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Abstract. A convenient framework for dealing with hadron structure and hadronic phy-
sics in the few-GeV energy range is relativistic quantum mechanics. Unlike relativistic
quantum field theory, one deals with a fixed, or at least restricted number of degrees of
freedom while maintaining relativistic invariance. For systems of interacting particles this
is achieved by means of the, so called, “Bakamjian-Thomas construction”, which is a sys-
tematic procedure for implementing interaction terms in the generators of the Poincaré
group such that their algebra is preserved. Doing relativistic quantum mechanics in this
way one, however, faces a problem connected with the physical requirement of cluster
separability as soon as one has more than two interacting particles. Cluster separability, or
sometimes also termed “macroscopic causality”, is the property that if a system is subdi-
vided into subsystems which are then separated by a sufficiently large spacelike distance,
these subsystems should behave independently. In the present contribution we discuss the
problem of cluster separability and sketch the procedure to resolve it.

1 Introduction to relativistic quantum mechanics

It is a widespread opinion that a relativistically invariant quantum theory of inter-
acting particles has to be a (local) quantum field theory. Therefore we first have to
specify what we mean by “relativistic quantum mechanics”. Relativistic quantum
mechanics is based on a theorem by Bargmann which basically states that [1, 2]:
A quantum mechanical model formulated on a Hilbert space preserves probabilities in all
inertial coordinate systems if and only if the correspondence between states in different
inertial coordinate systems can be realized by a single-valued unitary representation of
the covering group of the Poincaré group.
According to this theorem one has succeeded in constructing a relativistically
invariant quantum mechanical model, if one has found a representation of the
(covering group of the) Poincaré group in terms of unitary operators on an ap-
propriate Hilbert space. Equivalently one can also look for a representation of
the generators of the Poincaré group in terms of self-adjoint operators acting on
this Hilbert space. These self-adjoint operators should then satisfy the Poincaré
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algebra

[Ji, Jj] = ı εijkJk , [Ki, Kj] = −ı εijkJk , [Ji, Kj] = ı εijkKk ,

[Pµ, Pν] = 0 , [Ki, P0] = −ı Pi , [Ji, P0] = 0 ,

[Ji, Pj] = ı εijkPk ,
[
Ki, Pj

]
= −ı δij P

0 . (1)

P0 and Pi generate time and space translations, respectively, Ji rotations and Ki

Lorentz boosts. From the last commutation relation it is quite obvious that, if
P0 contains interactions, Ki or Pj (or both) have to contain interactions too. The
form of relativistic dynamics is then characterized by the interaction dependent
generators. Dirac [3] identified three prominent forms of relativistic dynamics,
the instant form (interactions in P0, Ki, i = 1, 2, 3), the front form (interactions in
P− = P0−P3, F1 = K1−J2, F2 = K2+J1) and the point form (interactions in Pµ, i =
0, 1, 2, 3). In what follows we will stick to the point form, where Pµ, the generators
of space-time translations, contain interactions and J,K, the generators of Lorentz
transformations, are interaction free. The big advantage of this form is that boosts
and the addition of angular momenta become simple.

For a single free particle and also for several free particles it is quite easy to
find Hilbert-space representations of the Poincaré generators in terms self-adjoint
operators that satisfy the algebra given in Eq. (1), but what about interacting sys-
tems? Local quantum field theories provide a relativistic invariant description
of interacting systems, but then one has to deal with a complicated many-body
theory. It is less known that interacting representations of the Poincaré algebra
can also be realized on an N-particle Hilbert space and one does not necessar-
ily need a Fock space. A systematic procedure for implementing interactions in
the Poincaré generators of an N-particle system such that the Poincaré algebra
is preserved, has been suggest long ago by Bakamjian and Thomas [4]. In the
point form this procedure amounts to factorize the four-momentum operator of
the interaction-free system into a four-velocity operator and a mass operator and
add then interaction terms to the mass operator:

Pµ =MVµfree = (Mfree +Mint)V
µ
free . (2)

Since the mass operator is a Casimir operator of the Poincaré group, the con-
straints on the interaction terms that guarantee Poincaré invariance become sim-
ply thatMint should be a Lorentz scalar and that it should commute with Vµfree, i.e.
[Mint, V

µ
free] = 0. Remarkably, this kind of construction allows for instantaneous

interactions (“interactions at a distance”). Similar procedures can also be carried
out in the instant and front forms of relativistic dynamics such that the phys-
ical equivalence of all three forms is guaranteed in the sense that the different
descriptions are related by unitary transformations [5].

