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Abstract

We prove a general lemma (inspired by a lemma of Holroyd and Talbot) about the
connection of the largest cardinalities (or weight) of structures satisfying some hereditary
property and substructures satisfying the same hereditary property. We use it to show how
results concerning forbidden subposet problems in the Boolean poset imply analogous re-
sults in the poset of subspaces of a finite vector space. We also study generalized forbidden
subposet problems in the poset of subspaces.

Keywords: Subspace lattice, forbidden subposet, covering, profile polytope.

Math. Subj. Class. (2020): 06A07, 05D05

1 Introduction
One of the most basic questions in extremal finite set theory is the following. Given a
property of families of subsets of an n-element set set, what is the cardinality of the largest
family satisfying it? Sperner [29] showed that for the property that no member of the family
contains another member (in other words: the family is an antichain), the answer is

(
n

⌊n/2⌋
)
.

This cardinality is realized by the family of all the ⌊n/2⌋-element subsets.
Our underlying set is [n] := {1, 2, . . . , n}. We denote the family of all its subsets by

2[n]. This family together with the containment relation forms the Boolean lattice and is
denoted by Bn. The family of all i-element subsets of [n] is called level i and is denoted by(
[n]
i

)
. Let Σ(n, k) denote the cardinality of the largest k levels (i.e. the middle k levels) of

Bn. More precisely, Σ(n, k) =
∑k

i=1

(
n

⌊n−k
2 ⌋+i

)
.
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To generalize Sperner’s theorem, Katona and Tarján [24] initiated the study of prop-
erties given by forbidding inclusion patterns. More precisely, let P be a finite poset. We
say that a family F ⊂ 2[n] (weakly) contains P if there is an order-preserving injection
f :P → F , i.e., an injection such that if x <P y, then f(x) ⊂ f(y). Otherwise F is
P -free. Let La(n, P ) denote the size of the largest P -free family F of Bn. We say that a
poset is a chain if its members pairwise contain each other The chain of k elements is said
to have size k and is denoted by Pk. A chain in Bn is called a full chain if it has n + 1
members (thus one from each level).

Let us denote by e(P ) the largest integer m such that for any n, any family F of Bn

that consists of m consecutive levels is P -free. Every result in this area suggests that the
following might hold.

Conjecture 1.1. For any integer n and poset P , we have La(n, P ) = (1+o(1))Σ(n, e(P ))
= (e(P ) + o(1))

(
n

⌊n/2⌋
)
.

This conjecture was first stated by Griggs and Lu [19] and by Bukh [2], although it
was already widely believed in the extremal finite set theory community. For a survey on
forbidden subposet problems see [18].

Another basic type of extremal finite set theory problems is related to intersection pat-
terns. We say that a family F is intersecting if any two members of it share at least one
element. Erdős, Ko and Rado [6] proved that if F ⊂

(
[n]
k

)
is intersecting and n ≥ 2k, then

|F|≤
(
n−1
k−1

)
. For a treatment of several kinds of extremal finite set theory questions, see

[16].
A variant of the basic question arises when we are given a weight function (in addi-

tion to a property) and we want to determine the largest weight of a family satisfying the
property. The most usual version is when the weight of a family is the sum of the weights
of its members, and the weight of a subset of [n] depends only on its size. For example
the celebrated LYM inequality [25, 26, 31] states that for any antichain F ⊂ 2[n], we have∑

F∈F 1/
(

n
|F |

)
≤ 1.

A method to handle together all the weights of the above kind was introduced by
P. L. Erdős, Frankl and Katona [7]. The profile vector of a family F is p(F) = (f0, . . . , fn),
where fi = |F ∩

(
[n]
i

)
|. The weight vector corresponding to a weight function is w =

(w0, . . . , wn), where wi is the weight of an i-element set. Then the weight of F is the
scalar product of the profile vector and the weight vector. For a property T and a posi-
tive integer n, there is a set of profile vectors in the (n + 1)-dimensional Euclidean space
corresponding to the families with property T . It is well-known that the scalar product is
maximized at one of the extreme points of the convex hull of the set of profile vectors,
which is called the profile polytope. The extreme points of the profile polytopes have been
since determined for several properties of families, see [5, 10] for most of them.

