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A B S T R A C T	   A R T I C L E   I N F O	

In	 this	research	study	proposed	are	a	response	surface	methodology	(RSM),	
genetic	algorithm	(GA)	and	a	grey	wolf	optimizer	(GWO)	algorithm	for	predic‐
tion	of	surface	roughness	in	ball‐end	milling	of	hardened	steel.	The	RSM	is	a	
conventional	predicting	approach,	GA	is	an	evolutionary	algorithm	and	GWO	
is	 a	new	swarm	 intelligence‐based	algorithm.	 Spindle	 speed,	 feed	per	 tooth,	
axial	depth	and	radial	depth	of	cut	were	selected	as	input	parameters.	Exper‐
iments	were	performed	on	a	CNC	milling	center	and	experimental	data	were	
collected	 based	 on	 a	 four‐factor‐five‐level	 central	 composite	 design	 (CCD).	
RSM	was	 applied	 for	 establishing	 the	 basic	 relationship	 between	 input	 pa‐
rameters	and	surface	roughness.	After	that	analysis	of	variance	(ANOVA)	was	
conducted	 for	 the	evaluation	of	 the	proposed	mathematical	model.	A	prede‐
fined	reduced	quadratic	model	was	used	as	a	reference	model	for	a	build‐up	
of	predictive	models	using	GA	and	GWO	algorithm.	Predicted	values	of	RSM,	
GA	and	GWO	models	are	compared	with	experimental	results.	In	the	compari‐
son	 of	model	 performance	 for	 all	 the	 three	models	 it	 was	 found	 that	 GWO	
model	 is	 the	best	 solution.	The	model	 accuracy	was	 found	 to	be	at	91.80	%	
and	 89.58	%	 for	 training	 and	 testing	 data,	 respectively,	 which	 showed	 the	
effectiveness	of	the	GWO	algorithm	for	modeling	machining	processes.	
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1. Introduction  

The	primary	objective	of	machining	 operations	modeling	 is	 developing	 a	predictive	 capability	
for	machining	performance	 in	order	 to	 facilitate	effective	planning	of	machining	operations	 to	
achieve	optimum	productivity,	quality,	and	cost	[1].	Modeling	of	output	machining	performanc‐
es,	 fundamental	variables	 (cutting	 forces,	 cutting	 temperature,	 stress,	etc.),	 and	output	perfor‐
mances	which	are	relevant	for	machine	industry	(tool	life,	surface	roughness,	surface	integrity,	
chip	form,	etc.)	is	very	important	due	to	the	fact	that	conventional	machining	processes	still	oc‐
cupy	the	dominant	part	of	all	production	processes	[2].	The	development	of	advanced	predictive	
models	 enables	 the	 selection	optimal	 cutting	 conditions,	 cooling	 (kinds	of	 cutting	 fluids,	 pres‐
sure,	flow),	cutting	tool	material	(coatings)	and	its	geometry,	machine	tools	and	other.	Predictive	
models	also	help	manufacturing	engineers	to	plan	and	manage	machining	processes	more	effi‐
ciently	and	use	the	sophisticated	simulation	tools	to	check	the	effects	of	projected	process	per‐
formances	far	beyond	the	actual	production	of	any	particular	product(s).	
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	 Since	the	conventional	machine	tools	era	to	the	present	times	of	CNC	multi‐tasking	machine	
tools,	 the	 prediction	 of	 machining	 performances	 and	 optimization	 of	 cutting	 conditions	 have	
been	 interesting	 research	areas.	Modeling	of	 output	machining	performances	 is	mainly	 a	 very	
difficult	task	due	to	complexity	and	stochastic	nature	of	most	machining	processes.	Despite	both	
past	 and	present	numerous	 attempts	 to	 analyze	metal	 cutting,	 the	 basic	 relationship	 between	
the	various	variables	has	still	remained	unexplained	[3].	 In	the	 last	60	years,	metal	cutting	re‐
searchers	 have	 applied	many	methods	 or	 techniques	 for	modeling	 the	 output	machining	 per‐
formances.	Predictive	models	in	practice	can	be	analytical,	empirical,	numerical,	Artificial	Intelli‐
gence	 (AI)	based,	 and	hybrid,	 too	 [2].	Each	of	 these	approaches	has	 its	 advantages	and	disad‐
vantages,	or	capabilities	and	constraints.	For	example,	response	surface	methodology	(RSM)	is	
used	for	empirical	models	building.	In	recent	years	the	research	in	the	area	of	machining	process	
modeling	is	oriented	towards	the	use	of	methods	based	on	Artificial	Intelligence.	Artificial	Intel‐
ligence‐based	models	are	commonly	 founded	on	either	a	biological,	molecular,	or	neurological	
phenomenon	that	resembles	the	metaphor	of	natural	biological	evolution	and/or	the	social	be‐
havior	of	different	species	of	natural	organisms	[4].	

These	models	have	been	developed	thanks	to	the	rapid	advancement	of	computer	technology	
over	the	past	two	decades	and	are	often	called	nature‐inspired	algorithms.	Nature‐inspired	algo‐
rithms	could	be	classified	 into	 three	wide	groups:	physics‐based	algorithms	(PBA),	 chemistry‐
based	 algorithms	 (CBA)	 and	 biology‐based	 algorithms	 (BBA)	 [5].	 Physics‐based	 algorithms	
(PBA)	actually	apply	the	basic	principles	of	physics,	 for	 instance,	Newton’s	 laws	of	gravitation,	
laws	of	motion	and	the	like.	

