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There exists a renewed interest in interactions between hyperons and nuclei, since

rich experimental data are expected to emerge from the strangeness experiments
at J-PARC. In particular, our understanding on interactions between the octet-

baryons (B8 = N, Λ, Σ and Ξ) and light nuclei will be significantly improved by

observing possible bound states and resonances of light hypernuclei. These in-
teractions are also important as basic constructing blocks of heavier hypernuclei

through sophisticated microscopic calculations of many-cluster systems. Need-
less to say, these hypernucleus data afford invaluable source of information for

underlying baryon-baryon interactions, since the direct scattering data for the

hyperon-nucleon (YN) interaction are still scarce and none exists for the hyperon-
hyperon (YY) interaction. It is therefore important to applymodels for the baryon-

baryon interaction to finite nuclei, and to clarify characteristics of the interaction
and its implications to hypernuclear physics.

We have developed a quark-model (QM) baryon-baryon interaction for the

octet-baryons [1], which reproduces all the two-nucleon data and the low-energy
YN scattering data. It is formulated in the (3q)-(3q) resonating-group method

(RGM), using the spin-flavor SU6 QM wave functions. A colored version of the
one-gluon exchange Fermi-Breit interaction is fully incorporated with the fla-

vor symmetry breaking, and effective meson-exchange potentials are introduced

between quarks. The early version, the model FSS [2] includes only the scalar
(S) and pseudoscalar (PS) meson exchange potentials, while the renovated ver-

sion fss2 [3,4] introduces also the vector (V) meson exchange potentials and the
momentum-dependent Bryan-Scott terms for the S and Vmesons. One of the im-

portant differences between FSS and fss2 is that the former describes the LS forces

only by the Fermi-Breit interaction, while the latter also contains the ordinary LS
component originating from the S-meson exchange.

As an important application of our QM baryon-baryon interactions, we have
carried out Faddeev calculations for the triton and the hypertriton in Ref. [5], in

the most reliable framework of using the energy-independent renormalized RGM

kernels [6]. The triton binding energy, predicted by fss2, is very close to the ex-
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perimental value with about 350 keV less bound, and the Λ separation energy of

the hypertriton is 262 keV vs. the experimental value, 130± 50 keV. In the hyper-

triton calculation, the detailed information is obtained for the central force of the
ΛN interaction, since this system is S-wave dominant.

For the p-shellΛ-hypernuclei, some kinds of models inevitably need to be as-

sumed so far, to connect properties of the Λ-hypernuclei and the underlying YN
interactions. In our previous publications, we have studied B8α [7,8] and B8(3N)

potentials [9] based on the G-matrix calculations of our QM hyperon-baryon

interaction within the framework of the lowest-order Brueckner theory. Here,
(3N) stands for the triton or 3He, and rigid translational-invariant harmonic-

oscillator (h.o.) shell-model wave functions are assumed with the size parame-
ters ν = 0.257 fm−2 for α and and 0.18 fm−2 for the (3N) cluster. In these calcu-

lations, we have developed a new method to derive direct and knock-on terms

of the interaction Born kernel from the YN G-matrices with explicit treatments of
the nonlocality and the center-of-mass (c.m.) motion between the hyperon and

the α cluster. This framework makes it possible to take into account the short-
range correlations and other correlations related to the channel-coupling effect

of baryon channels, which is a new feature of the YN and YY interactions. For

example, a strong ΛN-ΣN coupling is caused by the strong tensor component of
the one-pion exchange, and the very small single-particle (s.p.) spin-orbit force of

the Λ hyperon is explained by a strong cancellation of the ordinary LS and the
antisymmetric LS (LS(−)) forces generated from the rich structure of the LS com-

ponents of the Fermi-Breit interaction. [10] The G-matrix calculations are carried
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Fig.1. The zero-momentum Wigner

transform (dashed curve) and the so-

lution of the transcendental equation

(solid curve) for the bound-state en-

ergy EB = −13.51 MeV, obtained from

the Wigner transform of Λ12C(0+)

Born kernel. The model is fss2 and

kF = 1.35 fm−1 is used.
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Fig.2. The central components of the

zero-momentumWigner transform for

the Ξα Born kernel. The contributions

from the I = 0 and I = 1 compo-

nents are separately shown. Themodel

is fss2 and kF = 1.20 fm−1 is used. The

energy-independent QM RGM kernel

is used.
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out by assuming a constant Fermi momentum kF, which is a parameter in the

present framework. As in the Faddeev calculations of the triton and hypertriton,

the energy-independent QM baryon-baryon interaction is used for the G-matrix
calculation.

