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Abstract

The Randić index R(G) of a nontrivial connected graph G is de-
fined as the sum of the weights (d(u)d(v))−

1
2 over all edges e = uv

of G. We prove that R(G) ≥ d(G)/2, where d(G) is the diameter
of G. This immediately implies that R(G) ≥ r(G)/2, which is the
closest result to the well-known Grafiti conjecture R(G) ≥ r(G)−1 of
Fajtlowicz [4], where r(G) is the radius of G. Asymptotically, our re-
sult approaches the bound R(G)

d(G) ≥ n−3+2
√

2
2n−2 conjectured by Aouchiche,

Hansen and Zheng [1].

1 Introduction

All the graphs considered in this paper are simple undirected ones. The
eccentricity of a vertex v of a graph G is the greatest distance from v to any
other vertex of G. The radius (resp. diameter) of a graph is the minimum
(resp. maximum) over eccentricities of all vertices of the graph. The radius
and diameter will be denoted by r(G) and d(G), respectively.
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There are many different kinds of chemical indices. Some of them are
distance based indices like Wiener index, some are degree based indices like
Randić index. The Randić index R(G) of a graph G is defined as

R(G) =
∑

uv∈E(G)

1√
deg(u) deg(v)

.

It is also known as connectivity index or branching index. Randić [11] in 1975
proposed this index for measuring the extent of branching of the carbon-atom
skeleton of saturated hydrocarbons. There is also a good correlation be-
tween Randić index and several physicochemical properties of alkanes: boil-
ing points, surface areas, energy levels, etc. In 1998 Bollobás and Erdös [2]
generalized this index by replacing the square-root by power of any real num-
ber, which is called the general Randić index. For a comprehensive survey
of its mathematical properties, see the book of Li and Gutman [7], or recent
survey of Li and Shi [10]. See also the books of Kier and Hall [5, 6] for
chemical properties of this index.

There are several conjectures linking Randić index to other graph param-
eters. Fajtlowicz [4] posed the following problem:

Conjecture 1. For every connected graph G, it holds R(G) ≥ r(G) − 1.

Caporossi and Hansen [3] showed that R(T ) ≥ r(T ) +
√

2 − 3/2 for all
trees T . Liu and Gutman [9] verified the conjecture for unicyclic graphs,
bicyclic graphs and chemical graphs with cyclomatic number c(G) ≤ 5. You
and Liu [12] proved that the conjecture is true for biregular graphs, tricyclic
graphs and connected graphs of order n ≤ 10.

Regarding the diameter, Aouchiche, Hansen and Zheng [1] conjectured
the following:

Conjecture 2. Any connected graph G of order n ≥ 3 satisfies

R(G) − d(G) ≥
√

2 − n + 1

2
and

R(G)

d(G)
≥ n − 3 + 2

√
2

2n − 2
,

with equalities if and only if G is a path on n vertices.

Li and Shi [8] proved the first inequality for graphs of minimum degree at
least 5. They also proved the second inequality for graphs on n ≥ 15 vertices
with minimum degree at least n/5.
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The Randić index turns out to be quite difficult parameter to work with.
Also, Conjecture 1 is quite weak for graphs with small radius; for instance,
R(K1,n) =

√
n, while r(K1,n) = 1 for all n. Instead, we work with a different

parameter R′(G) defined by

R′(G) =
∑

uv∈E(G)

1

max(deg(u), deg(v))
.

Note that R(G) ≥ R′(G) for every graph G, with the equality achieved only
if every connected component of G is regular. The main result of this paper
is the following:

Theorem 3. For any connected graph G, R′(G) ≥ d(G)/2.

Since R(G) ≥ R′(G) and d(G) ≥ r(G), by our theorem, we immediately
obtain that R(G) ≥ r(G)/2. This result supports Conjecture 1. Our result
solves asymptotically the second claim of Conjecture 2. Let us remark that
the bound of Theorem 3 is sharp, with the equality achieved for example by
paths of length at least two. Since Conjecture 2 is also tight for paths, in
order to prove Conjecture 2 using our technique, it would be necessary to
consider the gap R(G) − R′(G).