Biology‐based	algorithms	(BBA)	present	a	special	group	of	algorithms	within	algorithms	in‐
spired	by	nature	and	those	can	learn	and	adapt	similar	to	biological	organisms	[6].	These	algo‐
rithms	can	be	put	 into	 three	categories:	evolutionary	algorithms	(EA),	bio‐inspired	algorithms	
(BIA)	and	swarm	intelligence‐based	algorithms	(SIA)	[5].	Biology‐based	algorithms	try	to	mimic	
the	way	in	which	biological	organisms	or	sub‐organisms	(e.g.,	bacteria	or	neurons)	function,	so	
as	to	achieve	a	high	level	of	efficiency	[6].	Evolutionary	algorithms	(EA)	are	based	on	Darwin’s	
theory	of	evolution	and	among	them	are	most	 famous	genetic	algorithm	(GA)	and	genetic	pro‐
gramming	(GP).	

Bio‐inspired	algorithms	(BIA)	are	built	on	the	idea	of	a	commonly	observed	phenomenon	in	
some	animal	species	and	ordered,	natural	movement	of	organisms.	Flocks	of	birds	and	shoal	of	
fish	are	amazing	examples	of	self‐organized	coordination.	For	example,	Particle	Swarm	Optimi‐
sation	(PSO)	simulates	the	social	behavior	of	birds.	In	PSO,	each	solution	in	search	for	space	is	
actually	analogous	to	a	bird	and	it	is	called	“a	particle”.	The	system	is	started	with	a	population	
of	random	particles	(called	a	swarm)	and	their	searches	for	optimum	value	continues	by	updat‐
ing	new	generations.	Each	particle	in	the	swarm	tries	to	reach	a	possible	solution,	whereby	the	
group	attempts	 to	meet	 the	collective	objective	of	 the	group,	all	 that	based	on	the	actual	 feed‐
back	from	the	other	members.	

Swarm	intelligence‐based	algorithms	(SIA)	use	the	fact	that	collective	intelligence	of	swarm	is	
more	than	a	sum	of	individual	intelligences.	Each	agent	of	the	swarm	may	be	considered	as	unin‐
telligent,	 but	 it	 follows	 some	 simple	 rules,	 so	 that	 the	 whole	 swarm	 may	 show	 some	 self‐
organization	behavior	and	thus	can	behave	like	some	kind	of	collective	intelligence.	These	algo‐
rithms	began	from	observing	the	collective	behaviors	of	 insects	 living	in	colonies	such	as	ants,	
bees,	wasps,	termites,	respectively	and	also	the	collective	behaviors	of	some	animal	species,	such	
as	cuckoos,	lions,	wolves,	etc.	The	most	famous	algorithms	based	on	swarm	intelligence	are	Arti‐
ficial	Bee	Colony	(ABC),	Ant	Colony	Optimization	(ACO),	Cuckoo	search	(CS).	

The	 aim	of	 this	work	 is	 to	 present	 the	 various	 approaches	 to	 predict	 surface	 roughness	 in	
ball‐end	milling	 process	 and	 developing	 a	 predictive	model	 to	 obtain	 surface	 roughness	 as	 a	
function	of	machining	parameters:	spindle	speed	(n),	 feed	per	tooth	(fz),	axial	depth	of	cut	(ap)	
and	radial	depth	of	cut	(ae),	using	response	surface	methodology	(RSM),	genetic	algorithm	(GA)	
and	grey	wolf	optimizer	(GWO)	algorithm.	RSM	is	conventional	modeling	approach,	GA	is	a	part	
of	evolutionary	algorithms	and	GWO	is	new	swarm	 intelligence‐based	algorithm.	GWO	is	a	re‐
cently	developed	algorithm	inspired	by	grey	wolves	and	their	life	in	nature	(as	for	example	lead‐
ership	hierarchy	and	hunting	mechanism)	and	has	been	successfully	applied	for	solving	different	
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problems.	As	the	grey	wolf	optimizer	(GWO)	is	a	real	novelty,	there	is	no	study	in	the	literature	
about	the	application	of	this	algorithm	for	modeling	and	optimization	of	machining	operations,	
in	other	words	for	prediction	of	output	machining	performances. 

