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Predgovor

V knjigi so zbrani bistveni algoritmi, ki so potrebni za izvedbo avtonomnih
mobilnih sistemov. Knjiga vsebuje pregled obstojece (raziskovalno aktualne)
teorije kot tudi Stevilne avtorske raziskovalne prispevke s podroéja avtonomnih
mobilnih sistemov. Ceprav se knjiga osredotoc¢a na obravnavo algoritmov za
kolesna vozila, se lahko z ustreznimi prilagoditvami velik delez predstavljenega
materiala uporabi tudi za druge vrste mobilnih sistemov in tudi na mnogih drugih
podrocjih.

Knjiga je po tematikah razdeljana na sedem poglavij, ki jih bralec lahko bere
linearno ali pa se osredotoci le na izbrana poglavja s tematikami, ki ga zanimajo.
Po uvodnem poglavju 1, ki podaja nekaj osnovnih pojmov in kratek zgodo-
vinski pregled, sledi poglavje 2, ki obravnava modeliranje kinematike gibanja
raznovrstnih kolesnih mehanizmov in tudi dinami¢ni model mobilnega sistema z
omejitvami. Nato so v poglavju 3 predstavljeni razliéni pristopi vodenja kolesnih
mobilnih sistemov in pristopi nacrtovanja poti v poglavju 4. V poglavju 5 je
podan pregled senzorjev, ki se uporabljajo v mobilnih sistemih, pri ¢emer so
predstavljene tudi transformacije koordinatnih sistemov. Poglavje 6 pokriva
stohasti¢nost v mobilnih sistemih in obravnava ocenjevanje posumljenih stanj z
Bayesovim in Kalmanovim filtrom ter s filtrom delcev. Na koncu se poglavije 7
dotakne Se agentov in vecagentnih sistemov, z opisi nekaj prakti¢nih primerov
uporabe.

Teorija je podprta z mnogimi primeri z resitvami, ki so opremljeni z izvlecki
programov v Matlabu. Le-te lahko bralec tudi preizkusi in uporabi pri prakti¢cnem
delu. Na spletni strani http://msc.fe.uni-1j.si/ams-kv je na voljo elektron-
ska izdaja knjige in dodatni material, ki knjigo dopolnjuje. Poleg elektronske
knjige lahko bralec v mapo src s spletne strani prenese vse programe, ki so
predstavljeni v knjigi. Ime m-datoteke pri izvlecku programa nato deluje kot
povezava do celotnega programa.

Knjiga je namenjena vsakomur, ki ga zanima podrocje avtonomnih mobilnih siste-
mov z raziskovalnega in/ali prakti¢nega staliS¢a. ZazZeleno je vsaj nekaj osnovnega
znanja iz matemati¢nega modeliranja in simulacij dinami¢nih sistemov, teorije
regulacij, digitalnega vodenja sistemov, optimizacije, statistike in verjetnosti
ter programiranja. Knjiga se lahko uporabi tudi kot gradivo pri predmetih na


http://msc.fe.uni-lj.si/ams-kv

v

dodiplomskem ali podiplomskem studiju, ki obravnavajo mobilno robotiko. Tako
je primerno gradivo za Studente 2. letnika na podiplomskem studiju 2. stopnje
Elektrotehnike na Univerzi v Ljubljani, Fakulteti za elektrotehniko.

Za nastanek knjige so zasluzni sodelavci Laboratorija za avtomatiko in kibernetiko
(vkljuéno z bivsimi sodelavci, tudi pod prejsnjimi imeni laboratorija) na Univerzi
v Ljubljani, Fakulteti za elektrotehniko. Velika zahvala gre prof. dr. Rihardu
Karbi in prof. dr. Borutu Zupancicu za temeljit pregled dela in Stevilne koristne
komentarje. Posebna zahvala gre prof. dr. Dragu Matku, ki je podroc¢je mobilnih
sistemov vpeljal v laboratorij. Hvala as. dr. Matevzu Bosnaku za njegov
prispevek na podroc¢ju avtonomnih mobilnih sistemov. Hvala vsem studentom,
raziskovalnim partnerjem in tehni¢nemu osebju na Univerzi v Ljubjani, Fakulteti
za elektrotehniko. Hvala Studentki Valentini Stani¢ za pomo¢ pri pripravi knjige
v slovenscini. Hvala raziskovalcem z institucij po vsem svetu, s katerimi smo
sodelovali pri najrazlicnejsih projektih, ki so vplivali na pripravo te knjige. Hvala
tudi Javni agenciji za raziskovalno dejavnost Republike Slovenije, ki je podprla
izvedbo mnogih raziskovalnih in aplikativnih projektov.

Ljubljana G. Klancar, A. Zdesar, S. Blazic, 1. Skrjanc
September, 2021
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Uvod v mobilne sisteme

1.1 Roboti

s v 2

pomeni delo, medtem ko je v ¢eSc¢ini ali slovenséini bolj arhai¢na in pomeni
“suzengjsko delo” ali corvée. Znani ¢eski pisatelj Karel Capek je sestavil in uporabil
besedo “robot” v svoji drami R.U.R. - Rossumouvi Univerzalni Roboti. Z njo je
opisal umetnega ¢loveka, ki bi ga danes lahko poimenovali kiborg ali android
(slika 1.1). Zaradi velikega uspeha drame, je besedo prevzela vecina svetovnih
jezikov. Medtem ko je beseda robot nastala pred manj kot sto leti, je sama ideja
o mehanskem bitju veliko starejsa.

V Grski mitologiji najdemo mnogo bitij, kjer ima vsako svoj namen. Spartoi
so oborozeni mitoloski vojaki, ki so se razvili iz zmajevih zob, katere je posejal
Kadmos. Vojaki so Kadmosu pomagali pri izgradnji Kadmeje, tj. trdnjave
v Tebah. Talos, ki ga je ustvaril Hefajst, je bil ogromen bronast avtomat,
namenjen zas¢iti Evrope na Kreti pred pirati in napadalci. Grski bog kovacev in
obrtnikov Hefajst je zasluzen tudi za nekatere druge mehanske strukture, ki so
bile realizirane. Avtomate lahko najdemo tudi v starodavnih judovskih, kitajskih
in indijskih legendah. Skozi celotno zgodovino je prisotna ideja o mehanskem
avtomatu, ki je podoben ljudem ali zivalim; v 19. in 20. stoletju pa je postala
res priljubljena. V 20. stoletju se je pojavil priljubljen medij, ki je upodobil in
ozivel robote — film. Nekatere ideje v literaturi in filmu so bile v ¢asu nastanka
oznacene kot znanstvena fantastika, kasneje pa je ta fikcija postala resni¢nost.

Vendar pa roboti niso samo stvar fikcije. Zelo zgodnji iznajditelji so skusali
ustvari mehanski avtomat. Grski matematik Arhitas naj bi v 4. stoletju p. n. st.
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Slika 1.1: Scena iz dramske predstave R.U.R., ki prikazuje tri robote [Fotografija
v javni domeni (https://commons.wikimedia.org/wiki/File’,3ACapek_play.jpg)]

oblikoval in zgradil prvo umetno leteco napravo na lasten pogon. Ta mehanska
ptica na parni pogon naj bi bila zmozna preleteti okoli 200 metrov. Leonardo da
grobih skic iz Leonardovih zapiskov je Rosheim [1] rekonstruiral programlrhw
vozicek (slika 1.2), ki je sluzil kot podlaga Leonardovim izumom, med katerimi sta
bila tudi robotski lev in vitez. Z razmahom industrijske revolucije je tehnoloski
napredek pripeljal do razcveta avtomatizacije, ki je postopoma vodila do danasnje
mobilne robotike.

1.2 Mobilnost

Beseda mobilnost izhaja iz latinske besede z istim pomenom “mobilis”. Vecina
zivalskih vrst ima sposobnost lokomocije, tj. premikanja organizma iz enega
mesta na drugo. Medtem ko nekatere zivali za premikanje uporabljajo pasivne
sisteme (npr. s pomodjo gibanja vode ali zraka), so druge razvile bolj ali manj
napredne mehanizme za aktivno gibanje. Ene zZivali se gibajo v tridimenzionalnem
prostoru (plavanje v vodi, letenje po zraku, premikanje po tleh), druge bolj ali
manj sledijo dvodimenzionalni povrsini vode ali tal, tretje pa so zmozne zdruziti
razlicne nacine gibanja. V okviru mobilnih robotov nas zanimajo sistemi, ki
se lahko premikajo z uporabo svojega sistema za lokomocijo. Slednji pogosto
posnemajo gibanje ¢loveka ali dolocene zivali. Posnemanje bioloskih sistemov
obicajno uspesno resuje nekatere tehnicne tezave, ki se pojavijo med nacrtovanjem

gibanja umetnega sistema.

Drug pomemben vidik mobilnega sistema je avtonomija, saj lahko pri gibanju
pride do prevelike oddaljenosti od ¢loveskega operaterja. Tako mora imeti sistem
doloceno stopnjo avtonomnosti, da se lahko premika po prostoru brez pomoci


https://commons.wikimedia.org/wiki/File%3ACapek_play.jpg
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Slika 1.2: Model kolesa in programirljivega vozicka, zgrajen na podlagi zapiskov
Leonarda da Vincija

Slika 1.3: Radijsko krmiljen elektri¢ni ¢oln Nikole Tesle
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(a) (b)

Slika 1.4: 5200 let staro leseno kolo z osjo, ki so ju nasli na Ljubljanskem barju,
je glede na starost kot tudi tehnolosko dovrsenost eno izmed najpomembnejsih
predmetov svetovne kulturne dedisc¢ine (premer kolesa meri 70 cm, dolZina osi pa

120 Cm) [Muzej in galerije mesta Ljubljane, avtor M. Paternoster]

operaterja oz. da na daljavo sprejema njegove ukaze. Nikola Tesla je konec
19. stoletja prvi oblikoval in sestavil radijsko voden elektri¢ni ¢oln (slika 1.3).
Od 20. stoletja nivo avtonomnosti nenehno narasca, vendar clovek Se vedno na
dolo¢enem nivoju upravlja obstojece mobilne sisteme.

1.3 Kolesa

Ceprav se lahko gibljejo tudi zelo primitivne Zivalske vrste, ni samoumevno
razviti umetni sistem, ki je sposoben posnemati gibanje zivali. Medtem ko koles
in podobnih struktur ni mogoce najti v zivalskem svetu, vozila s kolesi omogocajo
energetsko uc¢inkovito gibanje po tleh. Povrsina tal mora biti dovolj gladka, ¢eprav
se lahko ustrezno zgrajena kolesna vozila premikajo tudi po neravnem terenu,
stopnicah ipd. Ni znano, kje in kdaj so izumili kolo; uveljavljeno prepricanje je,
da so prva kolesa uporabili priblizno 4000 let p. n. $t. v Mezopotamiji in so se
od tam razsirila po celem svetu. Nekateri strokovnjaki ocenjujejo, da so kolo
izumili v prazgodovinski Evropi. NajstarejSe ohranjeno leseno kolo z osjo je staro
5200 let in je bilo odkrito v Sloveniji na Ljubljanskem barju (slika 1.4).

1.4 Avtonomni mobilni sistemi

Mobilni sistemi niso (fizi¢no) povezani oziroma vpeti v okolico in se lahko poljubno
premikajo v dolo¢enem obmocju. Glede na okolje, v katerem se premikajo, jih
lahko razvrstimo v tri skupine:
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e Kopenski mobilni sistemi. Med njimi najdemo razliéne vrste mobilnih
platform, kot so mobilna vozila s kolesi ali gosenicami, roboti z nogami
(humanoidi in roboti, ki posnemajo hojo zivali) ter roboti, ki posnemajo
druge nadine zivalskega premikanja (npr. kacje lezenje). Kopenske mo-
bilne sisteme s kolesi ali gosenicami brez operaterja imenujemo kopenska
brezpilotna vozila (UGV, angl. unmanned ground vehicles).

e Zrac¢ni mobilni sistemi. Ta skupina je sestavljena iz mobilnih siste-
mov, ki letijo v dolo¢enem zrac¢nem prostoru (letala, helikopterji, droni,
rakete in leteci sistemi, ki posnemajo letenje Zivali). Ce letijo brez pilota
jih imenujemo brezpilotna zraéna vozila (UAV, angl. unmanned aerial
vehicles).

¢ Vodni in podvodni mobilni sistemi. V tej skupino uvrscamo razliéne
vrste ladij, ¢olnov, podmornic, avtonomnih podvodnih vozil (AUV, angl.
autonomous underwater vehicles) ipd.

V knjigi bomo obravnavali samo kolesna mobilna vozila, ¢eprav se lahko z
ustreznimi prilagoditvami velik delez predstavljenega materiala uporabi tudi za
druge vrste mobilnih sistemov.

Mobilne sisteme obravnavamo kot avtonomne, ¢e so sposobni avtonomnega
gibanja v svoji okolici. Avtonomija mora biti zagotovljena

e 7 energijskega vidika — robot nosi vir energije,

o 7z vidika odlocanja — robot se je sposoben odlocati in izvajati ustrezne akcije.

V praksi to pomeni, da mobilni sistem sprejema ukaze cloveskega operaterja
glede na stopnjo avtonomnosti, ki mu je vgrajena. Sistem nato poskusa izvesti
ukazane naloge in ustrezne “podnaloge” na nizjih nivojih. V primeru predvidljivih
okolis¢in se naloga izvede v dolo¢enem c¢asovnem intervalu. Glede na stopnjo
avtonomnosti robota lahko operater izvede naslednje tipicne ukaze:

Zelene hitrosti koles. Robot sprejema ukaze, ki predstavljajo zelene hitrosti
koles. Osnovni algoritmi vodenja z ustreznimi senzorji (obi¢ajno so to

rotacijski dajalniki) omogocajo Zeleno vrtenje koles glede na ukaz.

Zelene translacijske in kotne hitrosti robota. Racunalniski program, ki de-
luje na robotu, pozna njegov kinemati¢ni model in lahko izracuna ustrezne
hitrosti koles, da doseze Zelene hitrosti robota.

Zelena pot ali trajektorija robota. Robot lahko v svoji okolici ugotovi in
vodi svojo lego, ki je obicajno dolo¢ena kot skupna informacija o poziciji
in orientaciji glede na izbrani koordinatni sistem. Na tej ravni najdemo
lokalizacijo robota s pomocjo razlicnih senzorjev, namescenih na robotu ali
v okolju, s katerimi pois¢emo najboljsi priblizek lege robota. Pri vodenju
se pojavijo tudi tezave zaradi nelinearnosti sistema, napacnih informacij
senzorjev, zdrsa koles, slabih modelov, zakasnitev itd.
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Zeleno delovanje v znanem okolju z morebitnimi ovirami. Robot mora
izvesti opravilo v znanem okolju z nekaj (stati¢nimi ali dinamiénimi) ovirami.
Na tej ravni je robot sposoben nacrtovati svojo pot, oz. jo ponovno zasnovati
v primeru pojava ovir, ki preprecujejo izpolnitev operacije.

Zelena operacija v neznanem okolju. Robot ne pozna svoje okolice, zato
mora socasno izvajati algoritme za dolocanje polozaja in graditi zemljevid
svoje okolice — tovrsten pristop je znan kot SLAM (angl. simultaneous
localisation and mapping).

Zelena naloga. Robot prevzame nalogo, ki jo mora izpolniti v okolju, kjer lahko
sodeluje z drugimi roboti ali agenti. Robot potrebuje doloc¢eno stopnjo
razumevanja svojih nalog, poznati pa mora tudi njihove prioritete, da lahko
prekine neko nalogo in/ali prevzame nalogo z visjo prioriteto. Stevilna
pravila odlocanja morajo biti vgrajena v robota. Recimo robot preveri
stanje energije v svojih akumulatorjih in jih po potrebi napolni.

Roboti na prvih dveh (zgoraj opisanih) nivojih niso avtonomni. Obstajajo tudi
druge razvrstitve, pri ¢emer je pomembno, da razumemo naloge in inteligenco
robota, ki jih ima na doloc¢eni ravni.

Glavni mehanski in elektronski sestavni deli avtonomnega mobilnega robota so:

« mehanska konstrukcija: togi in gibljivi sestavni deli (telo, kolesa, gose-
nice, noge itd.),

« aktuatorski pogon: elektriéni motorji (DC, kora¢ni motor, servomotor
itd.),

e senzorji: rotacijski dajalniki, senzorji blizine in razdalje, inercialna navi-
gacijska enota, globalni navigacijski satelitski sistem (GNSS, angl. Global
navigation satellite system) itd.,

e racunalniki: mikrokrmilniki, prenosni osebni racunalnik, vgrajeni sistemi
itd.

)

e napajalna enota: baterije, sonc¢ne celice itd.,

o elektronika: elektronika za pogon motorjev, meritve senzorjev, distribu-
cija moci in telekomunikacijska elektronika.

Knjiga obravnava algoritme, potrebne za obdelavo podatkov senzorjev in pogon
motorjev s ciljem zagotavljana avtonomnosti mobilnega robota.

Kolesni mobilni roboti imajo ve¢ dobrih lastnosti, zaradi katerih so privlac¢ni
za uporabo. Mobilni roboti omogocajo dostop do okolij, nevarnih za ljudi (npr.
minska polja, radioaktivna okolja, globokomorske raziskave itd.), in oddaljenih
ali nedostopnih okolij (npr. raziskovanje zunajzemeljskih planetov, “nano roboti”
v medicini itd.). Hkrati lahko namesto cloveka izvajajo naloge, ki so zanj fizicno
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zahtevne. Uvedba avtomatizacije, robotike in mobilnih sistemov omogoca tudi
vecjo produktivnost, boljSo kakovost izdelka ali storitve ter zmanjsa stroske dela.

Dandanes se mobilni sistemi uporabljajo v Stevilnih aplikacijah na razlicnih
podrocjih, ki se zaradi hitrega tehnoloskega razvoja nenehno Sirijo. Nepopoln
seznam aplikacij kolesnih mobilnih robotov vkljucuje:

o medicinske storitve, kot je pomo¢ pri operacijah, opravljanje laboratorijskih
analiz (npr. v situacijah, kjer je nevarnost okuzbe),

« aplikacije ¢iS¢enja (sesanje tal, pometanje in pomivanje v domovih ali
velikih zgradbah, ¢is¢enje oken),

o aplikacije v kmetijstvu, kot je avtomatizirano obiranje sadja, sajenje, kosnja

trave,
e gozdna dela, ¢is¢enje gozdov,
e prodaja blaga Siroke potrosnje,

e pregled in nadzor nevarnih podrodij (detekcija in deaktivacija min na

4

minskih poljih, pregled jedrskih reaktorjev, ¢is¢enje kanalizacijskih cevi),

« vesoljske aplikacije (sateliti, pregled in servisiranje satelitov, raziskovanje
planetov),

« pomorske aplikacije (roboti za postavljanje kablov in pregledovanje mor-
skega dna),

e roboti za nakladanje in razkladanje blaga ali materiala iz letal, ladij ter
tovornjakov,

 vojaski roboti (izvidniski roboti, letala in razni avtopilotski izstrelki),
 varnostni roboti (za nadzor skladis¢ in stavb),

e pomo¢ starejSim in invalidnim osebam (avtonomni invalidski vozicki, roboti
za rehabilitacijo),

 potrosniske aplikacije (robotski hisni ljubljencki, robotski nogomet),

e sistemi v raziskovalnih ustanovah, namenjeni ucenju in razvoju novih

algoritmov.

Nekaj od predhodno nastetih podrocij uporablja tudi ze avtonomne mobilne
sisteme (AMS), torej robote, ki se lahko samostojno gibljejo v okolici med
opravljanjem razli¢nih opravil. Med temi sistemi prevladujejo kolesni avtonomni
sistemi kot tudi letalni avtonomni sistemi. Stevilo prakti¢nih aplikacij AMS in
tudi komercialno dostopnih sistemov se povecuje. Uporaba avtonomni sesalnikov,
kosilnic in podobnih sistemov je Ze vsakdanjost. Pogosta je tudi uporaba AMS v
tovarnah, bolnisnicah in distribucijskih centrih za dostavo. Obetajoce so tudi
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bodoce aplikacije v kmetijstvu in javnem transportu, kjer stevilni raziskovalni
centri razvijajo kmetijske robote in samovozeca vozila, ki bodo kmalu zazivela
v uporabi. Najdemo lahko tudi stevilne druge aplikacije na podrocjih kot so:
vojska za izvidniske namene, misije v vesolju za planetarna raziskovanja, pri
naravnih nesrecah za iskanje in resevanje in na podroc¢ju varovanja. Mobilni
avtonomni sistemi predstavljajo hitro razvijajoce podrocje raziskav in razvoja,
zato se bo v bliznji prihodnosti pojavilo Se veliko novih aplikacij, ki nam trenutno
niso tako ocitne. Da dosezemo Zeleno avtonomijo in novo funkcionalnost, morajo
ti sistemi zdruzevati Stevilne tehnologije in opremo. Klju¢ne tehnologije, ki
so predstavljene v nadaljevanju te knjige so: modeliranje, vodenje, planiranje,

senzorika. lokalizacija in sistemi odloc¢anja.

Predvidevanje prihodnosti je Zze od nekdaj zahtevna naloga. Danasnje tehnologije
in aplikacije so bile Se pred desetletjem tezko predstavljive. Predvideva se,
da bodo v bliznji prihodnosti avtonomni kolesni mobilni roboti postali e bolj
nepogresljivi v vsakdanjem zivljenju: v tovarnah prihodnosti bodo sodelovali z
ljudmi, nam pomagali pri domacih opravilih, nas peljali po cesti, resevali zivljenja
(v reSevalnih misijah) in Se veliko ve¢. V naslednjem poglavju je prikazan kratek
pregled zgodovine, oz. kako nas je tehnoloski razvoj pripeljal do trenutne tocke.

1.5 Kratka zgodovina

Poglavje predstavlja nekaj pomembnih mejnikov v zgodovini kolesnih mobilnih
robotov [2]. Poudarek je na aplikacijah, vendar so omenjeni tudi nekateri
tehnoloski dosezki, ki so pomembno vplivali na podroc¢je mobilne robotike.

1898 Nikola Tesla je na sejmu elektronike v dvorani Madison Square
Garden v New Yorku demonstriral brezzi¢no radijsko vodeno plovilo
[3], ki je eden izmed njegovih patentiranih izumov [4].

1939-1945 Med drugo svetovno vojno so v Nemdciji razvili avtopilotski raketi
V-1 [5] in V-2 [6]. Hkrati je American Norbert Wiener razvijal
sistem za avtomatsko ciljanje protiletalskega orozja [7].

1948-1949 W. Grey Walter je ustvaril avtonomna robota imenovana Elmer in
Elsie [8], ki sta bila podobna Zelvam in zmozna slediti svetlobnemu
viru (tj. fotodioda), zaznavati ovire (kontaktno stikalo) in se
izogibati oviram.

1961-1963 Univerza Johns Hopkins je razvila mobilnega robota Beast [9], ki
je lahko taval po belih hodnikih in iskal ¢rne stenske vti¢nice za
polnjenje svojih baterij.

1966—1972 Raziskovalni institut Stanford je razvijal robota Shakey [10], ki je

vseboval kamero, sonar, senzorje za zaznavanje trka in brezzi¢no
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povezavo. To je bil prvi robot za splosno rabo, ki je znal nacérto-
vati svoje akcije. Rezultati projekta vkljucujejo razvoj iskalnega
algoritma A*, Houghovo transformacijo in graf vidljivosti.

Predstavljena in patentirana prva robotska kosilnica MowBot [11].

Sovjetska zveza je na Luni uspesno izkrcala prvi lunarni rover
Lunokhod 1, ki je bil daljinsko voden z Zemlje ter nosil ve¢ kamer in
drugih senzorjev. V 301 dneh delovanja je rover prevozil priblizno
10km, posnel ve¢ kot 25000 slik in naredil ve¢ analiz tal [12].

Sovjetska zveza je na Luni izkrcala drugi lunarni rover Lunokhod 2.
Med stirimesec¢no misijo je rover prepotoval 39 km, kar je do leta
2014 veljalo za najdaljSo prepotovano razdaljo izven Zemlje [13].

Nasini vesoljski plovili brez posadke Viking I in Viking 2 (vsako
sestavljeno iz vesoljskega plovila in pristajalnika) sta vstopili v
Marsovo obrito, nekoliko dni kasneje pa so pristajalniki mehko
pristali na povrsini Marsa [14].

Francoski laboratorij za analizo in arhitekturo sistemov (LAAS) je
zadel z razvojem mobilnega robota Hilare 1 [15], ki je bil opremljen
z ultrazvo¢nimi in laserskimi pregledovalniki razdalj ter kamero na

robotski roki.

Vozilo Stanford (angl. Stanford cart) (zacetni model predstavljen
leta 1962) je bilo zmoZno vizualne navigacije po progi z ovirami
[16].

Na voljo je bil prvi model iz serije komercialnih robotov HERO, ki

so bili namenjeni predvsem za domaco in izobrazevalno rabo [17].

Ekipa pod vodstvom Ernsta Dietera Dickmannsa [18] je razvila
robotski avto VaMoRs, ki se je lahko sam vozil po ulicah brez
prometa s hitrostjo do 90 km /h.

Na trziscu se je pojavil cenovno ugoden mobilni robot Pioneer za
izobrazevalne in raziskovalne namene [19].

Organiziran je bil prvi robotski nogometni turnir, leto kasneje
pa je bila ustanovljena FIRA (angl. Federation of international
robot-soccer association) [20].

NASA je v okviru projekta Mars Pathfinder na Mars poslala rover
Sojourner [21], ki je sprejemal ukaze iz Zemlje ter se je lahko
samostojno peljal po vnaprej doloceni poti in se pri tem izogibal
nevarnim situacijam.

Na trziscu se je pojavil prvi model robotskega sesalnika Roomba za
domaco rabo [22].
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Marsova roverja dvojcka Spirit in Opportunity sta pristala na
Marsu [23]. Rover Spirit se je leta 2009 zagozdil, rover Opportunity
pa je Se vedno aktiven in je leta 2014 podrl rekord za najdaljso
zunajzemeljsko prepotovano razdaljo, ki ga je postavil Lunokhod 2.

Prvo tekmovanje DARPA Grand Challenge je potekalo v puscavi
Mojave (ZDA). Nobeno avtonomno vozilo ni dokonéalo 240 km
dolge proge [24].

Na drugem tekmovanju DARPA Grand Challenge je avtonomno
vozilo Stanley iz Univerze v Stanfordu prvo dokoncalo progo. Se
Stiri druga vozila (od 23) so uspesno opravila nalogo [25].

Organizirano je bilo tekmovanje DARPA Urban Grand Challenge,
kjer je sest avtonomnih vozil uspesno prevozilo progo v urbanem
okolju. Zahtevano je bilo upostevanje vseh prometnih pravil ter
uspesno vkljudevanje v promet [26].

Izsla je prvotna razli¢ica robotskega operacijskega sistema ROS 0.4
(angl. Robot operating system) [27].

Google je zacel (na kalifornijskih avtocestah) preizkusati svojo
tehnologijo avtonomne voznje s predelanim avtom Toyota Prius

[28].

V izzivu VisLab Intercontinental Autonomous Challenge [29] so
Stiri avtonomna vozila brez pomoci ¢loveka opravila skoraj 6000 km
dolgo potovanje od Parme v Italiji do Sanghaja na Kitajskem.

Na Marsu je uspesno pristal Nasin robotski rover Curiosity [30], ki
je Se vedno aktiven.

Google je razkril nov prototip avtonomnega vozila brez volana in
pedalov [28].

Podjetje Tesla v dolocenih modelih svojih elektri¢nih vozil omogoci
sisteme za avtonomno voznjo. V petih letih skupno stevilo kilome-
trov, ki jih prevozijo lastniki vozil v avtonomnem nacinu delovanja
(druga stopnja avtonomnosti), preseze 5 milijard [31].

Od junija je flota samovoznih vozil podjetja Google v avtonomnem
nadinu skupaj prevozila 2777 585 km [32].

Zagonsko podjetje comma.ai, ki ga je ustanovil George Hotz, izda
prvo delujoco razli¢ico odprtokodne programske opreme za razvoj
avtonomne voznje, ki v osnovi temelji na uporabi kamere za zazna-

vanje okolja.

Izide prva verzija odprtokodnega simulacijskega okolja CARLA za

razvoj algoritmov za avtonomno voznjo v urbanem okolju [33].
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Podjetje Waymo vzpostavi storitev avtonomnega prevoza oseb za
konéne uporabnike v kraju Phoenix (Arizona) [34].

Podjetje Waymo je s svojimi avtonomnimi vozili prevozilo ve¢ kot
10 milijonov kilometrov v resni¢nem svetu (kar je ve¢ kot 200-krat
okoli Zemlje oz. 10-krat do Lune in nazaj) in ve¢ kot 10 milijard
kilometrov v simulacijskem okolju (kar je ve¢ kot pot, ki jo Zemlja
napravi okoli Sonca v 10 letih) [35].

Na Marsu je marca v kraterju Jezero (v blizini dolin Neretva vallis
in Sava vallis) pristal Nasin rover Perserverance s helikopterjem
Ingenuity na krovu [36]. Rover je opremljen s 23 kamerami, od
tega se jih 9 uporablja za navigacijo, detekcijo ovir in planiranje
poti pri avtonomni voznji. Dva meseca kasneje je na Marsu pristal
Se kitajski rover Zurong [37].
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2

Modeliranje gibanja

mobilnih sistemov

2.1 Uvod

Clovek 7e veé tiso¢ let izkoris¢a prednosti kolesnega pogona. Osnovna zgradba
prazgodovinskega dvokolesnega vozicka (slika 2.1) je enaka tisti v modernih
avtomobilih in kolesnih robotih. V tem poglavju je predstavljeno modeliranje
gibanja razlicnih kolesnih mobilnih sistemov. Dobljeni model se lahko uporabi v
razlicne namene. V knjigi ga bomo vec¢inoma uporabljali za nac¢rtovanje strategij
lokomocije sistema. Lokomocija je proces gibanja avtonomnega sistem z enega
mesta na drugo.

Modeli gibanja lahko opisujejo kinematiko robota, kjer nas zanima matemati-
éen zapis gibanja brez upostevanja sil in navorov, ki v splosnem tako gibanje
povzrocijo. Kinemati¢ni model opisuje geometrijske relacije v sistemu, to so
relacije med vhodnimi parametri in vedenjem sistema, ki jih podajajo stanja
sistema. Kinemati¢ni model opisuje hitrosti sistema in je predstavljen z mnozico

diferencialnih enacb prvega reda.

Dinamic¢ni model pa opisuje gibanje sistema zaradi sil, ki delujejo nanj. To-
vrstni model vkljucuje fizikalne veli¢ine, kot so sile, energije, masa sistema,
vztrajnost in hitrosti. Opisi dinami¢nih modelov so podani z diferencialnimi
enacbami drugega reda.

Pri nacrtovanju gibanja kolesnih mobilnih robotov obic¢ajno uporabimo kine-
mati¢ne modele, medtem ko za druge (bolj kompleksne) sisteme, kot so zracna
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Slika 2.1: Dvokolesni vozi¢ek [Muzej in galerije mesta Ljubljane, slikar: 1. Rehar]

plovila, zracni in nozni roboti, hitra kolesna vozila ipd., uporabljamo dinamicne
modele gibanja.

2.2 Kinematika kolesnih mobilnih siste-

mov

Obstaja vec razli¢nih kinemati¢nih modelov:

o Notranja kinematika pojasnjuje relacije med notranjimi spremenljivkami
sistema (npr. kako vrtenje koles vpliva na gibanje vozila).

e Zunanja kinematika opisuje pozicijo in orientacijo vozila glede na refe-
rencéni koordinatni sistem.

o Direktna kinematika modelira stanja sistema kot funkcijo vhodov (hi-
trosti koles, gibanje sklepov, zasuk krmilnega kolesa itd.), inverzna ki-
nematika pa se uporablja za nacrtovanje gibanja, torej podaja vhode v
sistem, ki so potrebni za doseg zZelenega stanja.

e Omejitve gibanja se tipi¢no pojavijo, ko ima sistem manj vhodnih spre-
menljivk kot prostostnih stopenj (neholonomicne omejitve). Holonomiéne
omejitve omejujejo dosegljivost dolocenih stanj sistema, medtem ko neholo-
nomicne omejitve omejijo smeri moznih premikov sistema (kolesa robota se
lahko vrtijo le v smeri njihove orientacije). Stevilo prostostnih stopenj je
minimalno stevilo stanj s katerimi lahko opisemo konfiguracijo sistema.

V nadaljevanju sledi nekaj primerov doloc¢itve notranje kinematike kolesnih
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Yo

X m

Slika 2.2: Vozilo v ravnini

mobilnih robotov. Lega robota v ravnini je podana z vektorjem stanj

(t)
q(t) = |y(t)
o(t)

v globalnih koordinatah (X, Y,), kot je prikazano na sliki 2.2. Premiéni
koordinatni sistem (X,,, Y;,) je pripet na mobilnega robota. Relacija med
globalnim in premi¢nim koordinatnim sistemom (zunanja kinemtika) je podana

z vektorjem translacije [x, y]7 in rotacijsko matriko

cose sing 0
R(p) = |—singp cosp 0
0 0 1

Kolesni mobilni robot se giblje s pomocjo koles, ki se vrtijo zaradi trenja med
njimi in podlago. Pri zmernih hitrostih obicajno predpostavimo model idealnega
kotaljenja koles, kjer se lahko kolo premika le zaradi rotacije (kotaljenja), brez
zdrsov v smeri kotaljenja ali pravokotno na smer kotaljenja. Vsako kolo se lahko
prosto vrti okoli lastne osi, torej obstaja tocka, ki lezi na presecis¢u vseh osi koles.
Ta tocka se imenuje trenutni center rotacije (ICR, angl. instantaneous center
of rotation) ali trenutni center ukrivljenosti (ICC, angl. instantaneous center
of curvature) in doloca tocko, okoli katere vsa kolesa krozijo z enako krozno
hitrostjo w glede na ICR. Za nadaljnje branje si lahko pogledate [1-3].

2.2.1 Diferencialni pogon

Diferencialni pogon je zelo preprost in zato precej pogosto uporabljen mehanizem
pogona, predvsem pri manjsih vozilih ali mobilnih robotih. Vozilo s takim
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g

Slika 2.3: Kinematika diferencialnega pogona

pogonom ima ponavadi eno ali dve dodatni podporni kolesi (angl. castor), ki
podpirata vozilo in preprecujeta njegovo prevracanje. Kolesi diferencialnega
pogona sta vpeti na skupno os, hitrost vrtenja vsakega kolesa pa je poljubna in
gnana s svojim motorjem. Glede na sliko 2.3 sta vhodni (regulirni) spremenljivki
hitrost desnega kolesa vr(t) in hitrost levega kolesa vy, (t). Ostale spremenljivke
na sliki 2.3 so: r — radij kolesa, L — razdalja med kolesoma in R(t) — trenutni
radij trajektorije voznje vozila oz. razdalja med sredis¢em vozila (srediséna tocka
med kolesoma) in tocko ICR. V vsakem ¢asovnem trenutku imata obe kolesi
enako kotno hitrost w(t) okrog ICR

w(t UL(t)
"= Ry - 3

- ’UR(t)
w_Rw+§

od koder izrazimo w(t) in R(t) kot

vR(t) —vr(?)
L
 Lua(t) +vL()
2 vp(t) —vr(t)

w(t) =

R(t)

Tangencialna hitrost vozila je

Obodni hitrosti koles sta vy, (t) = rwr(t) in vr(f) = rwr(t), kjer sta wr (¢) in wr(t)
kotni hitrosti levega in desnega kolesa okoli njune osi. Upostevajo¢ navedene
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relacije lahko zapiSemo notranjo kinematiko (v lokalnih koordinatah) kot

T (t) vx, (1) z z
gm@® | = oy, ()| = 0 0 le(?] (2.1)
o)) Lww | (g gLt

y(t)| = [sinp(t) 0 (2.2)

z(t) cosp(t) 0 lv t)]
() 0 1

kjer sta v(t) in w(t) vhodni (regulirni) spremenljivki. Model (2.2) lahko s pomodjo
Eulerjeve integracijske metode zapiSemo v diskretni obliki (2.3), ki je veljavna za
diskretne case vzorcenja t = kT, k= 0,1,2,..., kjer je Ty Cas vzorcenja

z(k+1) = z(k) + v(k)Ts cos p(k)
y(k+ 1) = y(k) + v(k)Ts sin (k) (2.3)
plk+1) = (k) +wk)Ts

Direktna in inverzna kinematika

Lego robota v trenutku ¢ dobimo z integracijo kinemati¢nega modela, kar ime-
nujemo odometrija (angl. odometry, dead reckoning). Dolocitev lege robota s
podanimi vhodnimi spremenljivkami imenujemo direktna kinematika

Ce med ¢asi vzoréenja predpostavimo konstantni hitrosti v in w, lahko integracijo
v enacbah (2.4) izraGunamo numeri¢no z uporabo Eulerjeve metode. Dobimo
direktno kinematiko

x(k+1) = x(k) + v(k)Ts cos (k)
y(k+1) = y(k) + v(k)Ts sin (k)
p(k+1) = o(k) +w(k)Ts
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7 uporabo trapezne integracijske metode dobimo bolj toc¢en rezultat numeriéne
integracije

x(k+1) = z(k) + v(k)Ts cos <gp(k;) + Lu(k)Té)

y(k +1) = y(k) + v(k) T, sin (Sp(k) N w(/;)ﬂ)
p(k+1) = (k) +w(k)T,s

V primeru uporabe eksaktne integracije pa je direktna kinematika

x(k+1)=z(k)+ Z((l]?) (sin (p(k) + w(k)Ts) — sin p(k))
-+ 1) = (k) = 20 (cos (0(8) + w(R)T:) — cos (k)

ok +1) = (k) + w(k)Ts

kjer integriramo znotraj intervala vzorcenja in za hitrosti v in w predvidimo

sledece spremembe stanj

(k+1)Ts (k+1)Ts
Az(k) = v(k) /kT cos p(t) dt = v(k) /kT cos (p(k) + w(k)(t — kTs)) dt

(E4+1)Ts (E4+1)Ts
Ay(k) = v(k) /k sl de= o) /k sl + (b~ KT) i

Zapis inverzne kinematike je bolj zahtevna naloga, saj moramo dolociti ustrezne
vhode, da se bo robot peljal v Zeleno lego ali po Zeleni trajektoriji. Mobilni
roboti so obi¢ajno izpostavljeni neholonomi¢nim omejitvam (poglavje 2.3), ki
onemogocajo poljubne smeri voZnje. Obstaja tudi ve¢ moznih resitev (poti) za
doseg zelene lege.

Preprosta resitev inverzne kinematike je mozna, ¢e dovolimo le premo gibanje
vozila (vr(t) = vp(t) = vg = w(t) = 0, v(t) = vg) ali le krozenje na mestu
(vR(t) = —vp(t) = vp = w(t) = 228, v(t) = 0) s konstantnimi hitrostmi. Za
kroZenje na mestu se enacbe gibanja (2.4) poenostavijo v

olt) = p(0) + 22

x(t) = 2(0) + vrt cos p(0)
y(t) = y(0) + vt sin 9(0) (2.0

Mozna strategija gibanja je usmeritev vozila proti ciljni legi z rotacijo, nato
sledi prema voznja proti cilju, na koncu pa poravnava dejanske orientacije vozila
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z Zeleno (ciljno) orientacijo. Zahtevane vhodne spremenljivke za vsako fazo
(rotacija, premo gibanje, rotacija) se lahko enostavno izrazijo iz (2.5) in (2.6).

Ce predpostavimo diskretno notacijo, kjer sta hitrosti vg (k) in vz (k) konstantni
znotraj intervala vzorcenja Ty in se lahko spreminjata le v ¢asovnih trenutkih
t = kT, lahko zapiSemo enacbe gibanja robota. Za krozenje na mestu (vg(k) =
—vr,(k)) imamo

z(k+1) = z(k)
y(k+1) = y(k) (2.7)
2UR(k)Ts

plk+1) = (k) + ——

in za premo gibanje (vg(k) = v (k))

z(k+1) =x(k) + vr(k)Ts cos p(k)
y(k+1) = y(k) + vr(k)Ts sin (k) (2.8)
ek +1) = (k)

Za zeleno gibanje vozila znotraj intervala vzorcenja t € [kTy, (k + 1)T;) lahko
za vsak vzorec Casa izracunamo inverzno kinematiko tako, da izrazimo vhodne

spremenljivke iz (2.7) in (2.8).

Kot smo Ze omenili, obstaja ve¢ razlicnih gladkih poti, ki pripeljejo vozilo v
zeleno lego, kar otezuje izvedbo inverzne kinematike. Inverzna kinematika pa
je enostavna, ¢e imamo predpisano Zeleno gladko trajektorijo (z(t), y(t)), ki ji
mora vozilo slediti tako, da je njegova orientacija vedno tangentna na trajektorijo.
Trajektorija je definirana v ¢asovnem intervalu ¢ € [0, T]. Ob predpostavki, da je
zacetna lega vozila na zeleni trajektoriji ter imamo idealen kinemati¢ni model,
lahko izra¢unamo potrebne regulirne veli¢ine (vhode) v kot

o(t) = £/2() + 52(t) (2.9)

kjer predznak dolo¢a Zeleno smer voznje (+ za voznjo naprej, — za vzvratno
voznjo). Kot tangente v vsaki tocki na trajektoriji je dolocen z

o(t) = atan2 (y(t), &(t)) + Ir (2.10)

kjer I € {0,1} definira Zeleno smer voznje (0 za voznjo naprej in 1 za vzvratno
voznjo). Funkcija atan2 (y, ) je Stirikvadrantna razsiritev funkcije arctan %

arctan £ ;x>0
arctan £ 47 ; x<0iny>0
arctanY — 7 ; z<0iny<0
atan? (y, z) = z ’ Y (2.11)
5 ; =0iny>0
-5 ; r=0iny <0
nedoloceno ; x=0iny=0
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Y ICR

g

Slika 2.4: Kinematika kolesnega pogona

Z odvajanjem (2.10) po ¢asu dobimo kotno hitrost vozila w(?)

E@)§i(t) — y)E(t)

&2 (t) + 9(t)

w(t) = = v(t)k(t) (2.12)
kjer je k(t) ukrivljenost trajektorije. Z uporabo relacij (2.9) in (2.12) ter pred-
pisane referencne poti vozila (z(t), y(t)) lahko izra¢unamo potrebni regulirni
veli¢ini v(t) in w(t). Potrebna pogoja pri nafrtovanju poti sta, da je pot dvakrat
odvedljiva in da je tangencialna hitrost razli¢na od ni¢ (v(t) # 0). Ce je pri
nekem Casu ¢ tangencialna hitrost v(¢) = 0, se robot vrti na mestu s krozno
hitrostjo w(t). Kota ¢(t) ne moremo dolo¢iti iz enacbe (2.9), torej mora biti
podan eksplicitno. Prikazano inverzno kinematiko za znano trajektorijo lahko
uporabimo pri vodenju kot predkrmiljenje, ki je dodatek povratnozancnemu
vodenju za odpravo motenj, vplivov zaradi netoctnega modela kinematike in

zaetnih pogreskov lege vozila [4].

2.2.2 Kolesni pogon

Kolesni pogon, prikazan na sliki 2.4, ima krmilno kolo s kotom krmiljenja « in
se kotali s kotno hitrostjo ws (pogon na prednje kolo). Tocka ICR je dolocena s
presecis¢em osi prednjega in zadnjega kolesa. V danem trenutku kolo krozi okoli
ICR s kotno hitrostjo w, radijem R in razdaljo med kolesoma d

R(t) = dtan (g - a(t)) - mé(t)

Krmilno kolo krozi okoli ICR s kotno hitrostjo w, zato lahko zapisemo

w(t) = (t) = \/% = ”SC(lt) sin a(t)

kjer je vs(t) = ws(t)r obodna hitrost in r radij krmilnega kolesa.
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Notranja kinematika vozila (v koordinatnem sistemu robota) je dolocena z
T (t) = vs(t) cos a(t)

Ym(t) =0 (2.13)

zunanja kinematika pa z

&(t) = vs(t) cos a(t) cos p(t)
g(t) = vs(t) cos a(t) sin p(t)
o(t) = Uscgt) sin a(t)
oziroma v matriéni obliki
z(t) cosp(t) 0 o(t)
g(t)| = [sinp(t) 0 Lu(t)] (2.14)
o(t) 0o 1

kjer je v(t) = vy(t) cos a(t) in w(t) = 2D sin a(t).

Kolesni pogon na zadnje kolo

Obi¢ajno imajo vozila (kolo, tricikel in nekateri avtomobili) pogon na zadnja
kolesa. V tem primeru sta regulirni veli¢ini hitrost zadnjega kolesa v,(t) in
kot krmiljenja sprednjega (krmilnega) kolesa a(t). Notranjo kinematiko lahko
enostavno izpeljemo iz (2.13), kjer upostevamo v, (t) = vs(t) cos a(t)

in zunanja kinematika je

§(t) = vp(t) sin o(t) (2.15)
(1) = “’ét) tan a(t)

oziroma v matricni obliki

z(t) cosp(t) 0O
i(0) | = [sing(t) 0 [(ﬂf)’]
o(t) o 1| L¥

kjer je w(t) = UTT(t) tan a(t).
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Direktna in inverzna kinematika

Z upostevanjem (2.14) lahko zapiSemo direktno kinematiko kolesa s sprednjim
pogonom z (2.4), podobno kot smo zapisali pri diferencialnem pogonu.

V splosnem je inverzno kinematiko zelo tezko resiti, lahko pa problem precej
poenostavimo z vpeljavo strategije gibanja z dvema osnovnima nac¢inoma premika.
Prvi nadin predstavlja premo gibanje v smeri naprej (a(t) = 0), drugi nacin
pa kroZenje na mestu (a(t) = +%). Pri premem gibanju se hitrosti vozila
poenostavijo v v(t) = vs(t) in w(t) = 0. Z vstavitvijo teh hitrosti v (2.14) in

diskretizacijo dobimo sledece enacbe gibanja
z(k +1) = (k) + vs(k)Ts cos p(k)
y(k+1) = y(k) + vs(k)Ts sin (k) (2.16)
o(k+1) = o(k)

V primeru kroZenja na mestu pa se hitrosti vozila poenostavijo v v(t) = 0 in
w(t) = UTSt) Z vstavitvijo teh hitrosti v (2.14) in diskretizacijo dobimo sledeéi
model gibanja

z(k+1) =xz(k)

y(k+1) =y(k) (2.17)

ol +1) = olh) + 20,

Regulirni veli¢ini (vhoda v sistem) lahko dolo¢imo iz (2.16) in (2.17) za Zeleno

gibanje med casi vzorcenja.

2.2.3 Trikolesni pogon

<

Trikolesni pogon, prikazan na sliki 2.5, ima enako kinematiko kot kolesni pogon
s(t) cos a(t) cos p(t)
os «

i(t) =
§(t) = vs(t) cos a(t) sin p(t) (2.18)
_ vs(t

o(t) ) sin a(t)

kjer velja v(t) = wvs(t) cosal(t), w(t) = UST(t)sin a(t) in vs je obodna hitrost
krmilnega kolesa. Trikolesni pogon je pogosto uporabljen v mobilni robotiki,
ker tri kolesa zagotavljajo stabilnost vozila v vertikalni smeri in tako pomozna
podporna kolesa niso potrebna.

2.2.4 Tricikel s priklopnikom

Kinematika tricikla je opisana v poglavju 2.2.3. Za priklopnik dolo¢imo tocko
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ICR

Slika 2.6: Kinematika tricikla s priklopnikom

ICRs, ki lezi na preseciscu zadnje osi tricikla in osi priklopnika. Kotna hitrost, s
katero kolesa priklopnika krozijo okoli tocke IC' Ry, je

_ v(t) _Us (t) cos a(t) _Us (t) cos a(t) sin B(t)
Ry(t) Ry(t) L

= p(1)
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in konéna kinematika vozila na sliki 2.6 je doloc¢ena z

L

2.2.5 Avtomobilski (Ackermannov) pogon

Avtomobilski pogon uporablja Ackermannov princip krmiljenja, ¢igar osnovna
ideja je, da ima notranje kolo (tisto, ki je blizje tocki ICR) vecji zasuk krmi-
ljenja kot zunanje. To omogoca vozilu, da se vrti okoli sredis¢ne tocke na osi
zadnjih koles. Posledi¢no ima notranje kolo manjso obodno hitrost kot zunanje.
Ackermannovo krmiljenje omogoca vrtenje zadnjih koles brez zdrsov, zato tocka
ICR lezi na premici, ki gre skozi zadnjo os. Ta krmilni mehanizem omogoca
manjso obrabo pnevmatik. Na sliki 2.7 je levo kolo na zunanji strani, desno pa

* ICR

X X

4

Slika 2.7: Shema Ackermannovega pogona

na notranji. Orientacijo prednjih krmilnih koles lahko dolo¢imo iz

on (5 ) =
on (5 ) =
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od koder izrazimo kote krmiljenja

R

+
N~

™
ay = 3~ arctan

d
R—

|~

T
ap = 3~ arctan

Notranje in zunanje zadnje kolo krozita okoli tocke ICR z enako kotno hitrostjo
w, torej sta njuni obodni hitrosti

l
vL:w<R+2>
VR = R—l

R=W 5

Ackermannov kinemati¢ni pogon je primeren za modeliranje gibanja vecjih vozil.
Model gibanja lahko opisemo tudi z uporabo kinematike tricikla (2.18), kjer
uporabimo povprec¢en Ackermannov kot krmiljenja o = § — arctan % Inverzna
kinematika Ackermannovega pogona je zahtevna in presega namen tega dela.

2.2.6 Sinhroni pogon

Vozilo s sinhronim pogonom lahko vsa svoja kolesa sinhrono krmili okoli vertikalne
osi (v danem trenutku imajo vsa kolesa enako orientacijo). Tipi¢no ima vozilo s
sinhronim pogonom tri kolesa, ki so razporejena simetri¢no (v enakostraniénem
trikotniku) okoli sredis¢a vozila, kot je prikazano na sliki 2.8. Vsa kolesa so

Y,

g

Slika 2.8: Sinhroni pogon

krmiljena sinhrono, torej so njihove osi vrtenja zmeraj vzporedne in zato se tocka
ICR nahaja v neskon¢nosti. Vozilo lahko neposredno spreminja orientacijo koles,
kar predstavlja tretje stanje v vektorju stanj (2.19). Regulirne veli¢ine so hitrost
krmiljenja koles w in njihova obodna hitrost v.
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Kinemtika vozila s sinhronim pogonom je podobna kinematiki difencialnega

pogona
x(t) cosp(t) 0 o(t)
y(t)| = [sinep(t) 0 Lu(t)] (2.19)
p(t) 0 1

kjer sta v(t) in w(t) regulirni spremenljivki ali vhoda, ki ju lahko neodvisno
spreminjamo (to pri diferencialnem pogonu ni mozno).

Direktna in inverzna kinematika

Direktno kinematiko dobimo z integracijo kinemati¢nega modela (2.19).

v(t) cos p(t) dt

/
y(t) = 0/ o(t) sin (¢ dt
/

Splosna resitev inverzne kinematike ni mozna, ker obstaja vec resitev za doseg
zelene lege. Inverzna kinematika je enostavno resljiva v posebnem primeru, kjer
se vozilo vrti na mestu ali pa premo giblje v smeri trenutne orientacije (brez
rotacije). Ko se robot dolocen Casovni interval At vrti na mestu s konstantno
krozno hitrostjo w, se njegova orientacija spremeni za wAt. V primeru premega
gibanja s konstantno hitrostjo v, ki traja At, se vozilo premakne za vAt v smeri
trenutne orientacije.

2.2.7 Vecsmerni pogon

V predhodno opisanih kinemati¢nih modelih so bila uporabljena preprosta kolesa,
ki se lahko vrtijo (kotalijo) le v smeri njihove orientacije (npr. diferencialni
pogon). Tovrstna preprosta kolesa imajo samo eno mozno smer kotaljenja. Da
omogoc¢imo vecsmerno kotaljenje, potrebujemo bolj kompleksno konstrukcijo
koles. Primer takega kolesa je kolo Mecanum ali $vedsko kolo (slika 2.9), ki ima
po obodu razvrscéenih vec¢ valjckov. Osi pasivnih valjckov niso vzporedne z osjo
glavnega kolesa, ampak so obi¢ajno pod kotom v = 45°. To omogoca razli¢ne
smeri gibanja, ki izhajajo iz poljubne kombinacije smeri vrtenja glavnega kolesa
in pasivnih valjckov.

Drug primer kompleksnega kolesa je kolo omni, ki omogoca veésmerno gibanje,

podobno kot kolo Mecanum. Kolo omni (slika 2.10) ima na svojem obodu
namescene pasivne valjcke, katerih os je pravokotna glede na os kolesa.
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Slika 2.9: Kolo Mecanum z valjcki, namescenimi po obodu kolesa. Vsak valjéek
ima os vrtenja pod kotom 45° glede na ravnino koles in pod kotom 45° glede na
linijo, vzporedno z osjo kolesa.

Slika 2.10: Kolo omni s Sestimi “prostovrtecimi” se valjcki, ki so razporejeni po
obodu kolesa. Kolo se lahko vrti in bo¢no drsi (vrtijo se valjcki).

Kinematika Stirikolesnega vecsmernega pogona

Priljubljena stirikolesna platforma Mecanum, prikazana na sliki 2.11, ima kolesa
z levo in desnosucénimi valjcki, kjer sta diagonalni kolesi istega tipa. To omogoca
vozilu, da se premika v poljubni smeri s poljubno rotacijo, kar dosezemo s
spreminjanjem hitrosti in smeri vrtenja glavnih koles. Ce se vsa $tiri kolesa
vrtijo v isti smeri (z isto hitrostjo), se vozilo giblje naprej ali vzvratno. Ko
pa se glavni kolesi na eni strani platforme vrtijo v nasprotni smeri kot kolesi
na drugi strani platforme, bo le-ta krozila. Bo¢no gibanje platforme dosezemo
tako, da se kolesi na eni diagonali vrtijo v nasprotni smeri kot kolesi na drugi
diagonali. Kombinacija opisanih gibanj omogoca gibanje platforme v poljubni
smeri s poljubno rotacijo.

Inverzno notranjo kinematiko stirikolesnega pogona Mecanum na sliki 2.12 lahko
zapiSemo na naslednji nac¢in. Hitrost sprednjega kolesa (v koordinatnem sistemu
robota) pridobimo iz hitrosti glavnega kolesa v () in hitrosti pasivnih valjckov
vgr(t). V nadaljevanju bomo izpustili zapis s ¢asovno odvisnostjo, da dobimo bolj
kompaktne in enostavne enacbe (npr. vy (t) = v1). Skupna hitrost koles v smereh
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Slika 2.11: Osnovne smeri gibanja ve¢smernega pogona s stirimi kolesi Mecanum,
ki se lahko vrtijo naprej ali nazaj

VA

Slika 2.12: Stirikolesna platforma Mecanum

T 0 Yy, v koordinatnem sistemu robota je vm1, = v1 +vrcos T = vy + % in
Um1ly = VRSN § = ”—\/%, od koder pridobimo hitrost (sprednjega) glavnega kolesa
V1 = Umiz — Umly. Hitrost sprednjega kolesa v koordinatnem sistemu robota
lahko izrazimo tudi s translacijsko hitrostjo robota v,, = /22, + 2, in njegovo
kotno hitrostjo ¢ kot vp14 = &, — @d In U1y = Ym + @l (pomen razdalj d in [ je
mogoce razbrati iz slike 2.12). Iz slednjih relacij lahko izrazimo hitrost glavnega
kolesa s hitrostjo robota kot vy = @, — ¥m — (I + d)¢. Podobne enacbe lahko

zapisemo za vg, vs in vy. Torej je inverzna kinematika v lokalnih koordinatah

v 1 -1 —l—d] ¢
Tm
Vo 11 —1—d||”
_ . 2.20
s 1 -1 I+d]| |7 (2.20)
s 1 1 I+d]|L?

ki jo lahko zapisemo v matriéni obliki kot v = J ¢, kjer je v = [v1, va, vz, v4]T
in g, = [Zm, Ym, ¢

Za izracun inverzne kinematike v globalnih koordinatah moramo obravnavati
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rotacijsko matriko Ré, ki predstavlja orientacijo lokalnih koordinat glede na
globalne (g,, = RLq)

cosp singp 0
Ré = |—sinp cosp O
0 0 1

in jo upostevamo kot v = JRéq.

Iz notranje inverzne kinematike v = Jg,, (2.20) dobimo direktno notranjo
kinematiko ¢,, = Jtv, kjer je JT = (JTJ)_1 JT psevdoinverz matrike J.
Direktno notranjo kinematiko platforme Mecanum s stirimi kolesi zapisemo kot

][0 1 1 1™

gml==1-1 1 -1 1 ||7
4 v

P —1 —1 1 1 3

¥ (+d) @) U+d) D] |y,

. . . . . . T
Direktno kinematko v globalnih koordinatah pa dobimo z ¢ = (Ré) Jtv.

Kinematika trikolesnega veCsmernega pogona

Na sliki 2.13 je prikazana priljubljena ve¢smerna konfiguracija za trikolesni pogon.
Njegovo inverzno kinematiko (v globalnih koordinatah) dobimo z upostevanjem

VA

»{’1 4=90°
T\
TARNGES .
0

E=l "

Slika 2.13: Trikolesni veésmerni pogon (fy = 120°, 3 = 240°)

\4

translacijske hitrosti robota v = y/42? + 32 in njegove kotne hitrosti ¢. Hitrost
prvega kolesa vy = vi¢ + vy, je sestavljena iz translacije viy = —&sin p + ¢ cos ¢
in orientacije vy, = R¢. Torej je skupna hitrost prvega kolesa enaka v; =
—& sin ¢~y cos ¢+ Ry. Podobno je ob upostevanju kota (v globalnih koordinatah)
drugega kolesa ¢+65 njegova hitrost enaka vo = —& sin(p+62)+y cos(p+62)+ Rp;
hitrost tretjega kolesa pa je vs = —i sin(¢ + 63) + ¢ cos(p + 03) + Rp. Inverzna
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kinematika trikolesnega pogona v globalnih koordinatah je

v1 —sin g cos ¢ Rl |z
va| = |—sin(p+602) cos(p+62) R| |y (2.21)
U3 —sin(p +63) cos(p+6s) R| |¢

kar zapiSemo v matri¢ni obliki kot v = Jq. Vcasih je bolj priro¢no voditi robota
v njegovih lokalnih koordinatah, ki jih pridobimo z upostevanjem transformacije
rotacije v = J (Ré)T dm

Direktno kinematiko v globalnih koordinatah dobimo s pomocjo inverzne kine-
matike (2.21) kot ¢ = Swv, kjer je § = J 1

z —sinf; —sin(f; +02) —sin(f +03)| |v1
y| == | cosb cos(f + 0) cos(61 + 63) Vo
. 3 1 1 1

¢ R R 2R vs

2.2.8 Gosenicni pogon

Gibanje goseni¢nega pogona (slika 2.14) lahko pribliZzno opiSemo s kinematiko
diferencialnega pogona

z(t) cos(t) 0
i) = [sine®) 0 L((?)]
o(t) 0 1

Diferencialni pogon predpostavlja idealno kotaljenje koles s tockastim dotikom
kolesa in podlage, kar pa ne drzi v primeru gosenicnega pogona. Goseni¢ni pogon
ima vecjo kontaktno povrsino med kolesi in tlemi, torej morajo za spremembo
smeri gibanja gosenice (oz. kolesa) drseti. To jim omogoca premikanje po
zahtevnejsem terenu, kjer so ostala kolesna vozila manj uspesna. Koeficient zdrsa

Slika 2.14: Goseni¢ni pogon

med gosenicami in podlago ni konstanten, saj je odvisen od kontakta s tlemi oz.
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vrste podlage. Zato je odometrija (direktna kinematika) Se manj zanesljiva za
ocenjevanje lege robota v primerjavi z diferencialnim pogonom.

2.3 Omejitve gibanja

Pri gibanju kolesnega mobilnega robota se sre¢ujemo z dinamic¢nimi in kinematic-
nimi omejitvami. Dinamiéne omejitve izvirajo iz dinami¢nega modela sistema,
ki ima omejeno odzivnost (pospesSevanje) zaradi svoje vztrajnosti (mase) in ome-
jitev motornega pogona (npr. omejen navor motorja zaradi njegovih zmogljivosti
ali preprefevanja podrsavanja koles). Kinemati¢ne omejitve pa izvirajo iz
konstrukcije robota in njegovega kinemati¢nega modela. Zanimive so predvsem
kinematic¢ne omejitve, ki jih lo¢imo na holonomic¢ne in neholonomicne omejitve.
Neholonomiéne omejitve omejujejo mozne smeri premika mobilnega robota
[5]. Holonomiéne omejitve pa se nanasajo le na dimenzijo opisa sistema s
posplosenimi koordinatami, zato lahko z njihovo pomocjo odstranimo odvecne
posplosene koordinate, ki so odvisne od drugih.

Nek sistem je holonomicen, ¢e nima kinemati¢nih omejitev ali pa vsebuje samo
holonomicne omejitve, zato nima omejitev v smeri gibanja. Neholonomic¢ni
sistem pa vsebuje neholonomicne omejitve, torej se ne more premikati v poljubni
smeri (npr. avtomobil se lahko premika le v smeri vrtenja koles, ne more pa
se premikati bo¢no). Za holonomié¢ne sisteme lahko dolo¢imo nabor neodvisnih
posplosenih koordinat, ki doloc¢ajo prostor, v katerem so mozne poljubne smeri
gibanja. V neholonomic¢nih sistemih temu ni tako, saj gibanje v vsakem trenutku
ni poljubno, temvec je dovoljeno le gibanje, ki ustreza neholonomiénim omejitvam.
Za holonomic¢ne sisteme torej velja, da so njihova stanja neposredno odvisna
od konfiguracije notranjih spremenljivk (zasuki koles, koti sklepov). V primeru
neholonomicnih sistemov to ne drzi, saj vrnitev notranjih spremenljivk v zacetno
konfiguracijo ne zagotavlja tudi vrnitve sistema v zaetno stanje (pozicijo in
orientacijo). Posploseno lahko recemo, da je izhodno stanje neholonomi¢nih
sistemov odvisno od opravljene poti (zaporedje notranjih spremenljivk).

V nadaljevanju bomo obravnavali mehanske sisteme, katerih konfiguracijo (lega
sistema v okolju in odnosi med deli sistema) lahko opisemo z vektorjem posplose-
nih koordinat g. Pri podani trajektoriji g(t) dolo¢imo vektor posplosenih hitrosti
q(t).

Holonomic¢ne omejitve izrazimo v obliki enacb, ki povezujejo posplosene koordi-
nate. Te enacbe lahko uporabimo za izloc¢itev nekaterih posplosenih spremenljivk,
da dobimo manjsi prostor posplosenih spremenljivk, potrebnih za opis sistema.
Neholonomic¢ne omejitve pa ne zmanjsujejo dimenzije prostora posplosenih spre-
menljivk temvec¢ samo dimenzije prostora moznih posplosenih hitrosti. Neholono-
micne omejitve torej vplivajo na problem nacrtovanja poti. V zvezi z njimi se
pojavljajo naslednja vprasanja:
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o Kako ugotoviti, ali je kinematicna omejitev neholonomicna? Ce je omejitev
integrabilna, se lahko enacba, ki vsebuje hitrostne parametre (odvode
posplosenih koordinat), prevede v holonomi¢no omejitev.

o Ali neholonomicna omejitev omejuje mnozico dostopnih konfiguracij (tj. lege
sistema)? Z uporabo orodij teorije vodenja lahko pridemo do preprostih
pogojev, pod katerimi neholonomi¢ne omejitve ne vplivajo na obmocje
dosegljivih leg.

e Kako zgraditi generator izvedljivih oz. moznih poti za robota z neholono-
micnimi omejitvamsi?

2.3.1 Holonomicne omejitve

Holonomicne omejitve so vezane na posploSene koordinate (stanja) sistema. Za
sistem z n posploSenimi koordinatami q = [g1, ..., ¢,]? je holonomi¢na omejitev
izrazena kot

fl@)=flar,....qn) =0 (2.22)

kjer je f gladka funkcija z zveznimi odvodi. Ta omejitev dolo¢a podmnozico vseh
moznih konfiguracij v posplosenih koordinatah (delovni prostor), ki zadostujejo
omejitvi (2.22) (zmanjsa Stevilo prostostnih stopenj sistema). Z upostevanjem
(2.22) lahko namre¢ izlo¢imo dolo¢eno posploseno koordinato (izrazimo jo lahko
z n — 1 ostalimi koordinatami).

V splos$nem imamo lahko m holonomi¢nih omejitev (m < n). Ce so omejitve
linearno neodvisne, dolo¢ajo (n — m)—-dimenzionalni “podprostor”, ki je dejanski

delovni prostor sistema (sistem ima n — m prostostnih stopenj).

2.3.2 Neholonomic¢ne omejitve

Neholonomic¢ne omejitve omejujejo mozne hitrosti ali smeri gibanja sistema.

Zapisemo jih v obliki

fla,q4) = f(q1,-- - qn: g1, 4n) =0 (2.23)

kjer je f gladka funkcija z zveznimi odvodi in ¢ vektor hitrosti sistema v posplo-
Senih koordinatah. V primeru, da sistem nima omejitev (2.23), se lahko giblje v
poljubnih smereh.

Kinematiéna omejitev (2.23) je holonomic¢na, ¢e je integrabilna, kar pomeni, da
lahko hitrosti ¢1, . .., ¢, izlo¢imo iz enacbe (2.23) in zapiSemo omejitev v obliki
(2.22). Ce omejitev (2.23) ni integrabilna, je neholonomic¢na.

Ce obstaja m linearno neodvisnih neholonomiénih omejitev v obliki (2.23), je
prostor dostopnih hitrosti (n —m)—-dimenzionalen. Neholonomi¢na omejitev torej
omeji dovoljene hitrosti sistema. Za primer lahko vzamemo dvokolesnega robota
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(invalidski vozicek), ki se lahko premika v smeri trenutne orientacije koles, v
bocni smeri (pravokotno na kolesa) pa ne.

Predpostavimo, da so omejitve linearne v odvisnosti od ¢ = [¢1, ..., dn)]T. Potem
lahko (2.23) zapiSemo kot

flg.q) =a"(q)g = |ai(q) ... an(q)} Sl =0

kjer je a(q) vektor ¢lenov omejitve (nedovoljena smer pomika). V kolikor imamo
m neholonomicénih omejitev, lahko njihove ¢lene zapisemo v matriko omejitev

ai(q)

in vse neholonomicne omejitve sistema podamo v matri¢ni obliki
Alq)g=0

Nadalje dolo¢imo matriko dosegljivih smeri gibanja sistema (m omejitev doloca
n — m dosegljivih smeri)

Sla) = [s1a) s2a) - s0ml)

Ta matrika podaja kinemati¢ni model sistema, za katerega velja

q(t) = S(q)v(t) (2.24)

kjer je v(t) regulirni vektor (glejte kinamatiéni model (2.2)). Produkt matrike
omejitev A in kinemati¢ne matrike S je ni¢elna matrika

AS=0

2.3.3 Integrabilnost omejitev

Da ugotovimo, ali je doloCena omejitev neholonomicna (oz. hitrostna), moramo
b )
preveriti, ¢e jo je mogoce integrirati in s tem prevesti v holonomic¢no omejitev. V

kolikor to ni mogoce, je omejitev neholonomicna.

2.3.4 Vektorska polja, porazdelitev, Liejevi okle-

paji

V trenutnem casu t in stanju ¢ dobimo mozne smeri premikov iz doloc¢ene tocke
prostora g z linearno kombinacijo vektorskih polj v matriki dosegljivih smeri S.
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Porazdelitev tako podaja dosegljiv “podprostor” iz doloc¢ene tocke prostora q s
premiki, ki predstavljajo linearno kombinacijo vektorskih polj (stolpci matrike .S).
Vektorska polja so odvodi posplosenih koordinat, torej predstavljajo hitrosti
ali smeri moznih premikov v prostoru. Vektorsko polje je zvezno odvedljiva
preslikava, ki vsaki tocki prostora priredi natanko doloc¢en vektor. Prikaz dolocitve
dosegljivih vektorskih polj je podan v primeru 2.1.

Primer 2.1

Za robota z diferencialnim pogonom s kinematiénim modelom (2.2) dolodite
dosegljive hitrosti (smeri premikov) in omejitve gibanja.

Resitev
Vektorski polji dosegljivih hitrosti (smeri premikov) sta

cos ¢ 0
s1(q) = |singp s2(g) = |0 (2.25)
0 1

kar pomeni, da so mozne smeri premika v danem trenutku, ko se nahajamo v
legi q, podane z linearno kombinacijo

q = u151(q) + u252(q) (2.26)

kjer sta up in us poljubni realni stevili, ki predstavljata regulirni veli¢ini. Enacba
(2.26) je le preurejen zapis kinemati¢nega modela (2.2).

V kolikor vektorskih polj s; nimamo podanih, jih lahko dolo¢imo iz znanih
omejitev a;, kjer upostevamo ortogonalnost smeri omejitev in smeri gibanja,
torej s;La;. 1z slike 2.3 lahko dolo¢imo omejitev s smerjo, v kateri se robot ne
more premikati, to je bo¢no na kolesa. Edina omejitev je

—sine
a(g) = | cosyp
0

kar je ravno pravokotno na vektor moznega premika s;(q) (translacijski premik
v smeri kotaljenja koles) in na vektor si(q) (rotacija okoli osi pravokotne na

ravnino gibanja).