We say that a property T of families is hereditary if for any family F with property
T , every subfamily of F has property T . It is easy to see that a property is hereditary
if and only if it can be defined by some forbidden substructures, like all the properties
considered above. We remark that in the case of hereditary properties, we can assume that
all the coordinates of weight functions are non-negative, as we could simply delete the sets
of negative weights anyway. Regarding the extreme points, it means that we can obtain
all the extreme points by changing to zero some coordinates of those extreme points that
maximize the non-negative weight functions.
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Forbidden subposet problems can be studied in any poset, and intersection problems
can also be studied in structures other than the Boolean poset. A structure where both have
been studied is the lattice of subspaces. Let q be a prime power, Fq be a field of order q

and Fn
q be a vector space of dimension n over Fq . Let

[
n
k

]
q
= (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q−1)

be the Gaussian (q-nomial) coefficient. It is well-known that
[
n
k

]
q

is the number of k-
dimensional subspaces in F

n
q . Let us denote by Ln(q) the lattice of subspaces with the

containment relation. We also say that the k-dimensional subspaces form level k. The
family of all k-dimensional subspaces is called level k of Ln(q).

We are going to consider analogues of extremal finite set theory questions, where i-
element subsets of [n] are replaced by i-dimensional subspaces of Fn

q . We say that two
subspaces intersect if their intersection is more than just the zero vector, i.e. there is a
1-dimensional subspace contained in both. Hsieh [22] proved an analogue of the Erdős-
Ko-Rado theorem by showing that an intersecting family of k-dimensional subspaces has
cardinality at most

[
n−1
k−1

]
q
, provided n > 2k. Greene and Kleitman [17] extended it to

the case n = 2k. The analogue of Sperner’s theorem is also well-known (see [5]). Profile
polytopes were studied in this setting in [15].

Recently, other forbidden subposet problems have been examined in Ln(q) [27, 28].
Let Laq(n, P ) denote the largest number of members of a P -free family in Ln(q). Anal-
ogously to the Boolean case, we can define eq(P ) to be the largest integer such that
the union of the middle eq(P ) levels of Ln(q) does not contain P for any n, and let
Σq(n, k) =

∑k
i=1

[
n

⌊n−k
2 ⌋+i

]
q
. One might formulate the following.

Conjecture 1.2. For any integer n and poset P , we have Laq(n, P ) = (1 + o(1))
Σq(n, eq(P )).

Observe that for several posets we have eq(P ) = e(P ). Rather than proving results
analogous to those known in the Boolean case, the focus of the papers mentioned above
is to prove “stronger” results. For example, the diamond poset D2 has four elements with
relations a < b < d and a < c < d. It is unknown if Conjecture 1.1 holds for this poset.
The best upper bound is La(n,D2) ≤ (2.20711 + o(1))

(
n

⌊n/2⌋
)

[20]. Sarkis, Shahriari
and students [27] obtained, for the analogous question in the lattice of subspaces, the upper
bound Laq(n,D2) ≤ (2 + 1/q)

[
n

⌊n/2⌋
]
q
.

Let ∨ be the poset on three elements with relations a < b and a < c, and ∧ be the
poset on three elements with relations a < c and b < c. Katona and Tarján [24] determined
La(n, {∨,∧}), where we forbid ∨ and ∧ at the same time. The solution is

(
n

n/2

)
if n is

even, but slightly more than
(

n
⌊n/2⌋

)
if n is odd. Shahriari and Yu [28] showed that in

Ln(q) we have Laq(n, {∨,∧}) =
[

n
⌊n/2⌋

]
q

for every prime power q and n ≥ 2. They also
studied the case we forbid a broom ∧u and a fork ∨v at the same time, where ∧u has u+ 1
elements a1, . . . , au, b and the relations ai < b for any i ≤ u, while ∨v has v + 1 elements
a, b1, . . . , bv and the relations a < bi for every i ≤ v.

The butterfly poset B has four elements and the relations a < c, a < d, b < c and
b < d. De Bonis, Katona and Swanepoel [4] proved La(n,B) = Σ(n, 2). Shahriari and
Yu [28] proved Laq(n,B) = Σq(n, 2).