A very convenient basis for representing Bakajian-Thomas (BT) type mass
operators consists of velocity states

|v;k1, µ1;k2, µ2; . . . ;kN, µN〉 ,
N∑
i=1

ki = 0 . (3)
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These specify the state of an N-particle system by its overall velocity v, the par-
ticle momenta ki in the rest frame of the system and the spin projections µi of
the individual particles. The physical momenta of the particles are then given by
pi =

−−−−→
B(v)ki, where B(v) is a canonical (rotationless) boost with the overall sys-

tem velocity v. Associated with this kind of boost is also the notion of “canonical
spin” which fixes the spin projections µi.N-particle velocity states, as introduced
above, are eigenstates of the free N-particle velocity operator Vµfree and the free
mass operator

Mfree |v;k1, µ1;k2, µ2; . . . 〉 = (ω1 +ω2 + . . . ) |v;k1, µ1;k2, µ2; . . . 〉 , (4)

with ωi =
√
m2i + k

2
i . The overall velocity factors out in velocity-state matrix

elements of BT-type mass operators,

〈v′;k′1, µ1;k′2, µ′2; . . . |M|v;k1, µ1;k2, µ2; . . . 〉
∝ v0 δ3(v′ − v) 〈k′1, µ1;k′2, µ′2; . . . ||M||k1, µ1;k2, µ2; . . . 〉 , (5)

leading to the separation of overall and internal motion of the system.

2 Cluster separability

A central requirement for local relativistic quantum field theories is “microscopic
causality”, i.e. the property that field operators at space-time points x and y

should commute or anticommute, depending on whether they describe bosons
or fermions, if these space-time points are space-like separated, i.e.

[Ψ(x), Ψ(y)]± = 0 for (x− y)2 < 0 . (6)

The crucial point here is that this must hold for arbitrarily small space-like dis-
tances. This condition requires an infinite number of degrees of freedom and can
therefore not be satisfied in relativistic quantum mechanics with only a finite
number of degrees of freedom. What replaces microscopic causality in the case
of relativistic quantum mechanics is the physically more sensible requirement
of “macroscopic causality”, or also often called “cluster separability”. It roughly
means that subsystems of a quantum mechanical system should behave indepen-
dently, if they are sufficiently space-like separated.

In order to phrase cluster separability in more mathematical terms, we start
with an N-particle state |Φ〉 with wave function φ(p1,p2, . . . ,pN) and decom-
pose thisN-particle system into two subclusters (A) and (B). Next one introduces
a separation operator U(A)(B)

σ with the property that

lim
σ→∞〈Φ|U(A)(B)

σ |Φ〉 = 0 . (7)

The role of the separation operator will become clearer by means of an example.
Let us consider (space-like) separation by a canonical boost. In this case subsys-
tem (A) is boosted with velocity v and subsystem (B) with velocity −v. The action
on the wave function is then

(
U

(A)(B)
v φ

)
(pi∈(A),pj∈(B)) = φ

(−−−−−→
B(−v)pi∈(A),

−−−→
B(v)pj∈(B)

)
(8)
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and one has to consider the limit σ = |v|→∞ in Eq. (7).
Having introduced a separation operator we are now able to formulate clus-

ter separability in a more formal way. In the literature one can find different no-
tions of it. A comparably weak, but physically plausible requirement, is cluster
separability of the scattering operator:

s− lim
σ→∞U(A)(B)

σ

†
SU(A)(B)

σ = S(A) ⊗ S(B) . (9)

It means that the scattering operator should factorize into the scattering oper-
ators of the subsystems after separation. For three-particle systems it has been
demonstrated that this type of cluster separability can be achieved by a BT con-
struction [6].

