Robustness of Surface Anomaly Detection Methods to
Domain Shift

Matej Dobrevski, Jakob Bozi¢, Danijel Skocaj

Faculty of Computer Science, University of Ljubljana, Slovenia.
e-mail: matej.dobrevski@fri.uni-lj.si

Abstract

In many realistic visual inspection scenarios it is to be ex-
pected that the distribution of images may change through
time, due to, e.g., gradual changes in illumination, back-
ground, or acquisition settings. In this work we investigate
how such a domain shift influences the performance of
visual surface anomaly detection methods. We analyse
three recent state-of-the-art unsupervised-learning-based
methods and evaluate their response to the domain shift,
caused by applying five different transformations to the
original dataset. We also investigate the number of train-
ing images needed to build a good model, as well as the
amount of images from the shifted domain needed to be
added to the original training set in order to robustly build
a good model. The obtained results can be used for ad-
dressing different issues in the field and are useful for
both researchers and practitioners working in the field of
surface anomaly detection.

1 Introduction

The field of surface anomaly detection is an enabling tech-
nology for various industrial and commercial applications.
The problem is formulated as detection of parts of an im-
age (anomalies, defects), depicting a surface of an object,
that are inconsistent with a typical (normal) appearance of
this surface. Keeping up with the times, the recent state-
of-the-art surface anomaly detection methods are all based
on CNNs, used in a variety of manners. In the standard
deep learning paradigm, such a method would require
labeled sets of "normal” and ”anomalous” images. This
supervised approach can quite often turn to be problem-
atic — data labeling is costly, anomalies might be rare, or
one might not know beforehand all the possible anomalies
likely to appear in the future.

The field of unsupervised surface anomaly detection
addresses these issues by requiring only “normal” train-
ing images, that are used to build some type of a model
that can discriminate between images that belong to the
distribution observed during the training and images that
are out of distribution or “anomalous”. However, in many
applications the distribution of “normal” images is likely
to change with time due to changes in the environment in
which the images are taken, the objects of interest them-
selves might change, or the equipment used for taking the
images might itself change.

ERK'2022, Portoroz, 385-389 385

anomaly
detection

brg coljit gray ljs

Mix in samples from target dataset

Figure 1: We investigate the robustness of anomaly detection
methods to the domain-shift by training a model on a source
domain and evaluating it on multiple target (shifted) domains.
We also investigate the number of samples needed for building
an accurate model, as well as the number of samples needed to
adapt the model to the target domain.

In this work we evaluate the robustness of three of
the most popular unsupervised surface anomaly detec-
tion methods, Gaussian AD [3]. PatchCore [4] and CS-
Flow[5], to different domain shifts. For this purpose we
use the popular MVTec [1] dataset and create five domain
shifted datasets by changing the images in various ways.
We evaluate the number of images needed for building a
good model, the drop in performance when the domain
shifts, as well as the number of images from the shifted do-
main that is needed to be included in the training process
to get a performance comparable to the baseline.

The main contribution of the paper are therefore the
results of the analysis and the insights derived from them,
which we believe to be useful for researchers and practi-
tioners working on the problem of visual surface anomaly
detection.

2 Related work

In recent years the field of surface anomaly detection has
been dominated by the methods based on unsupervised
learning of specific CNN models. Various approaches to
solving this problem have been proposed. A very popular
approach used to be the analysis of the image reconstruc-
tion (e.g., like in RIAD [9]), also in combination with
reconstruction approach (such as DREAM [8]]). Several

methods use pre-trained CNNs for feature extraction and
then create models that take the extracted features [3, 4, 5]
on the input and process them further to address the prob-
lem of consistency in the training images. In this paper we
will analyse three different approaches to this paradigm,
that turned to be among the most successful unsupervised
methods for surface anomaly detection.

Gaussian AD uses an ImageNet pre-trained Efficient-
Net [6] to extract features from the training set of images,
and build a Multivariate Gaussian distribution (MVG)
model of the distribution of the features. During the test
time the features of the input image are extracted and then
the Mahalanobis distance to the MVG distribution of “nor-
mal” images is calculated. If the distance is above a set
threshold the image is categorized as anomalous, without
the possibility of localizing the anomaly.