2. Literature review  

One	of	the	most	important	machining	performances	is	surface	roughness,	particularly	so	in	fin‐
ish	milling	 operations	 [7].	When	 referencing	 to	 the	 already	published	papers,	 obviously	 there	
have	been	a	lot	of	researches	regarding	the	prediction	of	surface	roughness	in	face,	but	also	end	
milling	process.	For	this	purpose,	a	number	of	statistical	methods	were	used	such	as	RSM	and	
soft	computing	techniques	or	bio‐inspired	computing	(ANN,	GA,	GP,	ANFIS).		
	 Numerous	 researchers	 have	 studied	 the	 influence	 of	 input	 cutting	 parameters	 on	 surface	
roughness	 for	 practical	 end	milling.	 Most	 of	 the	 research	 proposal	 is	 the	multiple	 regression	
method	to	predict	surface	roughness	[8,	9],	some	research	applied	ANN,	fuzzy	logic,	ANFIS,	GA	
and	grey‐fuzzy	approaches	for	surface	roughness	prediction	in	end	milling	process	[10‐15],	eve‐
ryone	proposed	GP,	namely	RSM	to	predict	surface	roughness	in	end	milling	[16,	15].		
	 Ball‐end	milling	is	a	type	of	milling	process	where	ball‐end	mill	is	used	with	the	goal	to	gen‐
erate	3D	free	formed	sculptured	products.	In	reality,	die,	mold	and	aerospace	industries	mostly	
apply	that	type	of	process.	There	 is	a	 far	smaller	number	of	published	references	dealing	with	
the	prediction	of	the	surface	roughness	for	this	type	of	end	milling	process.		
	 Dhokia	at	al.	[17]	used	GA	for	predicting	of	surface	roughness	in	ball‐end	milling	of	polypro‐
pylene.	Establishing	a	relationship	between	surface	roughness	and	the	process	parameters	such	
as	feed,	speed,	and	depth	of	cut	for	the	ball‐end	milling	of	polypropylene	was	the	most	signifi‐
cant	goal	for	the	surface	roughness	model.	The	experimental	tests	were	carried	out	according	to	
the	orthogonal	array	design	L16.	The	mean	deviation	of	Ra	obtained	by	surface	roughness	model	
over	the	validation	dataset	was	obtained	as	8.43	%.		
	 	In	their	study	Vakondios	at	al.	[18]	addressed	the	influence	of	milling	strategy	on	the	surface	
roughness	 in	ball	end	milling	of	 the	aluminum	alloy	Al7075‐T6.	Different	 strategies	were	ana‐
lyzed	(vertical,	push,	pull,	oblique,	oblique	push	and	oblique	pull).	A	mathematical	model	of	the	
surface	roughness	was	established	for	each	of	them,	considering	both	the	down	and	up	milling.	
Mathematical	models	for	surface	roughness	were	obtained	using	RSM.	For	a	check	up	of	the	va‐
lidity	of	models	used	was	the	analysis	of	variance	(ANOVA).		
	 Hossain	 and	Ahmad	 [19]	decided	 to	 attempt	with	RSM	and	adaptive‐neuro‐fuzzy‐inference	
system	(ANFIS)	in	order	to	predict	surface	roughness	in	ball‐end	milling.	After	comparing	ANFIS	
results	with	the	RSM	results	the	superiority	of	ANFIS	results	to	the	RSM	results	was	showed.		
	 Zuperl	 and	 Cus	 [20]	 developed	 a	 simplified	model	 to	 provide	 functional	 relations	 between	
surface	 roughness,	 cutting	 chip	 size,	 cutting	 conditions	 and	diameter	 of	 the	 ball‐end	mill.	 The	
ANFIS	method	was	applied	for	predicting	the	cutting	chip	size	in	ball‐end	milling.	In	spite	of	be‐
ing	simple,	the	model	has	reliability	and	efficiency	in	predicting	the	Ra	in‐process	by	utilizing	the	
chip	size.		
	 Quintana	at	al.	[21]	used	artificial	neural	networks	(ANN)	for	predicting	of	surface	roughness	
in	the	function	of	spindle	speed,	 feed	per	tooth,	axial	depth	of	cut,	radial	depth	of	cut	and	tool	
radius.	The	developed	ANN	enabled	 the	prediction	of	surface	roughness	with	a	high	degree	of	
correlation	(R2	=	0.96296). 

3. Materials and methods 

3.1 Experimental setup and results 

The	 experimental	work	 explained	 in	 this	 paper	 referenced	 the	work	 of	 Pejic	V.	 [22],	 and	was	
performed	at	the	Department	of	Production	Engineering,	Faculty	of	Technical	Sciences,	at	Uni‐
versity	of	Novi	Sad	and	at	the	company	"ELMETAL"	doo	in	Senta,	Serbia.	The	experiments	were	
conducted	 on	 HAAS	 VF‐3YT	 vertical	 three‐axis	 CNC	 milling	 machine	 and	 on	 hardened	 steel	
X210CR12	with	58	HRC.	The	cutting	 tools	used	were	TiAlN‐T3	coated	 two‐flutes	solid	carbide	
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ball‐end	milling	 cutters	 of	 diameter	 6	mm	 (Emuge‐Franken,	 type1877A).	 The	 dimension	 of	 a	
workpiece	300	mm		58	mm		20	mm	was	used	in	this	study.	Based	on	the	tool	manufacturer's	
recommendation,	a	cold	air	nozzle,	which	works	on	the	principle	of	a	vortex	tube,	was	used	for	
cooling	the	tool.	Prior	to	performing	the	experiments,	the	workpiece	was	divided	into	84	fields,	
with	dimensions	of	15.33	mm		3	mm	and	a	height	of	2	mm,	as	shown	in	Fig.	1.	Each	field	corre‐
sponded	to	one	experimental	point.	This	method	enables	machining	in	one	clamp,	and	hence	the	
same	machining	conditions	at	all	experimental	points.	According	to	the	data	taken	from	the	de‐
sign	of	 experiments	 (DoE)	CNC	programming	 code	was	 set	 up	 in	Edgecam	2015	 for	 each	 and	
every	 experimental	 point,	 as	 seen	 in	 Table	 2.	 The	 surface	 roughness	 value	 of	 the	 machined	
workpiece	was	measured	using	the	MarSurf	PS1	portable	unit.	

Applying	the	rotatable	central	composite	design	(RCCD),	the	Design	of	experiment	(DOE)	was	
obtained.	Using	different	combinations	of	the	input	parameters	levels	performed	was	a	total	of	
30	experiments.	The	machining	parameters	chosen	to	analyze	their	effect	on	surface	roughness	
were	spindle	speed,	feed	per	tooth,	axial	depth	of	cut	and	radial	depth	of	cut.	Values	of	cutting	
conditions	have	been	determined	for	a	4‐factor	design	of	experiments	according	to	tool	produc‐
er	recommendations	and	the	workpiece	material,	Table	1.	
	

	
Fig.	1	Test	part	designed	in	Edgecam	2015	

	 	
Table	1	Machining	parameters	and	their	levels	

Parameters	 Levels
‐2 ‐1 0 1	 1

Spindle	speed,	n	(min‐1)	 3981 4777 5573 6369	 7169
Feed	per	tooth,	fz	(mm/tooth)	 0.018 0.024 0.030 0.036	 0.042
Axial	depth	of	cut,	ap	(mm) 0.04 0.08 0.12 0.16	 0.20
Radial	depth	of	cut,	ae	(mm) 0.20 0.40 0.60 0.80	 1.00

	
Spindle	speed	is	calculated	by	the	equation	below:	

 pp ada

v
n




12 
	 (1)

where	v	is	the	cutting	speed,	ap	is	the	axial	depth	of	cut	and	d1	is	a	diameter	of	the	tool.	
Measured	results	of	surface	roughness	are	presented	in	Table	2.	

