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The Scaling Problems in Service 
Quality Evaluation  

Michele Gallo1 

 Abstract 

In service quality evaluation we have to treat data having different kinds 
of scales. In order to obtain a measure of the service quality level a 
conventional ordinal rating scale for each attribute of a service is used. 
Moreover additional information on the customers or on the objective 
characteristics of the service is available (interval, ordinal and or 
categorical scale). In the latter the importance or weight assigned to the 
different items must be also considered (compositional scale). To analyze 
these different kinds of data particular precaution should be used, a 
transformation of quality level perceived (expected) data in quantitative 
scale is carried out before a multidimensional data analysis. In literature 
more techniques are proposed for the quantification of ordinal data 
preserving the original characteristics. The aims of this paper are to analyze 
different ways to quantify ordinal data, and illustrate how the additional 
information on the customers or on the service could be used in the 
multidimensional analysis as external information. 

1 Introduction 

Customer satisfaction has become a vital concern for companies and organizations 
in their efforts to improve product and service quality, and maintain customer 
loyalty within a highly competitive market place. It is conceptualized as an 
affectively laden “fulfillment response” to service received (Oliver, 1997). To 
obtain a measure of satisfaction is not a simple meter because satisfaction is 
mostly due to physiologically conditioned assessments. It reflects both emotional 
and cognitive elements (Oliver 1993). In the last decade, more Customer 
Satisfaction Indexes (CSI) have been proposed (e.g., USA, Fornell et al., 1996; 
European Union, ECSI Technical Committee, 1998) where the structure of all CSI 
are continually undergoing review and subject to modifications.  

If the structure of CSI(s) are continually subject to modifications, the core of 
the model is in most respects standard. It is encased within a system of cause and 
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effect running from the antecedents of overall customer satisfaction – quality 
expectation, quality perceived, perceived value and image – to the consequences of 
overall customer satisfaction – customer loyalty and customer complaints. Eklöf 
(2000) proposed to distinguish between perceived product quality and perceived 
service quality where perceived service quality is the evaluation of recent 
consumption experience of associated services like customer service, conditions of 
product display, range of services and products etc. On this basis, we posit that 
service quality is primarily an antecedent of customer satisfaction (Fornell et al., 
1996).  

In this work, we have not taken care of the problems associated with the choice 
of the “better” CSI measurement framework. In the following just the SERVQUAL 
model (Parasuraman et al., 1988) is considered for measuring the service quality 
(SQ). Anyway most of the results can be generalized to the other models 
(D’Ambra and Gallo, 2006). The SERVQUAL have a structure based on a set of 
attributes and dimensions. Where each attribute is evaluated by an item and sets of 
items giving the evaluation of the dimensions. The item has the same ordinal 
rating scale with a ranging on seven scores. Moreover an importance or weight (C) 
is attached to each dimension (or attribute) that is principally used to weigh the 
gap between performance perception (R) and service quality expectation (E). 
Whereas the weight could be analyzed independently to obtain information on the 
nature and causes of the interrelationships between the quality dimensions (or 
attributes). In this case, we should consider the constraint ratio scale of the 
importance data. Likewise, in these studies some additional information is 
available which permits us to investigate the degree of satisfaction of 
homogeneous customer clusters (gender, age, profession, level of education, etc.) 
with respect to some objective characteristics of the service (for example in 
hospital: procedure, illness, etc.). The inclusion of additional information in the 
multidimensional analysis of SQ data could be used to obtain more accurate 
results.  

Let J N,R  ( J N,E ) be the matrix of perceived (expected) results where N are the 

customers and J are the ordinal variables (for each item there is one variable) with 

the same number of categories l. And let D N,C  be the matrix of importance with D 

variables. The nature of data should be considered before we carry out a 
multidimensional analysis. In particular, perception (expectation) evaluation has 
an ordinal scale. This scale establishes an explicit rank, but not all arithmetic 
transformations are meaningful because the distances between points on an ordinal 
scale are not meaningful. The importance data has a constrained ratio scale. For 
these data intervals between values and ratios of values are meaningful but the 
constrained of the unit-sum of the composition scale causes more problems 
(Aitchison, 1986). Therefore additional information could have different kinds of 
scales: as categorical (or nominal) scale, where there is no explicit ranking on the 
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category labels; interval scale, where the distances between data are meaningful 
but where zero is not meaningful; and where there is an ordinal and ratio scale. 