2 Proof of the main theorem

We prove the theorem by contradiction. In the rest of the paper, assume that
G is a connected graph such that R′(G) < d(G)/2 and G has the smallest
number of edges among the graphs with this property, i.e., R′(H) ≥ d(H)/2
for every connected graph H with |E(H)| < |E(G)|. Let n = |V (G)|. For an
edge uv, a weight of uv is 1

max(deg(u),deg(v))
.

If d(G) = 0, then G = K1 and R′(G) = 0 = d(G)/2. If 1 ≤ d(G) ≤ 2,
then G has at least one edge; observe that the sum of the weights of the
edges incident with the vertex of G of maximum degree is one, thus R′(G) ≥
1 ≥ d(G)/2. Therefore, d(G) ≥ 3.

For two vertices x and y of a graph H, let dH(x, y) denote the distance
between x and y in H.

Lemma 4. If v is a cut-vertex in G, then all components of G−v except for
one consist of a single vertex.
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Proof. Assume for a contradiction that G−v has two components with more
than one vertex. Then, there exist induced subgraphs G1, G2 ⊆ G such that
G1 ∪G2 = G, V (G1)∩ V (G2) = {v} and Gi − v has a component with more
than one vertex, for i ∈ {1, 2}.

For i ∈ {1, 2}, let G′
i be the graph obtained from Gi by adding degG3−i

(v)
pendant vertices adjacent to v and let vi be one of these new vertices. Observe
that R′(G′

1) + R′(G′
2) = R′(G) + 1. Furthermore, consider any two vertices

x, y ∈ V (G). If x, y ∈ V (G1), then dG(x, y) = dG′
1
(x, y) ≤ d(G′

1) ≤ d(G′
1) +

d(G′
2)− 2. By symmetry, if x, y ∈ V (G2), then dG(x, y) ≤ d(G′

1)+d(G′
2)− 2.

Finally, if say x ∈ V (G1) and y ∈ V (G2), then dG(x, y) = dG1(x, v) +
dG2(y, v) = dG′

1
(x, v1)− 1 + dG′

2
(y, v2)− 1 ≤ d(G′

1) + d(G′
2)− 2. We conclude

that d(G) ≤ d(G′
1) + d(G′

2) − 2.
Since both G′

1 and G′
2 have fewer edges than G, the minimality of G

implies that

R′(G) = R′(G′
1) + R′(G′

2) − 1 ≥ d(G′
1)

2
+

d(G′
2)

2
− 1 ≥ d(G)

2
,

which contradicts the assumption that G is a counterexample to Theorem 3.

A vertex v is locally minimal if its degree is smaller or equal to the degrees
of its neighbors.

Lemma 5. Let v ∈ V (G) be a locally minimal vertex. Then deg(v) = 1, the
neighbor of v has degree at least three and d(G − v) = d(G) − 1.

Proof. Suppose first that deg(v) > 1. Let w be a neighbor of v and k the
number of neigbors of w distinct from v whose degree is smaller than deg(w).
Note that k ≤ deg(w) − 1. We have

R′(G − vw) = R′(G) − 1

deg(w)
+ k

(
1

deg(w) − 1
− 1

deg(w)

)

= R′(G) − 1

deg(w)
+

k

deg(w)(deg(w) − 1)

≤ R′(G).

Since v is locally minimal, every neighbor of v has degree at least deg(v) ≥ 2,
thus by Lemma 4, v is not a cut-vertex. It follows that G− vw is connected,
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hence d(G − vw) ≥ d(G). By the minimality of G, we obtain R′(G) ≥
R′(G − vw) ≥ d(G − vw)/2 ≥ d(G)/2, which is a contradiction.

Let us now consider the case that deg(v) = 1. Then d(G−v)/2 ≤ R′(G−
v) ≤ R′(G) < d(G)/2, and thus d(G − v) < d(G). Removing the pendant
vertex v cannot decrease the diameter by more than one, thus d(G − v) =
d(G)− 1. Since d(G) ≥ 3, the neighbor w of v has degree at least two, and if
deg(w) = 2, then v is the only neighbor of w of degree smaller than deg(w).
It follows that if deg(w) = 2, then R′(G − v) = R′(G) − 1/2. We conclude
that R′(G) = R′(G − v) + 1/2 ≥ d(G − v)/2 + 1/2 = d(G)/2, which is a
contradiction. This implies that deg(w) ≥ 3.