	



Sekulic, Pejic, Brezocnik, Gostimirović, Hadzistevic 
 

22  Advances in Production Engineering & Management 13(1) 2018

 

Table	2	Experimental	results	for	surface	roughness	Ra	

Trial	No.	
Code	 Parameters	 Measured	value	

Ra	(m)	x0	 x1	 x2	 x3	 x4	 n	(min‐1)	 fz	(mm/z) ap	(mm)	 ae	(mm)	

1	 1	 ‐1	 ‐1	 ‐1	 ‐1	 4777	 0.024	 0.08	 0.40	 0.745	
2	 1	 1	 ‐1	 ‐1	 ‐1	 6369	 0.024	 0.08	 0.40	 0.305	
3	 1	 ‐1	 1	 ‐1	 ‐1	 4777	 0.036	 0.08	 0.40	 0.643	
4	 1	 1	 1	 ‐1	 ‐1	 6369	 0.036	 0.08	 0.40	 0.497	
5	 1	 ‐1	 ‐1	 1	 ‐1	 4777	 0.024	 0.16	 0.40	 0.662	
6	 1	 1	 ‐1	 1	 ‐1	 6369	 0.024	 0.16	 0.40	 0.569	
7	 1	 ‐1	 1	 1	 ‐1	 4777	 0.036	 0.16	 0.40	 0.850	
8	 1	 1	 1	 1	 ‐1	 6369	 0.036	 0.16	 0.40	 0.425	
9	 1	 ‐1	 ‐1	 ‐1	 1	 4777	 0.024	 0.08	 0.80	 3.370	
10	 1	 1	 ‐1	 ‐1	 1	 6369	 0.024	 0.08	 0.80	 3.040	
11	 1	 ‐1	 1	 ‐1	 1	 4777	 0.036	 0.08	 0.80	 3.302	
12	 1	 1	 1	 ‐1	 1	 6369	 0.036	 0.08	 0.80	 3.149	
13	 1	 ‐1	 ‐1	 1	 1	 4777	 0.024	 0.16	 0.80	 3.261	
14	 1	 1	 ‐1	 1	 1	 6369	 0.024	 0.16	 0.80	 3.116	
15	 1	 ‐1	 1	 1	 1	 4777	 0.036	 0.16	 0.80	 3.379	
16	 1	 1	 1	 1	 1	 6369	 0.036	 0.16	 0.80	 3.113	
17	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.677	
18	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.518	
19	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.571	

20	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.296	

21	 1	 ‐2	 0	 0	 0	 3981	 0.030	 0.12	 0.60	 1.926	
22	 1	 2	 0	 0	 0	 7166	 0.030	 0.12	 0.60	 1.159	
23	 1	 0	 ‐2	 0	 0	 5573	 0.018	 0.12	 0.60	 1.334	
24	 1	 0	 2	 0	 0	 5573	 0.042	 0.12	 0.60	 1.299	
25	 1	 0	 0	 ‐2	 0	 5573	 0.030	 0.04	 0.60	 1.324	
26	 1	 0	 0	 2	 0	 5573	 0.030	 0.20	 0.60	 1.285	
27	 1	 0	 0	 0	 ‐2	 5573	 0.030	 0.12	 0.20	 0.245	
28	 1	 0	 0	 0	 2	 5573	 0.030	 0.12	 1.00	 4.258	
29	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.470	
30	 1	 0	 0	 0	 0	 5573	 0.030	 0.12	 0.60	 1.471	

3.2 Response surface methodology (RSM) background 

A	 collection	 of	 statistical	 and	mathematical	methods	 is	 named	 response	 surface	methodology	
(RSM)	and	it	can	be	used	in	modeling	and	optimization	of	different	machining	processes	[23‐25].	
In	 the	actual	development	of	conventional	predictive	modeling	 this	methodology	 is	commonly	
present.	The	input	variables	are	here	referred	to	as	independent	variables,	and	they	are	subject‐
ed	to	the	control	of	an	engineer	or	a	scientist,	with	the	purpose	of	completing	a	test	or	an	exper‐
iment.		
	 Measurable	output	performance	of	the	process	is	called	response	and	it	is	a	dependent	varia‐
ble	being	tested.	RSM	quantifies	the	relationship	between	the	controllable	input	parameters	and	
the	obtained	response,	in	other	words,	attempts	to	analyze	the	influence	of	independent	param‐
eters	on	a	specific	dependent	response.	For	modeling	and	optimization	of	machining	processes	
data	are	needed	which	are	collected	through	experimental	work.	This	methodology	represents	
the	empirical	 statistical	 technique,	which	 is	applied	 for	 the	regression	analysis	of	 the	data	ob‐
tained	 through	 the	experiment	 in	order	 to	obtain	 the	equation	which	represents	 the	response	
function	(depending	on	the	variable	size	being	examined).	This	function	can	be	graphically	dis‐
played	 as	 a	 response	 surface,	 whereby	 which	 this	 methodology	 has	 been	 named.	 A	 few	 ad‐
vantages	 that	Response	surface	methodology	(RSM)	offers	when	compared	 to	 the	classical	ex‐
perimental	or	optimization	methods	where	only	one	variable	at	a	time	technique	is	used	are	as	
follows	[4]:	implies	a	large	amount	of	information	from	not	so	many	experiments	and	a	possibil‐
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ity	to	notice	easily	the	interaction	effect	of	the	independent	parameters	on	the	response.	To	ob‐
tain	information	about	the	process	useful	was	the	empirical	model	as	it	 linked	the	response	to	
the	independent	variables	and	it	could	also	be	a	practical	tool	for	the	optimization	of	machining	
processes.	
	 According	to	RSM,	the	measurability	of	all	the	input	process	parameters	is	assumed	and	the	
corresponding	equation	expresses	the	process:	
	

, , … , ε	 (2)
	 	

where	y	is	the	response,	f	is	the	unknown	function	of	response,	x1,	x2,…,	xk	refer	to	the	independ‐
ent	parameters	or	variables,	k	is	the	independent	variables	number	and	in	the	end	ɛ	is	the	statis‐
tical	error	that	denotes	other	sources	of	variability	not	accounted	for	by	f.	
	 In	RSM	two	models	are	commonly	used.	The	first‐degree	model:	
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and	the	second‐degree	model:	

∙ ∙ ∙ ∙ 	 (4)

where	b0	 is	 coefficient	of	 the	 free	 term,	 coefficients	bi	 are	 the	 linear	 terms,	 coefficients	 	 are	
quadratic	terms	and	coefficients	 	are	interaction	terms.	