The principal purpose of this paper is to point out the necessity to transform 
the row data before we carry out some multidimensional statistics analysis, while 
the transformation should respect the original nature of the data. Moreover, the 
inclusion of additional information could be particularly appropriate in the 
framework of SQ, because it allows us to know the degree of satisfaction of 
homogeneous subject clusters evaluating the SQ in a more precise and objective 
way. In Section 2, we consider the quantification of perceived (expected) data. In 
particular, after a brief review of some technique for the optimal scaling of ordinal 
data, where the optimal scaling is defined in terms of the correlation matrix of 
quantified variables. We propose a new way to quantify the perceived (expected) 
data based on the conservation of the different subjective scales of each customer. 
In Section 3, we define the properties of compositional data and propose a 
logcontrast transform of the matrix D N,C  in order to perform multivariate analysis. 

In Section 4, a presentation of how the additional information could be included 
into a multidimensional analysis of SQ data is given. 

2 Some approaches to the optimal quantification of 
ordinal data 

In literature different approaches are proposed to quantify the ordinal data. Most of 
them are based on a loss function to attain a minimum between the transformed 
variables, so one possibility is to use the mean squared euclidean distance between 
the transformed variables and one hypothetical common variable. A generic loss 
function is 
 

( )( )∑ =
− −J

j jjj hφSSQJ
1

1 Xβ            (2.1) 

 
where X is a matrix of basis vectors of order (N x s), jβ  is a vector of s loadings 

and ( )jj hφ  may be any non linear function of the variable jh  ( J,,j K1= ). 

Equation (2.1) is used by Kruskal and Shepard (1974), Young, de Leeuwe and 
Takane (1976), and many others. De Leeuwe, van Rijckevorsel (1980) and Gifi 
(1982) use the following alternative loss function 
 

( )( )∑ =
− −J

j jj hφSSQJ
1

1 X             (2.2) 

 
where the weights jβ  are incorporated into function ( ) . jφ . Equation (2.2) is used 

because the treatment of missing data becomes more simple, and both variables 
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with a single quantification and variables with multiple ones can be analyzed 
simultaneously. We interpret ( ) . jφ  as an approximation of a function based on a 

representation of some finite amount of data on that function. In the present case, 
we would like to incorporate into the analysis the underlying monotone structure 
of data, so that each variable is treated as ordinal. Moreover the rank-one 
restrictions are included in (2) which implies that the quantifications in s 
dimensional space of each variable jh  become proportional to each other (Gifi, 

1982). For the generic variable jh , we can write ( ) 'hφ jjjjj βqG= , where jq  is a 

vector of single category quantification, jβ  a vector of loadings and jG  is a 

matrix which indicates the category of the j th variable. Here we propose a B-spline 
transformation because it has more attractive proprieties (van Rijckevorsel and De 
Leeuwe, 1988). Nevertheless, we could use a Fuzzy coding or a Monotone-spline 
(van Rijckevorsel, 1987; Winsberg and Ramsay, 1983). 

2.1 B-Spline transformation 

The B-spline takes a variable as input and produces more than one variable as 
output. By B-spline a variable jh  ( [ ]b,ah j ∈  with ba ≠ ) is partitioned into a 

number of intervals, where two boundary points, called knots, restrict every 
interval: ba K ≤<<≤ κκ K1 , with exactly r  “interior knots” (knots that meet 

another knot on both sides) and rK −  “exterior knots”. Let piecewise coding 
function be a positive function between 0 and 1 on some contiguous part on range 
[ ]b,a . For each variable jh  there exists s different piecewise coding functions 

represented by correspondingly s column-vectors ( )hkG  s,,k K1= , where the s 

column-vectors ( )hkG  are collected in a pseudo-indicator matrix G , where 

1
1

=∑
=

s

k
ikG .  

A B-spline is a particular piecewise coding function with functional pieces of 
degree v, that is positive on exactly 1+v  consecutive intervals, with an overlap of 
exactly v intervals with the next B-spline, all intervals defined by the knot 
sequence κ , with rv ≤ . The order of B-spline is equal to 1+v , while the number 
of B-splines needed to code a variable with knot sequence κ  is equal to rvs += . 
B-splines of zero degree are the most used for the good properties of the crisp 
coding (van Rijckevorsel, 1988). More coding functions and relative 
characteristics are illustrated in Schumaker (1981). To have a global 

transformation we use a linear combination of B-spline ( ) ( )∑
=

=
s

k

j
kk

j hh
1

α Bφ , where 

the unknown spline coefficient iα  is the only determining parameter of ( )  ⋅φ  (Van 
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Rijckevorsel, 1987). Nevertheless, other methods to determine the optimal 
coefficient are proposed in literature (De Boor, 1978; Schumaker, 1981). 