Let L be the set of vertices of G of degree one. Note that a vertex of G
of the smallest degree is locally minimal, thus by Lemma 5, L 
= ∅.
Lemma 6. If the distance between two vertices u and v in G is d(G), then
L ⊆ {u, v}.
Proof. Suppose that there exists a vertex w ∈ L \ {u, v}. Then w is locally
minimal and d(G − w) = d(G), contradicting Lemma 5.

Lemma 6 implies that |L| ≤ 2. Lemma 5 shows that all vertices of degree
d > 1 are incident with an edge whose weight is 1/d; thus, if many vertices
have small degree, then these edges contribute a lot to R′(G). On the other
hand, if many vertices have large degree, then G has many edges and R′(G)
is large. Let us now formalize this intuition.

Lemma 7. d(G) >
√

8(n − 3) − 1, and thus n ≤
⌊

d2(G)+2d(G)
8

⌋
+ 3.

Proof. Let d1 ≥ d2 ≥ . . . ≥ dn be the degree sequence of G. For 1 ≤ i ≤ n,
let vi be the vertex of G of degree di. For each i ≥ 1, the sum of the
weights of the edges incident with vi, but not incident with vj for any j < i,
is at least 1 − (i − 1)/di. We conclude that the edges incident with the

vertices v1, v2, . . . , vt contribute at least t − ∑t
i=1

i−1
di

≥ t − t(t−1)
2dt

to R′(G).
Let t0 be the largest integer such that dt0 ≥ t0 − 1; thus, for each i > t0,
di ≤ dt0+1 < (t0 + 1) − 1 = t0. Then the sum of the weights of the edges

incident with the vertices v1, v2, . . . , vt0 is at least t0 − t0(t0−1)
2(t0−1)

= t0
2
.

By Lemma 5, any vertex v 
∈ L has a neighbor s(v) with strictly smaller
degree. Let X = {vis(vi)|i ≥ t0 + 1, vi 
∈ L}. Note that the edges in X are
pairwise distinct, thus |X| ≥ n − t0 − 2. None of the edges in X is incident
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with the vertices v1, . . . , vt0 , hence each of them has weight at least 1
t0−1

,
and

R′(G) ≥ t0
2

+
n − t0 − 2

t0 − 1

=
t0 − 1

2
+

n − 3

t0 − 1
− 1

2

≥
√

2(n − 3) − 1

2
,

where the last inequality holds since x + y ≥ 2
√

xy for all x, y ≥ 0. As G is

a counterexample to Theorem 3, d(G) > 2R′(G) ≥ √
8(n − 3) − 1. This is

equivalent to d2(G)+2d(G)+1 > 8(n−3). Since both sides of this inequality
are integers, d2(G) + 2d(G) ≥ 8(n − 3), and thus

n ≤
⌊

d2(G) + 2d(G)

8

⌋
+ 3.

Let w be a neigbor of a vertex of degree one. By Lemma 5, w has degree
at least three, and since d(G) ≥ 3, at least one vertex of G is not adjacent
to w. We conclude that n ≥ 5, and by Lemma 7, d(G) > 3. Lemma 5 also
implies that the vertices of G of small degree must be close to L:

Lemma 8. If the distance of a vertex v from L is at least k > 0, then
deg(v) ≥ k + 2.

Proof. By Lemma 5, each vertex not in L has a neighbor of strictly smaller
degree, thus there exists a path P from v to L such that the degrees on P are
decreasing. Also, the vertex in P that has a neighbor in L has degree at least
three. Since P has length at least k, we have deg(v) ≥ 3+�(P )−1 ≥ k+2.

Choose a vertex v0 ∈ L, and for each integer i, let Li be the set of
vertices of G at the distance i from v0, as illustrated in Figure 1. Let δi be
the minimum and Δi the maximum degree of a vertex in Li, and let ni = |Li|.
Observe that n0 = n1 = 1, nd(G) ≥ 1 and n =

∑d(G)
i=0 ni. Furthermore, by

Lemma 6, if |L| > 1 then nd(G) = 1 and L = L0 ∪ Ld(G).
For an integer i, let i = min(i, d(G)−i). Note that the distance between L

and Li is at least i. By Lemma 8, we have Δi ≥ δi ≥ i+2 for 1 ≤ i ≤ d(G)−1.
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v0

L0 L1 L2 L3 Ld−1 Ld

· · ·

Figure 1: A graph G with vertices partitioned into layers L0, L1, . . . , Ld.

