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Abstract
With the recent popularity of deep convolutional neural
networks, image-based biometrics is one of many domains,
that consequently gained new progress in solving previ-
ously incomplete or unanswered challenges. While some
biometric modalities, like the fingerprint, are already con-
sidered mature, others are still in need of more reliable
approaches. Ears can be used for person identification
since they have the necessary properties of a biometric
modality. High accuracy ear identification systems do
exist but mostly focus on a controlled environment. In
this paper, we try to improve the current state-of-the-art
in ear recognition by using residual learning and atten-
tion mechanisms. By stacking residual building blocks,
we find the optimal architecture to be ResNet with 18 con-
volutional layers. We achieve a Rank-1 score of 54.46%
with full model learning, which is a 5.35 percentage point
improvement from the previous best trained on the VGG
architecture, however, the model still underperforms aga-
inst those, trained with selective learning. We observe
that aggressive data augmentation is needed when deal-
ing with a small dataset. We also conclude that the At-
tention Model performance is subpar compared to other
architectures.

1 Introduction
In recent years, the use of deep neural networks in the
broader field of machine learning brought us new achieve-
ments in a diverse range of challenges. Especially, the
field of computer vision gained significant improvements
with image recognition and object detection using deep
convolutional neural networks (CNN). They are known to
have good generalization properties in an unconstrained
environment. This includes images captured in the wild
or on the go, which often contain noise, occlusion, differ-
ent object rotations and lighting conditions. Such a prop-
erty is especially useful in forensic, security or surveil-
lance scenarios, where environment impact on the cap-
tured image is nondeterministic.

The application of deep learning is also progressively
being used in the domain of biometrics, specifically with
identification using certain biometric modalities, where
until recently, expert knowledge or conventional com-
puter vision local descriptors were used to tackle the prob-
lem. A biometric modality can be represented as a bio-

logical trait of a living being, which is unique and can
be attributed to the being’s identity. While recognition
of some modalities, such as the fingerprint, are already
considered mature, there are still those, that need better
approaches to be reliable in practice.

In this paper, our main focus is ear recognition. As
stated in [8], ears are known to have rigid biometric prop-
erties, such as uniqueness, longevity and a persistent shape,
which does not change drastically throughout our life-
times. Even though ear recognition systems have achieved
some maturity, their success is still dependant on a con-
trolled indoor environment.

In comparison to modalities such as eyes, face or fin-
gerprints, there is still a lack of large-scale datasets avail-
able to the public. Even existing ones are usually small
or only contain images captured in a constrained environ-
ment. With this in mind, we make use of data augmenta-
tion techniques to artificially inflate our training data.

To summarize, our first and foremost goal is to im-
plement and test two specific deep neural network archi-
tectures that proved to achieve state-of-the-art results on
some of the biggest public datasets, such as ImageNet [5],
and compare them to the current best-performing archi-
tectures in the domain of ear recognition. In the process,
we also want to measure the impact of data augmentation
aggressiveness on the model performance.

2 Related work
A few extensive surveys have been made in this domain.
In A Survey on Ear Biometrics [8], the authors make an
extensive overview of detection techniques, feature ex-
tractors and available datasets, while providing experi-
mental results and listing other open research questions.
The report Rank-1 identification rate ranges from 72.7%
to 100%. Note, that all mentioned datasets are acquired
in a controlled or semi-controlled environment. No deep
neural network approaches were used. In Ear Recogni-
tion: More Than a Survey [18], the authors mostly fo-
cus on the recognition aspect. Their summary of known
approaches lists Rank-1 scores similar to the previously
mentioned survey [8]. They also propose the Annotated
Web Ears (AWE) dataset, which contains 1000 images of
100 persons captured on the internet and thoroughly an-
notated. It is an unconstrained dataset which represents
real-world conditions. Again, none of the mentioned ap-
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Figure 1: A residual building block used in ResNet and Resid-
ual attention network architectures.

proaches outlined in the paper use any sort of deep learn-
ing. Roughly, the usual ear recognition approaches can
be divided into 4 groups:

Geometric approaches focus on the extraction and anal-
ysis of the geometrical features, such as outer curves and
helix point location. They rely on edge detection as their
pre-processing step, so all of the textual information is
therefore lost and not used for recognition. They are,
however, usually scale and rotation invariant.

Holistic approaches encode the input image ear rep-
resentations as a whole. They are prone to error when
varying illumination or different pose of the subject is
presented in the input image.

Local approaches make use of local neighborhood de-
scriptors. Opposed to geometric approaches, they do not
rely on relations between different points on the image,
but between neighboring pixels in a small area. The de-
scriptors can be calculated densely across the image or be
selected beforehand for their uniqueness.

