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Abstract
The eccentric connectivity index (ECI) is a distance based molecular structure descriptor that was recently used for mat-

hematical modeling of biological activities of diverse nature. The ECI has been shown to give a high degree of predic-

tability compare to Wiener index with regard to diuretic activity and anti-inflammatory activity. The prediction accuracy

rate of ECI is better than the Zagreb indices in case of anticonvulsant activity. Titania nanotubular materials are of high

interest metal oxide substances due to their widespread technological applications. The numerous studies on the use of

this material also require theoretical studies on the other properties of such materials. Recently, the Zagreb indices we-

re studied of an infinite class of titania (TiO2) nanotubes [32]. In this paper, we study the eccentric connectivity index of

these nanotubes.
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1. Introduction
Cheminformatics is a new subject which is a combi-

nation of chemistry, mathematics and information scien-
ce. It studies quantitative structure activity relationships
(QSAR) and structure property relationships (QSPR) that
are used to predict the biological activities and properties
of chemical compounds. In the QSAR/QSPR study,
physicochemical properties and topological indices are
used to predict biological activity of the chemical com-
pounds.

A topological index is a numerical descriptor of the
molecular structure based on certain topological features
of the corresponding molecular graph. Topological indi-
ces are graph invariant and are a convenient means of
translating chemical constitution into numerical values
which can be used for correlation with physical properties
in QSPR/QSAR studies.1–3 Topological indices are also
used as a measure of structural similarity or diversity and
thus they may give a measure of the diversity of chemical
databases. There are two major classes of topological in-
dices such as distance based topological indices and de-
gree based topological indices. Among these classes, di-
stance based topological indices are of great importance
and play a vital role in chemical graph theory and particu-
larly in chemistry. 

A graph G with vertex set V(G) and edge set E(G) is
connected if there exists a path between any pair of verti-
ces in G. The degree of a vertex u ∈ V is the number of ed-
ges incident to u and denoted by deg(u). For two vertices
u, v of a graph G their distance d (u, v) is defined as the
length of any shortest path connecting u and v in G. For a
given vertex u of G its eccentricity ε(u) is the largest di-
stance between u and any vertex v of G.

Sharma et al.9 introduced a distance based topologi-
cal index, the eccentric connectivity index (ECI) 
of G, defined as 

(1)

It is reported in4–8 that ECI provides excellent corre-
lations with regard to both physical and biological proper-
ties. The eccentric connectivity index is successfully used
for mathematical models of biological activities of diverse
nature. The simplicity amalgamated with high correlating
ability of this index can easily be exploited in
QSPR/QSAR studies.9–11 The prediction accuracy rate of
ECI is better than the Wiener index with regard to diuretic
activity12 and anti-inflammatory activity.13 Compare to
Zagreb indices, the ECI has been shown to give a high de-
gree of predictability in case of anticonvulsant activity.14

Recently, the eccentric connectivity index was studied for
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certain nanotubes15–19 and for various classes of
graphs.20–22

The titanium nanotubular materials, called titania by
a generic name, are of high interest metal oxide substan-
ces due to their widespread applications in production of
catalytic, gas-sensing and corrosionresistance materials.23

As a well-known semiconductor with numerous technolo-
gical applications, Titania (TiO2) nanotubes are compre-
hensively studied in materials science.24 The TiO2 nanotu-
bes were systematically synthesized using different met-
hods25 and carefully studied as prospective technological
materials. Theoretical studies on the stability and electro-
nic characteristics of titania nanostructures have extensi-
vely been studied.26–28 The numerous studies on the use of
titania in technological applications also required theoreti-
cal studies on stability and other properties of such struc-
tures.29–31

Recently, M. A. Malik et al.32 studied the Zagreb in-
dices of an infinite class of TiO2 nanotubes. In this paper,
we study eccentric connectivity index of these nanotubes.

2. Main Results

The molecular graph of titania nanotubes TiO2[m,n]
is presented in Figure 1, where m denotes the number of
octagons in a row and n denotes the number of octagons in
a column of the titania nanotube. 

Figure 1: The molecular graph of TiO2[m,n] nanotube.

The molecular graph of TiO2[m,n] nanotube has
2n+2 rows and m columns. For each ith row and jth co-
lumn, we label the vertices of TiO2[m,n] nanotube by uij,
vij , xij and yij as shown in Figure 2.

Figure 2: The labeled vertices of TiO2[m,n] nanotube.