V kolikor porazdelitev dolo¢enih vektorskih polj definira celoten prostor, je
vsebovana (angl. involutive). Ce osnovna porazdelitev ni vsebovana, lahko
dolo¢imo mnozico novih vektorskih polj, ki so linearno neodvisna od vektorskih
polj osnovne porazdelitve. Nova vektorska polja (smeri pomika) lahko dobimo

s kon¢nim Stevilom preklopov osnovnih smeri pomika, kjer dolzino pomikov
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limitiramo proti 0. Nove smeri lahko dolo¢imo s pomocéjo Liejevih oklepajev, ki
predstavljajo operacijo nad dvema vektorskima poljema, kot bo kasneje podano
z enacbo (2.28). Prakti¢en primer uporabe je paralelno parkiranje avtomobila
(tudi vozila z diferencialnim pogonom), kjer ni moZzen neposreden bo¢ni premik
na parkirno mesto zaradi neholonomicénih omejitev sistema (kolesa ne drsijo
bo¢no). Kljub temu pa lahko dosezemo premik v stran z zaporedno kombinacijo
gibanja naprej in nazaj ter zasukov, kar prikazuje primer 2.2.

Primer 2.2

Predstavite manever za paralelno parkiranje vozila z diferencialnim pogonom.

Resitev

Z uporabo osnovnih smeri pomika, definiranih z vektorskimi polji s1(q) in s2(q)
(glejte enacbo (2.25)), in zacetnim stanjem (lega vozila) go = g(0) doloéimo novo
stanje sistema. Zaénemo v stanju go = q(0) in se za kratek ¢as e gibljemo v
smeri s1, nato v smeri s, za Cas &, nato v smeri —s; za Cas € in na koncu v
smeri —S9 za Cas €, kjer je dosezena konc¢na lega vozila. To lahko matematicno
zapisemo kot

q(de) = ¢ (62 (62 (42" (90))))

kar predstavlja nelinearno diferencialno enacbo, katere resitev (integracija ki-
nematiénega modela) lahko aproksimiramo z razvojem v Taylerjevo vrsto (za
podrobnosti glejte [1]) kot

qlde) = qo + 2 (58;31(«10) - %9(1182(110)) Lo (2.27)

kjer so parcialni odvodi ovrednoteni v qo, O(c®) pa predstavlja prispevek vigjih
odvodov, ki je za kratke Case € zanemarljiv. Dobljeni kon¢ni premik manevra

2

parkiranja je tako dolzine € v smeri vektorja, ki je podan v oklepaju in predstavlja

operacijo Liejev oklepaj, definiran v enacbi (2.28).

Manever paralelnega parkiranja lahko predstavimo z eksperimentom. Predpo-
stavimo, da je zacetna lega robota qo = [0, 0, 0]7. V prvem koraku izvajanja
manevra pridemo v tocko

0 cos( €
q1 =qo+¢es1 = |0 +e|sin0| = [0
0 0 0

v drugem koraku izvedemo rotacijo

€ 0
qg2=q1tesa = |0| +e|0] =
0 1

o O M
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v tretjem koraku imamo translacijo v negativni smeri

€ cos e € — ECOSE
g3 =q2—¢c81 = |0| —e |sine| = | —esine
€ 0 €

in v zadnjem koraku rotacijo v negativni smeri

€ —ECOSE 0 € —ECOSE
Qs =Qq3 —€S2 = | —esine | —e [0 = | —esine
€ 1 0

Na sliki 2.15 so prikazani izracunani premiki in vmesne tocke.

AP
q 3
o)
2
E — & [Sl,sz]
S | y
€. 2 g

9

X

V\<

Slika 2.15: Manever paralelnega parkiranja v delovnem prostoru (levo), kjer je

orientacija predstavljena z osjo z, in pogled na manever od zgoraj (desno)

Opazimo lahko, da konéni premik v stran ni neposredno izvedljiv (v enem

koraku) z moznimi smermi gibanja s; in 89, je pa izvedljiv v ve¢ korakih z njuno

kombinacijo. Dobljen konéni premik ni toéno v bo¢ni smeri zaradi koncnega casa

e in ¢lena O(g3) v relaciji (2.27). V kolikor so premiki majhni s kratkim ¢asom

trajanja € — 0, je dobljen premik to¢no v stran, torej je koncna lega

0
qqs = |—¢
0

2

Kot smo videli v primeru 2.2, lahko s pomoc¢jo Liejevih oklepajev dolo¢imo nove

smeri gibanja, ki jih osnovna porazdelitev ne dovoljuje. Te nove smeri lahko

dosezemo s kon¢nim stevilom neskonc¢no kratkih premikov v smereh vektorskih
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polj v osnovni porazdelitvi. Liejevi oklepaji so operacija nad vektorskima poljema
i(q) in j(q), katere rezultat je novo vektorsko polje [, j]. Definiramo ga kot

a3 01
1, ==—1— —3 2.28
[4,9] = 3 o’ (2.28)
kjer sta
Oiy  Oiy Oy
8ql 3112 U 8Qn
. Qi Oip Oig.
0t |9qi 9q: " Oqn
9q P o
Oin  Oip Oiy.
dq1  9dq2 ' 0qn
o5 941 9j1.
dq1  9dq2 ' Oqn
. Oj2  9j2 972
93 _ |%ar 9g: " Oqn
dq : : :
OJn  OJn Ojn
dq1  O0gq2 T 0qn

Porazdelitev je vsebovana, ¢e z Liejevimi oklepaji ne moremo pridobiti novih
linearno neodvisnih vektorskih polj. Vsebovana porazdelitev je zaprta znotraj
Liejevih oklepajev [6] in sistem je popolnoma holonomicen, torej nima omejitev gi-
banja ali pa so vse omejitve holonomic¢ne. Ta ugotovitev izhaja iz Frobeniusovega
teorema [7]: Ce je osnovna porazdelitev vsebovana, je sistem holonomicen in vse
morebitne omejitve sistema so integrabilne. Predpostavimo, da je iz m omejitev k
omejitev holonomi¢nih in (m — k) neholonomi¢nih. Glede na Frobeniusov teorem

obstajajo tri moznosti za k [8]:

e k = m: dimenzija vsebovane porazdelitve (Stevilo linearno neodvisnih

vektorskih polj) je enaka dimenziji osnovne porazdelitve (n —m).

e 0 < k < m: imamo k integrabilnih omejitev, torej lahko iz opisa sistema
izlo¢imo k posplosenih koordinat. V tem primeru je dimenzija vsebovane

porazdelitve enaka n — k.

e k = 0: dimenzija vsebovane porazdelitve je n (dimenzija prostora) in vse

omejitve so neholonomicne.

Primer 2.3

Dolocite omejitve gibanja in smeri moznih premikov za primer enojnega kolesa,
ki se kotali po podlagi. Dolocite stevilo prostostnih stopenj sistema ter Stevilo in

vrsto njegovih omejitev.
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Resitev

Kinematika enojnega kolesa je enaka kot pri diferencialnem pogonu (kolesi damo
skupaj), prikazan na sliki 2.3 s kinemati¢nim modelom 2.2. Omejene in mozne
smeri gibanja smo ze dolo¢ili v primeru 2.1. Imamo samo eno hitrostno omejitev,
ki ne omejuje dosegljivosti leg g v prostoru, zato ima sistem tri prostostne
stopnje. Da je omejitev res hitrostna (neholonomi¢na), lahko pokazemo z uporabo
Liejevih oklepajev in Frobeniusovega teorema. Najprej dolo¢imo Liejev oklepaj
za dosegljivi vektorski polji s1 in 8o (2.25)

s [s1, s2] 8325 aSls
3=[81,82| = 81— 7952
oq 9q
0 0 0 cos 0 0 —sing| |0
=10 0 0] [sing| —1]0 0 cosp 0
000 0 0 0 0 1
_sm<p
= [—cosp
| 0

Dobimo novo smer moznega pomika, ki je linearno neodvisna od vektorskih polj
s1 in so ter je zato ni v osnovni porazdelitvi. Posledi¢no lahko sklepamo, da je
omejitev neholonomicna, dimenzija vsebovane porazdelitve pa je 3 (sistem ima 3
prostostne stopnje), kar je enako dimenziji sistema. Hkrati z dodatnimi Liejevimi
oklepaji ([s1, s3], [S2, 83]) ni mozno dolo¢iti novih linearno neodvisnih vektorskih
polj.
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Primer 2.4

Dolocite omejitve gibanja in smeri moznih premikov za primer avtomobila brez
krmilnega mehanizma (kolesa so fiksno vpeta), prikazan na sliki 2.16. Dolo¢ite
Stevilo in vrsto omejitev ter stevilo prostostnih stopenj sistema.

Y,

4

Yo

Slika 2.16: Avtomobil brez krmilnega mehanizma
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Resitev

Vozilo se ne more premikati bo¢no niti vrteti (njegova orientacija ¢ se ne spremi-
nja), torej imamo naslednje smeri omejitev gibanja
sin 0
al(Q) = | —cosp ax(g)= |0
0 1
in omejitvi gibanja
al(q) ¢ =ising —gcosp =0
a3(q) 4=¢ =0

ki sta integrabilni, kar lahko preprosto pokazemo s tem, da ju integriramo

¥ = %o
(2 — o) sing — (y — o) cosp = 0

Vorzilo se lahko premika le v smeri vektorskega polja

cos ¢
S = |singp
0

Ker sta obe omejitvi holonomicni, je porazdelitev vektorskega polja s; vsebovana,
kar pomeni, da je sistem holonomicen in ima eno prostostno stopnjo. Z Liejevimi
oklepaji ne moremo doloéiti novih vektorskih polj (smeri premikov), saj imamo

le eno vektorsko polje moznega premika.

Primer 2.5

V programskem okolju Matlab izvedite simulacijo platforme z diferencialnim
pogonom. Parametri vozila so: racunski korak Ty = 0,033 s, cas simulacije 10,
polmer kolesa r = 0,04 m, razdalja med kolesoma L = 0,08 m.

Naloge:

1. Analiti¢no izracunajte in izvedite simulacijo poti, ki jo opravi robot, ¢e je
zadetno stanje q(0) = [z,y, ¢]T = [0, —0,5, 0]7 in so vhodi robota (v treh

primerih):

e v(t) =0,5m/s, w(t) = Orad/s;
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e v(t) =1m/s, w(t) = 2rad/s;
« kotni hitrosti koles wy,(t) = 24rad/s, wg(t) = 16 2.

Kaksni sta kotni hitrosti koles? Ali sta izracunana in simulirana pot enaki?
Zakaj ne?

. Z uporabo odometrije izvedite lokalizacijo vozila pri konstantnih vhodnih

hitrostih v(¢) = 0,5m/s, w(t) = 1rad/s. Primerjajte ocenjeno in simulirano
pot robota. Dobljene rezultate ovrednotite tudi v primeru idealne situacije,
tj. brez Suma in pogreska modeliranja.

Izvedite lokalizacijo iz drugega vprasanja z upostevanjem zacetnega po-
greska stanja. Predpostavite, da je pravo zacetno stanje neznano, in za
lokalizacijo uporabite drugacna zacetna stanja kot pri simulaciji.

Izberite si pot, sestavljeno iz dveh ali treh daljic, kjer zacetna tocka sovpada
z zacetno lego robota. Izracunajte potrebno zaporedje vhodov za voznjo
robota po tej poti (Cas simulacije je 10 sekund).

Izberite poljubno trajektorijo, definirano kot ¢asovna parametri¢na funkcija
(z(t) = f(t) in y(t) = g(t), f in g sta gladki funkciji). Izracunajte potrebne
vhode za sledenje predpisani trajektoriji. Kaj se zgodi, ¢e na zacetku robot
ni na tej poti?

Simulirajte manever paralelnega parkiranja, opisan v primeru 2.2. Izberite

ustrezen € ter konstantni hitrosti v in w.

Za dano zadetno stanje q(0) = [0, —0,5, 0]7 izracunajte kinemati¢no
matriko S in matriko omejitev A.

Resitev

Osnovna koda za simulacijo diferencialnega pogona je podana v programu 2.1.

Kodo lahko priredimo in dobimo Zelene resitve.

Program 2.1

./src/mdl/example_diff_drive.m

r
L

Ts

t

0.04; % Radij kolesa

0.08; % DolZzina osi med kolesoma
0.03; % Racunski korak

0:Ts:10; % Cas simulacije

[4; 0.5; pi/6]; % ZacCetna lega

for k = 1:length(t)

wL
wR

12; 7 Hitrost levega kolesa
12.5; 7 Hitrost desnega kolesa
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5 end

v
w

Modeliranje gibanja mobilnih sistemov

r/2*x(wR+wL); % Hitrost robota
r/L*(wR-wL); % Kotna hitrost robota

dq = [v*cos(q(3)+Ts*w/2); v*sin(q(3)+Ts*w/2); wl;

q

= q + Ts*dq; % Integracija

q(3) = wrapToPi(q(3)); % Zapis kota v obmoije [-pi, pil

Primer 2.6

V programskem okolju Matlab izvedite simulacijo platforme s trikolesnim po-

gonom na zadnjih kolesih. Parametri vozila so: racunski korak Ty = 0,033s,

cas simulacije 10s, polmer kolesa r = 0,2 m, razdalja med zadnjima kolesoma

L = 0,08 m ter razdalja med sprednjim in zadnjima kolesoma D = 0,07 m.

Naloge:

. Analiti¢no izraCunajte in izvedite simulacijo poti, ki jo opravi robot, ce je

zacetno stanje q(0) = [z, y, |7 = [0, —0,5, 0]7 in so vhodi robota (v
dveh primerih):
e v(t)=0,5m/s, a(t) =0

e v(t)=1m/s, aft) = §

Kaksne so kotne hitrosti koles? Ali sta izracunana in simulirana pot enaki?
Zakaj ne?

. Z uporabo odometrije izvedite lokalizacijo vozila pri konstantnih vhodih

v(t) = 0,5m/s, a(t) = §. Primerjajte ocenjeno in simulirano pot robota.
Dobljene rezultate ovrednotite tudi v primeru idealne situacije, tj. brez
Suma in pogreska modeliranja.

Izvedite lokalizacijo iz druge naloge z upostevanjem zacCetnega pogreska
stanja. Predpostavite, da je pravo zacetno stanje neznano, in za lokalizacijo
uporabite drugacna zacetna stanja kot pri simulaciji.

Izberite si pot, sestavljeno iz dveh ali treh daljic, kjer zacetna tocka sovpada
z zacetno lego robota. Izracunajte potrebno zaporedje vhodov za voznjo
robota po tej poti (¢as simulacije je 10 sekund).

Izberite poljubno trajektorijo, definirano kot ¢asovno parametri¢na funkcija
(z(t) = f(t) in y(t) = g(t), f in g sta gladki funkciji). Izracunajte potrebne
vhode za sledenje predpisani trajektoriji. Kaj se zgodi, ¢e na zacetku robot
ni na tej poti?
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Resitev

Osnovna koda za simulacijo trikolesnega pogona je podana v programu 2.2. Kodo
lahko priredimo in dobimo Zelene resitve.

Program 2.2
./src/mdl/example_tricycle_drive.m

D = 0.07; % Razdalja med prednjim kolesom in zadnjo osjo
Ts = 0.03; % Racdunski korak

t = 0:Ts:10; % Cas simulacije

q = [4; 0.5; pi/6]; % Zaietna lega

for k = 1:length(t)
v = 0.5; % Hitrost robota
alpha = 0.04*(1+sin(k*Ts*pi/2)); % Orientacija prednjega kolesa
w = v/D*tan(alpha); % Kotna hitrost robota
dq = [v*cos(q(3)+Ts*w/2); vxsin(q(3)+Ts*w/2); wl;
q = q + Ts*dq; /% Integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmo&je [-pi, pil
end

2.3.5 Vodljivost kolesnih mobilnih robotov

Pred nacrtovanjem vodljivosti sistema se moramo vprasati: Ali lahko robot doseze
katerokoli tocko q v delovnem prostoru z izvajanjem svojih moznih manevrov?
Odgovor na vpraSanje je povezan z vodljivostjo sistema. Ce je sistem vodljiv,
lahko doseze poljubno konfiguracijo g s kombiniranjem razpolozljivih manevrov
gibanja.

Ce ima robot kinemati¢ne omejitve, jih moramo analizirati in ugotoviti, ali
vplivajo na vodljivost sistema. Robot z neholonomi¢nimi omejitvami se lahko
premika le v svojih osnovnih smereh gibanja (osnovni manevri, kot sta voznja
naravnost in krozenje). Vendar lahko tak robot z zdruzevanjem osnovnih mane-
vrov Se vedno doseze Zeleno konfiguracijo q. Nova smer gibanja se razlikuje od
vsake osnovne smeri ali linearne kombinacije osnovnih smeri, kot je prikazano v
(2.24). Vodljivost robota dolo¢imo z analizo vsebovane porazdelitve, pridobljene
z zaporednimi operacijami Liejevih oklepajev v osnovnih smereh gibanja (s1, s2,
83 itd.) na naslednji nacin ([7, 9-12])

{31; S2, 83, [31782}’ [81383]7 [82783]a-~~7 [317[81782H’ [813[81383H3"'}

Ce ima vsebovana porazdelitev rang n (n je dimenzija vektorja q), lahko robot v
delovnem prostoru doseze katerokoli tocko g in je zato vodljiv. Sledeca izjava
je znana kot Chowov izrek: Sistem je vodljiv, ce je rang njegove vsebovane
porazdelitve glede na Liejeve oklepaje enak dimenziji delovnega prostora. Torej
je robot vodljiv, ¢e so vse njegove omejitve neholonomic¢ne in je rang njegove
vsebovane porazdelitve enak n. Ta test vodljivosti je namenjen nelinearnim
sistemom, vendar ga je mozno uporabiti tudi za linearne sisteme ¢ = Aq + Bu,
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kjer sta osnovni vektorski polji s; = Aq in so = B. Izracun njegove vsebovane
porazdelitve vodi v Kalmanov test za vodljivost linearnih sistemov

rang | B AB A’B }:n

Vsebovano porazdelitev pridobimo z zaporednim izracunavanjem Liejevih okle-
pajev nad osnovnimi in predhodno dolo¢enimi novimi smermi gibanja. Stevilo
zaporednih stopenj (nivojev izra¢unov) doloca indeks tezavnosti manevriranja
kolesnega mobilnega robota [13]. Visji kot je ta indeks, ve¢ osnovnih manevrov
je potrebnih za doseg Zelene smeri gibanja.

Primer 2.7

Pokazite, da je diferencialni pogon vodljiv.

Resitev

Diferencialni pogon ima tri (n = 3) stanja ¢ = [z, v, ¢] ter dve osnovni smeri
gibanja s; in s
cos 0
s1(q) = |sing s2(q) = |0
0 1

Nova smer gibanja, pridobljena z Liejevim oklepajem, je

s [s1, S2] 8823 aSls
3 =1[81,82] = -—81— 582
dq dq
sin ¢
= |—cosgp
0]

7 izracunom Liejevih oklepajev iz poljubne kombinacije vektorskih polj s1, s
in s3 ne dobimo nove linearno neodvisne smeri gibanja, zato je porazdelitev
[s1, 82, 83] vsebovana (zaprta z Liejevimi oklepaji) in ima rang

rang {31 So 33} =n=3

torej je sistem vodljiv.

Primer 2.8

Dolocite omejitve gibanja in smeri moznih premikov za primer vozila (slika 2.17)
s pogonom na zadnjih kolesih. Vozilo upravljamo z obodno hitrostjo zadnjih
koles v in kotno hitrostjo krmilnega mehanizma ~.



2.8. Omejitve gibanja 47

Dolocite stevilo in vrsto omejitev, kinemati¢ni model ter Stevilo prostostnih
stopenj sistema. Ali je sistem vodljiv?

Y,

4

X

g

Slika 2.17: Vozilo s pogonom na zadnji osi, ki ga upravljamo s hitrostjo zadnjih
koles v in kotno hitrostjo krmilnega mehanizma ~

Resitev

Vozilo opisemo s §tirimi stanji q = [z, vy, ¢, a]T, saj sta regulirni veli¢ini hitrost
¢

v in kotna hitrost krmilnega mehanizma v. Cetrto stanje (o = [ dt) opisuje
0

trenutno stanje krmila.

Velja opomniti, da je kinematika obravnavanega vozila podobna kinematiki
kolesa z zadnjim pogonom (2.15), le da ima slednja samo tri stanja, saj je zasuk
krmilnega mehanizma ze dolo¢en z enim od izhodov (2.15).

Iz slike 2.17 vidimo, da se vozilo ne more premikati v smeri bo¢no na kolesa,
torej sta vektorja omejitev gibanja

sin sin(a + ¢)
—Ccos —cos(a + ¢)
a1(q) = 0 a2(q) = —d(cosa
0 0

Vektorski polji osnovnih smeri gibanja sta doloceni s smerjo kotaljenja zadnjih
koles (smer gibanja, ko je ¥ = 0 in konstanten zasuk krmilnega kolesa a) ter
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vrtenjem krmilnega kolesa (smer gibanja, ko je v = 0)

cos ¢ 0
sin 0
81 = 1 v SS9 =
s tana 0
0 1]
Kinematika vozila je podana z

cosp 0]

. v sinp 0f [v
q= [81 82] =11

¥ stana 0 |y

0 1]

kar je podobno kinematiki (2.15), le da imamo Se dodatno stanje « in vhod
v = .
Sistem je torej opisan s §tirimi stanji ter ima dve omejitvi in dva vhoda. Zelimo

imeti Stiri linearno neodvisne smeri gibanja s;. Dve Ze dolo¢a kinemati¢ni model,
zato poskusamo z Liejevimi oklepaji dolociti Se preostali dve

S3 = [81,82}

882 881
:Esl 8q82
[0 0 0 0] [ cose 0 0 —sing 0 0
10 0 0 0 sin 0 0 cosp 0 0
[0 0 0 0] |2tana 00 0 —L—|]|0
00 0 0 0 0 0 0 0 1
[0
a dc;sgoc
0
in
84:[81,83]
_383 631
_87[] 1= 6 3
(0 0 0 0 oS ¢ 0 0 —sing 0 0
10 0 0 0 sin ¢ 0 0 cosp 0 0
(0 0 0 FEsmal lliana 0 0 0 | | =
0 0 0 0 0 0 0 0 0 0
dciié“i]
CcOoS @
_ | dcos? «
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Vse stiri dobljene smeri s;, ¢ = 1,...,4 so linearno neodvisne, zato ima sistem

Stiri prostostne stopnje in obe omejitvi sta neholonomicni.

Rang vsebovane porazdelitve je 4, kar je enako Stevilu prostostnih stopenj sistema.
Vozilo je torej vodljivo.

2.4 Dinamic¢ni model mobilnega sistema

Z omejitvami

Kinemati¢ni model opisuje le stati¢no transformacijo hitrosti robota (psevdohitro-
sti) v osnovni koordinatni sistem, podan s posploSenimi koordinatami. Dinamicéni
model gibanja mehanskega sistema pa podaja dinamicne zakonitosti, kot je
gibanje sistema pod vplivom zunanjih sil in vztrajnosti sistema. Z uporabo
Lagrangeove formulacije, ki je Se posebej primerna za opis mehanskih sistemov
[14], lahko dolo¢imo dinami¢ni model sistema
Ci((;fv)_g]i—’—g;z—’—gk—’—Tdk:fk (2.29)
kjer indeks k opisuje posplosene koordinate g (k=1,...,n). Z L je oznacena
razlika med kineti¢no in potencialno energijo sistema, imenovana Lagrangian,
P je moc¢nostna funkcija zaradi trenja in dusenja v sistemu, gi oznacuje sile
zaradi gravitacije, 74, predstavlja vse neznane motnje, ki jih z enac¢bo 2.29 nismo
zajeli v modelu, fi pa je posploSena sila (zunanji vplivi na sistem), povezana s
posploseno koordinato gi. Enacba (2.29) velja samo za sisteme brez omejitev
gibanja, torej za sisteme, ki imajo n prostostnih stopenj in so brez hitrostnih
omejitev. Za sisteme s kinemati¢nimi omejitvami lahko zapisemo dinamicéne
enacbe gibanja z uporabo Lagrangeovih multiplikatorjev [15]

m
% (gqi) —%+%+%+m ka—;&‘ajk (2.30)
kjer je m Stevilo linearno neodvisnih omejitev gibanja, A\; Lagrangeov multipli-
kator, povezan z j-to omejitveno enacbo, ajr (j =1,...,m, k =1,...,n) pa
koeficienti omejitev.

Koné¢ni nabor enacb vsebuje n + m diferencialnih in algebrajskih enacb (n
Lagrangeovih enacb in m omejitvenih enacb) z n + m neznankami (n posplosenih
koordinat g in m Lagrangeovih multiplikatorjev A;). Enacbe so diferencialne v
smislu posplosenih koordinat in algebrajske glede na Lagrangeove multiplikatorje.

Splosni dinami¢ni model (2.30) mehanskega sistema z omejitvami lahko zapiSemo

v matricni obliki

M(q)§+ V(q,q) + F(q4) + G(q) + 7a = E(q)u — A" (@)A (2.31)
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Tabela 2.1: Pomen matrik v dinami¢nem modelu (2.31)

Oznaka  Opis

q vektor posploSenih koordinat (dimenzije n x 1)
M (q) pozitivno definitna matrika mas in vztrajnosti
(dimenzije n X n)
V(q,q) vektor Coriolisovih in centrifugalnih ¢lenov (dimenzije n x 1)

F(q) vektor sil trenja in dusenja (dimenzije n x 1)
G(q) vektor gravitacijskih sil in navorov (dimenzije n x 1)
T vektor neznanih motenj, vklju¢no z dinamiko,

ki ni zajeta v modelu (dimenzije n x 1)

E(q) matrika preslikav aktuatorskega prostora v prostor posplosenih
spremenljivk (dimenzije n X r)

U vektor vhodov (dimenzije r x 1)

AT(q) matrika kinematiénih omejitev (dimenzije m x n)

A vektor omejitvenih sil (Lagrangeovi multiplikatorji)
(dimenzije m x 1)

kjer je pomen matrik opisan v tabeli 2.1.

2.4.1 Predstavitev dinamicnega modela mobilnega
sistema z omejitvami v prostoru stanj

V nadaljevanju bomo izpeljali dinami¢ni model sistema z m kinemati¢nimi

omejitvami v prostoru stanj. Nadalje bomo izvedli delno linearizacijo sistema,

opisanega v prostoru stanj, z vpeljavo nelinearne povratnozanéne relacije [6].
Dobljeni sistem bomo zapisali kot kinemati¢ni model drugega reda.

Dinamicni sistem z m kinemati¢nimi omejitvami zapisemo kot
M(q)g +V(q,9) + F(q) + G(q) = E(q)u — AT (g)x (2:32)

kjer smo vpliv neznanih motenj na sistem 74 iz (2.31) zanemarili. Kinemati¢ni
model gibanja pa podaja enacba

q=S(q)v(t) (2.33)

Dinamic¢ni model (2.32) in kinemati¢ni model (2.33) lahko zdruzimo v enoten zapis
v prostoru stanj. Poenoteno obravnavo neholonomicnih in holonomic¢nih omejitev
lahko najdemo v [16], kjer so holonomi¢ne omejitve izrazene v diferencialni obliki
(s hitrostmi) kot neholonomicne.

Zaradi enostavnosti zapisa bomo v nadaljevanju izpustili odvisnost od g. Ce
odvajamo relacijo (2.33) po ¢asu, dobimo

G=Sv+Sv
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Dobljen izraz vstavimo v (2.32) ter zamenjamo posploSene koordinate q s psev-
dohitrostmi v. Tako dobimo

MSv+MSv+V +F+G=FEu— AT\ (2.34)

Prisotnost Lagrangeovih multiplikatorjev A zaradi omejitev gibanja lahko izlo¢imo
z upostevanjem relacij AS = 0 in STAT = 0. Z mnoZenjem enacbe (2.34) z
matriko 87 dobimo skréeno obliko dinami¢nega modela

STMSv+ ST MSv+ STV +STF+S7G = STEu

s ¢imer smo izlocili Lagrangeove multiplikatorje A. Z vpeljavo zamenjav M =
STMS, V = 8STMSv+ ST(V + F + G) in E = STE lahko pregledneje
zapisemo

Mv+V = FEu (2.35)
od koder izrazimo vektor psevdopospeskov ¥

o=M"! (Eu — ‘7)

Ce je nadalje izpolnjen pogoj det STE # 0, kar v veéini realisti¢nih primerov je,
lahko iz enacbe (2.35) izrazimo vhod v sistem

w=E (Mv n 17) (2.36)

7 razsiritvijo vektorja stanj s psevdohitrostmi x = [q7vT]T

in zapisom sistema
v splo$ni nelinearni obliki & = f(x) + g(z)u (¢len f(x) vsebuje nelinearno

odvisnost od stanj) dobimo zapis sistema v prostoru stanj

07 xr

Sv
~M-V

kjer je r Stevilo vhodov v vektorju w. Dimenzija vektorja stanj x je (2n —m) x 1.

Z inverznim modelom (2.36) lahko za Zelene psevdopospeske sistema izra¢unamo
potreben vhod v sistem. Z uporabo izra¢unanih vhodov v sistemu (2.37) dobimo
naslednji skupni model

Sv

O(nfm) x1

d):

+ Onx(nfm) w.

I(nfm)x(nfm)
kjer u, predstavlja psevdopospeske sistema. Izraz (2.36) lahko torej uporabimo
za izrac¢un napovedanih vhodov sistema. Te vhode lahko pri vodenju upora-

bimo samostojno (odprtozancno vodenje) ali pa v kombinaciji z zaprtozanénim

vodenjem ter tako dobimo regulacijo s predkrmiljenjem.

2.4.2 Kinematic¢ni in dinamicéni model robota z

diferencialnim pogonom

Vozilo z diferencialnim pogonom na sliki 2.3 ima kolesa, gnana s pomocjo dveh
elektromotorjev. Predpostavimo, da je tezisCe robota v njegovem geometrijskem
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Slika 2.18: Vorzilo z diferencialnim pogonom

sredis¢u. Masa vozila brez koles je m,, masa koles pa je m,,. Vozilo se giblje
po ploskvi; njegov vztrajnostni moment okoli osi z oznacimo kot J. (os z je
pravokotna na ploskev) in vztrajnostni moment koles kot Jy,,.

V praksi je obicajno masa koles veliko manjsa od mase ohisja vozila, zato lahko
uporabimo skupno maso m in vztrajnost J. Gibanje vozila opiSemo s tremi
posplosSenimi koordinatami ¢ = [z, y, ], vhod v sistem pa predstavlja navor na
levo in desno kolo (7, 7, prikazano na sliki 2.18).

Kinematicni model in omejitve

Kinemati¢ni model vozila (2.2) je

T cosp O

y| = |sinp 0 [Ul
w

%) 0 1

neholonomi¢na omejitev gibanja pa je (vozilo se ne more premikati pravokotno
na smer vrtenja koles)

—&sinp +ycosp =0

kar pomeni, da stolpci kinemati¢ne matrike predstavljajo dosegljive smeri premi-

kov
cosp 0
S=|sing 0
0 1

in matrika koeficientov omejitev je

A:[fsingo cos 0}
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Dinamicéni model

Dinamic¢ni model izpeljemo z Lagrangeovo formulacijo
d [oc oL — oP -
— =)+ =— = fr — Aja; 2.38
dt (6%) 3% + aqk fk: 7:21 j A5k ( )

kjer smo iz relacije (2.30) izpustili ¢len, povezan z vplivi neznanih motenj 74, .
Podobno ne upostevamo sil in navorov zaradi gravitacije gi, ker se vozilo vozi
po ploskvi in je tako potencialna energija konstantna (brez izgube posplosenosti
lahko predpostavimo Wp = 0).

Skupno kineti¢no energijo sistema lahko opisemo z relacijo

m . . J .
Wi = — (&° + ) + = ¢*
2 2
Ker je potencialna energija sistema Wp = 0, je Lagrangian enak
mo . . J .
,C:WK—WPZE(LC2+Z/2)+§@2

Hkrati zanemarimo Se vpliv duSenja in trenja pri kotaljenju koles (P = 0). Sile
in navori v enacbi (2.38) so

2la 2l 2|~
N N N
|
<N
N— ——
Il
3
Ny

in
oL
oz
oL
y
oL

P

=0

Za dinami¢ni model lahko glede na Lagrangeovo formulacijo (2.38) zapiSemo
sledece diferencialne enacbe

m& — A\ sinp = F,
myj + A cosp = Fy
Jp=T

r je radij kolesa. Rezultanta sil na levem in desnem kolesu je F' = %(TT + 7).
Sila v smeri osi = je F,, = %(Tr + 7;) cos ¢, v smeri osi y pa Fy = %(Tr + 7;) sin .

Nawvor, ki deluje na vozilo, je T = Q—Lr(rr — 1), pri ¢emer je L razdalja med kolesi.
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Imamo torej model
1
mE — A\ sing — ;(Tr +7)cosp =0
. 1 .
mij + A1 cos @ — ;(Tr +7)sinp =0
. L
JQD* Z(Tr *Tl) =0
Dobljeni dinami¢ni model lahko zapisemo v matri¢ni obliki
M(q)§+V(q.4) + F(q) = E(q)u — A" (g)x

kjer so matrike

m 0
M=]0 m
0 0

G o o

COSY COS¢
E =—- |sinp sing
LN L

2 2

A= [fsingo cos 0}
Tr
-]

Model v prostoru stanj (2.37), ki vkljucuje kinematiko in dinamiko, je dolocen z

u

ostale matrike pa so nicelne.

matrikami (glejte poglavje 2.4.1)

M: m 0
0 J
vzlo
0
- 11 1
E=-

od koder lahko glede na enacbo (2.37) zapiSemo sistem v prostoru stanj v obliki
& = f(x) + g(x)u, kjer je vektor stanj dolo¢en z & = [g7, vT]T. Dobimo

T v COS 0 0
Y vsin @ 0 0
Tr
ol = w +10 0 [ ]
-
0 0 mr omr| b
. L _
w 0 2r 2

Inverzni model sistema dolo¢imo glede na relacijo (2.36) kot

w] [
| omr _ wJr

Tl 2 L




2.4. Dinamicni model mobilnega sistema z omejitvami 55

7 uporabo inverznega modela lahko za dolo¢ene hitrosti in pospeske robota
izracunamo potrebna navora na obe kolesi. Izracunana vhoda lahko uporabimo
za odprtozancéno vodenje ali bolje v kombinaciji z zaprtozanénim vodenjem
(regulacija s predkrmiljenjem).

Primer 2.9

ZapiSite kinematicni in dinami¢ni model za vozilo z diferencialnim pogonom,
prikazano na sliki 2.19. Modela izrazite s koordinatama masnega srediséa (z.,
Ye), ki sta od geometrijskega srediséa (z, y) oddaljeni za razdaljo d.

Y,

4

¢ X

g

Slika 2.19: Vozilo z diferencialnim pogonom z masnim srediséem (z.,y.) in
geometrijskim srediséem (z,y)

Resitev

Ce upostevamo transformacijo med geometrijskim in masnim srediséem z =
T, —dcosp in y = y. — dsin ¢ ter njuna ¢asovna odvoda & = &, + d¢sin e in
Y = Yo — dpcos p, ki ju vstavimo v kinematiéni model (slika 2.3), sta konéni
kinematic¢ni model in kinemati¢na omejitev masnega sredisca

Gh cos(p) —dsin(p) ;
Yo | = [sin(p) dcos(p) [ ]
% 0 1

—Zesin g + Yo cosp — pd =0

Lagrangian za masno srediée je £ = 2 (22 + §2) + 2¢°. Glede na (2.38) je
dinamiéni model
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1
m. — A\ sing = — (7. + 1) cos
r
1
me + A1 cosp = F, = —(1, +7)sine
r
L
Jp—Ad=—
¥ 1 o
in matrike modela
m 0 0
M=]|0 m 0
0o 0 J
COSp COS Y
1] . .
E =—- [singp sing
Il L _L
2 2
A=|—sinp cosp —d

cos(p(t))  —dsin(p)
S = |sin(p(t))  dcos(p)
0 1

Glede na (2.37) je skupna predstavitev sistema v prostoru stanj

15 v €os p — wdsin 0 0
Ye vsin ¢ + wdcos 0 0
ol = w + 0 0 [T]
-
U dw? # # !
—dvwm L —L
md2+J 2r(d?m+J)  2r(d?m+J)
Primer 2.10

Zapisite kinematicni in dinami¢ni model vozila iz primera 2.9, kjer masno in
geometrijsko srediSc¢e nista enaka. Modela izrazite s pomocjo koordinat geo-
metrijskega srediSéa (x, y), saj je to bolj ustrezno, ¢e se masno sredisce vozila

spreminja z razlicnim tovorom.
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Resitev

Kinemati¢ni model in kinematicna omejitev geometrijskega sredisca sta

z cos(p) O ;
% 0 1

—Zsin +y.cosp =0

Lagrangian je £ = % (xz + yf) + %ng kjer je masno srediSce izrazeno z geome-

trijskim. Konéni model v prostoru stanj je

% V COS 0 0

U vsin @ 0 0

ol=1 w |+ 0 0 TT
v dw? L L mt
. L PaGE) T Oe)

W c 2T(d2m+J¥; 27“(dzm—&-J)('(J

A _ —dwm(& cos p+y sin p—v cos(2¢p) —dw sin(2¢p))
kjer je C' = prys ey .

Primer 2.11

V programskem okolju Matlab izra¢unajte potrebne navore za gibanje mobilnega
robota iz primera 2.9 po referen¢ni trajektoriji «, = 1,1 + 0,7sin(27/30), y, =
0,9 + 0,7sin(4m/30) brez uporabe senzorjev (odprtozanéno vodenje). S pomodjo
simulacije izra¢unajte navore robota z uporabo inverznega dinamicnega modela
in prikazite dobljeno trajektorijo sistema. Parametri robota so: m = 0,75 kg,
J =0,001kgm?, L = 0,075m, r = 0,024m in d = 0,01 m.

Resitev

Glede na (2.36) je inverzni model robota

| T(i}m—dezm) + T(w(mdz-‘z])-{-dwzm)
| | rom—de®m)  r(@(md®+7)+dw?m)
2 L

Iz referencne tocke izrac¢unamo referencno hitrost v, in referencéno kotno hitrost

w;- ter njuna ¢asovna odvoda v, in W,.

Koda Matlab je podana v programu 2.3. Rezultati simulacije pa so prikazani na
slikah 2.20 in 2.21.
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Program 2.3

./src/mdl/example_dynamic_model.m

Ts = 0.033; % Racdunski korak
t = 0:Ts:30; % Cas simulacije
% Referenca
freq = 2xpi/30;
xRef = 1.1 + 0.7*sin(freq*t); yRef = 0.9 + 0.7*sin(2xfreqxt);
dxRef = freq*0.7*cos(freqxt); dyRef = 2xfreq*0.7xcos (2*xfreq*t);

ddxRef =-freq~2*0.7xsin(freq*t); ddyRef =-4*xfreq~2x0.7*sin(2*xfreq*t);
dddxRef =-freq~3%0.7*cos(freq*t); dddyRef =-8*freq~3*0.7*cos (2xfreq*t);

qRef
vRef
wRef
dvRe
dwRe

= [xRef; yRef; atan2(dyRef, dxRef)]; % Referenéna trajektorija
= sqrt (dxRef . 2+dyRef . 2);
= (dxRef .xddyRef -dyRef .*ddxRef)./(dxRef . 2+dyRef."2);
f = (dxRef.*ddxRef+dyRef.*ddyRef)./vRef;
f = (dxRef.*dddyRef -dyRef.*dddxRef)./vRef. 2 - 2.*wRef.*dvRef./vRef;

[qRef (:,1); vRef(1); wRef(2)]; % Zaietna lega robota
0.75; J = 0.001; L = 0.075; r = 0.024; d = 0.01; % Parametri robota

k = 1:length(t)

% Izraun navorov iz trajektorije in inverznega modela

v = vRef(k); w = wRef(k); dv = dvRef(k); dw = dwRef (k);

tau = [(r*(dv*m-d*w*xmx*xw))/2 + (r*(dw*x(m*d"2+J) + d*wxm*v))/L;
(r*(dv*m-d*wxm*w))/2 - (r*(dw*(m*d~2+J) + d*w*mx*v))/L];

% Simulacija kinematicénega in dinamiénega modela gibanja robota
phi = q(3); v = q(4); w = q(5);
F = [v*cos(phi) - d*w*sin(phi);

vksin(phi) + d*w*cos(phi);

Ww;
d*w~2; .
-(d*wxv*m)/(m*d~2 + J)];
G = [0, 0;
0, 0;
0, 0; ...
1/(m*r), 1/ (m*r);

L/(2*xr*x(m*d~2 + J)), -L/(2*r*x(m*d"2 + J))];
dq = F + Gxtau; % Model v prostoru stanj
q = q + dq*Ts; % Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&je [-pi, pil
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Slika 2.20: Izra¢unana pot robota (polna krivulja) in referencéna pot (¢rtkana
krivulja)

0 5 10 15 20 25
t[s]
1 -
0.5
E
Z. 0
&05 ¢
—1}F
1 1 1 1 1
0 5 10 15 20 25
1 [s]

Slika 2.21: Navora na kolesi
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Vodenje kolesnih mobilnih

sistemov

3.1 Uvod

Vodenje kolesnih mobilnih robotov v okolju brez ovir lahko izvedemo z vodenjem
od zacetne do koné¢ne lege (klasi¢no sledilno vodenje, kjer niso predpisana vmesna
stanja trajektorije) ali pa preko sledenja referen¢ni trajektoriji. V primeru
neholonomicnih kolesnih mobilnih sistemov se izkaze, da je bolj tezavno vodenje
v referencno lego, kot pa sledenje referencni trajektoriji, ki povezuje zacetno in
ciljno lego. Za uspesno vodenje (tako klasi¢no vodenje kot sledenje trajektoriji)
moramo uporabiti nezvezen ali ¢asovno spremenljiv regulator [1], ker je sistem,
ki ga vodimo, nelinearen in ¢asovno spremenljiv. Nadalje mora robot pri gibanju
upostevati neholonomicne omejitve, torej njegova pot ne more biti poljubna.
Dodatni razlog za uporabo sledenja trajektoriji se skriva v dejstvu, da se mobilni
robot pogosto giblje v prostoru z omejitvami, ovirami in raznimi zahtevami, ki v
doloceni meri predpisujejo zeleno pot do cilja.

Neholonomicne sisteme je smiselno voditi z dvoprostostnim regulatorjem, sesta-
vljen iz predkrmiljenja (angl. feedforward) in povratne zanke (angl. feed-
back). Predkrmiljenje se izracuna iz referencne trajektorije, kjer dolo¢imo oz.
predhodno izracunamo potrebne vhode v sistem, da bo le-ta sledil referenc¢ni
trajektoriji brez povratnih informacij senzorjev (odprtozanéno vodenje). To-
vrstno vodenje ni praktiéno uporabno, saj ni odporno na motnje v delovanju
sistema in pogreske zacetnih stanj. Zato je potrebno vkljuciti Se povratno zanko
(zaprtozanéni del). Dvoprostostni regulator je naraven in prikladen za vodenje
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neholonomi¢nih mehanskih sistemov, zato bo uporabljen v veéini prikazanih
primerov v nadaljevanju.

Kolesni mobilni roboti so dinamic¢ni sistemi, kjer je za zeleno gibanje platforme
potreben ustrezen navor na kolesa. Zato morajo algoritmi za vodenje gibanja
upostevati dinamicne lastnosti sistema. Obic¢ajno se to tezavo resi s pomocjo
kaskadnih regulacijskih shem z zunanjim regulatorjem za vodenje hitrosti in
notranjim za vodenje navora (sila, tok motorja itd.). Zunanji regulator doloca
potrebne hitrosti sistema, da sistem doseze referen¢no lego ali sledi referenéni
trajektoriji. Notranji (hitrejsi) regulator pa izra¢una potrebne navore (sila,
tok motorja itd.), da doseze hitrosti sistema, ki jih dolo¢a zunanji regulator.
Notranji regulator mora biti dovolj hiter, da dodatni fazni zamik ne povzroca
tezav. Pri veéini primerov je notranji regulator navora ze vgrajen v mobilnega
robota, uporabnik pa z vodenjem doloca zelene hitrosti sistema glede na njegovo
kinematiko.

Preostali del tega poglavja je razdeljen na razlicne pristope vodenja za doseg
referenc¢ne lege ter pristope vodenja sledenja referencni trajektoriji. Prvi bodo
vkljucevali osnovno idejo in nekaj preprostih primerov uporabe na razli¢nih
platformah, slednji pa bodo obravnavani bolj podrobno, saj so ti pristopi bolj

naravni za kolesne mobilne robote, ki se vozijo v okoljih z znanimi ovirami.

3.2 Vodenje v referencno lego

V nadaljevanju bomo predstavili osnovne pristope k vodenju mobilnega robota
v referencno lego, ki jo doloc¢ata pozicija in orientacija. V tem primeru pot ali
trajektorija do referen¢ne lege ni predpisana, zato se lahko robot vozi do cilja
po katerikoli izvedljivi poti. To pot lahko eksplicitno dolo¢imo in jo med voznjo
tudi sproti prilagajamo ali pa jo podamo implicitno z izvedbo algoritma vodenja
v referencéno lego.

Obicajno sta podani samo zacetna (ali trenutna) in konéna (ali referencna) lega
s poljubno potjo med njima, kar odpira nove moznosti npr. za izbiro “optimalne”
poti. Pri izbiri poti moramo upostevati vse omejitve — kinemati¢ne, dinamicne in
okoljske. To nam obicajno Se vedno omogoca izbiro neskon¢no mnogo poti, kjer pa
izberemo tisto, ki uposteva tudi dodatna merila, kot so ¢as, dolzina, ukrivljenost,
poraba energije ipd. V splosnem je nacrtovanje poti zahtevna naloga, zato v tem

razdelku ne bomo upostevali teh vidikov.

V nadaljevanju bo vodenje v referencno lego razdeljeno na dve loceni nalogi:
vodenje orientacije in vodenje gibanja naprej. Ne moremo ju obravnavati loc¢eno,
potrebno je uporabiti kombinacijo, kar privede do ve¢ regulacijskih shem za doseg
referencne lege. Ti pristopi so splosni in jih je mogoce uporabiti pri razlicnih
kinematikah mobilnih robotov. V tem poglavju ju bomo ponazorili s primeri na

diferencialnemu in Ackermannovemu pogonu.
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3.2.1 Vodenje orientacije

Pri ravninskem gibanju je za izvedbo gibanja z Zeleno orientacijo potrebno
vodenje orientacije. Vodenje orientacije je pomembno tudi zaradi prisotnosti
neholonomic¢nih omejitev, ki onemogocajo premik kolesnega robota v dolo¢enih
smereh. Ceprav orientacije ni mozno voditi neodvisno od gibanja naprej, lahko
na tezavo pogledamo tudi z vidika klasi¢nega vodenja, kar nam pokaze, kako
ojacenja regulatorja vplivajo na klasi¢na merila uspesnosti pri povratnozanénem

vodenju orientacije.

Predpostavimo, da je orientacija kolesnega robota v nekem c¢asu ¢ enaka o(t),
referen¢na ali Zelena orientacija pa ¢,z (t). Pogresek vodenja lahko dolo¢imo kot

ep(t) = @res(t) — o(1)

V vsakem sistemu vodenja je potrebna regulirna veli¢ina, ki lahko spremeni ali
vpliva na regulirano veli¢ino, kar je v nasem primeru orientacija. Cilj vodenja je
izniCiti pogresek vodenja. Obicajno mora resitev hitro konvergirati proti 0, pri
¢emer morajo biti upostevane nekatere dodatne zahteve, kot so poraba energije,
obremenitev aktuatorja ter robustnost sistema ob prisotnosti motenj, suma,
parazitske dinamike itd. Obicajno nacrtovanje vodenja zac¢nemo z modelom
sistema, ki ga zelimo voditi. V nadaljevanju bomo zapisali kinemati¢ni model,
natancneje enacbo za opis njegove orientacije.

Vodenje orientacije diferencialnega pogona

Kinematiko diferencialnega pogona podaja (2.2), kjer tretja enac¢ba dolo¢a potek

orientacije
p(t) = w(t) (3.1)

Z vidika vodenja enacba (3.1) opisuje sistem z regulirno veli¢ino w(t) in ima
integrirni znacaj (njegov pol lezi v izhodis¢u kompleksne ravnine s). Znano je, da
lahko preprost proporcionalni regulator izni¢i pogresek pri vodenju integrirnega
procesa. Regulacijski zakon zapisemo kot

w(t) = K(pres(t) — ©(t)) (3-2)

kjer je ojacenje regulatorja K poljubna pozitivna konstanta. Regulacijski zakon
(3.2) kaze, da je kotna hitrost platforme w(t) sorazmerna pogresku orientacije
robota. S pomodcjo enacb (3.1) in (3.2) lahko zapiSemo dinamiko regulacijske
zanke za orientacijo

P(t) = K (pres(t) — o(t))
kar doloca zaprtozancno prenosno funkcijo vodenega sistema

el 1
¢T6f(s) %S‘Fl

Gcl(s)
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kjer sta ¢(s) in ¢cf(s) Laplaceovi transformaciji ¢(t) in @ref(t). Prenosna funk-
cija G.(s) je prvega reda, torej se orientacija eksponentno priblizuje konstantni
referenci (s ¢asovno konstanto 7 = +) in ima ojacenje 1, zato v ustaljenem

stanju ni pogreska orientacije.

Regulator (3.2) torej povzroci, da se zaprtozanéna prenosna funkcija obnasa
kot sistem prvega reda. Vcasih je zazelena prenosna funkcija drugega reda
Gu(s) = ¢i(fs()s), saj omogoca ve¢ svobode pri nacrtovanju poteka med prehodnim
pojavom. Razvoj regulatorja za¢nemo z definiranjem kotnega pospeska platforme

w(t), ki je sorazmeren pogresku orientacije robota

w(t) = K(prer(t) — (1)) (3-3)

Dobljen regulirani sistem

W= @3(t) = K(pres(t) — o(t))

s prenosno funkcijo

(s) K

- ¢ref(8) B 24+ K

Gcl(s)

je sistem drugega reda z lastno frekvenco w, = v K in koeficientom dusenja
¢ = 0. Tak sistem je mejno stabilen, njegovi oscilatorni odzivi pa so nesprejemljivi.
Dusenje sistema dosezemo z dodatnim élenom v regulatorju (3.3)

w(t) = Ki(prep(t) — o(t)) — Kap(t) (3-4)

kjer sta K7 in Ky poljubni pozitivni ojacenji regulatorja. Z upostevanjem (3.1)
in (3.4) dobimo zaprtozancéno prenosno funkcijo

_9(s) Ky
" dref(s)  s2+ Kas+ Ky

Gcl(s)

kjer je w, = v/ K; lastna frekvenca, ( = 2\1/(1% koeficient dusenja in sta s;9 =
—Cwy, & jwn /1 — (2 zaprtozancna pola. Vidimo, da z izbiro K7 in K5 vplivamo
na primerno dusenje zaprtozancnega sistema.

Vodenje orientacije Ackermannovega pogona

Regulacijo orientacije Ackermannovega pogona lahko zasnujemo podobno kot
v primeru diferencialnega pogona. Edina razlika se pojavi zaradi drugacnega
kinemati¢nega modela (2.15) za orientacijo, ki ga zapiSemo kot

- ”Ty) tan (a(t)) (3.5)

Regulirna veli¢ina « je sorazmerna velikosti pogreska orientacije

a(t) = K(prer(t) — (1)) (3.6)
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S pomodjo (3.5) in (3.6) zapiSemo diferencialno enacbo, s katero lahko opiSemo
dinamiko pogreska orientacije

o) = " tan (K (g1 0) — (1))

Sistem je torej nelinearen. Za majhne kote «(t) in konstantno hitrost zadnjih
koles v,-(t) = V' dobimo linearni priblizek modela

pl1) = VK (pres(t) — (1)

ki ga lahko zapiSemo kot prenosno funkcijo

_ o) 1
Gails) = Pref(s)  (des+1

Podobno kot v primeru diferencialnega pogona se pogresek orientacije ekspo-
nentno priblizuje 0 (pri konstantni referen¢ni orientaciji) in s ¢asovno konstanto
T =%

Ce je Zelena povratnozanéna prenosna funkcija (orientacije) drugega reda, lahko
uporabimo podoben pristop kot pri diferencialnem pogonu. Regulacijski zakon,

ki ga podaja enacba (3.4), lahko uporabimo tudi na Ackermannovemu pogonu

a(t) = Ki(pres(t) — (1)) — Kap(t) (3.7)

Ob predpostavki, da je hitrost konstantna (v.(t) = V') ter so koti a majhni,
zapiSemo linearno aproksimacijo enacbe (3.5) kot

#lt) = Zal) (33)

Kot «a(t) iz (3.8) vstavimo v (3.7)

Blt) = Ki 7 (prep(t) — o(t)) — Ko olt)

Tako dobimo zaprtozancéno prenosno funkcijo

o(s) Kiy

G.(s) = =
(=) ¢Tef(s) S2+K2%3+K1%

Dobljeni odziv orientacije robota z lastno frekvenco w, = Kl% dusimo s

koeficientom dusenja ¢ = %1 / dxl.

3.2.2 Vodenje gibanja naprej

Z vodenjem gibanja naprej mislimo na algoritme, ki dolo¢ajo translatorno hitrost
mobilnega robota v(t), da dosezejo doloen cilj vodenja. Vendar za vodenje
mobilnega robota ne moremo uporabiti samo vodenja gibanja naprej. Kot primer

vzemimo diferencialni pogon. Z vodenjem orientacije, kjer spreminjamo kotno
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hitrost w(t), robot brez tezav doseze ciljno orientacijo. S pomoéjo vodenja naprej
pa robot v splosnem ne more doseci zelene pozicije, razen v primeru, ko je robot
ze na zacetku usmerjen proti cilju. To pomeni, da je vodenje gibanja naprej

nelocljivo povezano z vodenjem orientacije.

Torej je potrebno za doseg cilja voditi translatorno in kotno hitrost. V primeru
sledenja trajektoriji, le-ta bolj ali manj doloca hitrost, medtem ko se pri vodenju
v referencno lego hitrost zmanjsa, ko se robot pribliza cilju. Primerna izbira
regulatorja je proporcinalna odvisnost hitrosti glede na razdaljo do referenc¢ne

tocke (xref (t)? Yref (t))

u(t) = K\/(xref(t) = x(t))% + (Yres (1) — y(1))? (3.9)

Referencni polozaj je lahko konstanten ali pa se spreminja glede na neko referenéno
trajektorijo. Regulator (3.9) ima vsekakor nekaj omejitev, pa tudi v primeru
zelo velikih ali zelo majhnih razdalj do referencne tocke je potrebna posebna
obravnava:

« Ce je razdalja do referenéne tocke velika, je velika tudi regulirna veli¢ina
(3.9). Priporoéljivo je omejiti regulirno veli¢ino za najvecjo hitrost. V praksi
omejitve narekujejo omejitve pogona, vozne razmere podlage, ukrivljenost
poti itd.

« Ce je razdalja do referenéne tocke zelo majhna, lahko robot prevozi refe-
ren¢no tocko (zaradi Suma ali nepopolnega modela vozila). Ko se robot
oddaljuje od referencne tocke, se razdalja povecuje in robot pospesuje v
skladu z enac¢bo (3.9). S to tezavo se bomo spoprijeli po zdruzitvi regulatorja
gibanja naprej in regulatorja orientacije.

Hitrost je nelocljivo povezana s pospeskom. Slednji je v prakti¢nih situacijah
vedno omejen zaradi omejenih sil in navorov, ki jih proizvajajo aktuatorji. To je
potrebno upostevati pri nac¢rtovanju vodenja gibanja naprej. Ena od moznosti je
omejitev pospeska. Obicajno je dovolj, da na izhodu regulatorja v(t) uporabimo
nizkoprepustni filter, preden se regulirna veli¢ina posreduje robotu v obliki
signala v*(t). V ta namen lahko uporabimo najpreprostejsi filter prvega reda z
enosmernim ojacenjem 1, podan z diferencialno enacbo

TrO*(t) + v () = v(t)

ali z enakovredno prenosno funkcijo

_ V*(s) 1

=V T st

kjer je T ¢asovna konstanta filtra.

V primeru 3.1 je uporabljen preprost algoritem vodenja, ki pripelje robota z
Ackermannovim pogonom v referen¢no tocko. Algoritem vsebuje tako vodenje
orientacije kot vodenje gibanja naprej.
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Primer 3.1

Napisite algoritem za vodenje trikolesnega robota s pogonom na zadnjem paru
koles na referen¢no pozicijo ,.f = 4m in y,.r = 4m. Robota vodimo z zasukom
prednjega krmilnega kolesa «v in s hitrostjo pogonskih koles v,.. Medosna razdalja
je d = 0,1 m, zaetna lega vozila pa [z(0),y(0), ¢©(0)] = [L m,0m, —7]. Algoritem

vodenja mora upostevati omejitvi vozila vpae = 0,8m/s in pae = .

Napisite algoritem vodenja in ga preizkusite na simulaciji kinematike vozila z
uporabo Eulerjeve integracijske metode.

Resitev

V tem primeru je mogoce hkrati voditi orientacijo in gibanje naprej. Zapis resitve
v programskem okolju Matlab je podan v programu 3.1. Rezultati simulacije so
prikazani na slikah 3.1 in 3.2, iz katerih je razvidno, da vozilo doseze referencno
tocko in se tam ustavi. Na sliki 3.2 so regulirne veli¢ine omejene s fizi¢nimi

omejitvami vozila.

Program 3.1
./src/ctr/example_ackerman_control_point.m

Ts = 0.03; % Ralunski korak

t = 0:Ts:30; % Cas simulacije

d = 0.1; % Medosna razdalja

xyRef = [4; 4]; ) Referenini polozZaj
q = [1; 0; -pil; % ZacCetna lega

for k = 1:length(t)
phi_ref = atan2(xyRef (2)-q(2), xyRef(1)-q(1)); %Referenina orientacija
qRef = [xyRef; phi_refl];

e = gRef - q; %Pogresek

% Regulator
v = 0.3xsqrt(e(1)"2+e(2)72);
alpha = 0.2*xe(3);

% Omejitve vozila
if abs(alpha)>pi/4, alpha = pi/4*sign(alpha); end
if abs(v)>0.8, v = 0.8*sign(v); end

% Simulacija gibanja robota
dq = [v*cos(q(3)); vxsin(q(3)); v/d*tan(alpha)l;
noise = 0.00; % Spremeni standardno deviacijo Suma (npr. 0.001)
q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
end



68 Vodenje kolesnih mobilnih sistemov

¥ [m]

X [m]

Slika 3.1: Pot robota do ciljne pozicije iz primera 3.1

0.8

04l

02

Slika 3.2: Regulirni signali iz primera 3.1
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Primer 3.2

Za diferencialni pogon resite enako nalogo kot v primeru 3.1, pri ¢emer je najvecja
hitrost vozila vp,q, = 0,8 m/s.

Resitev

Ustrezno prilagodite regulator iz primera 3.1 in popravite kinematiko v simulaciji.

3.2.3 Osnovni pristopi

V nadaljevanju bomo predstavili nekaj uporabnih pristopov k vodenju kolesnega
mobilnega robota v referenc¢no lego. Omenjeni pristopi na razlicne nacine zdru-
zujejo predhodno predstavljeno vodenje orientacije in vodenje gibanja naprej
(poglavji 3.2.1 in 3.2.2) ter tako omogocajo uspesno vodenje kolesnih mobilnih
robotov v referencno lego. Ponazorjeni bodo na robotu z diferencialnim pogonom,
lahko pa jih prilagodimo tudi drugim vrstam kolesnih robotov.

Vodenje v referenc¢no pozicijo

V tem primeru mora robot priti v referenéno (koncéno) pozicijo, pri tem pa
ni predpisana konc¢na orientacija, torej je lahko poljubna. Da robot prispe
do referencne tocke, moramo nenehno voditi njegovo orientacijo v smeri proti
referenéni tocki. To smer oznacimo z ¢, (slika 3.3) in jo lahko enostavno dolo¢imo
s pomocjo geometrijskih relacij

Yref — y(t)

(t) = arctan
©r(t) Trer — (D)

Vodenje kotne hitrosti w(t) je tako dolo¢eno kot

w(t) = Ki(er(t) — () (3.10)

kjer je Ky pozitivno ojacenje regulatorja. Osnovno vodenje je podobno kot v
primeru 3.1 in je prikazano na sliki 3.3. Najprej s pomodjo enacbe (3.9) dolo¢imo
translatorno hitrost robota

v(t) = Kg\/(ﬂfref(t) —2(£))2 + (Yres(t) —y(t))? (3.11)

Kot smo ze omenili, je potrebno v zacetni fazi omejiti najvecjo hitrost zaradi ste-
vilnih fiziénih omejitev. Upostevati moramo zlasti omejitve hitrosti in pospeska.

Regulacijski zakon (3.11) skriva tudi potencialno nevarnost, ko se robot pribliza
ciljni legi. Ukaz za hitrost (3.11) je vedno pozitiven, zato se lahko robot med
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v

O,

(xre/’ yre/)

Slika 3.3: Vodenje v referencno lego

zaviranjem proti konéni poziciji pomotoma zapelje preko nje. Tezava je v tem,
da se bo takrat regulirna veli¢ina za hitrost povecala, ker se poveca razdalja med
robotom in referenco (robot se oddaljuje od cilja). Druga tezava je v tem, da
preckanje referencne tocke prav tako obrne referenc¢no orientacijo, kar vodi do
hitrega vrtenja robota. Obstaja nekaj preprostih resitev:

e Ko robot prevozi referenéno tocko, se pogresek orientacije nenadoma spre-
meni za 180°. Zato bo algoritem preveril, ali njegova absolutna vrednost
presega 90°. Pogresek orientacije se bo nato povecal ali zmanjsal za 180°
(tako da se nahaja v intervalu [—180°,180°]), preden vstopi v regulator. Po-
leg tega izhod regulatorja (3.11) spremeni svoj predznak. Torej nadgrajeni
razlicici regulacijskih zakonov (3.10) in (3.11) zaobideta omenjene tezave

eo(t) = or(t) — (1)
w(t) = K, arctan(tan(ey(t))) (3.12)

u(t) = Kz\/ (@ref () — () + (yres(t) — y(t))?sgn(cos(ey (1))

¢ Ko robot doseze dolo¢eno okolico referenc¢ne tocke, se konca faza priblize-
vanja in regulirne veli¢ine za hitrosti postanejo nic¢elne. Ta mehanizem za
popolno zaustavitev vozila je potrebno uporabiti tudi pri spremenjenem
regulacijskem zakonu (3.12), zlasti v primeru Sumnih meritev.

Vodenje v referenc¢no lego z vpeljavo vmesne tocke

Naslednji algoritem vodenja je enostaven za izvedbo, saj uporablja preprost
regulator, dolocen z (3.11) in (3.10), ki robota pripelje v Zeleno referenéno tocko.
Ker imamo poleg (Zref (%), yres(t)) tudi zahtevo za referen¢no smer ¢, r, moramo
dodati vmesno tocko, ki bo oblikovala trajektorijo tako, da dobimo pravilno
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Slika 3.4: Vodenje v referencno lego z vpeljavo vmesne tocke

koné¢no orientacijo. Vmesna tocka (z¢,y:) je od referencne tocke oddaljena za
razdaljo r, pri ¢emer smer od vmesne tocke proti referencni sovpada z referenéno
orientacijo, kot prikazuje slika 3.4. Vmesno tocko dolo¢imo z

Tt = Tpef — T COSPref

Yt = Yref — TSin(pref

Algoritem vodenja je sestavljen iz dveh faz. V prvi fazi vodimo robota proti vimesni
tocki. Ko se ji dovolj pribliza (kar preverja pogoj \/(z — 2¢)% + (y — y¢)% < dtol),
algoritem preide v drugo fazo, kjer vodimo robota proti referencni tocki. Ta

pristop zagotavlja, da robot pride na referencno pozicijo z zahtevano orientacijo
(v referencni legi je mozen zelo majhen pogresek orientacije). MoZne so razli¢ne
variacije algoritma in vpeljava ve¢ vmesnih tock za boljSe delovanje.

Predstavljen algoritem je zelo enostaven in uporaben na mnogih podrocjih. Glede
na aplikacijo je potrebno izbrati ustrezno razdaljo r in toleran¢no podrocje dy.;.

Primer 3.3

Za robota z diferencialnim pogonom napisite algoritem vodenja v referen¢no
lego [TrefsYref, Pref] = [4m,4m,0°] z vpeljavo vmesne tocke. Poiséite ustre-
zne vrednosti parametrov r in dy,;. Zacetna lega vorzila je [2(0),y(0), »(0)] =
[1m,0m,100°].

Preizkusite algoritem vodenja s pomocjo simulacije kinematike vozila z diferenci-
alnim pogonom.



72 Vodenje kolesnih mobilnih sistemov

Resitev

Matlab koda mozne resitve je podana v programu 3.2. Rezultati simulacije so

prikazani na slikah 3.5 in 3.6.

Program 3.2

./src/ctr/example_diff_control_intermediate_point.m

Ts = 0.03; % Racdunski korak

t = 0:Ts:15; % Cas simulacije

r = 0.5; % Razdalja vmesne tolke od cilja

dTol = 0.05; % Toleranc¢na razdalja od vmesne tolke za preklop
qRef = [4; 4; 0]; 7/ Referencna lega

q = [1; 0; 100/180*pil; % Zaietna lega

% Vmesna tocka
xT = qRef (1) - rxcos(qRef (3));
yT = qRef (2) - rx*sin(qRef (3));

state = 0; % Vodenje proti: 0 - vmesni tocki, 1 - referencni tocki

for k = 1:length(t)
D = sqrt ((qRef (1)-q(1))"2 + (qRef(2)-q(2))72);
if D<dTol % Ustavitev v bliZzini cilja

v = 0;

w = 0;
else

if state==

d = sqrt ((xT-q(1))72+(yT-q(2))72);
if d<dTol, state = 1; end

phiT = atan2(yT-q(2), xT-q(1));
ePhi = phiT - q(3);

else
ePhi = qRef (3) - q(3);

end

ePhi = wrapToPi (ePhi);

% Regulator

v = Dx0.8;

w = ePhixb;
end

% Simulacija gibanja robota
dq = [v*cos(q(3)); v*sin(q(3)); wl;
noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
qQ = g + Ts*dq + randn(3,1)*noise; 7 Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil

end
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Vmesna toc¢ka

y [m]

x [m]

Slika 3.5: Pot robota do ciljne lege z uporabo vmesne tocke iz primera 3.3
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Slika 3.6: Regulirni signali iz primera 3.3
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Slika 3.7: Vodenje v referencno lego z vpeljavo vmesne usmeritve

Vodenje v referen¢no lego z vpeljavo vmesne usmeritve

Robot se mora pripeljati iz zaCetne v referen¢no lego, kjer sta podani pozi-
cija (Zref, Yrep) in orientacija ¢rer. Ideja algoritma z vpeljavo vimesne usme-
ritve je prikazana na sliki 3.7 [2]. Najprej dolo¢imo pravokotni trikotnik in
postavimo referencno tocko v oglis¢e s pravim kotom. Kateta, dolzine D =

+/(@res(t) — (1)) + (yres (t) — y(t))?, povezuje trenutni polozaj robota z refe-
ren¢nim in doloca orientacijo ¢,., ki kaze od robota proti cilju. Druga kateta ima
doloc¢eno dolzino r > 0, ki jo izberemo sami. Kot med kateto D in hipotenuzo
oznacimo z S(t). Pri tem pristopu imata kljuéno vlogo dva kota, ki ju dolo¢imo
kot

a(t) = ¢r(t) — Prey
B(t) = {arctan'g ;oa(t)>0

—arctan 17 ;  sicer

Upostevamo, da imata kota a(t) in 5(t) vedno enak predznak (v primeru na sliki
3.7 sta oba pozitivna). Ce je o ob dolocenem ¢asu 0, je takrat 3 nepomemben
in je lahko njegov znak poljuben. Velike (absolutne) vrednosti o nakazujejo, da
voznja naravnost do referencne tocke ni dobra ideja, saj bo pogresek orientacije
v referencni legi velik. Zato je potrebno zmanjsati (absolutno) vrednost kota «.
To dosezemo z vpeljavo vmesne usmeritve, ki je premaknjena iz ¢,., premik pa je
vedno stran od referencne orientacije ¢,.r; ce referencna orientacija kaze desno
(z vidika robota), se robot pribliza referen¢ni poziciji z leve strani in obratno.
Medtem ko se med priblizevanjem cilju (absolutna) vrednost kota «(t) obic¢ajno
zmanjSuje, se (absolutna) vrednost kota 3(t) povecuje z manjSanjem oddaljenosti
od reference. To bomo izkoristili pri nac¢rtovanju algoritma vodenja.

Podobno kot v primeru vodenja z vpeljavo vimesne tocke je algoritem sestavljen iz
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dveh faz. V prvi fazi (kjer je |a(¢)| velik) vodimo orientacijo robota proti vmesni
usmeritvi () = ¢, (t) + B(t) (omenjen primer je prikazan na sliki 3.7). 'V drugi
fazi, ko postaneta kota a in  enaka, trenutna referencna orientacija preide v
ot(t) = ¢r(t) + a(t). Torej v prvem delu robota vodimo v smeri referenéne
pozicije, v drugem delu pa poskrbimo, da se robot pripelje na referencno pozicijo
z referencno orientacijo. Preklop med fazama je izveden brez nezveznega skoka,
saj sta obe usmeritvi v ¢asu prehoda enaki. Regulacijski zakon za orientacijo
zapisemo kot

a(t) 5 la@®)] <[6@)
B(t) ; sicer

edﬂ—w@—¢@+{

w(t) = Key,(t)

Vidimo, da trenutna referen¢na usmeritev nikoli ne kaze proti referencni tocki,
ampak je vedno rahlo zamaknjena. Zamik je izbran tako, da gre kot «(t) proti
0. To pomeni, da referen¢na usmeritev kaze proti referen¢ni tocki in robot bo
prispel do nje s pravilno referen¢no orientacijo. Upostevamo, da ta algoritem
velja tudi za negativne vrednosti kotov « in 3. Paziti moramo le, da so vsi koti

v intervalu (—m, .