Deep-learning-based approaches mostly use CNNs to
build the recognition model. They are usually learned
end-to-end, which simplifies the recognition pipeline, how-
ever, the number of trainable parameters is higher in com-
parison to other machine learning algorithms. In [16], the
authors achieved state-of-the-art results using deep learn-
ing with CNNs. They used full model learning and se-
lective learning on top of features learned from the Im-
ageNet dataset. A Rank-1 score of 62.0% and a Rank-5
score of 80.46% were achieved on the AWE dataset.

Lastly, different hybrid approaches also exist. These
represent any combination of all above-listed approaches.

3 Methodology
In this section, we make an overview of the techniques
we use to design and test new architectures. First, we
present the main ideas behind existing architectures and
then describe our workflow.

3.1 Deep Residual Networks
The residual learning approach was first published by Mi-
crosoft Research Asia [11, 12]. The main idea behind
this architecture lies in its core building block, called the
residual block. The block is shown in figure 1. It has two
convolutional layers, where each of them also includes
a batch normalization layer and an activation layer. The

Figure 2: The attention module building block of the Residual
Attention Network.

input and output of the block are connected with a ”short-
cut connection” which performs an identity mapping and
its output is added to the output of the stacked layers.
With this mechanism, the blocks that contribute to the in-
creasing loss can be skipped. This allows the network
to be even deeper without suffering from accuracy over-
saturation and rapid degradation. These ”shortcut con-
nections” do not add any new parameters or computa-
tional complexity and can be used alongside common op-
timization techniques without changing the backpropaga-
tion calculations. Similar ideas were found previously in
LSTM [10] and Highway Networks [9] and mostly used
in a recurrent neural network (RNN) settings. The au-
thors have published multiple versions, which include 50,
101, 152, 200 and even 1001 layer architectures.

3.2 Residual Attention Network
The Residual Attention Network is a CNN which is most-
ly made from previously mentioned residual block but
also includes a truncated branch, which implements the
attention mechanism. This mechanism was until recently
mostly popular with RNN architectures in natural lan-
guage processing and machine translation domains, where
new samples are weighted based on the occurrence in pre-
vious iterations. The authors propose the Attention Mod-
ule structure, shown in figure 2, which generates attention-
aware features. The network is then constructed by stack-
ing multiple Attention Modules.

Each of these modules can be divided into two branch-
es; mask branch and trunk branch. The function of the
trunk branch is to perform the usual feature processing
and can be adopted into any network structure. The au-
thors chose to use the residual block as their structure of
choice. The mask branch is structured in form of an auto-
encoder, also found in other architectures [3, 4]. The out-
put of the mask branch is a soft mask, which, when joined
with trunk branch output, acts as sort of a control gate
function for every neuron output of the trunk branch.

The main motivation for using attention mechanisms
lies in their ability to focus on a subset of inputs. This
could be helpful in case of occlusion by hair or ear acces-
sories.

3.3 Experiments
We devise a plan to test the described architectures in full.
First, we test the effect of data augmentation. Best per-
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forming augmentation rate will be used as the baseline.
Then, we implement and test the residual attention net-
work. There, some of the residual blocks are substituted
with the Attention Modules in a way, that the final depth
remains unchanged.

As of now, there is no pre-trained ImageNet model
available for any of these architectures. Because of the
lack of resources we are therefore not able to do selective
learning and are only comparing the full model scores.

4 Experimental Setup
Here, we define our work environment including tools,
datasets, performance metrics and the choice of hyper-
parameters.

4.1 Dataset selection & augmentation
For our dataset, we use the images provided by the Un-
constrained Ear Recognition Challenge (UERC) [17]. We
divide the dataset into groups of 40% and 60% of images
for the test and train data, respectively.

Since the size of the dataset is relatively small, generic
data augmentation [7] is used to artificially inflate our
training set. We make multiple augmentation configu-
rations, which include no augmentation, 10× and 100×
the augmentation rate for each image in the training set.

Images are first resized to a shape of 224 × 224 × 3,
which is the shape of the network input. Then, we follow
the randomized augmentation process described in [16].
Before entering the network, images are normalized to
a range between -1 and 1 and individual channel mean
values are subtracted.

4.2 Performance metrics
To evaluate and compare trained models, we adopt the
standard recognition performance metrics. Rank-1 and
Rank-5 recognition rates are computed. For Rank-1, we
check if the prediction with the highest probability matches
the ground truth label. For Rank-5, we check if predic-
tions with top five probabilities contain the ground truth
label.

We evaluate the scores graphically by plotting the Cu-
mulative Match Curve (CMC). The graph shows the recog-
nition rate of all possible ranks. We also compute the
Area Under Cumulative Match Curve (AUCMC), which
summarizes the visual CMC numerically.