In this paper we state a simple lemma (Lemma 2.1), that generalizes the so-called per-
mutation method and explore its consequences. It can be applied to other structures, and in
particular for the subspaces it implies the following theorem.
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Theorem 1.3. Let T be a hereditary property. If any family of Bn with property T has
at most Σ(n, k) members, then any family in Ln(q) with property T has at most Σq(n, k)
members.

This means that the result of De Bonis, Katona and Swanepoel [4] about butterflies
implies the result of Shahriari and Yu [28]. Note that Shahriari and Yu also determined
the extremal families. They also consider the poset Yk on k + 2 elements, defined by
the following relations: ck < ck−1 < · · · < c1 < a and c1 < b. Let Y ′

k defined in
the same way but all the relations are reversed. Shahriari and Yu [28] conjectured that
Laq(n, {Yk, Y

′
k}) = Σq(n, k); this follows from a result in [13], using Theorem 1.3. We

remark that Xiao and Tompkins [30] independently also found the connection between
La(n, P ) and Laq(n, P ) and used it to prove the conjecture of Shahriari and Yu [28].

The asymptotic version of Theorem 1.3 is also true, giving the following result.

Theorem 1.4. Let T be a hereditary property. If any family of Bn satisfying T has at
most (1 + o(1))Σ(n, k) members, then any family in Ln(q) with property T has at most
(1 + o(1))Σq(n, k) members.

Corollary 1.5. If Conjecture 1.1 holds for P and eq(P ) = e(P ), then Conjecture 1.2 also
holds for P .

To state the Covering Lemma (Lemma 2.1), we need some preparation, hence we post-
pone it to Section 2. We also describe how it relates to several known proofs. In Section 3
we prove Theorems 1.3 and 1.4. In Section 4 we examine how the Covering Lemma can
be modified to apply in the study of profile polytopes and related topics, and we initiate the
study of generalized forbidden subposet problems in Ln(q).

2 The main lemma
Our lemma is motivated by a lemma by Holroyd and Talbot [21]. We say that a family of
subsets of S is a t-covering family of S if every element of S is contained in exactly t sets
of the family. Given a partition of S into S0∪S1∪. . .∪Sn and a vector t = (t0, t1, . . . , tn),
we say that a family of subsets of S is a t-covering family of S if for each 0 ≤ i ≤ n, every
element of Si is contained in exactly ti sets of the family.

In our applications, S will be 2[n] or the family of subspaces of Fn
q , and Si will be level

i. Holroyd and Talbot [21] considered coverings of subfamilies F of one level
(
[n]
i

)
. Their

lemma states that if F ⊂
(
[n]
i

)
, Γ is a t-covering family of subfamilies of F , and an element

x has the property that the largest intersecting family in every G ∈ Γ is {G ∈ G : x ∈ G},
then the largest intersecting family in F is {F ∈ F : x ∈ F}. Our main contribution is the
simple observation that we can extend their method to other forbidden configurations and
more levels.

For a weight vector w = (w0, . . . , wn) and a set F ⊂ S, let w(F ) =
∑n

i=0 wi|F ∩Si|.
Let w/t = (w0/t0, . . . , wn/tn). We will always assume that every coordinate of every
weight vector is non-negative. A version of the lemma below has already appeared in my
master’s thesis [9].

Lemma 2.1 (Covering Lemma). Let T be a hereditary property of subsets of S and Γ be a
t-covering family of S. Assume that there exists a real number x such that for every G ∈ Γ,
every subset G′ of G with property T has w/t(G′) ≤ x. Then w(F ) ≤ |Γ|x for every
F ⊂ S with property T .
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Proof. Let F be a set with property T .
Observe that we have ti|F ∩ Si|=

∑
G∈Γ|G ∩ F ∩ Si|, as every element of F ∩ Si is

counted ti times on both sides. Thus we have

w(F ) =

n∑
i=0

wi|F ∩ Si|=
n∑

i=0

wi

ti
ti|F ∩ Si|=

n∑
i=0

wi

ti

∑
G∈Γ

|G ∩ F ∩ Si|

=
∑
G∈Γ

n∑
i=0

wi

ti
|G ∩ F ∩ Si|=

∑
G∈Γ

w/t(G ∩ F ) ≤
∑
G∈Γ

x = |Γ|x.