Also, since all neighbors of a vertex in Li belong to Li−1∪Li∪Li+1, it follows
that Δi ≤ ni−1 + ni + ni+1 − 1, and thus ni−1 + ni + ni+1 ≥ i + 3.

By Lemma 4, ni ≥ 2 for 2 ≤ i ≤ d(G) − 2, and thus n ≥ 2d(G) − 2.
Together with Lemma 7, we obtain

2d(G) − 2 ≤ n ≤ d2(G) + 2d(G)

8
+ 3,

which implies d(G) ≤ 4 or d(G) ≥ 10. If d(G) = 4, then n1 + n2 + n3 ≥
2 + 3 = 5, and thus n ≥ 7 > d2(G)+2d(G)

8
+ 3. This contradicts Lemma 7,

hence d(G) ≥ 10.
Let us now derive some formulas dealing with i that we later use to

estimate the sizes of the layers Li.

Lemma 9. The following holds:

(a)
d(G)∑
i=0

i ≥ d2(G) − 1

4
.

(b)
d(G)∑
i=0

i
2 ≥ d3(G) − d(G)

12
.

Proof. We use the well-known formulas
∑k

i=0 i = k(k+1)
2

and
∑k

i=0 i2 =
k(k+1)(2k+1)

6
.
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If d(G) is odd, then

d(G)∑
i=0

i = 2

(d(G)−1)/2∑
i=0

i =
d2(G) − 1

4

and
d(G)∑
i=0

i
2

= 2

(d(G)−1)/2∑
i=0

i2 =
d3(G) − d(G)

12
.

If d(G) is even, then

d(G)∑
i=0

i =
d(G)

2
+ 2

d(G)/2−1∑
i=0

i =
d2(G)

4
>

d2(G) − 1

4

and

d(G)∑
i=0

i
2

=
d2(G)

4
+ 2

d(G)/2−1∑
i=0

i2 =
d3(G) + 2d(G)

12
>

d3(G) − d(G)

12
.

Let Ri be the sum of the weights of the edges induced by Li plus half
of the weights of the edges joining vertices of Li with vertices of Li−1 and
Li+1. Observe that R′(G) =

∑
i≥0 Ri. Also, the weight of each edge incident

with a vertex of Li is at least 1
max(Δi−1,Δi,Δi+1)

, thus Ri ≥ niδi

2 max(Δi−1,Δi,Δi+1)
.

Let si = ni−1 + ni + ni+1 and Wi = ni(i+2)
max(si−1,si,si+1)−1

. Since Δi ≤ si − 1 and

δi ≥ i + 2 for 1 ≤ i ≤ d(G) − 1, we have Ri ≥ Wi/2 for 2 ≤ i ≤ d(G) − 2.
Note also that si ≥ δi + 1 ≥ i + 3 for 1 ≤ i ≤ d(G) − 1.

We can now show that it suffices to consider graphs of small diameter.

Lemma 10. The diameter of G is at most 35.

Proof. Suppose that 3 ≤ i ≤ d(G) − 3. Let

Xi =
si(i + 1)

max(si−2, si−1, si, si+1, si+2) − 1
.

Observe that Wi−1 + Wi + Wi+1 ≥ Xi. Let

Mi = si−2 + si−1 + 2si + si+1 + si+2 + αXi,
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where α ≥ 0 is a constant to be chosen later. Let j ∈ {i − 2, . . . , i + 2} be
the index such that sj = max(si−2, si−1, si, si+1, si+2).

Recall that si ≥ i + 3, and thus si−2, si+2 ≥ i + 1 and si−1, si+1 ≥ i + 2.
If j = i, then si

max(si−2,si−1,si,si+1,si+2)−1
> 1, and thus

Mi > 6i + 12 + α(i + 1) ≥ (6 + α)i + 12 + α. (1)

On the other hand, if j 
= i, then

Mi ≥ 5i + 11 + (sj − 1) + α
(i + 1)(i + 3)

sj − 1

≥ 5i + 11 + 2

√
α(i + 1)(i + 3)

> 5i + 11 + 2
√

α(i + 1)

= (5 + 2
√

α)i + 11 + 2
√

α. (2)

The expression (2) is smaller or equal to (1), giving the lower bound for Mi.
For m ∈ {0, 1, 2}, let Bm be the set of integers between 3 and d(G) − 3

(inclusive) whose remainder modulo 3 is m, and bm = max Bm. Let

S = 4n0 + 2n1 + 2nd(G)−1 + 4nd(G) + s1 + s2 + sd(G)−2 + sd(G)−1.