Translatorna hitrost je doloc¢ena podobno kot v prejsnjem poglavju.

Primer 3.4

Za robota z diferencialnim pogonom napisite algoritem vodenja do referencne lege
[Trefs Yref, Pref) = [4m,4m, 0°] z vpeljavo vmesne usmeritve. Poiscite ustrezno
vrednost parametra r. Zacetna lega vozila je [2(0),4(0), ¢(0)] = [1m, 0m, 100°].
Preizkusite algoritem na simulaciji kinemati¢nega modela.

Resitev

Matlab koda mozne resitve je predstavljena v programu 3.3. Rezultati simulacije
so prikazani na slikah 3.8 in 3.9.

Program 3.3
./src/ctr/example_diff_control_intermediate_direction.m

Ts = 0.03; % Racdunski korak
t = 0:Ts:15; % Cas simulacije

r = 0.2; % Parameter razdalje

qRef = [4; 4; 0]; % Referencna lega

q = [1; 0; 100/180%*pil; % Zacetna lega

for k = 1:length(t)
% Izraunaj zamik zaradi referencne usmeritve
phiR = atan2(qRef (2)-q(2), qRef(1)-q(1));
D = sqrt((qRef(1)-q(1))~2 + (qRef(2)-q(2))72);
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alpha = wrapToPi(phiR - qRef (3));
beta = atan(r/D);
if alpha<0, beta = -beta; end

% Controller
if abs(alpha) < abs(beta)

ePhi = wrapToPi(phiR - q(3) + alpha); % Drugi del
else

ePhi = wrapToPi(phiR - q(3) + beta); % Prvi del
end
v = D*x0.8;
w = ePhix5;

% Simulacija gibanja robota
dq = [v*cos(q(3)); v*sin(q(3)); wl;
noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoéje [-pi, pil

end

Slika 3.8: Pot robota do ciljne lege z vpeljano vmesno usmeritvijo iz primera 3.4
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Slika 3.9: Regulirni signali iz primera 3.4

Vodenje po odsekoma zvezni poti, doloéena s premico in
kroznim lokom

Pot, sestavljena iz daljic in kroznih lokov, je znana kot najkrajsa mozna pot za
robote z Ackermannovim pogonom, kjer polmer kroznic predstavlja najkrajsi
mozni polmer zavoja vozila [3-5]. Taksna pot je najkrajsa tudi za robota z
diferencialnim pogonom, kjer je najkrajsi polmer kroga omejen na ni¢, kar
pomeni, da se lahko robot vrti na mestu.

Osnovna ideja algoritma je prikazana na sliki 3.10. Najprej skozi referencno tocko
nariSemo kroznico s polmerom R, ki je tangencialen na referen¢no orientacijo. O
primerni dolzini polmera R bomo razpravljali kasneje. Obstajata dve resitvi —
izberemo kroznico, katere sredisce je blizje robotu. Ta kroznica oz. natancneje
dolocen lok predstavlja drugi del nacrtovane poti. Robot najprej sledi premici, ki
se v blizini referencne tocke tangencialno poveze na kroznico. Ponovno obstajata
dve resitvi tangente in izberemo tisto, ki daje pravilno smer voznje po kroznem
loku; smer voznje po loku je dolo¢ena z referencno orientacijo (v primeru na sliki
3.10 se bo robot peljal v smeri urinega kazalca). ReSitev preprosto izberemo s
preverjanjem predznakov vektorskih produktov radialnih vektorjev (od srediséa
kroznice do potencialne tangentne tocke na njej) in tangencialnih vektorjev (od
robota do potencialne tangentne tocke na kroznici).
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Slika 3.10: Vodenje po odsekoma zvezni poti, sestavljeni iz premice in kroznega
loka

Cilj prvega dela algoritma je vodenje robota proti tocki (z¢, y¢), kjer se premica
dotika kroznega loka. Vzemimo preprost regulator orientacije

w(t) = K(pu(t) — o(1))
Y —y(t)
xe—x(t) "
zacne druga faza, ki vkljucuje voznjo vzdolz trajektorije. Regulator spremenimo

o) = "D 4 K (prang 1) — 010)

kjer je R polmer kroga, v(t) Zelena translatorna hitrost in @yang(t) smer tangente

kjer je p¢(t) = arctan Ko je razdalja do vmesne tocke dovolj majhna, se

\%

na krozni lok v trenutni poziciji robota. Prvi del regulatorja predstavlja predkr-
miljenje, ki zagotavlja voznjo robota po kroznem loku s polmerom R, drugi del
pa povratno zanko, ki popravlja regulacijske pogreske.

Da dosezemo vecjo robustnost, se referenéna pot izrac¢una v vsakem racunskem
koraku regulacijske zanke, kar zagotovi, da je robot vedno na referenc¢ni premici
ali kroznici. Kon¢na prevozena pot se zato nekoliko razlikuje od idealne poti,
sestavljene iz daljice in kroznega loka. Omenjena razlika v gibanju nastane
zaradi neujemanja zaCetnih pogojev (orientacija robota se ne ujema popolnoma s

tangento), Suma in motenj (zdrs koles ipd.).

Referencéno pot je v realnem Casu razmeroma enostavno dolociti. Sama pot je
zvezna, vendar zahtevani vhodi niso. Zaradi prehoda iz premice na krozni lok
kotna hitrost robota hipoma sko¢i iz ni¢ na %. V praksi to ni mozno zaradi
omejenega pospeska robota, zato se pri tem prehodu pojavi nekaj sledilnega

pogreska.

Taksno vodenje je primerno za primere, ko mora robot priti v referen¢no lego po
najkrajsi poti poljubne oblike (npr. robotski nogomet). Pri robotih z omejenim
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polmerom zavoja (npr. Ackermannov pogon) je najkrajsa pot do ciljne lege, ko
je parameter R enak najkrajSemu polmeru zavoja robota. Seveda pa to vodi v
visoke vrednosti radialnih pospeskov, zato je morda zazelena vecja vrednost R.

Primer 3.5

Za robota z diferencialnim pogonom napisite algoritem vodenja v referen¢no lego
[Zref, Yref, Pref) = [0m,0m,0°]. Polmer kroznice naj bo R = 0,4m. Zacetna
lega vozila je [z(0),y(0), (0)] = [-3m,—3m,100°]. Preizkusite algoritem na
simulaciji kinematicnega modela.

Resitev

Ceprav je osnovna ideja algoritma vodenja dokaj preprosta, je izvedba nekoliko
bolj zapletena, saj je potrebno izracunati ustrezna sredisc¢a kroznice in tangentne
tocke na njej ter nekatere druge parametre. Mozna resitev je podana v programu
3.4, rezultati simulacije pa so prikazani na slikah 3.11 in 3.12.

Program 3.4
./src/ctr/example_diff_control_line_circle.m

1 Ts = 0.03; % Racdunski korak

2 t = 0:Ts:15; % Cas simulacije

3 r = 0.2; % Parameter razdalje

4 qRef = [4; 4; 0]; % Referencna lega

5 q = [1; 0; 100/180%pil; % Zaietna lega

6

7 aMax = 5; J, Maksimalni pospesek

8 vMax = 0.4; % Maksimalna hitrost

9 accuracy = vMax*Ts; 7 Tocnost

10 curveZone = 0.6; 7% Radij

11 Rr = 0.99*curveZone/2; 7 Radij

12 slowDown = false; v = 0; vDir = 1; w = 0; J Zacetna stanja

13 X = [0, 1; -1, 0]; % PomoZna matrika: a.’*X*b = a(1)*b(2) - a(2)*b(1)
14
15 for k = 1:length(t)

16 fin = [cos(qRef (3)); sin(qRef (3))];

17 D = qRef(1:2); % Ciljna toclka

18 8 = q(1:2); % Polozaj robota

19 M = (D + 8)/2;

20 O0v = [cos(q(3)); sin(q(3))]; % Vektor orientacije
21 SDv = D - S; % Vektor SD

22 12 = norm(SDv); % Razdalja

23

24 if slowDown

25 v = v - aMax*Ts; if v < 0, v = 0; end
26 w = 0;

27 else

28 if fin.’*X*SDv > SDv.’*X*fin

29 Ps = D - Rr*X.’xfin; % Center kroga
30 else

31 Ps = D - Rr*X*fin; % Center kroga
32 end

34 1 = norm(Ps-8);
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35 if 1 < curveZone/2

36 Dv = fin;

37 else

38 d = sqrt(sum((S-Ps)."2) - Rr~2);

39 alpha = atan(Rr/d);

40 phi = wrapTo2Pi(atan2(Ps(2)-S(2), Ps(1)-S(1)));

41 Ul = S + d*[cos(phi+alpha); sin(phi+alpha)l;

42 U2 = S + dx[cos(phi-alpha); sin(phi-alpha)l;

43 if ((U1l - 8).’°*X*(Ps - U1)) * (fin.’*X*(Ps - D)) >= 0
44 D = U1;

45 else

46 D = U2;

47 end

48 M = (D + 8)/2;

49 SDv = D - S;

50 Dv = SDv/(norm(S8Dv)+eps);

51 end

52

53 if 12 > accuracy % Ce poloZaj ni doseZen

54 v = v + aMax*Ts; if v > vMax, v = vMax; end

55

56 Ev = X*x(D-S);

57 DTv = Xx*Dv;

58 if abs(DTv.’*X*Ev) < 0.000001 % Pojdi naravnost

59 gamma = 0;

60 Sv = SDv/(norm(SDv)+eps);

61 else % Go on a circle

62 C = DTv * Ev.’*X*(D - M)/(DTv.’*X*Ev) + D; % Center kroga
63 if SDv.’*X*Dv > 0, a = 1; else a = -1; end

64 Sv = axX*(C-8);

65 Sv = Sv/(norm(Sv)+eps);

66 gamma = a*acos (Dv.’*Sv);

67 if a*Sv.’*X*Dv < 0, gamma = a*2*pi - gamma; end
68 1 = abs(gamma*norm(S-C)); % DolZina krivulje

69 end

7C

71 if v > eps

72 if Ov.’*Sv < 0, vDir = -1; else vDir = 1; end % Usmerjenost
73 ePhi = acos(vDir*Sv.’*0v); 7% Kotni pogresek

74 if vDirx*Q0v.’*X*Sv < 0, ePhi = -ePhi; end

75 dt = 1/v; if dt < 0.00001, dt = 0.00001; end

76 w = gamma/dt + ePhi/dt*10*(1-exp(-12/0.1)); % Kotna hitrost
77 else

78 w = 0;

79 end

80 else

81 slowDown = true;

82 end

83 end

84 u = [vDir*v; w]; ’ Tangencialna in kotna hitrost

85

86 % Simulacija gibanja robota

87 dg = [u(1)*cos(q(3)); u(1)*sin(q(3)); u(2)];

88 noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
89 q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
90 q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil

91 end
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Slika 3.11: Pot robota do ciljne lege na podlagi premic in kroznic iz primera 3.5
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Slika 3.12: Regulirni signali iz primera 3.5
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T,

Slika 3.13: Vodenje po odsekoma zvezni poti, doloceni s sekvenco tock. Referenc¢na
pot med sosednjima tockama je daljica, ki ti dve tocki povezuje.

Od vodenja v referencno lego do vodenja po referencni poti

Pogosto je cilj vodenja dolocen z zaporedjem referencnih tock, ki naj bi jih robot
prevozil. V tem primeru ne govorimo ve¢ o vodenju v referen¢no lego, temvec je
skozi te tocke speljana referencna pot. Za povezave med posameznimi tockami so
pogosto uporabljene daljice. Cilj vodenja je, da robot prispe v vsako referen¢no
tocko s pravilno orientacijo ter se samodejno odpelje v naslednjo referen¢no tocko.
Ta pristop je enostaven za izvedbo in obicajno zadostuje za uporabo v praksi.
Njegova pomanjkljivost je nezveznost med sosednjimi daljicami, zato se tam
pojavi skokovit pogresek sledenja.

Pot je doloena z zaporedjem tock T; = [z, 3], kjer jei € 1,2,...,n in n Stevilo
tock. Na zacetku mora robot slediti prvemu segmentu (daljica med tockama T4
in T%) in tako priti do T% z orientacijo, ki jo dolo¢a vektor T1T5. Ko doseze konec
tega segmenta, zacne slediti naslednjemu (med tockama T4 in T3) in tako naprej.
Slika 3.13 prikazuje aktualen segment med tockama T; in T;;1 z oznacenimi
veli¢inami. Vektor v = T, — T; = [Ax, Ay|T predstavlja smer segmenta, vektor
r = R—T, pa smer od tocke T; proti sredis¢u robota R. Vektor v, = [Ay, —Ax]
je pravokoten na vektor v.

Robot mora slediti trenutnemu segmentu, medtem ko je projekcija vektorja r
na vektor v znotraj intervala, ki ga dolocata tocki T; in T;4;. Ta pogoj lahko



3.2. Vodenje v referencno lego 83

izrazimo na naslednji nacéin

{Sledi trenutnemu segmentu (T;, T;41) e O<u<l1

Sledi naslednjemu segmentu (Tj1+1, Tiro) Ce u>1

kjer je u skalarni produkt

ol
4T T
Spremenljivka u nam torej pove, ali je trenutni segment Se vedno aktualen ali pa

je potreben prehod na naslednjega.

Pravokotna razdalja med robotom in segmentom (daljico) je dolodena z normalnim

vektorjem vy,
T

d= —n—__
Vvolv,
Normiramo razdaljo d z dolzino daljice ter dobimo normirano pravokotno razdaljo

d,, med robotom in daljico

Ty

dn =

vlv,

Ko je robot na segmentu (daljici), je normirana razdalja d,, ni¢. Ko pa je robot na
desni strani segmenta (glede na vektor v), je d,, pozitivna in obratno. Normirana
razdalja d,, se uporablja za dolo¢anje Zelene smeri voznje robota. Ce je robot
na daljici ali v njeni neposredni blizini, ji mora slediti. Ce pa je robot dale¢
stran od daljice, se mora voziti pravokotno nanjo, da (¢im hitreje) prispe do nje.
Referencno smer voznje v nekem trenutku lahko dolo¢imo kot

Pref = Plin + Prot

kjer je i = atan2 (Ay, Ax) (Stirikvadratna inverzna funkcija tangens je defini-
rana v (2.11)) smer daljice in ¢, = arctan (K1d,,) popravek dodatne referencne
rotacije, ki robotu omogoca, da doseze daljico. Ojacenje K; spreminja obcu-
tljivost dodatnega referen¢nega kota .o+ glede na d,. Ker je ¢..; pridobljen
s sestevanjem dveh kotov, je potrebno poskrbeti, da bo v veljavnem obmocju
[—7, 7] (cikliénost kota).

Zaenkrat smo doloc¢ili referenéno smer, ki ji mora robot slediti, kar lahko dose-
zemo z uporabo primernega regulacijskega algoritma. Regulacijski pogresek je
opredeljen kot

€p = Pref — ¥
kjer je ¢ orientacija robota. Iz pogreska orientacije s pomocjo proporcionalnega
regulatorja izracunamo kotno hitrost robota

w = Kae,

kjer je Ky proporcionalno ojacenje. Podobno lahko izvedemo tudi PID regulator,
kjer z integracijskim ¢lenom povecujemo hitrost pribliZzevanja robota daljici (vse
manjsi e,), z diferencialnim ¢lenom pa zmanjsamo oscilacije, ki nastanejo zaradi
dodanega integracijskega clena. Translatorno hitrost robota v lahko vodimo z

osnovnimi pristopi, obravnavanimi v prejsnjih poglavjih.



w N

~
Q
1

84 Vodenje kolesnih mobilnih sistemov

Primer 3.6

Napisite algoritem vodenja za robota z diferencialnim pogonom, ki naj prevozi
zaporedje daljic, ki jih definirajo tocke Ty = [3, 0], Tb, = [6, 4], T3 = [3, 4],
T, = [3, 1] in T5 = [0, 3]. Pois¢ite ustrezne vrednosti parametrov K; in Ko.
Zacetna lega vozila je [2(0),y(0), v(0)] = [5m,1m, 108°]. Preizkusite algoritem
na simulaciji kinemati¢nega modela.

Resitev

Matlab koda mozne resitve je podana v programu 3.5. Referencna pot in dejanska
trajektorija gibanja robota sta prikazani na sliki 3.14, regulirni signali pa na sliki
3.15.

Program 3.5

./src/ctr/example_diff_point_sequence.m

Ts = 0.03; 7% Racunski korak

t = 0:Ts:30; % Cas simulacije

[3, 0; 6, 4; 3, 4; 3, 1; 0, 3].’; % Tocke referenénih daljic
[6; 1; 0.6*pil; % Zacletna lega

-
n

i = 1; % Indeks prve tocke
for k = 1:length(t)
% Referené&na daljica
dx = T(1,i+1) - T(1,i);
dy = T(2,i+1) - T(2,i);

v = [dx; dyl]; % Usmeritveni vektor referenine daljice
vN = [dy; -dx]; % Vektor ortogonalne usmeritve

q(1:2) - T(:,i);

v. *xr/(v. *v);

if u>1 && i<size(T,2)-1 % Pogoj za preklop na naslednjo daljico
i=1i+1;
dx T(1,i+1) - T(1,i);
dy = T(2,i+1) - T(2,i);
v = [dx; dyl;
vN = [dy; -dx]1;
r = q(1:2) - T(:,1i);

end
dn = vN.’*r/(vN.’*vN); % Normirana ortogonalna razdalja

philin = atan2(v(2), v(1)); % Usmeritev premice daljice

phiRot = atan(5*dn); % Ce smo dale& od premice, potem je potreben

% dodaten zasuk, da se usmerimo proti premici. Ce smo na levi strani,
% se obrnemo v smeri urinega kazalca, sicer v obratni smeri.

% 0jacenje 5 poveCa obcCutljivost.

phiRef = wrapToPi(philin + phiRot);

% Kotni pogresek
ePhi = wrapToPi(phiRef - q(3));

% Regulator
v = 0.4xcos (ePhi);
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end

w = 3*ePhi;

% Simulacije gibanja robota

dq = [v*xcos(q(3)); v*sin(q(3)); wl;

noise = 0.00; ’%SL Parameter za nastavljanje Suma (npr. 0.001)
q = q + Ts*dq + randn(3,1)*noise; 7 Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil

Slika 3.14: Referencna pot in dejansko gibanje robota iz primera 3.6

85
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Slika 3.15: Regulirni signali iz primera 3.6

Poskusite dopolniti kodo, da bo robot lahko vozil tudi vzvratno, ce je |e,| > 7.

3.3 Vodenje po referencni trajektoriji

V mobilni robotiki je pot krivulja, ki jo mora robot prevoziti v prostoru po-
splosenih koordinat. Ce je pot parametrizirana po ¢asu, torej gibanje po poti
je sinhronizirano s ¢asom, govorimo o trajektoriji. Kadarkoli je nacrt gibanja
robota znan vnaprej, lahko (referencno) trajektorijo robota zapisemo kot ¢asovno
funkcijo v prostoru posplosenih koordinat: gref(t) = [Zref(t), Yref(t), Pres O
Iz prakti¢nih razlogov je trajektorija vedno definirana na kon¢nem casovnem
intervalu ¢ € [0, T, kar pomeni, da ima referencéna trajektorija zacetno in konéno
tocko. Vodenje po referencni trajektoriji je mehanizem, ki zagotavlja, da je
trajektorija robota q(t) kljub morebitnim tezavam ¢im bolj podobna referenéni

Gref(t).
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3.3.1 Osnovni pristopi k vodenju po referencni

trajektoriji

Pri nacrtovanju vodenja si najprej predstavljamo referen¢no trajektorijo kot
referenc¢no pozicijo, ki se v vsakem racunskem koraku regulatorja premakne na
trenutno tocko referencne trajektorije (zref(t), yres(t)). V ta namen uporabimo
vodenje do referencne pozicije z regulacijskima zakonoma (3.10) in (3.11). Pozorni
moramo biti na to, da se robot ¢imbolj pribliza namisljeni referencni tocki. Pri
majhni hitrosti in Sumni meritvi pozicije se lahko zgodi, da se meritev pozicije
robota znajde pred trajektorijo. Zato je v taksnih situacijah izredno pomembno,
da pravilno ukrepamo, npr. z uporabo posodobljenega regulacijskega zakona
(3.12).

Ta pristop je nekoliko problematicen zaradi dejstva, da je tu povratna zanka
bolj obremenjena in so zato potrebna sorazmerno velika ojacenja regulatorja, da
bi bili regulacijski pogreski majhni. Posledi¢no je omenjen pristop dovzeten za
motnje v regulacijski zanki. Zatorej je koristno vpeljati predkrmiljenje, kar bo
predstavljeno v poglavju 3.3.2.

Primer 3.7

Trikolesni robot s pogonom na zadnjih kolesih iz primera 3.1 naj bo voden tako,
da sledi referencni trajektoriji z,c; = 1,1+0,7sin(2t) in yrey = 0,9+0,7sin(42L).
Zacetna lega vozila je [2(0),y(0), »(0)] = [1,1, 0,8, 0]. Napisite dva algoritma

vodenja in ju preizkusite na simulaciji kinemati¢nega modela:

o Prvi algoritem naj uporabi osnovna regulacijska zakona (3.10) in (3.11).

o Drugi algoritem naj uporabi nadgrajen regulacijski zakon (3.12).

Resitev

S spreminjanjem vrednosti spremenljivke UpgradedLaw lahko vodenje preklopimo
med t. i. osnovnim nac¢inom, podanim s (3.10) in (3.11), ter nadgrajenim, ki
ga podaja (3.12). Rezultati primera 3.7 so prikazani na slikah 3.16 in 3.17. V

prikazanem primeru osnovni in nadgrajeni regulacijski zakon delujeta enako.

Matlab koda je podana v programu 3.6.

Program 3.6
./src/ctr/example_tracking simple_control.m

Ts = 0.03; % Racunski korak
0:Ts:30; % Cas simulacije

0.1; % Razdalja med prednjo in zadnjo osjo
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q =

% Re
freq
xRef
yRef

% 0j
Kphi
Kv =

upgr
for
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[1.1; 0.8; 0]; % Zaletna lega

ferencna trajektorija
= 2xpi/30;
= 1.1 + 0.7xsin(freq*t);

= 0.9 + 0.7xsin(2*xfreq*t);
aenja regulatorja
= 2;
5;
adedControl = true; % Ta nastavitev se lahko spremeni na false

k = 1:length(t)

% Referenca

phiRef = atan2(yRef (k)-q(2), xRef(k)-q(1));
qRef = [xRef(k); yRef(k); phiRef];

% PogreSek glede na trenutno referencéno tocko
e = qRef - q; % PogreSek po x, y in kotu
e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil

% Regulator

alpha = e(3)*Kphi; % Regulacija usmeritve (osnovna)

v = sqrt(e(1)~2+e(2)72)*Kv; % Krmiljenje (osnovno)

if upgradedControl
% % Ce e(3) ni v obmoé&ju [-pi/2, pi/2], je potrebno priSteti +/- pi
% k e(3) in hitrost mora obrniti predznak

v = v*sign(cos(e(3))); 7% Sprememba predznaka hitrosti, &e je potrebno
e(3) = atan(tan(e(3))); % Zapis kota v obmo&ju [-pi, pil
alpha = e(3)*Kphi; % Regulacija usmeritve (nadgradnja)

end

% Mehanske omejitve robota
if abs(alpha)>pi/4, alpha = pi/4*sign(alpha); end
if abs(v)>0.8, v = 0.8*sign(v); end

% Simulacija gibanja robota

dgq = [v*cos(q(3)); v*sin(q(3)); v/d*tan(alpha)l;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil
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Slika 3.16: Preprosto vodenje po referencéni trajektoriji Ackermannovega pogona.
Crtkana krivulja prikazuje referenéno pot, polna krivulja pa dejansko pot.
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Slika 3.17: Regulirni signali preprostega vodenja po referenc¢ni trajektoriji Acker-
mannovega pogona
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3.3.2 Razclenitev vodenja na predkrmiljenje in

povratno zanko

Vodenje po referencni trajektoriji je pomembno tako s prakti¢nega kot teoretic-
nega vidika, saj se po Brockettovem pogoju neholonomicni sistemi ne morejo
asimptoticno stabilizirati okoli tezis¢a z uporabo gladke (tj. zvezno odvedljive)
Casovno nespremenljive povratne zanke [1]. Dobljeni rezultat je mogoce enostavno
preveriti na diferencialnem pogonu ter ga razsiriti na druge kinematike, vkljuéno
z Ackermannovo. Najprej preverimo, ali je sistem brez lezenja (stanja se ne
spreminjajo, ¢e ni vzbujanja). Ker je pri diferencialnem pogonu brez vodenja
(v =0, w = 0) odvod vektorskega polja ¢(t) enak 0, je to sistem brez lezenja.
Brockett [1] je dokazal, da mora imeti tak sistem enako Stevilo vhodov in stanj, da
ga lahko stabiliziramo z uporabo zvezne casovno nespremenljive povratne zanke.
V primeru diferencialnega pogona je ta pogoj ocitno krsen, zato je potrebno
poiskati druge vrste povratnih zank. Kljub temu so popolnoma neholonomiéni
sistemi brez lezenja Se vedno vodljivi v nelinearnem smislu, zato je mozno izvesti
asimptoti¢no stabilizacijo z uporabo ¢asovno spremenljivih, nezveznih ali hibri-
dnih regulacijskih zakonov. Omejitvi, ki jo dolo¢a Brockettov pogoj, se lahko
izognemo z uvedbo drugacne strukture vodenja. V primeru vodenja po referencni
trajektoriji se zelo pogosto uporablja dvoprostostni regulator, kjer en del pripada
predkrmiljenju, drugi pa povratni zanki.

Pred uvedbo predkrmiljenja in povratne zanke moramo dolociti Se eno pomembno
lastnost sistema. Sistem je diferencialno plosk (angl. differentially flat), e
obstaja nabor t. i. ploskih izhodov ter so lahko vsa stanja in vhodi sistema
zapisani kot funkcije teh ploskih izhodov in konc¢nega Stevila njihovih ¢asovnih
odvodov. To pomeni, da morata obstajati nelinearni funkciji f, in f,, ki
izpolnjujeta
. dr
x = fo(zf, 25, 2%, ... @zf)

. dr
w= f.(z7, 27,2, .. @zf)

kjer vektorji «, w in z; predstavljajo stanja sistema, vhode in ploske izhode,
medtem ko je p konéno celo stevilo. Potrebno je omeniti, da morajo biti ploski
izhodi funkcije stanj sistema, njegovih vhodov in konc¢nega stevila njihovih
(vhodnih) odvodov. To pomeni, da so v splosnem ploski izhodi fiktivni — niso
podobni dejanskim izhodom.

V primeru kinemati¢nega modela diferencialnega pogona, ki ga podaja (2.2),
sta ploska izhoda dejanska izhoda sistema x in y. Oba vhoda (hitrosti) in
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tretje stanje (orientacija robota) so lahko predstavljeni kot funkciji  in y ter
njuni odvodi. Vemo, da si lahko @ in ¢ predstavljamo kot kartezicni koordinati
translatorne hitrosti robota, zato ju uporabimo v izra¢unu hitrosti s pomocjo
Pitagorovega izreka

v(t) = /22(t) + §2(t) (3.13)

Zaradi neholonomi¢nih omejitev se kolesni robot z diferencialnim pogonom vedno
vozi v smeri svoje orientacije, kar pomeni, da je tangenta orientacije enaka
koli¢niku kartezi¢nih komponent translatorne hitrosti

o(t) = arctan <i§’3) (3.14)

Kotna hitrost w(t) je dolocena kot ¢asovni odvod orientacije ¢(t), ki jo podaja
enacba (3.14)

g (B0 ] _ 2050~ 500
ot = prton (55| = 5 0 519

in ni definirana le v primeru, ko je translatorna hitrost enaka 0.

Kartezi¢ni koordinati pozicije x in y sta prav tako ploska izhoda kinemati¢nega
modela kolesnega pogona na zadnje kolo, ki ga podaja enacba (2.15). Prvi dve
enachi tega kinematicnega modela sta enaki kot pri diferencialnem pogonu (2.2),
zato lahko orientacijo in hitrost zadnjega kolesa izra¢unamo s pomodjo (3.13) in
(3.14). Tretja enacba v sistemu enacb (2.15) je

vy (t)
= W tam (o))
od koder sledi dos
a(t) = arctan vf((t)) (3.16)

Vhod «a(t) lahko zapiSemo z ploskimi izhodi in njihovimi odvodi z vstavitvijo
izrazov (3.13) in (3.15) v (3.16) namesto v, (t) in ¢(¢)

(F0§(E) = (1))
(#2(1) + §2(1) "

d
a(t) = arctan

Zgornja analiza nam poda pomembno ugotovitev, da je Ackermannov pogon
strukturno enak diferencialnemu. Ce je dolocena regulirna veli¢ina {v(t),w(t)}
uporabljena na robotu z diferencialnim pogonom, je dobljena trajektorija enaka,

kot ¢e bi regulirno veli¢ino (v.(t), a(t)) = (v(t), arctan de(g)) uporabili na

robotu z Ackermannovim pogonom. Vecina primerov v nadaljevanju obravnava
robota z diferencialnim pogonom. Te rezultate je torej mogoce enostavno razsiriti
na robote z Ackermannovim pogonom in tudi na nekatere druge kinematic¢ne

strukture.

Ce je sistem plosk, lahko vse sistemske spremenljivke izrazimo iz ploskih izhodov
brez integracije. Koristna posledica tega dejstva je, da se lahko na podlagi refe-

rencne trajektorije analiti¢no izracunajo zahtevane regulirne velicine. V primeru
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kolesnega robota z diferencialnim pogonom enacbi (3.13) in (3.15) podajata
formule za izra¢un referen¢nih hitrosti vyef(t) in wref(t) iz referencéne trajektorije,
ki jo podajata z,cf(t) in yrer(t)

Ores (8) = 2, (8) + 52, 1) (3.17)

jJ?'ef (t)yref (t) — yT'ef (t)iT‘Ef (t)
i%ef (t) + yzef (t)

wre(t) = (3.18)

Podobne formule lahko pridobimo tudi za druge kinemati¢ne strukture, ki so
ploski sistemi.

Enacbi (3.17) in (3.18) podajata odprtozanéno vodenje, ki zagotavlja, da se v
idealnem primeru, kadar kinemati¢ni model robota natanc¢no opisuje gibanje
ter ni motenj, merskih napak in pogreska zacCetne lege, robot vozi po referenc¢ni
trajektoriji. Teh predpostavk nikoli popolnoma ne izpolnimo, zato je potrebno
tudi povratnozanc¢no vodenje. V teh primerih sta referencni hitrosti iz enacb
(3.17) in (3.18) uporabljeni v predkrmiljenju regulacijskega zakona, medtem ko je
za povratnozancno vodenje mogoce uporabiti Sirok spekter regulacijskih zakonov.
Nekatere od njih bomo obravnavali tudi v nadaljevanju.

3.3.3 Povratnozancna linearizacija

Ideja povratnozancne linearizacije je uvedba transformacije (obi¢ajno sistemskega
vhoda), ki linearizira sistem med novim vhodom in izhodom. Ker je novi sistem
linearen je mozna uporaba kateregakoli od obstojecih linearnih nacrtovalnih
postopkov vodenja. Najprej moramo zagotoviti, da je sistem diferencialno plosk
[6, 7]. V razdelku 3.3.2 smo pokazali, da je veliko kinemati¢nih struktur ploskih.
Nato je postopek nacrtovanja povratnozancne linearizacije sledec:

e Izbrati moramo ustrezne ploske izhode. Njihovo Stevilo naj bo enako stevilu
sistemskih vhodov.

e Ploske izhode odvajamo, za dobljene odvode pa je potrebno preveriti
funkcijsko odvisnost od vhodov sistema. Ta korak ponavljamo, dokler se
vsi vhodi (ali njihovi odvodi) ne pojavijo v odvodih ploskih izhodov. Ce
lahko iz tega sistema enacb izrazimo vse vhode (natancéneje njihove najvisje
odvode), lahko preidemo na naslednji korak.

e Resimo sistem enach za najvisje odvode posameznih vhodov. Za pridobitev
dejanskih vhodov sistema je potrebno na njihovih odvodih uporabiti verigo
integratorjev. Po drugi strani pa odvodi ploskih izhodov sluzijo kot novi
vhodi v sistem.

e Ker je dobljeni sistem linearen, lahko na teh novih vhodih uporabimo sirok

nabor moznih regulacijskih zakonov.
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V primeru kolesnega mobilnega robota z diferencialnim pogonom sta ploska
izhoda z(t) in y(t). Njun prvi odvod glede na kinemati¢ni model (2.2) je

T =17vCos
Yy =vsinp
V prvih odvodih se pojavi le translatorna hitrost v, zato ponovno odvajamo
L =1Ucosy —vpsine
1 = vsin @ 4+ v cos ¢

V drugih odvodih pa sta prisotni obe hitrosti (v in w = ¢). Zdaj je sistem enacb
preurejen tako, da so drugi odvodi ploskih izhodov opisani kot funkcije najvisjih
odvodov posameznih vhodov (v tem primeru sta to © in w)

Z|  |cose —wsing| (v _F v
il |sing wcose | |w| w

Uvedemo matriko F', ki je nesingularna, ce je v # 0. Sistem enacb je torej mogoce

el e
w Yy Y o | lY

Resitev w iz enacbe (3.19) je dejanski vhod robota, medtem ko je treba resitev o

resiti za v in w

integrirati, preden jo lahko uporabimo kot vhod. Novo pridobljeni linearni sistem
ima vhoda [u1,us]” = [#, 7] in stanja z = [z,y,#,9]7 (kinemati¢ni model (2.2)

ima tri stanja, etrto je posledica dodatnega integratorja). Dinamiko novega
sistema lahko priro¢no opisemo z zapisom v prostoru stanj

T 0 1 0 0] |z 0 0
3.7 _ 0 0 0 0] |z n 1 0] |ug (3.20)
Y 0 0 0 1f |y 0 0| |us
U 0 0 0 O] |y 0 1
ali v matricni obliki kot
z=Az+ Bu (3.21)

Sistem (3.21) je vodljiv, ker ima matrika vodljivosti
Q. = [B AB} (3.22)

polni rang in zato regulator stanj obstaja za poljubno izbran karakteristi¢ni
polinom zaprte zanke. Dodatna zahteva je zasnova regulacijskega zakona, da bo
robot sledil referencni trajektoriji. Pri ploskih sistemih je za ploske izhode podana
referencna trajektorija, v tem primeru je to yes(t) in yres(t). Potem je mogoce
zlahka pridobiti referenco za stanje sistema z,ef(t) = [Tref, Trefs Yrefs Yref)”
in vhod sistema u,.; = [iref,;%ref]T. Enacbo (3.21) lahko zapiSemo tudi za
referencne signale

Zref = Azref + Buges (3.23)
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Slika 3.18: Povratnozancna linearizacija za sledenje referenci

Pogresek med dejanskimi in referenc¢nimi stanji je opredeljen kot 2 = z — z,.y.
Ce odstejemo (3.23) od (3.21), dobimo

Z2=AZ+ B(u— Urey) (3.24)

Enacba (3.24) opisuje dinamiko pogreska stanj. Ta dinamika mora biti stabilna
in primerno hitra. Dinamiko zaprte zanke lahko dosezemo s predpisanimi za-
prtozan¢énimi poli. Kot smo Ze pokazali, je par (A, B) vodljiv in tako lahko
s pravilno izbiro konstantne matrike ojacenj regulatorja K (dimenzije 2 x 4)
dosezemo poljubne lokacije zaprtozanénih polov na levi strani kompleksne ravnine
s. Enacbo (3.24) lahko preuredimo kot

2= (A-BK)3+BK3+B(u—t,.;) = (A- BK)i+B(KzZ+u—u,.;) (3.25)

Ce je zadnji ¢len enacbe (3.25) enak 0, pogreski stanj konvergirajo proti 0 s
predpisano dinamiko, ki jo podaja zaprtozanéna matrika (A — BK). Da bo
zadnji izraz 0, moramo definirati sledec¢i regulacijski zakon

u(t) = K(z,e(t) — 2(1)) + wres (1) (3.26)

Shematski prikaz celotnega sistema vodenja je podan na sliki 3.18.

Parametre regulatorja (matriko ojacenj K) lahko dolo¢imo z metodo premikanja
polov s pomoc¢jo Ackermannove formule, ki jo najdete v klasi¢nih knjigah s
podrodja teorije regulacij [8]. Zaradi posebne oblike matrik A in B v (3.20),
kjer uwy vpliva samo na stanji z1 in zy ter us vpliva samo na stanji z3 in z4, ima
matrika ojacenj regulatorja posebno obliko

K:k1k200
0 0 ks kg

Regulacijski zakon (3.26) je torej mogoce popolnoma razcéleniti

(5% (t)

B(t) = ki (@rep (t) — (b)) + ko (rep(t) = (1)) + Zref (1)
(%) (t) ]

_. O (3.27)
y(t) = k3 (yref (t) - y(t)) + k4(y7”ef (t) - y(t)) + Yref (t>
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Predlagan pristop zahteva, da so vsa stanja znana. Medtem ko obicajno izme-
rimo z in y, njihovih odvodov ne. Odvode sicer lahko ocenimo z numeri¢nim
odvajanjem, vendar to poveCuje Sum in se ga zato v praksi izogibamo. Na voljo
sta dve resitvi:

e Neizmerjena stanja lahko ocenijo opazovalniki stanj.

e Ce izmerimo orientacijo robota ¢, lahko izracunamo odvode kot & = v cos ¢,
y =vsinp.

Prakti¢cna uporaba tega pristopa je prikazana v primeru 3.8.
Primer 3.8

Vodite vozilo z diferencialnim pogonom, da sledi referencni trajektoriji @,y =

L1+ 0,7sin(35) in yreg = 0,9 + 0,7sin(4). Racunski korak je T, = 0,033s.

Zacetna lega je [x(0),y(0), ¢(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite algoritem,
predstavljen v tem razdelku, in graficno prikazite rezultate.

Resitev

Koda je predstavljena v programu 3.7, rezultati primera 3.8 pa so prikazani na
slikah 3.19 in 3.20. V tem pristopu se ne pojavijo tezave periodi¢ne orientacije
(ni potrebno preslikati kotov na interval (—m, 7]). To izhaja iz dejstva, da se
orientacija vedno pojavi znotraj trigonometri¢nih funkcij, ki so same po sebi
periodicne.

Program 3.7
./src/ctr/example_tracking_ feedback_lin.m

Ts = 0.033; % Radunski korak
t = 0:Ts:30; % Cas simulacije

% Referenca
freq = 2%pi/30;
xRef = 1.1 + 0.7*xsin(freqgx*t); yRef = 0.9 + 0.7*xsin(2xfreqxt);
dxRef = freq*0.7*cos(freq*t); dyRef = 2*xfreq*0.7*xcos (2*xfreq*t);
ddxRef =-freq~2*0.7*sin(freq*t); ddyRef =-4xfreq”2x0.7*sin(2xfreqxt);
qRef = [xRef; yRef; atan2(dyRef, dxRef)];
uRef = [ddxRef; ddyRef];

q = [xRef (1)+.05; yRef(1)-0.1; 0]; % Zacetna lega

z1 = [q(1); dxRef(1)]; % Zaletno stanje [x, x’]

z2 = [q(2); dyRef(1)]; % Zacetno stanje [y, y’]

v = sqrt(z1(2)72+22(2)72); % Zaletno stanje hitrosti

% Matrike lineariziranega sistema

A = [0, 1; 0, 0]; B = [0; 1]; C = [1, O];

% Regulator stanj

desPoles = [-2-1i; -2+1i]; % Zeleni zaprtozané&ni poli

K = acker (A, B, desPoles); 7 0Ojacenje regularja po metodi premikanja polov
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22
23 for k = 1:length(t)

24 % Referenc¢na stanja

25 zRefl = [xRef (k); dxRef(k)];

26 zRef2 = [yRef (k); dyRef(k)];

27

28 % PogreSek in regulator

29 ezl = zRefl - z1;

30 ez2 = zRef2 - z2;

31 uu = [ddxRef (k); ddyRef (k)] + [Kxezl; K*ez2];

32

33 % Izracun regulirnih signalov

34 F = [cos(q(3)), -v*sin(q(3));

35 sin(q(3)), v*cos(q(3))];

36 vv = F\uu; % Translatorni pospeSek in kotna hitost

37 v = v + Ts*vv(1); ) Integracija translatornega pospeska

38 = [v; vv(2)]; % Regulirna signala

39

40 % Simulacija gibanja robota

a1 dg = [u(l)*cos(q(3)); u(l)*sin(q(3)); u(2)];

42 noise = 0.00; J% Parameter za nastavljanje Suma (npr. 0.001)
43 q = q + Ts*dq + randn(3,1)*noise; % Eulerjeva integracija
44 q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil

45

46 % IzraCun stanj na podlagi znane (izmerjene) orientacije in hitrosti
a7 z1 = [q(1); u(1)*cos(q(3))];

48 z2 = [q(2); u(1)*sin(q(3))];

49 end

1.4

y [m]

0.6

0.4

0 1 1 1 1
0 0.5 1 1B 2

x [m]

Slika 3.19: Vodenje po referenc¢ni trajektoriji diferencialnega pogona na podlagi
povratnozancne linearizacije iz primera 3.8 (referenca je oznacena s Crtkano
krivuljo)
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Slika 3.20: Regulirni signali vodenja po referencni trajektoriji diferencialnega
pogona na podlagi povratnozancne linearizacije iz primera 3.8

3.3.4 Izpeljava kinematicnega modela pogreska
vodenja pri sledenju referencne trajekto-

rije

Da resimo problem vodenja, obi¢ajno izvedemo ustrezno transformacijo koordinat
robota. Pozicijski pogresek je ponavadi podan v lokalnem koordinatnem sistemu
(robota), poravnan s pogonskim mehanizmom, in izrazen kot odstopanje virtu-
alnega referencnega robota od dejanskega robota, kar prikazuje slika 3.21. Na
sliki 3.21 so predstavljeni tudi vsi dobljeni pogreski: e, podaja pogresek v smeri
voznje, e, podaja pogreSek v pravokotni smeri in e, podaja pogresek orientacije.
Opisani pristop je bil prvi¢ uporabljen v [9].

Pogresek lege e(t) = [ew(t),ey(t),ew(t)]T je dolocen z dejansko lego q(t) =

[2(t), y(t), o(t)]" resniénega robota in referenéno lego ref(t) = [Tref(t), Yref(t), Pref "
virtualnega referencnega robota

e (t) cos(p(t)) sin(p(t)) 0
ey(t)| = [—sin(p(t)) cos(p(t)) O (@res(t) —q(t)) (3.28)
ey(t) 0 0 1
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Slika 3.21: Prikaz pozicijskega pogreska v lokalnih koordinatah

Ob predpostavki, da imata dejanski in referen¢ni robot enak kinemati¢ni model,
ki ga podaja (2.2), in ob upostevanju transformacije (3.28), lahko model pogreska

lege zapiSemo na naslednji nac¢in

€x cose, 0 -1 e

. . Uref

éy | = |sine, 0 L} +10 —ey|lu (3.29)
éy 0o 1| L 0 -1

kjer sta vref in wres linearna in kotna referenc¢na hitrost, podani z (3.17) in
(3.18). Regulator doloc¢a vhod u = [v, w]T. Zelo pogosto [10] je regulirna veli¢ina

w— v| Uref COS €y + Vfp
w Wref + Wb

u razclenjena kot

(3.30)

kjer sta vy, in wyp, povratnozanéna (regulacijska) signala, ki bosta dolocena ka-
sneje, vpef COS €, in wres pa sta signala predkrmiljenja, ¢eprav je tehniéno gledano
Vref COS €, moduliran s pogreskom orientacije, ki izvira iz izhoda. Po drugi strani
pa vref COS €, postane “pravo” predkrmiljenje, ko je pogresek orientacije enak 0.
Ce vstavimo regulirno veli¢ino (3.30) v (3.29), dobimo model sledilnega pogreska
€y = Wref€y — Vfp + EyWih
€y = —Wref€y + Urep Sin e, — gy (3.31)

690 = —Wsbp

Cilj vodenja je izni¢iti pogreske modela sledilnega pogreska (3.31) z ustreznima
regulirnima veli¢inama vy, in wyp. S tem se bomo ukvarjali v nadaljevanju.
3.3.5 Linearni regulator

Model pogreska (3.31) je nelinearen. V tem razdelku ga bomo linearizirali,
kar omogocCa uporabo linearne regulacije. Linearizacija mora potekati okoli
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ravnotezne tocke, zato izberemo tocko nicelnega pogreska (e, = e, = 0,e, = 0),
ki je logi¢na ravnotezna tocka modela (3.31), ¢e sta tudi obe hitrosti povratne
zanke enaki 0 (v, = 0, wy, = 0). Linearizacijo modela (3.31) okoli tocke
nic¢elnega pogreska zapisemo v obliki

éx 0 Wref 0 [ -1 0

. Vfp

Ey| = |—wref 0 Uper| |ey| +]10 O LU ] (3.32)
é, 0 0 0| e 0 —1|

Ta linearen sistem je ¢asovno spremenljiv, ker sta vyes(t) in wyey(t) asovno
odvisni.

Sistem (3.32) je predstavitev dinami¢nega sistemskega pogreska v prostoru stanj,
kjer so vsa stanja (v tem primeru pogreski) dostopna. Povratna zanka iz stanj je
torej mogoca (rezultira v uspesno vodenje), ¢e je sistem vodljiv. Ob predpostavki,
da sta vpes in wrep konstantni (referencna pot je sestavljena iz daljic in kroznih
lokov), lahko enostavno dokazemo, da je matrika vodljivosti (3.22) polnega ranga
in lahko vse pogreske izni¢imo z regulatorjem stanj. V primeru da vyc¢ in wres
nista konstantni, je sistem Se vedno vodljiv, ¢e je katerikoli od referen¢nih signalov
razlicen od 0. Tovrstna analiza pa je veliko bolj zapletena.

Zaradi posebne strukture sistema (3.32) se pogosto uporablja linearni regulator
stanj s preprosto obliko matrike ojacenj

€x

) k’x 0 0
) 0 ky k%,

€

Vidimo, da se pogresek v smeri voZnje popravi za vyp, medtem ko se pogreski v
orientaciji in bo¢nih smereh popravijo z w .

Ojacenja regulatorja (ks, ky, k) je mogoce dolociti s poskusanjem, z njihovo
optimizacijo na modelu sistema, z metodo premikanja polov itd. V nadaljevanju
so ojacenja regulatorja doloc¢ena z metodo premikanja polov tako, da poli sistema
lezijo na ustreznih lokacijah v kompleksni ravnini s. Sistem ima tri pole, torej je
vsaj en pol realen, druga dva pa lahko izberemo, da sta konjugirano kompleksna.
Predpostavimo, da so Zelene lege zaprtozanénih polov s; = —2¢w,, in s 3 =
—Cwp & wpy/1 — (2. Lastna frekvenca w, > 0 in koeficient duSenja 0 < { < 1
sta parametra, ki ju lahko nastavimo tako, da dosezemo zadovoljivo dusenje in
hiter prehodni pojav. Ce karakteristi¢ni polinom zaprtozanénega sistema

0 re 0 -1 0
Wref ke 0 0
sI3y3 — |—wrer 0 Vpeg| — |0 O 0 k&
0 0 0 0 -1 Y ¢

primerjamo z zelenim

(5 + 2Cwn) (8% + 2¢wns + wi)
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lahko dobimo reSitev za ojacenja regulatorja [6]

ki = ky = 2Cwn
w2 — wfef(t) (3.33)
ky(t) = N
Uref(t)

Upostevamo, da mora biti w,, veéja od najvecje vrednosti |wres(t)|. Ojacenja
regulatorja (3.33) se praktiéno ne uporabljajo, ker k,(t) postane izjemno velik, ko
je referencna hitrost v,e(t) majhna. To tezavo odpravimo s ¢asovno spremenljivo
lastno frekvenco w,. Ker je smiselno prilagoditi ¢as umiritve prehodnega pojava

glede na referencne hitrosti, se zdi primerna izbira: w,(t) = /w?, (1) + gv7; (1),
g > 0. Po ponovitvi podobnega postopka (kot zgoraj), dobimo naslednja ojadenja
regulatorja

V okviru algoritmov vodenja, predstavljenih v tem poglavju, moramo izpostaviti
dve pripombi:

e Regulacijski zakoni so zasnovani na podlagi lineariziranih modelov. Line-
ariziran model je veljaven le v blizini delovne toc¢ke (v tem primeru je to
tocka nicelnega pogreska) in pri velikih regulacijskih pogreskih njegova
uéinkovitost morda ne bo taksna, kot je bila pricakovana.

« Ce imamo opravka z linearnim, a ¢asovno spremenljivim sistemom, nekateri
rezultati linearnih ¢asovno nespremenljivih sistemov niso veé¢ veljavni. Tu
je potrebno omeniti, da je sistem morda nestabilen, cetudi vsi poli lezijo
na (fiksnih) lokacijah na levi strani kompleksne ravnine s.

Kljub omenjenim moznim tezavam se linearni regulacijski zakoni v praksi pogosto
uporabljajo zaradi njihove enostavnosti, razmeroma enostavne prilagoditve ter
sprejemljive zmogljivosti in robustnosti. Simulacija uporabe je podana v primeru
3.9.

Primer 3.9

Vodite vozilo z diferencialnim pogonom, da sledi referencni trajektoriji z,.r =
1,1+ 0,7sin(%) in yrey =09+ O,7sin(%). Racunski korak je T, = 0,033s,
zacetna lega pa [2(0),y(0),¢(0)] = [1,1, 0,8, 0]. Zapisite predstavljen algoritem
z ojacenji regulatorja, ki jih podaja (3.33), in graficno prikazite rezultate.
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Resitev

Matlab koda je podana v programu 3.8. Rezultati simulacije so prikazani na
slikah 3.22 in 3.23, kjer je prikazano dobro sledenje.

Program 3.8

./src/ctr/example_tracking linear_control.m

Ts = 0.033; % Racunski korak

2 t = 0:Ts:30; % Cas simulacije

3 = [1.1; 0.8; 0]; % ZacCetna lega

4

5 % Referenca

6 freq = 2*pi/30;

7 xRef = 1.1 + 0.7*sin(freqxt); yRef = 0.9 + 0.7*sin(2*xfreqx*t);
8 dxRef = freqx0.7xcos(freqxt); dyRef = 2*xfreq*0.7*xcos (2xfreq*t);
9

ddxRef =-freq~2*0.7xsin(freqx*t); ddyRef =-4*xfreq~2x0.7*sin(2*xfreqx*t);
10 qRef = [xRef; yRef; atan2(dyRef, dxRef)]; J) Reference trajectory

11 vRef = sqrt(dxRef. 2+dyRef."2);

12 wRef = (dxRef.*ddyRef-dyRef.*ddxRef)./(dxRef. 2+dyRef."2);

13 uRef = [vRef; wRef]; J), Referencni vhodi

14

15 for k = 1:length(t)

16 e = [cos(q(3)), sin(q(3)), O0;

17 -sin(q(3)), cos(q(3)), 0;

18 0, 0, 1]*(qRef (: ,k) - q); % Vektor pogreska
19 e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil

20

21 % Trenutni referenéni vhodi

22 vRef = uRef (1,k);

23 wRef = uRef(2,k);

24

25 % Regulator

26 eX = e(1); eY¥Y=e(2); ePhi=e(3);

27 zeta = 0.9; J Parameter za nastavljanje

28 g = 85; % Parameter za nastavljanje

29 Kx = 2%zeta*sqrt (wRef "2+gxvRef ~2);

30 Kphi = Kx;

31 Ky = g*vRef;

32 % O0jacenja so lahko tudi konstantna, npr.: Kx = Kphi = 3; Ky = 30;
33

34 % Regulator: krmiljenje in regulacija

35 v = vRef*cos(e(3))+ Kxxe(1);

36 w = wRef + Ky*e(2) + Kphi*e(3);

37

38 % Simulacija gibanja robota

39 dq = [v*cos(q(3)); v*sin(q(3)); wl;

40 noise = 0.00; % Parameter za nastavljanje 3Suma (npr. 0.001)
41 q = q + Ts*xdq + randn(3,1)*noise; % Eulerjeva integracija
42 q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil

43 end
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Slika 3.22: Vodenje diferencialnega pogona po referencni trajektoriji iz primera
3.9 (referenca je oznacena s ¢rtkano krivuljo)
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Slika 3.23: Regulirni signali vodenja diferencialnega pogona po referencni trajek-
toriji iz primera 3.9
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3.3.6 Nacrtovanje vodenja na osnovi funkcij Lja-

punova

Kot smo Ze omenili, je model pogreska (3.31) sam po sebi nelinearen. Nelinearne
sisteme je najbolje voditi z nelinearnim regulatorjem, ki med nacrtovanjem
vodenja uposteva vse lastnosti sistema. Teorija, ki temelji na funkcijah Ljapunova,
se pogosto uporablja za resevanje tezav pri stabilizaciji nelinearnega sistema. V
nasem primeru bomo (asimptoti¢no) stabilnost modela pogreska (3.31) analizirali
glede na razli¢ne regulacijske zakone.

Stabilnost Ljapunova

Na kratko je predstavljena druga metoda Ljapunova, ki zagotavlja zadostne
pogoje za (asimptoti¢no) stabilnost ravnoteznih tock nelinearnega dinamiénega
sistema & = f(x), € R. Najprej predpostavimo, da ravnotezje lezi v & = 0.
Pristop temelji na pozitivno definitnih skalarnih funkcijah V(x) : R* — R, za
katere velja V(x) = 0, ¢e je x = 0, in V(x) > 0, ko je & # 0. Stabilnost
ravnotezne tocke preverimo z odvodom funkcije V. Pomembno je, da dobimo
odvod kot resitev diferencialne enacbe sistema

V= %m = g—z (x)

Ce velja V < 0 (V je negativno semidefinitna funkcija), je ravnotezje (lokalno)
stabilno. Ce pa velja V < 0, razen pri € = 0 (V je negativno definitna funkcija),
je ravnotezje (lokalno) asimptoti¢no stabilno. Ko je lim|z|_,o V(x) = o0, so
rezultati globalni. Zato pristop temelji na iskanju funkcij z navedenimi lastnostmi,
ki jih imenujemo funkcije Ljapunova. Za kandidata obicajno izberemo kvadratno
funkcijo Ljapunova in ¢e je mozno pokazati, da je njen odvod negativen ali vsaj

nié¢, je sistem stabilen.

Klasi¢na razlaga funkcij Ljapunova temelji na energiji sistema. Ce se energija
disipativnega sistema uporablja kot funkcija Ljapunova, se njegova energija ne
more povecati (odvod funkcije ni pozitiven). Posledi¢no ostanejo vsi signali
omejeni in lahko potrdimo stabilnost sistema. Vendar je potrebno poudariti,
da funkcija Ljapunova morda ni povezana z energijo sistema. Predvsem pa
je v okviru nelinearnosti “stabilnost sistema” napacen termin. Namesto tega
je potrebno analizirati stabilnost ravnoteznih tock ali bolj splosno stabilnost
invariantnih mnozic. Mozno je najti sisteme, v katerih obstajajo tako stabilne
kot nestabilne ravnotezne tocke.
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Nacrtovanje vodenja v okviru stabilnosti Ljapunova

V nadaljevanju bomo pokazali, kako lahko teorem stabilnosti Ljapunova upo-
rabimo za namen nadrtovanja vodenja. Na§ nelinearni sistem (3.31) ima tri
stanja z ravnotezno tocko pri e = 0. Zelimo oblikovati vodenje, ki bo to to¢ko
stabiliziralo; ¢e je mozno, naj bo tocka asimptoti¢no stabilna, kar pomeni, da bi se
vse trajektorije scasoma priblizale referencni in tam ostale za vedno. Najocitnejsi
kandidat za funkcijo Ljapunova je vsota treh kvadratov pogreskov

L

k
Vie) = (e +e) + 565

2

to si lahko razlagamo kot uravnotezeno vsoto kvadratov pogreskov razdalje
in orientacije. Zaradi razlicnih enot moramo dodati pozitivno konstanto k,,
vendar se bo pozneje pokazalo, da ta konstanta igra pomembno vlogo pri zasnovi
regulacijskega zakona. Casovni odvod funkcije V' je

V= kyerer + kyeyey + epé,
vendar je potrebno ta odvod ovrednotiti glede na resitve modela (3.31), kar
pomeni, da moramo vpeljati odvode pogreska iz (3.31)

V(e) = kyeq (wrepey — vgp + eywyp) +
+ kyey (—Wref€z + Uref Sine, — egwep) + €, (—wiyp) (3.34)

= —kyezVsp + kyvrepey sine, — epwyy

Osnovna ideja vodenja, ki temelji na metodi Ljapunova, je ustrezna izbira
regulacijskega zakona, ki zagotovi, da je odvod funkcije Ljapunova negativen.
V tem primeru je precej ocitno, kako lahko izvedemo regulacijski algoritem.
Clen —kyezvpp v (3.34) bo negativen, ¢e bo linearna hitrost vy, proporcionalna
pogresku e,, saj je kvadrat pogreska e2 pozitiven. Podobno bo ¢len —e,wyp v
(3.34) vedno negativen, ¢e bo kotna hitrost wy;, proporcionalna pogresku e,. S
primerno modifikacijo kotne hitroste wy; lahko dosezemo Se, da izni¢imo ¢len
kyvrepeysine, v (3.34). S tem zagotovimo, da je odvod funkcije Ljapunova (3.34)
negativen. Regulacijski zakon, ki to izpolnjuje, je

Vfp = krer
sine (3.35)
Wy = kyvrefiwey + k@GSa
€p
Ta regulacijski zakon je dobro znan in uveljavljen [6, 11]. Uvedemo predlagano
vodenje (3.35) in V postane

V = —kokyel — kel (3.36)

Ojacenja vodenja so pozitivna, kasneje pa se bo pokazalo, da sta lahko k, in k,
poljubni enakomerno zvezni pozitivni funkciji, medtem ko mora biti k, pozitivna
konstanta. Odvod funkcije Ljapunova oc¢itno ni pozitiven, ker pa je ocenjen na
ni¢ pri e, =0, e, = 0, ne glede na ey, je odvod negativen in semidefiniten; tudi
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ravnotezje je stabilno. To pomeni, da bo pogresek ostal omejen, vendar nismo
dokazali njegove konvergence proti 0.

Analiza konvergence pogreska je bistveno tezja, zato moramo uvesti nekaj doda-
tnih matematiénih orodij. Pomembno vlogo bodo igrale norme signalov. Norma
L, funkcije z(t) je definirana kot

el = ([ tatoor df)l/p

kjer je | - | (skalarna) dolZina vektorja. Ce zgornji integral obstaja (je konc¢en),
funkcija z(t) pripada £,. Omejitev p na neskon¢nost zagotavlja zelo pomemben
razred funkcij Lo, t. i. omejene funkcije.

Za dokazovanje stabilnosti regulacijskih zakonov bomo uporabili dve zelo znani
lemi. Prva je Barbalatova lema, druga pa je njena izpeljava. Obe lemi sta vzeti
iz [12].

Lema 3.1 (Barbalatova lema). Ce lim; o fot f(r)dr obstaja in je koncna ter
je f(t) enakomerno zvezna funkcija, potem velja lim;_,» f(t) = 0.

Lema 3.2. Ce velja f, f € Lo in f € L, za dolocene p € [1,00), potem f(t) — 0
kot — oo.

Zdaj smo pripravljeni obravnavati problem konvergence pogreska v (3.31). Zaradi
(3.36) je V < 0, zato funkcija Ljapunova ne naradca in ima limito lim_,. V(t).
Posledi¢no so stanja modela (3.31) omejena

€z, €y, €p € Lo

Poleg tega iz (3.35) izhaja, da so regulirni signali omejeni, iz (3.31) pa da so
omejeni odvodi pogreskov

Vb, Wiby €z, Ey, €p € Log

kjer smo upostevali, da so vyef, Wrey, kz in k, omejeni. Slednje velja v primeru
ploskih referen¢nih trajektorij (Tref, Yref, Pref)-

Da dokazemo asimptoti¢no stabilnost modela (3.31), najprej izra¢unamo integral
V iz (3.36)

/’Vﬁ:VWﬁ—Wm:—/ %%%@,/ ke dt
0 0 0

Ker je V pozitivno definitna funkcija, velja naslednja neenakost

V(0) > /0 kykye2 dt +/O kzwei dt > Exky/o e2 dt —|—E¢/O ei dt
kjer sta uvedeni spodnji meji funkcij k5 (t) in k,(t)

ky(t) >k, >0
ko(t) > k, >0
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Iz (3.3.6) izhaja, da pogreska e, (t) in e, (t) pripadata L£o. Na podlagi leme 3.2 je
mozno enostavno pokazati, da pogreska e,(t) in e, (t) konvergirata proti 0. Ker
obstaja limita lim; .., V'(¢), potem obstaja tudi lim;_,, €, ().

Videli smo, da je razmeroma enostavno prikazati konvergenco pogreskov e,(t) in
e, (t) proti 0. Tudi pogoji za konvergenco so dokaj blagi — ojacenja regulatorja
in referencne trajektorije morajo biti omejeni. Konvergenco e, proti 0 pa je tezje
dokazati, saj so zahteve veliko tezje dosegljive, kot bo prikazano v nadaljevanju.
Poleg tega, da so ojacenja regulatorja enakomerno zvezna, morajo biti referencne
hitrosti neprestano vzbujene, torej vres in wy.y ne smeta limitirati proti 0. Zato
bomo obravnavali dva primera. V prvem predpostavimo v,.s - 0, v drugem pa

wrer = 0.

Predpostavimo, da je lim;_,oc vref(t) # 0. Uporaba leme 3.1 na é,(t) iz (3.31)
zagotavlja, da lim; . é,(t) = 0, saj limita lim;_, e,(t) obstaja in je koné¢na,
odvod é,(t) pa je enakomerno zvezen. Slednje velja zaradi (3.31), ¢e je wyy
enakomerno zvezna. Enakomerno zveznost funkcije f(t) na [0,00) preverimo
tako, da pogledamo, ali velja f7f € L. Prej smo dokazali, da sta e, in
e, enakomerno zvezna, medtem ko sta ojacenje regulatorja k, in referencna
hitrost v..s enakomerno zvezna ob predpostavki iz (3.35), da je odvod é,(t) tudi
enakomerno zvezen. Tako smo dokazali, da lim;_, é,(t) = 0 velja (kar je enako
limy o0 wyp(t) = 0). Konvergenca e, proti 0 izhaja iz (3.35)

sin ey,

6¢—>0k Eﬁoo,wfb%Oékyvref ey—>0

k‘vref “’ey—>0gm€“’—>1k >0,V > 0=¢, =0

Zdaj predpostavimo limy_, o wres(t) # 0. Spet je potrebno zagotoviti, da velja
limy_ oo wyp = 0. Kot smo Ze pokazali, to drzi, ¢e sta v,.s in k, enakomerno
zvezna. Nato se Barbalatova lema (lema 3.1) uporabi na é, v (3.31). Za eg, e,
in wyp, smo tudi Ze pokazali, da so enakomerno zvezni. Ob predpostavki, da je k,
enakomerno zvezen, sta tudi v, in wy.¢ enakomerno zvezni. To dokazuje izraz
lim;_, o0 €, (t) = 0. Podobno lahko sklepamo, da zadnja dva izraza v enacbi (3.31)
za é, limitirata proti 0, ko gre ¢ proti neskoncnosti. Posledi¢no gre tudi produkt
wref€y proti 0. Ker je wy.s neprestano vzbujena in ne gre proti 0, mora iti e,
proti 0.

Se enkrat je potrebno poudariti, da je za konvergenco e, in e, potrebna le
omejenost vy..r ali wy.r. Precej tezja naloga je voditi ey na 0. To dosezemo z
neprestanim vzbujanjem v,.s ali wycr. Vsi rezultati so veljavni globalno, kar
pomeni, da je konvergenca zagotovljena ne glede na zacetno lego.

Primer 3.10

Vodite vozilo z diferencialnim pogonom, da sledi referen¢ni trajektoriji x .y =
1,1+ 0,7sin(3%) in yrep = 0,9 + 0,7sin(37E). Racunski korak je Ty = 0,033,
zacetna lega pa je [x(0),y(0),¢(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite
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predstavljeni algoritem vodenja, preizkusite razlicna ojacenja in graficno prikazite
rezultate.

Resitev

Koda je podana v programu 3.9. Rezultati simulacije primera 3.10 so prikazani
na slikah 3.24 in 3.25, kjer je ponazorjeno dobro sledenje. Upostevamo, da se za
kx(t) in k,(t) lahko uporabi poljubna pozitivna funkcija. V tem primeru smo
izbrali taksne funkcije, da dobimo enak linearni model sistema kot v primeru
linearnega regulatorja (primer 3.9). Regulacijski zakoni niso enaki razen v mejnih
primerih (e, — 0). Tako je oblika prehoda podobna referenéni trajektoriji, ne
glede na referenc¢ne hitrosti.

Program 3.9
./src/ctr/example_tracking nonlinear_control.m

Ts = 0.033; % Racunski korak
t = 0:Ts:30; % Cas simulacije
q = [1.1; 0.8; 0]; % Zaietna lega

% Referenca

freq = 2*xpi/30;

xRef = 1.1 + 0.7*sin(freqx*t); yRef = 0.9 + 0.7*sin(2*xfreqx*t);

dxRef = freq*0.7*cos(freqg*t); dyRef = 2*xfreq*0.7*xcos (2xfreq*t);
ddxRef =-freq 2*0.7*sin(freqx*t); ddyRef =-4xfreq”2*0.7*sin(2xfreq*t);
qRef = [xRef; yRef; atan2(dyRef, dxRef)]; J Referencna trajektorija
vRef = sqrt(dxRef. 2+dyRef."2);

wRef = (dxRef.*ddyRef-dyRef.*ddxRef)./(dxRef. 2+dyRef."2);

uRef = [vRef; wRefl; % Referenéni vhodi

for k = 1l:length(t)
e = [cos(q(3)), sin(q(3)), O;
-sin(q(3)), cos(q(3)), 0;
0, 0, 1]*(qRef (:,k) - q); % Vektor pogreska
e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil

% Trenutni referenéni vhodi
vRef = uRef (1,k);
wRef = uRef (2,k);

% Regulator

zeta = 0.9; % Parameter za nastavljanje
g = 85; % Parameter za nastavljanje
Kx = 2%zeta*sqrt(wRef~2 + gxvRef~2);
Kphi = Kx;

Ky = g;

% 0jacenji Kx in Kphi sta lahko tudi konstantni.
% Ta oblika omogoCa, da je duSenje v prehodnem pojavu
% neodvisno od referenénih hitrosti.

% Regulator: krmiljenje in regulacija
v = vRefxcos(e(3)) + Kxxe(1l);
w = wRef + Ky*vRefx*sinc(e(3)/pi)*e(2) + Kphix*e(3);

% Simulacija gibanja robota
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dq = [v*cos(q(3)); v*sin(q(3)); wl;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)

q = q + Tsxdq + randn(3,1)#*noise; % Eulerjeva integracija

q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil
end

1.6 |

14}

y [m]

0.8

0.4r

02F

(=]

Slika 3.24: Nelinearno vodenje po referenc¢ni trajektoriji vozila z diferencialnim
pogonom iz primera 3.9 (referenca je oznacena s ¢értkano krivuljo)
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o [rad/s]

t[s]

Slika 3.25: Regulirni signalni nelinearnega vodenja po referencni trajektoriji
vozila z diferencialnim pogonom iz primera 3.9

Razvoj periodi¢nega regulacijskega zakona

Tezava sledenja je ocitno periodi¢nost glede na orientacijo. To je mogoce opaziti
iz kinemati¢nega modela z uporabo poljubne regulirne veli¢ine in poljubnega
zaletnega pogoja, ki podajata dolo¢eno trajektorijo robota. Ce isto regulirno
veli¢ino uporabimo na dejanskem robotu in se zacetni pogoj razlikuje od prejsnjega
samo za veckratnik 27, dobimo enak odziv za x(t) in y(t); tudi ¢(t) se od prejsnje
resSitve razlikuje za isti veCkratnik 27. Periodi¢na narava se mora odrazati tudi
v uporabljenemu regulacijskemu zakonu. To pomeni, da moramo poiskati tak
regulacijski zakon, ki je periodic¢en glede na pogresek orientacije e, (perioda je
27) in zagotavlja, da je konvergenca pogreska lege e enaka [0 0 2k7]|T (k € Z).
Tako zmanjSamo vse obicajne probleme s preslikavo orientacije na (—m,]. Ti
problemi lahko v doloéenih aplikacijah postanejo kriti¢ni okoli £180°, npr. pri
uporabi opazovalnika za oceno lege robota iz zakasnelih meritev. Velja opomniti,
da so doloceni regulacijski zakoni periodi¢ni v smislu predhodne diskusije, npr.
regulacijski zakon povratnozancne linearizacije, ki ga podajata (3.19) in (3.27).

Ocitno bi morale biti funkcije, uporabljene v razdelku o analizi konvergence, peri-
odi¢ne tudi glede na e,. To pomeni, da imajo te funkcije ve¢ lokalnih minimumov
in zato ne izpolnjujejo pogojev za klasiéne funkcije Ljapunova. Ceprav je analiza
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stabilnosti podobna direktni metodi Ljapunova (druga metoda Ljapunova), s to
teorijo stabilnosti konvergenca ni dokazana, ker pri nasem pristopu ni potrebno,
da e konvergira proti ni¢. Kljub temu bomo v tem poglavju funkcije, uporabljene
za analizo konvergence, Se vedno imenovali “funkcije Ljapunova”.