Let us describe how one can use this lemma in extremal finite set theory. Let S = 2[n]

and Si =
(
[n]
i

)
. Then the subsets of S are families of Bn, and we will denote them by F

and G instead of F and G.
The prime examples of covering families where the above lemma is useful are given

by the permutation method. Given a permutation α : [n] → [n], and a set F ⊂ [n], let
α(F ) = {α(i) : i ∈ F}. Similarly, for a family F of Bn, let α(F) = {α(F ) : F ∈ F}.

Let G0 be a family of Bn that has at least one i-element set for every 0 ≤ i ≤ n, and let
Γ consist of α(G0) for all permutations α. Let gi = |G0 ∩

(
[n]
i

)
|> 0 and ti = gii! (n− i)!,

then Γ is a t-covering of Bn.
The simplest example is when G0 is a full chain. Consider a Sperner family F of Bn

and let w = t. Then∑
F∈F

|F |! (n− |F |)! = w(F) =
∑
G∈Γ

∑
H∈G∩F

w/t(H) ≤
∑
G∈Γ

1 = |Γ|= n! .

Dividing by n! we obtain the already mentioned LYM-inequality. Another example is when
G0 is the family of intervals in a cyclic ordering of [n], resulting in the cycle method [23].

Any family G0 of Bn can be used to give upper bounds on problems in extremal finite
set theory, but these bounds are unlikely to be sharp. For that, G0 has to be very symmetric
in a sense. We need that for every permutation α, the largest subfamily of α(G0) with
property T has the same size. Other examples for families G0 that sometimes give sharp
bounds are the chain-pairs [10] and double chains [3].

Let us return to Lemma 2.1 and examine a very special case. Assume that Si1∪. . .∪Sik

has property T and for every G ∈ Γ, w/t(G′) = x for G′ = G ∩ (Si1 ∪ . . . ∪ Sik) (in
the case of the permutation method, it means that the union of k full levels has property T ,
and the weight inside α(G0) is maximized by those k levels). This implies that we have
equality in Lemma 2.1.

Now assume that we conjecture that w(F) is maximized by a family that is the union of
k full levels (among families with property T ). Let H0 be the intersection of those k levels
with G0, then H0 has property T . If H0 happens to have the largest weight w/t among
subfamilies of G0 with property T , then it proves the conjecture (here we use the simple
observation that α(H0) would maximize w/t among subfamilies of α(G0)). Thus our goal
would be to find G0 with this property.

For example, in the case of antichains, it is a natural idea to consider a full chain as
G0. Indeed, for every weight, the maximum will be given by a family that consists of one
member, which is a full level on the chain. Moreover, it is one of the levels with the largest
weight, thus we can choose the same level all the time. This implies that for every weight
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function, the maximum in the Boolean poset is also given by a full level, giving us not
only Sperner’s theorem and the LYM inequality, but all the extreme points of the profile
polytope, reproving a result in [7]. Moreover, we say that a family is k-Sperner if it is
Pk+1-free. The above argument works for k-Sperner families as well, since on any chain,
for any weight, the maximum is given by k full levels. This, again, gives the extreme points
of the profile polytope as well, reproving a result in [8].

Observe that we do not need to have full levels in our conjecture to obtain an exact result
without further computations. Assume that in our conjecture, for every i, the extremal
family H contains γi

(
n
i

)
sets from level i, and H contains a γi fraction of the intersection

of α(G0) and level i. Then the same argument works. For example consider intersecting
families on level k, and use the cycle method [23]. We choose a cyclic ordering of the
elements of [n] and let G0 be the family of k-intervals, i.e. k-sets of consecutive elements.
There are n such k-sets, and k of them contain a fixed element x. Let H be the family of
k-sets containing x, and H0 be its intersection with G0. It is not hard to see that H0 is the
largest intersecting subfamily of G0 (provided k ≤ n/2). Thus, for every α we have that H
contains a k/n fraction of the members of α(G0). As H contains a k/n fraction of all the
sets, we are done.