PatchCore uses different types of pre-trained ResNet
[2] architectures for feature extraction from all the images
in the training set. Then it uses a minimax facility location
method to extract a core-set of features that represent the
distribution of “normal” images. At the test time, the
features of the input image are compared to this core-set,
and if the divergence is large enough the anomalies are
detected and localized in the image.

CS-Flow uses an ImageNet pre-trained EfficientNet [6]
architecture through which three scales of the input image
are passed to get three feature representations of the im-
age. Then, these features are used by a custom Cross-Scale
Normalizing Flow [5] neural architecture to model the dis-
tribution (of the features) of “normal” images. During the
test time we simply extract the features of the image and
then pass them through the Cross-Scale Flow model and
the outputs directly represent anomalous regions in the
image.

3 Experiment design

Our analysis is centered around the MVTec dataset, con-
taining images of 15 different objects. The dataset is the
most common dataset in the field, used in virtually all pub-
lished works on the topic of unsupervised surface anomaly
detection. Five of the objects in this dataset can be seen in
the leftmost column in Figure 2.

In order to measure the effects of the domain-shifts
on the performance of the three anomaly detection al-
gorithms we created five domain-shifted versions of the
MVTec dataset. The MVTec-brg dataset was obtained by
simply permuting the channels of the original images as
RGB—BRG. The MVTec-coljit dataset was generated us-
ing the color jittering technique for image augmentation;
in our case the same image transformation was applied to
all images. All images were first transformed into HSV
representation, all channels were multipled with a con-
stant factor, and then the images were reverted to the RGB
representation. MVTec-gray is simply a grayscale version
of the original. MVTec-ljs and MVTec-ld were generated
using the WCT?2 [7] method for style-transfer, where two
arbitrarily chosen images (images of Ljubljana sunrise and
Luka Donci¢) were used as a style image. A number of
images from these datasets, showing the influence of the

386

N
.
0

]
gray lis Id

[
original brg coljit
Figure 2: Examples from the domain-shifted dataset for five
object categories. In the leftmost column we see the objects

as they look in the original dataset. Other columns depict the
domain shifted images.

applied transformations, are shown in Figure 2.

In the first experiment we simply train all three meth-
ods on the original training set and evaluate the corre-
sponding trained models on the original test set. This
is a conventional setting, without a domain shift and the
obtained results serve as a baseline for the other experi-
ments. In the second experiment we examine the effect of
reducing the size of the training set. We evaluate a model
trained on 1, 5, 10, 50, 100, 200, and all available training
images for each object from the original training set, and
evaluate the performance on the complete original test set
for each object. For the MV Tec dataset the total number
of training images for each object ranges between 219 and
280 with two exceptions; the “toothbrush” object contains
only 60 training images and the "hazelnut” contains 391
training images.

In the third experiment all models that were trained on
the source domain are evaluated on all shifted domains,
and we record the difference in the performance in terms
of the mean AUC metric. In the fourth and final experi-
ment, we extend the training set consisted of all available
original images (from the source domain) with 1, 5 or
10 images from the target domain in order to gauge the
amount of images needed to adapt the trained model to the
target domain by simply adding images from the target
domain to the training set.

All experiments were performed with 5 fold cross-
validation and we are reporting the mean values, as well
as the standard deviations.

4 Results

All three methods perform relatively well on the original
dataset. When trained on the complete training set of
the original MVTec dataset, and tested on the complete
test set of the same dataset, Gaussian AD achieves mean

Gaussian AD

PatchCore

CS-Flow

1.0 1.0

0.9 0.9

/M*—ﬂ'f;*f !
081 1 1 t 0.8

0.8

AuC
AuC

0.7 0.7

0.6 0.6

0.5 0.5

1.0

0.9

AuC

0.7

0.6

1 5 10 50 100 200 Al 1 5 10
Number of training images

0.5

50 100 200 All 1 5 10 50 100 200 All
Number of training images

Number of training images

Figure 3: Performance of Gaussian AD, PatchCore and CS-Flow on the MVTec and domain shifted MVTec datasets. The horizontal
axis shows how many images from the MVTec domain were used training learning the model. The vertical axis shows the mean
AUC metric when evaluating on the complete test sets of each domain. Each color represents a different test domain, the red being

the MVTec dataset.