Nas cilj je spraviti pozicijski pogresek na ni¢, medtem ko pogresek orientacije
konvergira proti poljubnemu veckratniku 27. Da to dosezemo, bomo uporabili
funkcijo Ljapunova, ki je periodi¢na glede na e, (z osnovno periodo 2m). Najprej
bo koncept prikazan na eni funkciji Ljapunova, kasneje pa ga bomo posplosili.
Prvi kandidat za funkcijo Ljapunova je izbran kot

2
tan <&

Vo) < ()

2

kjer je k, pozitivna konstanta. Njen odvod, upoStevajo¢ enacbe (3.31), pa je

V = kyeq (Wrepey — vpp + eywep) +

. tan &2
+ kyey (—wWrepes + Upeg sine, — ezwpp) — 2@ b (3.37)
. tan %"
= —kyezvsp + kyvrepeysine, — 2COSTeiwfb
2

Ce uporabimo regulacijski zakon

Vfp = kxew

€ .
Wep = kyUrerey cos? ?‘D + k,sineg,

kjer sta k; in k, pozitivno omejeni funkciji, je odvod V iz enacbe (3.37) enak

e 2
. tan =2
V= *kmkyei —ky <12>

2

Nato lahko sledimo istim korakom kot v analizi regulacijskega zakona (3.35)
in ugotovimo, da e, in tan %" konvergirata proti 0 (to pomeni, da velja e, —
2kw, k € 7Z) v primeru omejenih ojafenj regulatorja in omejene trajektorije.
Konvergenca e, proti 0 se lahko zaklju¢i tudi po dolgotrajni analizi, ¢e so
izpolnjeni isti pogoji kot v primeru regulacijskega zakona (3.35).

Primer 3.11

Vodite vozilo z diferencialnim pogonom, da sledi referenéni trajektoriji x,.r = 1,1+
0,7 sin(%) in yrey =0,940,7 sin(%). Racunski korak je T, = 0,033 s, zacetna
lega pa [2(0),y(0),¢(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite predstavljeni
algoritem vodenja, preizkusite razlicna ojacenja regulatorja in graficno prikazite
rezultate.
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Resitev

Koda je predstavljena v programu 3.10. Rezultati simulacije so prikazani na
slikah 3.26 in 3.27, kjer je ponazorjeno dobro sledenje.

Program 3.10

./src/ctr/example_tracking periodic_control.m

Ts = 0.033; % Racunski korak
0:Ts:30; % Cas simulacije
[1.1; 0.8; 0]; % ZaCetna lega

ot
n

% Referenca

freq = 2%pi/30;

xRef = 1.1 + 0.7*sin(freqx*t); yRef = 0.9 + 0.7*sin(2*freqx*t);

dxRef = freq*0.7*cos(freqxt); dyRef = 2xfreq*0.7*xcos (2*xfreq*t);
ddxRef =-freq 2*0.7xsin(freq*t); ddyRef =-4*xfreq”2*0.7xsin(2*xfreq*t);
qRef = [xRef; yRef; atan2(dyRef, dxRef)]; J) Referencna trajektorija
vRef = sqrt(dxRef.”2+dyRef.”2);
wRef = (dxRef.*ddyRef-dyRef.*xddxRef)./(dxRef. 2+dyRef . 2);
uRef = [vRef; wRefl; % Referenéni vhodi

for k = 1:length(t)
e = [cos(q(3)), sin(q(3)), O0;
-sin(q(3)), cos(q(3)), 0;
0, 0, 11*x(qRef (:,k) - q); % Vektor pogreska
e(3) = wrapToPi(e(3)); % Zapis kota v obmoé&ju [-pi, pil

% Trenutni referenéni vhodi
vRef = uRef (1,k);
wRef = uRef (2,k);

% Regulator
eX = e(1); eY = e(2); ePhi = e(3);

zeta = 0.9; ) Parameter za nastavljanje
g = 85; % Parameter za nastavljanje
Kx = 2*zeta*sqrt (wRef "2+g*vRef ~2);

Kphi = Kx;

Ky = g;

% 0jacenji Kx in Kphi sta lahko tudi konstantni.
% Ta oblika omogoa, da je dudenje v prehodnem pojavu
% neodvisno od referené¢nih hitrosti.

% Regulator: krmiljenje in regulacija
v = vRefx*cos(e(3)) + KxxeX;
w = wRef + Ky*vRefx*(cos(ePhi/2)) 4*eY + Kphi*sin(ePhi);

% Simulacija gibanja robota

dg = [v*cos(q(3)); v*sin(q(3)); wl;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = q + Tsxdq + randn(3,1)#*noise; % Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil
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Slika 3.26: Nelinearno vodenje po referenc¢ni trajektoriji vozila z diferencialnim
pogonom iz primera 3.11 (referenca je oznacena s ¢rtkano krivuljo)
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Slika 3.27: Regulirni signali nelinearnega vodenja po referenc¢ni trajektoriji vozila
z diferencialnim pogonom iz primera 3.11
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Dobro znan regulacijski zakon Kanayama [10] lahko analiziramo v predlaganem
okvirju. Rezultat izbire funkcije Ljapunova

V:k—y(62—1—62)-i-l(ﬁ)2
2 \"z Yy 2 I

in uporabe regulacijskega zakona, predlaganega v [10] (v drugem izrazu za wyy,
je bil tudi tretji faktor |v,.f|, ki ga lahko vklju¢imo v k)

Vfp = ]{37«67« (3 38)
Wrp = kVrerey + k,sine,

je stabilen sistem pogreskov, kjer se lahko konvergenca vseh pogreskov prikaze pod
enakimi pogoji kot prej. Upostevamo, da poleg stabilnih ravnotezij pri e, = 2k,
k € Z obstaja tudi nestabilno (odbijajoce se) ravnotezje pri e, = (2k + 1)m,
keZ.

Okvir za zasnovo periodi¢nega zakona vodenja je predstavljen v [13]. Velja
omeniti, da je precej preprosto razsiriti predlagane tehnike na zasnovo vodenja
za simetricna vozila, ki se lahko med normalnim delovanjem premikajo naprej in
nazaj. V tem primeru morajo biti funkcije Ljapunova periodi¢ne s periodo 7 na

€yp-

Model pogreska sistema s Stirimi stanji

Zdaj se bomo lotili istega problema kot v prejsnjem poglavju. Z vidika vodenja
pogosto zelimo slediti vsaki legi robota, ki se razlikuje od referencne za veckratnik
kota 360°. Model (3.31) ne olajsa omenjenega problema, ker je obi¢ajno potrebno
pogresek orientacije izni¢iti z uporabo (3.31). V tem poglavju je predstavljen
kinematicni model sistema, kjer so vse lege, ki se v orientaciji razlikujejo za
veckratnik kota 360°, predstavljene kot ena lega. To lahko dosezemo z razsiritvijo
vektorja stanj za en element. Spremenljivko ¢(t) iz prvotnega kinemati¢nega
modela (2.2) zamenjata dve novi spremenljivki s(t) = sin(p(t)) in ¢(t) = cos(p(t)).
Njuna odvoda sta

$(t) = cos(o(t))p(t) = c(t)w(t)
é(t) = —sin(p(t))(t) = —s(t)w(t)

Tako dobimo nov kinemati¢ni model

STV TN
Il

SO O w o
o o
1
4

| S|
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Novi pogreski so opredeljeni kot

€y = C(xref - .Z‘) + S(yref - y)
ey = —S(Xpef — )+ C(Yrer — Y
Yy ' ( ref ) ( Tef ) (3.39)
es = Sin(Qref — @) = €SI Pref — SCOS Prey
€cos = COS(Pref — ) = CCOS Pref + SSIN Qref
Po odvajanju enacb (3.39) in nekaj manipulacij dobimo naslednji sistem
€y = Uref€cos — U + EyW
€y = Upefs — €gW
€s = Wref€cos — €cosW
écos = —Wref€s + esw
Tako kot v (3.30) bosta tudi v tem regulacijskem zakonu uporabljena v =
UpefCeos + Vfp iN W = wres + wypp. Cilj vodenja je voditi ey, e, in ey proti 0.
Spremenljivka e.,s je pridobljena kot kosinus pogreska orientacije in jo je treba
voditi proti 1. Zato bo nov pogresek definiran kot e, = e.,s — 1 in tako je konc¢ni
model sistemskega pogreska

€y = Wrefly — Vfp + €yWieh

€y = —WrefCy + Vpefs — €xWyp (3.40)
€s = —€cWrp — W
€c = esWyyp

Na podlagi pristopa Ljapunova bomo razvili regulator, ki doseze asimptoti¢no
stabilnost modela pogreska (3.40). Zelo neposredna ideja je uporaba sledece
funkcije Ljapunova

k 1
Vo=35 (e2+e))+ 3 (e2+e?) (3.41)

Zanimivo, ta funkcija Ljapunova vodi do regulacijskega zakona (3.38). Vendar
bo tukaj predlagana nekoliko bolj kompleksna funkcija, ki kot poseben primer
vkljuCuje tudi funkcijo (3.41). Za doseg cilja vodenja je predlagan naslednji
kandidat za funkcijo Ljapunova

V= g (¢ +e2) + &+ c?) (3.42)

2(1+ <) (
kjer sta k > 0 in a > 2 konstanti. Upostevamo, da je [—2, 0] obmocje funkcije
ec = cos(pref — ) — 1 in zato

_2 ¢
0<% <14 % <

a a

' . (3.43)
1< <
ST+ T a-2

Zaradi (3.43) je funkcija Vg (3.41) spodnja meja funkcije V' (3.42), pa tudi V
izpolnjuje pogoje za funkcijo Ljapunova. Vloga clena (1 + %) bo pojasnjena
kasneje. Funkcijo V' lahko poenostavimo na naslednji nacin

e2te2=e2 4 (eos — 1)? =2 — 2e00s = —2e, (3.44)



3.3. Vodenje po referencni trajektoriji 115

UpostevajoC enacbe modela pogreska (3.40) in (3.44), je odvod V (3.42) enak

. 1 —leswfb(—2ec)
V = —keyvpp + kvpepeyes + ————(—2e,wypp) + —4————
T 2(1+ %) 2(14 %)
= —kegvpy +es | kvpesey — %
i+ %)

Da bo V negativno semidefinitna, predlagamo sledeéi regulacijski zakon

Vfy = kwew

N2 en2]™ (3.45)
e (12 s 1)
Wb UrefCy + o + Ks€ [ + o
kjer sta funkciji k,(t) in ks(t) pozitivni za n € Z. Iz prakti¢nih razlogov je
n majhno Stevilo (obi¢ajno izberemo —2, —1, 0, 1 ali 2). Z upostevanjem
regulacijskega zakona (3.45) postane funkcija V'

n—1

. 2
V = —kkye? — kye? {(1 + %) ] (3.46)

Ponovno je preprosto prikazati konvergenco e, in e; na podlagi (3.46). Prikaz
konvergenc e, in e. pa je spet nekoliko zahtevnejsi [14].

Primer 3.12

Vodite vozilo z diferencialnim pogonom, da sledi referen¢ni trajektoriji z,.r =
1,1+ 0,7sin(%) in yrer = 0,9 + O,7sin(%). Racunski korak je Ty = 0,033 s,
zaCetna lega pa je [x(0),y(0),¢(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite
predstavljeni algoritem vodenja ter preizkusite razlicna ojacenja in dodatne

parametre vodenja (a in n).

Resitev

Matlab koda je navedena v programu 3.11. Rezultati simulacije so prikazani na
slikah 3.28 in 3.29, kjer je predstavljeno dobro sledenje.

Program 3.11
./src/ctr/example_tracking four_state_control.m

Ts = 0.033; % Racdunski korak
t 0:Ts:30; % Cas simulacije

[1.1; 0.8; 0]; % ZacCetna lega

% Referenca
freq = 2*pi/30;

xRef = 1.1 + 0.7*sin(freqx*t); yRef = 0.9 + 0.7*sin(2*freq*t);
dxRef = freq*0.7*cos(freqg*t); dyRef = 2xfreqx0.7xcos(2*xfreq*t);
ddxRef =-freq~2*0.7xsin(freq*t); ddyRef =-4*xfreq”2*0.7xsin(2*xfreq*t);
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qRef
vRef
wRef
uRef

for

end

Vodenje kolesnih mobilnih sistemov

= [xRef; yRef; atan2(dyRef, dxRef)]; 7 Referencna lega
= sqrt (dxRef . 2+dyRef ."2);

= (dxRef .*xddyRef -dyRef .*ddxRef)./(dxRef . 2+dyRef . 2);
= [vRef; wRefl; % Referenéni vhodi

k = 1:length(t)

[cos(q(3)), sin(q(3)), 0;

-sin(q(3)), cos(q(3)), 0;

0, 0, 11*(qRef (:,k) - q); % Vektor pogreska
eX = e(1); eY = e(2); % Pogresek po razdalji

eS = sin(e(3)); eCos = cos(e(3)); eC = eCos - 1; % Kotni pogresek

o
n

% Trenutni referené&ni vhodi
vRef = uRef (1,k);
wRef = uRef (2,k);

% Regulator

zeta = 0.9; % Parameter za nastavljanje

g = 85; % Parameter za nastavljanje

a = 10; % Parameter za nastavljanje

n = 2; % Parameter za nastavljanje (celo Stevilo)
Kx = 2*zeta*sqrt (wRef "2+gxvRef ~2);

Ks = Kx;

K = g;

% 0jacenji Kx in Ks sta lahko tudi konstantni.
% Ta oblika omogoca, da je dudenje v prehodnem pojavu
% neodvisno od referenénih hitrosti.

% Regulator: krmiljenje in regulacija
v = vRefxcos(e(3)) + KxxeX;
w = wRef + K*vRefxeY*(1+eC/a)~2 + Ks*eS*(1+eC/a) (2*n);

% Simulacija gibanja robota

dq = [v*cos(q(3)); v*sin(q(3)); wl;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = q + Ts*dq + randn(3,1)*noise; 7% Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil
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Slika 3.28: Nelinearno vodenje po referenc¢ni trajektoriji vozila z diferencialnim
pogonom iz primera 3.12 (referenca je oznacena s ¢értkano krivuljo)
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Slika 3.29: Regulirni signalni nelinearnega vodenja po referencni trajektoriji
vozila z diferencialnim pogonom iz primera 3.12
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3.3.7 Nacrtovanje mehkega vodenja Takagi-Sugeno

v okviru linearnih matri¢cnih neenacb

Kot smo Ze poudarili, je model pogreska (3.31) nelinearen. Modeli Takagi-Sugeno
(TS) opisujejo dinamiko nelinearnih sistemov. V tem poglavju bo model (3.31)
zapisan v obliki modela Takagi-Sugeno, ki omogoca zasnovo vodenja kot t. i.
paralelno porazdeljena kompenzacija v okviru linearnih matriénih neenac¢b (LMI,
angl. linear matriz inequality).

Mehki model pogreska Takagi-Sugeno kolesnega mobilnega
robota z diferencialnim pogonom

Modeli Takagi-Sugeno (TS) imajo svoje korenine v mehki (angl. fuzzy) logiki,
kjer je model podan v obliki pravil ce-potem (angl. if-then). Model TS je lahko
predstavljen tudi v bolj kompaktni obliki [15]

£(t) = Z hi (2 (1)) (A€ (t) + Bu (1))
v(t) = hi(z(t) (Ci& (1)
=1

kjer je &€ (t) € R™ vektor stanj, v (t) € RP izhodni vektor in z (t) € R? pogojni
vektor, odvisen od vektorja stanj (ali neke druge veli¢ine), A;, B;, C; pa so
konstantne matrike. Nelinearne uteznostne funkcije h; (z (t)) so vse nenegativne
in taksne, da velja Y ;_, h; (z(t)) = 1 za poljuben z(t). Za vsak nelinearen
model je mogoce najti enakovreden mehki model TS v kompaktnem obmodju
spremenljivke prostora stanj z razdelitvijo nelinearnega podrocja, kjer se vsak
omejeni nelinearni izraz razgradi v konveksno kombinacijo njegovih meja. Ste-
vilo pravil r je povezano s Stevilom nelinearnosti modela, kot bo prikazano v
nadaljevanju.

V tem poglavju bomo izkoristili dejstvo, da so v primeru modela pogreska
kolesnega robota nelinearne funkcije znane vnaprej, kar omogoca uporabo prej
omenjenega koncepta. Nelinearen model sledilnega pogreska (3.31) bo torej
prepisan v enakovredno matri¢no obliko

ég; 0 Wref 0 [ -1 €y

sine v
éy| = |~wWrey 0 Uref = | |ey| + |0 —€ L}fb] (3.47)
€y 0 0 0 ey 0 —1|L*"
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e e . . .. si .
V tem modelu se pojavijo §tiri omejene nelinearne funkcije: wyeys, vrep -2 (ali
@

z drugacno oznako v,sinc(y)), e, in e,. Tako dobimo pogojni vektor

Wref

ey Wsine (e, 1))
) = ey(t)
e (t)

Najprej bomo v linearnem smislu analizirali vodljivost modela (3.47). V blizini
tocke, v kateri je pogresek sistema enak nic, je sistem (3.47) vodljiv, ¢e je vyey
razlicen od 0 in |e,| drugacen od 7 ali pa Ce je wyey razlicna od 0. V prakti¢nih
primerih wy.; pogosto precka 0, zato v,.y ne more biti enak 0 in |e,| ne more
biti enak 7. Da preprec¢imo izgubo vodljivosti in se osredoto¢imo na doloc¢eno
kompaktno obmocje prostora pogreska, so potrebne naslednje predpostavke

Qref S Wref < ajref
le,] <eé, <m, 0< Upef S Uref S Upef = Upepsine (€y) < vpepsine (€p) < Upef
ley| < &y

|6;c| < ez

Meje od vyey in wyey so pridobljene iz dejanske referencne trajektorije, medtem
ko so meje sledilnega pogreska izbrane na podlagi (predhodno) znanih informacij.
Pomembno je, da so te meje nizje od pogreska zaradi merilnega Suma, zacetnih
pogreskov itd. Meje iz (3.3.7) oznacujemo kot z; in 25, j=1,2,3,4. V sistemu
so 4 nelinearnosti, zato je stevilo pravil ce-potem r enako 2* = 16. Model TS
(3.47) je

e(t) = Azwe(t) + Bapyuss (1)

0 & 0 -1 &
Ai = —511 0 51-2 Bz = 0 _6?
0 0 0 0 -1

Indeks 4 gre poljubno skozi vsa oglis¢a hiperkocke, ki jo definira (3.3.7). Obic¢ajno
se uporabi binarno nastevanje

sicer

~
oy
I
,—/H
[ ]
~
IN
[SIR]

0 ; i—%i<

{ sicer
. . T T r
. 0 i—3501—Fi2<g
13 =
1 ; sicer
P - .
0 ;5 i—gip— 3ia—gizg <
1 ; sicer
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Potem je EZ v (3.3.7) opredeljen kot

el =z +i;(%—z); i=12,...,16, j=1,234

Na koncu pa dolo¢imo Se pripadnostne funkcije h;

hi(z) = will (zl)w?2 (zg)wf’3 (zg)wjl4 (z4) 1=1,2,...,16

. Zi— 2 . . ]
wi(z) = =L wj(zy) =1 -wi(z)  j=1.234
7=

Model TS (3.3.7) modela sledilnega pogreska predstavlja natan¢en model sistema
(3.47), torej pri tem pristopu model TS ne deluje kot aproksimator, ampak
uposteva vse znane nelinearnosti v sistemu. Tako je izraz (3.3.7) zelo primeren

za naloge nacrtovanja in analize, kot bo prikazano v nadaljevanju.

Vodenje kolesnega mobilnega robota z diferencialnim pogo-
nom z uporabo paralelne porazdeljene kompenzacije

Za stabilizacijo modela TS (3.3.7) se uporablja paralelna porazdeljena kompen-
zacija (PDC, angl. parallel distributed compensation) [16]

Uy (t) = — Z h; (Z (t)) Fie (t) = —Fz(t)e (t)

Problem stabilizacije z uporabo PDC je dobro znan. Zaradi posebne strukture, v
kateri imata model naprave in regulator enake pripadnostne funkcije, je mogoce
temu nelinearnemu sistemu prilagoditi doloc¢ena orodja za analizo in nacrtovanje
linearnih sistemov. Se posebej pomembna je moznost formalne in neposredne
obravnave stabilnosti sistema. V grobem je sistem, ki ga opisujeta (3.3.7) in
(3.3.7), asimptotiéno stabilen, Ce je (A; — B;F;) Hurwitzeva matrika za vsak
i in j, kar pomeni, da vsi njeni poli lezijo na levi polovici kompleksne ravnine
5. Stevilo matrik, potrebnih za analizo, zelo hitro narasca, zato uporabimo
sistematicen pristop. Dokaj kmalu so ugotovili, da je LMI popolno orodje za
to nalogo [17]. Parametri naprave so podani v obliki matrik A, in B;, zato je
mogoce najti tak nabor parametrov regulatorja F}, ki asimptoti¢no stabilizirajo
sistem.

Prvotni pristop je preve¢ konzervativen, saj ne uposteva posebnih lastnosti
sistema, kot je oblika pripadnostnih funkcij ipd. Izvirne pogoje LMI je mozno
omiliti. Prilagoditev rezultata glede na [18] je:

Model TS (3.3.7) je mogoce stabilizirati z requlacijskim zakonom PDC (3.3.7), ce

obstajajo matrike M; (i=1,2,...,r)in X > 0, tako da veljata naslednja pogoja
LMI

YT, <0; i=1,2,...,r

mTii+Tij+Tji<O i, j=12,...,r, i#]
kjer je Xi; = X AT+ A; X —MjTBiT —B;M;. Ojacenja F; regulacijskega zakona
PDC (5.5.7) podaja F; = M; X 1.
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3.3.8 Modelno prediktivno vodenje

Modelno prediktivno vodenje (MPC, angl. model-based predictive control) temelji
na naprednih metodah, ki jih je mogoce uporabiti na razlicnih podroc¢jih; tudi v
mobilni robotiki, kjer je referencna trajektorija znana vnaprej. Uporaba predik-
tivnih pristopov vodenja v mobilni robotiki se obi¢ajno nanasa na lineariziran
(lahko tudi nelinearen) kinemati¢ni ali dinami¢ni model za napovedovanje stanj
sistema. Znane so Stevilne uspesne implementacije v kolesni mobilni robotiki,
kot so posploseno prediktivno vodenje v [19], prediktivno vodenje s Smithovim
prediktorjem za upravljanje ¢asovne zakasnitve sistema v [20], MPC na osnovi
linearnega ¢asovno spremenljivega sistema v [21], nelinearni prediktivni regulator
z modelom sistema v obliki veéplastnega nevronskega omrezja v [22] in mnoge
druge. Resitve regulacijskih zakonov so v vecini pristopov pridobljene z optimi-
zacijo cenilke. Drugi pristopi pridobijo regulacijski zakon kot analiti¢no resitev,
ki je racunsko uc¢inkovita in jo je mogoce enostavno uporabiti pri hitrih izvedbah
v realnem Casu [23].

To poglavje obravnava mobilnega robota z diferencialnim pogonom in vodenje po
referencni trajektoriji, ki mora biti zvezna in dvakrat zvezno odvedljiva funkcija
Casa. Za napovedovanje se uporablja linearni dinamic¢ni model pogreska, ki
ga pridobimo z linearizacijo sistema okoli referencne trajektorije. Regulator
zmanjsuje razliko med napovedanim sledilnim pogreskom robota in referen¢nim

pogreskom z definirano Zeleno dinamiko.

Modelne strategije vodenja zdruzujejo resitev predkrmiljenja in akcija povratne

zanke v vhodnem vektorju u, kar zapiSsemo kot

Uref COS €y, + Vgp
Wref + Wrb

u:“ff"'“fb:l

kjer se vhodni vektor predkrmiljenja w s = [vyef cos e, wyep]? izracuna iz refe-
rencne trajektorije z uporabo relacij (3.17) in (3.18). Vhodni vektor povratne

zanke je uys, = [vpp wypp]”, kar je izhod MPC regulatorja.

Problem vodenja uposteva linearen dinamic¢ni model sledilnega pogreska (3.32),
ki ga lahko na kratko zapisemo kot

e=A.(t)e+ B.uyy, (3.48)

kjer sta A.(t) in B, matriki zveznega modela prostora stanj in e je sledilni
pogresek v lokalnih koordinatah robota, ki so doloéene s transformacijo (3.28) in
prikazane na sliki 3.21.

Diskretno modelno prediktivno vodenje

Modelno prediktivno vodenje (MPC), predstavljeno v [23], je zasnovano za
diskretne Case, zato je potrebno zapisati model (3.48) v diskretni obliki

é(k +1) = A(k)e(k) + Bu (k) (3.49)
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kjer je A(k) € R™ x R™, n je Stevilo spremenljivk stanj, in B € R™ x R™, m je
stevilo vhodnih spremenljivk. Diskretni matriki A(k) in B dobimo na naslednji
nacin
Ak) =T+ A.(t)T
B = BT

kar je zadosten priblizek za kratek racunski korak Ts.

Glavna ideja MPC je izracunati optimalne akcije vodenja, ki minimizirajo kri-
terijsko funkcijo, dolo¢eno v intervalu predikcijskega horizonta h. Kriterijska
funkcija je kvadratna cenilka

h
J(upy, k) => €"(k,i)Qe(k,i) +ufy(k+i—1)Rup(k+i—1)  (3.50)
1=1

sestavljena iz prihodnjega referencnega sledilnega pogreska e, (k + i), napove-
danega sledilnega pogreska e(k + i|k), razlike med omenjenima pogreskoma
€(k,i) = ep(k+1) — e(k +i|k) in prihodnje akcije w sy (k + ¢ — 1), kjer ¢ oznacuje
i-ti korak napovedi (i =1,...,h); Q in R sta uteznostni matriki.

Za napoved stanja e(k + i|k) se uporabi model pogreska (3.49), kot sledi
e(k+1|k) = A(k)e(k) + Buyy(k)
e(k+2|k) = A(k+1)e(k+ 1|k) + Buysy(k + 1)

(3.51)
e(k+ilk)=Ak+i—1)e(k+i—1|k) + Busp(k+i—1)
e(k+hlk)=A(k+h—1)e(k+h—1]k) + Buyg(k+h—1)

Napovedi e(k + ilk) v (3.51) so preurejene tako, da so odvisne od trenutnega
pogreska e(k), trenutnih in prihodnjih vhodov w s, (k+i—1) ter matrik A(k+i—1)
in B. Napoved izhoda modela v trenutku h lahko potem zapisemo kot

e(k + hlk) = TI'-1 A(k + j)e(k)+

+

-

(=} A(k + 5)) Bugy(k +i— 1) + Bugy(k +h — 1)

=1

Prihodnji referencni pogresek (e,(k + 4)) doloca, kako naj se zmanjsa sledilni
pogresek, ko robot ni na trajektoriji. Doloc¢imo lahko, da naj se prihodnji
referencni pogresek eksponentno zmanjsa od trenutnega sledilnega pogreska e(k)
kot

e.(k+i)= Ale(k)

za i = 1,...,h. Dinamiko referenCnega pogreska dolo¢a matrika referen¢nega
modela A,..
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Glede na (3.51) in (3.3.8) je dolocen vektor predikcijskega pogreska sledenja
robota

T
E*(k) = [eT(k F1k) eT(k+2k) ... eT(k+ h|k)}
pri ¢emer je E* podan za celoten interval opazovanja (h), kjer je regulirni vektor

Upy(k) = [ugb(k) wly(k+1) ... ul(k+h— 1)} ! (3.52)
in
A(k,i) =TIZA(k+j) = A(k+h — DAk +h—2)... Ak +i+ 1)A(k +1)
Vektor predikcijskega pogreska sledenja robota lahko zapiSemo v strnjeni obliki
E* (k) = F(k)e(k) + G(k)Up, (k)

kjer je
F(k):[AT(k) AT(RAT(k+1) ... AT(k0)]

in
B 0 ... 0

k) = A(kfl)B 1?

A(k,1)B A(k,2)B ... B
pri ¢emer sta dimenziji F (k) in G(k) enaki (nh x n) ter (nh x mh).

Vektor referen¢nega sledilnega pogreska je
EX(k)=[eT(k+1) el(k+2) ... el(k+ h)r
ki se v strnjeni obliki zapise kot
E; (k) = Fre(k)

kjer je
T
Fo=[aT (42" . (an)]

T

matrika dimenzije (nh x n).

Optimalni vhodni vektor (3.52) dobimo z numeri¢no ali analiti¢no optimizacijo
funkcije (3.50). V nadaljevanju bo izpeljana analiti¢na reSitev.

Kriterijska funkcija (3.50) se v matri¢ni obliki glasi
J(Up) = (E; — E*)' Q(E; - E") + UL, RU, (3.53)

minimum (3.53) pa je izrazen kot

aJ
8Ufb

= —2QG"E: +2G"QE"* + 2RU;;, = 0
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Dobimo resitev za optimalni vhodni vektor kot
A S N alire)
Up(k)= (G'QG+R) G'Q(F, — F)e(k) (3.54)

kjer sta uteznostni matriki naslednji

Q 0 ... 0 R 0 ... 0
_ lo @ ... 0 _ |0 R ... 0
Q: R:

0 0 ... Q 0 0 ... R

Resitev (3.54) vsebuje vhodne vektorje u?b(k; +i—1) za celoten interval napovedi
(¢ =1,...,h). Akcijo povratne zanke v trenutku k& uveljavimo tako, da na robotu
uporabimo samo prvi vektor u}rb(k) (prve m vrstice od Uyy(k)). Resitev je
pridobljena analiti¢no, zato omogoca hitre izvedbe v realnem c¢asu, kar morda ni

mozno, ¢e uporabimo numeri¢no optimizacijo funkcije (3.50).
Primer 3.13

Izvedite modelno prediktivno vodenje, podano v (3.54), za vodenje robota z
diferencialnim pogonom po trajektoriji. Referen¢na trajektorija in robot sta
doloc¢ena v primeru 3.9.

Predikcijski horizont je h = 4, matrika referen¢nega modela je A, = Isxs - 0,65,
uteznostni matriki pa sta

4 0 0
Q=10 40 0 R=1I,,-1073
0 0 01

Resitev

Z uporabo MPC izrac¢unamo povratnozancni del krmilnega signala w (k) in ga
uporabimo na robotu skupaj s predkrmiljenjem wys(k). V programu 3.12) so
podane mozne resitve in rezultati vodenja po referencni trajektoriji. Pridobljeni
rezultati simulacije so prikazani na slikah 3.30 in 3.31.

Program 3.12
./src/ctr/example_tracking mpc.m

Ts = 0.033; % Racdunski korak
t 0:Ts:30; % Cas simulacije

[1.1; 0.8; 0]; % ZacCetna lega

% Referenca
freq = 2*pi/30;
xRef = 1.1 + 0.7*sin(freq*t); yRef = 0.9 + 0.7*sin(2*freq*t);
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8 dxRef = freq*0.7*cos(freq*t); dyRef = 2xfreq*0.7xcos (2*xfreq*t);
9o ddxRef =-freq~2%0.7*sin(freq*t); ddyRef =-4xfreq”2%0.7*sin(2*xfreq*t);
10 qRef = [xRef; yRef; atan2(dyRef, dxRef)]; % Referenéna trajektorija
11 vRef = sqrt(dxRef . 2+dyRef."2);

12 wRef = (dxRef.*ddyRef-dyRef.*ddxRef)./(dxRef. 2+dyRef."2);

13 uRef = [vRef; wRefl]; % Referenéni vhodi

14

15 for k = 1:length(t)-4

16 e = [cos(q(3)), sin(q(3)), 0;

17 -sin(q(3)), cos(q(3)), 0;

18 0, 0, 11*(qRef (:,k) - q); % Vektor pogreska
19 e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil

20

21 A1 = [1, Ts*uRef(2,k), 0;-Ts*uRef (2,k), 1, Ts*uRef (1,k); 0,0,1];
22 A2 = [1, Ts*uRef(2,k+1), O0;-Ts*uRef(2,k+1), 1, Ts*uRef(1,k+1); 0,0,1];
23 A3 = [1, Ts*uRef(2,k+2), O0;-Ts*uRef(2,k+2), 1, Ts*uRef(1,k+2); 0,0,1];
24 A4 = [1, Ts*uRef(2,k+3), 0;-Ts*uRef(2,k+3), 1, Ts*uRef(1,k+3); 0,0,1];
25 B = [-Ts, 0; 0, 0; 0, -Tsl;

26

27 Z = zeros(3,2);

28 Hm = [B, zZ, zZ, VAH

29 A1xB, B, Z, Z;

30 A1%xA2%B, A1%B, B, %8 ooo

31 A1xA2%A3%B, A1%xA2%B, A1*B, BIl;

32 Fm = [A1l, A1%A2, A1xA2%A3, A1*A2xA3*A4].°;

33

34 ar = 0.65;

35 Ar = eye(3)*ar; % Dinamika referenénega pogreska

36 H = 0;

37 Fr = [Ar~(H+1), Ar~(H+2), Ar~(H+3), Ar~(H+4)].’;

38

39 % Uteznostne matrike

40 Qt = diag(repmat ([1; 40; 0.1], 4, 1));

41 Rt = diag(repmat ([0.001; 0.0011, 4, 1));

42

43 % Izraiun optimalnih regulirnih signalov

44 KKgpc = (Hm.’*Qt*Hm + Rt)\(Hm.’*Qt*(Fr-Fm));

45 KK = KKgpc(1:2,:); ’ Izbira trenutnih ojalenj regulatorja

16

47 v = KKx*e;

48 uF = [uRef (1,k)*cos(e(3)); uRef(2,k)];

49 u = v + uF;

50

51 vMAX = 1; wMAX = 15; Y Maksimalni hitrosti

52 if abs(u(1))>vMAX, u(1l) = sign(u(1))*vMAX; end

53 if abs(u(2))>wMAX, u(2) = sign(u(2))*wMAX; end

54

55 % Simulacija gibanja robota

56 dqg = [u(1)*cos(q(3)); u(1l)*sin(q(3)); u(2)];

57 noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)

58 q = q + Ts*dq + randn(3,1)*noise; % Eulerjeva integracija

59 q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil

60 end
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Slika 3.30: Rezultati vodenja, pridobljeni z eksplicitnim regulatorjem MPC
(referenca je oznacena s ¢értkano krivuljo)
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Slika 3.31: Vzbujanje robota izra¢unano z uporabo eksplicitnega MPC-ja (¢rtkana
krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)
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3.3.9 Vodenje na podlagi optimizacije z rojem

delcev

Vodenje mobilnega robota lahko interpretiramo tudi kot optimizacijski problem,
kjer je potrebno v vsakem racunskem koraku regulacijske zanke najti najboljso
reSitev med vsemi moznimi resitvami v iskalnem prostoru. Tako vodenje nima
eksplicitne strukture, kar pomeni, da regulacijskega zakona ni mogoce podati
kot funkcijo preslikave stanj sistema v akcije vodenja. Optimalno resitev, ki
minimalizira nekatere kriterijske funkcije, najdemo z uporabo iterativnega opti-
mizacijskega algoritma, kot so Newtonove metode, metode gradientnega sestopa
ali pa stohasticne metode, kot so genetski algoritmi, optimizacija z rojem delcev
(PSO, angl. particle swarm optimization) ipd.

Ce kriterijska funkcija ni konveksna za problem minimizacije, je lahko vecina
optimizacijskih algoritmov ujetih v lokalnem minimumu, kar pa ni optimalna
resitev. Verjetnost pojava take resitve lahko zmanjSamo z uporabo stohasti¢ne
optimizacije, kjer je vzorec iskanja do neke mere nakljucen.

Osnovna ideja PSO izhaja iz druzabnega vedenja malih zivali, kot so jate ptic
ali rib [24, 25]. PSO uporablja skupino (roj) delcev, kjer vsak delec predstavlja
svojo hipoteti¢no resitev. Vsak delec i je opisan s parametri¢nim vektorjem x;,
ki dolo¢a njegov polozaj v parametricnem prostoru, in inkrementalnim vektorjem
v;, ki dolo¢a njegovo hitrost v parametricnem prostoru. Med optimizacijo se
populacija vseh potencialnih resitev posodablja glede na kriterijsko funkcijo, ki
dolocéa merilo kakovosti. Vsak delec spremlja svoje parametre in si zapomni
njihove (doslej) najboljSe vrednosti pBest; skupaj s pripadajoco kriterijsko
funkcijo J; = f(pBest;). Med optimizacijo je shranjen tudi (doslej) najboljsi
parametri¢ni vektor za celoten roj pBest;. V lokalni razli¢ici PSO pa se za
neko okolico delcev spremlja najboljsi parametri¢ni vektor gBest vsakega delca
(okolica se doloci s topologijo obroca, k najblizjimi delci ipd. [26]). Za lokalne
razli¢ice PSO je manj verjetno, da bodo ujete v lokalnem minimumu.

V nadaljevanju je razloZena osnovna (globalna) razli¢ica PSO. V vsakem racun-
skem koraku regulacijske zanke delci posodobijo svoje kognitivno in socialno
vedenje glede na naslednja pravila

v; <+ wv; + cirand g ) (pBest; — x;) + corand g ) (gBest — x;) (3.55)

&T; < x; +v; ’
kjer je w faktor vztrajnosti, ¢; samozavedna konstanta in ¢y socialna konstanta.
Poleg tega je rand g, 1) vektor enakomerno razporejenih vrednosti v obmocju
(0, 1). Dimenzije vektorjev v (3.55) so enake dimenziji iskalnega prostora.
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Parametri w, ¢1 in ¢o so pozitivni nastavitveni parametri. Osnovna koda PSO je
podana v algoritmu 1.

Algorithm 1 Optimizacija z rojem delcev

Inicializacija:

for vsak deleci=1,...,N do
Nakljuc¢no inicializiraj polozaje delcev x; znotraj meja
parametri¢nega prostora.
Nakljuéno inicializiraj hitrost delcev v; ali jih nastavi na nic.
Nastavi pBest; = x;.

end for

Optimizacija:
Jpest = 00
repeat
for vsak deleci=1,...,N do
Izracunaj trenutno kriterijsko funkcijo J; = f(a;) za vsak delec.
Shrani najboljse parametre
if J; < f(pBest;) then
pBest;, = x;
end if
if f(pBest;) < Jpest then
gBest = pBest;
Joest = f(gBest)
end if
end for
for vsak delec i =1,..., N do
Posodobi hitrost in polozaj delca
v; < wv; + cirand (g, 1) (pBest; — ;) + corand g, 1)(gBest — x;)
Preveri, ali je hitrost v; izvedljiva:
&T; < x; +v;
end for
until najvecje stevilo iteracij ali izpolnjen kriterij za konvergenco

Primer 3.14

S pomocjo PSO dolocite regulator za robota in trajektorijo iz primera 3.9. PSO
uporabite v vsakem racunskem koraku t = kT, da najdete najboljse regulirne
veli¢ine (translatorna in kotna hitrost), ki pripeljejo robota ¢im blizje trenu-
tnemu referenénemu polozaju Zref(t), Yrer(t). Nato izracunajte predikcijo lege
robota glede na njegovo kinematiko in predlagano resitev delcev (akcija regula-
torja). Cenilka je sestavljena iz sledilnega pogreska e(t) = [e,(t), ey (), e¢(t)]T
]T

in povratne zanke wp, = [V, wyp Optimalno vodenje minimizira cenilko
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J(t) =et)TQe(t) + u?bRufb, kjer sta Q in R diagonalni uteznostni matriki, ki
se uporabljata za nastavitev delovanja regulatorja.

Resitev

Regulacijski zakon vkljucuje podobne akcije predkrmiljenja in povratne zanke kot
v primeru 3.9. Akcijo predkrmiljenja izracunamo iz znane trajektorije, medtem
ko akcijo povratne zanke dolo¢imo z uporabo PSO. Sledilni pogresek je izrazen
v lokalnih koordinatah robota (glejte sliko 3.21), saj je s tem optimizacija bolj
ucinkovita, zaradi bolje razklopljenega zaprtozancnega sistema. Pogresek v
lokalni z koordinati je lahko preprosto kompenziran s translatorno hitrostjo,
pogresek v y in ¢ pa s kotno hitrostjo. To namrec¢ ne velja pri uporabi globalnega
sledilnega pogreska, zaradi nelinearne transformacije rotacije v (3.28).

V programu 3.13 je podana Matlab koda mozne resitve. Pridobljeni rezultati
simulacije so prikazani na slikah 3.32 in 3.33. Rezultati vodenja so podobni kot
v primeru 3.13, vendar je racunska zahtevnost algoritma precej vecja. Rezultati
primera 3.14 niso deterministic¢ni, ker PSO pri optimizaciji uporablja naklju¢no
porazdeljene delce, da najde najboljse regulirne veli¢ine v vsakem racunskem
koraku. Zato se lahko pridobljene trajektorije mobilnega robota do neke mere
razlikujejo, Se posebej v zacetni prehodni fazi dokler robot ne doseze reference.
Kljub temu so rezultati vecine simulacijskih tekov primerljivi z rezultati drugih
predstavljenih deterministi¢nih regulatorjev (npr. iz primera 3.9).

Program 3.13
./src/ctr/example_tracking pso.m

Ts = 0.033; % Racdunski korak
t = 0:Ts:30; % Cas simulacije
q = [1.1; 0.8; 0]; % Zacetna lega

% Referenca

freq = 2*pi/30;

xRef = 1.1 + 0.7*sin(freqx*t); yRef = 0.9 + 0.7*sin(2*freqx*t);

dxRef = freq*0.7*cos(freqxt); dyRef = 2xfreq*0.7xcos (2*xfreq*t);
ddxRef =-freq~2*0.7*sin(freq*t); ddyRef =-4xfreq”2*0.7*sin(2xfreq*t);
qRef = [xRef; yRef; atan2(dyRef, dxRef)]; J) Referencna trajektorija
vRef = sqrt(dxRef. 2+dyRef.”"2);
wRef = (dxRef.*ddyRef-dyRef.*ddxRef)./(dxRef. 2+dyRef."2);
uRef = [vRef; wRefl; % Referenéni vhodi

vMax = 1; wMax = 15; 7, Omejitve hitrosti

% Inicializacija roja delcev

iterations = 20; % Stevilo iteracij
omega = 0.5%0.5; J Faktor vztrajnosti
cl = 0.5%1; % Samozavedna konstanta

c2 = 0.5%1; % Socialna konstanta
N = 25; % Velikost roja delcev
swarm = zeros ([2,N,4]1);
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24 uBest = [0; 0];

25

26 for k = 1:length(t)-1

27 % Zaletni polozaji delcev

28 swarm(:,:,1) = repmat(uBest, 1, N) + diag([0.1; 3])*randn(2,N);

29 swarm(:,:,2) = 0; % Zadetne hitrosti delcev

30 swarm(1l,:,4) = 1000; % NajboljSa vrednost kriterijske funkcije

31

32 for iter = 1:iterations % Iterativno iskanje optimalne reSitve s PSO
33 % Vrednotenje parametrov delcev

34 for i = 1:N

35 % Izralun nove predvidene lege robota na podlagi parametrov
36 % i-tega delca (vhodnih hitrosti) in primerjava predvidene
37 % lege z referencno lego.

38 vwi = swarm(:,i,1);

39 ui = vwi + uRef(:,k); % Regulacija in krmiljenje

40 qk = q; % Trenutna lega robota

41 % Predikcija lege robota na podlagi parametrov delcev (hitrosti)
42 gk = gk + Ts*[cos(qk(3)), 0; sin(qk(3)), 0; 0, 1]*ui;

43 qk (3) = wrapToPi(qk(3)); % Zapis kota v obmo&ju [-pi, pil

44 e = [cos(qk(3)), sin(qk(3)), 0;

45 -sin(qk(3)), cos(qk(3)), 0;

46 0, 0, 11*(qRef (: ,k+1)-qk); ’ Pogresek
a7 e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil

48 Qt = diag([4; 80; 0.1]); Rt = diag([1; 1]1%0.0001); % Utezi
49 J = e.’*Qt*e + vwi.’*Rt*vwi; 7 Kriterijska funkcija

50 if J<swarm(1,i,4) % Ce je novi parameter bolj$i, posodobi:
51 swarm(:,i,3) = swarm(:,i,1); % vrednosti parametrov (v in w)
52 swarm(1,i,4) = J; 7/ in najboljSo vrednost kriterijske funkcije.
53 end

54 end

55 [~, gBest] = min(swarm(1,:,4)); % Parametri globalno najboljSega delca
56

57 % Posodobitev parametrov s hitrostnimi vektorji

58 a = omegaxswarm(:,:,2) +

59 cl*rand(2,N) . .*(swarm(:,:,3) - swarm(:,:,1)) +

60 c2*rand(2,N).*(repmat (swarm(:,gBest,3), 1, N) - swarm(:,:,1));
61 % Maksimalna sprememba parametrov, pospesek: aMax=3 ==> 3*Ts=0.1
62 a(l,a(1,:)>0.1) = 0.1; a(l,a(1,:)<-0.1) = -0.1;

63 % Maksimalna sprememba parametrov, kotni pospeSek: aMax=60 ==> 60*Ts=2
64 a(2,a(1,:)>2) = 2; a(2,a(1,:)<-2) = -2;

65

66 v = swarm(:,:,1) + a; % Posodobitev hitrosti

67 % Omejitev hitrosti z ohranjanjem ukrivljenosti

68 [m, ii]l = max([v(1l,:)/vMax; v(2,:)/wMax; ones(1,N)]);

69 i = ii==1; v(1,i) = sign(v(1l,i))*vMax;

70 v(2,i) = v(2,i)./m(i);

71 i = ii==2; v(2,i) = sign(v(2,1i))*wMax;

72 v(1,i) = v(1,i)./m(i);

73

74 swarm(:,:,2) = a; % Posodobitev hitrosti delcev (pospeski)

75 swarm(:,:,1) = v; % Posodobitev poloZajev delcev (hitrosti)

76 end

7T

78 % Vzmememo najboljsi delec za izradun regulirnih signalov

79 uBest = swarm(:,gBest,1);

80 u = uBest + uRef(:,k); % Regulacija in krmiljenje

81

82 % Omejitve hitrosti

83 if abs(u(1))>vMax, u(l) = sign(u(l))*vMax; end

84 if abs(u(2))>wMax, u(2) = sign(u(2))*wMax; end

85

86 % Simulacija gibanja robota
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dq = [u(1)*cos(q(3)); u(1)*sin(q(3)); u(2)1;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)

q = q + Ts*dq + randn(3,1)*noise; % Eulerjeva integracija

q(3) = wrapToPi(q(3)); % Zapis kota v obmo&ju [-pi, pil
end
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Slika 3.32: Pridobljeni rezultati vodenja na podlagi optimizacije z rojem delcev
(referenca je oznacena s ¢rtkano krivuljo)
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Slika 3.33: Akcija vodenja, izraCunana na podlagi optimizacije z rojem delcev
(¢rtkana krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)

PSO je splosni algoritem, ki ga je mogoce uporabiti v Stevilnih aplikacijah, dokler
racunska zahtevnost in ¢as, potrebna za izracun resitve, ustrezata dejanskim
realno-¢asovnim zahtevam vodenega sistema.

Modelno prediktivno vodenje z uporabo optimizacije z ro-
jem delcev

Resevanje optimizacije kriterijske funkcije v MPC lahko opravi tudi PSO, ce le-ta
iS¢e najboljse parametre (akcije regulatorja) za predikcijski interval (¢, ¢+ hTs),
kjer je h horizont. Ce ima sistem m = 2 regulirni veli¢ini, mora optimizacija
najti m - h optimalnih parametrov, kar hitro lahko postane racunsko zahtevno in
posledi¢no problemati¢no za sisteme s kratkim racunskim korakom regulacijske
zanke. Vseeno pa obstaja nekaj moznosti za zmanjsanje racunskega casa. Ena
moznost je, da v predikcijskem horizontu predpostavimo konstantne regulirne
veli¢ine. Ce se akcija regulatorja v relativno kratkem ¢asu horizonta bistveno
ne spremeni, lahko v intervalu horizonta predpostavimo konstantne regulirne
veli¢ine. To pomeni, da je potrebno optimizirati le m parametrov namesto m - h.
Druga moznost je zmanjSanje stevila potrebnih iteracij pri optimizaciji za vsak
rac¢unski korak regulacijske zanke. To lahko storimo z inicializacijo delcev okoli
optimalne resitve iz prejSnjega casovnega vzorca. Tako bi bilo potrebno manj
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iteracij za konvergenco delcev.

V primeru 3.15 je podana mozna resitev za implementacijo MPC na PSO.

Primer 3.15

Razsirite primer 3.14 na modelni prediktivni regulator s predikcijskim horizontom
h =3.

Resitev

Predstavljena resitev predvideva, da je akcija regulatorja (povratnozancni del) v
intervalu predikcijskega horizonta konstantna w s, (¢t + (¢ — 1)Ts) = uyp. Akcija
predkrmiljenja (uss) je pridobljena iz znane trajektorije, medtem ko se akcija
povratne zanke izra¢una z uporabo PSO. Iz trenutne lege robota je h-koracna
predikcija pridobljena s pomocjo kinemati¢nega modela robota in akcij regulatorja
u(t+ (i —1)Ts) =upm +usp(t+ (i —1)Ts) (i =1,...,h) kot

Gt +iTs)=f(@@t+(i—-1)Ts),u(t+(i—1)Ts))

kjer je zaCetno stanje enako §(t) = g(t) ini = 1,..., h. Akcijo regulatorja dobimo
z optimizacijo cenilke znotraj horizonta

h
J(t+ hTs) = Ze t+iTs)" Qe(t +iTs) —|—ubeufb
i=1

kjer je e(-) sledilni pogresek v lokalnih koordinatah. Optimalna akcija regulatorja
se izracuna z uporabo PSO, kot je predstavljeno v Matlab kodi v programu 3.14.
Rezultati simulacije so prikazani na slikah 3.34 in 3.35. Sledilni pogresek je
nekoliko manjsi, pa tudi zacetni prehodni pojav je boljsi kot v primeru 3.14.

Program 3.14
./src/ctr/example_tracking_pso_mpc.m

Ts = 0.033; % Racunski korak
0:Ts:30; % Cas simulacije
[1.1; 0.8; 0]; % ZacCetna lega

Qo
o

% Referenca
freq = 2*pi/30;
xRef = 1.1 + 0.7*sin(freq*t); yRef
dxRef = freq*0.7*cos(freq*t); dyRef 2xfreq*0.7*cos (2xfreq*t);
ddxRef =-freq~2*0.7*xsin(freq*t); ddyRef =-4xfreq”~2*0.7xsin(2*xfreqx*t);
qRef = [xRef; yRef; atan2(dyRef, dxRef)]; ) Referenina trajektorija

0.9 + 0.7*xsin(2xfreq*t);

vRef = sqrt(dxRef . 2+dyRef . 2);

wRef = (dxRef.*ddyRef-dyRef.*ddxRef)./(dxRef. 2+dyRef."2);
uRef = [vRef; wRefl]; ), Referenini vhodi

vMax = 1; wMax = 15; Y% Omejitve hitrosti

% Inicializacija roja delcev
iterations = 20; % Stevilo iteracij
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omega = 0.5%0.5; J, Faktor vztrajnosti
cl = 0.5%1; % Samozavedna konstanta
c2 = 0.5%1; % Socialna konstanta
N = 25; J Velikost roja delcev
swarm = zeros ([2,N,4]);
uBest = [0; 0];
H = 3; % Dolzina predikcijskega horizonta
for k = 1:length(t)-H
% Zaletni polozaji delcev
swarm(:,:,1) = repmat(uBest, 1, N) + diag([0.1; 3])*randn(2,N);
swarm(:,:,2) = 0; % Zaetne hitrosti delcev
swarm(1,:,4) = 1000; % NajboljsSa vrednost kriterijske funkcije
for iter = 1:iterations J Iterativno iskanje optimalne reSitve s PSO
% Vrednotenje parametrov delcev
for i = 1:N
% Izraiun nove predvidene lege robota na podlagi parametrov
% i-tega delca (vhodnih hitrosti) in primerjava predvidene
% lege z referenéno lego.
vwi = swarm(:,i,1);
ui = vwi + uRef(:,k); % Regulacija in krmiljenje
qk = q; % Trenutna lega robota
% Predikcija lege robota na podlagi parametrov delcev (hitrosti)
J = 0;
for h = 1:H
gk = gk + Ts*[cos(qk(3)), 0; sin(qk(3)), 0; 0, 1]*ui;
qk (3) = wrapToPi(qk(3)); % Zapis kota v obmo&ju [-pi, pil
e = [cos(qk(3)), sin(qk(3)), 0;
-sin(qk(3)), cos(qk(3)), 0;
0, 0, 1]1*(qRef (: ,k+h)-qk);  Pogresek
e(3) = wrapToPi(e(3)); % Zapis kota v obmo&ju [-pi, pil
Qt = diag([4; 80; 0.1]1); Rt = diag([1; 1]1*0.0001);% Utezi
J =J + e.’*Qt*xe + vwi.’*Rt*vwi; ) Kriterijska funkcija
end
if J<swarm(1,i,4) % Ce je novi parameter bolj$i, posodobi:
swarm(:,i,3) = swarm(:,i,1); % vrednosti parametrov (v in w)
swarm(1,i,4) = J; 7/ in najboljSo vrednost kriterijske funkcije.
end
end
[~, gBest] = min(swarm(1,:,4)); % Parametri globalno najboljSega delca
% Posodobitev parametrov s hitrostnimi vektorji
a = omegaxswarm(:,:,2) +
cl*rand(2,N) .*(swarm(:,:,3) - swarm(:,:,1)) +
c2*rand(2,N).*(repmat (swarm(:,gBest,3), 1, N) - swarm(:,:,1));
% Maksimalna sprememba parametrov, pospedek: aMax=3 ==> 3%Ts=0.1
a(l,a(1,:)>0.1) = 0.1; a(l,a(1,:)<-0.1) = -0.1;
% Maksimalna sprememba parametrov, kotni pospeSek: aMax=60 ==> 60*Ts=2
a(2,a(1,:)>2) = 2; a(2,a(1,:)<-2) = -2;
v = swarm(:,:,1) + a; % Posodobitev hitrosti
% Omejitev hitrosti z ohranjanjem ukrivljenosti
[m, ii]l = max([v(1l,:)/vMax; v(2,:)/wMax; ones(1,N)]);
i = ii==1; v(1,i) = sign(v(1l,i))*vMax;
v(2,i) = v(2,i)./m(i);
i = ii==2; v(2,i) = sign(v(2,i))*wMax;
v(1,i) = v(1,i)./m(i);
swarm(:,:,2) = a; % Posodobitev hitrosti delcev (pospeski)
swarm(:,:,1) = v; % Posodobitev polozajev delcev (hitrosti)

Vodenje kolesnih mobilnih sistemov
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end

% Vzmememo najbolj8i delec za izradun regulirnih signalov
uBest = swarm(:,gBest,1);
u = uBest + uRef(:,k); % Regulacija in krmiljenje

% Omejitve hitrosti
if abs(u(1))>vMax, u(1l) sign(u(1))*vMax; end
if abs(u(2))>wMax, u(2) = sign(u(2))*wMax; end

% Simulacija gibanja robota

dg = [u(1)*cos(q(3)); u(l)*sin(q(3)); u(2)]1;

noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = g + Ts*dq + randn(3,1)*noise; J Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil
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Slika 3.34: Pridobljeni rezultati vodenja z uporabo MPC in PSO (referenca je
oznacdena s ¢rtkano krivuljo)
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Slika 3.35: Akcija regulatorja, izra¢unana z uporabo MPC in PSO (¢rtkana
krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)

3.3.10 Vodenje mobilnega sistema s pristopom

vodenja na osnovi slike

V tem poglavju bo predstavljeno vodenje na osnovi slike (VS, angl. wvisual
servoing), ki se pogosto uporablja v mobilni robotiki. Glavni poudarek je na
razvoju mobilnega robotskega sistema, ki lahko avtonomno opravi podano nalogo

le na podlagi vizualnih informacij od kamere, namesc¢ene na mobilnem sistemu.

Pri vodenju na osnovi slike se za dolocitev regulacijskega pogreska uporabljajo t.
i. znacilke. Znacilke so neodvisne spremenljivke, ki opisujejo doloc¢en vizualni
signal, torej lahko z njimi opiSemo tocke, ¢rte, kroge, obmocje objekta, kote
med ¢rtami itd. Regulacijski pogresek splosne regulacijske sheme pri vodenju na
osnovi slike lahko zapiSemo kot razliko med vektorjem zelenih znacilk x,.s(t) in
vektorjem trenutnih znadilk x(y(¢), ) [27]

e(t) = @res(t) — 2(y(t), ) (3.56)

K-ti element vektorja znacilk (y(t),¢) € RX v (3.56) je pridobljen iz meritev
na podlagi slike y(¢) (npr. pozicija, obmocéje ali oblika vzorcev na sliki) in

dodatnega ¢asovno nespremenljvega znanja o sistemu ¢ (npr. notranji parametri
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kamere, znane lastnosti opazovane scene, omejitve sistema). Eden od kljuénih
izzivov pri nacrtovanju vodenja na osnovi slike je ustrezna opredelitev vektorja
znadilk, saj se ta vektor uporablja za dolo¢anje regulacijskega pogreska. Ce je
vektor znadilk neustrezno dolocen, lahko obstaja vec situacij, kjer je regulacijski
pogresek najmanjsi — problem lokalnih minimumov. Nekatere znacilke so
primerne samo za dolocene vrste gibanja (npr. samo translacija) in so lahko
popolnoma neprimerne za nekatere druge vrste gibanja (npr. translacija z
rotacijo). Ce znacilke niso skrbno izbrane, lahko v nekaterih situacijah pride do
nezelenih, nepotrebnih ali celo nepricakovanih ukrepov vodenja — tezava, znana
kot samovoljnost kamere (angl. camera retreat). Tekom sledenja lahko nekatere
znacilke zapustijo vidno polje kamere, kar lahko onemogo¢i dokonéanje naloge
vodenja na osnovi slike, zato mora algoritem vodenja prepreciti tovrstne situacije.
To lahko doseze z uporabo alternativnih znacilk, ¢e se nekatere neizogibno
izgubijo, ali z oceno lokacije znacilk, ki so zacasno izven vidnega polja.

Glede na definicijo vektorja znacilk x lahko vodenja na osnovi slike razvrstimo v
tri glavne kategorije [28]: polozajno vodenje na osnovi slike (PBVS, angl. position-
based visual servoing), direktno vodenje na osnovi slike (IBVS, angl. image-based
visual servoing) in hibridno vodenje na osnovi slike (HVS, angl. hybrid visual
servoing). V primeru PBVS je regulacijski pogresek opredeljen kot razlika
med Zeleno in trenutno lego robota v tridimenzionalnem delovnem prostoru.
V strukturi vodenja PBVS se kamera uporablja za oceno tridimenzionalnih
polozajev objektov in robota iz slike, ki je projekcija realnega okolja. Zato
je mogoce tudi tukaj neposredno uporabiti vse do zdaj predstavljene nacine
vodenja. Obicajno je mogoce s PBVS doseci optimalne premike, vendar ta pristop
zahteva toc¢no kalibracijo kamere, drugace ni mozno odpraviti pravega pogreska
vodenja. Po drugi strani je regulacijski pogresek pri IBVS definiran neposredno
v dvodimenzionalnem prostoru slike (npr. kot razlika med slikovnima toc¢kama),
zato ima tocnost kalibracije kamere manjsi vpliv na IBVS. Vendar pa IBVS
obicajno dosega manj optimalne trajektorije, kot jih je mogoce doseci s pristopom
PBVS. IBVS je tudi bolj dovzeten za tezave, ki jih povzroca samovoljnost kamere
(primer kjer se kamera z rotacijo bliza cilju, ga preseZe v normalni smeri in se
nato vraca nazaj), ¢e znacilke niso pravilno izbrane. Pristopi IBVS so Se posebej
zanimivi, saj omogocajo opredelitev naloge neposredno na sliki in regulacijski
pristop, znan kot nauci-s-prikazom (angl. teach-by-showing). HVS skusa zdruziti
dobre lastnosti regulacijskih shem PBVS in IBVS. Nekatere regulacijske sheme
preklapljajo med PBVS in IBVS v skladu s kriterijem preklopa, ki na podlagi
trenutnih stanj sistema izbere najprimernejsi nacin vodenja [29]. V nekaterih
drugih HVS je regulacijski pogresek sestavljen iz znacilk dvodimenzionalnega
slikovnega prostora kot tudi znacilk tridimenzionalnega delovnega prostora [30,
31]. Se posebej zahtevno je vodenje na osnovi slike neholonomic¢nih sistemov
[32-35]. Sheme vodenja na osnovi slike se véasih uporabljajo v kombinaciji z
nekaterimi dodatnimi senzorji [36], ki lahko podajo dodatne podatke ali olajsajo
obdelavo slike.

V [27, 37] so avtorji predstavili splosni pristop nadrtovanja vodenja na osnovi
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slike, ki ga je mogoce uporabiti ne glede na njegovo kategorijo. Vzemimo primer,
ko je vektor referen¢nih znacilk v (3.56) ¢asovno nespremenljiv (e (t) = Ty =
const.). Obicajno se uporabi hitrostni regulator. V tem primeru lahko zapiSemo
vhodni vektor kot kombinacijo vektorja translatorne hitrosti v(t) in vektorja
kotne hitrosti w(t) v kombiniranem vektorju u® (t) = [v?(¢), wT(t)] € RM. V
splosnem sta tako vektor translatorne hitrosti kot vektor kotne hitrosti nekega
objekta (v tridimenzionalnem prostoru) sestavljena iz treh hitrosti: v (t) =
[0 (1), vy (1), va(t)] in WT (t) = [wy(t), wy(t), w.(t)]. Vendar pa imata v kolesni
mobilni robotiki ta dva vhodna vektorja obicajno nekaj nicelnih elementov, saj se
mobilni robot v normalnih voznih razmerah premika po ravnini in ne pricakujemo
prevracanja ali dvigovanja. Razmerje med hitrostjo premika w” (¢) in hitrostjo
spreminjanja znacilk $7(¢) lahko zapiSemo kot

(t) = L(tu(t) (3.57)

kjer je matrika L(t) € RE x RM znana kot interakcijska matrika. 1z relacij (3.56)
in (3.57) lahko dolo¢imo hitrost spreminjanja pogreska

é(t) = —L(t)u(t) (3.58)

Regulirni signal w(t) mora minimizirati pogresek e. Ce je zazeleno eksponentno
padanje pogreska e v obliki é(t) = —ge(t), g > 0, lahko izpeljemo sledeci
regulacijski zakon

u(t) = gL' (t)e(t) (3.59)

kjer je LT (t) Moore-Penroseov psevdoinverz interakcijske matrike L(t). Ce ima
matrika L(t) poln rang, je njen psevdoinverz enak L(t) = (LT (¢)L(t))" LT (t).
V primeru da je interakcijska matrika kvadratna (K = M) in ni singularna
(det(L(t)) # 0), se izracun psevdoinverza v (3.59) poenostavi v obi¢ajno inverzno
matriko L1(t).

V praksi je znana le priblizna vrednost prave interakcijske matrike. Zato lahko v
regulacijskem zakonu (3.59) uporabimo samo oceno interakcijske matrike L(t)

ali njenega psevdoinverza Lt(¢)
u(t) = gLi(t)e(t) (3.60)
Oceno psevdoinverzne interakcijske matrike i}\ (t) lahko dolo¢imo z linearizacijo
sistema okoli njegovega trenutnega stanja (LT(t) = Li(t)) ali okoli njegovega
zelenega (referencnega) stanja (LT(t) = Lie #(t)). Véasih lahko uporabimo tudi
kombinacijo v obliki LT(t) = 2 (Lyes(t) + Li(t)) [37].
Ce vstavimo (3.60) v (3.58), dobimo diferencialno enacbo zaprtozancnega sistema
é(t) = —gL(t)Li(t)e(t) (3.61)

Funkcijo Ljapunova V (t) = 1€ (t)e(t) lahko uporabimo za preverjanje stabilnosti

zaprtozancnega sistema (3.61). Odvod funkcije Ljapunova je

V() = —ge” (1) L(t) LT (1)e(t)



3.3. Vodenje po referencni trajektoriji 139

Zadosten pogoj za globalno stabilnost sistema (3.61) je izpolnjen, ¢e je matrika
L(t)i\T (t) pozitivno definitna. V primeru, da je Stevilo opazovanih znacilk K
enako Stevilu regulirnih veli¢in M, torej K = M, ter imata matriki L(¢) in Lt (t)
poln rang, je zaprtozan¢ni sistem (3.61) stabilen, ¢e le ocena matrike ﬁ(t) ni
pregroba [27]. Vendar je potrebno opozoriti, da v primeru IBVS ni preprosto
izbrati ustreznih znacilk v slikovnem prostoru, ki odpravijo problem vodenja v

delovnem prostoru.

Primer 3.16

Kamera C' je namescena na kolesnem mobilnem robotu R z diferencialnim
pogonom na t& = [0, 0, 0,5]7 z orientacijo RZ = R, (90°)R,(—90°)R,.(45°).
Parametri kamere so (model kamere je opisan v poglavju 5.2.4): a,f = a,f =
300, v = 0 (brez striga), sredisce slike pa je v srediscu slike z dimenzijo 1024 krat
768. Nacrtajte IBVS, ki vodi mobilnega robota iz zacetne lege [x(0), y(0), ¢(0)] =
[1m, Om, 100°] do ciljne pozicije Z;e; = 4min y,.; = 4m. Zavoljo poenostavitve
predpostavimo, da je na sliki vidno srediS¢e vrtenja mobilnega robota.

Resitev

Kamera opazuje prizor pred mobilnim robotom. Ker je kamera namescena brez
moznosti zasuka okoli sredis¢a optitne osi, uporabimo razklopljeno vodenje (angl.
decoupled control) neposredno na podlagi slikovnega pogreska med opazovano
ciljno pozicijo in sliko sredisca rotacije robota. Mozna implementacija resitve
v Matlabu je prikazana v programu 3.15. Dobljena pot mobilnega robota je
prikazana na sliki 3.36, pot opazovanega cilja na sliki pa je prikazana na 3.37.
Regulirni signali so prikazani na sliki 3.38. Rezultati potrjujejo uporabnost IBVS.
Robot doseze ciljno lego, saj je opazovana znacilka (cilj) ves ¢as vidna (slika
3.37).

Program 3.15

./src/ctr/example_diff_vs_point.m

Ts = 0.03; 7% Racunski korak

t = 0:Ts:15; % Cas simulacije

r = 0.5; % Razdalja vmesne tolke od cilja

dTol = 1; 7 Tolerancna razdalja od vmesne tolke za preklop
qRef = [4; 4; 0]; ) Referencna lega

q = [1; 0; 100/180*pil; % Zacetna lega

% Kamera

alphaF = 300; % % alphax*f, v px/m
s [1024; 768]; % Dimenzije zaslona, v px

c s/2; % Opticno sredisce, v px

S [alphaF, 0, c(1); O, alphaF, c(2); 0, 0, 1]; % Notranji model kamere
RL2C = rotX(pi/2)*rotY(-pi/2)*rotX(pi/4); tL2C=[0;0;0.5]; % Lega kamere
% Simulacija kamere

pOP = S*RL2C.’*([0; 0; 0]-tL2C); pOP = pOP/pOP(3);

RW2L = rotZ(-q(3)); tW2L = [q(1:2); 0];
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17 pP = S*RL2C. > *(RW2L.’*([qRef (1:2); 0]-tW2L)-tL2C); pP = pP/pP(3);
18
19 u = [0; 0];
20 for k = 1:length(t)
21 if pP(1)<0 || pP(2)<0 || pP(1)>s(1) || pP(2)>s(2) % Nevidna znaiilka
22 u = [0; 0]; % Sledena znacilka je izgubljena
23 else
24 D = sqrt(sum((pP(1:2)-pOP(1:2)).72));
25 if D<dTol % Ustavitev v bliZini cilja
26 u = [0; 0];
27 else
28 u = [0, 0.002; 0.005, 0]*(pOP(1:2)-pP(1:2));
29 end
30 end
31
32 % Simulacija gibanja robota
33 dg = [u(1)*cos(q(3)); u(1)*sin(q(3)); u(2)];
34 noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
35 q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
36 q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil
37
38 % Simulacija kamere
39 RW2L = rotZ(-q(3)); tW2L = [q(1:2); 0];
40 pP = S*RL2C.’*(RW2L.’*([qRef (1:2); 0]-tW2L)-tL2C); pP = pP/pP(3);
41 end
5
4+
3+
E 5
>
1+
ok
—1 1 1 1 1
0 2 4 6

x [m]

Slika 3.36: Pot pridobljena z IBVS iz primera 3.16
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x [px]
0 1024
0
=
)
&
768

Slika 3.37: Pot opazovane znacilke (cilja) v slikovnem prostoru iz primera 3.16

v /s

0 5 10 15
t[s]

Slika 3.38: Regulirna signala IBVS iz primera 3.16
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3.4 Ocena optimalnega profila hitrosti

za znano pot

Kolesni mobilni roboti se morajo pogosto voziti po obstojec¢i vnaprej doloc¢eni
poti (npr. po cesti ali koridorju), ki je prostorsko dolocena z nekim parametrom
u kot zp,(u), yp(u), u € [usp,upp]|. Za voznjo robota po tej poti je potrebno
dolo¢iti zeleni hitrostni profil, ¢e mora robot v najkrajSem casu priti od neke
zacetne tocke (SP) do neke koné¢ne tocke (EP) in pri tem upoStevati zmoznosti
robota ipd. Za voznjo robota po taksni poti mora biti njegova pozicija odvisna
od ¢asa z(t), y(t) z doloCenim hitrostnim profilom v(t), w(t), kot bo prikazano v
nadaljevanju.

Predpostavimo poseben primer u = t, kjer je referenc¢na pot v bistvu trajektorija
z implicitno podanim hitrostnim profilom. Robot mora voziti po trajektoriji z
referenénima hitrostma v(t) = vyef(t) in w(t) = wrey(t), izracunani iz referencne
trajektorije z uporabo relacij (3.17) in (3.18).