A stronger requirement is that the Poincaré generators become additive, when
the clusters are separated. In a weaker version this means for the four-momentum
operator that

lim
σ→∞〈Φ|U(A)(B)

σ

†(
Pµ − Pµ(A) ⊗ I(B) − I(A) ⊗ Pµ(B)

)
U(A)(B)
σ |Φ〉 = 0 , (10)

the stronger version is that

lim
σ→∞

∣∣∣
∣∣∣
(
Pµ − Pµ(A) ⊗ I(B) − I(A) ⊗ Pµ(B)

)
U(A)(B)
σ |Φ〉

∣∣∣
∣∣∣ = 0 . (11)

The BT construction violates both conditions already in the 2+1-body case (i.e.
particles 1 and 2 interacting and particle 3 free) [2, 7]. The reason for the failure
can essentially be traced back in this case to the fact that the BT-type mass op-
erator and the mass operator of the separated 2+1-particle system differ in the
velocity conserving delta functions. In the BT-case it is the overall three-particle
velocity which is conserved, in the separated case it is rather the velocity of the in-
teracting two-particle system. The separation, however, is done by boosting with
the velocity of the interacting two-particle system.

One may now ask, whether wrong cluster properties lead to observable phys-
ical consequences. From our studies of the electromagnetic structure of mesons
we have to conclude that this is indeed the case [8–10]. In these papers electron
scattering off a confined quark-antiquark pair was treated within relativistic point
form quantum mechanics starting from a BT-type mass operator in which the dy-
namics of the photon is also fully included. The meson current can then be iden-
tified in a unique way from the resulting one-photon-exchange amplitude which
has the usual structure, i.e. electron current contracted with the meson current
and multiplied with the covariant photon propagator. The covariant analysis of
the resulting meson current, however, reveals that it exhibits some unphysical
features which most likely can be ascribed to wrong cluster properties. For pseu-
doscalar mesons, e.g., its complete covariant decomposition takes on the form

J̃µ(p′M;pM) = (pM + p′M)µ f(Q2, s) + (pe + p
′
e)
µ g(Q2, s) . (12)

It is still conserved, transforms like a four-vector, but exhibits an unphysical de-
pendence on the electron momenta which manifests itself in form of an addi-
tional covariant (and corresponding form factor) and a spurious Mandelstam-
s dependence of the form factors. Although unphysical, these features do not
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spoil the relativistic invariance of the electron-meson scattering amplitude. The
Mandelstam-s dependence of the physical and spurious form factors f and g is
shown in Fig. 1. Since the spurious form factor g is seen to vanish for large s and
the s-dependence of the physical form factor f becomes also negligible in this case
it is suggestive to extract the physical form factor in the limit s → ∞. This strat-
egy was pursued in Refs. [8–10] where it lead to sensible results. It gives a simple
analytical expression for the physical form factor F(Q2) = lims→∞ f(Q2, s) which
agrees with corresponding front form calculations in the q⊥ = 0 frame. Similar
effects of wrong cluster properties on electromagnetic form factors were also ob-
served in model calculations done within the framework of front form quantum
mechanics [11].
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Fig. 1. Mandelstam-s dependence of the physical and spurious B meson electromagnetic
form factors f and g for various values of the (negative) squared four-momentum trans-
fer Q2 [9]. The result has been obtained with a harmonic-oscillator wave function with
parameters a = 0.55 GeV,mb = 4.8 GeV,mu,d = 0.25 GeV.

3 Restoring cluster separability

It is obviously the BT-type structure of the four-momentum operator (see Eq. (2))
which guarantees Poincaré invariance on the one hand, but leads to wrong clus-
ter properties on the other hand (if one has more than two particles). In order
to show, how this conflict may be resolved, let us consider a three-particle sys-
tem with pairwise two-particle interactions. To simplify matters we will consider
spinless particles and neglect internal quantum numbers. We start with the four-
momentum operators of the two-particle subsystems,

Pµ(ij) =M(ij)V
µ
(ij) , i, j = 1, 2, 3 , i 6= j , (13)

which have a BT-type structure (i.e. Vµ(ij) is free of interactions). Cluster sepa-
rability holds for these subsystems, if the two-particle interaction is sufficiently
short ranged. The third particle can now be added by means of the usual tensor-
product construction