2.2 A quantification of perceived/expected data for the 
multidimensional analysis 

In Section 2.1 we have considered an approach based on the difference between 
the variables where each categorical value of the j th column of J N,R  ( J N,E ) is 

substituted from the correspondent score of the vector jq . In this way categories 

of the same variable are quantified similarly and categories of dissimilar variables 
are quantified differently ( 'jj qq ≠  with 'jj ≠ ). This characteristic is not required 

in the quantification of perceived (expected) data. An additional effect of this kind 
of transformation is that costumers with the same rate for an item obtain the same 
quantification whereas a customer with the same rate for different items obtains 
dissimilar quantifications. 

An alternative approach is based on the difference between the 
“psychological” scale used with respect to different customers. Following this 
approach, the quantification procedure has to preserve the different origin of the 
measuring system of each customer, the different distance between two points on 
the scale as the non-linear distance between two subsequent points. Finally, by the 
time that a SERVQUAL questionnaire is drawn up each customer has his own 
specific reference system. This is the same for each item of the questionnaire and 
it does not change at the moment but only after a long time.  
 
 
 
 
 

 

 

 

 

Figure 1: The approach based on the differences between the variables (a) and the single 
quantification based on the difference between the subjective scale of the customers (b). 
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customers (b). It is clear that by the first approach non homogenous customers 
have the same quantification, while in the second one the difference between the 
customers is respected. Moreover, each customer has a single quantification for all 
the items of the questionnaire and, in respect to the specific reference system, each 
customer has a quantification that preserves the subjective origin of the measuring 
system and the different distance between two points on the scale as the non-linear 
distance between two subsequent points. 

In order to obtain a quantification that present the characteristics of the 
alternative approach we propose the following strategy. Before each generic row of 

matrix J,NR  ( J,NE ) is crisp coding in a matrix iG  (J x l) in accordance with 

Section 2.1. But the j th row (with J,,j K1= ) of iG  is the coding of the rate that the 

i th subject has given to the different items. Afterwards an Alternative Least 
Squares (ALS) algorithm is engaged to minimize the following loss function 

 

( )∑ =
− −N

i iii 'SSQN
1

1 βqGX          (2.3) 

 

with Js
ˆ 0X1 = , IXX J' =  and 1=iii ' βDβ , where s1̂  is a s dimensional vector 

of unit, J0  is a J dimensional vector of zero, X  a matrix of order (J x s), iβ  is a 

vector of score, iq  is a vector of single category quantification for each single 

customer, and iii ' GGD = . Equation (2.3) presents the rank-one restrictions 

( 'iii βqY = ) that implies the quantifications in s dimensional space of each 

customer. To minimize the loss function (4) the ALS algorithm is proposed to 
search the optimal solution through the satisfaction of the two centroid principles 
with respect to X  and each iY  (van Rijckevorsel, 1987). The algorithm is given by 

the following step: 
 

- Step 0 Initialize the matrix X by a singular decomposition analysis of R  (E ) so 

that 0X1 =s
ˆ  and IXX J' =  

- Step 1 Estimate the matrix XGDY iii
ˆ 1−= , Ni ∈  

- Step 2 Estimate the vector iiiiiii ''ˆˆ qDqqDYβ = , Ni ∈  

- Step 3 Estimate the vector of single quantification iiiii
ˆ'ˆˆ'ˆˆ βββYq = , Ni ∈  

- Step 4 Update the matrix 'ˆˆˆ
iii βqY = , Ni ∈  

- Step 5 Estimate the matrix ∑ =
−= N

i ii
ˆN

1

1 YGX  

- Step 6 Center and orthonormalize the matrix X  
- Step 7 Go to Step 1 until the convergence criterion is reached. 
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By the single quantification iq̂  of each customer we are coding the perceived 

(expected) matrix into the quantified matrix *R  ( *E ). In this way, the subjective 
scale of each customer has been respected. Further a multidimensional analysis of 
the gap between the performance and expectation, or the performance and 
expectation data, could be carried out separately. 