Gaussian AD

PatchCore

CS-Flow

1.0 1.0

- Tl
} |
09 ‘ f ol 0.9 i
o II 08

0.7 0.7
m—source

coljit
brg
gray
lis

®

AuC
AuC

0.6 0.6

—

0.5 0.5

1.0

i
|+| 0.9 |+

0.8

AuC

0.7

0.6

s

s+1brg

s
s+1gray
s+5gray

s+10gray
s

s+1ljs
s+5ljs

s+10ljs
s

s+5brg
s+10brg
s+1ld
s+5Id
s+10Id

0.5

s+1ld
s+5Id
s+10Id

Figure 4: This image shows the results of adding images from the target domain to the training set of images from the source domain
for each of the three examined methods. Results are shown for adding 1, 5 or 10 images to the complete training set of the original

domain.

AUC of 0.97, PatchCore achieves mean AUC of 0.96, and
CS-Flow has a mean AUC of 0.98. Certain object cate-
gories seem to be consistently easier for all three methods.
For example, all three methods have a perfect score of 1
mAUC for the leather and bottle categories. The most
difficult objects for all three methods are the capsule and
screw objects. In general, the success of the leather cat-
egory is probably due to its textural appearance, as all
textural categories seem to be relatively easy to model.
The good results on the bottle category as well as the bad
results on the capsule and screw categories are probably
due to the alignment between different samples — bottle is
one of the best aligned categories, and screw and capsule
are one of the mostly non-aligned categories. The results
for these objects for the CS-Flow method are shown in
Figure 5.

Next, we evaluated the effect of the size of the train-
ing set. As can be seen in Figure 3 (red line), all three
methods benefit from larger training sets, however, on
average, Gaussian AD and PatchCore seem to reach a
plateu at about 100 samples in the training set, while for
CS-Flow it seems that a plateau has not been reached
yet. It is also surprising to note there are some objects
where a single image is enough for building a good model,
for all three methods. On average, with a single image
Gaussian AD reaches a mAUC of 0.80, for PatchCore
the score is 0.82 and for CS-Flow the score is 0.86. It

387

is also notable, that as the number of training samples
grows, the score is less dependent on the samples that we
have chosen, as the standard deviation is reduced. If we
examine the individual categories, we see that the best
performing categories across all methods are leather, tile,
carpet and bottle. The first three are textural categories
and the last is highly aligned across samples. Some of the
worst performing categories are screw, hazelnut, capsule,
transistor and toothbrush as can be seen in Figure 5. For
all these categories we can say that they are non-textural
and relatively unaligned categories.

In the next experiment we evaluated the performance
of the methods, when they are trained on the original
MVTec and tested on MVTec-brg, MVTec-coljit, MV Tec-
gray, MVTec-ljs and MVTec-1d. For Gaussian AD we can
see that the smallest drop in performance happens on the
MVTec-coljit and MVTec-gray domains, the score drops
further for MVTec-brg, and performs the worst on the
MVTec-ljs and MVTec-1d domains. For PatchCore, we
can see that the method is most robust to changes in the
MVTec-coljit and MVTec-gray domains. Then the perfor-
mance drops on the MVTec-brg domain, and it performs
the worst on the MVTec-ljs and MVTec-1d domains. For
CS-Flow we can see that the smallest drop in performance
is observed on the MVTec-gray domain, then additional
drop for the MVTec-1js and MVTec-ld domains, while the
largest drop in performance happens on the MVTec-coljit

Cs-Flow,

legther T R

Cs-Flow, CS-Flow,

CS-Flow, CS-Flow,

bottle

Cs-Flow, CS-Flow

capsule

transistor

hazelnut|

Figure 5: Results for specific objects for the CS-Flow method.

and MVTec-brg domains. Without any adaptation to the
target domains, it seems that overall PatchCore experi-
ences the smallest drop in performance. The reasons for
this require additional investigation, however there are
two obvious suspects, the feature extractor (ResNet vs.
EfficientNet used by Gaussian AD and CS-Flow) and the
core-set selection strategy.