Pri nacrtovanju zelenega hitrostnega profila za prostorsko podano pot, je potrebno
najti razpored u = u(t). Nacrtovani hitrostni profil mora biti skladen z omejitvami
robota, kot sta najvecja hitrost in pospesek, ki ju lahko proizvajajo motorji ali pa
ki zagotavljata varno voznjo brez vzdolznega in bo¢nega drsenja koles. Referencne
hitrosti so podobno kot v (3.17) in (3.18), izraZene kot

o(t) = /), (u (0)% + ) (u (6) % (1) = v () i 1) (3.62)

2, (u(t))yp (u(t)) = yp(ut))a, (u(t)) |
p(u(t))? +yp(u(t))?

8

in ukrivljenost je

’

o (u(t))yy (u(t)) — g, (u(t))a, (u(t))
(2, (u())? + g (u(£))2) 2

kjer ¢értice oznacujejo odvode po u, pike pa odvode po t. Casovni odvodi poti

de(t) _ dzp du _ ./ - dy(t) _ dyp du __
q = ~dwar = L), —q = qrar =

K(t) = = fip (u)

upostevajo razpored u(t) na nacin
Yyt ().
Glavna ideja nacrtovanja hitrostnega profila je povzeta iz [38], ki se dolo¢i glede

na omejitev idealnega kotaljenja. To pomeni, da so regulirne hitrosti enake
dejanskim hitrostim robota (brez drsenja koles), kar doseZemo z omejitvijo

— /a2 2
a=1/a; +az

ap = — ar = vw = v’k (3.63)

celotnega dovoljenega pospeska

kjer sta
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tangencialni in radialni pospesek. Najvecja vrednost pospeska, ki preprecuje
drsenje, je dolocena s silo trenja Flyyic
Ffric _ MGCg¢ric

AMAX = = ——— = Y9Cfric
m m

kjer je m masa vorzila, g gravitacijski pospesek in cy.;. koeficient trenja. Najvecji
tangencialni pospesek ansax: in radialni pospesek ansax, se zaradi konstrukcije
vozila ponavadi razlikujeta in ju je mogoce eksperimentalno oceniti. Pomembno
je, da se skupni pospesek nahaja znotraj elipse

2
a; a

<1 (3.64)
Ayvraxe  YmAaxr

ali pa, v primeru ¢asovno optimalnega nacrtovanja, na njenem robu. V zavojih
na poti mora robot zaradi vec¢jih radialnih pospeskov voziti pocasneje. Zato za
oceno razporeda u(t) najprej na poti oznacimo prelomne tocke (TP, angl. turning
points), kjer je absolutna vrednost ukrivljenosti lokalno najvecja. Parameter u je
v intervalu [usp, ugp]. Pozicije TP so oznacene z u = urp;, kjerjei =1,...,npp
in nyp je stevilo TP. V TP je translatorna hitrost lokalno najmanjsa, tangencialni
pospesek naj bi bil 0, radialni pospesek pa je najveéji. Tangencialno hitrost v
TP lahko glede na (3.63) izracunamo kot

AMAXr

Te(urp)] (3.65)

vp(urpi) =
Pred in po TP se lahko robot premika hitreje, ker je ukrivljenost manjsa kot v
TP. Zato mora robot pred vsako TP upocasniti (v < urp;) in po njej pospesiti
(u > upp;) v skladu z omejitvijo pospeska (3.64).

Iz (3.62) sledi, da sta v(t) in vp(u) v vsaki fiksni tocki na poti sorazmerni s
¢asovno odvisnim proporcionalnim faktorjem @ (¢). Najkrajsi izvedljiv hitrostni
profil je torej dolocen z odvodom razporeda (t), kjer minimiziramo najvecje
hitrostne profile, ki izpolnjujejo omejitve pospeska, kot je opisano v nadaljevanju.
Radialni in tangencialni pospesek sta izraZzena iz (3.63) z upostevanjem (3.62)
kot

ar(t) = (), ()" + 3y, (0)°) sy () 82 (1) = 03 () s (w) 6 (1) (3.66)
a(t) = 2B ) oy o g P (1)
()7 + gp(w)? .
dv, (u

== u? (t) + vp (u) i (t)

kjer je zaradi krajSega zapisa izpusfena odvisnost od ¢asa za wu(t). Z mejnim

primerom (3.64) in (3.66) iz (3.67) dobimo optimalno diferencialno enacbo raz-
poreda

roo

1 2+ y2)e2ut xx +
=tamaxe\| =55 — (7 3 ol 5 yf;y” ? (3.68)
Ty + Y, A AXr Ty T Yy
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Resitev diferencialne enac¢be najdemo z eksplicitno simulacijo z integracijo iz TP
naprej in nazaj po casu. Pri pospeSevanju uporabimo pozitiven predznak, pri
upocasnjevanju pa negativen predznak. Zacetna pogoja u(t) in @ sta dolocena s
polozajem vseh TP urp; in z (3.66), ki pove, da je najveéja dovoljena vrednost
radialnega pospeska v TP enaka

ilrp; = \/ AMAXT (3.69)

(, (wrp)” + 9} (wrpi)?) mp (urpi)

Prikazan je le pozitivni zacetni pogoj (3.69), ker mora biti u(t) strogo naraséajoca
funkcija. Diferencialne enacbe resujemo, dokler ne najdemo krsitve omejitve
pospeska ali pa u zapusti interval [usp, ugp].

Krsitev se obi¢ajno pojavi pri (pospesenem) premikanju iz trenutne TPé proti
naslednji TP (i — 1 ali 4 + 1) in vrednost translatorne hitrosti moc¢no preseze
najvec¢jo dovoljeno vrednost, ki jo doloca trajektorija. Resitev diferencialne
enacbe (3.68) je tako sestavljena iz segmentov 4 okoli vsake TP

= (u) ; w€ly, w, l=1,...,npp (3.70)

kjer je u; = 1y (u (t)) odvod razporeda, odvisen od w in w;, U, pa so meje I-tega
segmenta. Tu so segmenti v (3.70) podani kot funkcije od u, ¢eprav je simulacija
funkcije (3.68) izvedena v ¢asu, ker ¢asovni zamik (Cas, potreben za prihod v
TP) ni znan. Kar je znano na tej tocki, je relativni éasovni interval, ki ustreza
resSitvi vsakega segmenta ;.

Resitev ¢asovno optimalnega hitrostnega profila, pridobljena s pospesevanjem
na meji zdrsa (maksimalno pospesevanje) celotne trajektorije, je mozna, ¢e
unija intervalov pokriva celoten interval zanimanja [ugp,ugp] C U;L:Tlp [w;, @)
Dejanski @ najdemo z minimizacijo posameznih maksimalnih profilov v okolici
TP-jev

| = i ! 3.71
YT <, (w) (8.71)
Absolutni ¢as, ki ustreza razporedu u(t), dobimo iz pretvorbe @ (u (t)) = 9%, da

dobimo dt = %! (u)du in izvedemo integracijo

UEP d
t:/ U~ )
u

sp (W)

kjer @(u) ne sme postati 0. V naSem primeru je iskana ¢asovno optimalna resitev,
zato je hitrost (tudi @(u)) vedno vecja od 0. Izraz @(u) = 0 bi namre¢ pomenil,
da je hitrost enaka ni¢, ko bi se sistem ustavil — to pa ne more voditi do ¢asovno
optimalne resitve.

Zacletne (v SP) in koncne (v EP) hitrosti se lahko obravnavajo na naslednji nacin.
SP in EP obravnavamo kot obi¢ajne TP, kjer so zafetne hitrosti vsp, v,(usp),

vEp, Vp(ugp) znane, zato lahko izra¢unamo zacetne pogoje za tgp = > ’Zi’S’P),
P
Ugp = —EL Ce so ti zacetni pogoji za SP ali EP vecji od resitve za

vp(upp)”
(upostevajo¢ vse TP), reSitev ne obstaja, ker bi bilo nemogoce priti skozi prvo
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TP, tudi e robot maksimalno (popolnoma) zavira. Ce resitev za dane hitrosti v
SP in EP obstaja, vklju¢imo tudi segmente , izra¢unane za SP in EP v (3.70)
in (3.71).

Iz izra¢unanega razporeda u(t), u(t), je referenéna trajektorija podana kot x(t) =
xp (u(t)) in y(t) = yp (u(t)) ter referencéna hitrost z (3.17) in (3.18).

Primer 3.17

Izracunajte optimalni hitrostni profil, ki bo omogocil najkrajsi ¢as potovanja
po poti z,(u) = cos(u), yp(u) = sin(2u) (na sliki 3.39), kjer je u € [0,27], ter
uposteval najvedji tangencialni ays4x: = 2m/s? in radialni pospesek ayrax, =
4m/s?.

y [m]

1
=Il —0.5 0 0.5 1

x [m]

Slika 3.39: Pot

Izracunajte razpored u(t) in hitrostna profila v(u), v(t).

Resitev

Za izrac¢un optimalnega razporeda u(t) uporabimo algoritem, predstavljen v tem
poglavju. Najprej moramo izracunati vse TP z zacetnimi pogoji, ki so podani v
(3.65) in (3.69), nato pa simulirati resitve za vsako TP z uporabo (3.68). Konc¢no
minimiziramo ¢asovni odvod razporeda glede na (3.71).
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MozZna izvedba resitve je podana v programu 3.16 (zanemarite dele kode za
omejevanje hitrosti, ki bi jih lahko ovrednotili, ¢e bi bila spremenljivka velCnstr
nastavljena na true). Optimalna dolocitev razporeda za primer 3.17 je prikazana
na slikah od 3.40 do 3.42. Iz slike 3.40 je razvidno, da je resitev za vsako TP
integrirana vse do tocke, kjer so krsene omejitve pospeska, kar je oznaceno s
tanko linijo. Koncna resitev je oznacena z odebeljeno krivuljo.

Program 3.16
./src/ctr/example_velocity_profile_planning.m

% Definicija trajektorije v obliki funkcij
x = @(u) cos(u); y = @(u) sin(2xu); % Pot
dx = @(u) -sin(u); dy = @(u) 2*cos(2*u); % Prvi odvod
ddx = @(u) -cos(u); ddy = @(u) -4*sin(2*u); 7% Drugi odvod
v = @(u) sqrt(dx(u).”2 + dy(u)."2); % Tangencialna hitrost
w = @(u) (dx(u).*ddy(u)-dy(u).*ddx(u))./(dx(u). 2+dy(u)."2); % Kotna hitrost
kappa = @(u) w(u)./v(u); % Ukrivljenost
dv = @(u) (dx(u).xddx(u) + dy(u).*ddy(u))./v(u);

u = 0:0.001:2%pi; % Cas

arMax = 4; atMax = 2; J Omejitvi pospeska
vSP = 0.2; vEP = 0.1; ) Zaletna in koncina hitrost
uSP = u(1); uEP = u(end); % Zacetni in konéni poloZaj

uTP = []; % To&ke zavojev
for i = 2:length(u)-1 % Dololitev tolk zavojev
if all(abs(kappa(u(i))) > abs(kappa(u([i-1, i+11))))
uTP = [uTP, u(i)l;
end
end
up0 = sqrt(arMax./abs(v(uTP).*w(uTP))) ; % Odvodi v to&kah zavojev

velCnstr = false; % Omogoli omejitev hitrosti
if velCnstr
vMax = 1.5; %Omejitev hitrosti
for i = 1:length(uTP) % Prilagodi uTP glede na hitrostno omejitev
vvu = v(uTP(i)); vvt = vvu*up0(i);
if abs(vvt) > vMax, up0(i) = abs(vMax/vvu); end
end
% Dodaj zahtevo za zaletno in konéno hitrost
uTP = [uSP, uTP, uEP]; upO0 = [vSP/v(uSP), upO, vEP/v(uEP)];
end

Ts = 0.001; % Racunski korak
N = length(uTP); ts = cell(1,N); us = cell(1,N); ups = cell(1,N);
for i = 1:N ), Zanka Cez vse tolke zavojev
uB = uTP(i); upB = up0(i); tB = 0;
uF = uTP(i); upF = up0(i); tF = 0;
uBs =[]; upBs = []; tBs = []; uFs = []; upFs =[]; tFs = []; % Spomin
goB = true; goF = true;

while goB || goF
% Integracija nazaj od tocke zavoja
if uB > uSP && goB
dxT = dx(uB); dyT = dy(uB);
ddxT = ddx(uB); ddyT = ddy(uB);
vT = v(uB)*upB; wT = w(uB)*upB; kappaT = kappa(uB);
arT = vT*wT; atT = atMax*sqrt(l - (arT/arMax) ~2);

if velCnstr && abs(vT) > vMax
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50 upB = vMax/v(uB); upp = -dv(uB)*upB~2/v(uB);

51 elseif abs(arT)-arMax > 0.001

52 arT = arMax; atT = 0; upp = 0; goB = false;

53 else

54 atT = -real(atT);

55 upp = real (-atMax*sqrt(1/(dxT"2 + dyT~2) -

56 (dxT"2 + dyT~2)*kappaT 2*upB~4/arMax~2) - ...
57 (dxT*ddxT + dyT*ddyT)/(dxT"2 + dyT~2) * upB~2);
58 end

60 uBs = [uBs; uBl; upBs = [upBs; upBl; tBs = [tBs; tB]; ) Shranjevanje
61 tB = tB + Ts;

62 uB = uB - upB#*Ts; % Eulerjeva integracija

63 upB = upB - upp*Ts; ) Eulerjeva integracija

64 else

65 goB = false;

66 end

67

68 % Integracija naprej of tolke zavoja

69 if uF < uEP && goF

70 dxT = dx (uF); dyT = dy(uF);

71 ddxT = ddx(uF); ddyT = ddy(uF);

72 vT = v(uF)*upF; wT = w(uF)*upF; kappaT = kappa(uF);

73 arT = vT*wT; atT = atMax*sqrt(l - (arT/arMax) ~2);

74

75 if velCnstr && abs(vT) > vMax

76 upF = vMax/v(uF); upp = -dv(uF)*upF~2/v(uF);

77 elseif abs(arT)-arMax > 0.001

78 arT = arMax; atT = 0; upp = 0; goF = false;

79 else

80 atT = real(atT);

81 upp = real (+atMax*sqrt(1/(dxT"2 + dyT~2) -

82 (dxT"2 + dyT~2)x*kappaT 2*upF~4/arMax"2) -

83 (dxT*ddxT + dyT#*ddyT)/(dxT"2 + dyT~2) * upF~2);
84 end

85

86 uFs = [uFs; uF]; upFs = [upFs; upFl; tFs = [tFs; tF]; J Shranjevanje
87 tF = tF + Ts;

88 uF = uF + upF*Ts; J Eulerjeva integracija

89 upF = upF + upp*Ts; J Eulerjeva integracija

90 else

91 goF = false;

92 end

93 end

94

95 ts{i} = [tBs; tB+tFs(2:end)];

96 us{i} = [flipud(uBs); uFs(2:end)];

97 ups{i} = [flipud(upBs); upFs(2:end)];

98 end

99

100 % Iskanje minimuma med vsemi profili

101 usOrig = us;

102 for i = 1:N-1

103 d = ups{i+1} - interpl(us{i}, ups{il}, us{i+1});

104 j = find(d(l:end-1).*d(2:end)<0, 1); % ups{i} je pribliZno enak ups{i+1}
105 % Iskanje bolj natanénega u-ja, kjer sta profila ups{i} in ups{i+1} enaka
106 uj = us{i+1}(j) + (us{i+1}(j+1)-us{i+1}(j))/(d(j+1)-d(j)I)*(0-d(j));
107 rob = interpl(us{il}, ups{i}, uj);

108

109 keep = us{i} < uj;

110 us{i} = [us{i}(keep); ujl; ups{i} = [ups{i}(keep); robl;
111 keep = us{i+1} > uj;

112 us{i+1} = [uj; us{i+1}(keep)]; ups{i+1} = [rob; ups{i+1}(keep)];



113
114
115
116
117
118
119
120
121
122
123

148 Vodenje kolesnih mobilnih sistemov

end

% Konstrukcija konéne reSitve
tt = interpl(usOrig{1}, ts{1}, us{1}); uu = us{1}; uwup = ups{1l};
for i = 2:N

ti = interpl (usOrig{il},ts{i},us{i});

tt [tt; ti + tt(end) - ti(1)];

uu [uu; us{i} + uu(end) - us{i}(1)];

uup = [uup; ups{il}];

end

vv = v(uu).*uup;

Slika 3.40: Optimalno dolocen razpored, ki pois¢e najmanjsi profil & vseh prelo-
mnih tock (TP)

t[s]

Slika 3.41: Optimalni razpored u(t), ki je nelinearna funkcija, ¢eprav je v tem

primeru videti skoraj linearna
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Slika 3.42: Optimalni hitrosti v(u) in v(t)

Primer 3.18

Razsirite primer 3.17, da vkljucuje tudi zahteve za zacetno in koncéno hitrost:
vep = 0,2m/s in vgp = 0,1 m/s. Poleg tega upostevajte, da je najvecja hitrost

omejena na vyrax = 1,5m/s.

Izracunajte razpored u(t) in profile hitrosti v(u), v(t).

Resitev

Kodo iz primera 3.17 je mogoce spremeniti tako, da vsebuje dodatne zahteve.
Zahteve za zacetno in konc¢no hitrost se obravnavajo podobno kot v drugih TP. SP
in EP sta obravnavani kot novi TP, katerih zacetni pogoji so usp =0, ugp = 2,

VEP
vp(upp)”

y — _VSP i _
usp = vp(usp) mUupp =

Omejitve hitrosti se upostevajo, ¢e je spremenljivka velCnstr v programu 3.16
nastavljena na true. Optimalna dolocitev razporeda za primer 3.18 je prikazana
na slikah 3.43 — 3.45.
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Slika 3.43: Optimalno dolocen razpored, ki pois¢e najmanjsi @ vseh prelomnih

tock (TP)

1 1 1 1 1
3 4 5 6 7 8
t[s]

Slika 3.44: Optimalni razpored u(t), ki je nelinearna funkcija, éeprav je v tem

primeru videti skoraj linearna
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Slika 3.45: Optimalni hitrosti v(u) in v(t)
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4

Nacrtovanje poti

4.1 Uvod

Nacrtovanje poti od tocke A do tocke B, hkratno izogibanje oviram in uposteva-
nje sprememb v okolju so za ¢loveka enostavne naloge, medtem ko kolesnemu
mobilnemu robotu predstavljajo izziv, ki ga mora (vsaj delno) premagati, da
postane avtonomen. Robot s pomocjo senzorjev z dolo¢eno negotovostjo zaznava
prostor okoli sebe in tako izdeluje ali dopolnjuje svoj zemljevid okolice. Za izracun
premikov do cilja se s pomoc¢jo algoritmov odloc¢a in nacértuje potrebne akcije.
Pri tem je potrebno upostevati dinami¢ne in kinemati¢ne omejitve robota.

Nacrtovanje poti se uporablja za resevanje problemov na razlicnih podrocjih,
od preprostega nacrtovanja poti znotraj znanega okolja do dolocCitve ustreznega
zaporedja premikov za doseg cilja. Nacrtovanje poti je pogosto omejeno na
vnaprej zgrajena okolja in okolja, ki jih lahko vnaprej dovolj dobro opisemo.
Nacrtovanje poti se lahko uporablja v okoljih, ki so v celoti ali delno poznana, ter
v popolnoma neznanih okoljih, kjer zaznane informacije doloc¢ajo zeleno gibanje
robota.

Nacrtovanje poti v znanih okoljih je aktualno podrocje raziskovanja, ki je temelj
kompleksnejsih primerov, kjer okolje ni znano vnaprej. V nadaljevanju so pred-
stavljene najpogosteje uporabljene metode nac¢rtovanja poti za kolesne mobilne
robote. Za nadaljnje branje o metodah naértovanja poti glejte [1-3]. Najprej
podajmo definicije nekaj osnovnih pojmov pri nacrtovanju poti.
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space with obstacles

a) b)

Slika 4.1: (a) Okolica robota z ovirami ter zacetno in ciljno konfiguracijo; (b)
ena izmed moznih poti od zacetne do ciljne konfiguracije

4.1.1 Okolica robota

Robot se giblje v okolju, ki je sestavljeno iz prostega obmocja in obmocdja z
ovirami (slika 4.1). V prostem obmod¢ju se nahajata zacetna in ciljna konfigu-
racija — mnozica parametrov, ki dolo¢a robota v prostoru. Parametri obic¢ajno
vkljucujejo pozicijo in orientacijo robota, lahko pa tudi zasuke v njegovih sklepih.
Stevilo teh parametrov je enako Stevilu prostostnih stopenj robota.

Okolje, ki vsebuje premikajoce se ovire, imenujemo dinamic¢no okolje, okolje,
ki se ¢asovno ne spreminja, pa staticno okolje. Pri znanem okolju je pozicija
ovir vnaprej znana. V nasprotnem primeru govorimo o neznanem okolju.

4.1.2 Nacrtovanje poti

Nacrtovanje poti je proces iskanja zvezne poti, ki bo robota pripeljala od zacetne
do ciljne konfiguracije, tako da bo njegova celotna pot lezala v prostem obmocju,
kot je prikazano na sliki 4.1. Pri nacrtovanju poti mobilni sistem uporablja
zemljevid okolja, ki je shranjen v njegovem spominu.

Stanje (ali konfiguracija) podaja mozno lego mobilnega robota v okolju. Pred-
stavimo ga lahko kot toc¢ko v konfiguracijskem prostoru, ki vkljucuje vsa mozna
stanja robota. Robot lahko preide iz enega stanja v drugo s pomocjo razlicnih
akcij. Ustrezno pot opisemo z zaporedjem akcij, ki vodijo robota od zacetne
konfiguracije (oz. stanja) skozi nekaj vmesnih konfiguracij, potrebnih za doseg
ciljne konfiguracije (oz. stanja). Izbira akcije v trenutnem ali naslednjem stanju,
je odvisna od izbranega algoritma nacrtovanja poti. Ta se glede na cenilko
(kriterijsko funkcijo) odlo¢i, katero je naslednje najprimernejse stanje iz mnozice
ustreznih stanj. Cenilka je obic¢ajno doloc¢ena z merjenjem razdalje, npr. najkrajsa
evklidska razdalja do ciljne tocke.
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Zacetno in ciljno stanje pogosto povezuje ve¢ poti, ali pa pot sploh ne obstaja.
Obicajno obstaja ve¢ izvedljivih poti, na katerih robot ne tréi z ovirami. Izbor
zozimo z dodatnimi zahtevami ali kriteriji, ki dolocajo zeleno optimalnost:

e dolzina poti naj bo najkrajsa,

e ustrezna pot naj bo tista, ki jo robot lahko prevozi v najkrajSem moznem

Casu,
e pot naj bo ¢im bolj oddaljena od ovir,
e pot naj bo gladka, brez ostrih zavojev,

e pot naj uposteva omejitve gibanja robota (primer neholonomic¢nosti, kjer v

danem trenutku niso mozne vse smeri voznje).

4.1.3 Konfiguracija in konfiguracijski prostor

Stanje mobilnega sistema v nekem okolju imenujemo konfiguracija in jo opisemo
z n podatki, ki predstavljajo vektor stanj ¢ = [q1,...,¢.]T, kjer je n Stevilo
prostostnih stopenj. Stanje g je tocka v m-dimenzionalnem prostoru, ki ga
imenujemo konfiguracijski prostor Q (angl. configuration space) in predstavlja

vse mozne konfiguracije mobilnega sistema glede na njegov kinemati¢ni model.

Del konfiguracijskega prostora, ki predstavlja ovire O;, ozna¢imo z Qpst = J; O;-
Torej je prosti del okolja brez ovir @) fre. enak

eree = Q - Qobst
in predstavlja prostor, kjer lahko mobilni sistem nacrtuje svoje gibanje.

Predpostavimo, da imamo robota krozne oblike, ki je zmozen le translacij v
ravnini, torej ima dve prostostni stopnji ¢ = [z,y]’. Njegovo konfiguracijo
lahko obravnavamo tockovno in jo enostavno predstavimo s tocko njegovega
centra z,y. Konfiguracijski prostor () pa dolo¢imo s pomikanjem robota ob
oviri, tako da je ves c¢as v stiku z njo, kar prikazuje slika 4.2. Pri tem tocka
centra robota, ki dolo¢a njegovo pozicijo, opise mejo med Q free in Qops- Na ta
naéin razsirimo dimenzije ovir za znano dimenzijo robota (njegov radij), da lahko

robota obravnavamo kot tocko.

Se en primer konfiguracijskega prostora za trikotnega robota in ovire je prikazan
na sliki 4.3. Robot se lahko premika samo v smereh z in y (q = [z,y]T).

Ce za robota na sliki 4.3 predpostavimo, da je zmoZen tudi rotacije, ima njegova
konfiguracija tri dimenzije ¢ = [z,y, ¢]?, njegov konfiguracijski prostor pa je
kompleksnejsi. Poenostavljeno lahko konfiguracijski prostor dolo¢imo tako, da
obliki robota oc¢rtamo krog, ki ima sredis¢e v tocki centra robota. Dobljeni
prostor () free je v tem primeru nekoliko manjsi kot dejanski prosti prostor, ker
ima oértan krog veéjo povrsino kot robot. Vendar pa to poenostavi problem

nacrtovanja poti.
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a) b) °)

Slika 4.2: (a) Krozni robot v okolju z oviro, z oznadeno zacetno in ciljno konfigu-
racijo, (b) doloéitev konfiguracijskega prostora in (¢) nacrtovanje poti, ki okolje
(a) prevede v konfiguracijski prostor, kjer je robot predstavljen s tocko svojega

Qﬁ«-
YGotars
b)

<)

centra

vl v

a)

Slika 4.3: (a) Pravokotna ovira in trikotni robot s tocko, ki dolo¢a njegovo
konfiguracijo q, (b) dolocitev konfiguracijskega prostora, (c) prosti konfiguracijski
prostor @ free in prostor ovir Qops

4.1.4 Matematicni zapis oblike in lege ovire v

okolici

Za izracun konfiguracijskega prostora robota in uporabo nadaljnjih poenostavitev
okolja je potreben matematicni opis oblike in lege ovir v prostoru. Najpogostejsa
pristopa za opis ovir sta: predstavitev meje s pomocjo oglis¢ in predstavitev s

polravninami.

Predstavitev ovir z zapisom meje s pomocjo oglis¢

Ovira na tlorisu predstavlja m-strani poligon, ki ima m oglis¢. Mejo ovire lahko
zapisemo z nizanjem ogliS¢ v obratni smeri urinega kazalca, pri ¢emer so luknje
v ovirah in okoliska stena zapisane v nasprotni smeri, tj. v smeri urinega kazalca
(slika 4.4). To velja tako za zapis konveksnih kot tudi nekonveksnih poligonov.

Predstavitev ovir s presekom polravnin

Konveksni poligon z m oglis¢i lahko zapisemo kot unijo m polravnin, kjer je
vsaka doloCena s svojo enacbo premice f(z,y) < 0 oz. ravnine f(x,y,z) < 0 (tri-
dimenzionalne ovire). Slika 4.5 prikazuje primer tovrstnega opisa peterokotnika.
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Slika 4.4: Primer opisa ovire z nizom oglis¢: luknja ovire je opisana z nizom
v smeri urinega kazalca, zunanja meja ovire pa z nizom v nasprotni smeri.
Leva stran vsakega usmerjenega linearnega segmenta pripada oviri (zasenc¢ena
povrsina).

dinina B

Slika 4.5: Primer opisa ovire s polravninami

Nekonveksne like in like z luknjami opisemo s pomocjo operacij nad mnozicami,
npr. unija, presek, razlika mnozic itd.

4.2 Predstavitev okolja za nacrtovanje
poti

Pred samim nacrtovanjem poti moramo okolje predstaviti na poenoten matema-
ti¢en nacin, primeren za obdelavo z algoritmi iskanja poti.

4.2.1 Predstavitev z grafi

Konfiguracijski prostor je sestavljen iz prostega obmocdja, ki predstavlja vse
mozne konfiguracije (stanja) mobilnega sistema, in obmodja z ovirami. Ce prosto
obmodje skréimo in ga predstavimo s podmnozico konfiguracij (npr. sredis¢a
podrodij ali celic), ki vkljucujejo zacetne in ciljne konfiguracije ter Zeleno Stevilo
vmesnih konfiguracij s prehodi med njimi, dobimo graf prehajanja stanj.
Stanja v grafu so prikazana s krogi in jih imenujemo vozlisca grafa, povezave
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Slika 4.6: Primer (a) utezenega grafa in (b) usmerjenega utezenega grafa

med njimi pa s értami, ki predstavljajo akcije, potrebne za prehod med stanji.

Graf je utezen, e vsaki povezavi pripisemo neko utez ali ceno, ki je potrebna za
izvrsitev akcije pri prehodu med stanjema te povezave. V usmerjenem grafu
(angl. directed graph) pa povezave oznacimo Se s smerjo. V usmerjenem grafu
je cena odvisna od smeri prehoda, medtem kot je v neusmerjenem grafu mozen
prehod v obeh smereh. Slika 4.6 prikazuje utezen in usmerjen utezen graf. Iskanje
poti v grafu prehajanja stanj je mozno z razliénimi algoritmi iskanja, kot je A*,
Dijkstrov algoritem itd.

4.2.2 Razcep na celice

Okolje lahko razdelimo na celice, ki predstavljajo enostavne geometrijske like.
Celice so konveksne, saj mora vsaka daljica, ki povezuje poljubni konfiguraciji v
celici, v celoti lezati znotraj celice. Po razcepu okolja na celice lahko izvedemo graf
prehajanja stanj, kjer so stanja dolocene tocke v celici (npr. teziséa), povezave
med stanji (vozlis¢a grafa) pa so mozne le med sosednjimi celicami s skupnim

robom ali oglis¢em.

Natancen razcep na celice

Razcep okolja na celice je natancen, ce celice v celoti lezijo ali v prostem obmodcju
ali v obmocju z ovirami. Natancéen razcep je “brezizguben”, saj je unija vseh
prostih celic enaka prostemu konfiguracijskemu prostoru @ free-

Primer natan¢nega razcepa na celice je navpicen razcep, prikazan na sliki 4.7. V
tem primeru se z navidezno navpicno ¢rto pomikamo ¢ez okolico od leve proti
desni (meji). Vsakié, ko preckamo oglisce katerega izmed veckotnikov, ustvarimo
navpi¢no mejo med celicama, ki lahko poteka samo navzgor, samo navzdol ali pa
gor in dol od oglisca. Kompleksnost tega pristopa je moc¢no odvisna od geometrije
okolice. V enostavnih okolicah bo stevilo celic in povezav med njimi majhno. Z
veCanjem Stevila poligonov (ovir) in njihovih oglis¢, narascéa tudi Stevilo celic.

Natancen razcep na celice lahko predstavimo z grafom prehajanja stanj, kjer so
vozlisca sredisc¢a celic, prehodi med sredisci celic pa gredo skozi tocke na sredisc¢u
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Slika 4.7: Navpicen razcep na celice (zgoraj) in pripadajo¢ graf (spodaj) z vrisano
potjo med zacetno in ciljno konfiguracijo (odebeljena crta)
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Slika 4.8: PribliZen razcep na celice je sestavljen iz dveh korakov: (a) na okolico
polozimo mrezo celic enake velikosti in (b) oznadimo celice kot proste ali zasedene
(zasencene celice)

mej med celicami.

PribliZen razcep na celice

Razcep okolja na celice je priblizen, ko posamezna celica vsebuje tako prosti
konfiguracijski prostor kot tudi oviro ali del nje. Celice, ki vsebujejo vsaj del
ovire, oznac¢imo kot zasedene, ostale pa so proste. Vec¢inoma se uporablja razcep
na celice enakih velikosti, kjer dobimo mreZo zasedenosti (angl. occupancy
grid) (slika 4.8). Center vsake celice (na sliki 4.8 so proste celice pobarvane
z belo barvo) je v grafu predstavljen kot vozlis¢e. Povezave med celicami so
mozne v Stirih ali osmih smereh, odvisno od tega, ali je dovoljeno prehajanje v
diagonalni smeri. Omenjen pristop je zelo enostaven za uporabo, vendar lahko
zaradi konstantne velikosti celic pride do izgube informacij o okolici (ta razcep ni
“brezizguben”); npr. ovire se povecajo in obstojeci ozki prehodi med njimi lahko
izginejo pri pribliznem razcepu na celice. Glavna pomanjkljivost tega pristopa
je poraba pomnilnika, ki je za vecja okolja velika, ne glede na to, ali so okolja
enostavna ali kompleksna.

Do manjse izgube informacij pri majhni porabi pomnilnika pride pri uporabi
spremenljive velikosti celic. Na okolje polozimo eno celico, ki ga popolnoma
pokrije. Ce je celotna celica v prostem obmod&ju ali obmo&ju z ovirami, ostane
taksna kot je. Ce pa je le del nje pokrit z oviro, celico razdelimo na 4 manjse
celice. Postopek, imenovan $tirisko drevo (angl. quadtree), ponavljamo, dokler
ni doseZena Zelena resolucija. Dobljeno razdelitev okolja na celice (slika 4.9) lahko
prav tako pretvorimo v graf stanj. Priblizen razcep na celice je enostavnejsi od
natancnega, vendar lahko zaradi izgube informacij vodi do problema, ko proces
nacrtovanja poti ne najde resitve, ceprav le-ta obstaja.
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Slika 4.9: Priblizen razcep na celice z uporabo spremenljive velikosti celic —
stirisko drevo. Proste celice so oznacene z belo barvo, zasedene pa so zasencene

Primer 4.1

Napisite program, ki z uporabo stiriskega drevesa razgradi okolje s pravokotnimi
ovirami. Program 4.1 ustvari naklju¢no okolje z ovirami; v programu je dolocena
tudi funkcija za izracun StirisSkega drevesa. Funkcija sprejme ovire, dimenzijo
okolja in Zeleno globino (Stevilo delitev) Stiriskega drevesa ter vrne $tirisko drevo
v obliki Matlab strukture.

Program 4.1: Implementacija sStiriSkega drevesa
./src/pth/example_quad_tree.m

bb = [0, 16, 0, 12]; 7% Dimenzija okolja: xa, xb, ya, yb

N = 10; % Stevilo ovir
minDim = [0.1; 0.1]; % Minimalne dimenzije ovire: xMin in yMin
maxDim = [2; 2]; % Maksimalne dimenzije ovire: xMax in yMax

% Nakljuéni zemljevid ovir, ogliséa v stolpcu: x1, yi1, x2, y2, x3, y3, x4, y4
obst = zeros(8, N);
for i = 1:N
P [bb(1); bb(3)] + [diff(bb(1:2)); diff(bb(3:4))].*rand(2,1);
phi = 2*pi*rand(); d = minDim/2 + (maxDim-minDim)/2*rand();
R [cos(phi),-sin(phi); sin(phi), cos(phi)l;
v = repmat(p, 1, 4) + Rx([-1, 1, 1,-1; -1,-1, 1, 1].*repmat(d, 1, 4));
obst(:,i) = reshape(v, [1, 1);

end

tree = quadTree(obst, bb, 4); J Izdelava Stiriskega drevesa globine 4
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Resitev

NacCrtovanje poti

Mozna izvedba algoritma s Stiriskim drevesom je podana v Matlab kodi v pro-

gramu 4.2. Rezultat algoritma na naklju¢nem zemljevidu je prikazan na sliki

4.10.

Program 4.2: Razcep na celice s stiriskim drevesom

./src/pth/quadTree.m

function tree

quadTree (obst, bb,

level)

% Izdelava StiriSkega drevesa $tree$ globine $level>=0$ okoli ovir $obst$

% (vsak stolpec vsebuje
% za okolje dimenzij $bb
minDim [diff (bb(1:2));
% 0Osnovno vozli&ée
tree(1).leaf
tree (1) .free
tree (1) .
tree (1).

true;

= YA

false;
bb; %

bounds

center

id = 1; k
while id < k

occupied

2;

d
if occupied && d(1)
tree(id).leaf
tree(id).free

Meje celice:
[mean(bb(1:2));

isOccupied(tree(id).bounds,

[diff (tree(id) .bounds (1:2)),

oglisca ovire: x1, X2,
$ (xa, xb, ya, yb)

diff (bb(3:4))]1/2 7 level;

yi,

)

Ali je celica zasedena?

xa, xb, ya,
mean (bb (3:4))1];

yb
%

obst);

diff (tree(id)
> minDim(1)/2 %
false;
false;

Razdelitev

b = tree(id).bounds;

y2, ...) in

Minimalna velikost celice

% % Ali je celica kon&no vozlice?

Center celice

.bounds (3:4))1/2;
celice na Stiri nove celice

bs = [b(1), b(1)+d (1), b(3), b(3)+d(2);
b(1)+d(1), b(2), b(3), b(3)+d(2);
b(1), b(1)+d (1), b(3)+d(2), b(4);
b(1)+d(1), b(2), b(3)+d(2), b(4)];
for i = 1:4
tree(k).leaf = true;
tree(k).free = false;
tree(k).bounds = bs(i,:);
tree(k).center = [mean(bs(i,1:2)); mean(bs(i,3:4))];
k =k + 1;
end
elseif ~occupied
tree(id).free = true;
end
id = id + 1;

end

% Izdelava vidljivostnega grafa

a = zeros(2,length(tree)*4); leafs = zeros(l,length(tree));
for i = 1l:length(tree)
a(:,i*4-3:i%4) = tree(i).bounds([1, 2, 2, 1; 3, 3, 4, 4]1);
leafs (i) = tree(i).leaf;
end
offset = [-1, 1, 1,-1; -1,-1, 1, 1]1/2.*repmat(minDim, 1, 4);
for i = 1l:length(tree)
tree (i) .neighbours = [];
if tree(i).leaf
b = tree(i).bounds([1, 2, 2, 1; 3, 3, 4, 4]) + offset;
¢ = reshape(inpolygon(a(1l,:), a(2,:), b(1,:), b(2,:)), 4, [1);

tree(i).neighbours

end

setdiff (find (any(c).*leafs),

i);
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end
function occupied = isOccupied(bounds, obst)
occupied = false;
pb = bounds([1, 2, 2, 1, 1; 3, 3, 4, 4, 31);
for j = 1:size(obst, 2) % Sprehod ez vse ovire
pa = reshape(obst(:,j), 2, [1); N = size(pa, 2);
ina = inpolygon(pa(1l,:), pa(2,:), pb(1,:), pb(2,:));
inb = inpolygon(pb(1,:), pb(2,:), pa(l,:), pa(2,:));
if any(ina) || any(inb) % Ali so ogliSéa v oviri ali celici?
occupied = true; break;
else % Ali so kak3na preseciScéa robov?
for k = 1:size(pb, 2)-1 % Sprehod ez vse mejne robove
for i = 1:N Y% Sprehod cez robove ovir
a1l [pa(:,i); 1]1; a2 = [pa(:,mod(i,N)+1); 11;
bl = [pb(:,k); 11; b2 = [pb(:,k+1); 11;
pc = cross(cross(al, a2), cross(bl, b2));% Preseciice
if abs(pc(3))>eps
pc = pc/pc(3);
da = a2-al; ca = pc-al; ea = (ca.’*da)/(da.’*da);
db = b2-bl; cb = pc-bl; eb = (cb.’*db)/(db.’*db);
if eb>eps && eb<l && ea>eps && ea<l
occupied = true; break;
end
end
end
if occupied, break; end
end
end
if occupied, break; end
end

end

165
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Slika 4.10: Razcep okolja z nakljué¢nimi ovirami s pomocjo stiriskega drevesa. Na
stirisko drevo je polozena mreza, ki povezuje sredisc¢a vseh sosednjih celic.

4.2.3 Zemljevid cest

vvvvv

prostega obmocja okolja. Proces nacrtovanja poti mora povezati zacetno in ciljno
tocko z obstojecimi povezavami na zemljevidu in poiskati povezano zaporedje
cest. Postavitev cest je odvisna od geometrije okolice. Cilj je uporabiti najmanjse
Stevilo cest, ki robotu omogocajo dostop do kateregakoli dela prostega obmocja. V
nadaljevanju so predstavljeni trije nacini izdelave zemljevida cest: graf vidljivosti,
Voronojev graf in triangulacija prostora.

Graf vidljivosti

Graf vidljivosti je sestavljen iz vseh moznih povezav med dvema oglis¢ema, ki v
celoti lezita v prostem obmodcju. To pomeni, da so za vsako oglis¢e vzpostavljene
povezave z vsemi (drugimi) ogliséi, ki so vidna z njegove pozicije. Pri tem zacetno
in ciljno tocko obravnavamo kot dodatni oglis¢i. Povezave ustvarimo tudi med
sosednjima ogliS¢ema istega poligona. Primer grafa vidljivosti je prikazan na
sliki 4.11a. Pot, dobljena s pomocjo grafa vidljivosti, je najkrajsa mozna, saj
so ceste speljane kar se da blizu oviram. Da reSimo problem trka robota in
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a) b)

Slika 4.11: Zemljevid cest: (a) graf vidljivosti in (b) Voronojev graf

ovir, lahko le-te povecamo vsaj za polmer robota, kot je opisano v podpoglavju
4.1.3. Grafi vidljivosti so dokaj enostavni za uporabo, vendar z vecanjem stevila
ovir in njihove kompleksnosti narasca stevilo cestnih povezav in vozlis¢, zato se
manjsa njihova ucinkovitost. Grafe vidljivosti lahko poenostavimo z odstranitvijo
redundantnih povezav, ki jih je mozno nadomestiti z obstojeco krajSo povezavo.

Voronojev graf

Voronojev graf (slika 4.11b) je sestavljen iz odsekov cest, ki so najbolj oddaljeni
od ovir. To pomeni, da je povezava med dvema ovirama enaka razdalji do obeh

OVir.

Osnovni Voronojev graf (diagram) je opredeljen za ravnino z n to¢kami (npr.
to¢kovna ovira). Ravnina se razdeli na n obmodij, katerih meje sestavljajo
zemljevid. Vsako obmocje ima natanko eno izvorno tocko in velja, da so vse
tocke znotraj dolocenega obmocja blizje svoji izvorni tocki, kot katerikoli drugi
izvorni tocki (drugih obmo¢ij). Na sliki 4.11 je prikazan primer splosnega
Voronojevega grafa za ravninsko okolje, v katerem so ovire poljubnih oblik
(trikotnik, pravokotnik, mnogokotnik itd.). Tu je prostor razdeljen na obmodja,
kjer ima vsako obmocje to¢no eno izvorno oviro. Vsaka tocka znotraj dolocenega

obmocja je blizje izvorni oviri kot katerikoli drugi oviri.

Voznja po taksni cesti zmanjsuje tveganje za trk robota z ovirami, kar je zazeleno,
ko je lega robota znana z neko negotovostjo zaradi merilnega Suma ali vodenja.
Zemljevid okolja, zgrajen iz poligonov, vsebuje tri znac¢ilne Voronojeve krivulje,
kot je prikazano na sliki 4.12. Voronojeva krivulja, ki ima enako razdaljo med:

o dvema oglis¢ema (premica),
o dvema robovoma (ista premica),
« ogliS¢em in daljico (parabola).

V cestno omrezje povezemo Se zacetno in ciljno konfiguracijo. Tako dobimo graf,

po katerem iscemo resitev.
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Slika 4.12: Tipi¢ne Voronojeve krivulje

Kot smo ze omenili, ta pristop maksimira oddaljenost robota do ovir, vendar
pridobljena dolzina poti Se zdale¢ ni optimalna (najkrajsa). Robot s senzorji
oddaljenosti (npr. z ultrazvocénim ali laserskim pregledovalnikom razdalj) lahko
z enostavno regulacijo, kjer se giba na enaki oddaljenosti od vseh okoliskih ovir,
sledi cestam po Voronojevem grafu. Roboti z blizinskimi tipali ali senzorji za
kratke razdalje pa imajo pri tem pristopu probleme z lokalizacijo, ki jih pri grafu
vidljivosti ne bi imeli.

Primer 4.2

Z uporabo Matlab funkcije voronoi izracunajte Voronojev graf za okolje na sliki
4.11. Koordinate okolja (o) in objektov (o1, 02, 03) so podane v programu 4.3.

Program 4.3: Oglis¢a ovir v okolju

./src/pth/param_map.m

o = 1000%[0.0149, 0.0693;
1.6228, 0.0679;
1.6241, 1.0867;
0.0112, 1.0854];
ol = 1000%[0.4263, 0.4569;
0.6144, 0.6857;
0.3097, 0.9414;
0.1190, 0.7126];
02 = 1000%[0.8151, 0.2079;
1.0885, 0.3008;
0.9644, 0.6574;
0.8753, 0.6278;
0.9706, 0.3573;
0.7838, 0.2927];
03 = 1000%[1.3319, 0.4865;
1.4723, 0.5659;
1.3845, 0.7112];
% Prosto obmoclje je na desni strani od ovire
obstacles = {flipud(o), ol, 02, 03};

Resitev

S pomocjo Matlab funkcije voronoi lahko narisemo Voronojev graf za seznam
tock. Okolje na sliki 4.11 vkljucuje tudi like z robovi, ki so opisani z daljicami,
zato ni mozno neposredno uporabiti funkcije voronoi. Vsako daljico lahko po-
ljubno natanéno predstavimo z diskretno mnozico (enakomerno) porazdeljenih

pomoznih tock. S pomocjo funkcije voronoi lahko nato izracunamo aproksi-
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macijo Voronojevega grafa, kot je prikazano na sliki 4.13. Poleg iskanih robov
med ovirami dobimo s tem postopkom tudi veliko dodatnih robov, ki so na
sliki 4.13 oznaceni ¢rtkano. Gre za robove, ki locujejo pomozne tocke, niso v
prostem prostoru ali pa so posledica nekonveksnosti ovir. Program 4.4 vsebuje
filtrirne mehanizme, ki odstranijo vse dodatne robove, tako da dobimo kon¢no
aproksimacijo Voronojevega grafa — polno izvleceni robovi na sliki 4.13.

Slika 4.13: Aproksimacija Voronojevega grafa z uporabo Matlab funkcije voronoi
in pomoznih tock za predstavitev robov

Program 4.4
./src/pth/example_voronoi.m

param_map;

% Opis daljic z mnoZico pomoZni /(vmesnih) tock
dMin = 50;
points = [1; obst = [];
B = length(obstacles);
for i = 1:B
ob = obstacles{il};
M = size(ob, 1);
for j = 1:M
k = mod(j, M)+1; % j+1
d = sqrt((ob(j,1)-ob(k,1))"2 + (ob(j,2)-ob(k,2))72);
n = ceil(d/dMin)+1;
x = linspace(ob(j,1), ob(k,1), n).’;
y = linspace(ob(j,2), ob(k,2), n).’;
points = [points; x(l:end-1) y(l:end-1)];
end
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obst = [obst; obstacles{i}([1:end,1],:); nan(1,2)];
end

% Izraun Voronoijevih daljic iz mnoZice pomoZnih tock
[vx, vyl = voronoi(points(:,1), points(:,2));

% Odstanjevanje pomozZnih (niso v prostem prostoru) Voronoijevih robov
s = false(1l, size(vx, 2));
for j = 1l:size(vx, 2)
in = inpolygon(vx(:,j), vy(:,j), obst(:,1), obst(:,2));
s(j) = all(in==1);
end

ux = vx(:,s); uy = vy(:,s); % PribliZni Voronoijevi robovi

% Odstranjevanje nazakljucenih robov pri konveksnih objektih
r = [1;
for j = 1:length(ux(:))
¢ = length(find ((ux(:)-ux(j))."2 + (uy(:)-uy(j))."2 < eps));
i @==
a = j; % Odkrita robna tocka na nezakljulenem robu
while true % Iskanje vseh tock na nezakljucéenem robu
if mod(a, 2) == 0, b = a-1; else b = a+l; end
r = [r, max(a,b)/2];
c = find((ux(:)-ux(b))."2 + (uy(:)-uy(b))."2 < eps);
if length(c)>2, break; end
a = c(c~=b);
end
end
end

ux(:,r) = [1; uyC:,r) = [1;

% Izris

plot ([vx;nan(l,size(vx,2))], [vy;nan(l,size(vy,2))], ’b:’); hold on;

plot (points(:,1), points(:,2), ’b.’);

plot ([ux;nan(l,size(ux,2))], [uy;nan(1l,size(uy,2))], ’g-’, ’LineWidth’, 1);
axis equal tight;

Triangulacija prostora

Pri triangulaciji prostora je okolje razcepljeno na trikotne celice. Ceprav obstajajo
razli¢ni algoritmi triagulacije, je dober pristop, ki preprecuje ozke trikotnike, sSe
vedno aktualen raziskovalni problem [2]. Eden od moznih algoritmov je Delau-
nayeva triangulacija prostora, ki je dual Voronojevega grafa. V Delaunayevem
grafu sredisce vsakega trikotnika (srediSc¢e o¢rtanega kroga) sovpada z vsakim
oglis¢em Voronojevega poligona. Primer delaunayeve triangulacije prostora je
prikazan na sliki 4.14.

Iz pristopov, ki brezizgubno upodobijo okolico, je s pomocjo kasneje predstavljenih
algoritmov mozno v kon¢nem c¢asu dobiti informacijo, ali iskana pot obstaja ali
ne. Pravimo, da so ti pristopi popolni (angl. complete).
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Slika 4.14: Delaunayeva triangulacija prostora, kjer nekateri robovi trikotnika
sovpadajo z robovi ovir

Primer 4.3

Uporabite Delaunayevo triangulacijo prostora za okolje na sliki 4.11. Tocke, ki
doloc¢ajo meje ovir, so navedene v programu 4.3.

Resitev

Za znana oglisca lahko v programskem okolju Matlab s pomocjo funkcije
DelaunayTri izracunamo Delaunayevo triangulacijo prostora, s funkcijo triplot
pa jo narisemo, kot je prikazano v programu 4.5.

Program 4.5: Delaunayeva triangulacija prostora
./src/pth/example_delaunay.m

param_map;

points = cell2mat (obstacles(:));
dt = delaunayTriangulation(points);
triplot(dt, ’b-’); axis equal tight;

4.2.4 Potencialno polje

Okolica je predstavljena s potencialnim poljem, ki ga lahko razumemo kot
namisljeno visino. Ciljna tocka je na dnu, visina polja pa naras¢a z oddaljenostjo
od ciljne tocke ter je na ovirah Se visja. Postopek nacrtovanja poti si lahko
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sta;

Slika 4.15: Potencialno polje za znano ciljno toc¢ko (zgoraj) ter ekvipotencialne
krivulje in izracunana pot za dve zacetni tocki (spodaj), kjer izracunana pot
doseze cilj (levo) in kjer je pot ujeta v nekonveksno oviro (desno)

predstavljamo kot premikanje Zoge, ki se kotali po hribu navzdol do cilja v dolini,
kar je prikazano na sliki 4.15.
Potencialno polje je vsota privlaénega polja ciljne tocke Ugyi-(g) in odbojnega
polja ovir U,.p(q)

U(q) = Uattr<q) + Urep(q) (41)

Ciljna tocka je globalni minimum potencialnega polja.

Privlaéni potencial U,-(q) v (4.1) je lahko dolocen tako, da je sorazmeren kva-
dratu evklidske razdalje do ciljne tocke D(q, ggoa1) = \/(x — Zgoal)? + (Y — Ygoal)?
kot

1
Uattr(q) = kattriDQ (q, qgoal)

kjer je k¢ pozitivna konstanta.
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Odbojni potencial Uy.,(q) naj bo zelo velik v blizini ovir, z oddaljenostjo od ovir
D(q, gobst) pa se zmanjSuje. Njegova vrednost je ni¢, ko je D(q, gopst) veCja od
mejne vrednosti Dy. Odbojni potencial je lahko predstavljen kot

2
%krep (D(Qv}lobst) N DLO) ;. Dlg) < Do
0 ; D(q) > Do

Urep(q) - (42)

kjer je krep pozitivna konstanta, D(q, gopst) pa razdalja do najblizje tocke na
najblizji oviri.

Za opis poti od zacetne do ciljne tocke mora robot slediti negativnemu gradientu
potencialnega polja (—=VU(q)).

Primer 4.4

Dolo¢ite negativni gradient potencialnega polja (4.1).

Resitev
Negativni gradient privlacnega polja (4.2.4) je

1 |2(x — Zg0a
*VUattr(q) = 7kattr7 (x 9 l)
2(y - ygoal)

9 ] == kattr(qgoal - q)

in kaze v smeri od lege robota g do cilja gg0q, njegova dolZina pa je proporcionalna
razdalji od g do ggoa:-

Doloé¢imo Se negativni gradient odbojnega polja 4.2 za primer, ko je D(q) < Dy

1 1 -1
—VUrep(Q) = —krep <Dbt - Do> DTVDobst =

obst

1 1 1
= kre - 5 | A3 — Gobs
P (Dobst DO) D3 (q qob t)

obst

kjer je Dopst = D(qaqobst) = \/(l‘ - xobst)Q + (y - yobst)2~ Vidimo, da smer
odbojnega polja vedno kaze stran od ovire, njegova jakost pa se zmanjsuje z
oddaljenostjo od ovire. Za primer, ko je Dypst > Dy, pa je odbojni gradient
—VU,ep(q) = 0.

Pri predstavitvi okolja z uporabo potencialnega polja lahko robot preprosto
doseze ciljno tocko s sledenjem negativnega gradienta potencialnega polja, ki
ga eksplicitno izracunamo iz znane pozicije robota. Glavna pomanjkljivost
tega pristopa je moznost ujetosti robota (tresenje — angl. jittering behaviour)
v lokalnem minimumu. Do tega lahko pride, ¢ée okolje vsebuje kakrsnokoli
nekonveksno oviro (slika 4.15) in za¢ne robot oscilirati med ve¢ enako oddaljenimi
tockami od ovire. Nacrtovanje poti z uporabo potencialnega polja se lahko uporabi
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za izracun referencne poti, ki ji mora robot slediti, ali pa pri vodenju gibanja za
usmerjanje robota v trenutni smeri negativnega gradienta.

Primer 4.5

Izrac¢unajte potencialno polje iz slike 4.15 za okolico z ovirami. Koordinate ovir
so podane v programu 4.3.

Resitev

Potencialno polje izra¢unamo s pomoéjo enachb (4.1) — (4.2), kjer je pot izra¢unana
kot integral negativnega gradienta iz primera 4.4.

4.2.5 Nacrtovanje poti z metodami vzorcéenja pro-
stora

Do sedaj predstavljene metode za predstavitev okolja za namen planiranja poti so
zahtevale znano eksplicitno predstavitev prostega konfiguracijskega prostora. Z
vecanjem dimenzije konfiguracijskega prostora postanejo te metode prevec ¢asovno
potratne, zato lahko v teh primerih uporabimo metode vzorcenja prostora.

Pri nacrtovanju poti z vzorcenjem prostora (angl. sampling-based path planning)
se naklju¢no zajemajo tocke iz okolja (konfiguracije robota), nato se s pomocjo
zaznavanja trka preverja, e le-te lezijo v prostem obmodcju [4, 5]. Iz mnozZice
zajetih tock in povezav med njimi, ki prav tako v celoti lezijo v prostem obmocju,
poisc¢emo pot med znano zacetno in zeleno ciljno tocko.

Pri metodah vzorcenja prostora ni potreben izracun prostega konfiguracijskega
prostora @ ¢ree, ki pri kompleksni postavitvi ovir in visokih prostostnih stopnjah
postane casovno zamuden, ampak ga predstavimo z nakljuc¢nimi vzorci ter neodvi-
sno od geometrije okolice najdemo resitev za Sirok spekter problemov. Prav tako
se izognemo velikemu stevilu celic, ki ga dobimo pri opisu z razcepom na celice, ter
zamudni implementaciji in racunanju, ki spremljata uporabo natanc¢nega razcepa
na celice. Zaradi vkljucitve stohasti¢nega mehanizma (nakljuéni sprehod, angl.
random walk) v nekatere algoritme, npr. v RPP (angl. random path planner), ko
se iz tocke, v kateri smo ujeti, reSimo s pomocjo premika po naklju¢nih vzorcih
iz prostega obmocja, moéno omilimo problem lokalnih minimumov, ki nas pesti

pri uporabi potencialnega polja.

Da bi zaznavanje trka zavzemalo ¢im manj racunskega casa, ga preverjamo samo
za ovire, ki so dovolj blizu, da bi lahko trcile z robotom. Robot in ovire so lahko
omejeni z enostavnimi liki, tako da kompleksnejSe preverjanje trka (med pravo
obliko robota in oblikami ovir) izvajamo samo, ko se dva lika prekrivata. V tem

primeru lahko trk zaznavamo na hierarhi¢en nacin, kjer vecji lik, ki obkroza
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Slika 4.16: Razdelitev vecjega lika na dva manjsa pri hierarhi¢nem zaznavanju
trka robota

celotnega robota, zamenjamo z dvema manjsima, ki obkrozata vsak svojo polovico
robota, kot je to prikazano na sliki 4.16. Ce se kateri izmed likov prekriva z oviro,
ga ponovno razdelimo na dva manjsa ustrezna lika. S tem nadaljujemo dokler ne
izklju¢imo ali potrdimo trka oz. dosezemo Zelene resolucije.

Tovrstne pristope delimo na tiste, ki so primerni za enkratno iskanje poti, in tiste,
ki so primerni za veckratno iskanje poti. Pri prvih zZelimo ¢im hitreje poiskati
pot med eno zacetno in eno ciljno tocko, zato se osredotoc¢imo na dele okolice, ki
obetajo resitev. V drevesno strukturo sproti dodajajmo nove tocke in povezave
dokler ne najdemo resitve. Pri drugih pristopih pa se pred samim nacrtovanjem
poti izvede enkraten postopek izdelave neusmerjenega grafa oz. zemljevida cest,
ki predstavlja povezanost prostega obmocja in s pomocjo katerega lahko nato
reSimo problem nacrtovanja poti za ve¢ poljubnih parov zacetnih in ciljnih tock.
V nadaljevanju sta opisana predstavnika iz obeh skupin.

Metoda hitro-rastocega naklju¢nega drevesa

Metoda hitro-rastocega nakljuénega drevesa (angl. rapidly-exploring random
tree) je metoda iskanja poti med eno zacetno in eno ciljno tocko [4]. Metoda v
vsaki iteraciji doda nove povezave v smeri od naklju¢nih tock proti najblizjim
tockam, ki so ze v grafu (drevesu).

V prvi iteraciji algoritma zacetna konfiguracija ¢; predstavlja drevo (povezan
graf). V vsaki naslednji iteraciji se naklju¢no izbere konfiguracija ¢rqng in iz
obstojecega grafa poisce najblizje vozlisce ¢peqr. V smeri od ¢peqr Proti ¢rang se
na vnaprej dolo¢eni razdalji € izracuna kandidat za novo vozlis¢e gpen. Ce sta
Gnew 1IN povezava od Gneqr dO @pew vV prostem obmocju, je gpeqn novo vozlisce in

njegova povezava z (neqr je dodana v graf. Postopek je prikazan na sliki 4.17.

Iskanje se zakljuc¢i po dolo¢enem Stevilu iteracij (npr. sto iteracij) ali ko je
dosezena dolo¢ena verjetnost (npr. 10%). Takrat se namesto zajema novega
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Slika 4.17: Metoda hitro-rastocega naklju¢nega drevesa — razsiritev grafa z novo
toCko @new v smeri nakljuéno vzoréene tocke qrand

nakljunega vzorca izbere ciljna tocka za katero se preveri, ali jo je mogoce
povezati z grafom [6]. Tak$no drevo se hitro razsiri na neraziskana obmodja, kar
lahko vidimo na sliki 4.18. Ta metoda ima samo dva parametra: velikost koraka
€ in zelena locljivost ali Stevilo iteracij, ki dolocata pogoje za zakljucek algoritma.
Zato je vedenje algoritma hitro-rastocega naklju¢nega drevesa dosledno in njegova
analiza preprosta.

(a) (b) (c)

Slika 4.18: Drevo, zgrajeno z metodo hitro-rastocega naklju¢nega drevesa, hitro
napreduje v neraziskano prosto obmocje. Slike z leve proti desni prikazujejo
drevesa z 20, 100 in 1000 vozlisci.
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Primer 4.6

Izvedite algoritem hitro-rastocega naklju¢nega drevesa, ki bo ustvaril drevo
za dvodimenzionalno prosto obmocje, velikosti 10m x 10m, kjer je parameter
e =0,2m.

Resitev

Za podobne rezultate, kot na sliki 4.18, lahko uporabite Matlab kodo iz programa
4.6.

Program 4.6
./src/pth/example_rrt.m

xi = [6, b]; % ZaCetna konfiguracija

D = 0.2; % Razdalja do novega vozliica
maxIter = 1000;

M = [xil; % Zemljevid

j=1

while j < maxIter
xRand = 10*rand(1,2); % Nakljucéna konfiguracija
dMin = 100; iMin = 1; 7 Iskanje najbliZje tocke v zemljevidu M
for i = 1:size(M,1)
d = norm(M(i,:)-xRand);

if d<dMin
dMin = d;
iMin = 1i;
end

end

xNear = M(iMin,:);

v = xRand - xNear;

xNew = xNear + v/norm(v)*D; % Izradun nove toclke
con = [xNear; xNew];

M = [M; xNewl];

jo=3+ 1

line(con(:,1), con(:,2), ’Color’, ’b’);

end

Primer 4.7

Razsirite primer 4.6, da vkljucuje tudi preproste ovire (npr. krozne ovire).

Resitev

Predpostavite okolje z enostavnimi ovirami v obliki krogov z znanimi polozaji in
premeri. Preverite, ali v prostem obmocju lezita kandidat za novo vozlisce @y eqp
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Slika 4.19: Metoda verjetnostnega zemljevida poti: (a) faza ucenja in (b) faza
iskanja poti

in daljica, ki povezuje qneqr N Qnew-

Metoda verjetnostnega zemljevida poti

Metoda verjetnostnega zemljevida poti (angl. probabilistic roadmap) je nacin
iskanja poti med ve¢ zacetnimi in ve¢ ciljnimi tockami, ki poteka v dveh fazah
[7]. Prva je faza ucenja, v kateri se izdela povezan zemljevid cest ali neusmerjen
graf prostega obmodja (slika 4.19a), druga pa faza iskanja, v kateri se trenutni
par zacetne in ciljne toc¢ke poveze z grafom in se s pomocjo iskalnih algoritmov
poisée pot (slika 4.19b).

V fazi ucenja izdelamo zemljevid cest, ki je na zacetku prazna mnozica, potem pa
se napolni z vozlis¢i s ponavljanjem v nadaljevanju nastetih korakov. Naklju¢no
izbrano konfiguracijo ¢rqng4, ki lezi v prostem obmocju, dodamo v zemljevid
in dolo¢imo vozlis¢a Q),, za razsiritev zemljevida. To lahko storimo tako, da
izberemo K najblizjih sosednjih vozlis¢ (@) ali pa vsa sosednja vozlisca, katerih
oddaljenost od ¢rqn4 je manjsa od vnaprej doloCenega parametra D (slika 4.20).
V prvem oz. prvih korakih morda ne najdemo sosednjih vozlis¢. Nato dodamo v
zemljevid vse enostavne povezave od ¢rqng do vozlis¢ iz @, ki v celoti lezijo v
prostem obmoc¢ju. S tem postopkom nadaljujemo, dokler zemljevid ne vsebuje
zelenega stevila vozlis¢ N.

V fazi iskanja zaCetno in ciljno tocko preko prostega obmocja povezemo s ¢im bliz-
jima moznima vozliS¢ema iz zemljevida in nato z iskalnim algoritmom pois¢emo
pot med njima.

Za ti dve fazi ni nujno, da ju izvedemo loceno. Lahko ju ponavljamo, dokler
nimamo dovolj vozlis¢ za odkritje resitve. Ce ni mozno najti resitve, zemljevid

evve
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Slika 4.20: Pri metodi verjetnostnega zemljevida poti dodamo v zemljevid vse
mozne povezave od naklju¢nih to¢k ¢rqnq do sosednjih vozlis¢ @,

Slika 4.21: Pri preizkusu mostu sta izbrani dve naklju¢ni bliznji tocki, ki dolocata
daljico. Ce se srednja tocka nahaja v prostem obmoéju, zunanji dve pa znotraj
ovir, je srednja tocka dodana kot vozlice na zemljevidu.

Na ta nadin se iterativno priblizujemo ¢im bolj ustrezni predstavitvi prostega
obmocdja.

Metoda je zelo ucinkovita pri robotih z velikim Stevilom prostostnih stopenj,
vendar ima tezave pri iskanju povezave med dvema obmocjema preko ozkih
prehodov. To lahko premagamo z dodajanjem vozlis¢ s pomocjo preizkusa
mostu (angl. bridge test), v katerem izberemo tri naklju¢ne “blizulezece” tocke
na daljici (slika 4.21). Ce sta krajni to¢ki v trku z ovirami, srednja pa ne, potem
srednjo tocko vklju¢imo v zemljevid kot vozlisée ter jo nato skusamo na enak
nacin kot ostale povezati s sosednjimi vozlis¢i. Z zdruzitvijo preizkusa mostu
in enakomernega vzorcenja [8] v “hibridno strategijo vzoréenja” lahko dobimo
manjse zemljevide poti, ki bolj u¢inkovito pokrivajo prosto obmocje ter ohranjajo
dobre povezave preko ozkih prehodov.
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Primer 4.8

Izvedite algoritem verjetnostnega zemljevida poti za dvodimenzionalno prosto
obmocje, velikosti 10m x 10 m. Poskusite razsiriti algoritem za okolje z ovirami.

Resitev
Resitev je podana v programu 4.7.

Program 4.7
./src/pth/example_prm.m

D = 1; % Parameter razdalje
maxIter = 200;
M = []; % Zemljevid

j=1;

while j <= maxIter
xRand = 10*rand(1,2); % Nakljucna konfiguracija
M = [M; xRand];
con = []; % Povezave

[~ TS = NS O O C R

for i = 1:size(M,1) % Iskanje povezav do sosednjih vozli§é
d = norm(M(i,:)-xRand);
if d<D && d>eps % Dodajanje povezav od xRand do soseda
con = [con; xRand, M(i,:)];

[EE
w N

end

-
IS

15 end
16 j=3+ 1

18 line (xRand (1), xRand(2), ’Color’, ’r’, ’Marker’, ’.’);
19 for i = 1:size(con,1)

20 line(con(i,[1,3]), con(i,[2,4]), ’Color’, ’b’);

21 end

4.3 Preprosti algoritmi nacrtovanja poti

— algoritmi tipa hrosc

Algoritmi tipa hros¢ (angl. bug algorithm) so najbolj enostavni algoritmi pla-
niranja poti. Za planiranje ne potrebujejo zemljevida okolice, zato so primerni,
ko zemljevid okolice ni znan ali pa se okolica stalno spreminja in tudi ko ima
mobilna platforma zelo omejeno mo¢ racunanja. Ti algoritmi uporabljajo le
lokalno informacijo o okolju, pridobljeno iz senzorjev (npr. senzor razdalje), in
globalno podan cilj, ne potrebujejo pa globalnega znanja v obliki zemljevida
okolja. Njihovo delovanje sestoji iz dveh enostavnih vzorcev obnasanja: gibanje
po ravni liniji proti cilju in sledenje obrisu ovire.

Mobilni roboti, ki uporabljajo te algoritme, se lahko izogibajo oviram in pre-
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cilj

1 start

Slika 4.22: Algoritem Hros¢0 (varianta vedno zavij levo) uspesno najde pot do

@ start

cilja (leva slika) in neuspesno (desna slika)

mikajo proti cilju. Tovrstni algoritmi imajo majhno porabo spomina, vendar
je lahko najdena pot dale¢ od optimalne. Algoritmi tipa hros¢ so bili najprej
implementirani v [9], temu pa so sledile Stevilne izboljsave kot v [10-12].

V nadaljevanju so predstavljeni trije osnovni algoritmi tipa hrosc.

4.3.1 Algoritem HroscO

Algoritem Hrosc0 deluje v naslednjih dveh korakih:

1. V ravni liniji se premika proti cilju, dokler ne naleti na oviro ali cilj.

2. Ce naleti na oviro, vedno zavije levo (oz. vedno desno, ¢e je tako doloceno
v algoritmu) in sledi obrisu ovire, dokler ni mozno ponovno nadaljevati
proti cilju.

Primer delovanja algoritma Hros¢0 je prikazan na sliki 4.22.

4.3.2 Algoritem Hroscl

Algoritem Hros¢1 uporablja glede na Hros¢0 nekaj ve¢ spomina in zahteva malo
ve¢ raCunanja, saj v vsaki iteraciji izracuna evklidsko razdaljo do cilja in si
zapomni najblizjo tocko na obodu ovire do cilja. Njegovo delovanje podajata
koraka:

1. V ravni liniji se premika proti cilju, dokler ne naleti na oviro ali cilj.

2. Ce naleti na oviro, ob oviri zavije levo in sledi celotnemu obrisu ovire ter
ves ¢as meri evklidsko razdaljo do cilja. Ko ponovno prispe do tocke, kjer
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cilj

start

l start

Slika 4.23: Algoritem Hros¢l najde pot do cilja v obeh primerih na zgornjih

slikah. V najslabSem primeru je njegova pot za % obsega vseh ovir daljsa od
evklidske razdalje med zacetno in ciljno toc¢ko. Algoritem zna ugotoviti, kdaj cilj

ni dosegljiv (primer na spodnji sliki).

je naletel na oviro, gre po krajsi poti ob obodu ovire do tocke, ki je bila
najblize cilju. Nato gre po ravni liniji proti cilju.

Primer delovanja algoritma Hros¢l je prikazan na sliki 4.23.

Dobljena pot ni optimalna; v najslabsem primeru je za % obsega vseh ovir do
cilja daljsa kot evklidska razdalja med zacetno in ciljno tocko. Algoritem za
vsako oviro, na katero naleti na poti do ciljne tocke, najde samo eno tocko naleta
na oviro in samo eno tocko, v kateri zapusti obod ovire. Tako na nobeno oviro ne
naleti ve¢ kot enkrat in zaradi tega nikoli ne ustvari ciklov med istimi ovirami. Ko
algoritem naleti na isto oviro ve¢ kot enkrat, je to znak, da je znotraj ovire ujeta
ali zacetna ali ciljna tocka. Takrat se algoritem konca, saj ne obstaja nobena
izvedljiva pot do cilja (spodnji primer na sliki 4.23).
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cilj

cilj

start

Slika 4.24: Algoritem Hrosc¢2 sledi glavni liniji do cilja. Na isto oviro lahko naleti
veckrat, zato pride do krozenja. Algoritem Hro$¢2 zna prepoznati nedosegljiv
cilj.