In the molecular graph, G, of TiO2 nanotubes, we
can see that 2≤deg(v)≤ 5. So, we have the vertex partitions
as follows.

(2)

The cardinalities of all vertex partitions are presen-
ted in Table 1.

Table 1: The vertex partitions of the TiO2 nanotubes along with

their cardinalities.

Vertex partition Cardinality
V1 2mn + 4m
V2 2mn
V3 2m
V4 2mn

In the following, we compute the exact formulas for
eccentric connectivity index of TiO2[m,n] nanotubes.

Theorem 2.1 Let TiO2[m,n] be the graph of titania nano-

tube, then for we have 

(3)

Proof. Consider G = TiO2[m,n]. When ,
the eccentricity of every vertex in every row is
2m. From Table 1, we have

(4)
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Theorem 2.2 Let TiO2[m,n] be the graph of titania nano-
tube, where m = 2p then for p even we have 

(5)

Proof. Consider G = TiO2[m,n]. With respect to the
eccentricity of vertices, we have the following cases.

Case 1. When p = 2n
In this case the eccentricity of the vertices uij, vij is

3p + 2n + 1 where i = 1,2n + 2. The eccentricity of each
vertex in the remaining 2n rows is 4p. Hence

Case 2. when and p ≠ 2n
In this case the eccentricity of the vertices uij, vij is

same as the eccentricity of vertices u(2n+3–i)j, v(2n+3–i)j. whe-
re i = 1,2, ···, 2n – p + 1. The eccentricity of these vertices
in ith row is given by

(7)

The eccentricity of vertices uij, vij in remaining 2p –
2n rows is 4p.

Also, the eccentricity of the vertices xij, yij, x(i+1)j,
y(i+1)j is same as the eccentricity of the vertices x(2n+3i)j,
y(2n+3–i)j, x(2n+2–i)j , y(2n+2–i)j where i = 1,2, ···, (2n – p)/2. The
eccentricity of these vertices in ith row is given by 

(8)

The eccentricity of the vertices xij, yij in the remai-
ning (2p – 2n + 2) rows is 4p. Hence 

Case 3. When n ≥ p –1 and n is odd
In this case the eccentricity of vertices uij, vij is same

as the eccentricity of vertices u(2n+3–i)j, v(2n+3–i)j where i =
1,2, ···, n + 1. The eccentricity of these vertices in ith row is
given by

(10)

Also, the eccentricity of the vertices xij, yij, x(i+1)j,
y(i+1)j is same as the eccentricity of the vertices x(2n+3i)j,
y(2n+3–i)j, x(2n+2–i)j , y(2n+2–i)j where i = 1,2, ···, (n + 1)/2. The
eccentricity of these vertices in ith row is given by

(11)

The shortest paths having maximal length in Ti-
O2[8,7] nanotube are shown in Figure 3.

Hence

(12)

(5)

(6)

(9)
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Figure 3: The shortest paths having maximal length in TiO2[8,7]
nanotube.

Case 4. When n > p – 1 and n is even
In this case the eccentricity of vertices uij, vij is same

as we discussed in case 3. Also, the eccentricity of the ver-
tices xij, yij, x(i+1)j, y(i+1)j is same as the eccentricity of the
vertices x(2n+3–i)j, y(2n+3–i)j, x(2n+2–i)j , y(2n+2–i)j where i = 1,2,
···, n/2. The eccentricity of these vertices in ith row is given
by

(13)

The eccentricity of the vertices xij, yij in the remai-
ning 2 rows is 4p. Hence 

(14)

Theorem 2.3 Let TiO2[m,n] be the graph of titania nano-
tube, where m = 2p then for p odd we have

Proof. Consider G = TiO2[m,n]. With respect to the
eccentricity of vertices, we have the following cases.

Case 1. When p = 2n – 1
In this case the eccentricity of the vertices uij, vij is

same as the eccentricity of vertices u(2n+3–i)j, v(2n+3–i)j. whe-
re i = 1,2. The eccentricity of these vertices in ith row is gi-
ven by

(16)

The eccentricity of vertices uij, vij in remaining 2n
rows is 4p. Also, the eccentricity of the vertices x1j, y1j is
same as the eccentricity of vertices x(2n+2)j, x(2n+2)j. The ec-
centricity of the vertices x1j, y1j is given by

(17)

The eccentricity of the vertices xij, yij in the remai-
ning 2n rows is 4p. The shortest paths having maximal
length in TiO2[14,4] nanotube are shown in Figure 4.