For Gaussian AD and PatchCore, somewhere about 50
and 100 samples a plateau is reached, and using more sam-
ples does not significantly improve the performance on
the domain-shifted datasets. For CS-Flow we can see that
the performance on the MVTec-gray domain only starts
to drop after using 2004 samples. For the MVTec-ljs
and MVTec-1d domains the performance does not change
significantly with the number of training samples, nor
does the score start to drop. For the MVTec-coljit and
MVTec-brg datasets we can see that already after 10 train-
ing samples of the original domain the score starts drop-
ping, which suggests overfitting on the source domain.
CS-Flow is expected to be more prone to overfitting be-

388

cause the model that it builds is more complex than the
models of the other two methods

In the final experiment, we evaluate the effect of adding
1, 5 or 10 images from the domain-shifted dataset to
the complete training set of the source domain. The
mean results over all categories are depicted in Figure 4.
For Gaussian AD we see that adding images from the
training set brings the performance close to baseline, for
the MVTec-coljit, MVTec-brg and MVTec-gray domains,
while the improvements on the MVTec-1js and MVTec-1d
domains are smaller. PatchCore performs almost equally
well on the domains MVTec-coljit and MVTec-gray with-
out adding any training images. The performance on
the MVTec-brg domain can be close to baseline if we
add anough images to the training set, while the perfor-
mance on the MVTec-ljs and MVTec-ld domains does
not come close to the baseline. For CS-Flow we can see
that the sharp drop in performance on the MVTec-coljit
and MVTec-brg domains can be alleviated with a single
image in the training set. The performance on the MVTec-
gray domain is relatively well without any adaptation, and
further improved by adding images. Again, the worst
performance happens on the MVTec-1js and MVTec-1d
domains. As expected, adding images from the target
domain helps the performance for all three methods.

5 Conclusion

In this work we created domain-shifted variants of the
popular MVTec dataset for surface anomaly detection,
and evaluated the influence of the size of the training set
and the domain-shift on the performance of three popular
surface anomaly detection algorithms.

From the experiments presented in this work we can
draw a few conclusions. Firstly, the MVTec dataset has
been “’solved” to a great extent, so much so that its usage
might bring about more methods that are fitted to the
dataset, instead of bringing about fundamentally novel
approaches to this problem.

Secondly, we can see that the tested domain-shifts
do bring about a drop in performance, but this drop is
largely non-catastrophic. Since this holds true for all three
methods, the reason for this is probably in the power of
the used feature extractors to “absorb” such changes in
the image space.

Lastly, we can see that certain domain shifts, like the
tested BRG, COLJIT and GRAY domain shifts are easy
to adapt to, needing only a few images from the target
domain in order to get a performance comparable to the
baseline.

In order to correctly interpret all the presented results,
a further investigation is needed into the way the feature
representation of an image changes when the certain visual
properties of the image are changed.

References

[1] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec
ad — a comprehensive real-world dataset for unsupervised
anomaly detection. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2019)

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learn-
ing for image recognition. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016)

Rippel, O., Mertens, P., Konig, E., Merhof, D.: Gaussian
anomaly detection by modeling the distribution of normal
data in pretrained deep features. IEEE Transactions on In-
strumentation and Measurement (2021)

Roth, K., Pemula, L., Zepeda, J., Scholkopf,
B., Brox, T., Gehler, PV. Towards total re-
call in industrial anomaly detection. arXiv (2021),
https://arxiv.org/abs/2106.08265

Rudolph, M., Wehrbein, T., Rosenhahn, B., Wandt, B.: Fully
convolutional cross-scale-flows for image-based defect de-
tection. In: Winter Conference on Applications of Computer
Vision (WACV) (2022)

Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for
convolutional neural networks. In: Proceedings of the 36th
International Conference on Machine Learning (2019)

Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealis-
tic style transfer via wavelet transforms. In: International
Conference on Computer Vision (ICCV) (2019)

Zavrtanik, V., Kristan, M., Skocaj, D.: Draem - a discrimina-
tively trained reconstruction embedding for surface anomaly
detection. In: IEEE/CVF International Conference on Com-
puter Vision (ICCV) (2021)

Zavrtanik, V., Kristan, M., Skocaj, D.: Reconstruction by
inpainting for visual anomaly detection. Pattern Recognition
(2021)

389