4.3.3 Algoritem Hrosc2

Algoritem Hros$¢2 se vedno poskusa premikati po glavni liniji, tj. daljici, ki
povezuje zacetno in ciljno tocko. Deluje s ponavljanjem naslednjih korakov:

1. Robot naj se premika po glavni liniji, dokler ne naleti na oviro ali ciljno
tocko. V ciljni tocki se iskanje zakljuci.

2. Ce je robot naletel na oviro, sledi obodu ovire toliko ¢asa, da doseze glavno
linijo, kjer je evklidska razdalja do cilja manjsa kot evklidska razdalja do
tocke, kjer je (zadnji¢) naletel na oviro.

Ceprav se zdi algoritem Hrogé2 veliko bolj u¢inkovit kot Hros¢1 (leva slika 4.24),
ne zagotavlja, da bo robot samo enkrat naletel na dolo¢eno oviro. Pri nekaterih
postavitvah in oblikah ovir po prostoru lahko Hros¢2 dolgo ¢asa po nepotrebnem
krozi, preden prispe do ciljne tocke, kar je prikazano na desni sliki 4.24. Algoritem
lahko razbere, da ciljne tocke ni mozno doseci, ¢e veckrat v isti tocki naleti na
isto oviro.

Iz primerjave algoritmov Hros¢1 in Hros¢é2 lahko zakljucimo sledece:

e Hroscl je bolj temeljit algoritem iskanja, saj preis¢e vse moznosti pred
izvrsitvijo naslednjega koraka,

e Hrosc2 je pozresen algoritem, saj izbere prvo obetavno opcijo,
e v vecini primerov je Hrosé2 bolj uc¢inkovit kot Hros¢l, toda

e Hroscl ima bolj predvidljivo delovanje.
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Primer 4.9

Izvedite nacrtovanje poti z algoritmom HrosS¢0 za mobilnega robota z diferenci-
alnim pogonom. Predpostavite, da zemljevid okolja ni na voljo in robot pozna
samo svojo trenutno lego, ciljno tocko in trenutno razdaljo do cilja (meritev
senzorja).

Glede na algoritem Hros$c¢0 bi moral robot zapeljati proti cilju, ¢e je dovolj
oddaljen od katerekoli ovire (npr. ve¢ kot 0.2 m), in slediti oviri, ¢e je blizu
ovire. NapisSite kodo svoje implementacije algoritma s pomocjo programa 4.8,
ki ze omogoca simulacijo gibanja robota in meritev senzorjev. Okolje in primer
pridobljene poti robota sta prikazana na sliki 4.25.

Program 4.8
./src/pth/example_bug0.m

Ts = 0.03; 7% Racunski korak
t = 0:Ts:30; 7% Cas simulacije
q = [0; 0; 0];% Zacetna lega
goal = [4; 4]; 7% Ciljna lega
% 0Ovire
obstacles{1} = flipud([-1 -1; 7 -1; 7 5; -1 5]);
obstacles {2} [0.5 1; 4 1];
obstacles{3} = [3 3.5; 3 2.5; 5 2.5; 3 2.5];
obst = [1;
for i = 1:length(obstacles)
obst = [obst; obstacles{i}([1l:end,1],:); nan(1,2)];

end

for k = 1:length(t)
% Razdalja do najbliZje ovire in usmeritev daljice
[dObst, ~, z] = nearestSegment(q(1:2).°’, obst);
phiObst = atan2(obst(z+1,2)-obst(z,2), obst(z+1,1)-obst(z,1));

% Sem pride regulacijski algoritem

% Simulacija gibanja robota
dq = [v*cos(q(3)); v*sin(q(3)); wl;
noise = 0.00; % Parameter za nastavljanje Suma (npr. 0.001)
q = q + Tsxdq + randn(3,1)*noise; % Eulerjeva integracija
q(3) = wrapToPi(q(3)); % Zapis kota v obmoé&ju [-pi, pil

end
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o, Cilj

" Start

Slika 4.25: Nacrtovanje poti in vodenje z algoritmom Hrosc0 za voznjo robota
do cilja ob izogibanju oviram

Resitev

Mozna implementacija resitve, ki ustvari pot na sliki 4.25, je podana v programu
4.9 — kodo vstavite v oznaceno vrstico programa 4.8. Oblika dobljene poti je
odvisna tudi od uporabljenega regulacijskega algoritma za vodenje robota.

Program 4.9
./src/pth/script_bug0.m

% Regulacija na podlagi razdalje do ovire

if dObst>0.2 % VoZnja proti cilju
phiRef = atan2(goal(2)-q(2), goal(1)-q(1));
ePhi = wrapToPi(phiRef - q(3));
dGoal = sqrt(sum((goal-q(1:2)).72));
g = [dGoal/2, 1]; % 0Ojaienji regulatorja
else % Voznja okoli ovire po desni
phiRef = wrapToPi(phiObst + pi*0); % Pristejte pi za voZnjo po levi
ePhi = wrapToPi(phiRef-q(3));
g = [0.4, 5]; 7/ Ojacenji regulatorja
end

% Enostavni regulator za diferencialni pogon
v = g(1)*abs(cos(ePhi));

w = g(2)*ePhi;

v = min([v, 0.5]);
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Primer 4.10

7 razsiritvijo primera 4.9 izvedite tudi algoritma Hros¢l in Hrosc2.

Resitev

Za implementacijo algoritma Hrosc1 lahko prilagodite program 4.9 iz primera 4.9,
kjer je glavno vedenje sestavljeno iz dveh delov. Prvo vedenje (voznja proti cilju)
ostaja nespremenjeno, drugo pa je treba spremeniti. Shranite zacetni polozaj,
kjer robot najprej zazna oviro. Vozite se okoli ovire in izmerite razdaljo do cilja
ter si zapomnite najblizjo tocko. To izvajajte, dokler robot ne pride v shranjeni
zacetni polozaj ali vsaj dovolj blizu. Vrnite se na najblizjo zapomnjeno tocko.

Podobno lahko program 4.9 iz primera 4.25 prilagodite algoritmu Hrosc¢2. Shranite
zacCetni polozaj, kjer robot najprej zazna oviro. Robot naj krozi okoli ovire, dokler
ne precka glavne linije. Ce je tocka preckanja blizje cilju kot izhodiséni tocki,
pelje proti cilju; v nasprotnem Se naprej krozi okoli ovire.

4.4 Metode iskanja poti v grafu

Ko imamo okolje z ovirami ustrezno predstavljeno z grafom (npr. prostor stanj,
razcep na celice, zemljevid cest), lahko uporabimo enega izmed algoritmov, ki
poiscejo pot od zacetne do ciljne konfiguracije. V nadaljevanju je podanih nekaj
znanih algoritmov iskanja poti v grafu.

V splosnem zacnemo iskanje tako, da preverimo, ali je zacetno vozlis¢e hkrati
tudi ciljno vozlis¢e. Ponavadi to ne drzi, zato razsirimo iskanje na vozlisca, ki
sledijo sedanjemu vozlis¢u. Na podlagi izbranega algoritma (in vrednosti cenilke)
izberemo enega izmed sosednjih vozlisé. Ce izbrano vozlisée ni ciljno, raziskujemo
naslednja vozlisca, ki sledijo temu novemu vozlis¢u. Postopek nadaljujemo, dokler
ne najdemo resitve ali dokler ne preis¢emo celotnega grafa.

Pri iskanju v grafu vodimo sezname vozlis¢, ki smo jih med iskanjem Ze obiskali,
s ¢imer preprecimo, da bi veckrat obiskali isto vozlis¢e. Tako imenovana ziva
vozlisca, iz katerih lahko nadaljujemo iskanje, shranimo na seznam odprtih
vozlis¢. Mrtva vozliS¢a nimajo naslednikov ali pa smo jih Ze preverili in jih
shranimo na seznam zaprtih vozlis¢.

Od strategije algoritma je odvisno, po kaksnem zaporedju izbiramo vozlisca za
razsiritev obmocja iskanja. Seznam odprtih vozlis¢ razvrstimo glede na dolocen
kriterij in ob izbiranju naslednjega vozliSéa za razsiritev iskanja vzamemo prvo s
seznama, torej tisto, ki najbolj ustreza razvrséevalnemu kriteriju (ima najmanjso
vrednost glede na kriterij).
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Slika 4.26: Algoritem iskanja v Sirino najprej razisce najblizja vozlis¢a. Trenutno
vozlisée je oznadeno s puscico, odprta (ziva) vozlis¢a so oznacena s svetlo sivimi,

zaprta (mrtva) vozliséa s ¢rnimi in nepreverjena vozliséa z belimi krogi.

Na zacetku je na seznamu odprtih vozlis¢ ) samo zacetno vozlisc¢e. Izracunamo
vozlisca, ki sledijo zacetnemu, in jih zapiSemo na seznam odprtih vozlis¢, zacetno
vozlis¢e pa damo na seznam zaprtih vozlis¢. Nato iskanje razsirimo s prvim
vozliséem na odprtem seznamu tako, da izracunamo njegove naslednike. Tako so
na odprtem seznamu preostali nasledniki (razen prvega Ze raziskanega vozlisca)
in pravkar izracunani nasledniki prej izbranega vozlis¢a. Postopek je prikazan na
sliki 4.26, kjer so odprta vozlis¢a prikazana z svetlo sivimi krogi in lahko vidimo,
zakaj se ta vozlis¢a med iskanjem v drevesni strukturi imenujejo listi. Zaprta

vozlisca so prikazana s ¢rnimi krogi, nepreverjena vozlis¢a pa z belimi.

Loc¢imo neinformirane in informirane algoritme iskanja po grafu. Neinformi-
rani algoritmi posedujejo samo informacije, ki so podane z definicijo problema
(slepo iskanje po stanjih oz. vozlis¢ih). Graf pregledujejo sistemati¢no in ne
razlikujejo med bolj ali manj obetavnimi vozlis¢i. Informirano ali hevristi¢cno

iskanje vsebuje dodatne informacije o vozlis¢ih, zato je zmozZen razlikovati med

evve

4.4.1 Iskanje v Sirino

Iskanje v Sirino (BFS, angl. breadth-first search) je algoritem neinformiranega
iskanja. Najprej razis¢emo najbolj plitva vozlisca, torej vozlisca, ki so najblize
zacetnemu vozlis¢u. Vsa vozlisca, do katerih lahko dostopamo v k korakih,
obis¢emo prej kot katerokoli vozlis¢e, do katerega pridemo v k + 1 korakih, kar
je prikazano na sliki 4.26.

Seznam odprtih vozlis¢ @ razvrséamo po metodi prvi noter, prvi ven (FIFO,
angl. first in, first out): na novo odprta vozlis¢a dodajamo na konec seznama @,
vozliSca za razsirjanje iskanja pa jemljemo z zacetka seznama.

Algoritem je popoln, saj pri konénem faktorju razvejitve najde resitev, ¢e le-ta
obstaja. Ce pa je moznih veé resitev, najde tisto, ki je najmanj korakov oddaljena
od zacetnega vozlis¢a. To ne pomeni, da je najdena resitev hkrati tudi optimalna,
saj ni nujno, da imajo vsi prehodi med vozliséi enako ceno.

Poraba spomina in racunski c¢as sta pri tej metodi velika, saj z razvejanostjo
drevesa eksponentno narascata.



188 Nalrtovanje poti

ARIRR
AR
29D D

cilj

Slika 4.27: Iskanje v globino ima majhno porabo spomina, saj hranimo le liste
(svetlo siva) in na poti razsirjena vozliséa (temno siva). Precrtana vozliséa so

odstranjena iz spomina.

4.4.2 Iskanje v globino

Iskanje v globino (DFS, angl. depth-first search) je algoritem neinformiranega
iskanja, kjer iS¢emo v globino. Vozlisce, ki je najbolj oddaljeno od zacetnega,
razsirimo in iskanje na ta nacin nadaljujemo v globino, dokler neko vozlisce nima
ve¢ nobenih naslednikov. Takrat iskanje nadaljujemo z naslednjim najglobljim
vozlisc¢em, katerega nasledniki Se niso bili raziskani, kot je to prikazano na sliki
4.27

Seznam odprtih vozlisé @) obravnavamo kot sklad (angl. stack), ki ga razvrs¢amo
po metodi zadnji noter, prvi ven (angl. last in, first out — LIFO): na novo odprta
vozlis¢a dodajamo na zacCetek seznama (Q, od koder tudi jemljemo vozlisc¢a za

razsirjanje iskanja.

Algoritem iskanja v globino ni popoln, saj bi v primeru neomejene globine
(neskonéno stevilo vej, ki se ne kon¢ajo) neskonéno ¢asa raziskoval samo eno vejo
grafa. Temu se lahko izognemo tako, da iskanje omejimo do dolocene globine,
kjer pa je mozno, da ima resitev vecjo globino in jo zato algoritem ne najde. Prav
tako algoritem ni optimalen, saj najdena pot ni nujno tudi najkrajsa.

Iskanje v globino ima majhno porabo spomina, saj mora hraniti samo pot od
zacetnega do trenutnega vozlis¢a in vmesna neraziskana vozlisca, s katerimi se
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Slika 4.28: Prikaz iterativnega poglabljanja iskanja v globino do globine treh
korakov. Pre¢rtana vozliS¢a so odstranjena iz spomina. Algoritem se zakljuci v
tretjem koraku, kjer najde ciljno vozlisce.

nismo nadaljevali iskanja. Ko razis¢emo neko vozlisce in vse njegove naslednike,
lahko to vozlis¢e prenehamo hraniti v spominu.

4.4.3 Iterativno iskanje v globino

Iterativno iskanje v globino (IDDFS, angl. iterative deepening depth-first search)
zdruzuje prednosti iskanja v Sirino in iskanja v globino. Algoritem po korakih
veca globino, do katere raziskujemo z iskanjem v globino, dokler ne najdemo
ciljnega vozlis¢a. Najprej izvedemo iskanje v globino za vozlis¢a oddaljena nic¢
korakov od zacetnega. V primeru, da ne najdemo ciljnega vozlisca, iskanje v
globino ponovimo za vozlisca, oddaljena en korak od zacetnega vozlis¢a itd. Tako
se iskanje izvaja tudi v Sirino.

Algoritem ima majhno porabo spomina, je popoln, saj najde resitev, ¢e le-ta
obstaja, in optimalen, ker najde najkrajSo pot, ¢e so vse cene prehodov enake
ali ne naras¢ajo z globino vozlis¢a. Ce imajo vsa vozlis¢a priblizno enak faktor
razvejitve tudi veckratno racunanje stanj ni pretirano potratno, saj je vecina
vozlis¢ na dnu drevesa in jih algoritem obisce le obcasno.
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4.4.4 Dijkstrov algoritem

Dijkstrov algoritem je neinformiran algoritem za iskanje najkrajSe poti od enega
zadetnega vozlisca do vseh preostalih vozlis¢ v grafu [13]. Prvotno ga je zasnoval
Edsger Dijkstra [14], kasneje pa so ga razSirili z raznimi prilagoditvami. V
primeru iskanja poti med eno zacCetno in eno ciljno tocko deluje neucinkovito,
zaradi izra¢unavanja optimalnih poti do vseh vozlis¢, zato lahko dolo¢imo, da se
konca, ko izracuna najkrajSo zZeleno pot.

Algoritem zagotovo najde najkrajSo pot od zacCetnega do ciljnega vozlisca, saj
temelji na racunanju cene poti od zacetnega do trenutnega vozlisca, ki jo imenujmo

cena-do-sem.

Ceno poti do trenutno obravnavanega vozlis¢a izracunamo kot vsoto cene celotne
poti do vozlisca, iz katerega smo prisli do trenutnega vozlisca, in cene povezave
med njima. V primeru ve¢ najkrajsih poti (z isto ceno) algoritem vrne eno in ni

pomembno katero.

Za izvajanje algoritma je potrebno oznaciti povezave med vozlisci in jim dolociti
ceno. Za vsako obiskano vozlisce shranjujemo ceno trenutno najkrajse poti do
njega (cena-do-sem) in povezave, po kateri smo prisli do trenutnega vozliséa. Pri
iskanju vodimo tudi seznam odprtih in zaprtih vozlisc.

Na zacetku je v seznamu odprtih vozlis¢ samo zacetno vozlisce, katerega cena-do-
sem je ni¢ in brez predhodne povezave (ni prej$njega vozliséa). Seznam zaprtih
vozlis¢ je prazen. Nato ponavljamo naslednje korake, ki so ilustrirani na sliki 4.29

1. Iz seznama odprtih vozlis¢ vzamemo prvo vozliSée; to naj bo trenutno
vozlis€e. Seznam naj bo urejen narasc¢ajoce glede na ceno-do-sem, kjer je
prvo vozlisce tisto z najmanjso ceno-do-sem.

2. Vsem vozliséem, do katerih lahko pridemo iz trenutnega vozlisca in niso na
seznamu zaprtih vozlis¢, izraCunamo ceno-do-sem kot vsoto cene-do-sem

trenutnega vozliSca in cene vmesne povezave.

3. Izraéunamo in shranimo ceno-do-sem ter povezavo do trenutnega vozlisc¢a

za vsa vozliscéa, ki Se nimajo shranjenih teh informacij.

4. Ce je v prejinjem koraku katero izmed teh vozlis¢ Ze imelo shranjeno ceno-
do-sem in ustrezno povezavo v grafu iz katere od prejsnjih iteracij, ti dve
ceni primerjamo in kot koncen podatek shranimo manjso ceno in ustrezno
povezavo.

5. Vozlis¢a dodamo na seznam odprtih vozlis¢ in ga uredimo po narascajoci
vrednosti cene-do-sem. TaksSen seznam, ki ga imenujemo vrsta s prednostjo
(angl. priority queue), omogoca, da hitreje najdemo vozliS¢e z najmanjso
vrednostjo cene-do-sem kot pa z iskanjem po neurejenem seznamu. Trenu-

tno vozlis¢e premaknemo na seznam zaprtih vozlisc.



4.4. Metode iskanja poti v grafu 191

Slika 4.29: Dijkstrov algoritem za iskanje najkrajSe poti med zacetnim vozliscem
A in ostalimi vozliséi. Trenutno oglisce je oznaceno s sivim kvadratom, njegovi
nasledniki pa s puséicami. Cene poti so oznacene ob povezavah. Ob vozliséih je
oznacena cena-do-sem in povezava do predhodnega vozliscéa. Odprta vozlisc¢a so
oznacena s svetlo sivo, zaprta vozlis¢a pa s temno sivo. Primer: Zanima nas
najkrajsa pot med vozlis¢ema A in F. Vidimo, da je Cenap_p_gp_c—4 = 6, pot
pa gre skozi vozlisca A - C — E —- D — F.
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V osnovni verziji naj bi se Dijkstrov algoritem koncal, ko je seznam odprtih
vozlis¢ prazen in rezultat vsebuje najkrajse poti iz zacetnega v vsa ostala vozlisca.
Ce potrebujemo samo najkrajso pot od zacetnega do kon¢nega vozlisca, iskanje

zaklju¢imo, ko dodamo ciljno vozlisce na seznam zaprtih vozlis¢.

Ustrezno pot dobimo tako, da vzvratno sledimo in izpisemo po katerih povezavah
smo prisli do ciljnega vozlis¢a, gledamo torej povezave v smeri od ciljnega
do zacCetnega vozliséa. Najprej pogledamo povezavo od ciljnega vozlis¢a do
predhodnega, nato sledimo povezavi do predhodega vozliséa, kjer prav tako
preberemo in izpisemo po kateri povezavi smo prisli do tja. S tem nadaljujemo,
dokler ne dosezemo zacetnega vozliséa. Na koncu seznam izpisanih povezav le se

obrnemo.

Dijkstrov algoritem je popoln (Ge pot obstaja, jo najde) in optimalen (najdena
pot je najkrajsa), ¢e so vse utezi (cene) povezav vedje od nic.

4.4.5 Algoritem A~

A* (prebrano kot a zvezdica ali a star) je informiran algoritem iskanja, saj
vsebuje dodatno informacijo ali hevristiko. Hevristika je ocena cene poti od
trenutnega vozliséa do cilja, zaradi ¢esar lahko algoritem razlikuje med bolj
za vsako vozlisce izracuna vrednost izbrane hevristicne funkcije, ki predstavlja
oceno cene, potrebne za pot od tega vozlis¢a do cilja, imenovana cena-do-cilja.
Hevristicna funkcija je lahko evklidska razdalja, razdalja Manhattan (vsota
premikov v navpi¢ni in vodoravni smeri) ali kaksna druga primerna funkcija.

Tekom izvajanja algoritem za vsako vozlisce racuna ceno-celotne-poti tako, da za
doloceno vozlisée sesteje ceno-do-sem in ceno-do-cilja. Hkrati vodi tudi seznama
odprtih in zaprtih vozlisc.

Algoritem deluje tako, da je na zacetku v seznamu odprtih vozlis¢ samo zacetno
vozlisce, katerega cena-do-sem je ni¢ in nima predhodne povezave, seznam zaprtih
vozlisé pa je prazen. V nadaljevanju se ponavljajo naslednji koraki, ki so ilustrirani
na sliki 4.30:

1. Iz seznama odprtih vozlis¢ vzamemo prvo vozlis¢e, imenovano trenutno
vozlis€e. Seznam je urejen narascajoce glede na ceno-celotne-poti, kjer ima
prvo vozlisée najmanjso ceno-celotne-poti.

2. Vsem vozlis¢em, do katerih lahko pridemo iz trenutnega vozlisca, izracu-
namo
e ceno-do-cilja,

o ceno-do-sem kot vsoto cene-do-sem trenutnega vozlis¢a in vmesne

povezave ter

e ceno-celotne-poti kot vsoto cene-do-sem in cene-do-cilja.
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3. Za vsako izmed teh vozlis¢, ki Se nima shranjene izra¢unane cene-do-sem,
ustrezne vmesne povezave od trenutnega vozlisca, cene-do-cilja in cene-
celotne-poti, shranimo vse nastete vrednosti.

4. Ce je v prej$njem koraku katero izmed teh vozlis¢ Ze imelo shranjene
izracunane vrednosti iz katere od prejsnjih iteracij, primerjamo obe ceni-do-
sem in kot koncéen podatek shranimo manjso skupaj s pripadajoc¢o povezavo
in ustrezno ceno-celotne-poti.

5. Vozliscéa, katerih vrednosti smo racunali prvi¢, dodamo na seznam odprtih
vozlisé. Vozliséa, ki smo jim posodobili vrednosti in so ze bila na seznamu
odprtih vozlis¢, jih tam tudi obdrzimo. Voszlisca, ki so bila na seznamu
zaprtih vozlis¢ in katerih vrednosti smo posodobili (do njega smo nasli
pot z manjso ceno-do-sem), premaknemo na seznam odprtih vozlisé, ki ga
nato uredimo po narascajoci vrednosti cene-celotne-poti. Trenutno vozlisce

premaknemo na seznam zaprtih vozlisc.

Na prvi sliki 4.30 je trenutno vozlis¢e hkrati tudi zacetno ter so izbrana njegova
naslednja vozlisca, ki so dosegljiva iz stirih smeri: levo, desno, gor in dol. Za
vsa ta naslednja vozlisca je cena-do-sem enaka 1, saj so samo en korak stran od
zaletnega vozliSéa, ceno-do-cilja pa doloca razdalja Manhattan (hevristika) iz
naslednjega do ciljnega vozlisca, ki jo lahko izmerimo preko ovire. Vsota obeh
cen je cena-celotne-poti. Vozlisca, ki sledijo, imajo s puséico oznaceno povezavo
do trenutnega vozlis¢a (oznaceno s krogom). Odprti seznam vozlis¢ tako vsebuje
ta Stiri naslednja vozlisca, zaprti seznam vozliS¢ pa vsebuje samo zacetno vozlisce.
Na drugi sliki 4.30 iz odprtega seznama izberemo za trenutno vozlisce tisto, ki
ima najmanjso ceno-celotne-poti (v tem primeru je enaka 6). Trenutno vozlisce
ima samo enega naslednika, saj druge celice blokira ovira ali pa se nahajajo na
zaprtem seznamu. Cena-do-sem za naslednje vozlisce je 2, ker se nahaja dva
koraka stran (razdalja Manhattan) od zacetnega vozliséa, in cena-do-cilja je 8.
Trenutno vozlisée premaknemo na zaprti seznam, naslednje vozlisce pa na odprti
seznam. Na tretji sliki 4.30 izberemo trenutno vozlisce kot vozlisce iz odprtega
seznama, ki ima najmanjso ceno-celotne-poti (v naSem primeru je 6). Algoritem

ponavlja korake dokler ne doseze ciljnega vozlisca.

Algoritem A* zagotavlja optimalnost najdene poti v grafu, v kolikor je hevristika
(cena-do-cilja) optimisti¢na, kar pomeni, da je cena-do-cilja za vsako vozlisée
manjsa ali kve¢jemu enaka pravi ceni-do-cilja. Algoritem zaklju¢imo, ko dodamo
ciljno vozlis¢e na seznam zaprtih vozlisc.

Algoritem A* je popoln, saj vedno najde pot, ¢e le-ta obstaja, pri uporabi
optimisti¢ne hevristike pa je tudi optimalen. Slabost A* je velika poraba spomina.
V primeru, da so vse cene-do-cilja enake ni¢, je delovanje algoritma A* enako
Dijkstrovemu. Na sliki 4.31 je prikazana primerjava delovanja Dijkstrovega
algoritma in A*.
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Slika 4.30: Trenutno vozlisce je oznaceno s krogom. Zacetno vozlisce je zeleno,
kon¢no vozlis¢e oranzno, odprta vozliséa so svetlo siva, zaprta vozliS¢a temno siva
in ovire so ¢rne. Mozne so Stiri smeri prehodov: levo, desno, gor in dol. V vsaki
celici (vozlise) je oznafena smer do trenutnega vozlis¢a in cena poti, ki je vsota
cene-do-sem in cene-do-cilja. Za izracun cene je uporabljena razdalja Manhattan.
Najdeno pot razberemo s sledenjem povezavam, oznacene so s puscicami.
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Slika 4.31: Primerjava algoritmov iskanja poti: Dijkstrov (levo) in A* (desno).
Oba najdeta najkrajso pot do cilja, vendar A* porabi precej manj iteracij zaradi
uporabe dodatne informacije (hevristike) pri iskanju poti.



4.4. Metode iskanja poti v grafu 195

Slika 4.32: Primerjava algoritmov iskanja poti: Pohlepno iskanje najprej-najboljsi
(levo) in A* (desno). Pot, ki jo najdemo s pohlepnim iskanjem na nacin najprej
najboljsi, ni vedno optimalna. Odprta vozlis¢a so oznacCena s svetlo sivo, zaprta
vozliS¢a pa s temno sivo.

4.4.6 Pohlepno iskanje najprej najboljsi

Pohlepno iskanje na nacin najprej najboljsi (GBFS, angl. greedy best-first search)
je informiran oz. hevristicen algoritem. Seznam odprtih vozlis¢ razvrséamo po
narascajoci ceni-do-cilja. Tako v vsaki iteraciji razsirimo iskanje na tisto odprto
vozlisée, ki je najblize cilju (ima najmanjso ceno do cilja), saj predvidevamo, da
bomo tako najhitreje dosegli cilj. Vendar najdena celotna pot ni nujno optimalna
(najkrajsa), kot prikazuje slika 4.32, saj algoritem uposteva le ceno od trenutnega
do ciljnega vozlis¢a in ga ne zanima cena do trenutnega vozliséa. Posledi¢no tudi
ni pomembno, ali je hevristika optimisti¢na ali ne, kot je bilo pomembno pri
algoritmu A*.

Primer 4.11

Izvedite nacrtovanje poti z algoritmom A* v okolju na sliki 4.32. Primerjajte
dobljene rezultate z rezultati na sliki 4.32. Za izracun razdalje uporabite raz-
daljo Manhattan, medtem ko za hevristiko (cena-do-cilja) uporabite razdaljo
Manhattan ali evklidsko razdaljo ter tudi primerjajte njune rezultate.

Nato prilagodite kodo za pohlepno iskanje najprej najboljsi.

Resitev

V splosnem je zazelena uporaba algoritma A*. Mozna izvedba algoritma je
prikazana v programu 4.10, kjer smo za izracun cene-do-sem uporabili razdaljo
Manhattan, za izracun hevristike pa evklidsko razdaljo.
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Program 4.10: Implementacija algoritma A*
./src/pth/AStarBase.m

1 classdef AStarBase < handle
properties
map = []; % Zemljevid: O - prosto, 1 - ovira
open = []; closed = []; start = []; goal = []; act = []; path = [];

AW

o

end

6
7 methods
8 function path = find(obj, start, goal) % start=[is; js], goal=[ig; jgl

9 obj.start = start; obj.goal = goal; obj.path = [];

10 obj.closed = []; % Prazen zaprti seznam

11 obj.open = struct(’id’, start, ’src’, [0; 0], ’g’, O,

12 ’h’, obj.heuristic(start)); ’ Zaetni odprti seznam
13

14 if obj.map(start(1), start(2))~=0 || obj.map(goal(1l), goal(2))~=0
15 path = []; return; J Pot ne obstaja!

16 end

17

18 while true % Iskanje

19 if isempty(obj.open), break; end % Pot ni bila najdena :(

20

21 obj.act = obj.open(1); 7 Vozliice z urejenega odprtega seznama
22 obj.closed = [obj.closed, obj.act]; 7% damo na zaprti seznam
23 obj.open = obj.open(2:end); % in ga odstranimo z odprtega seznama.
24

25 if obj.act.id(1)==obj.goal (1) && obj.act.id(2)==obj.goal(2)
26 % Pot obstaja :) PoiSfemo pot s pomoljo zaprtega seznama
27 p = obj.act.id; obj.path = [pl; ids = [obj.closed.id];
28 while sum(abs(p-start))~=0 % Sledimo starSem do starta
29 p = obj.closed(ids(1,:)==p(1) & ids(2,:)==p(2)).src;
30 obj.path = [p, obj.pathl;

31 end

32 break;

33 end

34

35 neighbours = obj.getNodeNeighbours (obj.act.id);

36 for i = 1:size(neighbours, 2)

37 n = neighbours(:,i);

38 % Vozlisdle dodamo na odprti seznam, e ni Ze na zaprtem
39 % seznamu in ni ovira

40 ids = [obj.closed.id]l; z = ids(1,:)==n(1) & ids(2,:)==n(2);
41 if isempty(find(z, 1)) && ~obj.map(n(1), n(2))

42 obj.addNodeToOpenList (n);

43 end

44 end

45 end

46 path = obj.path;

47 end

48

49 function addNodeToOpenList (obj, i)

50 g = obj.act.g + obj.cost(i); % Cena poti

51 % Preverimo, e je vozliSCe Ze na odprtem seznamu

52 ids = [obj.open.idl; s = [];

53 if ~isempty(ids)

54 s = sum(abs(ids-repmat (i, 1, size(ids, 2))))==0;

55 end

56 if isempty(find(s, 1)) % Dodamo vozliSce na odprti seznam

57 node = struct(’id’, i, ’src’, obj.act.id,

58 ’g’, g, ’h’, obj.heuristic(i));

59 obj.open = [obj.open, nodel;

60 else 7 Posodobimo vozlisce na odprtem seznamu, e ima boljso ceno
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4.4. Metode iskanja poti v grafu

if g<obj.open(s).g
obj.open(s).g = g;
obj.open(s).src = obj.act.id;

end

end
% Uredimo odprti seznam
[~,i] = sortrows([[obj.open.gl+[obj.open.hl;
obj.open = obj.open(i);

end

function n = getNodeNeighbours (obj, a)

n = [a(1)-1, a(1), a(1), a(1)+1; a(2), a(2)-1, a(2)+1,
[h, w]l = size(obj.map);
n =n(:, n(1,:)>=1 & n(1,:)<=h & n(2,:)>=1 & n(2,:)<=w);

end

function g = cost(obj, a)

g = sum(abs(a-obj.act.id)); % Manhattanska razdalja

end
function h = heuristic(obj, a)
h = sqrt(sum((a-obj.goal)."2)); % Evklidska razdalja
end
end
end

obj.open.h]l.’,
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[1,21);

a(2)]1;

% Meje

V programu 4.11 je prikazana uporaba algoritma A* iz programa 4.10. Stolpci

izhodne spremenljivke path predstavljajo urejen seznam celic (vozlis¢), ki vodijo

od zacetka do cilja.
sprememba algoritma (npr.
pridobitev poti, prikazana na sliki 4.32).

Program 4.11: Uporaba algoritma A*

./src/pth/example_astar_base.m

map = zeros (14, 14); % Zemljevid
map (56:10,[4 11]) = 1; map(5,4:11) = 1; % Ovire
astar = AStarBase();
astar.map = map;
path = astar.find ([11; 6], [4; 10])
path =
Columns 1 through 13
11 11 11 11 11 11 11 10 9 8
6 7 8 9 10 11 12 12 12 12
Columns 14 through 16
4 4 4
12 11 10

Za uporabo razliénih hevristik je potrebna minimalna
razdalja Manhattan, ki je bila uporabljena za

Algoritem A* se lahko prevede v pohlepno iskanje najprej najboljsi, ¢e je cena-

do-sem nastavljena na nic.
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Primer 4.12

Razsirite primer 4.11 za razcep okolja s pomocjo stiriskega drevesa in poiscite
optimalno pot z algoritmom A*.

Resitev

Za razsiritev algoritma A* iz programa 4.10 s StiriSkim drevesom je potrebnih
le nekaj manjsih sprememb. V tem primeru niso vse celice enako velike, zato
so med njimi razlicne razdalje in vsaka celica ima drugacno sStevilo sosedov.
Torej moramo spremeniti nac¢in dolo¢anja sosednjih celic. Izvedba algoritma za
razgradnjo s pomocjo stiriskega drevesa v programu 4.2 ustvari graf vidljivosti
tako, da za vsako celico v StirisSkem drevesu poisce vse sosednje celice. Za dolocitev
cene-do-sem lahko izrac¢unamo razdaljo med celicami kot evklidsko razdaljo med
sredisci celic (glejte sliko 4.10).
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5

Senzorji v mobilnih

sistemih

5.1 Uvod

Kolesni mobilni roboti zaznavajo okolje s pomocjo senzorjev, kar jim omogoca
avtonomno delovanje v okolju. Senzorji se uporabljajo za obvladovanje negotovosti
in motenj, ki so vedno prisotne v okolju in v vseh robotskih podsistemih, kot
je negotovost zemljevida okolice, neznani model gibanja, neznana dinamika
itd. Negotovi so tudi izidi akcij (premiki mobilnega robota), zaradi neidealnih
aktuatorjev. Primarni namen senzorjev torej je, da zmanjsajo ali odpravijo te
negotovosti in s tem omogocijo ocenjevanje stanj mobilnega robota kot tudi
izgleda okolice.

Obicajno z enim senzorjem ni mozna elegantna resitev, zlasti za uporabo v
zaprtih prostorih, za (dovolj) natanéno in robustno merjenje Zelenih informacij,
npr. leg robota. Lega je potrebna za lokalizacijo robota, kar pa predstavlja
enega izmed najvecjih izzivov v mobilni robotiki. Zato je potrebna uporaba vec
senzorjev, kjer s pomodjo metod zlivanja (fuzije) njihovih informacij dobimo bolj
kakovostne in robustne informacije. Ocena lege robota obi¢ajno zdruzuje relativne
in absolutne senzorje. Relativni senzorji podajajo informacije relativno glede
na koordinate mobilnega robota, medtem ko so meritve absolutnih senzorjev
podane v nekem globalnem koordinatnem sistemu (npr. zemeljske koordinate).

S pomocjo senzorjev lahko mobilni robot zaznava stanje okolice, pri Cemer je
potrebno informacije senzorjev predhodno ustrezno analizirati in interpretirati.

Meritve v realnem okolju se spreminjajo dinami¢no (npr. spremembe osvetlitve,
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razliéna absorpcija zvoka ali svetlobe na povrsinah). Pogresek merjenja pogosto
statisticno modeliramo z neko gostoto verjetnosti, za katero obicajno predpo-
stavimo, da je simetri¢na ali celo normalna. Vendar ta predpostavka ni vedno
pravilna; npr. ultrazvoéni merilnik razdalje lahko zaradi veckratnih odbojev (od
oddajnika do sprejemnika) izmeri preveliko razdaljo.

V nadaljevanju so na kratko opisane transformacije koordinatnih sistemov, ki
so potrebne za pravilno predstavitev senzorskih meritev robotu in za oceno
relevantnih informacij v koordinatnem sistemu robota. Sledi poglavje, v katerem
so pojasnjene glavne metode za lokalizacijo, ki se uporabljajo za oceno lege
robota v okolici z uporabo izbranih senzorjev. Na koncu je podan kratek pregled
pogosto uporabljenih senzorjev v mobilni robotiki.

5.2 Transformacije koordinatnih sistemov

Senzorji obi¢ajno niso namesceni v sredis¢u robota ali izhodis¢u njegovega ko-
ordinatnega sistema. Njihova pozicija in orientacija na robotu sta opisani s
translacijskim vektorjem in rotacijo glede na koordinatni sistem robota. S po-
mocjo transformacij lahko izmerjene veli¢ine v koordinatnem sistemu senzorja
prevedemo v koordinatni sistem robota.

S transformacijami lahko izrazimo izmerjeni smerni vektor (npr. pospeskometer,
magnetometer) ali izmerjene pozicijske koordinate (npr. laserski pregledovalnik
razdalj, kamera) v koordinatnem sistemu robota. Poleg tega se mobilni roboti
premikajo po prostoru, zato lahko njihovo lego ali premike opiSemo z ustreznimi
transformacijami.

V nadaljevanju je podan kratek splosni pregled transformacij za tridimenzionalni
prostor, ¢eprav sta v mobilni robotiki obic¢ajno dovolj dve dimenziji (npr. ravnin-
sko gibanje, ki ga opisujeta dve translaciji in ena rotacija). Najprej bo opisana
transformacija rotacije, nato pa Se translacije.

5.2.1 Orientacija in rotacija

Orientacijo nekega lokalnega koordinatnega sistema (npr. senzor) glede na
referen¢ni koordinatni sistem (npr. robot) opisuje rotacijska matrika R

Uy U U3
R=|v; vy w3
wp w2 wWs

kjer so enotski vektorji lokalnega koordinatnega sistema w, v in w izrazeni v
referenénem koordinatnem sistemu kot w = [uy, ug, us]’, v = [v1, va, v3]"

}T

w = [wy, wa, ws]" in velja uxv = w. Vrstice matrike R so komponente lokalnih

enotskih vektorjev vzdolz referencnih enotskih vektorjev x, y in z. Elementi
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matrike R so kosinusi kotov med posameznimi osmi obeh koordinatnih sistemov,
zato jo imenujemo matrika smernih kosinusov (DCM, angl. direction cosine
matriz) ali rotacijska matrika. Ker so vektorji u, v in w ortonormalni, sta
inverz in transponiranka matrike R enaki (det R =1 in R~' = RT). Rotacijska
matrika ima 9 parametrov za opis treh stopenj prostosti, vendar ti parametri
niso medsebojno neodvisni, ampak so definirani s Sestimi omejitvenimi relacijami
(vsota kvadratov elementov poljubne vrstice ali stolpca matrike R je 1 in skalarni
produkt poljubnih dveh vrstic ali stolpcev matrike R je 0).

Vektor v, v lokalnem koordinatnem sistemu izrazimo z vektorjem vg v globalnem
koordinatnem sistemu s pomocjo rotacije

v = Révg

Rotacijska matrika RE torej transformira vektor iz globalnega G v lokalni L
koordinatni sistem.

Osnovne transformacije rotacije dobimo z vrtenjem okoli osi z, y in z z osnovnimi
rotacijskimi matrikami

1 0 0

R.(¢) = |0 cos(p) sin(yp) (5.1)
|0 —sin(p) cos(p)
[cos() 0 —sin(h)

R,(0) = 0 1 0 (5.2)
sin(@) 0 cos(9)
[ cos(yp) sin(¢p) 0O

R.(¢) = |—sin(y)) cos(y) 0 (5.3)
| 0 0 1

kjer R,s(kot) oznaduje rotacijo okoli osi za dani kot. Zaporedne rotacije opisemo
s produktom rotacijskih matrik, kjer je pomemben vrstni red rotacij. Z rotacij-
sko matriko opisemo orientacijo togega telesa, vendar so v nekaterih primerih
primernejse druge predstavitve, zato bomo v nadaljevanju opisali se dve dodatni
obliki: Eulerjeve kote in kvaternione.

Eulerjevi koti

Eulerjevi koti opisujejo orientacijo togega telesa z vrtenjem okoli osi z, y in z.
Ti koti so oznaceni kot:

e  —nagib ali kot valjanja (angl. roll), okoli osi z,

o 0 — naklon ali kot prevracanja (angl. pitch), okoli osi y,

o 1 — zasuk ali kot sukanja (angl. yaw ali heading), okoli osi z.
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Mozmih je 12 razlicnih kombinacij treh osnovnih rotacij okoli osi z, y in z [1].
Najpogosteje se uporablja kombinacija 3-2-1, kjer dobimo orientacijo lokalnega
koordinatnega sistema glede na referencni koordinatni sistem tako, da iz zacetne
lege, kjer sta oba koordinatna sistema poravnana, izvedemo rotacije lokalnega
koordinatnega sistema v naslednjem zaporedju:

1. rotacija okoli osi z za kot sukanja 1,
2. rotacija okoli na novo pridobljene osi y za kot prevracanja 6,

3. rotacija okoli na novo pridobljene osi x za kot valjanja ¢.

Rotacijska matrika te transformacije je

cos 6 cos cos 0sin vy —sinf
= |sinpsinfcosy — cospsiny sinpsinfsiny + cospcosy sin g cos b
cos psinfcosy + sinpsiny cospsinfsiny —sinpcosyy cospcosb

in predstavitev z Eulerjevimi koti je

(¢ = arctan (R%)
R

0 = —arcsin(R;3) (5.4)

R12)
= arctan | —
v <R11

Parametrizacija z uporabo Eulerjevih kotov ni redundantna (trije parametri za
tri prostostne stopnje). Njena pomanjkljivost pa je singularnost pri § = /2,
kjer imata rotaciji okoli osi z in x enak uéinek (sovpadeta). Ta uc¢inek izgube
prostostne stopnje je v klasicnih letalskih ziroskopih znan kot problem blokade
kardanskega sklopa (angl. gimbal lock). Pri zapisu rotacije z Eulerjevimi koti se
ta singularnost pojavi zaradi deljenja s cos (glejte (5.23) v poglavju 5.2.3).

Kvaternioni

Kvaternioni predstavljajo orientacijo v tridimenzionalnem prostoru z uporabo
Stirih parametrov in ene omejitvene enacbe. So brez problema singularnosti, ki se
je pojavil pri predstavitvi z Eulerjevimi koti. Matemati¢no gledano so kvaternioni
nekomutativna razsiritev kompleksnih stevil, ki jih zapiSemo kot

q=qo+qt+qJ +qzk

kjer za kompleksne elemente i, j in k velja 32 = 52 = k? = ijk = —1; qo je
skalarni del kvaterniona in ¢12 + ¢23 + g3k je vektorski del. Norma kvaterniona
je dolocena z

lall = Vag* = \/qé +af +d3+a3



5.2. Transformacije koordinatnih sistemov 205

kjer je ¢* konjugiran kvaternion, ki ga izraéunamo kot q* = qo — ¢1¢ — q23 — qsk.
Inverzno vrednost kvaterniona dolo¢imo s pomocjo njegove konjugirane vrednosti

in norme "

-1 q
q =
llqll®

7 enotskimi kvaternioni lahko parametriziramo rotacijo v prostoru

qo = cos Ap/2
= ey sin Ap/2
Q1 1 v/ (5.5)
go = easin Agp/2
g3 = ez sin Agp/2

kjer je e?' = [e1, ea, e3] enotski vektor osi vrtenja in Ay kot zasuka okoli te osi.

Za enotske kvaternione velja ¢3 + ¢ + ¢35 + ¢3 = 1.
Transformacija

qv =q ' °q,0q
zavrti vektor v = [z, y, 2|7, podan s kvaternionom

gy = vt +yj+ zk
(ali enakovredno q, = [0, =, y, 2]T), okoli osi e za kot Ay v vektor v/ =
[#/, o, 2']T, izrazen s kvaternionom

Qv =2'i+y'j+ 2k

kjer o oznacuje produkt kvaternionov, definiran v (5.6) in (5.7).

Druga prednost kvaternionov je relativno enostavna kombinacija zaporednih
rotacij. Kvaternion, ki ustreza produktu dveh rotacijskih matrik, je enak produktu
obeh kvaternionov [1]. Imamo kvaterniona

q=qo+ qt+qJ+qk
in
q' =+ qi+ j + ask
Ce nek vektor zavrtimo iz njegove zacetne orientacije za zasuk ¢’, nato pa Se za
zasuk g, je celoten zasuk vektorja
4" =4 °oq= (99 — a1 — 6592 — 4343)
+4(q190 + 4593 — 4392 + doa1)

. ! ! ! ! (5'6)
+J(=4d145 + @590 + 9391 + 9042)
+ k(diq2 — gba1 + dhqo0 + 44g3)
ali v vektorsko-matri¢ni obliki
qé’ g —q1 —q2 —gq3 %
q/f _ ¢ q3  —q2 q/1 (5 7)
1 ! °
42 q2 —q3 q0 q1 )

qs g3 Q2 —q1 qo qs3
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Povezava med kvaternionom in predstavitvijo z rotacijsko matriko je podana z

@w+ai—a—a 200+ q1g2) 2(q193 — qoq2)
R(q)=| 2(qg2—a300) G%B—G+B—a  2(q0q + q20s) (5.8)
2(qoq2 + q193) 2(q2q3 — q0q1) @ — G — 43+ 4

ali v obratni smeri

qo0 = %\/1 + Ri1 + Rao + Rs3 (5.9)
qQ = 420 (R23 — R32)
7P = 4;0 (Ra1 — Ri3)
qs = 420 (Ri2 — Ra1) (5.10)

Ce je qo v enachi (5.9) blizu ni¢, je pretvorba iz rotacijske matrike v kvaternion
(enacbe (5.9) — (5.10)) singularna. V tem primeru lahko izra¢unamo kvaternion z
uporabo ekvivalentne oblike (enacbe (5.11) — (5.12)) brez numeri¢nih problemov

1

=17 (R32 — Ra3) (5.11)
q =T
1

P2 =7 (Ri2 + R21)

1
4= 37 (R13 + R31) (5.12)

kjer je T = 2/T+ Ri1 — Roz — R33.

Povezavo med kvaternioni in Eulerjevimi koti (notacija 3-2-1) dobimo z matri-
kami R;(¢), Ry(6) in R.(1)), kar ustreza kvaternionom [cos(¢/2) 4 ¢sin(p/2)],
[cos(0/2) + 7 sin(6/2)] in [cos(1p/2) + ksin(ep/2)]. Kvaternion za rotacijo 3-2-1 je

q = [cos(¢/2) + ksin(/2)][cos(8/2) + 7 sin(8/2)][cos(p/2) + isin(p/2)]
ali v vektorski obliki

0s(p/2) cos(0/2) cos(/2) + sin

Q

( (6/2) sin(4/2)

q = |0(#/2) cos(0/2) cos(v)/2) — cos(pp/2) sin(6/2) sin(v/2)
cosl(ip/2) sin(6/2) cos(1/2) + sin(p/2) cos(8/2) sin(1/2)
cos(¢/2) cos(6/2) sin(y/2) — sin(w/2) sin(6/2) cos(v)/2)

Obratna transformacija se glasi

%m%+@%))
@D -4~ +a
6 = —arcsin (2(q193 — ¢290))
2(q3q0 + q192) )

1) = arctan (
@ +a—a-d

@ = arctan (
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Primer 5.1

Koordinatni sistem senzorja (magnetometer) je glede na koordinatni sistem

robota zasukan. Naj bo koordinatni sistem senzorja lokalen (L), koordinatni

sistem robota pa globalen (G). Orientacija senzorja glede na robota je opisana

z dvema rotacijama. Na zacetku sta oba koordinatna sistema poravnana, nato

(L) zavrtimo okoli osi x za kot o, = 90° in nato Se enkrat okoli nove osi y za kot

, = 45°.

1. Kaksna je orientacija senzorja, izrazena z rotacijsko matriko Ré, glede

na koordinatni sistem robota? Dolocite Eulerjeve kote (notacija 3-2-1) in

kvaternion qé, ki opisujejo to transformacijo.

2. Magnetometer meri smerni vektor v = [0, 0, 1]7 magnetnega polja. Kaksna

je predstavitev tega vektorja v koordinatah robota?

Resitev

1. Kon¢no orientacijo opisuje skupna rotacijska matrika, kjer je pomemben

vrstni red mnozenja

REL = R, (ay) Ry () =

_cos(ay) 0 —sin(ay)| |1 0 0

0 1 0 0 cos(ay) sin(ay)
sin(ay) 0 cos(ay) 0 —sin(ag) cos(ay)| (5.13)
[0,7071  0,7071 0

0 0 1
10,7071 —0,7071 0

Vrstice v matriki Ré predstavljajo komponente novih osi senzorja, izrazene

v koordinatnem sistemu robota, kar je prikazano graficno na sliki 5.1.

y

R‘

Loprg

Slika 5.1: Prikaz rotacij v enacbi (5.13)
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2. Eulerjeve kote za notacijo 3-2-1 izra¢unamo iz matrike R = R%

o= arctan(g ) =90°
33

0 = —arcsin(Ry3) = 0° (5.14)

Ryo
= arctan = 45°
¥ = arctan(722) =
kjer dobimo rotacijsko matriko z REL = R, (p)R,(0)R.(v)), katere osnovne
rotacije R, (p), Ry(0) in R.(1)) so dolocene v enacbi (5.3) — glejte sliko

Lo il

Slika 5.2: Prikaz rotacij z Eulerjevimi koti (5.14)

3. Kvaternion qé dobimo s produktom kvaternionov zaporednih rotacij
a6 = gz 0 qy

kjer je g, glede na enacbo (5.5), definiran s kotom zasuka Ay, = 90°
okoli rotacijske osi e, = [1, 0, 0]7 in g, s kotom zasuka Ay, = 45° okoli
rotacijske osi e, = [0, 1, 0]7

[ cos Ap, /2 ] [0,7071]
_|ex, sinAp, /2| [0,7071
9z = s, SIN AP, /2| 0

| €25 sin Ay, /2 ] 0

[ cosAp./2 | [0,9239]
ey sinAgpy /2| 0
W= e, sinAp,/2| ~ |0,3827
| ey, sin Ay, /2] 0

Kon¢ni kvaternion (glejte definicijo produkta kvaternionov v (5.7)) ima

obliko ~
0,6533

0,6533
0,2706
10,2706

kar ustreza kotu zasuka Aap = 2arccos(qo) = 2arccos(0,6533) = 98,41°
okoli rotacijske osi e = . [ql, g2, q3]* = [0,8630, 0,3574, 0,3574]T.

4t =g,0q, =
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4. Merjeni smerni vektor vz, = [0, 0, 1]T zapiSemo v koordinatah robota kot
ve = RFv;, =1[0,70711, —0,70711, 0]7

kjer je RS = (RL)™ = (RE)T.
Enako dobimo s kvaternioni, kjer je vektor po rotaciji enak

—1
Qe = (47)  °Qu, °qf
ter velja q,, = [0, vZ]7 in q§ = (g5) " (glejte 5.2.1). Produkt kvaternio-

nov je definiran v (5.7). Dobimo

0,6533] [0] [ 0,6533 0
_|oes33| |o| |-06533| | 07071
Qv = 10.2706| ° 0] © |—0,2706| ~ |—0,7071

0.2706| [1| [=0,2706 0

kar ustreza vektorju vg = [0,7071, —0,7071, 0] (upostevamo le vektorski
del kvaterniona).

Primer 5.2

Na zacetku sta globalni koordinatni sistem G in lokalni koordinatni sistem L
poravnana, nato pa se L zavrti okoli osi x za kot o, = 90° in nato ponovno okoli
nove osi z za kot a, = 90°.

1. Kaksna je orientacija koordinatnega sistema L, izrazena z rotacijsko matriko
(RL), glede na koordinatni sistem G? Dolo¢ite Eulerjeve kote (notacija
3-2-1) in kvaternion qé, ki opisujejo to transformacijo.

2. Vektor v globalnih koordinatah je vg = [0, 0, 1]7. Kaksna je predstavitev
tega vektorja v lokalnih koordinatah?

Resitev

1. Za rotacijo zapiSemo rotacijsko matriko (na sliki 5.3 je Se grafi¢na predsta-
vitev te rotacije)

RLE=1-1 0 o (5.15)
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o

Slika 5.3: Prikaz rotacije (5.15)

2. Eulerjeve kote (notacija 3-2-1) ocenimo iz matrike R%

R
= arctan (R23> = nedefinirano

33
6 = — arcsin (Ry3) = —90°

R
1) = arctan (Rl?> = nedefinirano
11

Opazimo, da je 8 = —90°, kar pomeni, da je parametrizacija z Eulerjevimi
koti singularna in sta zato ¢ ter 1 nedefinirana. Z uporabo Eulerjevih
kotov torej ne moremo zapisati te orientacije (rotacije).

3. Kvaternion qé je
a6 = 4.0 q-
kjer je

qz =

q. =

Torej je

0,5
0,5
-0,5
0,5

qé:qzoqz:

kar ustreza zasuku za kot Agp = 2arccos(0,5) = 120° okoli rotacijske osi
e=—[q1,q2,q3]" =1[0,5774, —0,5774, 0,5774]".
2

sin
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4. Vektor vg = [0, 0, 1] je v lokalnih koordinatah zapisan kot
v = Révg =1, 0, 07

ali s kvaternioni

o O = O

kjer je vektorski del enak vy = [1, 0, 0]7.

5.2.2 Translacija in rotacija

Za posploseno predstavitev bomo oznagcili koordinatni sistem senzorja kot L
(lokalne koordinate) in koordinatni sistem robota kot G (globalne koordinate).
Lokacija senzorja glede na koordinatni sistem robota je opisana s translacijskim
vektorjem t¢ = [t,, t,, t.] in rotacijsko matriko R%. Translacija t¢ opisuje
pozicijo izhodis¢a lokalnega koordinatnega sistema v globalnih koordinatah
in rotacijska matrika Ré opisuje orientacijo lokalnega koordinatnega sistema
glede na globalni koordinatni sistem (robota). Toc¢ko pg, podano v globalnih
koordinatah, lahko opisemo z lokalnimi koordinatami z uporabo transformacije

pL = RG (pc — t7)
njena inverzna transformacija pa je podana z

_ T
pc = (RE) 'pr +t¢ = (RL) pL +1t§

Primer 5.3

Robot ima laserski pregledovalnik razdalj (LPR), ki izmeri polozaj najbliZje tocke
ovire pr, = [1, 0,5, 0,4]7 m v koordinatah senzorja. Ima tudi magnetometer, ki
ob istem ¢asu izmeri vektor zemeljskega magnetnega polja vl = [22, 1, 42] nT.

LPR je glede na (globalni) koordinatni sistem robota premaknjen za t; =
[0,1, 0, 0,25]7 in zasukan za 30° okoli osi z. Magnetometer pa je premaknjen za
t, = [0, 0,1, 0,2] in zasukan za Eulerjeve kote ¢ = 0°, § = 10°,1) = 20° (notacija
3-2-1).

1. Katere so najblizje koordinate tocke ovire v koordinatnem sistemu robota?

2. Kaksen je vektor magnetnega polja v koordinatnem sistemu robota?
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Resitev

1. Rotacijska matrika je

cos(30°)  sin(30°) 0 0866 05 0
RE = | —sin(30°) cos(30°) 0| = |05 0,8660 0
0 0 1 0 0 1

Tocka, izrazena v koordinatah robota, pa je

pc = (RE) pr +t, = (0,716, 0,933, 0,65]7

2. Pri transformaciji vektorja je pomembna le rotacija, tako da so kompo-
nente magnetnega vektorja v koordinatah robota dobljene z rotacijsko

transformacijo

0,9254  0,3368 —0,1736
RL = R,(0°)R,(10°)R,(20°) = | —0,3420 10,9397 0
0,1632  0,0594  0,9848

v = (RE) vy, = [26,8705, 10,8443, 37,5417

5.2.3 Kinematika rotacijskih koordinatnih siste-

mov

V tem poglavju bomo pokazali, kako je orientacija togega telesa, ki je predsta-
vljena s kvaternionom ali rotacijsko matriko, povezana s kotnimi hitrostmi okoli
lokalnih osi togega telesa. Togo telo se vrti okrog svojih osi x, ¢ in z s kotnimi
hitrostmi w,, wy in w,, zato se orientacija togega telesa (npr. robota ali senzorske
enote) spreminja glede na referen¢ni koordinatni sistem.

Rotacijska kinematika izrazena s kvaternioni

Casovno odvisnost rotacije togega telesa (podana z diferencialno ena¢bo) lahko
izpeljemo iz definicije produkta dveh kvaternionov (5.7). Ce je orientacija togega
telesa g(t) v ¢asu t znana, lahko njegovo orientacijo v Casu t + At zapiSemo kot

alt + At) = q(t) o Aq(t) (5.16)

kjer Aq(t) podaja spremembo orientacije togega telesa iz q(t) v q(t + At). Z
drugimi besedami, Agq(t) je orientacija telesa v ¢asu ¢ + At glede na njegovo
orientacijo v ¢asu t. Do koncne orientacije telesa g(t + At) torej pridemo tako, da
najprej zavrtimo telo za rotacijo q(t) glede na nek referenéni koordinatni sistem



5.2. Transformacije koordinatnih sistemov 213

in nato za rotacijo Aq(t) glede na g(t). Tako s pomodcjo enacbe (5.5) zapiSemo
Aq(t) kot
cos Ap/2
e sin Ap/2
ey sin Ap/2
e, sin Ap/2

Aq(t) =

kijer je e(t) = [eq, ey, e.]T os rotacije, izrazena v lokalnih koordinatah togega
telesa v ¢asu t in Ay je kot zasuka v ¢asovnem intervalu At. Ob predpostavki,
da sta e(t) in Ay konstantna v ¢asovnem intervalu At, lahko preoblikujemo
produkt kvaternionov (5.16) s pomocjo (5.7) kot

0 —e, —ey —e;
A A —
q(t+ At) = | cos SP)\ I 4sin(22) | 0 c v q(t) (5.17)
2 2 ey —€ 0 €
e; ey —eg 0

kjer je I enotska matrika dimenzij 4 x 4. Za kratke intervale At lahko uposte-
vamo aproksimacijo Ay & /w2 + w2 + w,2At, Kjer je w(t) = [wy, wy, ws]T
vektor trenutnih kotnih hitrosti, ki ga lahko zapiSemo tudi v obliki w(t) =
\/me. Za majhne kote lahko (5.17) aproksimiramo z

q(t+ At) = (I + Atﬂ) q(t)

2
kjer je
0 —w; —wy -—w;
0_ We 0 Wy  —wy
Wy —Wy 0 Wy
W, Wy Wy 0

Diferencialno enacbo, ki opisuje orientacijo togega telesa, dobimo z limitiranjem
At proti nic

dg qgit+At)—q(t) 1

Bk U v N 20 5.18

it~ arso At g (5.18)
kjer so kotne hitrosti v €2 podane v koordinatnem sistemu togega telesa.

Rotacijska kinematika izrazena z rotacijsko matriko

Izpeljimo Se diferencialno enacbo za predstavitev orientacije togega telesa, ki jo
podaja rotacijska matrika. Podobno kot v (5.16) lahko zapiSemo

R(t+ At) = AR(¢)R(t) (5.19)

kjer je R(t) orientacija togega telesa v ¢asu t, R(t + At) orientacija togega telesa
v ¢asu t+ At in AR(t) sprememba orientacije (orientacija telesa v ¢asu ¢t = t+ At)
glede na orientacijo v casu t.

Sprememba orientacije AR(t) je definirana kot

f:*“ Q' dt

AR(t) = e (5.20)
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kjer je
0 W,  —wy
QA =|-w, 0 Wy
Wy Wy 0

in w(t) = [ws, wy, w]T je vektor trenutnih kotnih hitrosti telesa.

Ob predpostavki, da je Q' konstantna matrika v ¢asovnem intervalu At, lahko
aproksimiramo izraz ft+ "Q/(t)dt ~ YAt = B. Eksponent v (5.20) razvijemo
v Taylorjevo vrsto

6
B3

32 o’B  o*B?>  o'B (5.21)
=(I+B+5 — 5~ 5 +...):
_ <I+SIHUB+ 1- COSO’B2>
o o2

kjer je I enotska matrika dimenzij 3 x 3 in 0 = Aty/w,? + wy? + w,?. Za majhne
kote o lahko (5.21) aproksimiramo z

AR(t)=T+B =1+ Q'At
kar lahko uporabimo za izracun rotacijske matrike (5.19) v ¢asu ¢t + At
R(t+ At) = (I + Q' At) R(t)

Koné¢no diferencialno enac¢bo dobimo z limitiranjem At proti nic¢

dR R(t + At) — R(t)

— =1 = .22
dt Ao At R (5.22)

Zavoljo popolnosti je podana tudi enakovredna parametri¢na predstavitev rotacije

z Eulerjevimi koti (notacija 3-2-1)

¢ = wy; +wysinptanf 4 w, cos p tan
6= Wy COS Y — W, Sin (5.23)

¥ — Wy SIn ¢ + w, cos ¢

cos

kjer lahko vidimo, da postane notacija (prva in tretja enacba (5.23)) singularna
pri 0 = +7/2.

5.2.4 Projekcijska geometrija
Projekcija je preslikava prostora z N > 0 dimenzijami v prostor z M < N

dimenzijami. Obi¢ajno se pri projekcijski preslikavi nekaj informacije nepovratno
izgubi. Ce pa je na voljo ve¢ projekcij objekta iz razliénih vidnih kotov, je v
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nekaterih primerih mozno rekonstruirati opazovani objekt v N-dimenzionalnem
prostoru. Dve najbolj osnovni projekciji sta: perspektivicna projekcija in vzporedna
projekcija (linearna preslikava z goris¢em v neskonénosti).

Glede na model kamere z luknjico, se 3D-tocka pL = [z¢ yc 2¢], podana v koor-
dinatnem sistemu kamere C, preslika v 2D-to¢ko p% = [zp yp| v koordinatnem
sistemu slike P kot sledi (glejte sliko 5.4)

1
Pp= gSpc (5.24)

kjer Py predstavlja tocko pL = [zp yp] v homogenih koordinatah, tj. B}To =
[zp yp 1]. Matrika S € R x R? opisuje notranji model kamere

af v
S=|0 oyf ¢ (5.25)
0 0 1

Intrinzi¢éni (notranji) parametri kamere vsebovani v S so: goriséna razdalja f;
faktorja skaliranja o, in o, v horizontalni in vertikalni smeri; opti¢no sredisce na
sliki (cg, ¢y) in strig . Parametre modela kamere se obicajno dolo¢i ali popravi s
postopkom kalibracije kamere. Perspektiviéni model kamere (5.24) ne nelinearen,
ker vsebuje ¢len 251 (inverz razdalje do tocke v smeri osi z v koordinatnem
sistemu kamere C). Ceprav je perspektivi¢na transformacija invariantna za
tocke, premice in splone stoznice (stoznice so dvodimenzionalne krivulje, ki
nastanejo pri preseku stoZca z ravnino) — tj. tocke se preslikajo v tocke, premice
v premice in stoznice v stoznice —, je slika prizora nekoliko popacena predstavitev
opazovanega prizora. V sploSnem velja, da se koti med premicami in razmerja
med razdaljami ne ohranjajo (tj. vzporedne premice se v splosnem ne preslikajo v
vzporedne premice). V nekaterih posebnih postavitvah kamere je perspektiviéno
projekcijo mozno zadovoljivo aproksimirati z ustreznim linearnim modelom [2] —
kar lahko poenostavi kalibracijo kamere. Model kamere (5.24) lahko zapisemo
tudi v obliki

P, x Spc

Slika (projekcija) opazovanega objekta nastane na zaslonu za optiénim sredis¢em
kamere (na goriSéni razdalji f v smeri negativne osi z¢ od opti¢nega srediséa) in
je obrnjena za 180° ter pomanjsana. Pri vizualizaciji projekcije kamere si lahko
zamislimo, da nastane ne-obrnjena slika pred opti¢nim srediS¢em kamere (na
pozitivni osi z¢ na enaki razdalji od opti¢nega sredisc¢a kot prava slika), kot je
prikazano na sliki 5.4.

Primer 5.4

Notranji model kamere (5.25) ima naslednje parametre: oy f = a,, f = 1000, brez
striga (7 = 0) in opti¢no sredisce je na sredini slike, ki je dimenzij 1024 krat 768.
Preslikajte naslednjo mnozico 3D-tock, ki so podane v koordinatnem sistemu
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Resni¢na slikovna ravnina
K. s. slike P

K. s.

kamere Virtualna slikovna ravnina

3D-objekt

Opticno sredisce

Center slike

Opticna os
(cz) Cy) .
K. s. slike P

Svetovni k. s. W

Slika 5.4: Projekcija pri modelu kamere z luknjico

kamere, na zaslon kamere (v koordinatni sistem slike)

pLle{[-114], [115],[0 —14], [-11 —4], [415]}

Resitev

Projekcija 3D-tock na sliko z enacbo (5.24) podana v programu 5.1. Rezultati
so prikazani tudi graficno na levi strani slike 5.5. Opazimo, da Cetrta tocka ni
prikazana na sliki, ker je izven omejene slikovne ravnine (zaslona). Nahaja se za
kamero, in torej ni vidna. To je posledica dejstva, da matematiéni model (5.24)
ne uposteva omejitev vidnega polja kamere. Zatorej moramo izvesti dodatna
preverjanja, da zagotovimo, da se na slikovno ravnino preslikajo le tocke v vidnem
polju kamere: tj. projicirane tocke morajo biti znotraj meja slikovne ravnine in
pred kamero. Zatorej se na slikovni ravnini v resnici pojavijo le prve tri tocke
(glejte desno stran slike 5.5).

Program 5.1: Resitev primera 5.4
./src/sen/example_projection.m

% Notranji parametri kamere in velikost zaslona

alphaF = 1000; % alphaxf, v px/m

s = [1024; 768]; % Velikost zaslona, Vv px

¢ = s/2; % Opticno sredisCe na sliki, v px

S = [alphaF, 0, c(1); O, alphaF, c(2); 0, 0, 1]; % Model kamere

% Mnozica 3D tolk v koordinatnem sistemu kamere
pC = [-1 1 4; 1 15; 0 -1 4; -1 1 -4; 41 5].°;

% Projekcija tolk na slikovno ravnino
pP = (S*pC)./repmat(pC(3,:), 3, 1)
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pP =

262 712 512 762 1312
634 584 134 134 584

1 1 1 1 1

0 1024 0 1024

0 0

ePP3 epPP4 ePP3
orPI oPp2 oPPI *Pp2

768 768

Slika 5.5: Projicirane toc¢ke na slikovno ravnino iz primera 5.4. Na levi so tocke,
ki so preslikane z matemati¢nim modelom (5.24) in na desni so tocke, ki so v

resnici vidne na slikovni ravnini.

Jasno je, da je mogoce s preslikavo (5.24) enoli¢no preslikati vsako tocko v
3D-prostoru na slikovno ravnino, kar pa ne velja za inverzno preslikavo. Ker
perspektiviéna preslikava povzro¢i izgubo informacije o globini prizora, lahko
vsako tocko na slikovni ravnini preslikamo le v poltrak (Zarek) v 3D-prostoru, ¢e
ni na voljo nobene dodatne informacije. Prizor lahko rekonstruiramo, ¢e lahko
nekako pridobimo podatek o globini. Obstaja veliko metod, ki omogoc¢ajo 3D-
rekonstrukcijo in temeljijo na uporabi globinskih kamer, strukturirane svetlobe,
dodatni svetlobnih namigov, gibanja itd. Polozaj tocke v 3D-prostoru lahko
ocenimo tudi na podlagi ve¢ (najmanj dveh) projekcij 3D-tocke iz razli¢nih
pogledov. 3D-rekonstrukcija je torej mozna z uporabo stereo kamere.

Geometrija vec¢ pogledov

Geometrija veC¢ pogledov ni pomembna le zato, ker omogoca rekonstrukcijo
opazovanega prizora, temvec tudi zaradi lastnosti, ki jih lahko s pridom izkoristimo
pri razvoju algoritmov strojnega vida (npr. pri iskanju parov tock med slikami
in pri ocenjevanju lege kamere na podlagi pogleda kamere). Predpostavimo, da
rotacijska matrika Rg; in translacijski vektor tg; opisujeta relativno lego med
dvema kamerama (slika 5.6). Ce opti¢ni sredis¢i obeh kamera ne sovpadata
(tg; # 0), lahko po kratki matematiéni manipulaciji pridemo do izraza (5.27)
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Svetovni k. s. W Epipolarna ravnina
V h Epipolarna premica
VAN tocke pp,
K. s. slike Py " .,
K. s.
slike P>

SO K. s.
| kamere Cs

K. s.

kamere C1 RC1 4C1
C277C2

Slika 5.6: Perspektivicna geometrija pogledov dveh kamer

(predpostavljamo, da sta notranja modela kamer enaka)

pc, = R pc, + ¢! (5.26)
S~'p, x RG:S7'p, +tc!
C -1 C C1 -1
tei]xS Pp X teilxRe, S Pp,
— C Cl —
0=p, STtcll«Rc.S7'p,,
0=p, Fp, (5.27)

Vektorski produkt vektorjev a® = [a1 as a3 in b7 = [by by b3] smo zapisali kot
a X b = [a]«b, kjer je [a]x antisimetri¢na matrika

0 —as a9
lalx = | a3 0 —a
—as aq 0

Matrika F' je znana kot fundamentalna matrika in opisuje epipolarno omejitev
(5.27): tocka p P, lezi na premici FBPQ na prvi sliki in tocka p P lezi na premici
FTBP1 na drugi sliki. Pomembna je tudi relacija pgl Epc, = 0, kjer je ma-
trika E = [tg;]X g; na podrocju strojnega vida znana kot esencialna matrika.
Povezava med esencialno in fundamentalno matriko je E = STFS.