Value	of	coefficients	bi,	bii,	bij	is	determined	using	the	method	of	least	squares	(MLS).	

3.3 Genetic algorithm (GA) background 

The	GA	is	a	search	algorithm	for	optimization,	based	on	a	Darwinian	theory	of	evolution	and	on	
the	concept	of	"survival	of	the	fittest".	As	in	nature,	the	strong	species	remain	intact,	while	the	
sleazy	species	is	eliminated.	The	two	most	significant	advantages	of	the	GA	approach	are	its	sim‐
plicity	of	operation	and	computational	efficiency.	GA	deals	with	chromosome	populations.	Actu‐
ally,	string	representations	of	solutions	to	a	particular	problem	are	called	chromosomes.	Using	
the	real	analogy	with	biology,	the	chromosome	is	presented	as	the	genotype,	whereas	the	solu‐
tion	it	describes	is	called	the	phenotype.		

The	simplest	form	of	GA	involves	three	types	of	operators:	selection,	crossover,	and	mutation.	
Fig.	2	 illustrates	the	flowchart	of	GA	for	optimization	[26].	For	using	this	algorithm,	a	problem	
solution	is	defined	in	terms	of	the	fitness	function.	A	fitness	function	is	used	to	evaluate	each	of	
the	solutions	in	the	population,	represented	by	the	chromosomes.	Defining	this	function	for	the	
given	problem	is	one	of	the	most	difficult	tasks	in	creating	a	good	genetic	algorithm.		

To	allow	the	entire	range	of	possible	solutions	(the	search	space)	 the	original	chromosome	
population	is	created	randomly.	Several	hundreds	or	thousands	of	possible	solutions	is	a	typical	
content	of	the	population	size.	The	fitness	function	measures	the	quality	of	the	represented	solu‐
tion	and	it	depends	on	the	nature	of	a	problem.	Selection	is	the	process	of	choosing	two	or	more	
parents	from	the	population	for	crossing.	The	mixing	of	genetic	material	from	two	selected	par‐
ent	 chromosomes	 to	produce	one	or	 two	child	 chromosomes	 is	 called	 the	 crossover	operator.	
That	crossover	operation	can	be	presented	in	many	alternatives,	and	mutation	is	one	of	last	GA	
operators.	This	is	a	background	operator	which	produces	spontaneous	random	changes	in	vari‐
ous	chromosomes.	The	purpose	of	mutation	in	GA	is	preserving	and	introducing	diversity.	Popu‐
lation	size,	number	of	generations,	crossover	rate,	and	mutation	rate	are	the	dependable	varia‐
bles	for	the	GA	performance.		

The	GA	can	actually	be	stopped	under	some	strict	general	criteria.	Looking	at	the	number	of	
generations	 the	 stopping	 criteria	 are	prescribed.	 In	 case	 the	maximum	number	of	 the	genera‐
tions	exceeds	the	number	of	generations,	the	GA	process	is	terminated	and	optimised	results	are	
provided	[17].	
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Fig.	2	The	flow	of	GA	for	optimization	

	
	 The	pseudo	code	of	the	GA	is	presented	in	Fig.	3	[17]:	
	

begin
k	= 0;
initialize	(k);
evaluate	P(t);

while	(gen		Max_gen)	
begin
k	= k + 1
evaluate	P(k –1)
select	P(k) from	P(k – 1)
crossover	on	P(k)
mutation	on	P(k)
evaluate	P(t)
end

end

Fig.	3	Pseudo	code	of	the	GA	

3.4 Gray wolf optimizer (GWO) algorithm background 

The	 leadership	 hierarchy	 and	 hunting	mechanism	 of	 grey	wolves	 in	 nature	 is	 imitated	 in	 the	
grey	wolf	optimizer	 (GWO)	algorithm.	 In	2014	S.	Mirjalilli	at	al.	developed	 the	algorithm	[27].	
Grey	wolves	mainly	have	a	preference	for	living	in	a	pack.	To	simulate	the	leadership	hierarchy	
observed	were	four	types	of	grey	wolves	such	as	alpha	beta,	delta,	and	omega.	The	alpha	is	actu‐
ally	the	first	level	in	the	hierarchy	and	is	referred	to	as	the	leader	of	the	pack.	In	the	hierarchy	of	
grey	wolves	beta	 is	 the	second,	next	 level.	The	betas	are	subordinated	 to	alphas	but	can	be	of	
assistance	 in	 decision‐making	 or	 other	 pack	 activities.	 Omega	 is	 the	 lowest	 ranking	 of	 grey	
wolves.	Even	delta	wolves	are	dominating	over	omega,	but	of	course	they	have	to	submit	to	al‐
phas	and	betas.	
	 The	main	 inspiration	 of	 this	 algorithm	 apart	 from	 their	 social	 leadership	was	 the	 hunting	
technique	of	grey	wolves.	Alpha	wolves	always	lead	the	way,	but	grey	wolves	hunt	in	groups	and	
coordinate	with	each	other	very	well.	Multiple	steps	are	taken	when	hunting	a	prey.	That	hunt‐
ing	can	be	divided	into	a	few	main	stages:	tracking,	chasing,	and	approaching	the	prey;	pursuing,	
encircling	and	harassing	the	prey	until	it	stops	moving;	attack	towards	the	prey	[27].	Mathemat‐
ical	modeling	hunting	technique	and	social	behavior	of	grey	wolves	is	observed	in	this	GWO	al‐
gorithm.	 The	 prey	 is	 located	 by	 alpha,	 beta	 and	 delta	 through	 its	 body	 stance,	 uncoordinated	
movements	or	 the	smell	of	wounds	and	 then	 the	chasing	starts.	The	dominant	wolves	are	 fol‐
lowed	by	omegas.	The	prey	is	first	approached	as	near	as	possible,	encircled	and	then	harassed	
until	it	stops	moving.	The	next	step	by	the	pack	is	jumping	and	attacking	the	prey.	The	flowchart	
of	the	GWO	algorithm	is	shown	in	Fig.	4	[28].	
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Fig.	4	Flowchart	of	the	GWO	algorithm	