To finish this section, let us remark that we are mostly interested in the case where
every wi = 1. For that wi/ti = 1/(gii! (n − i)! ) =

(
n
i

)
/(n! gi). In the case where G0

is a full chain, every gi is the same. In the case where G0 is the family of intervals on the
cycle, almost every gi is the same (with the exception of g0 and gn). As multiplying with
the same number does not change the extremal families, we can consider maximizing the
weight function with w′

i =
(
n
i

)
instead (assuming we can deal with the empty set and the

full set some other way). If, on the other hand we can deal with the case of constant weight
on the chain or the cycle for a property T , and the optimal family consists of the middle
levels, then we obtain a LYM-type inequality for subfamilies of 2[n] with property T , see
for example the case of butterfly-free families in [4].

3 Subspaces
Let us turn our attention to q-analogues. Similarly to the Boolean case and the permuta-
tion method, it will again simplify our tasks if all G ∈ Γ are isomorphic. Moreover, we
would prefer to use G where proving extremal results is either easy or has already been
done. Therefore, we will use a subfamily G of Ln(q) that is isomorphic to Bn. Choose an
arbitrary basis B = {v1, . . . , vn} of Fn

q , and let GB be the family of those subspaces that
are generated by a set of these vectors. Obviously the function that maps H ⊂ [n] to the
subspace ⟨vx : x ∈ H⟩ keeps inclusion and intersection properties. Let Γ be the union over
all bases B of the families GB .

There are f(q, n) = (qn−1)(qn−q)(qn−q2) · · · (qn−qn−1)/n! ways to choose a basis,
as we pick the vectors one by one, and we obtain a basis n! ways. Hence f(q, n) is the car-
dinality of Γ, which is a t-covering of Ln(q) with ti =

(qi−1)···(qi−qi−1)(qn−qi)···(qn−qn−1)
i!(n−i)! .

Indeed, to count how many times an i-dimensional subspace is covered, we have to pick a
basis of the i-dimensional subspace first, and then extend it to a basis of Fn

q . We counted
every G ∈ Γ exactly i! (n − i)! times, as we picked the basis in an ordered way. Observe
that we have t0 > t1 > · · · > t⌊n/2⌋ = t⌈n/2⌉ < t⌈n/2⌉+1 < · · · < tn.

Now we are ready to prove Theorem 1.3, which states that if every family F of Bn

satisfying a hereditary property T has cardinality at most Σ(n, k), then families in Ln(q)
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with property T have cardinality at most Σq(n, k). We note that the actual calculation
could be omitted by the arguments presented in Section 2. We include it here for the sake
of completeness.

Proof of Theorem 1.3. Let F be a family in Ln(q) satisfying T . Consider the t-covering
family Γ defined above and let wi = ti. Then every G ∈ Γ is isomorphic to Bn, thus by
our assumption, the largest weight w/t, i.e. the largest cardinality of a subfamily G′ ⊂ G
satisfying T is Σ(n, k). This implies w(F) ≤ |Γ|Σ(n, k). Now we will maximize |F|
among families that satisfy the above inequality, without requiring property T . To do this,
we need to pick subspaces with the smallest weight, i.e. from the middle levels. We claim
that we can pick exactly the k full middle levels, i.e. w(F0) = |Γ|Σ(n, k) for the family
F0 consisting of k middle levels. (Note that if n+ k is even, we have two options for F0).
This will finish the proof, because more than Σq(n, k) subspaces would have larger weight
than |Γ|Σ(n, k).

We have

w(F0) =

⌊n−k
2 ⌋+k∑

i=⌊n−k
2 ⌋+1

wi

[
n

i

]
q

=

⌊n−k
2 ⌋+k∑

i=⌊n−k
2 ⌋+1

(qi − 1) · · · (qi − qi−1)(qn − qi) · · · (qn − qn−1)

i! (n− i)!

[
n

i

]
q

=

⌊n−k
2 ⌋+k∑

i=⌊n−k
2 ⌋+1

(qi − 1) · · · (qi − qi−1)(qn − qi) · · · (qn − qn−1)

i! (n− i)!