The B-spline takes a variable as input and produces more than one variable as 
output. By B-spline a variable jh  ( [ ]b,ah j ∈  with ba ≠ ) is partitioned into a 

number of intervals, where two boundary points, called knots, restrict every 
interval: ba K ≤<<≤ κκ K1 , with exactly r  “interior knots” (knots that meet 

another knot on both sides) and rΚ−  “exterior knots”.  
Let piecewise coding function be a positive function between 0 and 1 on some 

contiguous part on range [ ]ba  , . For each variable jh  exists s different piecewise 

coding functions represented by correspondingly s column-vectors ( )hkG  

s,,k K1= , where the s column-vectors ( )hkG  are collected in a pseudo-indicator 

matrix G , where 1
1

=∑
=

s

k
ikG . A B-spline is a particular piecewise coding function 

with functional pieces of degree v, that is positive on exactly 1+v  consecutive 
intervals, with an overlap of exactly v intervals with the next B-spline, all intervals 
defined by the knot sequence κ , with rv ≤ . The order of B-spline is equal to 

1+v , while the number of B-splines needed to code a variable with knot sequence 
κ  is equal to rvs += . B-splines of zero degree are the most used for the good 
properties of the crisp coding (van Rijckevorsel, 1988).  

More coding functions and relative characteristics are illustrated in Schumaker 
(1981). To have a global transformation we use a linear combination of B-spline 

( ) ( )∑
=

=
s

k

j
kk

j hh
1

α Bφ , where the unknown spline coefficient iα  is the only 

determining parameter of ( )  ⋅φ  (Van Rijckevorsel, 1987). Nevertheless, other 

methods to determine the optimal coefficient are proposed in literature (De Boor, 
1978; Schumaker, 1981). 

3 Compositional data 

The compositional data have particular properties that pose special problems for 
imputation and they can rarely be analyzed with the usual multivariate statistical 
methods. For each row of matrix D N,C  we define Dc~,,c~ K1  as positive quantities 

with the same measurement scale ( )Dc~,,c~~
K1=c  001 ≥≥ Dc~,,c~ K  and c~  the trace 

of c~ . The vector c~  is the basis of compositional data and ccc ~~=  is a 

composition vector.  
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More generally, we define D N,C  a compositional data matrix if all elements are 

positive and each row is constrained to the unit-sum ND
ˆˆ 11C =  where D1̂  and N1̂  

are vectors of units of D and N dimension, respectively. Let [ ]NNN 'ˆˆN 11IQ −=  be 

the product between N1 and the usual centering projector then CQC'  is the 

covariance matrix of C  called crude covariance matrix (Aitchison, 1986). The 
unit-sum constraint for each row of C  implies four difficulties: 1) Negative bias, 
2) Subcomposition, 3) Basis, 4) Null correlation. Each row and column of CQC'  

has zero-sum: DD
ˆ'ˆ 0CQC1 =  where D0̂  is a D dimensional vector of zero. 

Therefore each variable has a covariance sum equivalent to negative variance (the 
first difficulty). No-relationship exists between the crude covariance matrix and 
the crude subcomposition covariance one. Therefore the variation of 
subcomposition can substantially influence the covariance (the second difficulty). 
Likewise in the subcomposition, it is not easy to select a basis c~  for the 
composition (which is the third difficulty). Like the crude covariance matrix, each 
row and column of the crude correlation matrix of C  has a zero-sum. Therefore 
the correlation between two variables is not free to range over the usual interval 
[ ]1 1,− . The negative bias causes a radical difference from the standard 

interpretation of correlation between variables. Zero correlation between two 
ratios does not mean that there is no association (the latter difficulty). Moreover 
the uninterpretable crude covariance structure is not the only problem of 
compositional data. Unfortunately, compositional data often exhibit curvature 
when standard multivariate methods are employed. 

Aitchison (1986) richly described the properties of compositional data and 
proposed an alternative form of logratio, where the more useful is based on a 
geometric mean ( )cg . Replacing the natural non-negative condition by the 

following stronger assumption of the strict positive quantities: 001 >> iJi w~,,w~ K  

(see Gallo, 2003); Aitchison (1982) proposes to transform each element of C  ( ijc ) 

in the logratio ( )[ ]cgclog ij , because the relative matrix of centred logratio Z , with 

generic element ( )[ ]cgclogz ijij = is adequate for a low-dimensional description of 

compositional variability. Moreover, a generalization of the logratios – called 
logcontrasts – have particular and researched properties in compositional data 
analysis. Logcontrast of c  is any loglinear combination 

DD cloguclogulog ++= K11cu'  with 01 =++ Duu K , where of logcontrast with 

the geometric mean ( )cg  presents the property: ( )( )ccu'cu' gloglog = . 