	
	 The	most	appropriate	solution	is	α	and	this	solution	is	followed	by	β	and	δ,	respectively,	and	
the	rest	of	the	solutions	belong	to	the	ω,	in	respect	to	the	GWO.	The	first	three	fittest	wolves	that	
are	 closest	 to	 the	prey	 are	α,	β,	 and	δ	who	guide	ω	 to	 search	prey	 in	promising	 search	 areas.	
Omega	updates	its	location	based	on	the	location	of	alpha,	beta,	and	delta	in	a	2D	search	space.	
In	 the	 GWO	 algorithm	 the	 search	 process	 is	 started	 by	 forming	 a	 random	 population	 of	 grey	
wolves	 (candidate	 solutions).	The	estimation	of	probable	position	of	 the	prey	 is	 conducted	by	
alpha,	beta,	and	delta	wolves	using	multiple	iterations.	The	distance	from	the	prey	is	updated	by	
each	candidate	solution.		
With	the	goal	to	stimulate	the	main	phases	of	grey	wolf	hunting	proposed	are	more	vector	equa‐
tions	[27],	which	indicate	the	position	of	the	prey	and	grey	wolfs	during	encircling	prey,	hunting	
and	attacking	prey.	The	pseudo	code	of	 the	GWO	algorithm	is	presented	 in	Fig.	5	[27]	where	t	
indicates	the	current	iteration,	a	 is	a	component	which	linearly	decreased	from	2	to	0	over	the	
course	of	iterations,	A	and	C	are	coefficient	vectors,	X,,	are	the	position	vectors	of	grey	wolfs.		

	
Initialize	the	grey	wolf	population	Xi	(i = 1,2,...,n)
Initialize	a,	A	and	C
Calculate	the	fitness of	each	search	agent
X		=	the	best	search	agent	
X		=	the	second	best	search	agent	
X		=	the	third	best	search	agent	
while	(t		Max	number	of	iterations)	

for	each	search	agent
	 Update	the	position	of	the	current	search	agent
end	for	

Update	a,	A	and	C
Calculate	the	fitness of	all	search	agent
Update	X,	X	and	X	
t	=	t	+	1	
end	while	
return	X	

Fig.	5	Pseudo	code	of	the	GWO	algorithm	
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4. Results and discussion 

4.1 Modeling surface roughness by RSM 

Applying	Design	Expert	software	created	was	RSM	model	with	the	intention	to	model	and	ana‐
lyze	 surface	 roughness.	 Setting	 up	 a	 relationship	 between	 surface	 roughness	 and	 the	 process	
parameters	such	as	spindle	speed,	feed	per	tooth,	axial	depth	of	cut	and	radial	depth	of	cut	a	for	
the	ball‐end	milling	of	hardened	steel	is	the	most	important	objective	of	the	surface	roughness	
model.	 The	mathematical	model	 for	 surface	 roughness	 as	 a	 function	of	machining	parameters	
was	 developed	 by	 using	 a	 reduced	 second‐order	 polynomial	 response	 surface	 mathematical	
equation.	 Analysis	 of	 variance	 (ANOVA)	 for	 response	 surface	 reduced	 quadratic	model	 is	 the	
basis	for	this	kind	of	equation,	as	shown	in	Table	3.		
	 The	developed	mathematical	model	to	predict	surface	roughness	Ra	is:	
	

24
)( 76.585.026.053.11085.195.0 eepzRSMa aaafnR   	 (5)

	
Table	3	Choice	of	model	type	based	on	ANOVA	

Response	 Ra	 	

ANOVA	for	response	surface	 	

Analysis	of	variance	table	(Partial	sum	of	squares	–	Type	III)	 	

Source	 Sum	of	
squares	

df	 Mean	
square

F	
Value

p‐value	
Prob	>	F 	

PC	
(%)

Model	 37.24	 5	 7.45	 140.10	 <	0.0001	 significant	 	

A‐n	 0.52	 1	 0.52	 9.78	 0.0046	 1.35	
B‐fz	 2.017E‐03	 1	 2.017E‐03	 0.038	 0.8472	 0.01	
C‐ap	 2.521E‐03	 1	 2.521E‐03	 0.047	 0.8294	 0.01	
D‐ae	 35.19	 1	 35.19	 661.90	 <	0.0001	 91.36	
D^2	 1.53	 1	 1.53	 28.72	 <	0.0001	 3.96	
Residual	 1.28	 24	 0.053	 3.31	
Lack	of	fit	 1.20	 19	 0.063	 3.93	 0.0677	 not	significant	 3.10	
Pure	error	 0.080	 5	 0.016	 0.21	
Corrected	total	 38.51	 29	 100	