Figure 4: The shortest paths having maximal length in TiO2[14,4]
nanotube.

Hence

Case 2. when < n < p – 1 and p ≠ 2n – 1
In this case the eccentricity of the vertices uij, vij is

same as we discussed in Case 2 of Theorem 2.2. The ec-
centricity of the vertices x1j, y1j, x(2n+2)j, x(2n+2)j is same as
we discussed in Case 1.

(15)

(18)
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Also, the eccentricity of the vertices x(i+1)j, y(i+1)j,
x(i+2)j, y(i+2)j is same as the eccentricity of the vertices
x(2n+2–i)j, y(2n+2–i)j, x(2n+1–i)j, y(2n+1–i)j where i = 1,2, ···, (2n – p
– 1)/2. The eccentricity of these vertices in (i + 1)th row is
given by

(19)

The eccentricity of the vertices xij, yij in the remai-
ning (2p – 2n + 2) rows is 4p. Hence

Case 3. When n > p – 1 and n is odd
In this case the eccentricity of the vertices uij, vij, x1j,

y1j, x(2n+2)j, x(2n+2)j is same as we discussed in Case 2. Also,
the eccentricity of the vertices x(i+1)j, y(i+1)j, x(i+2)j, y(i+2)j is
same as the eccentricity of the vertices x(2n+2–i)j, y(2n+2–i)j,
x(2n+1–i)j, y(2n+1–i)j where i = 1,2, ···, (n – 1)/2. The eccen-
tricity of these vertices in (i + 1)th row is given by

(21)

Hence

Case 4. When n ≥ n – 1 and n is even.
In this case the eccentricity of the vertices x(i+1)j,

y(i+1)j, x(i+2)j, y(i+2)j is same as the eccentricity of the vertices
x(2n+2–i)j, y(2n+2–i)j, x(2n+1–i)j, y(2n+1–i)j where i = 1,2, ···, n/2.
The eccentricity of these vertices in (i + 1)th row is given
by

(23)

The eccentricity of the remaining vertices is same as
we discussed in case 3.

Hence

(24)

3. Conclusion

The eccentric connectivity index provides excellent
prediction accuracy rate compare to other indices in cer-
tain biological activities of diverse nature such as diuretic
activity, anticonvulsant activity and anti-inflammatory ac-
tivity. In this sense, this index is very useful in
QSPR/QSAR studies. In this paper, we study eccentric
connectivity index of an infinite class of TiO2 nanotubes.
By using this index, we can find mathematical models of
certain biological activities for this material. With the help
of these models, we can predict about certain biological
activities for this material.

4. References

1. J. V. de Julian-Ortiz, C. de Gregorio Alapont, I. Rios-Santa-

marina, R. Garrcia-Domenech, J. Mol. Graphics Mod. 1998,

16, 14–18.

http://dx.doi.org/10.1016/S1093-3263(98)00013-8

2. L. B. Kier, L. H. Hall, Res. Studies Press, Letchworth, 1986.

3. L. Pogliani, Croat. Chem. Acta. 1997, 3, 803–817.

4. A. K. Madan, H. Dureja, in: I. Gutman, B. Furtula (Eds.),

(20)

(22)



368 Acta Chim. Slov. 2016, 63, 363–368

Imran Nadeem and Hani Shaker:  On Eccentric Connectivity Index of TiO2 Nanotubes

Novel Molecular Structure Descriptors Theory and Applica-

tions II, University of Kragujevac, 2010, 91–138.

5. A. Ili}, I. Gutman, B. Furtula (Eds.), Novel Molecular Struc-

ture Descriptors-Theory and Applications II, University of

Kragujevac, 2010, 139–168.

6. A. R. Ashrafi, M. Ghorbani, in: I. Gutman, B. Furtula (Eds.),

Novel Molecular Structure Descriptors-Theory and Applica-

tions II, University of Kragujevac, 2010, 169–182.

7. T. Do{li}, M. Saheli, in: I. Gutman, B. Furtula (Eds.), Novel

Molecular Structure Descriptors Theory and Applications II,

University of Kragujevac, 2010, 183–192.

8. A. K. Madan, H. Dureja, in: I. Gutman, B. Furtula (Eds.),

Novel Molecular Structure Descriptors-Theory and Applica-

tions II, University of Kragujevac, 2010, 247–268.