Notice that S ≥ 30. On one hand, we have Xi ≤ Wi−1 + Wi + Wi+1 ≤
2(Ri−1 + Ri + Ri+1), and thus

∑
i∈Bm

Mi ≤ s1+m + s2+m + sbm+1 + sbm+2 + 2
bm∑

i=3+m

si + 2α
bm+1∑

i=2+m

Ri

≤ −S + 4n0 + 2n1 + 2nd(G)−1 + 4nd(G) + 2

d(G)−1∑
i=1

si + 2α
∑
i≥0

Ri

= −S + 6n + 2αR′(G)

< −30 + 6n + αd(G).

On the other hand,
∑
i∈Bm

Mi ≥
∑
i∈Bm

(
(5 + 2

√
α)i + 11 + 2

√
α
)

= (11 + 2
√

α)|Bm| + (5 + 2
√

α)
∑
i∈Bm

i.
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Summing the two inequalities above over the three choices of m, we obtain

(11 + 2
√

α)(d(G) − 5) + (5 + 2
√

α)

d(G)−3∑
i=3

i < 18n + 3αd(G) − 90.

Applying Lemma 9(a), we obtain
∑d(G)−3

i=3 i ≥ d2(G)−25
4

, and thus

(11 + 2
√

α)(d(G) − 5) + (5 + 2
√

α)
d2(G) − 25

4
< 18n + 3αd(G) − 90

(5 + 2
√

α)d2(G) + 4(11 + 2
√

α − 3α)d(G) < 72n + 90
√

α − 15.

By Lemma 7, n ≤ d2(G)+2d(G)
8

+ 3, and thus

(5 + 2
√

α)d2(G) + 4(11 + 2
√

α − 3α)d(G) < 9(d2(G) + 2d(G)) + 90
√

α + 201

(2
√

α − 4)d2(G) + (26 + 8
√

α − 12α)d(G) < 90
√

α + 201.

Setting α = 10, this implies that d(G) < 35.5, and since d(G) is an
integer, the claim of the lemma follows.

Lemma 8 gives a lower bound for the minimum degrees δi in the layers Li,
which can in turn be used to bound the size of the layers and consequently
the number of vertices of G. The lower bound on n obtained in this way is
approximately d2(G)/12, and thus it does not directly give a contradiction
with Lemma 7. However, the following lemma shows that this lower bound
on n can be increased if the maximum degree of G is large (let us note that
Δ(G) ≥ δ�d(G)/2� ≥ �d(G)/2
+2). Together with Lemma 7, this can be used
to bound Δ(G).

Lemma 11. The following holds: n ≥ (Δ(G)−�d(G)/2
−2)+ d2(G)+12d(G)+3
12

.

Proof. Let j be an index such that a vertex of the degree Δ(G) lies in Lj,
and let B be the set of integers i such that 1 ≤ i ≤ d(G)− 1 and 3|i− j. Let
a = min B − 1 and b = max B + 1. Observe that

n =
∑
i∈B

si +
a−1∑
i=0

ni +

d(G)∑
i=b+1

ni.
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For i ∈ B, we have that si ≥ δi + 1 ≥ i + 3. Furthermore, if j < d(G), then
sj ≥ Δ(G) + 1 ≥ (j + 3) + (Δ(G) − �d(G)/2
 − 2), and if j = d(G), then
b = d(G) − 2 and nd(G)−1 + nd(G) ≥ Δ(G) + 1 > 2 + (Δ(G) − �d(G)/2
 − 2).
Also, i ≥ (i − 1 + i + i + 1)/3. Using Lemma 9(a), we conclude that

n ≥ Δ(G) − �d(G)/2
 − 2 +
b∑

i=a

(
i

3
+ 1

)
+ a + (d(G) − b)

≥ Δ(G) − �d(G)/2
 − 8/3 +

d(G)∑
i=0

(
i

3
+ 1

)

≥ Δ(G) − �d(G)/2
 − 5/3 + d(G) +
d2(G) − 1

12

= (Δ(G) − �d(G)/2
 − 2) +
d2(G) + 12d(G) + 3

12
.