We extend this method to the B8
12C(0+) and B8

16O systems, assuming

the h.o. shell-model wave functions with ν = 0.20 fm−2 for 12C and 0.16 fm−2

for 16O. Our main interest is to find new features appearing in the core nuclei
involving the p-shell orbits. For the G-matrix calculation, we use kF = 1.35 fm−1,

which corresponds to the normal saturation density.

As an example ofΛ-core potentials, we show in Fig. 1 theΛ12C(0+) potential

for the 13Λ C ground state, calculated from the model fss2. Since theΛ12C(0+) Born
kernel, derived from the ΛNG-matrix folding is nonlocal, we have calculated the

Wigner transform in the WKB-RGM approach [11]. The effective local potential
is then obtained by solving the transcendental equation for the Wigner trans-

form. Figure 1 also shows the zero-momentumWigner transformwith the dashed

curve, which is already a good approximation to the effective local potential
(solid curve). This potential predicts the bound-state energy EB = −13.51 MeV,

which is used for the input of the transcendental equation. We compare in Table
1 our QM predictions for the bound-state energies of light Λ hypernuclei with

available experimental data. The bound-state energies are calculated by solving

the Lippmann-Schwinger equations for the Λ-core Born kernels. The result for
the hypertriton is taken from the Faddeev calculations in Ref. [5]. We find that the

present G-matrix approach can give reasonable results for the Λ s.p. potentials in
light nuclei, if an appropriate Fermi momentum for each system is chosen.

The Σ-core and Ξ-core interactions are generally repulsive, except for a spe-
cial case like 4ΣHe. The origin of the repulsion in the Σ-core potential is the quark-

Pauli effect which appears in the isospin I = 3/2 3S state for the most compact
SU3 (30) configuration. On the other hand, the isospin I = 0 channel of the ΞN in-

teraction, the 1S0 H-particle channel in particular, is attractive owing to the color-

Table 1. Comparison of the ground-state energies of some light Λ hypernuclei between

the QM predictions and the experiment. The energies are measured from the Λ separation

threshold. The unit is in MeV. The listed Fermi momenta kF are used for the G-matrix

calculations except for the hypertriton 3ΛH.

System kF (fm
−1) fss2 FSS exp’t [12]

3
ΛH Faddeev [5] −0.262 −0.790 −0.13 ± 0.05

4
ΛH(0+)
4
ΛHe(0+)

1.07 −1.55 −2.29
−2.04 ± 0.04
−2.39 ± 0.03

4
ΛH(1+)
4
ΛHe(1+)

1.07 −0.97 −0.32
−0.99 ± 0.04
−1.24 ± 0.05

5
ΛHe 1.20 −3.43 −2.41 −3.12 ± 0.02
13
Λ C 1.35 −13.90 −11.31 −11.69 ± 0.12
17
Λ O 1.35 −16.04 −13.37
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Fig.3. The same as Fig 2, but for the

Ξ12C(0+) Born kernel. The model is

fss2 and kF = 1.35 fm−1 is used for

the G-matrix calculation.
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Fig.4. The same as Fig. 3, but for the

Ξ16O zero-momentum Wigner trans-

form.

magnetic term of the Fermi-Breit interaction. The I = 1 ΞN interaction is repul-
sive, but involves a strong channel-coupling effect with the ΣΛ channel. Since the

extension of the Wigner transform to the negative q2 is not easy numerically, we
only discuss the zero-momentumWigner transform, GCW(R, 0), which we call the

“B8-core potential” in the following. The Ξ12C(0+) and Ξ16O potentials, obtained

as the zero-momentum Wigner transform of the folding kernels for the G-matrix
interaction with the Fermi momentum kF = 1.35 fm−1, are illustrated in Figs. 3

and 4 for fss2. We find a weak attraction in the surface area around R ∼ 3 - 4
fm, which is a common feature to the previous Ξα potential shown in Fig. 2. The

present potentials, however, also possess an attractive pocket in the short-range

region with R ≤ 1.2 fm, which originates from the strong attraction in the isospin
I = 0 component. This feature is clearly related to the p-orbit of the core nuclei.

Such a structure of the nuclear potentials should appreciably influence on the
Coulombic bound states for the Ξ− atoms.
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