P̃µ(ij)(k) = P
µ
(ij) ⊗ I(k) + I(ij) ⊗ P

µ
(k) . (14)
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The individual four-momentum operators P̃µ(ij)(k) describe 2+1-body systems in
a Poincaré invariant way and exhibit also the right cluster properties. One may
now think of adding all these four momentum operators, to end up with a four
momentum operator for a three particle system with pairwise interactions:

P̃µ3 = P̃µ(12)(3) + P̃
µ
(23)(1) + P̃

µ
(31)(2) − 2P

µ
3 free . (15)

But the components of the resulting four-momentum operator do not commute,
[
P̃µ3 , P̃

ν
3

]
6=0 since [M(ij) int, V

µ
(j)] 6= 0 . (16)

One can, of course, write the individual P̃µ(ij)(k) in the form

P̃µ(ij)(k) = M̃(ij)(k) Ṽ
µ
(ij)(k) with M̃2

(ij)(k) = P̃(ij)(k) · P̃(ij)(k) , (17)

but the four-velocities Ṽµ(ij)(k) contain interactions and differ for different cluster-
ings, so that an overall four-velocity cannot be factored out of P̃µ3 . The key ob-
servation is now that all four-velocity operators have the same spectrum, namely
R3. This implies that there exist unitary transformations which relate the four-
velocity operators. One can find, in particular, unitary operators U(ij)(k) such
that

Ṽµ(ij)(k) = U(ij)(k)V
µ
3U
†
(ij)(k) . (18)

With these unitary operators one can now define new three-particle momentum
operators for a particular clustering,

Pµ(ij)(k) := U
†
(ij)(k)P̃

µ
(ij)(k)U(ij)(k) = U

†
(ij)(k)M̃(ij)(k)U(ij)(k)U

†
(ij)(k)Ṽ

µ
(ij)(k)U(ij)(k)

= M(ij)(k)V
µ
3 , (19)

which have already BT-structure, i.e. with the free three-particle velocity factored
out. From Eq. (19) it can be seen that the unitary operators U(ij)(k) obviously
“pack” the interaction dependence of the four-velocity operators Ṽµ(ij)(k) into
the mass operator M(ij)(k). Therefore they were called “packing operators” by
Sokolov in his seminal paper on the formal solution of the cluster problem [12].
The sum (Pµ(12)(3) + P

µ
(23)(1) + P

µ
(31)(2) − 2P

µ
3 free) describes a three-particle system

with pairwise interactions, it has now BT-structure and satisfies thus the correct
commutation relation. However, it still violates cluster separability. The solution
is a further unitary transformation of the whole sum by means ofU =

∏
U(ij)(k),

assuming that U(ij)(k) → 1 for separations (ki)(j), (jk)(i) and (i)(j)(k). The final
expression for the three-particle four-momentum operator, that has all the prop-
erties it should have, is:

Pµ3 := U
[
Pµ(12)(3) + P

µ
(23)(1) + P

µ
(31)(2) + P

µ
(123) int − 2P

µ
3 free

]
U†

= U
[
M(12)(3) +M(12)(3) +M(12)(3) +M(123) int − 2M3 free

]
Vµ3 U

†

= UM3 V
µ
3 U

† . (20)

If U commutes with Lorentz transformations, it can be shown that such a ”gen-
eralized BT construction” will satisfy relativity and cluster separability for N-
particle systems. In addition to the three-body force induced by U, which is of
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purely kinematical origin, we have also allowed for a genuine three-body inter-
action M(123) int. Since the U(ij)(k) will, in general, not commute, U depends on
the order of the U(ij)(k) in the product. For identical particles one should even
take some kind of symmetrized product, for which also different possibilities ex-
ist [2, 12]. This means that Pµ3 is, apart of the newly introduced free-body interac-
tion M(123) int, not uniquely determined by the two-body momentum operators
Pµ(ij). There are even different ways to construct the packing operators U(ij)(k).
All the unitary transformations leave, however, the on-shell data (binding ener-
gies, scattering phase shifts, etc.) of the two-particle subsystems untouched, they
only affect their off-shell behavior.