(qn − 1) . . . (qn − qn−1)

(qi − 1) . . . (qi − qi−1)(qn − qi) . . . (qn − qn−1)

=

⌊n−k
2 ⌋+k∑

i=⌊n−k
2 ⌋+1

f(q, n)n!

i! (n− i)!
=

⌊n−k
2 ⌋+k∑

i=⌊n−k
2 ⌋+1

|Γ|
(
n

i

)
= |Γ|Σ(n, k).

Another way to see that w(F0) = |Γ|Σ(n, k) is by observing that the left hand side
counts the number of pairs (S,B), where S is an i-dimensional subspace and B is a ba-
sis for S (organized by subspaces), while the right hand side counts the same thing, but
organized by the basis.

Note that there are several statements similar to Theorems 1.3 and 1.4 that we could
prove. We chose to state this one because it immediately gives the exact value of Laq(n,B).
Observe that the Boolean result actually gives a weighted result in the case of subspaces,
that is stronger than Theorem 1.3. In the case of the butterfly poset, one can prove an even
stronger result. If F is a butterfly-free family of Bn, then we have the LYM-type inequality∑

F∈F 1/
(

n
|F |

)
≤ 2 by [4]. This and the same calculation as in the proof of Theorem 1.3

imply that for a butterfly-free family G in Ln(q), we have
∑

G∈G 1/
[

n
dim(G)

]
≤ 2.

Let us prove now Theorem 1.4, which is the asymptotic version of Theorem 1.3.

Proof of Theorem 1.4. We follow the proof of Theorem 1.3. Using its notation, we obtain
w(F) ≤ (1+o(1))|Γ|Σ(n, k). Again, to maximize |F| among those families satisfying the
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above inequality, we need to pick subspaces with the smallest weight, i.e. from the middle
levels. This time we claim that we can pick the subspaces in F0, and o(|F0|) additional
subspaces. This will finish the proof similarly to the proof of Theorem 1.3.

We have proved w(F0) = |Γ|Σ(n, k), thus the remaining subspaces have total weight
o(|Γ|Σ(n, k)) = o(w(F0)). As each of those has weight not smaller than any weight
of a subspace in F0, more than ε|F0| of them would have weight more than εw(F0), a
contradiction that finishes the proof.

4 Profile polytopes, chain profile polytopes, generalized forbidden sub-
poset problems

In the previous sections we considered arbitrary weights. This means our method can
potentially determine the extreme points of the profile polytope for a hereditary property T .
If every extreme point in the Boolean case is the union of full levels, and the corresponding
union of full levels has property T in the case of subspaces, then this is the situation.
Unfortunately, we are only aware of one particular property with this situation. For k-
Sperner families, the Boolean result was proved in [8]. We note that instead of using the
substructure isomorphic to Bn with Lemma 2.1, one could use a simpler substructure: a
full chain with Lemma 2.1, to obtain the same result, i.e. to determine the extreme points.
Moreover, it also easily follows from the LYM-inequality, which is known to hold in Ln(q).
In fact, one can analogously define the profile vectors and polytopes for any graded poset
and show for a large class of posets (those with the so-called Sperner property) that the
extreme points of k-Sperner families are the profiles of the unions of at most k full levels.

Gerbner and Patkós [14] introduced l-chain profile vectors. Given a family F of Bn, its
l-chain profile vector is an element of the

(
n+1
l

)
-dimensional Euclidean space. A coordi-

nate corresponds to a set {i1, . . . , il} with i1 < i2 < · · · < il. The value of that coordinate
is the number of chains of size l in F with one element from level ij for every 1 ≤ j ≤ l.
They determined the extreme points of the l-chain profile polytopes of intersecting families
and of k-Sperner families of Bn.

They mentioned in [15], after determining the extreme points of the profile polytope of
intersecting families in Ln(q), that with the same method, one can determine the extreme
points of the l-chain profile polytope of intersecting families in Ln(q) as well. Here we
show that similarly, the extreme points of the l-chain profile polytope of k-Sperner families
in Ln(q) can be determined. We will state a modified version of Lemma 2.1 that counts
copies of a poset Q in a family instead of counting the members of that family.