The study of composition is essentially concerned with the relative magnitudes 

of iDi c,,c K1  rather than their absolute values. In this case, ratios between 

components are meaningful, and those ratios are independent from the arbitrary 
total. Moreover any logcontrast is scale free: cu'cu' kloglog =  (with 0>k ).  
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Aitchison (1986) richly describes how the logcontrast transformation is 
adequate to resolve the difficulties of compositional data. Barceló-Vidal, Martin-
Fernández and Pawlowsky-Gòahn, (2001) show, from a mathematical point of 
view, that this transformation is not arbitrary.  

4 External information in CS analysis 

Before a multidimensional analysis of the matrix *R  we could include the 
additional information available on the customers or process (Takane and 
Shibayama, 1991). In this way the additional information defines a priori levels of 
sampling hierarchical structures, since it permits us to investigate how well 
structures supplied by the a priori information can account for the data.  

Let H  ( Q,N  with Q the number of predictor categories, NQ ≤ ) be the external 

informational matrix, which can take a variety of forms. We can consider the 

following decomposition model of the matrix *R : 
 

EHTR +=*            (4.1) 
 

where *)( RHHHT ''ˆ −=  is the estimated coefficient matrix and E the error matrix. 

Each term of the model is column-wise orthogonal which implies that the sum of 
squares of T  is decomposed into the sum of squares of the components of (5). The 

problem of estimating T̂  is equivalent to minimizing )'()( EEE trSS =  where 

TPRTHRE H
** ˆˆ −=−=  and ''H HHHHP 1)( −=  is the orthogonal projection 

operator onto the subspace spanned by the column vectors of H , so that (4) is 

decomposed into two additive components: *
H

*
H

* RPRPR ⊥+=  where ⊥
HP  is the 

orthogonal projection operator that is orthogonal to HP . Once the data matrix is 

decomposed according to the additional information (External Analysis), 

multidimensional analysis is carried out on *
H RP  and *

H RP⊥  separately (Internal 

Analysis). An analysis of *
H RP  allows us to incorporate the external information 

into the analysis, whereas the analysis of *
H RP⊥  allows us to exclude them. 

Incorporating the external information we have the evaluation of the performance 
perception in a more precise and objective way because we have the degree of 
satisfaction of homogeneous customer clusters. Differently, incorporating the 

second additive component (analysis on *
H RP⊥ ) we have the evaluation of the 

performance perception while excluding the influence of the external information. 
Similarly we carry out an analysis with the external information on the matrices 

*E , ** ER − , *C  and so on.  
It is also possible to include the external information before the quantification 

of the raw data (D’Ambra et al., 2002) to obtain a more parsimonious 
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representation of the data. Nevertheless we have to respect the original scale of the 
external information and it is not always possible if the external information has 
different scale systems.  

5 Conclusion and perspectives  

The central theme of this paper is the quantification of expected (perceived) data. 
Different scaling methods are proposed in literature to quantify these data (see 
Zanella, 1999) and most of them have a large number of researched properties. 
Nevertheless, here is a new approach to scaling expected (perceived) data because 
the preservation of the subjective scale of each customer is necessary for an 
accurate multivariate analysis. Moreover a strategy that preserves the rule and the 
properties of the row data that we collect with a SQ analysis is a secondary aim of 
this paper. The strategy that we propose is based on the following steps:  

• quantification of expected (perceived) data by an approach that preserves 
the subjective scale of each customer,  

• inclusion of the additional information available on the customers or 
process,  

• research of the latent factors by more independent analysis.   
 

As further developments, we are comparing the different scaling methods with 
the appreciable monotone property. For example, the M-splines are proportional to 
B-splines and a basis of integrated M-splines (I-spline) have the characteristics of 
a probability distribution function. Moreover we are checking on real data for the 
benefit to use the approach that we have proposed.  

Relative to the importance data, the compositional scale of the kind of data 
should be considered because the analysis of these data without transformation 
give misleading information (Aitchison, 1986). Logcontrast transformation is the 
most used for compositional data afterward this data could be used in SQ analysis 
in accordance to the strategy given before.  
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