4.3 Research environment
Our experiments are made in Python 3.4 programming
language, and we use Keras 2.0.5 [2] with a TensorFlow
1.4.0 [14] backend as our main neural network library.
We train and test the setup on a ubuntu 16.04 computer,
with a GeForce R© GTX 1080 Ti graphics card, Intel R©
CoreTM i7-7700K processor and 16 GB physical memory.

4.4 Hyper-parameters
For the optimization algorithm, we use Adam [1]. Com-
pared to stochastic optimizers such as SGD, it converges
faster and has more momentum configuration options. It

Table 1: Effect of different data augmentation rates applied to
dataset. Models are trained using the ResNet-18 architecture.

Rank-1 [%] Rank-5 [%] AUCMC [%]
No aug. 31.32 51.77 89.06
10x 36.70 56.62 91.18
100x 54.46 73.19 95.24

Figure 3: Cumulative Match Curves of ResNet-18 models with
different data augmentation rates applied.

also requires less fine-tuning and can be set by only spec-
ifying the learning rate. We use a learning rate of 0.001,
but reduce it by half when the loss function starts to con-
verge. We use categorical cross entropy for computing
the loss of the last softmax layer.

A custom data generator is used to supply images to
the network in batches of 64. We do not set a fixed epoch
number, but implement an early stopping feature, which
stops the learning phase when loss function converges for
some time.

5 Results & Discussion
In this section, we present and discuss our results regard-
ing architecture depth, type and the amount of data aug-
mentation present.

5.1 Residual Network & data augmentation
The preliminary results have shown that, when compar-
ing network depth, the 18-layer ResNet architecture per-
formed best on the UERC dataset. We, therefore, used
this configuration as our baseline. Also, data augmenta-
tion has a significant impact on the final model perfor-
mance, as it is presented in table 1. The 100× augmen-
tation rate outperforms non-augmented dataset by 23.14
Rank-1 percentage points achieving a score of 54.46%.
Cumulative match curves are shown in figure 3. With
data augmentation, we fill the intra-class variance gaps
caused by images gathered in the wild. This leads to bet-
ter generalization, even in different environmental condi-
tions.
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5.2 Residual Attention Network
For our last experiment, we implemented the Attention
Module from [13]. The architecture was then designed
empirically by modifying the baseline ResNet-18. Here,
we describe the best performing model. Again, we test
the architecture with multiple data augmentation rates,
but the configuration with 100× data augmentation rate
produced best results.

As presented in table 2, the model performed subpar
compared to ResNet-18. It achieved a Rank-1 score of
37.67%. The best Rank-1 score would only be compa-
rable to ResNet-18 model with no data augmentation ap-
plied.

Table 2: Performance comparison of different ear recognition
CNN architectures, trained with full model learning. We refer-
ence VGG as the previous-best model.

Rank-1 [%] Rank-5 [%] AUCMC [%]
VGG 49.08 66.67 92.99
ResNet 54.46 73.19 95.24
RAN 37.67 60.27 92.66

5.3 Final comparison
To summarize our findings, the results in table 2 illus-
trate, that ResNet-18 architecture outperforms other mod-
els, trained with full model learning. In [16], best re-
sults were achieved by using SqueezeNet [6] architec-
ture, which achieved a Rank-1 score of 62.00%, but was
trained using selective learning, thus not comparable to
our methods. We do, however, include the results achie-
ved by VGG [15] architecture, as it performed best when
trained by full model learning.

6 Conclusion
There are still many domain-specific challenges, that cou-
ld be improved with the use of deep learning and ear
recognition is definitely one of them, as we demonstrate
with our experiments. The performance of standard com-
puter vision and expert knowledge approaches is well doc-
umented in multiple extensive surveys, while there are
still various possible improvements to be made with the
use of CNNs.

We have applied two novel CNN structures to the area
of ear recognition, ResNet and its modification using the
Attention Module. We first illustrated the importance of
aggressive data augmentation rate. Significant improve-
ments in performance were measured when such an aug-
mentation was applied.

We improved the previous-best unconstrained ear re-
cognition model, which was also trained using full model
learning. Note, that training models with selective learn-
ing using pre-trained weights still outperforms our meth-
ods by a margin of 8̃ percentage points. On a dataset
with 166 subjects and 2,304 cropped ear images, our best
model achieved Rank-1 and Rank-5 scores of 54.46% and
73.19%, respectively.

In the future, we will train the ResNet-18 architec-
ture using selective learning, as we believe that state-
of-the-art unconstrained ear recognition results could be
achieved.
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