Let Q be an arbitrary poset with elements a1, . . . , al. Consider the r = (n + 1)l

functions that map every aj to an Si. Let us fix an ordering of these functions and let βi be
the ith of them. We will consider ordered l-sets, i.e. l-sequences (s1, . . . , sl) of the base
set S. For each 1 ≤ i ≤ r, let Si be an arbitrary family of l-sequences with sj ∈ βi(aj)
for every 1 ≤ j ≤ l. In the applications, where Si is a level, we will let Si consist of those
l-sequences, where the elements form a copy of Q. In particular, if for an embedding βi

and for some j, j′ with aj < aj′ we have that βi(aj) is a higher level than βi(aj′), then Si

is empty. Let us consider only those r′ ≤ r functions βi, where Si is not empty. We can
assume without loss of generality that these functions are β1, . . . , βr′ .

Let t = (t1, . . . , tr′) be a vector. We say that a family Γ of subsets of S is an (l, t)-
covering if for each 1 ≤ i ≤ r′, and each l-sequence in Si, there are exactly ti members of
Γ containing all the elements of that l-sequence (i.e. a particular copy of Q). Let us consider
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a weight vector w = (w1, . . . , wr′). For a set F ⊂ S, let fi denote the number of l-sets
in Si with every element in F . Let w(F ) =

∑r′

i=1 wifi. Let w/t = (w1/t1, . . . , wr′/tr′).
We will assume that every weight is non-negative (as T is hereditary, elements of S with
negative weight could simply be deleted anyway from any subset of S with property T ).

Lemma 4.1. Let T be a hereditary property of subsets of S and Γ be an (l, t)-covering
family of S. Assume that there exists a real number x such that for every G ∈ Γ, every
subset G′ of G with property T has w/t(G′) ≤ x. Then w(F ) ≤ |Γ|x for every F ⊂ S
with property T .

Proof. Observe that we have tifi =
∑

G∈Γ hi, where hi denotes the number of l-sequences
in Si with each element of it in F ∩G. Indeed, the l-sequences in Si with each element in
F are counted ti times on both sides. Thus we have

w(F ) =

r′∑
i=1

wifi =

r′∑
i=1

wi

ti
tifi =

r′∑
i=1

wi

ti

∑
G∈Γ

hi =
∑
G∈Γ

r′∑
i=1

wi

ti
hi

=
∑
G∈Γ

w/t(G ∩ F ) ≤
∑
G∈Γ

x = |Γ|x.

We have equality here if for every G ∈ Γ, there is a G′ ⊂ G satisfying T with
w/t(G′) = x, and G′ = G ∩ F . This holds in the following situation. Let T be the
k-Sperner property, S be Ln(q) with the usual partition into levels, and Si be the set of
those l-sets that form a chain. Let Γ consist of copies of the Boolean poset, as described in
Section 3 (note that we could use instead the chains given by a basis and its ordering). Let
us assume levels j1, . . . , jk have the maximum weight w/t in the Boolean poset, and let F
consist of the subspaces on levels j1, . . . , jk. Then by the above, F has the largest weight
w(F ) = |Γ|x among k-Sperner families. We obtained that for every non-negative weight
the union of k levels has the largest weight, which implies the following result.

Corollary 4.2. The extreme points of the l-chain profile polytope of k-Sperner families of
subspaces of Fn

q are the unions of at most k levels.

We mentioned the l-chain polytopes here because the above result gives the first in-
stance of a generalized forbidden subposet problem in Ln(q). The generalized forbidden
subposet problem seeks to find La(n, P,Q), the largest number of copies of the poset Q
in a P -free subfamily of Bn. Its study was initiated by Gerbner, Keszegh and Patkós [11],
analogously to the graph case [1] that has recently attracted a lot of attention. Further
results on La(n, P, Pl) can be found in [12].

We propose to study generalized forbidden subposet problems in Ln(q). Let
Laq(n, P,Q) denote the largest number of copies of the poset Q in a P -free family in
Ln(q). Corollary 4.2 implies that Laq(n, Pk, Pl) is given by k full levels (it is not hard
to see that the best way to choose the k levels i1, . . . , ik is when the values i1, i2 − i1,
i3 − i2, . . . , ik − ik−1, n− ik differ by at most one). For other pairs of posets, a weighted
version in the Boolean case could give bounds on Laq(n, P,Q).