9. V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput.
Sci. 1997, 37, 273–282.

http://dx.doi.org/10.1021/ci960049h

10. H. Dureja, A. K. Madan, Med. Chem. Res. 2007, 16,

331–341.  http://dx.doi.org/10.1007/s00044-007-9032-9

11. V. Kumar, S. Sardana, A. K. Madan, J. Mol. Model. 2004, 10,

399–407.  http://dx.doi.org/10.1007/s00894-004-0215-8

12. S. Sardana, A. K. Madan, MATCH Commun. Math. Comput.
Chem. 2001, 43, 85–98.

13. S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl. 2002,

266, 259–268.  http://dx.doi.org/10.1006/jmaa.2000.7243

14. S. Sardana, A. K. Madan, J. Comput.-Aided Mol. Des. 2002,

16, 545–550.   http://dx.doi.org/10.1023/A:1021904803057

15. A. R. Ashrafi, M. Saheli, M. Ghorbani, J. Comput. Appl.
Math. 2011, 235, 4561–4566.

http://dx.doi.org/10.1016/j.cam.2010.03.001

16. A. R. Ashrafi, T. Do{li}, M. Saheli, MATCH Commun Math
Comput Chem. 2011, 65(1), 221–230.

17. A. Iranmanesh, Y. Alizadeh, MATCH Commun Math Comput
Chem. 2013, 69, 175–182.

18. M. Saheli, A. R. Ashrafi, Mace. J. of Chem and Chemical
Eng. 2010, 29(1), 71–75.

19. N. P. Rao, K. L. Lakshmi, Digest J. of Nano. and Bio. 2010,

6(1), 81–87.

20. A. Ili}, I. Gutman, MATCH Commun. Math. Comput. Chem.

2011, 65, 731–744.

21. M. J. Morgan, S. Mukwembi, H. C. Swart, Discrete Math.

2011, 311, 1234–1299.

http://dx.doi.org/10.1016/j.disc.2009.12.013

22. B. Zhou, Z. Du, MATCH Commun. Math. Comput. Chem.

2010, 63, 181–198.

23. J. Zhao, X. Wang, T. Sun, L. Li, Nanotechnology, 2005,

16(10), 2450–2454.

http://dx.doi.org/10.1088/0957-4484/16/10/077

24. D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Adv. Mater.

2006, 18(21), 2807–2824.

http://dx.doi.org/10.1002/adma.200502696

25. W. Wang, O. K. Varghese, M. Paulose, C. A. Grimes, J. Ma-
ter. Res. 2004, 19, 417–422.

http://dx.doi.org/10.1557/jmr.2004.19.2.417

26. R. A. Evarestov, Y. F. Zhukovskii, A. V. Bandura, S. Pisku-

nov, Cent. Eur. J. Phys. 2011, 9(2), 492–501.

27. V. V. Ivanovskaya, A. N. Enyashin, A. L. Ivanovskii, Russ. J.
Inorg. Chem. 2004, 49, 244–251.

28. A. N. Enyashin, G. Seifert, Phys. Stat. Sol. 2005, 242(7),
1361–1370.   http://dx.doi.org/10.1002/pssb.200540026

29. A. E. Vizitiu, M. V. Diudea, Studia Univ. Babes- Bolyai,
2009, 54(1), 173–180.

30. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue,

Chem. Phys. Lett. 2002, 365, 427–431.

http://dx.doi.org/10.1016/S0009-2614(02)01502-6

31. Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken,

Chem. Commun. 2001, 24, 2616–2617.

http://dx.doi.org/10.1039/b108968b

32. M. A. Malik, M. Imran, Acta Chim. Slov. 2015, 62, 973–976.

http://dx.doi.org/10.17344/acsi.2015.1746

Povzetek
Med molekulske strukturne deskriptorje spada tudi »eccentric connectivity« indeks (ECI), ki je bil pred kratkim uporab-

ljen za matemati~no modeliranje raznovrstnih biolo{kih aktivnosti. V primerjavi z Wienerjevim indeksom, daje ECI vi-

soko stopnjo predvidljivosti v primeru diureti~ne in protivnetne aktivnosti. Stopnja natan~nosti napovedi indeksa ECI je

bolj{a od zageb{kega indeksa v primeru antikonvulzivne aktivnosti. Med kovinskimi oksidi predstavljajo nanocevke Ti-

O2 material, ki ima veliko tehnolo{ko uporabnost. [tevilne {tudije tega materiala zahtevajo tudi teoreti~ne {tudije njego-

vih lastnosti. Nedavno je bil za nanocevke TiO2 dolo~en zagreb{ki indeks, v tem prispevku pa preu~ujemo indeks ECI.