Next, we show that the maximum degree of G is large. This, combined
with the previous lemma, will give us a contradiction.

Lemma 12. Let k = �d(G)/2�, and let d1 ≥ d2 ≥ . . . ≥ dn be the degree

sequence of G. Then
∑k

i=1 di ≥ d3(G)+12d2(G)+35d(G)+288
72

, and thus Δ(G) ≥⌈
d3(G)+12d2(G)+35d(G)+288

72k

⌉
.

Proof. For 1 ≤ i ≤ n, let vi be the vertex of G of degree di. Let ki be the
number of neighbors of vi in {vj|j > i}. Note that

∑n
i=1 ki = |E(G)| =

1
2

∑n
i=1 di, R′(G) =

∑n
i=1

ki

di
and 0 ≤ ki ≤ di.

Let m be the index such that there exists a sequence x1, x2, . . . , xn

satisfying

• xi = di for 1 ≤ i ≤ m − 1,

• 0 ≤ xm < dm,

• xi = 0 for m + 1 ≤ i ≤ n, and

• ∑n
i=1 xi = |E(G)|.
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Since a
b

+ c
d
≥ a+1

b
+ c−1

d
when b ≥ d, we conclude that

d(G)

2
> R′(G) =

n∑
i=1

ki

di

≥
n∑

i=1

xi

di

≥ m − 1,

i.e., m ≤ �d(G)/2�. Furthermore,
∑m

i=1 di ≥ 1 +
∑n

i=1 xi = 1 + |E(G)|.
Let ti = ni−1δi−1 + niδi + ni+1δi+1. Note that

ti ≥ ni−1(i − 1 + 2) + ni(i + 2) + ni+1(i + 1 + 2) ≥ si(i + 1)

for 2 ≤ i ≤ d(G)−2. Also, t2 ≥ s2(2+1)+n2 and td(G)−2 ≥ sd(G)−2(d(G) − 2+
1) + nd(G)−2. Using Lemma 9(b), we obtain

6|E(G)| ≥ 3

d(G)∑
i=0

niδi

= 3δ0n0 + 3δd(G)nd(G) + 2δ1n1 + 2δd(G)−1nd(G)−1 + δ2n2 + δd(G)−2nd(G)−2 +

d(G)−2∑
i=2

ti

≥ 3(n0 + nd(G)) + 6(n1 + nd(G)−1) + 5(n2 + nd(G)−2) +

d(G)−2∑
i=2

si(i + 1)

≥ 38 +

d(G)−2∑
i=2

si(i + 1)

≥ 38 +

d(G)−2∑
i=2

(i + 3)(i + 1)

≥ d3(G) + 12d2(G) + 35d(G) + 216

12
.

It follows that

m∑
i=1

di ≥ d3(G) + 12d2(G) + 35d(G) + 288

72
.

Since k ≥ m, the lemma holds.

We are now ready to finish the proof.
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d(G) LBd(G) UBd(G)

10 8 6
11 8 5
12 10 7
13 10 7
14 12 9
15 12 9
16 14 11
17 15 11
18 17 13
19 17 13
20 20 16
21 20 17
22 23 19

d(G) LBd(G) UBd(G)

23 23 19
24 26 22
25 26 23
26 29 26
27 30 27
28 33 30
29 34 31
30 37 34
31 38 35
32 41 39
33 42 41
34 45 44
35 46 45

Table 1: Values of the lower bound LBd(G) and the upper bound UBd(G) for
Δ(G) from proof of Theorem 3.

Proof of Theorem 3. By Lemma 10, the diameter of the minimal counterex-
ample G is at most 35. Also, as we observed before, d(G) ≥ 10. Lemmas 7
and 11 imply that

Δ(G) ≤ �d(G)/2
 + 5 +

⌊
d2(G) + 2d(G)

8

⌋
−

⌈
d2(G) + 12d(G) + 3

12

⌉
.

We denote this upper bound on Δ(G) by UBd(G). Lemma 12 gives a lower
bound on Δ(G), which we denote by LBd(G). For 10 ≤ d(G) ≤ 35, it holds
that UBd(G) < LBd(G), which is a contradiction. See Table 1 for values of
LBd(G) and UBd(G).
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