

References

[1] M. Aouchiche, P. Hansen and M. Zheng, Variable neighborhood search for extremal graphs. 19. Further conjectures and results about the Randić index, MATCH Commun. Math. Comput. Chem. 58 (2007), 83-102.

- Preprint series, IMFM, ISSN 2232-2094, no. 1118, April 9, 2010 Preprint series, IMFM, ISSN 2232-2094, no. 1118, April 9, 2010
- [2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. **50** (1998), 225–233.
- [3] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs 1: The AutographiX system, Discrete Math. **212** (2000), 29–44.
- [4] S. Fajtlowicz, On conjectures of Graffiti, Discrete Math. **72** (1988), 113– 118.
- [5] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [6] L. B. Kier and L. H. Hall, Molecular Connectivity in structure-Activity Analysis, Research Studies Press-Wiley, Chichester(UK), 1986.
- [7] X. Li and I. Gutman, *Mathematical Aspects of Randić Type Molec*ular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.
- [8] X. Li and Y. Shi, On the Randić index and the diameter, the average distance, manuscript, 2009.
- [9] B. Liu and I. Gutman, On a conjecture on Randíc indices, MATCH Commun. Math. Comput. Chem. **62** (2009), 143–154.
- [10] X. Li and Y. Shi, A survey on the Randić index, $MATCH$ Commun. Math. Comput. Chem. **59** (2008), 127–156.
- [11] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. **97** (1975), 6609–6615.
- [12] Z. You and B. Liu, On a conjecture of the Randić index, *Discrete Appl.* Math. **157** (2009), 1766–1772.