Epipolarno omejitev lahko izkoristimo za izboljSanje iskanja parov tock med
slikama istega prizora iz dveh zornih kotov, ¢e je znana medsebojna lega med
kalibriranima kamerama. Ker mora korespondencni par tocke p p, DA prvi sliki
lezati na premici FTB p, D2 drugi sliki, se iskanje para na 2D-ravnini slike skréi na
iskanje vzdolz 1D-premice (epipolarne premice). Zato je mozna velika pohitritev
iskanja parov tock in tudi iskanje parov je lahko bolj robustno, saj lahko zavrzemo
pare, ki ne zadostijo epipolarni omejitvi.
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Primer 5.5

7 dvema kamerama opazujemo mnozico 3D-tock v prostoru. Medsebojna lega
kamer je podana z rotacijsko matriko RC; = R,(30°)R,(60°) in translacijskim
vektorjem tg; =[4 —12]T. Notranji parametri modela (5.25) obeh kamer so
enaki: a, f = ay f = 1000, brez striga (v = 0) in opti¢na os poteka skozi sredis¢e
slike z dimenzijami 1024 krat 768. Mnozica tock, ki nastane na zaslonu prve
kamere, je

plzgl € {[262 634], [762 634], [512 134], [443 457], [412 284]}
Mnozica tock, ki nastane na zaslonu druge kamere, je
p% € {[259 409], [397 153], [488 513], [730 569], [115 214]}

Tocke, ki nastanejo na slikovnih ravninah obeh kamer, so prikazane na sliki 5.7.
Dolocite vse mozne korespondencne pare tock, ki zadostijo epipolarni omejitvi.
Za vse najdene korespondencne pare tock rekonstruirajte polozaj 3D-tock v
prostoru glede na koordinatna sistema obeh kamer.

0 1024 0 1024
0 0
oPP; oPPys
o/Ps
oPP s
PPy YZoN
oPP3
Y2
PP PP,
768 768

Slika 5.7: Tocke na dveh slikovnih ravninah iz primera 5.5

Resitev

Pri iskanju parov tock med dvema slikama iz kamer, katerih medsebojna lega
je znana, velja, da morajo projekcije tock, ki pripadajo isti 3D-tocki, zadostiti
epipolarni omejitvi (5.27). Enacba (5.27) je oblike I”p = 0, tj. homogena tocka
p' =
enacbe premice. S pomocjo epipolarne omejitve (5.27) lahko torej najdemo

x y 1] leZi na premici I7 = [a b ], saj je ax + by + ¢ = 0 implicitna oblika

premico Ip, na drugi sliki za vsako tocko p p Da prvi sliki, in obratno, premico
—I1

lp, za vsako tocko p Py’ Epipolarne premice za prvo in drugo sliko so prikazane

na sliki 5.8. Glede na sliki 5.7 in 5.8 lahko graficno najdemo Stiri mozne pare

tock.
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0 1024 0 1024

768 768

Slika 5.8: Tocke in epipolarne premice na dveh slikah iz primera 5.5

Implementacija algoritma za iskanje parov tock je podana v programu 5.2 (funkeiji
rotX in rotY sta Matlabovi implementaciji enac¢b (5.1) in (5.2)). Pari tock so

zbrani v indeksni matriki pairs.

Program 5.2: Iskanje parov tock iz primera 5.5
./src/sen/example_fundamental.m

% Notranji parametri kamere in velikost zaslona

alphaF = 1000; % alphaxf, v px/m

s = [1024; 768]; % Velikost zaslona, Vv px

c = s/2; % Opticno sredisée na sliki, v px

S = [alphaF, 0, c(1); O, alphaF, c(2); 0, 0, 1]; % Model kamere

% Lega med kamerama
R = rotX(pi/6)*rotY(pi/3); t = [4; -1; 2];

% Mnozica tock

pP1 = [262, 634; 762, 634; 512, 134; 443, 457; 412, 284].7;
pP2 = [259, 409; 397, 153; 488, 513; 730, 569; 115, 214].°;
N1 = size(pP1l, 2); N2 = size(pP2, 2); % Stevilo toék

% Fundamentalna matrika

tx = [0, -t(3), t(2); t(3), 0, -t(1); -t(2), t(1), OI;

F = S.’\tx*R/S;

epsilon = 1le-2; % Toleranca napake po razdalji

pP1 = [pP1l; ones(1,N1)]; pP2 = [pP2; ones(1,N2)]; % Toike v homogenih koordinatah

% Epipolarne premice v k. s. P1l, ki pripadajo toékam v k. s. P2
1P1 = F*pP2;

% Epipolarne premice v k. s. P2, ki pripadajo toékam v k. s. P1
1P2 = F.’%pP1;

% Iskanje parov toék (upoStevanje epipolarne omejitve)

pairs = [];
for i = 1:N1
d = abs(1P2(:,1i).’*pP2);

k find (d<epsilon);
if ~isempty(k), pairs = [pairs, [i; k(1)]]; end
end

pairs
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Singularni primeri Enacba (5.27) postane singularna, ¢e opti¢ni srediséi obeh
kamer sovpadata. V primeru, e je tg; ni¢, lahko iz (5.26) izpeljemo relacijo

P, xSRCS™'p, (5.28)

Do podobne oblike enacbe pridemo tudi v primeru, ¢e se vse tocke v 3D-prostoru
nahajajo le na eni ravnini. Brez izgube na splosnosti lahko predpostavimo, da je
to ravnina zy = 0

C117,.C Ca1-1
Pp X S[TWI TWQ twllrwh 7°W2 twl S~ pp2 (5.29)
kjer RS, = [r‘gm r%’Q rﬁ,d] Preslikava ravnine v svetovnih koordinatah na
slikovno ravnino je

P, x S[r%{,’l rgm th]QW (5.30)

kjer v tem primeru Velja pT = [zw yw 1]. Enacbe (5.28), (5.29) in (5.30) imajo
vse podobno obliko: p’ Hp Matrika H je na podroéju strojnega vida znana
kot homografija.

3D-rekonstrukcija

V primeru stereo kamere je polozaj 3D-tocke mozno dolociti na podlagi obeh
projekcij (slik) tocke. Postopek zahteva dolocditev korespondencnega para tock
na slikah, ki ustrezata 3D-tocki v prostoru, kar je eden izmed fundamentalnih
problemov na podrocju strojnega vida. Ko je korespondencni par tock najden in
¢e je znana lege med obema kamerama (translacija med kamerama ne sme biti
nic¢) ter ¢e sta znana Se notranja modela obeh kamer, lahko dolo¢imo polozaj tocke
v 3D-prostoru. Ce sta oba notranja modela kamer enaka, lahko ocenimo globino
tocke v koordinatnih sistemih obeh kamer (z¢, in z¢, ), ¢e resimo naslednji sistem
enacb (npr. z uporabo metode najmanjsih kvadratov)

S7'p, 7o, — RS ™'p, zc, = tC. (5.31)
Primer 5.6

Za vse najdene korespondencne pare tock na slikah iz primera 5.5 dolocite polozaje
tock v 3D-prostoru glede na koordinatni sistem prve in druge kamere.
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Resitev

Polozaje tock v 3D-prostoru lahko dolo¢imo, ¢e resimo sistem enac¢b (5.31) za
vsak korespondenc¢ni par tock na slikah iz primera 5.5. Resitev vstavimo v
inverzno transformacijo enacbe (5.24). Implementacija resitve v okolju Matlab je
podana v programu 5.3. Polozaji toc¢k v 3D-prostoru glede na koordinatni sistem
prve in druge kamere so prirejeni spremenljivkam pC1 in pC2.

Program 5.3: Rekonstrukcija tock v 3D-prostoru iz primera 5.6
./src/sen/example_reconstruct.m

% Rekonstrukcija

M = size(pairs, 2);

pCl = zeros(3,M);

for i = 1:M
a = pairs(1,i); b = pairs(2,i);
cl = S\pP1(:,a);
c2 = -R*(S\pP2(:,b));

psi = [c1, c2]\t;
pC1(:,i) = psi(1)*cl;

end

pC2 = R.’*(pCl-repmat(t, 1, M));

pCl, pC2

pCl =
-0.9989 0.9994 0 -0.2999
0.9989 0.9994 -1.0005 -0.2999
3.9956 3.9978 4.0018 2.9994

pC2 =
-0.1372 0.8638 -0.4988 -1.0973
0.7333 0.7327 -1.0013 0.1066
5.6930 3.9635 4.3308 4.3316

Problem rekonstrukcije se poenostavi v primeru kanoni¢ne postavitve stereo
kamere, kjer je prva kamera glede na drugo le premaknjena vzdolz osi x za
razdaljo b (kot je prikazano na sliki 5.9). V tem primeru postanejo epipolarne
premice vzporedne in epipolarna premice tocke pp, gre tudi skozi to tocko (ne le
tocko pp, na drugi sliki). V primeru digitalnih slik to pomeni, da se par tocke na
prvi sliki nahaja na drugi sliki v isti vrstici kot na prvi sliki. Predpostavimo, da
so parametri modelov (5.25) obeh kamer enaki: o, = a, = o in v = 0. Polozaj
tocke v 3D-prostoru glede na koordinatni sistem prve kamere lahko dobimo iz
obeh njenih projekeij (slik)

|:$P1 —C Yp — Gy af] (5.32)

ISHES Y

T _
Do, =

kjer smo uvedli dispariteto d = xp, — xp,. Dispariteta vsebuje informacijo o
globini, kot je razvidno iz zadnjega elementa v vektorju (5.32): z¢, = afbd 1.
Za vse tocke, ki se nahajajo pred kamero, je dispariteta pozitivna: d > 0.
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Epipolarna premica

Koordinatni sisrem slike Py Koordinatni sistem slike P>

> >
> >

pp, bp,

/

Center slike

Slika 5.9: Kanoni¢na postavitev stereo kamere

Primer 5.7

Predpostavimo kanoni¢no postavitev stereo kamere z razdaljo med kamerama

b = 0,2 in naslednjimi notranjimi parametri obeh kamer: a,f = a,f = 1000,

c; = 512 in ¢, = 384. Dolocite polozaj 3D-tocke, ki se projicira v tocko
pgl = [351 522] na prvi sliki in v tocko pgz = [236 522] na drugi sliki.
Resitev

Ker imamo opravka s kanoni¢no postavitvijo stereo kamere, lahko resitev dobimo

direktno z uporabo (5.32) (glejte program 5.4).

Program 5.4: Rekonstrukcija 3D-tocke iz primera 5.7

./src/sen/example_reconstruct0O.m

% Notranji parametri kamere in velikost zaslona
alphaF = 1000; % alphaxf, v px/m

c =
S =

o =

[612; 384]; % Opticno srediSée na sliki, v px
[alphaF, 0, c(1); O, alphaF, c(2); 0, 0, 1]; % Model kamere

0.2; % Razdalja med kamerama, v m

% Pari tock

pP1
pP2

= [351; 522];
= [236; 522];

% 3D-rekonstrukcija

d =
pC1

pC1

pP1 (1) -pP2(1);
= b/d*[pPl-c; alphaF]

-0.2800
0.2400
1.7391
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5.3 Metode merjenja lege

V nadaljevanju bomo predstavili glavne metodologije uporabe senzorjev za oce-
njevanje lege robota v okolju. Ti pristopi lahko merijo relativno spremembo lege
glede na predhodno doloceno lego ali pa absolutno lego glede na nek referencen
koordinatni sistem.

5.3.1 Relativno dolocanje lege

Relativno dolocanje lege (angl. dead reckoning) ocenjuje trenutno lego robota s
pomocjo prejsnje znane lege in izmerjenih relativnih premikov iz prejsnje lege. Ti
premiki ali inkrementi gibanja (razdalja in orientacija) se izra¢unajo iz izmerjenih
hitrosti v pretecenem casu in smeri gibanja. Za te pristope je skupna uporaba
integracije poti za oceno trenutne lege, zato se obicajno pojavijo razli¢ni pogreski
(pogresek integracijske metode, merilni pogresek, pristranskost, Sum itd.).

V mobilni robotiki sta najpogosteje uporabljena pristopa odometrija in inercialni
navigacijski sistem.

Odometrija

Odometrija ocenjuje lego robota s pomocjo integracije premikov, ki jih lahko
izmerimo ali pridobimo iz uporabljenih regulirnih veli¢in za gibanje. V mobilni
robotiki obi¢ajno pridobimo relativne premike iz osnih senzorjev (npr. inkre-
mentalni enkoder), ki so pritrjeni na osi koles robota. Z uporabo notranjega
kinemati¢nega modela (glejte (2.1) za diferencialni pogon) so meritve zasuka
koles povezane s spremembami pozicije in orientacije mobilnega robota. Spre-
membe pozicije in orientacije v dolo¢enem ¢asovnem intervalu med zaporednima
meritvama lahko izrazimo s hitrostmi robota. V nekaterih primerih se lahko
kotne hitrosti koles izmerijo neposredno ali pa jih izrazimo iz znanih reguliranih
hitrosti (predpostavimo, da so hitrostni regulatorji to¢ni).

Vzemimo robota z diferencialnim pogonom, ki ima na kolesih namesc¢ena inkre-
mentalna enkoderja. Senzorja merita relativno spremembo zasuka levega Aa, (t)
in desnega kolesa Aag(t) glede na (prej$njo) orientacijo v ¢asu t~ =t — At. Ce
predpostavimo idealno vrtenje koles (brez zdrsov koles ipd.), je njuna prevozena
razdalja

Adp(t) = Aar(t)R Adg(t) = Aag(t)R

kjer je R polmer koles. Z uporabo notranjega kinemati¢nega modela (2.1) sta
sprememba orientacije in prevozena razdalja (premik)

_ Adg(t) — Adg(t)

N L

_ Adg(t) + Adp(t)

- 2

Ap(t)

Ad(t)
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kjer je L razdalja med kolesoma.

Lego robota lahko ocenimo iz njegovih izmerjenih hitrosti s pomocjo integracije
zunanjega kinematicnega modela (2.2) ali iz vsote izra¢unane pozicije robota in
sprememb orientacije. Z uporabo trapezne metode integracije dobimo ocenjeno
lego robota

z(t) = z(t™) + Ad(t) cos (go(t‘) + A‘g”)
y(t) = y(t™) + Ad(t) sin (@(t‘) + A%;(t)>

o(t) = p(t™) + Ap(t)

Vendar pa zaradi integralne narave odometrije pride do kumulativnega pogreska
(lezenja), ki ga v glavnem delimo na sistemati¢ne in nedeterministi¢ne pogreske.
Sistematicni pogreski se pojavijo zaradi kinemati¢nih nepravilnosti (npr. napacen
podatek za polmer koles) ter (ne)to¢nosti uporabljene integracijske metode in
meritve (neznana pristranskost). Nedeterministicni pogreski pa so posledica
zdrsa koles, Suma meritve ipd. Zato je odometrija samostojno uporabna le
za, kratkoroéno ocenjevanje pri znani zacetni legi. Pogosteje se uporablja v
kombinaciji z meritvami absolutnih senzorjev za napovedovanje in filtriranje
absolutnih meritev lege. Tako dobimo boljse ocene lege.

V kolesnih mobilnih sistemih za odometrijo pogosto uporabljamo senzorje, ki jih
pritrdimo na os kolesa (npr. inkrementalni opti¢ni dajalniki, potenciometri) in
merijo kot zasuka ali kotno hitrost.

Inercialna navigacija

Inercialni navigacijski sistem (INS) je samostojna tehnika za oceno lege, orientacije
in hitrosti vozila s pomocjo relativnega merjenja polozaja. INS vkljucuje senzorje
gibanja (pospeskometer) in merilnike zasuka (Ziroskop), kjer sta pozicija in

orientacija vozila ocenjeni glede na znano zacetno lego.

Meritev pospeskometra in ziroskopa predstavljata tridimenzionalna vektorja
pospeskov in kotnih hitrosti v prostoru. Za oceno lege in orientacije robota je
potrebna dvojna integracija meritve pospeska in enojna integracija meritve kotne
hitrosti. Uporaba integracije je glavni vzrok za polozajni pogresek v INS, saj se
ob integraciji akumulirajo konstantni (sistemati¢ni) pogreski (lezenje senzorja,
slaba kalibracija itd.). Zaradi stalnega pogreska napaka ocenjevanja pozicije
narasca kvadrati¢no s ¢asom, napaka ocene orientacije pa narasc¢a linearno s
c¢asom. Poleg tega je napaka ocenjevanja pozicije odvisna od napake ocenjevanja
orientacije, ker pospeskometer meri celotni pospesek, torej tudi gravitacijo. Da
lahko ocenimo pospesek vozila, moramo od meritve odsteti gravitacijski pospesek,
kar zahteva natanéno poznavanje orientacije vozila. Vsak pogresek orientacije
(nagnjena podlaga) povzroé¢i napacni navidezni pogresek zaradi gravitacije, kar
je Se posebej problemati¢no, ker so pospeski vozila obic¢ajno veliko manjsi od
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gravitacije. Pri majhnih pospeskih povzroca dodatne tezave relativno velik Sum
(majhna vrednost razmerja signal-Sum). Ti vplivi so jasno razvidni iz modela
meritve pospeskometra, ki je sestavljen iz translacijskega pospeska vorzila a,
gravitacije g = [0, 0, 0,981]7 in radialnega pospeska

a, = R;UT<CL + Rf;”g +w X 'U) + Qbias + Anoise (533)

kjer je a,, izmerjeni pospesek v lokalnih koordinatah senzorja, RY rotacijska
matrika med koordinatnim sistemom Zemlje (ECEF) in globalnim koordinatnim
sistemom, v katerem sledimo legi, R}’ rotacijska matrika iz lokalnega koordi-
natnega sistema INS v globalni koordinatni sistem, w kotna hitrost v globalnih
koordinatah, v translacijska hitrost, a;.s pristranskost pospeska in a@,q;se Sum.

Orientacijo ocenimo s pomocjo meritev ziroskopa. Model meritve Ziroskopa je
Wm = Wi + Whias T Wnoise (534)

kjer je wy, vektor izmerjene kotne hitrosti, w; pravi vektor kotnih hitrosti telesa
v lokalnih koordinatah, wy;qs je pristranskost senzorja in w,qse SUmM senzorja.

Oceno orientacije INS-enote dobimo s pomoc¢jo ocenjenih enotskih kotnih hitrosti
iz (5.34) kot w; = wy,, — Wpies- Pristranski del se ponavadi oceni sproti s
pomodjo nekega ocenjevalnika (npr. Kalmanov filter) ali pa predpostavimo, da
je konstanten za kratke ocenjevalne intervale, kakovostni ziroskop in zacetno
kalibracijo (ocena hitrosti wpies). Vendar se pristranskost spreminja s ¢asom,
zato je slednji pristop primeren samo za kratkorocno uporabo. NajenostavnejSo
kalibracijo izvedemo s povprecenjem N meritev ziroskopa, medtem ko drzimo
INS-enoto v konstantnem polozaju (wpias = % Zfil W, ko w; = 0).

S pomodjo rotacijske kinematike za kvaternione (5.18) dobimo relativno oceno
orientacije enote INS glede na zacetno orientacijo kot

dg;, () _1 i
) 2000
a0 = [ 22D ar+ g, 0) (535)
0

kjer je g’ (t) kvaternion, ki opisuje rotacijo iz globalnega koordinatnega sistema
w v koordinanti sistem INS-enote i, g% (0) zacetna orientacija

0 —w; —wy -—w;
Wy 0 Wy —wy
Qt) = 0
Wy —Ww, Wy
W, Wy —Wg 0

in w;(t) = [ws, wy, w:]T. Rotacijsko matriko RY, = RY¥" pridobimo iz razmerja
(5.8). V (5.35) lahko uporabimo numeri¢no integracijo (5.17).

Da lahko ocenimo lego INS-enote, izracunamo translacijski pospesek v globalnih
koordinatah iz (5.33)

a=R}(am — apigs) — RYg — w x v
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kjer je w = R}’w; vektor kotne hitrosti v globalnih koordinatah, izraz za pristran-
skost apiqs pa se ocenjuje sproti s pomocjo nekega ocenjevalnika (npr. Kalmanov
filter). Potrebna je tudi ustrezna kalibracija pospeskometra. Oceno hitrosti v ()

in pozicije (t) dobimo z integracijo

Primer 5.8

Izvedite simulacijo izmerjenega pospeska in kotnih hitrosti za robota z diferenci-
alnim pogonom in INS-enoto, ki se vozi po krivulji (t) = cos(t), y(t) = sin(2t)
in z(t) = 0 (v globalnem koordinatnem sistemu). Cas simulacije je 65, racun-
ski korak pa 1ms. INS-enota je usmerjena tako, da je njena z-os tangenta na
trajektorijo, y-os je pravokotna na x-os in z-0s je poravnana z z-osjo globalnega

koordinatnega sistema.

Iz meritev ocenite pozicijo in orientacijo INS-enote v globalnem koordinatnem
sistemu. Poleg tega upostevajte pristranskost senzorjev in sum ter opazujte, kako

vplivata na ocenjeno lego INS-enote.

Resitev

V simulaciji dobimo kotne hitrosti INS-enote iz razmerja (5.22) in jih uporabimo
za matriko kotnih hitrosti 3’ = %ﬂ’ R”. Simulacije meritev pospeskometra in
ziroskopa so modelirane s pomocjo (5.33) in (5.34) ter prikazane na sliki 5.10.
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Slika 5.10: Simulacija meritev pospeska (levi stolpec) in kotne hitrosti (desni
stolpec) INS-enote

Ocenjena pozicija in orientacije INS-enote v idealnem primeru brez Suma in
pristranskosti sta prikazani na sliki 5.11.
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Slika 5.11: Ocenjena pozicija (a) in orientacija (b) INS-enote iz meritev pospe-

skometra in ziroskopa v idealnih razmerah, brez Suma in pristranskosti (prava

vrednost je oznacena s polno krivuljo, ocena pa s ¢rtkano krivuljo). Na koncu

simulacije lahko opazimo manjsi pozicijski pogresek zaradi numericne integracije.

Ocenjena lega v primeru sumnih meritev in vkljucene pristranskosti pa je prika-

zana na sliki 5.12, kjer je mogoce opaziti hitro rast pozicijskega pogreska.
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Slika 5.12: Ocenjena pozicija (a) in orientacija (b) INS-enote iz meritev pospe-
skometra in ziroskopa z upostevanim Sumom in pristranskostjo senzorja (prava
vrednost je oznacena s polno krivuljo, ocena pa s értkano krivuljo). Ker pri-
stranskost ni kompenzirana, se pojavi velik pogresek ocene pozicije in majhen
pogresek ocene orientacije.

V programu 5.5 je podana koda za simulacijo INS-enote in oceno njene lege
(funkcije rotX, rotY in rotZ so Matlabove izvedbe funkcij (5.1), (5.2) in (5.3)).
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Program 5.5

./src/sen/example_inertial_sensors_navigation.m

231

biasA = [1; 1; 1]1*0.02; biasW = [1; 1; 1]1%0.04; % Sistematiéna napaka senzorja

SigmaA = 0.1; SigmaW = 0.05; % Sum senzorja

nSteps = 6000; dT = 0.001; t = 0; % Stevilo vzorcev in velikost koraka

for k = 1:nSteps

% Simulacija gibanja senzorja: prava lega in pravi pospeski

x = [cos(t); sin(2*xt); 0]; % Lega
v = [-sin(t); 2*cos(2%t); 0]; % Hitrost
a = [-cos(t);-4*sin(2*t); 0]; 7 Pospesek

fi = [0; 0; atan2(v(2), v(1))]; % Eulerjevi koti glede na svetovni k. s.
dfi = [0; 0; (v(1)*a(2) - v(2)*a(1))/(v(1)"2 + v(2)~2)]; % 0dvod

Rx = rotX(fi(1)); Ry = rotY(fi(2)); Rz = rotZ(£fi(3));

dRx = [0, O, 0; O0,-sin(fi(1)), cos(fi(1)); O0,-cos(fi(1)),-sin(fi(1))];
dRy = [-sin(£fi(2)), 0,-cos(fi(2)); 0, 0, 0; cos(fi(2)), 0,-sin(£fi(2))];
dRz = [-sin(fi(3)), cos(fi(3)), 0;-cos(fi(3)),-sin(fi(3)), 0; 0, 0, 0];

R = Rx*Ry*Rz;

dR = dRx*Ry*Rz*dfi (1) + Rx*xdRy*Rz+*dfi(2) + Rx*Ry*dRz*dfi(3);
q = dcm2quat(R).’; % Kvaternion med svetovnim k. s. in senzorjem

% Meritve Ziroskopa

Omega = dR*R.’; ) Zapis odvoda kotne hitorsti v matriéni obliki
wb = -[Omega(3,2); Omega(1,3); -Omega(1,2)]; % Kotne hitrosti

% Meritve pospeSkometra
agDyn = a; % Dinamicni pospeSek v svetovnem k. s.
agGrav = [0; 0; 9.81]; % Gravitacija

Rearth = eye(3); % Globalni k. s. sovpada s k. s. Zemlje

wg = R.’*wb; % Prave kotne hitrosti v svetovnem k. s.

wgSkew = [0 -wg(3) wg(2); wg(3) 0 -wg(1l); -wg(2) wg(l) 0];

vg = v; % Hitrosti v svetovnem k. s.

% Izmerjene kotne hitrosti in pospedki
wbMea = wb + biasW + randn(3,1)*SigmalW;

abMea = R*(agDyn + Rearth*agGrav + wgSkew*vg) +biasA+randn(3,1)*Sigmad;

% Inercialna navigacija
if k==1 % Inicializacija

qEst = q; xEst = x; vEst = v; % Inicializacija zacetnih vrednosti

else % Posodobitev
% Ziroskop
wx = wbMea(1l); wy = wbMea(2); wz = wbMea(3);
OMEGA = [ 0 -wx -wy -wz;

wX 0 wz -wy;
Wy -Wz 0 wx;
WZ Wy -wX 0]1;

dQest = 0.5%x0MEGA*qEst;

qEst = qEst + dQest*dT; 7% Integracija kvaternionov
qEst = qEst/norm(qEst); % Normiranje kvaternionov

% PospeSek
agGrav = [ 0; 0; 9.81]; % Gravitacija

R_ = quat2dcm(gEst.’); % Lega senzorja glede na svetovni k. s.
Rearth = eye(3); % Svetovni k. s. sovpada s k. s. Zemlje

wg_ = R_.’*[wx; wy; wz]; % Kotne hitrosti v svetovnem k. s.
wgSkew_ = [0 -wg_(3) wg_(2); wg_(3) 0 -wg_(1); -wg_(2) wg_(1) 0I;

Aest = R_.’*abMea - Rearth*agGrav - wgSkew_xvEst;
vEst = vEst + Aest*dT; J Ocena hitrosti
xEst = xEst + vEst*dT; % Ocena lege

end

% 0Ocena pospeska
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t =t + dT;
end

5.3.2 Merjenje smeri gibanja

Sistemi za merjenje smeri podajajo informacijo o orientaciji vozila v prostoru,
oz. v katero smer je vozilo usmerjeno. Za oceno smeri obicajno uporabimo vec
senzorjev, kot so magnetometer, ziroskop in pospeskometer. Njihove informacije
so vgrajene v senzorske sisteme za oceno smeri (npr. Ziroskop, kompas ali

inklinometer).

Magnetometer in pospeskometer zagotavljata absolutne meritve tridimenzionalnih
smernih vektorjev zemeljskega magnetnega polja (jakost in smer) ter smernega
vektorja gravitacije Zemlje (Ce senzorska enota ne pospesuje). Za zmanjSanje Suma
meritve in izboljsanje to¢nosti, so v ocenjevalne filtre vkljucene tudi relativne

meritve ziroskopa.

Za oceno orientacije senzorske enote glede na nek referencni koordinatni sistem
(npr. fiksni zemeljski koordinatni sistem) sta potrebna vsaj dva smerna vektorja.
Senzorsko enoto lahko sestavljata magnetometer in pospeskometer. Merilni model
magnetometra zapisemo kot

bm = R&Rgbtrue + bbias + bnoise

kjer je b, izmerjeno magnetno polje v koordinatnem sistemu senzorja, bi,ye
magnetno polje Zemlje v zemeljskem koordinatnem sistemu za neko mesto na
Zemlji, rotacijski matriki pa sta definirani enako kot v (5.33). Magnetno polje
birue lahko aproksimiramo kot konstanto za nekaj majhnih povrsin na Zemlji (npr.
100 km?). Model pospeskometra je podan v (5.33). V primeru enakomernega
gibanja kaze smerni vektor meritve v smeri gravitacije in z-osi fiksnega zemeljskega
koordinatnega sistema.

Orientacija senzorske enote glede na fiksni zemeljski koordinatni sistem je opisana
7 rotacijsko matriko R. = R¥T RY, ki jo dobimo z zapisom matrike vektorjev osi
zemeljskega koordinatnega sistema, izrazenih v lokalnem koordinatnem sistemu.
V primeru mirovanja pospeskometer izmeri smerni vektor, ki kaze od sredisca
Zemlje proti poziciji INS. Ta smer torej doloca z-os zemeljskega koordinatnega
sistema in je izrazena v lokalnem (senzorskem) koordinatnem sistemu kot

am

l@m]]

zZd —

Smer Zemljine z-osi, izrazena v lokalnih koordinatah, je dolo¢ena s komponento
vektorja magnetometra, ki je pravokotna na zg4
bm X Z4

Tg= 57—
7 b % 2l
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kjer x oznacuje vektorski produkt. Smer proti severu doloca y-os Zemlje, izrazeno
v lokalnem koordinatnem sistemu kot

Yd = 24 X T4
Dobljena rotacijska matrika je
RZ - [xda Yd, Zd]

kjer je rotacijska matrika med globalnim in zemeljskimi koordinatnim sistemom
. _ T
enaka R, = R¥T = (Rle R;”T> . To orientacijo lahko opiSemo tudi s kvaternioni

s pomodjo enacb (5.9) — (5.10) ali z Eulerjevimi koti s pomocjo relacije (5.4).

Tocna ocena orientacije vozila je pomembna tudi pri izvedbi odometrije ali iner-
cialne navigacije za zmanjSanje pogreska orientacije in posledi¢no tudi pogreska
ocene pozicije. Zato v absolutnih meritvah smeri gibanja pogosto uporabimo
relativne meritve v koraku korekcije ocenjevalnikov (npr. Kalmanovega filtra).

5.3.3 Aktivne znacke in globalne meritve pozi-
cije

Lokalizacija v okolici je mozna tudi z opazovanjem znack, ki se nahajajo na
znanih pozicijah v okolici. Znacke so lahko naravne, ¢e so Ze del okolice (npr. luéi
na stropu, brezziéni oddajniki itd.), ali pa umetne, ¢e so namescene v okolico za
namen lokalizacije (npr. radijski oddajniki, ultrazvocni ali infrardeéi oddajniki,
v zemljo zakopane Zice za robotske kosilnice, GPS-sateliti itd.).

Glavna prednost uporabe aktivnih znack je preprosta, robustna in hitra lokaliza-
cija. Vendar so stroski za njihovo namestitev, delovanje in vzdrzevanje relativno
visoki.

Za oceno pozicije ali lege sistema se obi¢ajno uporablja triangulacija ali trila-
teracija. Trilateracija s pomodjo izmerjenih razdalj do ve¢ oddajnikov (znack)
oceni pozicijo sprejemnika, ki je nameséen na vozilo. Zelo znan tovrstni pristop
je globalni pozicijski sistem, kjer so aktivne znacke sateliti na znanih lokacijah
v vesolju. Triangulacija pa uporablja izmerjene kote do treh ali ve¢ znack (npr.
svetlobni vir) na znanih lokacijah.

Osnovna ideja triangulacije je ponazorjena na sliki 5.13, kjer robot meri relativne
kote «; glede na aktivne znacke. Predpostavimo tri znacke, kot je prikazano na
sliki 5.13. Trenutna lega robota q = [z, y, ¢|T in izmerjeni koti a; (j = 1,2,3)

so povezani z naslednjimi relacijami

tan(al + SO) = %
ml —

tan(ag + @) = % (5.36)
m2

tan(az + ) = 2m3 =Y

Im3s — T
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(X, Vo)

(xm3’ ym3) (‘xml’ yml)

Slika 5.13: Lokalizacija robota s pomocjo triangulacije, kjer so izmerjeni relativni
koti o; do znack

Resitev triangulacije dobimo z resitvijo enacb (5.36) za q = [z, y, ¢].
Osnovna ideja trilateracije je prikazana na sliki 5.17, kjer so trenutna pozicija
robota, izmerjene razdalje do znack in njihove pozicije povezane z naslednjim
sistemom enacb

d% = (xml - :L')Q + (yml - y)2
5 = (Tm2 — )° + (Yma — y)° (5.37)
d% = (xm3 - m)Z + (ym3 - y)Q

V nadaljevanju bomo obravnavali nekaj primerov trilateracije in triangulacije.

Primer 5.9

Robot je opremljen s senzorjem, ki meri smeri do aktivnih znack. V okolici
so tri aktivne znacke na znanih lokacijah m; = [¥m1, ym1]? = [0, 0]7, my =
[Tm2, Yme]T =[5, 3]T in m3 = [2n3, Ym3]T = [1, 5]7. Pri trenutni legi robota
q = [z, y, p|T so izmerjene smeri podane kot relativni koti a; = —2,7691,
as = —0,3585 in ag = 1,4277.

Kaksna je trenutna lega robota g7

Moznih je vec resitev tega triangulacijskega problema, pri ¢emer bomo v nada-
ljevanju predstavili dve moznosti. V prvem delu je uporabljena optimizacija z
rojem delcev (PSO), ki smo jo predstavili v poglavju 3.3.9. V drugem delu pa je
uporabljen priljubljen geometrijski algoritem, ki temelji na presecisc¢u kroznih
lokov.
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Resitev A

Trenutna lega robota ¢ = [z, y, ¢]? in izmerjeni koti a; (j =1,2,3) so povezani
z enac¢bami (5.36). Naloga algoritma PSO je najti neznanke (z, y in ¢), da so
relacije (5.36) veljavne. Vsaka porzicija delca predstavlja eno od moznih resitev
(g;) in med optimizacijami se mnozica delcev posodobi v smislu bolj optimalnih

resitev. Merilo optimalnosti resitve i-tega delca je podana na naslednji nacin

kjer je &; simulacija meritve i-tega delca, ki jo dobimo iz (5.36)

Ymj — Y _

& = arctan
Tmj —

14
Upostevajte, da mora funkcija arctan vrniti pravilen kot v obmoéju (—m,n| (v
programskem okolju Matlab se za ta namen lahko uporabi funkcijo atan?).

Pravilna regitev je ¢ = [2, 2,5, 7/6]7, katere koda je podana v programu 5.6,
konc¢na situacija pa je prikazana na sliki 5.14.

Program 5.6
./src/sen/example_triangulation_pso.m

m = [0, O0; 5, 3; 1, 5].°; % Znacke
r0 = [2; 2.5; pi/6]; % Prava lega robota, ki ni znana.

% Izmerjeni koti
alpha = wrapToPi(atan2(m(2,:)-r0(2), m(1,:)-r0(1))-r0(3));

% Uporaba metode rojenja delcev (PSO0)

iterations = 50; % Stevilo iteracij

omega = 0.5; J, Faktor vztrajnosti
0.5; % Samozavedna konstanta

c2 = 0.5; % Socialna konstanta

N = 25; % Velikost roja delcev

cl =

% Za&etni polozaji delcev

swarm = zeros ([3,N,4]);

swarm(1,:,1) = 3 + randn(1,N); % Zacetne vrednosti x
swarm(2,:,1) = 3 + randn(1,N); ) Zadetne vrednosti y
swarm(3,:,1) = 0 + randn(1,N); J Zaletne vrednosti fi
swarm(:,:,2) = 0; % Zaletne hitrosti delcev

swarm(1,:,4) = 1000; % Najboljsa vrednost kriterijske funkcije

for iter = 1:iterations % Iterativno iskanje optimalne reSitve s PSO
% Vrednotenje parametrov delcev
for i = 1:N
% IzraCun novega predvidenega kota na podlagi i-tega delca
pEst = swarm(:,i,1); 7% Ocenjeni parametri delca (x, y, fi)

% Primerjava predvidenih kotov z izmerjenimi koti
alphaEst = wrapToPi(atan2(m(2,:)-pEst(2), m(1,:)-pEst(1))-pEst(3));

% Izracun kriterijske funkcije
cost = (alphaEst-alpha)*(alphaEst-alpha).’;
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if cost<swarm(1l,i,4) % Ce je novi parameter boljSi, posodobi:
swarm(:,i,3) = swarm(:,i,1); % vrednosti parametrov (x, y, in fi)
swarm(1,i,4) = cost; % in najboljSo vrednost kriterijske funkcije.
end
end
[~, gBest] = min(swarm(1,:,4)); ’ Parametri globalno najboljSega delca

% Posodobitev parametrov s hitrostnimi vektorji

swarm(:,:,2) = omegax*swarm(:,:,2) +
cl*xrand (3,N).*x(swarm(:,:,3)-swarm(:,:,1)) +
c2*rand (3,N).*(repmat (swarm(:,gBest,3), 1, N) - swarm(:,:,1));
swarm(:,:,1) = swarm(:,:,1) + swarm(:,:,2);
end
r = swarm(:,gBest,1) % ReSitev, najboljsa ocena lege

Slika 5.14: Resitev problema triangulacije iz primera 5.9 z optimizacijo roja
delcev (PSO). Zacetne lege delcev so oznacene s pika-crtica, konéne lege pa s
krog-crta.

Resitev B

Obstaja mnogo analiti¢nih resitev triangulacije, od katerih se najpogosteje upo-
rablja presek kroznih lokov. Opisali bomo osnovno idejo principa in uporabili
konc¢no analiti¢no resitev za izracun lege robota. Celotno izpeljavo algoritma
lahko najdete v [3].
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Algoritem temelji na treh krogih, kjer je vsak krog definiran s tremi tockami: par
znack m;, mj, (i,j =1,2,3, i # j) in pozicija robota z, y (glejte sliko 5.15).

(%2 Vi)

(Xos Your)
(X5 Vs) ren

X

Slika 5.15: Lokalizacija robota s triangulacijo na podlagi preseka kroznih lokov

Par znack je povezan s polozajem robota z dvema daljicama, med katerima je
kot a;j = aj — ;. SrediSca in polmeri teh treh krogov so

cij 1 mi — Ymyg t 1]
Teij| _ 1 5 At (y Ymj Ot i)
Ycij 2

(Tmj — Tmi cOt ;)
_ lmi —my|

Tij =

Cij

2sin Q45

Ker velja a13 = a12 + as3, sta samo dva od teh kotov neodvisna in njuna
J )

pripadajoca kroga (za ajz in ass) sta

(z — 212)* + (Y — 412)* =% (5.38)
(z — 223)” + (Y — ya3)® = 33
Presek obeh krogov (5.38) je resitev za pozicijo robota. Za ve¢ podrobnosti glede
pridobitve analiticne resitve, glejte [3]; tukaj je navedena le konéna resitev. Novi
zaCasni koordinatni sistem je definiran tako, da je msy v njegovem izhodis¢u
in mg lezi na njegovi z-osi, kar omogoca lazjo pridobitev resitve. Rotacijska
matrika od referenc¢nega do zacasnega koordinatnega sistema je

R_ [COSﬂ — Sinﬁ‘|

sinf  cosp
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kjer je B = tan gmg%fﬁ’"z Znacke, izrazene v zacasnih koordinatah (m; =
m3—Tm

[Zmi, Ymi)]T), dobimo s transformacijo m; = R~ (m; — my). Presecisée krogov
v ¢asovnih koordinatah (z, y) je

I

1 4’7]C0t(112 1
=Tm3—7 o5

L—n*  |-n

|

Tm3—Tm1—Ym1 COt 12
Tm3 Cot 23 —Ym1+Tm1 cot a2

kjer je n = . Resitev v referen¢nih koordinatah je

T
=my+ R |_
Y
in orientacija robota
Ym1 — Y
p = arctan —— — «y
Im1 — X

Celoten algoritem za pridobitev resitve je podan v Matlab kodi v programu 5.7.
Resitev je graficno prikazana na sliki 5.16.

Program 5.7

./src/sen/example_triangulation.m

; 6, 3; 1, 8].°; % Polozaji treh znalk
r0 = [2; 2.5; pi/6]; % Prava lega robota, ki ni znana.

% Izmerjeni koti
alpha = wrapToPi(atan2(m(2,:)-r0(2), m(1,:)-r0(1))-r0(3));

% Triangulacija: izracdun lege na podlagi izmerjenih kotov
f = atan2(m(2,3)-m(2,2), m(1,3)-m(1,2));
= [cos(f) -sin(f); sin(f) cos(f)]; % Rotacija za koordinatni sistem v m2
m_ = S.’*%(m - repmat(m(:,2),1,3)); % Preslikani poloZaji znack
cta = cot(alpha(2)-alpha(1));
ctb = cot(alpha(3)-alpha(2));
ni (m_(1,3)-m_(1,1)-m_(2,1)*cta)/(m_(1,3)*ctb-m_(2,1)+m_(1,1)*cta);
p. = m_(1,3)*(1-ni*ctb)/(1+ni~2)*[1; -nil;

% ReSitev
p = m(:,2) + S*xp_ J Polozaj
fi = wrapToPi(atan2(m(2,1)-p(2), m(1,1)-r0(1))-alpha(1l)) % Orientacija
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a3

ag

Slika 5.16: Resitev problema triangulacije iz primera 5.9 z direktnim pristopom

Primer 5.10

Robot je opremljen s senzorjem, ki meri razdaljo do aktivnih znack na podlagi
merjenja Casa potovanja signala od znacke (oddajnik) do robota s sprejemnikom.

Imamo tri aktivne znacke na znanih lokacijah my = [7,,1, ymi]T = [0, 0]7,
My = [Tm2, Ym2]" =[5, 3|7 in m3 = [Tm3, Yms]” = [1, 5]7.
Pri trenutni poziciji robota r = [z, y]T so izmerjene razdalje d; = 3,2016 m,

do = 3,0414m in d3 = 2,6926 m, kot je prikazano na sliki 5.17.
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Slika 5.17: Lokalizacija robota s trilateracijo, kjer so merjene razdalje do znack
d;

Kaksna je trenutna pozicija robota r?

Resitev

Naloga trilateracijskega algoritma je najti neznano pozicijo x, y, tako da so
relacije (5.37) veljavne. To lahko storimo s PSO kot v primeru 5.9, kjer je
potrebno izvedbo dopolniti z relacijami (5.37) pri izracunu kriterijske funkcije.

Resitev (5.37) lahko najdemo tudi analitino. Na voljo imamo veé¢ razliénih
algoritmov, tukaj pa je podana enostavna resitev. Od prve in druge enacbe v
(5.37) odstejemo tretjo ter dobimo
df —df = (zm1 — )% = (Tm3 = 2)* + (Ym1 = ¥)* = Yms — y)?
&3 — df = (xm2 — )% = (Tmz — 2)* + (Ymz2 = ¥)° — Yms — y)?
Enacbi preuredimo v
2(Tm3 — Tm1) + 2(Yms — Ym1)y = di — d5 — Th) + Tz — You1 + Ui
2(Zm3 — Tm2)T + 2(Ym3s — Ym2)y = d% - dg - 3572712 + m3n3 - y72nZ + yq2n3

ter tako dobimo linearni enacbi v odvisnosti od = in y, ki ju lahko zapiSemo v
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obliki Ar = b, kjer sta

A— Q(xmlS - mml) Q(ymB - yml)
Q(xmB - mmZ) 2(ym3 - ym2>
in
b— df —d§ — a2, + 223 — Yo + Y3
Tld2—d2 — 22 4 x2. — 2. a2
2 37 T2 T T3 — Ym2 T Yms

od koder izracunamo neznano pozicijo
r=A"'b

S tem dobimo pravilno resitev » = [2, 2,5]7, katere Matlab koda je podana v
programu 5.8.

Program 5.8
./src/sen/example_trilateration.m
m = [0, O , 3; 1, 5].°; % Polozaji znack

HER>)
r0 = [2; 2.5; pi/6]; ) Prava lega robota, ki ni znana.

% Izmerjene razdalje do znack
d = sqrt ((m(1,:)-r0(1)).72+(m(2,:)-r0(2)).72);

% Trilateracija: iskanje lege robota glede na izmerjene razdalje
N = size(m,2); A = zeros(N-1,2); b = zeros(N-1,1);
for i = 1:N-1

ACi,:) = 2%[m(1,N)-m(1,i), m(2,N)-m(2,i)];

b(i) = d(i)"2-d(N)"2-m(1,i)"2 + m(1,N)"2-m(2,i)"2 + m(2,N)"2;
end
r = A\b 7% Izracunan poloZaj
r =

2.0000

2.5000

Primer 5.11

V primeru 5.10 so bile izmerjene razdalje toéne, kar je nerealna predpostavka.
Obic¢ajno so v meritvah prisotni Sumi in druge motnje, zato je potreben predoloc¢en
sistem z ve¢ kot tremi znackami, da se minimizira pogresek ocene pozicije.
Za ponazoritev uporabimo n = 4 znadke na lokacijah m; = [z, yml]T =
[0, 01T, m2 = [Tma2, Yma2]T =[5, 3], m3z = [vm3, yms]? = [1, 5|7 in my =
[Tma, Yma]T = [2, 4]7. Izmerjene razdalje s Sumom so d; = 3,2297m, dy =
3,0697m, d3 = 2,7060m in dy = 1,4759 m. Ocenite trenutno pozicijo robota r.
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Resitev
Predolocen sistem z n aktivnimi znackami, ki minimizira povprecno kvadratno

napako ||Ar — b, dobimo na naslednji na¢in. Matrika A je

2(xmn - xml) 2(ymn - yml)

Q(Imn - xm2) Q(ymn - ym2)
A =

2(xmn - zmn—l) Q(ymn - ymn—l)
in vektor b je

2 2 2 2 2 2
dl _dn — L1 +xmn — Ym1 +ymn
2 2 2 2 2 2
d2 7dn — Tin2 +xmn — Ymo2 +ymn

d%—l - d121 - x%nn—l + x%nn - yznn—l + y?nn
Resitev dobimo z uporabo psevdoinverza
r=(ATA)1ATb

Za dano razdaljo je resitev r = [1,9873, 2,5337]7. Matlab koda implementacije
je podana v programu 5.9, resitev pa je prikazana na sliki 5.18.

Program 5.9

./src/sen/example_trilateration_noise.m

m = [0, O0; 5, 3; 1, 5; 2, 4].°; % Polozaji znack

% Izmerjene razdalje do znack
d = [3.2297, 3.0697, 2.7060, 1.4759];

% Trilateracija: iskanje lege robota glede na izmerjene razdalje
N = size(m,2); A = zeros(N-1,2); b = zeros(N-1,1);
for i = 1:N-1

ACi,:) = 2%[m(1,M)-m(1,1i), m(2,N)-m(2,i)];

b(i) = d(i)72-d(N)"2-m(1,i)"2 + m(1,N)"2-m(2,i)"2 + m(2,N)"2;
end
r = A\b % Izracunan poloZaj
r =

1.9873

2.5337
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. @

Slika 5.18: Resitev problema trilateracije iz primera 5.11

Globalni pozicijski sistem

Najpogosteje uporabljen princip trilateracije za lokalizacijo je globalni pozicijski
sistem (GPS, angl. Global positioning system). Sateliti predstavljajo aktivne
znacke, ki posiljajo kodiran signal GPS sprejemni postaji, katere pozicijo je
potrebno oceniti s trilateracijo. Sateliti imajo zelo to¢no atomsko uro ter znane
pozicije, dolo¢ene s Keplerjevimi elementi in drugimi dvovrstiénimi parametri.
Obstaja ve¢ GPS-sistemov: Navstar iz ZDA, Glonass iz Rusije in Galileo iz
Evrope. GPS-sistem Navstar sestoji iz najmanj 24 satelitov, ki dvakrat dnevno
obkrozijo Zemljo na visini 20 200 km.

GPS se zdi zelo prirocen senzorski sistem za lokalizacijo, vendar ima nekatere
omejitve, ki jih je potrebno upostevati pri uporabi v mobilnih sistemih. Ovire,
kot so drevesa, hribi in zgradbe, blokirajo GPS-signal in onemogocijo sprejem.
Zaradi veckratnih odbojev pa lahko pride do interference signalov in posledi¢no
napacne ocene razdalje. Vseeno gre za zelo zmogljiv sistem, ki dosega toc¢nost
okoli 5m oz. celo 1cm za diferencialne sisteme z dodatnim sprejemnikom v

referencni postaji.

Lokalizacijo z uporabo GPS lahko razlozimo na enostaven nacin. Sprejemnik
meri ¢as potovanja signala iz dolocenega satelita. Cas potovanja je razlika med
Casom sprejema t, in casom oddaje t;. Signal potuje s svetlobno hitrostjo c,
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satelit 1

satelit 2

GPS-sprejemnik
satelit 3

satelit 4

Slika 5.19: GPS lokalizacija zahteva sprejem od najmanj stirih satelitov za oceno
pozicije GPS-sprejemnika in ¢asovne zakasnitve

zato se lahko izrac¢una razdalja med sprejemnikom in satelitom. Vendar pa ura
sprejemnika ni tako natancna kot atomska ura na satelitih, zato se pojavi neznana
Casovna pristranskost ali pogresek razdalje, ki je enak za vse razdalje do satelitov.
Torej mora GPS sprejemnik oceniti 4 parametre: svojo tridimenzionalno pozicijo
(z, y, 2) in Casovno pristranskost .

Okoli vsakega satelita nariSemo sfero (tj. povrSina krogle), katere polmer doloca
izmerjena razdalja. Presek dveh sfer je kroznica, presek treh sfer pa sta dve tocki,
v katerih se lahko nahaja sprejemnik. Zato potrebujemo vsaj Se eno sfero, da
zanesljivo ocenimo pozicijo sprejemnika. Ce se sprejemnik nahaja na povrsju
Zemlje, jo lahko obravnavamo kot Cetrto sfero, s katero izlo¢imo pravilno tocko,
pridobljeno iz preseka treh satelitskih sfer. V idealnem primeru bi bili trije
satelitski sprejemniki dovolj. Ampak kot smo Ze omenili, je ura sprejemnika
netocna, kar povzroca neznano ¢asovno pristranskost ¢;. Posledi¢no presek stirih
sfer (tri od satelitov in ena od Zemlje) ni tocka ampak obmocje. Za oceno ¢asa t;,
in manjsi pogresek lokalizacije je potreben sprejem cetrtega satelita, kar pomeni,
da so za GPS-lokalizacijo potrebni vsaj stirje sateliti, kot je prikazano na sliki
5.19. GPS lokalizacija mora resiti naslednji sistem enacb
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di = c(tyn —tin —ta) = V(21 — )2 + (11 — y)2 + (21 — 2)2
dy = c(trg — tia — ta) = /(22 — 2)2 + (y2 — ¥)? + (22 — 2)?
ds = c(tys —tis —ta) = V(23 — 2)2 + (y3 — )2 + (23 — 2)?
dy = c(tra — tra —ta) = /(w4 — )2 + (ya — y)? + (24 — 2)?

kjer so neznanke pozicija sprejemnika x, y, z in ¢asovna zakasnitev sprejemnika
tq. Za i-ti satelit so znane vrednosti pozicija (z;, v;, 2;), ¢as sprejema t,;, ¢as
prenosa ty; in hitrost svetlobe c.

5.3.4 Navigacija z uporabo znacilk okolja

Znacilke so podmnozica vzorcev, ki jih je mogoce robustno razbrati iz neobde-
lanih meritev senzorja ali drugih podatkov. Znacilke so lahko premice, daljice,
krogi, pike, robovi, vogali in drugi vzorci. Zaznavanje znacilk v okolju se lahko
uporablja za namene lokalizacije (ocene lege) mobilnega robota in gradnjo ze-
mljevida. V primeru dvodimenzionalnega laserskega pregledovalnika razdalj
lahko iz dobljenih podatkov (razdalja in kot) izlo¢imo znadilke v obliki daljic.
Linijske znacilke v lokalnem koordinatnem sistemu mobilnega robota lahko nato
primerjamo z globalnim zemljevidom okolice, ki je prav tako predstavljen z nizom
linij, da bi dolocili lego mobilnega robota na zemljevidu. Dandanes se v mobilni
robotiki uporabljajo razliéni senzorji, med katerimi je najpopularnejsa kamera.
V zadnjih letih so bili razviti Stevilni algoritmi strojnega vida za zaznavanje
slikovnih znacilk, ki se lahko uporabijo tudi za merjenje lege robota v okolici.
Pristopi, ki temeljijo na znacilkah, obi¢ajno vsebujejo naslednje korake: detekcija
znacilk, opis znacilk in wjemange znacilk. V fazi detekcije znacilk se obdelujejo
neobdelani podatki za dolocitev lokacij znacilk. Za opis zaznane znacilke se obi-
¢ajno uporablja obmocje okoli njene lokacije, nato se lahko uporabijo deskriptorji
(opisi znacilk) za iskanje podobnih znacilk (faza ujemanja znacilk).

Znacilke se nahajajo na znanih lokacijah, zato lahko njihovo opazovanje izboljsa
znanje o lokaciji mobilnega robota (manjsa negotovost lokacije). Seznam znagdilk
z njihovimi lokacijami se imenuje zemljevid, ki je lahko predhodno shranjen
v pomnilniku ali pa se gradi sproti med lokalizacijo — pristop, ki to omogoca,
se imenuje SLAM (angl. simultaneous localization and mapping). Prvi pristop
je metodolosko enostavnejsi, a hkrati neprakticen, Se posebej za vecja okolja,
saj zahteva uporabo nekega referenc¢nega sistema lokalizacije ali pa je potrebno
ro¢no zapisati zaznane znacilke. Glavna ideja drugega pristopa pa je moznost
lokalizacije iz opazovanih znacilk, ki so ze na zemljevidu, in shranjevanje novo
opazenih znacilk na podlagi zaznane lokacije. Za zanesljivo zaznavanje znacilk in
kar se da tocno lokalizacijo robota je priporocljiva metoda relativnega dolocanja
polozaja — odometrija. V primeru tezko razpoznavnih znacilk (npr. debla dreves
v sadovnjaku ali zaznavanje daljic v stavbah) so za identifikacijo opazovanih
znacilk potrebne priblizne informacije o lokaciji robota. Priblizna lokacija robota
v trenutnem casu je pridobljena iz lokacije v prejsSnjem casu in napovedi odometrije
za relativno gibanje od prejsnje do trenutne lokacije.
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Znacilke so lahko naravne, ¢e so ze del okolja, ali umetne, ¢e so izdelane posebej za
namen lokalizacije. Naravne znacilke v strukturiranih okoljih (obi¢ajno v zaprtih
prostorih) so stene, talne plosce, luéi, vogali ipd., v nestrukturiranih okoljih
(obic¢ajno na prostem) pa so to drevesna debla, prometni znaki itd. Umetne
znacilke so narejene izkljuéno za namen preproste in robustne lokalizacije (barvne
oznake, ¢rtne kode, talne linije itd.).

Obicajno pridobivanje znacilk zahteva nekaj obdelave podatkov senzorjev, da
bi dobili bolj kompaktno, informativno in abstraktno predstavitev trenutnega
pogleda senzorja (linijska predstavitev proti mnozici tock). V nekaterih primerih
lahko uporabimo tudi neobdelane meritve senzorja (npr. slika kamere) za proces
lokalizacije s korelacijo pogleda senzorja in shranjenega zemljevida.

Pogosto se uporabljajo vizualne znacilke, ki jih je mogoce zaznati z nekaterimi
slikovnimi senzorji. Ena najpreprostejSih in najbolj uporabljenih znacilk je
premica, ki jo lahko v okolju zazna kamera ali laserski merilnik razdalj.

Premica kot znadilka

V lokalizaciji je premica pogosta izbira za znacilko, saj gre za preprosto geome-
trijsko obliko. Uporabimo jo lahko za opisovanje notranjega ali zunanjega okolja
(stene, ploski predmeti, cestne proge itd.). S primerjavo trenutno opazovanih
parametrov znacilk in parametrov predhodno znanega zemljevida okolja lahko
ocenimo lego robota.

V ta namen se pogosto uporablja laserski merilnik razdalj, ki meri oblak tock
odboja v okolju. Iz tega izmerjenega oblaka tock se s pomocjo razliénih namenskih
algoritmov ocenijo (obi¢ajno dvodimenzionalni) parametri premic. Postopek
prilagajanja premici navadno zahteva dva koraka: prvi je identifikacija rojev, ki
jih je mogoce predstaviti s premico, drugi pa je ocena parametrov prilagajanja
premici za vsak roj, recimo z metodo najmanjsih kvadratov. Obicajno se ta dva
koraka izvajata iterativno.

Algoritem razcepi-in-zdruzi Zelo priljubljen algoritem za obdelavo podatkov
laserskega pregledovalnika razdalj je razcepi-in-zdruzi (angl. split-and-merge) [4,
5], ki je preprost za izvedbo, ima nizko racunsko zahtevnost in dobro zmogljivost.
Algoritem zahteva paketne podatke, ki so iterativno razdeljeni na roje, kjer je
vsak roj opisan z linearnim prototipom (premica za dvodimenzionalne podatke).
Algoritem se lahko uporabi le za urejene podatke, kjer zaporedni vzorci podatkov
pripadajo isti premici (podatki iz laserskega pregledovalnika razdalj so obi¢ajno

urejeni).

Sprva vsi vzorci podatkov pripadajo enemu roju, katerega parametri linearnega
prototipa (premica) so prepoznani. Roj se nato razdeli pri vzorcu, ki ima najvecjo
razdaljo od prototipa in je ta razdalja vecja od praga dsp:. Izbira vrednosti
dspist je odvisna od Suma podatkov in mora biti vecja od pricakovanega merilnega
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pogreska zaradi Suma (npr. tri standardne deviacije). Ko se rojenje zakljudi,
se zdruzijo kolinearni roji. Ta korak je neobvezen in obicajno ni potreben pri
urejenih podatkovnih vrstah.

Za vsak roj j (j =1,...,m) zapiSemo linearni prototip v normalni obliki
[z7(k), 116, =0 (5.39)
kjer je z(k) = [x(k), y(k)]T k-ti vzorec (k = 1,...,n; n je $tevilo vseh vzorcev), ki
lezi na premici, doloceni s parametri 8. Za roj j, ki vsebuje vzorce k; =1,...,n;,
lahko s pomocjo singularnega razcepa ocenimo vektor parametrov 8;. Regresijska
matrika
2T(1) 1
P = : :
z"(n;) 1

dolo¢a mnozico homogenih enacb v matri¢ni obliki 98; = 0, kjer je potrebno
oceniti parametre prototipa €; v smislu minimizacije najmanjsih kvadratov.
Resitev predstavlja lastni vektor (p, = [ps, py, Pp]?) regresijske matrike 17 4p,
ki pripada najmanjsi lastni vrednosti (izra¢unana z uporabo singularnega razcepa).
Parametre prototipa v normalni obliki dobimo z normalizacijo p,

Py
\/P2 + Py

kjer je izbrani predznak nasproten od tretjega parametra p, (p,). Za podatkovni

0, =+

vzorec z(k), ki ni v prototipu j, izratunamo ortogonalno razdaljo

d;(k) = | [ (k), 1)0; |

V primeru dvodimenzionalnih podatkov se lahko linearni prototip alternativno
oceni s povezovanjem prvega in zadnjega podatkovnega vzorca v roju. To ni opti-
malno v smislu najmanjsih kvadratov, vendar zmanjsuje ra¢unsko kompleksnost
in zagotavlja, da se vzorec, ki definira razcep, ne pojavi v prvem ali zadnjem
podatkovnem vzorcu.

Prikaz prilagoditve podatkov laserskega pregledovalnika razdalj na premice je
podan v primeru 5.12.

Primer 5.12

Za podatke laserskega pregledovalnika razdalj, ki so sestavljeni iz 180 tock odboja
(glejte sliko 5.20 in program 5.10), ocenite roje premic, ki najbolje opisujejo
meritve. Rojenje poteka z uporabo praga razdalje dgpi;+ = 0,06 m.

Program 5.10: Podatki laserskega pregledovalnika razdalj

./src/sen/script_laserscandata.m
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185
393
617
860
1001
-3536
2596
-2591
2774
-1847
2924
1164
1190
1220
1248
1279
231 1315 256

110
289
502

-2092
-1822
-1873
-1921 780
-1763 911
2431 -3743
-3250 2558
2649 -2744
-2373 2742
2817 -1973 2831
-1666 2898 -1606
1149 -512 1155 -49
1178 -383 1182 -361
1199 -277 1205 -256 1210 -235
1227 -151 1231 -129 1238 -108
1253 -44 1254 -22 1259 0 1265 22 1268 44
1287 113 1291 136 1295 159 1300 183 1306
1320 280 1328 307 1178 294 1133 304
1050 321 1014 329 977 336 944 344 915 351 885 357
829 369 805 375 778 380 756 385 735 391 713 395
405 652 408 637 413 617 416 600 420 582 423 566
537 435 520 436 507 441 493 444 478 446 463 447
455 426 456 414 459 401 461 391 466 380 469 1920
2580 1976 2720 2011 2872 2044 3030 2081 3204 2115
3399 1971 3415 1903 3433 1832 3445 1764 3462 1694
3493 1561 3506 1495 3522 1428 3533 1362 3549 1297
3575 1167 3593 1102 3603 187 654 175 655 164 656
141 662 130 667 118 668 106 671 94 670 83 677 71
48 683 36 686 24 691 12 690].°;

= data(2:2:end)/1000;

data(1:2:end-1)/1000;

137
324
539

-1962
-1835
-1879
-1929
-1714
2452
-3158
2664
-2301

38 -2158
-1809
-1853

656 -1905

873 -1872
1035 -1722
-3437 2519
2614 -2903
-2516 2715
2790 -2102
-1785 2869
2936 -1432

1169 -425

1195 -298

1222 -172

76
255
464

-2166
-1817
-1862
697 -1915 738
885 -1814 898
2407 -3852
-3342 2539
2630 -2821
-2445 2730
2802 -2036
-1724 2885
1146 -535
1174 -404

[-0
-1761
-1849
-1898
-1931

-1734

2497

-2986

2698
-2167
2857

-1490

-447

-319

-193

-65

89

-2149
222
428

data

y

Resitev

-3635

-2664

-1910
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162
358
577
824
957

-1851
-1840
-1887
-1942
-1726

2476 .

-3070

2683

-2234

2845

-1546

2576

2759

2908

0 1160 -469 ...

1188
1214 -214
1241 -87
1277 67
207 1312
1092 313
856 363 ...
694 401 674
427 552 432
452 452 439
2457 1944
3385 2042
3474 1629
3564 1231
1563 662
678 60 681

-341

Predstavljena je enostavna izvedba algoritma, ki izracuna parametre premic

vsakega roja v smislu najmanjsih kvadratov. Ce je potrebno roj razdeliti in se

pojavi delitveni vzorec (ki definira razcep) kot prva ali zadnja tocka v roju, potem

roja ni mogoce razcepiti. V tem primeru ponovno izra¢unamo parametre premic,

da se prilegajo le prvemu in zadnjemu vzorcu, ter izvedemo razcep.

Izvedba ocene premic je podana v programu 5.11, podatki laserskega pregledoval-
nika razdalj pa so v programu 5.10. Ocenjene daljice so prikazane na sliki 5.20.

Program 5.11

./src/sen/example_lines_sandm.m

X = [x, yl; % Meritve laserskega merilnika razdalj
[N, M] = size(X);

% Init

C = 50; % Maksimalno Stevilo rojev

clusters = 1; J, Zadnji aktivni roj

dMin = 0.06; % Prag razdalje za deljenje roja
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size0OfCluster = zeros(C,1); % Stevilo to&k v rojih
clusterBounds = zeros(C,2); % Indeksi mejnih toék v rojih
clusterParams = zeros(C,M+1); J, Parametri rojev
splitCluster = zeros(C,1); % Zastavica za deljenje

% Na zaletku so vse tocke v enem roju

size0fCluster (clusters ,1) = N;

clusterBounds (clusters,:)= [1, N]; J Tocke so urejene
splitCluster (clusters,1) = 1; % Zaletni roj lahko delimo

exit = false;
while ~exit
exit = true;
tmpLastCluster = clusters;
for i = 1:tmpLastCluster
if splitCluster (i)
p0 = clusterBounds(i,1); % Zacetna tolka v roju
pl = clusterBounds(i,2); % Koncna tolka v roju

% Ocena parametrov roja v smislu najmanjs$ih kvadratov
Psi = [X(pO:pl,:), ones(pl-pO0+1,1)];

[~, ~, V] = svd(Psi);

thetaEst = V(:,3);

% Preslikava premice ax+by+c=0 v normalno obliko

s = -sign(thetaEst(3)); if s==0, s = 1; end

mi = 1/sqrt(thetaEst (1) 2+thetaEst (2)7~2)*s;

Theta = thetaEst*mi;

249

h cenitev enostavni arametrov remice an o agi zacdetne in
% 0 t t h t ( dl t

% konéne tocke). Ti parametri se uporabijo, ko je tolka deljenja

% na meji roja
if abs(X(p1,1)-X(p0,1))<100*eps % Vertikalna premica

a=1; b =0; c = -X(1,1);
else
a = (X(p1,2)-X(p0,2))/(X(p1,1)-X(p0,1));
_1;
= -axX(p0,1) + X(p0,2);
end

% Preslikava premice ax+by+c=0 v normalno obliko
thetaEst = [a; b; cl;

s = -sign(thetaEst(3)); if s==0, s = 1; end

mi = 1/sqrt(thetaEst (1) 2+thetaEst (2)7~2)*s;
ThetaO0 = thetaEst*mi;

% Shranjevanje optimalnih parametrov
clusterParams(i,:) = Theta.’;

ind = pO:pil;

XX = X(ind,:);

% Izraun razdalje na podlagi prve in zadnje
% tofke v roju (enostavna premica)

dik = [XX, ones(size(XX,1),1)]1*Theta0;

[dd0, iii] = max(abs(dik)); ii0 = ind(iii);

% Izraun razdalje od premice v smislu najmanjsih kvadratov

dik = [XX, ones(size(XX,1),1)]*Theta;
[dd, iii] = max(abs(dik)); ii = ind(iii);

% Deljenje roja
doSplit = 0;

if dd>dMin && (ii-p0)>=2 && (pl-ii)>=1 Y Optimalne premice

if clusters<C
iiFin = ii; % Lokacija deljenja
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doSplit = 1;
clusterParams(i,:) = Theta.’;
end
elseif dd0>dMin && (iiO-p0)>=2 && (p1-ii0)>=1 7, Enostavne premice
if clusters<C

iiFin = i1i0; 7 Lokacija deljenja
doSplit = 1;
clusterParams(i,:) = Thetal.’;

end
else

splitCluster (i) = 0;
end

if doSplit==1 && clusters<C
% Deljenje roja v roja A in B
clusters = clusters + 1; J Nov roj
% Prva in zadnja tocka v roju A
clusterBounds (i,1);
clusterBounds (i,2) = iiFin-1;
splitCluster (i) = 1;
% Prva in zadnja toéka v roju B

clusterBounds (clusters ,1) = iiFin+1;
clusterBounds (clusters ,2) = pil;
splitCluster (clusters) = 1;

exit = false;

N ess®®

=

|C

4 —2 0 2 4

X [m]

Slika 5.20: Podatki LRF in identi¢ni roji premic z uporabo algoritma razcepi-in-

zdruzi

SamorazvijajocCe se rojenje premic Podobno kot pri algoritmu razcepi-in-

zdruzi lahko ocenimo premice tudi v primeru podatkovnih vrst. Rojenje se izvaja

sproti in se iterativno posodobi, ko prispejo novi podatki. Primer preprostega in
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racunalnigko ucinkovitega algoritma je samorazvijajoce se rojenje premic [6]. V
nadaljevanju bomo na kratko opisali njegove glavne korake.

ZapiSemo j-ti prototip, ki modelira podatke z(k;) (k; =1,...,n;) v j-tem roju
T
(2(kj) —p;)" -p; =0

kjer je p;(k;) srednja vrednost podatkov v j-tem roju, ki se posodobi v vsaki
iteraciji (ko je na voljo nov vzorec) kot

ki —1 1
pi(ky) = =—p;(k; = 1) + —z(k;)
J J
in p; je normalni vektor j-tega prototipa, ki ga izracunamo iz kovarian¢ne matrike
j-tega roja (za dvodimenzionalne podatke)

2 2

o o
_ %11 12
E](k7) = 2 2
021 022

kot lastni vektor pri pripadajo¢i najmanjsi lastni vrednosti 33;(k;)

T
(v vim) 5 Pl sl

Pi= 1 o 1"
[\/1+92 \/1+92’} Pl > el

kjer so # in lastne vrednosti A; in Ay dolocene z

2 2 T ) 73 T
—0%) 4 03, + \/01, + 03y — 203,03, + 4of,

0 —
202,

Al = 0'52 — 90’%2
1+ 62
Ay = 03y — 007y + TU%Q

Kovarian¢na matrika se posodablja iterativno

2, (hy) = Bk = 1)+ - (2(h) = sy Oy = 1) (2(hy) sy Oy = 1)

Trenutni vzorec z(k) je potrebno razvrstiti v enega od obstojec¢ih prototipov j
(7 €{1,...,m}). To se izvede z izracunom ortogonalne razdalje d;(k) od vsakega
j-tega prototipa
dj(k) = [(z(k) — 1) " pj]

Ce je d;(k) = 0, podatkovni vzorec lezi na j-tem linearnem prototipu. Vzorec
spada v j-ti roj, ¢e je razdalja d;(k) za j-ti roj najmanjSa ter hkrati manjsa od
vnaprej doloc¢enega praga dpmin (dj(k) < dmin). V [6] je predlagano robustno
rojenje, kjer je d,;n sproti ocenjen iz podatkov j-tega roja.