R2	=	0.9669;	Adj	R2	=	0.9599	

	
	 With	 the	aim	 to	 justify	 the	validity	of	 the	model	 the	ANOVA	was	conducted.	The	p‐value	 is	
lower	 than	 0.05	which	 proves	 that	 the	model	 is	 considered	 adequate	 at	 the	 95	%	 confidence	
level.	The	validity	of	the	model	is	confirmed,	by	the	determination	coefficient	R2	=	0.9669.	If	R2	
convergences	unity	the	response	model	gives	better	results	and	there	exists	less	difference	be‐
tween	predicted	and	measured	data.	The	variability	measure	of	the	observed	output	 is	the	ad‐
justed	correlation	coefficient	(Adj	R2	=	0.96).	The	approximate	value	of	the	Adj	R2	with	R2	deter‐
mines	the	fitness	of	the	model	The	p‐value	is	separately	calculated	for	all	the	parameters	of	the	
proposed	model	and	it	can	be	concluded	the	radial	depth	of	cut	ae	(p		0.0001)	is	the	most	signif‐
icant	parameter	on	surface	roughness.	

4.2 Modeling surface roughness by GA 

The	RSM	was	used	to	develop	basically	the	reduced	second‐order	polynomial	response	surface	
mathematical	model	for	prediction	of	surface	roughness	in	ball‐end	milling	and	GA	was	used	for	
fine‐tuning	of	the	constants	in	Eq.	5,	which	obtained	from	RSM.	The	fine‐tuning	of	the	constants	
in	GA	is	performed	in	order	to	find	the	minimum	value	of	the	fitness	function.	

The	fitness	function	is	defined	as:  
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where	n	is	the	size	of	sample	data,	Ei	the	measured	Ra	and	Gi	the	predicted	Ra	calculated	by	GA.	
	 The	lower	the	values	of	Eq.	6,	the	better	agreement	of	the	model	is	to	the	experimental	data.	
For	implementing	GA	GATool	was	used	in	MATLAB.	The	GA	predictive	model	is	developed	using	
25	datasets	selected	based	on	experimental	results,	without	6	datasets	on	the	average	level	(cen‐
ter	points),	Table	2.	Six	datasets	on	the	average	level	were	used	as	one	average	value.	The	best	
result	was	obtained	with	population	size	of	1500.	The	developed	mathematical	model	to	predict	
surface	roughness	Ra	using	GA	is:	
 

24
)( 8.894.379.075.41085.148.1 eepzGAa aaafnR   	 (7)

4.3 Modeling surface roughness by GWO algorithm 

The	 fitness/objective	 function	 in	GWO	algorithm	 is	 calculated	 identically	as	 in	GA,	using	Eq.	6	
and	 same	datasets	 of	 experimental	 results.	 Solving	 of	 the	 optimization	problem	 is	 finding	 the	
minimum	value	of	fitness	function.	For	implementing	GWO	was	used	GWO	toolbox	in	MATLAB,	
developed	by	S.	Mirjalilli	at	al.	 [27].	This	 toolbox	 is	very	simple	and	can	be	used	without	high	
programming	skills	because	its	user‐friendly	graphical	interface.	In	the	toolbox	the	parameters	
of	the	GWO	algorithm	parameters	can	easily	be	calculated.	Cost	Function	is	the	objective	 func‐
tion	default	name	for	this	toolbox.		
	 The	developed	mathematical	model	to	predict	surface	roughness	Ra	using	GWO	algorithm	is:	
 

24
)( 88.80.486.030.41081.147.1 eepzGWOa aaafnR    (8)

4.4 Comparison of RSM, GA and GWO model performance 

Predicted	values	for	surface	roughness	as	obtained	in	the	RSM,	GA	and	GWO	are	compared	with	
the	experimental	values.	In	Table	4	presented	are	the	compared	values	of	the	predictive	perfor‐
mance	for	all	the	three	models	(RSM	model,	GA	model,	and	GWO	model)	with	the	measured	val‐
ue.	The	prediction	accuracy	PA	of	each	datasets	was	calculated	using	Eq.	9	[29].	The	model	accu‐
racy	of	the	developed	RSM,	GA	and	GWO	models	to	predict	the	surface	roughness,	was	evaluated	
using	Eq.	10.	
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The	model	accuracy	of	the	RSM,	GA	and	GWO	models	are	86.79	%,	91.78	%,	and	91.80	%,	re‐
spectively.	 It	can	be	concluded	that	the	model	accuracy	of	the	GWO	and	GA	models	almost	the	
same	 although	 they	 have	 been	 developed	 using	 the	 various	 approaches	 to	 predict	 surface	
roughness	 in	 ball‐end	milling	 process	 and	 different	 pseudo	 codes.	 Both	models	 showed	 good	
agreement	with	the	experimental	data,	but	GWO	model	was	more	accurate	than	the	GA	model.	It	
should	be	noted	that	the	GWO	algorithm	is	easier	 for	application	than	the	GA	and	the	time	re‐
quired	to	calculate	the	minimum	value	of	the	fitness	function	is	shorter	than	when	using	the	GA.	

Confirmation	for	the	models	developed	has	also	been	conducted	using	ten	additional	experi‐
ments,	which	were	 randomly	 selected	 from	 the	 set	of	 experiments	performed	as	 according	 to	
Taguchi	orthogonal	array	L25	(56).	Those	confirmation	tests	have	also	proved	good	accuracy	of	
all	the	models	obtained,	having	in	mind	the	model	based	on	GWO	enabled	the	best	predictability	
of	surface	roughness	for	the	given	case.	In	Table	5	presented	are	the	values	of	the	input	parame‐
ters	as	well	as	the	results	of	the	roughness	measured	for	all	the	ten	additional	measurements.	
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Table	4	Comparison	of	RSM,	GA,	and	GWO	predictive	models	

Trial	
No.	