The kind of procedure just outlined formally solves the cluster problem for
three-body systems. Generalizations to N > 3 particles and particle produc-
tion have also been considered [13]. Its practical applicability, however, depends
strongly on the capability to calculate the packing operators for a particular sys-
tem. A possible procedure can also be found in Sokolov’s paper. The trick is to
split the packing operator further

U(ij)(k) =W
†(M(ij))W(M(ij) free) (21)

into a product of unitary operators which depend on the corresponding two-
particle mass operators in a way to be determined. With this splitting one can
rewrite Eq. (18) in the form

W(M(ij) free)V
µ
3W

†(M(ij) free) =W(M(ij))Ṽ
µ
(ij)(k)W

†(M(ij)) . (22)

Since this equation should hold for any interaction the right- and left-hand sides
can be chosen to equal some simple four-velocity operator, for which Vµ(ij) ⊗ Ik is
a good choice. In order to compute the action of W it is then convenient to take
bases in which matrix elements of Vµ3 , Vµ(ij) ⊗ Ik and Ṽµ(ij)(k) can be calculated.
This is the basis of (mixed) velocity eigenstates

|v(12); k̃1, k̃2,p3〉 = |v(12); k̃1, k̃2〉 ⊗ |p3〉 (23)

ofM(ij)(k) free if one wants to calculate the action ofW(M(ij) free) and correspond-
ing eigenstates ofM(ij)(k) if one wants to calculate the action ofW(M(ij)). It turns
out that the effect of these operators is mainly to give the two-particle subsystem
(ij) the velocity v(ij)(k) of the whole three-particle system. After some calcula-
tions one finds out that the whole effect of the packing operator U(ij)(k) on the
mass operator M̃(ij)(k) is just the replacement

1

m
′ 3/2
(ij) m

3/2

(ij)

v0(ij)δ
3(v ′(ij) − v(ij))

→
√
v ′(ij) · v(ij)(k)
m
′ 3/2
(ij)(k)

√
v(ij) · v(ij)(k)
m
3/2

(ij)(k)

v0(ij)(k)δ
3(v ′(ij)(k) − v(ij)(k)) (24)

in the mixed velocity-state matrix elements. Herem(ij) andm(ij)(k) are the invari-
ant masses of the free two-particle subsystem and the free three-particle system,
v(ij) and v(ij)(k) the corresponding four-velocities.
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4 Summary and outlook

We have given a short introduction into the field of relativistic quantum mechan-
ics. It has been shown that the Bakamjian-Thomas construction, the only known
systematic procedure to implement interactions such that Poincaré invariance of
a quantum mechanical system is guaranteed, leads to problems with cluster sep-
arability for systems of more than two particles. Cluster separability is a physi-
cally sensible requirement for quantum mechanical systems which replaces mi-
crocausality in relativistic quantum field theories. We have discussed the physical
consequences of wrong cluster properties, e.g., unphysical contributions in elec-
tromagnetic currents of bound states. Following the work of Sokolov we have
sketched how a three-particle mass operator with pairwise interactions and cor-
rect cluster properties can be constructed. This is accomplished by a set of unitary
transformations called packing operators. For the simplest case of three spinless
particles we have explicitly calculated these packing operators. In a next step it is
planned to use these results to see whether the problems encountered with elec-
tromagnetic bound-state currents can be cured by starting with a mass operator
that has the correct cluster properties.

References

1. V. Bargmann, Ann. Math. 59, 1 (1954)
2. B.D. Keister and W.N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991)
3. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)
4. B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953)
5. S.N. Sokolov and A.N. Shatnii, Theor. Math. Phys. 37, 1029 (1978)
6. F. Coester, Helv. Phys. Acta 38, 7 (1965)
7. U. Mutze, J. Math. Phys. 19, 231 (1978)
8. E.P. Biernat, W. Schweiger, K. Fuchsberger and W.H. Klink, Phys. Rev. C 79, 055203

(2009)
9. M. Gomez-Rocha and W. Schweiger, Phys. Rev. D 86, 053010 (2012)

10. E.P. Biernat and W. Schweiger, Phys. Rev. C 89, 055205 (2014)
11. B.D. Keister and W.N. Polyzou, Phys. Rev. C 86, 014002 (2012)
12. S.N. Sokolov, Theor. Math. Phys. 36, 682 (1978)
13. F. Coester and W.N. Polyzou, Phys. Rev. D 26, 1348 (1982)