Let us mention that even though Lemma 4.1 immediately implied a generalized forbid-
den subposet result in Ln(q), it may be the only particular problem where we can use it to
obtain a sharp bound. Lemma 4.1 requires studying a weighted version of a generalized
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forbidden subposet problem in the smaller structure G, similarly to Lemma 2.1. Observe
that in the case of counting the members of a family of Bn, we had the useful property
that wi/ti is the largest in the middle, exactly where the (conjectured) extremal families
are. Therefore, an unweighted result on the cycle gave a weighted result of Bn that implied
the unweighted result. And similarly, an unweighted result of Bn immediately implied the
analogous bound in Ln(q). However, this is not the case with the more complicated weight
functions and more diverse extremal families that we deal with in generalized forbidden
subposet problems.

To finish the paper, we present some simple results for Laq(n, P,Q). They are unre-
lated to the earlier parts of the paper, but we would like to present some results concerning
this function, since we initiate the study of this topic in this paper. Let the generalized dia-
mond poset Dr have r+2 elements a, b1, . . . , br, c and relations a < bi < c for 1 ≤ i ≤ r.

Proposition 4.3. (i) Laq(n,∨,∧r) = Laq(n,∧,∨r) =
([ n

⌊n/2⌋]q
r

)
.

(ii) Laq(n,B,Dr) =
([ n

⌊n/2⌋]q
r

)
.

(iii) Laq(n, P3,∧r) = max0≤k≤n

[
n
k

]
q

([ k
⌊k/2⌋]q

r

)
.

The Boolean analogues of the above statements were proved in [11], and the proofs
of them also work in our case. We include them for the sake of completeness. We will
use the canonical partition of k-Sperner families F ; it is a partition of F into k antichains
F1, . . . ,Fk, where Fi is the set of minimal elements of F \ ∪i−1

j=1Fj .

Proof. The lower bounds for (i) and (ii) are given by the families consisting of all the
⌊n/2⌋-dimensional subspaces together with the zero-dimensional and/or the n-dimensional
subspace. For (iii) consider all the k-dimensional and ⌊k/2⌋-dimensional subspaces for
every k.

For the upper bound in (i), the first equality is trivial by symmetry. Let us consider now
the canonical partition F1 ∪ F2 of a ∨-free family F in Ln(q). Observe that every copy
of ∧r consists of a member of F2, and r members of F1 contained in it. Every member of
F1 is contained in at most one member of F2 by the ∨-free property, thus for every set of
r members of F1, at most one member of F2 forms a copy of ∧r with them. This implies
Laq(n,∨,∧r) ≤

(|F1|
r

)
. As F1 is an antichain, it has at most

[
n

⌊n/2⌋
]
q

members, finishing
the proof of (i).

To prove the upper bound in (ii), let F be a B-free family in Ln(q) and M = {M ∈
F : ∃F ′, F ′′ ∈ F such thatF ′ ⊂ M ⊂ F ′′}. As F is P4-free, M is an antichain. Observe
that for an M ∈ M there is exactly one F ′ ∈ F with F ′ ⊂ M and there is exactly one
F ′′ ∈ F with M ⊂ F ′′. Thus, for every r-tuple from M there is at most one copy of Dr

in F , and there are at most
([ n

⌊n/2⌋]q
r

)
such r-tuples.

To prove the upper bound in (iii), let F be a P3-free family in Ln(q) and consider its
canonical partition F1 ∪F2. Every copy of ∧r consists of a member of F2 and r members
of F1. For a member F of F2 with dimension k, we have to pick r subspaces of it that
are in F1. Those members of F1 that can be picked form an antichain of subspaces of a

k-dimensional space, thus there are at most
[

i
⌊k/2⌋

]
q

of them, and there are
[
n
k

]
q

([ k
⌊k/2⌋]q

r

)
ways to pick r of them. It means that a k-dimensional member of F2 is in at most w(k) :=([ k

⌊k/2⌋]q
r

)
copies of ∧r. Hence the total number of copies of ∧r is at most the total weight
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of F2, i.e. w(F2). As F2 is an antichain, this is maximized by a level (for a number of
reasons mentioned earlier, for example Corollary 4.2 implies this). The weight of level k is[
n
k

]
q

([ k
⌊k/2⌋]q

r

)
, finishing the proof.
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