Measured	
value	Ra	
(m)	

RSM	 GA	 GWO	
Predicted	value	

Ra	(m)	
Prediction	
accuracy	(%)	

Predicted	value	
Ra	(m)	

Prediction	
accuracy	(%)

Predicted	value	
Ra	(m)	

Prediction	
accuracy	(%)

1	 0.745	 0.705	 94.63	 0.600 80.56 0.593 79.66	

T
ra
in
in
g	
da
ta
	

2	 0.305	 0.411	 65.25	 0.306 99.79 0.305 99.96	
3	 0.643	 0.724	 87.40	 0.657 97.80 0.645 99.68	
4	 0.497	 0.429	 86.32	 0.363 72.97 0.356 71.73	
5	 0.662	 0.726	 90.33	 0.663 99.82 0.662 99.99	
6	 0.569	 0.432	 75.92	 0.369 64.79 0.373 65.64	
7	 0.850	 0.745	 87.65	 0.720 84.73 0.714 83.96	
8	 0.425	 0.450	 94.12	 0.426 99.85 0.425 99.98	
9	 3.370	 3.130	 92.88	 3.246 96.31 3.254 96.55	
10	 3.040	 2.836	 93.29	 2.951 97.08 2.965 97.53	
11	 3.302	 3.149	 95.37	 3.303 99.98 3.305 99.90	
12	 3.149	 2.854	 90.63	 3.008 95.53 3.017 95.80	
13	 3.261	 3.151	 96.63	 3.309 98.54 3.322 98.12	
14	 3.116	 2.856	 91.66	 3.014 96.73 3.034 97.35	
15	 3.379	 3.169	 93.79	 3.366 99.61 3.374 99.85	
16	 3.113	 2.875	 92.35	 3.071 98.66 3.085 99.11	
17	 1.677	 1.560	 93.02	 1.484 88.48 1.484 88.50	
18	 1.518	 1.560	 97.23	 1.484 97.75 1.484 97.77	
19	 1.571	 1.560	 99.30	 1.484 94.45 1.484 94.47	
20	 1.296	 1.560	 79.63	 1.484 85.51 1.484 85.49	
21	 1.926	 1.854	 96.26	 1.778 92.33 1.773 92.04	
22	 1.159	 1.265	 90.85	 1.189 97.40 1.195 96.87	
23	 1.334	 1.541	 84.48	 1.427 93.04 1.432 92.62	
24	 1.299	 1.578	 78.52	 1.541 81.38 1.536 81.78	
25	 1.324	 1.539	 83.76	 1.421 92.69 1.415 93.09	
26	 1.285	 1.580	 77.04	 1.547 79.62 1.553 79.17	
27	 0.245	 0.056	 22.86	 0.246 99.75 0.245 99.99	
28	 4.258	 4.906	 84.78	 5.537 69.97 5.565 69.30	
29	 1.470	 1.560	 93.88	 1.484 99.06 1.484 99.04	
30	 1.471	 1.560	 93.95	 1.484 99.13 1.484 99.11	

Model	accuracy	 86.79	 91.78 91.80	
1	 1.587	 1.854 83.16	 1.778 87.94 1.773 88.30	

T
es
ti
ng
	d
at
a	

2	 1.402	 1.678 80.30	 1.543 89.97 1.542 89.98	
3	 3.235	 3.141 97.08	 3.277 98.70 3.288 98.37	
4	 5.259	 5.064 96.29	 5.715 91.32 5.744 90.78	
5	 0.523	 0.598 85.57	 0.576 89.88 0.578 89.51	
6	 1.328	 1.548 83.43	 1.449 90.86 1.441 91.47	
7	 3.640	 3.010 82.70	 3.184 87.47 3.187 87.55	
8	 1.602	 1.424 88.89	 1.371 85.59 1383 86.30	
9	 4.851	 4.758 98.07	 5.386 88.96 5.412 88.43	
10	 3.405	 2.710 79.60	 2.870 84.28 2.898 85.10	

Model	accuracy	 87.51	 89.50 89.58	
	

Table	5	Experimental	results	of	confirmation	tests	

Trial	No.	
Parameters	 Measured	value	

Ra	(m)	n	(min‐1)	 fz	(mm/z)	 ap	(mm)	 ae	(mm)	
1	 3981	 0.030	 0.12	 0.60	 1.587	
2	 4777	 0.018	 0.08	 0.60	 1.402	
3	 4777	 0.024	 0.12	 0.80	 3.235	
4	 4777	 0.030	 0.16	 1.00	 5.259	
5	 5573	 0.030	 0.20	 0.40	 0.523	
6	 5573	 0.036	 0.04	 0.60	 1.328	
7	 5573	 0.042	 0.08	 0.80	 3.640	
8	 6369	 0.024	 0.20	 0.60	 1.602	
9	 6369	 0.036	 0.08	 1.00	 4.851	
10	 7166	 0.018	 0.20	 0.80	 3.405	
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5. Conclusion 
This paper presents the predictive models for surface roughness Ra during ball-end milling pro-
cess which were developed using RSM, GA and GWO algorithm. In the first step of the research 
basic mathematical model was developed by the use of RSM. The developed model is adequate. 
The validity of the model was confirmed using ANOVA. This reduced quadratic model was used 
in next steps as basic shape for a build-up of predictive models using GA and GWO algorithm. In 
the second step, the predictive models were developed applying GA and GWO algorithm. The 
fitness function was same for both algorithms and was calculated identically, using Eq. 6. For 
implementing GA and GWO algorithm were used toolboxes in MATLAB. The predictive capability 
developed models were compared. Experimental results were compared with predicted values 
for all three the models. The predictive model developed using GWO algorithm providing the 
best prediction accuracy. The model accuracy for surface roughness was 91.8 % and 89.58 % for 
training and testing data, respectively. On comparison RSM, GA and GWO models were found 
that nature-inspired algorithms show the good ability for prediction of surface roughness in 
ball-end milling process. Results have confirmed that new swarm intelligence-based algorithm, 
called GWO as useful for modeling machining processes. 
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