Osnovna ideja algoritma rojenja je prikazana na sliki 5.21. Lahko ga uporabimo
sproti za urejene podatkovne vrste ali pa paketne podatke vzorcev (kot razcepi-
in-zdruzi). Rezultati razvrstitve primera 5.12 so racunsko manj zahtevni za
podobno kakovost rojenja kot pri algoritmu razcepi-in-zdruZi.
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Slika 5.21: Princip samorazvijajoCega se rojenja za pretoc¢ne podatke, kjer roje

dolocajo prototipi premic
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Primer 5.13

Za podatke laserskega pregledovalnika razdalj, ki so sestavljeni iz 180 tock odboja
(glejte sliko 5.20 in zadetek reSitve za koordinate tock), ocenite roje premic, ki
najbolje opisejo meritve. Rojenje poteka s pomocjo algoritma razvijajocega se
rojenja premic.

Resitev

Trenutni vzorec pripada j-temu roju, ¢e je njegova razdalja d;(k) do premice roja

manjsa od praga din (dj(k) < dmin)- Prag dmn je lahko konstanta ali pa ga,

kot v tem primeru, ocenjujemo sproti. Prag razdalje d,,., se izraCuna iz ocenjene

variance razdalje roja o;(k;) (varianca razdalje vzorcev od premice). Rekurzivna
d; (k)

. . fe;—2 . .
ocena variance je o;(k;) = o;(k; — 1) k;_l + = in prag je Ctn, = Fonamo/@gs

kjer je Kmar = 7 nastavitveni parameter.

Izvedba ocene premic je podana v programu 5.12 (podatki laserskega pregledo-
valnika razdalj so opredeljeni v programu 5.10). Ocenjene daljice so prikazane
na sliki 5.22.

Program 5.12
./src/sen/example_straight_lines.m

X = [x, yl; % Meritve laserskega merilnika razdalj
kappaMax = 7; % Prag za faktor ortogonalne razdalje
cosPhiTh = cos(10/180*pi); % Prag za zacetno kolinearnost roja

[n,m] = size(X); dimension = m;
% Parametri
Nr_cloud_max = 20; Current_clust = 1;

Nr_points_in_cloud = zeros(Nr_cloud_max,1); % Vektor, ki doloia Stevilo
% tolk v oblaku, kjer vsaka vrstica pripada drugemu oblaku

M_of_clouds = zeros(Nr_cloud_max, dimension); % Matrika - vrstice pripadajo
% razli¢nim oblakom in stolpci vsebujejo elemente vhodnega vektorja
V_of_clouds = zeros(Nr_cloud_max, dimension~2);

VarD_of_cloud = zeros(Nr_cloud_max,1); % Varianca razdalje toclke

% od roja

M_dist = zeros(Nr_cloud_max,1); % Razdalje med toikami v roju
Eig_of_clouds = zeros(Nr_cloud_max, dimension);

EigLat_of_cloud = zeros(Nr_cloud_max, dimension);

Points_in_buffer = zeros(6,dimension); ) Shranimo do 6 vzorcev
StartEndX_points_in_cloud = zeros(Nr_cloud_max,2);

% Inicializacija

% Prvi roj ima tri tolke (e so le-te kolinearne)
Nr_points_in_cloud(Current_clust ,1) = 3;
Nr_points_in_buffer = 0;

N = 3; % Zacetno Stevilo tock
XX = X(1:N,:);
M = sum(XX)/N;

dXX = XX - repmat(M,N,1);
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32 Vmat = dXX’*dXX/(N-1); % Kovarianéna matrika vzorcev

34 theta = ((Vmat(1,1)°2 - 2*Vmat(1,1)*Vmat(2,2) + 4*Vmat(1,2)"°2

35 + Vmat (2,2)72)°(1/2) - Vmat(1,1) + Vmat(2,2))/(2*Vmat(1,2));
36 laml = Vmat (2,2) - theta*Vmat (1,2);

37 lam2 = Vmat (2,2) - theta*Vmat(1,2) + (1 + theta"2)/theta*Vmat (1,2);
38 if norm(lam2) > norm(laml) 7% Izberi glavni lastni vektor

39 p = [1/sqrt ((1+theta”2)), theta/sqrt ((1+theta~2))];
40 else

41 p = [theta/sqrt((1+theta”2)), -1/sqrt((1+theta”2))];
42 end

43 p = p / sqrt(p*p’); % Prvi lastni vektor (normaliziran)
44 pL = [p(1,2), -p(1,1)]; % Drugi lastni vektor (normaliziran)

46 % Razdalja od premice

47 sumD = 0;

48 for i = 1:N

49 sumD = sumD + (((X(i,:) - M)*pL’)/(pL*pL’))~2;
50 end

51 varD = sumD/(N-1);

53 % Povpreéna razdalja med tockami

54 dl = sqrt( (X(1,:)-X(2,:))*(X(1,:)-X(2,:))’ );
55 d2 = sqrt( (X(3,:)-X(2,:))*(X(3,:)-X(2,:))° );
56 d_med_toc = (d1+d2)/2;

58 % Shranjevanje

59 M_of_clouds (Current_clust,:) = M;

60 V_of_clouds(Current_clust,:) = [Vmat(1l,:), Vmat(2,:)];

61 Eig_of_clouds (Current_clust,:) = p;

62 EigLat_of_cloud(Current_clust,:) = pL;

63 VarD_of_cloud (Current_clust ,1) = varD;

64 M_dist(Current_clust,l1) = d_med_toc;

65 StartEndX_points_in_cloud(Current_clust ,1) = 1;

66 StartEndX_points_in_cloud(Current_clust ,2) = 3;

67

68 for k = 4:n % Sprehod ez vse vzorce

69 % Izra&un razdalje do trenutnega vzorca

70 pL = EigLat_of_cloud(Current_clust,:);

71 M = M_of_clouds (Current_clust,:);

72 Vmat = [V_of_clouds(Current_clust ,1:2); V_of_clouds(Current_clust ,3:4)];
73 varD = VarD_of_cloud(Current_clust ,1);

74

75 d = abs((X(k,:) - M)*pL’);

76

7 if Nr_points_in_cloud(Current_clust) > 1

78 d_med_toc = sqrt((X(k,:) - X(k-1,:))*(X(k,:) - X(k-1,:))’);
79 end

80

81 % Nova tolka pripada roju, e je njena razdalja do roja dovolj
82 % majhna in so vzorci dovolj skupaj

83 if d < kappaMax*sqrt(varD) && d_med_toc < 2*M_dist(Current_clust,1)
84 StartEndX_points_in_cloud (Current_clust ,2) = k;

85 Nr_points_in_buffer = 0;

86 j = Nr_points_in_cloud(Current_clust)+1; 7 Povelanje vzorcev v roju
87 Mold = M_of_clouds(Current_clust,:);

88 dXM = X(k,:) - Mold;

89 M = Mold + dXM/j; ' Rekurzivni izracun srednje vrednosti

90

91 % Kovarianéna matrika podatkov

92 Vmat = Vmat*(j-2)/(j-1) + 1/j*dXM’*dXM;

93

94 theta = ((Vmat(1,1)"2 - 2*xVmat (1,1)*Vmat(2,2) + 4*Vmat(1,2)"2
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+ Vmat (2,2)72)°(1/2) - Vmat(1,1) + Vmat(2,2))/(2*xVmat(1,2));
laml = Vmat (2,2) - theta*Vmat (1,2);
lam2 = Vmat (2,2) - theta*Vmat(1,2) + (1 + theta”2)/theta*Vmat(1,2);
if norm(lam2) > norm(laml) % Izberi glavni lastni vektor
p = [1/sqrt((1+theta”2)), theta/sqrt((1+theta”2))];

else

p = [theta/sqrt ((1+theta”2)), -1/sqrt((1+theta~2))];
end
p = p/sqrt(p*p’); % Prvi lastni vektor (normaliziran)

pL = [p(1,2), -p(1,1)]; % Drugi lastni vektor (normaliziran)

% Rekurzivni izraéun variance razdalje

d = abs( (X(k,:) - M)*pL’);

varDold = VarD_of_cloud(Current_clust ,1);
varD = varDoldx*(j-2)/(j-1)+d"2/j;

% Shranjevanje
M_of_clouds( Current_clust,:) = M;
V_of_clouds( Current_clust,:) = [Vmat(1,:), Vmat(2,:)];
Eig_of_clouds (Current_clust,:) = p;
EigLat_of_cloud( Current_clust,:) = pL;
Nr_points_in_cloud (Current_clust) = j;
VarD_of_cloud (Current_clust ,1) = varD;

else % Nova toCka ne pripada roju - ustvarimo nov roj
Nr_points_in_buffer = Nr_points_in_buffer + 1;
Points_in_buffer (Nr_points_in_buffer, :) = X(k,:);

% Novi roj mora imeti 3 konsistentne vzorce

if Nr_points_in_buffer >= 3
XX = Points_in_buffer (1:Nr_points_in_buffer,:);
M = sum(XX)/Nr_points_in_buffer;
dXX = XX - repmat(M,Nr_points_in_buffer ,1);
Vmat = dXX’*dXX/(Nr_points_in_buffer-1);

theta = ((Vmat(1,1)"2 - 2*Vmat (1,1)*Vmat(2,2) + 4*Vmat (1,2)"2
+ Vmat (2,2)°2)°(1/2) - Vmat(1,1) + Vmat(2,2))/(2*xVmat(1,2));
laml = Vmat(2,2) - theta*Vmat(1,2);
lam2 = Vmat(2,2) - theta*Vmat(1,2) + (1 + theta"2)/theta*Vmat (1,2);
if norm(lam2) > norm(laml) % Izberi glavni lastni vektor
P [1/sqrt ((1+theta”2)), theta/sqrt ((1+theta~2))];
else

p
end

[theta/sqrt ((1+theta”2)), -1/sqrt((1+theta”2))];

p = p / sqrt(p*p’); % Prvi lastni vektor (normaliziran)
pL = [p(1,2) , -p(1,1)]; % Drugi lastni vektor (normaliziran)

% Testiranje konsistentnosti vzorcev

sumD = 0;
for i = 1:Nr_points_in_buffer
d = abs ((XX(i,:) - M)*pL’);
sumD = sumD + d~2;
end
varD = sumD/(Nr_points_in_buffer-1);

% Popravek, Ce je zaletna varianca premajhna
if varD < mean(VarD_of_cloud(:,1))

varD = mean(VarD_of_cloud(:,1));
end

dl = sqrt ((XX(1,:)-XX(2,:))*(XX(1,:)-XX(2,:))’);

d2 = sqrt ((XX(3,:)-XX(2,:))*(XX(3,:)-XX(2,:))7);
vvl = XX(1,:) - XX(2,:);
vv2 = XX(2,:) - XX(@3,:);
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cosPhi = vv1l*vv2’/(norm(vvl)*norm(vv2));

if d<kappaMax*sqrt(varD) && abs(d2-d1)<min(dl,d2) && cosPhi>cosPhiTh

% Vzorci so konsistentni in primerno razmaknjeni
Current_clust = Current_clust + 1;
M_of_clouds (Current_clust,:) = M;

V_of_clouds (Current_clust,:) = [Vmat(1,:), Vmat(2,:)];

Eig_of_clouds (Current_clust,:) = p;
Eiglat_of_cloud (Current_clust,:) = pL;
Nr_points_in_cloud(Current_clust) = 3;
VarD_of_cloud (Current_clust ,1) = varD;
StartEndX_points_in_cloud (Current_clust ,1) = k -
StartEndX_points_in_cloud (Current_clust ,2) = k;
d_med_toc = (d1 + d2)/2;
M_dist (Current_clust ,1) = d_med_toc;
end
Nr_points_in_buffer = 0; % Brisanje medpomnilnika
else % Cakanje na vsaj tri vzorce v medpomnilniku
end

end
end

X [m]

Slika 5.22: Podatki laserskega pregledovalnika razdalj in prepoznani roji premic

z uporabo algoritma samorazvijajoCega se rojenja premic

Houghova transformacija Houghova transformacija [7] je zelo uporaben

pristop za oceno geometrijskih “primitivov”, ki se vecinoma uporabljajo pri

obdelavi slik. Vhodni podatki se zapiSejo v parametriéni prostor (npr. parametri

premice), kjer maksimumi podajo Stevilo in parametre premic.

Algoritem zahteva kvantizacijo parametriCnega prostora. Fina kvantizacija poveca

tocnost, vendar je ra¢unsko in spominsko zahtevna. Da bi se izognili kvantizaciji

in povecali to¢nost Houghove transformacije, je bilo izvedenih ve¢ raziskav, npr.

naklju¢nostna Houghova transformacija ali adaptivne izvedbe, obravnavane v

8, 9.
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Houghova transformacija lahko zanesljivo oceni roje ob prisotnosti osamelcev. V
osnovni razli¢ici sta parametra premice « in d definirana z linearnim prototipom
(5.39), kjer je 6; = [cosa, sina, —d]. Normalna parametra premice, ki se
obic¢ajno nahajata v obmocju —7 < o < 7 in dpin < d < dpnas, Sta predstavljena
v akumulatorju s kvantizacijo do N diskretnih vrednosti za o in M diskretnih

vrednosti za d.

Za vsak vzorec podatkov z(k), y(k) in vse mozne vrednosti a(n) = —7 + 3¢,
n € {1,...,N}, se izraCunajo reSitve parametra d(n). Vsak par a(n), d(n)
predstavlja mozno premico, ki vsebuje vzorec z(k), y(k). Za vsak izra¢unan
parameter se ustrezna lokacija v akumulatorju poveca za 1. Ko so vsi vzorci
podatkov obdelani, so celice akumulatorja z najvisjimi vrednostmi iskani roji
premic. Za pravilno izbiro kvantizacije parametri¢nega prostora in vrednosti
praga je potrebno nekaj predhodnega znanja, da dobimo ustrezne maksimume v

akumulatorju.

Primer 5.14

Za podatke laserskega pregledovalnika razdalj, sestavljenih iz 180 tock odboja
(glejte sliko 5.24 in zacdetek resitve za koordinate tock), ocenite roje premic, ki
najbolje opisejo meritve. Rojenje se izvede s pomocjo Houghove transformacije,
kjer sta normalna parametra premice « in d kvantizirana na 720 diskretnih

vrednosti.

Resitev

Mozna resitev v programskem okolju Matlab je predstavljena v programu 5.13
(podatki laserskega pregledovalnika razdalj so podani v programu 5.10), kjer
je za iskanje maksimumov v akumulatorju uporabljena funkcija houghpeaks.
Pridobljeni akumulator je prikazan na sliki 5.23, razpoznani roji pa na sliki 5.24.
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Slika 5.23: Akumulator Houghove transformacije, kjer sta o € (—m, 7] in d €
[0, 4,5] kvantizirana na 720 diskretnih vrednosti

Slika 5.24: Podatki laserskega pregledovalnika razdalj in razpoznani roji premic
z uporabo Houghove transformacije

Program 5.13
./src/sen/example_lines_hough.m

1 [x, yl; % Meritve laserskega merilnika razdalj

2 N = length(x);
3
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dAlpha = pi/180; % Kvantizacijski kot
nAlpha = round(2*pi/dAlpha);
nDist = nAlpha; % Kvantizacijska razdalja
lutDist = zeros(N,nAlpha); % Preslikovalna tabela za razdaljo
for i = 1:N % Za vsako tolko izralunamo premice v obmo&ju kota alpha
for j = 1:nAlpha
alpha = (j-1)*dAlpha-pi;
% Razdalja od koordinatnega izhodisca
d = x(i)*cos(alpha)+y(i)*sin(alpha);
if d<o0
if alpha>pi, alpha = alpha - pi;
else alpha = alpha + pi; end
jj = round((alpha+pi)/dAlpha);
lutDist (i, jj) = -d;
else
lutDist(i,j) = d;
end
end
end

% DoloCitev obmoCja za parameter razdalje

minLutDist = min(lutDist (:));

maxLutDist = max (lutDist (:));

dDist = (maxLutDist-minLutDist)/nDist; 7% Kvantizacijska razdalja

% Akumulator parametriénega prostora
A = zeros(nDist ,nAlpha);
for i = 1:N % Sprehod cCez vse tocke
for j = 1:nAlpha
k = round ((lutDist(i,j)-minLutDist)/dDist)+1;
if k>nDist, k = nDist; end
ACk,j) = A(k,j)+1;
end
end
H = A(2:nAlpha,:); % Akumulator

% DoloCitev maksimumov v skululatorju (najbolj verjetne premice)
nlines = 7; % Stevilo najverjetnej$ih premic

peaks = houghpeaks(H, nLines, ’threshold’, 3, ’NHoodSize’, [31, 31]);
% Parametri premice: razdalja od izhodi$¢a in naklon premice

distAlpha = [peaks(:,1).’*dDist+minLutDist; peaks(:,2).’*dAlpha-pi];

Slikovne znacdilke

Stevilne dobre lastnosti kamere, rac¢unske zmogljivosti sodobnih racunalnikov
in napredek pri razvoju algoritmov omogocajo uporabo kamere za resevanje
problemov v robotiki. Kamera se lahko uporablja za zaznavanje, prepoznavanje
in sledenje opazovanih objektov v vidnem polju kamere, saj so slike projekcije
tridimenzionalnih objektov v okolju (glejte poglavje 5.2.4). Digitalna slika je
dvodimenzionalen diskreten signal, predstavljen z matriko kvantiziranih Stevil,
ki predstavljajo prisotnost ali odsotnost svetlobe, jakost svetlobe (osvetljenost),
barvo ali kak$no drugo veli¢ino. Glavne vrste slik so: barvna (slika 5.25a),
sivinska (slika 5.25b) in binarna (slika 5.25¢). Pri strojnem vidu sivinske slike
obicajno zadostujejo za iskanje vzorcev, ki niso odvisni od barve. Binarne slike
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Slika 5.25: Primer (a) barvne, (b) sivinske in (c) binarne slike ter (d) histogram

sivinske slike

so rezultat segmentacije slike in se uporabljajo za maskiranje vsebine. Eden
od najpreprostejSih nacinov segmentacije slike je upragovljanje, pri ¢emer so
slikovni elementi s sivinsko vrednostjo nad pragom oznaceni z logi¢no 1, vsi ostali
pa so nastavljeni na logi¢no 0. Upragovljanje sivinske slike 5.25b s pragom 70
privede do binarne slike 5.25¢. Za dolocitev najustreznejse vrednosti praga lahko
pogostost sivinskih vrednosti na sliki predstavimo v histogramu. Slika 5.25d
prikazuje histogram z 256 intervali, ki ustrezajo 256 nivojem sivinske slike 5.25b.

V zadnjih letih so bili razviti stevilni algoritmi strojnega vida, ki omogocajo
sledenje objektom na podlagi slike. V ta namen je vsebina slike obicajno predsta-
vljena z znacilkami slike. Znacilke so lahko obmocja slike s podobnimi lastnostmi
(npr. podobna barva), oznake z dolo¢enim vzorcem ali nekatere druge znacilnosti
slike (npr. robovi, vogali, ¢rte). V doloéenih situacijah lahko v okolje vstavimo
umetne znacke, ki omogocajo hitro in zanesljivo sledenje znacilkam (npr. barvne
znacke ali matriéne értne kode za sledenje mobilnim robotom pri nogometu).
Kadar to ni mogoce, je potrebno znacilke izlo¢iti iz slike (neprilagojene) scene.
V nekaterih aplikacijah je mogoce uporabiti preprosto barvno segmentacijo (npr.
odkrivanje rdec¢ih jabolk v sadovnjaku). V zadnjih letih je bilo razvitih veé pri-
stopov za izlo¢anje naravnih lokalnih znacilk slike, ki so invariantne za nekatere

transformacije in popacenja slike.
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Slika 5.26: RGB in HSV komponente barvne slike 5.25a

Barvne znacilke Zaznavanje obmocij slike s podobno barvo ni trivialna naloga
zaradi nehomogene osvetlitve, senc in odsevov. Sledenje z uporabo barvnih znacilk
je obicajno uporabljeno samo v okoljih, kjer je mogoce vzpostaviti nadzorovano
osvetlitev ali pa je mozno barvo predmeta, ki mu sledimo, dovolj dobro razlociti
od ostalih predmetov v okolju.

Barva v digitalni sliki je ponavadi predstavljena s tremi barvnimi komponentami,
tj. rdeco, zeleno in modro, kar je znano kot barvni model RGB. Dolo¢eno barvo
dobimo s kombinacijo teh treh barvnih komponent, kjer posamezno komponento
filtriramo skozi rdec, zelen ali moder barvni filter. Druga dva barvna prostora,
ki se pogosto uporabljata pri strojnem vidu, sta HSL (angl. hue-saturation-
lightness) in HSV (angl. hue-saturation-value). Barvni prostor HSV omogoca
bolj naraven opis in boljso segmentacijo barv kot pa prostor RGB. Vrednosti v

obmodju [0, 255] iz barvnega prostora RGB lahko pretvorimo v barvni prostor
HSV z
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kjer je M = max{R,G, B} in m = min{R, G, B}. V (5.40) se nasic¢enost S in
vrednost V' gibljeta v obmodéju [0, 1], barvni odtenek H pa v obmodcju [0, 360).
Matematic¢na operacija * mod y predstavlja ostanek pri deljenju stevila x s

stevilom y. Na sliki 5.26 so prikazane RGB in HSV komponente barvne slike
5.25a.

Barvni histogrami se lahko uporabijo za segmentacijo obmocij dolocene barve.
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Slika 5.27: Histogrami razlicnih barvnih predlog v barvnem prostoru HSV
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HSV histogrami (z 32 intervali) razlicnih predlog s podobno barvo so prikazani
na sliki 5.27 (barvna podrocja so vzeta s slike 5.25a). Histograme vsake predloge
je mogoce projicirati nazaj na izvirno sliko, saj je za vsak slikovni element na sliki
nastavljena frekvenca intervala, ki pripada vrednosti slikovnega elementa v ustre-
znem barvnem kanalu na sliki. Nastale sivinske slike lahko zdruzimo kot linearno
kombinacijo barvnih kanalov. Rezultati povratne projekcije HSV-histograma
modre, oranzne, rdece, rumene barve ter lesa so prikazani v prvem stolpcu na
sliki 5.28. V dobljeni sliki sivinski nivoji predstavljajo merilo podobnosti slikovnih
elementov barvni predlogi. Preden je slika upragovljena (glejte tretji stolpec na
5.28), je mogoce dodatno filtrirati sliko. Sliko lahko zgladimo z dvodimenzio-
nalnim Gaussovim filtrom (glejte drugi stolpec na 5.28), da odstranimo nekaj
Ssumnih vrhov. Upragovljeno binarno sliko lahko filtriramo z npr. morfoloskim
filtrom, da odstranimo ali zapolnimo nekatera povezana obmocja. Nastalo masko
slike (glejte Cetrti stolpec na sliki 5.28) lahko uporabimo za filtriranje zaznanih
obmocij na prvotni sliki (glejte zadnji stolpec na sliki 5.28). Ve¢ o algoritmih za
obdelavo slik je med drugim na voljo v [10]. V prakti¢nih izvedbah segmentacije
slike na podlagi barv se nekateri procesi filtriranja zavoljo hitrejSega delovanja
preskocijo, kar pa zmanjSa tocénost. V primeru, da so barvne vrednosti vseh
slikovnih komponent znotraj dolocene spodnje in zgornje meje, se vsak slikovni
element na vhodni sliki Steje za del predmeta. Na sliki 5.27 lahko opazimo, da
vrednosti barvnega odtenka in nasic¢enosti omogocata preprosto barvno segmen-
tacijo. Vendar je potrebno poudariti, da je barvna segmentacija obcutljiva na
spreminjajoce se svetlobne pogoje v prostoru. Ceprav nekateri pristopi lahko
kompenzirajo nehomogene pogoje osvetlitve [11], se barvna segmentacija slike
najpogosteje uporablja le v okolis¢inah, kjer je mogoce doseci ustrezne pogoje
osvetlitve.

Rezultat segmentacije slike je binarna slika, v kateri so slikovni elementi, ki ne
pripadajo objektu (ozadje), postavljeni na 0. Obstaja lahko veé¢ ali samo eno
povezano obmodje. Ce obstaja vet povezanih obmodij, je potrebno uporabiti
ustrezen algoritem, da najdemo pozicije in oblike teh objektov [11]. Za bolj
robustno iskanje povezanih obmocij lahko uvedemo nekatere omejitve, ki zavrnejo
obmodja glede na dolo¢en pogoj (npr. velikost obmoéja). Ce se opazovan objekt
bistveno razlikuje od okolice in ga je mogoce zanesljivo zaznati kot eno obmocje
na segmentirani sliki, lahko pozicijo in obliko tega obmocja opisemo s slikovnimi
momenti.

Definicija osnovnega slikovnega momenta binarne digitalne slike I'(x,y) € {0,1}

Myp g = Z Z 2Pyl (z,y)
y

x

je

kjer sta p in ¢ pozitivni celi Stevili (p + ¢ je red momenta). Moment mgg
predstavlja maso objekta, ki je v primeru binarne slike enaka njegovi povrsini.
Da v binarni sliki najdemo sredisée objekta (zo, yo0), lahko uporabimo momente
nictega in prvega reda

Mo _

o = Yo =
moo moo

mo1



264 Senzorji v mobilnih sistemih

N N
T L
LN
EEENN
el ““M

Slika 5.28: Detekcija barvnih znacilk. Vsaka vrstica predstavlja drugac¢no barvo.

Koraki od levega do desnega stolpca: povratna projekcija histograma barvne
predloge, glajenje, upragovljanje, dodatno filtriranje in maskiranje slike

Za opis orientacije in oblike objekta lahko uporabimo srediséne momente
g =D > (z—x0)"(y — yo)I(z,y)
Ty

ki so invariantni za transformacije v sliki. Sredis¢ne momente lahko uporabimo
za prilagoditev elipsoida na zaznani objekt na sliki. Veliko polos elipse a in malo
polos b lahko dobimo iz lastnih vrednosti A, in Ay (A, > \p) matrike @Q, ki je

sestavljena iz sredis¢nih momentov drugega reda
H2,0 HM1,1
H11 Ho,2

A, 2

moo moo

Osi elipse sta

Orientacijo velike polosi elipse podaja kot

0= 1 arctan _ 21

2 H2,0 — Ho,2
Na sliki 5.29 so uporabljeni osnovni in srediS¢ni momenti, da se elipsoid prilagodi
na binarno oznako (rezultat segmentacije oranzne barve na sliki 5.28). Nacin za
pridobitev parametrov elipsoida je prikazan v programu 5.14, kjer so sredis¢ni
momenti izpeljani iz osnovnih. Vidimo, da lahko momente slike uporabimo za
opis preprostih znacilk in dolo¢itev njihovih lokacij na sliki. V [12] je opredeljena

mnozica momentov, ki so invariantni za skaliranje, translacijo in rotacijo.
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640

Slika 5.29: Prilagoditev elipsoida na masko, ki je pridobljena kot rezultat se-

gmentacije oranzne barve

Program 5.14
./src/sen/example_moments.m

im = imread(’colour_orange_mask.bmp’)>128; % Binarna
[x, y] = meshgrid(l:size(im,2), 1l:size(im,1));

% Osnovni momenti

m00 = sum(sum( (x.70).*(y.~0).*xdouble(im) ));
m10 = sum(sum( (x.71).*(y.~0).*double(im) ));
m01 = sum(sum( (x.70).*(y."1).*xdouble(im) ));
mil = sum(sum( (x.71).*(y."1).*double(im) ));
m20 = sum(sum( (x.72).*(y.~0).*double(im) ));
m02 = sum(sum( (x.70).*(y."2).xdouble(im) ));

% Povr§ina, x in y
area = m00

x0 = m10/m00

y0 = m01/m00

% Centralni momenti

u00 = m00;

ull = m11-x0*m01; % ull = mll-y*ml10;
u20 = m20-x0*m10;

u02 = m02-y0*m01;

% Elipsa

v = eig([u20, ull; ull, u02]); % Lastne vrednosti
a = 2xsqrt(v(2)/u00) % Velika polos

b = 2*sqrt(v(1)/u00) % Mala polos

theta = atan2(2*ull, u20-u02)/2 % Usmerjenost

area =
14958
x0

slika
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Slika 5.30: Umetne znacke

Slika 5.31: Zaznane umetne znacke v dveh pogledih kamere

248.1951
359.7101
71.7684
66.6585

0.8795

Znacke z umetnimi vzorci Uvedba umetnih znack predstavlja minimalno
prilagoditev okolja, ki lahko znatno poenostavi nekatere naloge strojnega vida,
npr. sledenje objektom, ocena lege kamere itd. Trije primeri umetnih znack so
prikazani na sliki 5.30. Vzorci znack so obi¢ajno zasnovani tako, da jih je mogoce
zanesljivo in natancéno zaznati. Poleg tega je v vzorcu lahko zapisana oznaka
(ID) znacke, zato je mogoce sledenje in prepoznava ve¢ znack v zaporedju slik.
Eden od priljubljenih algoritmov za zaznavanje umetnih znack je ArUco [13, 14].
Slika 5.31 prikazuje zaznane umetne znacke iz slike 5.30 v dveh pogledih kamere.

Algoritmi za zaznavanje umetnih znack obicajno obsegajo korak lokalizacije
znacke, v katerem se doloc¢i pozicija, orientacija in velikost znacke. Ta postopek
mora robustno razlociti samo prave znacke od preostalih objektov v okolju. Ko
so lokacije znack na sliki znane, je mogoce dolociti projekcijo med zaznano
znacko in njenim lokalnim koordinatnim sistemom. Na podlagi vzorca znacke v
transformiranem lokalnem koordinatnem sistemu se dolo¢i njena oznaka (ID).
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Nekateri vzorci umetnih znack so zasnovani tako, da omogocajo popravljanje
vzorcev, zaradi Cesar je njihovo prepoznavanje bolj zanesljivo in hkrati tudi
robustno na Sum in okluzije.

Naravne lokalne slikovne znacilke Slike vsebujejo znacilke, ki so same po
sebi prisotne v okolju. Skozi leta so bili razviti Stevilni algoritmi strojnega vida, ki
omogocajo samodejno zaznavanje lokalnih znacilk na slikah. Nekateri pomembni
algoritmi za detekcijo lokalnih znacilk so SIFT (angl. scale invariant feature
transform) [15], SURF (angl. speeded-up robust features) [16], MSER (angl.
maximally stable extremal regions) [17], FAST (angl. features from accelerated
segment test) [18], AGAST (angl. adaptive and generic accelerated segment
test) [19] idr. Veéina teh algoritmov je vkljucena v odprtokodno knjiznico za
ra¢unalniski vid OpenCV [20, 21]. V robotskih aplikacijah je pomembna lastnost
opisovanja slik z znacilkami ter uc¢inkovitost algoritma, da omogoca delovanje v
realnem ¢asu. MozZni so razliéni pristopi za detekcijo lokalnih znacilk (lokalizacija
znadilk), opis lokalnih znacilk (predstavitev lastnosti znacilk) in ujemanje znacilk.

Cilj detekcije znaéilk je odkrivanje in lokalizacija tock zanimanja (lokalna
obmodja), obi¢ajno za zmanjsanje dimenzije slike. Obicajno znacilke detektiramo
na sivinskih slikah. Obstaja ve¢ vrst slikovnih vzorcev: robovi (npr. Cannyev
filter, Sobelov operator in Robertsov operator), vogali (npr. Harrisov detektor
oglis¢, Hessianova matrika, FAST), mehurcki (npr. Laplaceov operator z Gausso-
vim filtrom, razlika Gaussovih filtrov, MSER). Za zaznavanje znacilk razli¢nih
velikosti, je slika obi¢ajno predstavljena v lo¢ljivostnem prostoru [15]. Detekcija
znacilk mora biti invariantna na nekatere vrste transformacij in popacenj slike,
da je mozno ponovljivo odkrivanje znacilk v ve¢ pogledih istega prizora. Obicajno
je zazeleno, da so znacilke invariantne za translacijo, rotacijo, skaliranje, glajenje,
osvetlitev in Sum. Znacilke bi morale biti robustne tudi za nekatere delne oklu-
zije. Zazelena lastnost znacilk je torej lokalnost. V mobilni robotiki je obi¢ajno
zahtevana to¢na zaznava zadosti velikega Stevila znacilk, saj je to predpogoj za
tocno in robustno izvajanje algoritmov, ki so odvisni od detektiranih znacilk
(npr. ocena lege mobilnega robota na podlagi znacilk). Primer zaznanih znadilk
v dveh pogledih kamere istega prizora je prikazan na sliki 5.32. Vsaka znacilka
je dolocena s pozicijo, orientacijo in velikostjo.

Namen opisa znacilke je opisati vsako znacilko glede na lastnosti slikovnega
vzorca okoli nje na naéin, ki omogoca prepoznavo istih znadilk na veé slikah (e
se te znacilke ponovno pojavijo na drugih slikah). Lokalni vzorec okoli znacilke
(npr. obmodje, oznaceno s kvadratom na sliki 5.32) se uporablja za dolo¢itev
njenega ustreznega deskriptorja, ki je obicajno predstavljen kot vektor znacilke.
Lokalni deskriptorji znacilk morajo biti razpoznavni na nacin, da je mozno to¢no
razpoznati znacilke ne glede na spremembe v okolju (npr. spremembe osvetlitve,
okluzije). Ceprav je mogoce lokalne slikovne znaéilke primerjati neposredno z npr.
konvolucijo obmoc¢ij lokalnih znacilk, ta pristop nima ustrezne izrazitosti pa tudi
racunsko je zelo zahteven. Vektorji deskriptorjev znacilk ponavadi predstavljajo

minimalno predstavitev znacilk, ki omogoca ustrezno raven izrazitosti doloc¢ene
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Slika 5.32: Zaznane znacilke na dveh slikah istega prizora

znacilke za zanesljivo ujemanje z drugimi. Kateri detektor in nacin opisa znacilke
se uporabljata, je odvisno od posamezne aplikacije. Eksperimentalno primerjavo
razlicnih detektorjev znacilk lahko najdete v npr. [22]. Primer dveh sklopov
vektorjev opisov znacilk, izloCene iz leve in desne slike na 5.32, je graficno
predstavljen na sliki 5.33.

Ujemanje znadcilk je eden osnovnih problemov v strojnem vidu. Stevilni
algoritmi strojnega vida, kot je ocenjevanje globine prizora, tridimenzionalna
rekonstrukcija scene na podlagi slik, ocena lege kamere in drugi, so odvisni od
ustreznih ujemanj znacilk med vec slikami. Znacilke se lahko ujemajo s primerjavo
razdalj med deskriptorji znacilk (vektorji). Odvisno od vrste deskriptorja se lahko
uporabijo razlicne mere razdalje. Za dejanske vrednosti dekriptorjev se obicajno
uporablja Evklidska razdalja ali razdalja Manhattan, za binarne deskriptorje
znacilk pa Hammingova razdalja. Ujemanje opisov znacilk ne zagotavlja vedno
ustreznih ujemanj zaradi nenatancne lokalizacije znacilk, njihove popacitve ter
ponavljajoc¢ih se vzorcev. Zato je potrebno uporabiti ustrezno tehniko ujemanja
znacilk, ki lahko odpravi zmotne pare.

Glede na dve mnozici deskriptorjev zna¢ilk A = {a; }i=12,. v, DB ={b;};=12.. ~Np
mora postopek ujemanja najti ustrezne (ujemajoce se) pare znacilk iz obeh mnozic.
Za vsako znacdilko v mnozici A je lahko najbliZja znacilka v mnozici B (glede na
izbrano mero razdalje za primerjavo med znacilkami) mozni kandidat ujemanja.
To je v splosnem surjektivna preslikava, saj ima lahko neka znacilka iz mnozice BB
ve¢ kot samo eno ujemajoco se znacilko v mnozici A. V normalnih pogojih mora
imeti funkcija iz ene mnozice samo eno ujemanje v drugi mnozici. Zato obicajno
izvedemo dvosmerno iskanje, kjer za vsako znacilko iz mnozice A poiS¢emo naj-
blizjo znacilko iz mnozice B in obratno, ter upostevamo samo pare, ki se ujemajo
v obeh smereh. Ce je razdalja med najboljim in drugim najbolj$im ujemanjem
premajhna (pod izbranim pragom), moramo par znacilk zavrniti, saj obstaja
velika verjetnost napake pri ujemanju. Prav tako zavrnemo par znacilk, ce je
razdalja med izbranimi deskriptorji znacilk nad dolo¢enim pragom, ker to pomeni
preveliko neenakost znacilk. Na sliki 5.33 so prikazana ujemanja med dvema
mnozicama deskriptorjev znacilk. Ceprav so bile uporabljene zgoraj omenjene
tehnike filtriranja, niso odstranjena vsa napac¢na ujemanja, kot je razvidno iz slik
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Slika 5.33: Dvosmerna ujemanja med deskriptorji znacilk leve in desne slike
na sliki 5.32. Vsak vodoravni trak predstavlja vrednosti opisnega vektorja s 64
elementi, ki je predstavljen kot vzorec z razlicnimi stopnjami intenzitete sive
barve.
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Slika 5.34: Najdeni pari znacilk, ki temeljijo na ujemanju deskriptorjev (glejte
sliko 5.33). Ve€ina parov znacilk je pravih (T'), nekateri pa so tudi zmotni (F).

5.34 in 5.35. Tudi ¢e je samo nekaj osamelcev, lahko ti pomembno vplivajo na
rezultate ocenjevalnih algoritmov, ki domnevajo, da se znacilke pravilno ujemajo.

Nekatere ujemajoce se znacilke ne bodo ustrezale sistemskim omejitvam; npr. ce
par znacilk ne izpolnjuje epipolarne omejitve ali ¢e se rekonstruirana tridimenzio-
nalna tocka od para znacilk pojavi za kamero, moramo par zavrniti. Ve¢ omejitev
lahko najdete v [23]. V kolesni mobilni robotiki se lahko uvedejo dodatne omeji-
tve, osnovane na predvidenih stanjih robota iz znanih dejanj in kinemati¢nega
modela. Za filtriranje ujemajocih se parov znacilk, ki niso fiziéno mozni, lahko
v postopek ujemanja vklju¢imo model nekaterih geometrijskih omejitev. V ta
namen je potrebno uporabiti robusten postopek prilagajanja modela. Obic¢ajno se
uporablja metoda RANSAC (angl. random sample consensus) [24], ki omogoca

Slika 5.35: Pari ujemajocih se tock
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prileganje modela podatkom, ¢eprav je veliko osamelcev.

Algoritem RANSAC lahko pojasnimo na problemu prilagajanja premice. V
zacetnem koraku se iz podatkov naklju¢no izbere najmanjse stevilo N,,;, tock,
ki so potrebne za prilagoditev modela. V primeru premice sta potrebni le dve
tofki (Npmin = 2). Model (premica) se nato namesti na izbrani tocki. Okoli
nastavljenega modela (premice) je izbrano neko obmodje zaupanja, znotraj
katerega se presteje Stevilo vseh podatkovnih tock. Nato se med podatki izbere
drugih N, toc¢k in postopek se ponovi. Po nekaj iteracijah je za najboljsi model
izbran model z najveéjim stevilom tock znotraj obmoéja zaupanja. V zadnjem
koraku se model ponovno prilagodi na vse tocke v ustreznem obmodju zaupanja

po metodi najmanjsih kvadratov.

5.3.5 Ujemanje modelov okolja — zemljevidi

Zemljevid je predstavitev okolja na osnovi nekaterih parametrov znacilk, ki
so lahko tocke odboja laserskega pregledovalnika razdalj, mnozica daljic, ki
predstavljajo robove ovir, mnozica slikovnih znacilk, ki predstavljajo predmete v
okolju in podobno.

Problem lokalizacije lahko predstavimo kot optimalno ujemanje dveh zemljevidov:
lokalnega in globalnega zemljevida. Lokalni zemljevid, ki ga dobimo iz trenutnih
meritev senzorjev, predstavlja del okolja, ki ga je mogoce neposredno opazovati
(meriti) iz trenutne lege robota (npr. trenutne tocke laserskega pregledovalnika
razdalj). Globalni zemljevid je shranjen v notranjem pomnilniku mobilnega
sistema in predstavlja znano ali Ze obiskano obmocje v okolju. S primerjavo obeh
zemljevidov lahko dolo¢imo ali izboljSamo trenutno oceno lege mobilnega robota.

Ko se mobilni sistem giblje v okolju, se lahko globalni zemljevid razsirja in sproti
posodablja z lokalnim zemljevidom tako, da se trenutne informacije senzorjev,
ki predstavljajo prej neodkrita mesta, dodajo globalnemu zemljevidu. Pristop,
ki omogoca tovrstno sprotno gradnjo zemljevida, je SLAM (angl. simultaneous

localization and mapping). Njegovi osnovni koraki so opisani v algoritmu 2.

Algorithm 2 Osnovni koraki algoritma SLAM

Doloc¢anje ujemanja lokalnega in globalnega zemljevida na podlagi njunih

ujemajocih se parov znacilk.

Ocena trenutne lege mobilnega robota na podlagi ujemanja lokalnega in glo-
balnega zemljevida.

Lokalizacija na osnovi kombinacije odometrije in primerjave zemljevidov.
Posodobitev globalnega zemljevida s prej neopaZenim delom okolja (nove
znacilke so dodane kot nova stanja na zemljevidu).

Primer zemljevida, pridobljen s kombinacijo meritev laserskega pregledovalnika
razdalj in podatkov odometrije z algoritmom SLAM, je prikazan na sliki 5.36.

SLAM je eden od osnovnih pristopov v kolesni mobilni robotiki. Nekateri pogosti
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Slika 5.36: Zemljevid notranjega okolja, zgrajen iz meritev laserskega pregledo-
valnika razdalj in podatkov odometrije

izzivi pri lokalizaciji mobilnih robotov so:

e Inicializacije lege mobilnega robota ob zagonu ni mogoce dolociti z veliko
verjetnostjo. Ce zadetna lega ni znana, moramo reiti problem globalne
lokalizacije.

e Problem ugrabljenega robota se pojavi, ko se med delovanjem mobil-
nega robota njegova (resnifna) lega v okolju hipno spremeni (npr. mobilni
robot je prestavljen na novo lokacijo ali pa ponovno vklopljen na drugi
lokaciji). Robustni algoritmi lokalizacije so sposobni obnoviti in oceniti
pravo lego robota.

e Zagotavljanje ustrezne ocene lege med gibanjem mobilnega robota.
V ta namen se uporabljajo podatki odometrije in meritve absolutnih sen-

zorjev.
Najpogosteje uporabljeni algoritmi za resevanje problema SLAM so razsirjeni

Kalmanov filter, Bayesov filter in filter delcev (glejte poglavie 6).

5.4 Senzorji

V nadaljevanju je podan kratek pregled najpogosteje uporabljenih senzorjev v
kolesni mobilni robotiki, njihovih znacilnostih in razvrstitev.

5.4.1 Karakteristike senzorjev

Delovanje senzorjev, njihova kakovost in lastnosti so doloc¢ene z razlicnimi karak-
teristikami. Najpogostejse so opisane v nadaljevanju.



5.4. Senzorji 273

Obmoc¢je doloca zgornjo mejo (Ymaz) in spodnjo mejo (Ymin) uporabljene veli-
Cine, ki jo je mogoce izmeriti. Zgornja in spodnja meja ponavadi nista simetri¢ni.
Senzorje moramo uporabljati v navedenem obmocju, saj lahko v nasprotnem
primeru pride do poskodbe senzorja.

Dinamiéno obmocje je skupno obmocje od najnizje do najvecje vrednosti
obmocja. Lahko je podano kot razlika Riyn = Ymaz — Ymin ali pogosteje kot
razmerje (v decibelih) Ryyn = Alog g”ﬁ, kjer je A = 10 za meritve, povezane z
mocjo, in A = 20 za ostale.

Loc¢ljivost je najmanjsa sprememba merjene veli¢ine, ki jo senzor e zazna. Ce
ima senzor analogno-digitalni pretvornik, je loc¢ljivost senzorja obicajno enaka
lo¢ljivosti pretvornika (npr. za 10-bitni A/D in 5V senzorsko obmodje je resolucija

319)-

Obcutljivost je sprememba izhodne vrednosti senzorja na enoto veli¢ine, ki
jo merimo (npr. senzor razdalje, ki ima na izhodu napetost). Obcutljivost je
lahko konstantna v celotnem obmodju senzorja (linearnost) ali pa se spreminja
(nelinearnost).

Linearnost je lastnost senzorja, kjer je njegov izhod linearno odvisen (proporci-
onalen) od merjene veli¢ine v celotnem obmocju. Linearni senzor ima konstantno

obcutljivost v celotnem obmocju.

Histereza se nanasa na lastnost, da je izhodna trajektorija senzorja (ali njena
odvisnost od vhoda) druga¢na v primeru, ko se vhod senzorja povecuje ali

zmanjsuje.

Pasovna Sirina se nanasa na frekvenco, s katero lahko senzor zagotavlja meritve
(v Hz). Je najvigja frekvenca, pri kateri izmerimo samo 70,7 % prave vrednosti.

Toénost je dolocena s pricakovanim merilnim pogreskom, ki je razlika med

izmerjeno m in pravo vrednostjo v. Tocnost izracunamo iz relativnega merilnega
[m—uv]|

pogreska kot tocnost =1 — —

Natanc¢énost je stopnja ponovljivosti meritve senzorja pri enaki pravi vrednosti
merjene velicine. Pri veckratni meritvi iste prave vrednosti, izhod realnega
senzorja poda obseg vrednosti. Natancnost je povezana z varianco meritve.

Sistematicni pogresek ali deterministi¢ni pogresek povzrocajo nekateri dejav-
niki, ki jih je mogoce napovedati ali modelirati (pristranskost, temperaturno
lezenje, kalibracija senzorja, popacenje zaradi lece kamere itd.).

Nakljuéni pogresek ali nedeterministi¢ni pogresek je nepredvidljiv, kar lahko
opisemo le z gostoto verjetnosti (npr. normalna porazdelitev). Ta pogresek
se obi¢ajno imenuje Sum in je oznafen kot razmerje signal-Sum (SNR, angl.
signal-to-noise ratio).
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5.4.2 Klasifikacija senzorjev

Kolesni mobilni robot lahko meri svoje notranje stanje s pomocjo proprioceptiv-
nih senzorjev ali zunanje stanje okolja z uporabo eksteroceptivnih senzorjev.
Primer proprioceptivne meritve je pozicija in orientacija robota, zasuk koles ali
krmilnega mehanizma, kotna hitrost koles, stanje akumulatorjev, temperatura
ipd. Primer eksteroceptivne meritve pa je razdalja do ovire, slikovni zajem s
kamero, mikrofon, kompas, globalni pozicijski sistem (GPS) in drugi.

Senzorji za zaznavanje okolja se uporabljajo za nacrtovanje poti, zaznavanje ovir,
gradnjo zemljevida itd. Ti senzorji so aktivni, ¢e v okolje oddajajo energijo
(elektromagnetno valovanje) in meritve prejmejo odziv okolja (laserski merilniki
razdalj, ultrazvoéni merilniki, kamera z integrirano osvetlitvijo itd.). Senzorji so
pasivni, ¢e prejmejo energijo, ki je ze del okolja. Pasivni senzorji so torej vsi, ki
niso aktivni (kamera brez osvetlitve, kompas, Ziroskop, pospeskometer itd.).

V tabeli 5.1 so navedeni najpogosteje uporabljeni senzorji v mobilni robotiki
glede na njihovo uporabo. Dodatno je podan kratek opis njihove uporabe, namen
(proprioceptivni — PC ali eksteroceptivni — EC) in emitirana energija (aktivna —
A ali pasivna — P).
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Tabela 5.1: Klasifikacija senzorjev v mobilni robotiki glede na njihovo uporabo,

namen (proprioceptivni (PC) / eksteroceptivni (EC)) in oddano energijo (aktivna
(A) / pasivna (P))

Klasifikacija Uporabnost Senzorji PC/EC A/P
Taktilni detekcija trkov, kontaktna stikala EC P
in haptic¢ni varnostni izklop, taktilni odbijaci EC P
senzorji blizina, rotacija optic¢ne bariere EC A
koles ali motorja merilniki blizine EC P/A
kontaktne letve EC P
Osni rotacija koles inkrementalni enkoderji PC A
senzorji ali motorja, absolutni enkoderji PC A
orientacija sklepov, potenciometer PC P
lokalizacija z tahogenerator PC P
odometrijo
Merilniki orientacija v ziroskop PC P
smeri referen¢nem k. s., magnetometer EC P
gibanja lokalizacija, kompas EC P
inercialna navigacija inklinometer EC P
Merilniki inercialna navigacija pospeskometer EC P
hitrosti dopplerjev radar EC A
kamera EC P
Oddajniki sledenje objektu, IR-oddajnik EC A
lokalizacija WiFi-oddajnik EC A
RF-oddajnik EC A
ultrazvocni oddajnik EC A
GPS EC A/P
Merilniki merjenje razdalje ultrazvocni senzor EC A
na osnovi do ovire, laserski merilnik razdalj EC A
casa Casa preleta, kamera EC P/A
lokalizacija
Merilniki identifikacija, kamera EC P/A
na osnovi detekcija objektov, globinska kamera EC A
strojnega sledenje objektom, stereo kamera EC P/A
vida lokalizacija, RFID EC A
segmentacija radar EC A
opti¢na triangulacija EC A
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Nedeterministicnost v

mobilnih sistemih

6.1 Uvod

V realnem svetu so deterministiéni dogodki zelo redki (skoraj ne obstajajo).
Poglejmo si nekaj primerov.

Predstavljajmo si primer merjenja hitrosti vozila. Nikoli ne moremo z absolutno
natanc¢nostjo doloc¢iti prave hitrosti vozila, saj imajo merilniki dolo¢eno negotovost
(obc¢utljivost, kon¢na locljivost, omejeno merilno obmodje, fizikalne omejitve ipd.).
Dodatno so meritve senzorjev podvrzene sumu in motnjam iz okolice, u¢inkovitost
senzorja se obicajno s¢asoma spremeni ter senzorji lahko odpovejo ali se pokvarijo.

Vsi ti dejavniki omejujejo koristno informacijo (o veli¢ini, ki jo merimo).

Do podobnih zakljuckov lahko pridemo tudi pri aktuatorjih. V primeru motornega
pogona zaradi Suma, trenja, obrabe, neznane obremenitve ali mehanske okvare
ni mogoce doloc¢iti prave kotne hitrosti pri danem vzbujanju.

Poleg tega so nekateri algoritmi sami po sebi negotovi. Obicajno dajo algoritmi
rezultat z omejeno natanénostjo, ki je zadovoljiva za dani problem, saj je potrebno
rezultat pridobiti v dolo¢enem ¢asovnem roku. Sistemi v mobilni robotiki pogosto
delujejo v realnem casu, kjer je hitrost racunanja pomembnejsa od absolutne
natanc¢nosti. Zaradi omejene procesne zmogljivosti stevilni algoritmi niso izvedljivi

v realnem casu z zZelenimi odzivnimi c¢asi brez zmanjsSanja natancénosti.

Tudi delovno okolje mobilnih agentov (kolesnih mobilnih robotov) je negotovo.
Negotovost je obi¢ajno nizja v strukturiranih okoljih (npr. stavbe pravilnih oblik)
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in visja v ¢asovno spremenljivih dinamicénih okoljih (npr. domovi, cestni promet,
blizina ljudi, gozdovi itd.).

Pri razvoju avtonomnega kolesnega mobilnega sistema moramo upostevati pro-

bleme negotovosti in jih uspesno resiti.

6.2 Osnove verjetnosti

Naj bo X slu¢ajna spremenljivka in x vrednost, ki jo lahko X zavzame. Ce je
prostor vzorcev slucajne spremenljivke X mnozica s konénim stevilom vrednosti
(npr. metanje kovanca ima le dva mozna izida), je X diskretna slucajna
spremenljivka. V primeru, da je njen prostor vzorcev mnozica realnih stevil
(npr. teza kovanca), je X zvezna sluéajna spremenljivka. V tem poglavju je
podan kratek pregled osnovnih konceptov verjetnostnega racuna. Poglobljeno
obravnavo tematike najdete v Stevilnih uc¢benikih o statistiki (npr. [1]).

6.2.1 Diskretna slucajna spremenljivka

Diskretna slucajna spremenljivka X ima konéni ali Stevni prostor vzorcev, ki
vsebuje vse mozne vrednosti slucajne spremenljivke X. Verjetnost, da diskretna
slucajna spremenljivka X zavzame vrednost z, je

ali zapisano krajse P(z) = P(X = x). Zaloga vrednosti verjetnostne funkcije
P(zx) je znotraj omejenega intervala med 0 in 1 za vsako vrednost v prostoru
vzorcev X, zapiSemo P(z) € [0, 1] V z € X. Vsota verjetnosti vseh moznih
vrednosti sluéajne spremenljivke X je enaka

Y P(z)=1 (6.1)

rzeX

Verjetnost dveh (ali ve¢) dogodkov, ki se pojavljajo skupaj (npr. slucajna
spremenljivka X zavzame vrednost z in slucajna spremenljivka Y zavzame

vrednost y), je opisana z verjetnostjo produkta
Pz,y) = P(X =z,Y =y) (6.2)

Ce sta slucajni spremenljivki X in Y neodvisni, je verjetnost produkta (6.2)
preprosto produkt posameznih verjetnosti

P(z,y) = P(x)P(y)

Pogojna verjetnost P(z|y) podaja verjetnost, da slu¢ajna spremenljivka X

zavzame vrednost z, ¢e je predhodno znano, da ima slucajna spremenljivka Y



6.2. Osnove verjetnosti 281

X1 X2 Xn

(a) (b)

Slika 6.1: (a) Primer diskretne porazdelitve in (b) enakomerna diskretna poraz-
delitev (vsota visin vseh stolpcev je enaka 1)

vrednost y. Ce je P(y) > 0, lahko dolo¢imo pogojno verjetnost z

P(aly) = £@:Y) (63)

V primeru neodvisnih slu¢ajnih spremenljivk X in Y je izrac¢un (6.3) trivialen

P(xly) =

P(z,y) _ P@)Ply) _ 5
P(y) =P

Eden od temeljnih rezultatov verjetnostnega racuna je teorem popolne verje-
tnosti

P(z) =Y P(z,y) (6.4)

yey

V primeru, da je na voljo pogojna verjetnost, lahko teorem (6.4) podamo v drugi
obliki

P(z) =) P(aly)P(y) = p" (z]Y)p(Y) (6.5)
yey

V (6.5) smo uvedli diskretno porazdelitev, ki je definirana kot stolpi¢ni vektor
p(Y)
T
p(Y)=[Py) Ply) ... Pluw)]

kjer je N € N stevilo vseh moznih stanj slu¢ajne spremenljivke Y. Podobno je
stolpi¢ni vektor p(z|Y") definiran kot

palY) = [Plaly) P(alw) ... Plalun)]

Diskretne porazdelitve se lahko prikaZejo s histogrami (slika 6.1). V skladu
z (6.1) je vsota viSin vseh stolpcev v histogramu enaka 1. Ce so vsa stanja
slucajne spremenljivke enako verjetna, lahko slu¢ajno spremenljivko opisemo z
enakomerno porazdelitvijo (slika 6.1b).
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Slika 6.2: (a) Primer gostote verjetnosti in (b) enakomerna gostota verjetnosti
(integral povrsine pod krivuljo je enak 1)

6.2.2 Zvezna slucajna spremenljivka

Obmocdje zvezne slu¢ajne spremenljivke je (bodisi konéen bodisi neskoncen)
interval realnih Stevil. V zveznem primeru velja P(X = z) = 0, ker ima zvezna
slucajna spremenljivka X neskonéni prostor vzorcev. Zato je uvedena gostota
verjetnosti p(z) (angl. probability density function), ki ima omejeno obmocdje
med 0 in 1, torej je p(z) € [0, 1]. Verjetnost, da zvezna slucajna spremenljivke

X zavzame vrednost manjso od a je

a

P(X <a)= /p(x) dz

— 00

Primera gostote verjetnosti sta prikazana na sliki 6.2. Podobno kot velja relacija
(6.1) za diskretno slucajno spremenljivko, je integral gostote verjetnosti celotnega
prostora vzorcev zvezne slucajne spremenljivke X enak

+o0
P(—0 < X < 400) = /p(m)dle

— 00

Podobna razmerja, ki veljajo za diskretno sluc¢ajno spremenljivko (predstavljena v
poglavju 6.2.1), se lahko razsirijo tudi na gostoto verjetnosti. Nekatere pomembne
relacije za diskretne in zvezne slucajne spremenljivke so vzporedno prikazane v
tabeli 6.1.

Porazdelitve slucajne spremenljivke so pogosto opisane z razliénimi statisticnimi
parametri. Srednja vrednost zvezne slucajne spremenljivke X je dolocena kot
matemati¢no upanje
+oo
px =E{X} = / ap(z) dz

— 00
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Tabela 6.1: Izbrane enacbe verjetnostnega racuna za diskretno in zvezno slucajno

spremenljivko
Opis Diskretna slucajna spr. Zvezna slucajna spr.
+oo
Polna verjetnost Z P(x)=1 / p(x)dz =1
rzeX oo
+o00
Teorem polne verje- P(z) = Z P(z,y) p(z) = / p(z,y)dy
tnosti yey “
+oo
P@)= 3 Paly)PL)  ple) = [ plaly)pl)dy
yey —oco
+oo
Srednja vrednost px = Z xP(x) wx = / xp(x) dx
zeX —c0
—+o0
Varianca 0% = Z(x —ux)?P(z) o% = / (z — px)*p(x)dx
reX —o0

Eden od osnovnih parametrov, ki opisujejo obliko porazdelitve, je varianca
+oo
2 _ _ 21 _ 2
0% = var{X} = E{(X - B{x})?} = / (z — jx)?p(a) da
—o0
Ti lastnosti je mogoce dolociti tudi za diskretne slucajne spremenljivke in so
podane v tabeli 6.1.

Srednja vrednost 4 in varianca o? sta edina parametra, ki sta potrebna za enoli¢en
zapis normalne porazdelitve (slika 6.3). Normalna porazdelitev je ena izmed
najpomembnejsih gostot verjetnosti in je predstavljena z Gaussovo funkcijo

V veédimenzionalnem primeru, ko je slucajna spremenljivka vektor @, ima

normalna porazdelitev naslednjo obliko
p(x) = det (271'2)_% ez (@ W) = @)

kjer je 3 kovarian¢na matrika. Primer dvodimenzionalne Gaussove funkcije je
prikazan na sliki 6.4. Kovarian¢na matrika je simetri¢na — element v vrstici ¢ in

stolpcu j je kovarianca cov{X;, X;} med sluc¢ajnima spremenljivkama X, in X.

Kovarianca cov{X,Y} je merilo linearnega razmerja med sluc¢ajnima spremen-
ljivkama X in Y

0%y = cov{X,Y} = B{(X — ux)(Y — py)} =
+o00o +oo

B / /(X_“X)(Y—W)p(:v,y)dxdy

— 00 —O0

(6.6)
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P(u—0 <X <ju+o) ~ 0.68

!
|

p—oc u p+o
X

Slika 6.3: Normalna porazdelitev (gostota verjetnosti)

p(x, py)

px,y)

Slika 6.4: Dvodimenzionalna Gaussova gostota verjetnosti

kjer p(z,y) predstavlja gostoto verjetnosti produkta X in Y. Relacijo (6.6) lahko

poenostavimo na

oxy = B{XY} — puxpy (6.7)

Ce sta slucajni spremenljivki X in Y neodvisni, velja E{XY} = E{X}E{Y} in
kovarianca (6.7) ima vrednost 0: 0%y = 0. Obratno ne velja — ¢e je kovarianca
ni¢, to ne pomeni, da sta sluc¢ajni spremenljivki neodvisni. Kovarianca dveh
enakih sluéajnih spremenljivk je varianca cov{X, X} = var{X} = 0%.
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6.2.3 Bayesovo pravilo

Bayesovo pravilo je eden od temeljnih stebrov teorije verjetnosti in ima veliko
uporabno vrednost v mobilni robotiki. V zveznem prostoru je podano kot

plaly) = R (6.9
in za diskreten prostor kot
P(zly) = Plylz)Plz) (6.9)

P(y)

Bayesovo pravilo omogoca, da izracunamo tezko dolocljivo verjetnost na podlagi
verjetnosti, ki jo je lazje doloditi.

Primer 6.1

Predstavimo uvodni primer uporabe Bayesovega pravila (6.8) v mobilnih sistemih.
Naj slucajna spremenljivka X predstavlja stanje mobilnega sistema, ki ga zelimo
oceniti (npr. razdalja mobilnega sistema od ovire) na podlagi meritve Y, ki
je stohasticno odvisna od slucajnega stanja X. Ker je izid meritve negotov,
zelimo izvedeti, kaksna je gostota verjetnosti ocenjenega stanja X = x na podlagi
meritve Y = y.

Resitev

Zanima nas gostota verjetnosti p(z|y), ki jo lahko izra¢unamo iz (6.8). Gostota
verjetnosti p(x) vsebuje znanje o slucajni spremenljivki X pred opravljeno meri-
tvijo y, zato jo imenujemo napovedna ocena (angl. a-priori estimate). Pogojna
gostota verjetnosti p(z|y) podaja znanje o slu¢ajni spremenljivki X po opravljeni
meritvi in je zato znana tudi kot trenutna ocena (angl. a posteriori estimate).
Gostota verjetnosti p(y|z) vsebuje informacijo o vplivu stanja X na meritev Y,
zato predstavlja model senzorja (npr. porazdelitev merjenja razdalje do ovire, ¢e
je mobilni robot na doloceni razdalji od ovire). Gostota verjetnosti p(y) vsebuje
porazdelitev meritve y, torej zaupanje v opravljeno meritev, in jo lahko dolo¢imo
s teoremom popolne verjetnosti p(y) = [ p(y|z)p(z)dz. Zato lahko trenutno
oceno p(z|y) pridobimo s pomod¢jo znanega statisticnega modela senzorja (p(y|z))
in napovedne ocene (gostote verjetnosti stanja p(x)).

Primer 6.2

Do ciljne lokacije vodijo tri razlicne poti. Mobilni sistem izbere prvo pot v sedmih
od desetih primerov, drugo pot samo v enem od desetih, tretjo pa v enem od
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petih primerov. Na prvi poti ima 5 %, na drugi 10 % in na tretji 8 % verjetnost
naleta na oviro.

1. Kaksna je verjetnost, da mobilni sistem na poti do cilja naleti na oviro?

2. Mobilni sistem je naletel na oviro. Kaksna je verjetnost, da se je to zgodilo
na prvi poti?
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Resitev

Oznac¢imo prvo, drugo in tretjo pot z A;, A in As; oviro na katerikoli poti
pa z B. Verjetnost, da izberemo doloceno pot je: P(A;) = 0,7, P(As) = 0,1,
P(As) = 0,2. Verjetnost naleta na oviro na prvi poti je P(B|A;) = 0,05, na
drugi poti P(B]Az2) = 0,1 in na tretji poti P(B|A3) = 0,08.

1. Verjetnost, da mobilni sistem naleti na oviro, je

P(B) = P(B|A1)P(A1) + P(B|A2)P(Az) + P(B|A3)P(A3) =
=0,05-0,7+0,1-0,1+0,08-0,2 =
= 0,061

2. Verjetnost, da mobilni sistem obti¢i na prvi poti, lahko izraéunamo s
pomocjo Bayesovega pravila (6.9):
P(B|A1)P(A:)
P(A|B) = W =
P(B|A1)P(A1) _
~ P(BJA1)P(A1) + P(B|A2) P(A2) + P(B|A3)P(43)
B 0,05-0,7 B
~0,05-0,74+0,1-0,1+0,08-0,2
=0,5738

Z Matlab kodo v programu 6.1 lahko izracunamo verjetnosti, da mobilni robot
obtic¢i na katerikoli poti.

Program 6.1
./src/prb/example_three_paths.m

% Verjetnost izbire prve, druge ali tretje poti:
s p(A) = [P(A1), P(A2), P(A3)]

p_A = [0.7 0.1 0.2]

% Verjetnost ovire na prvi, drugi in tretji poti:

5 % p(BIA) = [P(BIA1), P(B|A2), P(B|A3)]

p_BA = [0.05 0.1 0.08]



288 Nedeterministicnost v mobilnih sistemih

% Verjetnost ovire: P(B)
P_B = p_BA*p_A.’

% Verjetnost zastoja na prvi, drugi in tretji poti:
% p(AIB) = [P(A1|B), P(A2|B), P(A3|B)]
p_AB = (p_BA.*p_A)./P_B

p_A =

0.7000 0.1000 0.2000
p_BA =

0.0500 0.1000 0.0800
P_B =

0.0610
p_AB =

0.5738 0.1639 0.2623

Primer 6.3

Mobilni robot za cis¢enje tal je opremljen s senzorjem za zaznavanje umazanije,
ki lahko zaznava ¢isto¢o tal pod mobilnim robotom (slika 6.5).

Cistilne krtace

Senzor za detekcijo umazanije
Sesalna enota

Kolo

Kos za smeti

-

Mobilni robot za ciscenje tal [pogled od spodaj navzgor]

Slika 6.5: Mobilni robot za cisc¢enje tal

Na podlagi odcitkov senzorja zelimo ugotoviti, ali so tla pod robotom ¢ista ali ne,
zato ima diskretna sluc¢ajna spremenljivka dve mozni vrednosti. Verjetnost, da
so tla cista, je 40 %. O senzorju za zaznavanje umazanije lahko trdimo naslednje:
e so tla éista, senzor to pravilno zazna v 80 % primerov; in ¢e so tla umazana,
senzor to pravilno zazna v 90 % primerov. V primeru distih tal je verjetnost
nepravilne meritve majhna, saj bo senzor napacno dolocil stanje tal v enem od
petih primerov. V primeru umazanih tal je verjetnost nepravilne meritve Se

manjsa, saj bo senzor napacno zaznal samo v enem od desetih primerov. Kaksna
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je verjetnost, da so tla cista, ¢e senzor zazna, da so le-ta Cista?

Resitev

Oznadimo stanje tal — ¢ista (clean) ali umazana (dirty) — z diskretno slu-
¢ajno spremenljivko X € {clean, dirty} in meritev senzorja s sluCajno spre-
menljivko Z € {clean, dirty}. Verjetnost, da so tla Cista, torej zapiSemo kot
P(X = clean) = 0,4 in model meritve senzorja lahko matematiéno predstavimo
kot

P(Z = clean|X = clean) = 0,8
P(Z = dirty| X = dirty) = 0,9

Uvedimo krajsi zapis

P(z) = P(X = clean) = 0,4
P(z) = P(X =dirty) =1— P(z) =0,6
P(z|z) = P(Z = clean|X = clean) = 0,8
P(z|z) = P(Z = dirty| X = clean) =1 — P(z|x) = 0,2
P(z|z) = P(Z = dirty|X = dirty) = 0,9
P(z|z) = P(Z = clean|X = dirty) =1 — P(z|z) = 0,1

S pomocjo Bayesovega pravila (6.9) dolo¢imo P(x|z)

P(a]z) = 22D E) (ij”()j (@)

Nadalje lahko s pomocjo teorema popolne verjetnosti izracunamo verjetnost, da
senzor zazna tla kot cista
P(z) = P(z|z)P(z) + P(z|z) P(7) =
=0,8-044+0,1-0,6 =
=0,38

Tako je iskana verjetnost enaka

0,8-04
P(z|z) = 038 0,8421

Dobljena verjetnost, da senzor zazna cista tla kot Cista, je visoka. Vendar pa
obstaja ve¢ kot 15 % verjetnost, da so tla dejansko umazana, zato lahko mobilni
sistem napa¢no domneva, da ¢iS¢enje ni potrebno. Ce mobilni robot v taksnem

primeru ne izvede ¢iséenja, ostanejo tla umazana.
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6.3 Ocenjevanje stanj

Ocenjevanje stanja je proces, v katerem so prava stanja sistema ocenjena na
podlagi izmerjenih podatkov in predhodnega znanja o sistemu. Tudi ¢e je mo-
7zno stanja sistema neposredno izmeriti, izmerjeni podatki obi¢ajno vsebujejo
Sum in druge motnje. Zaradi tega so neobdelani izmerjeni podatki obicajno
neprimerni za nadaljnjo uporabo brez ustreznega filtriranja (npr. neposredna
uporaba pri izra¢unu pogreska vodenja). V Stevilnih primerih je moZno oceniti
stanja sistema, tudi ¢e stanja niso neposredno merljiva. To lahko izvedemo, ¢e
je sistem spoznaven. Zato moramo pred ocenjevanjem stanj preveriti spoznav-
nost sistema. Najpomembnejsi lastnosti algoritmov za ocenjevanje stanja sta:
ocena konvergence in ocenjevalna pristranskost. V tem poglavju bomo opisali
nekaj prakticnih vidikov, ki jih je potrebno upostevati pred izvedbo dolocenega

algoritma za ocenjevanje stanj.

6.3.1 Motnje in Sum

Vso neupostevano sistemsko dinamiko — kot so nemerljivi signali in pogreski
modeliranja — lahko razumemo kot sistemske motnje. Pod predpostavko linear-
nosti lahko vse motnje predstavimo v enem samem ¢lenu n(t), ki ga pristejemo
pravemu signalu yo(t)
y(t) = yo(t) + n(t)

Motnje razvrstimo v ve¢ razredov: visokofrekvencni kvazistacionarni stohasti¢ni
signali (npr. merilni Sum), nizkofrekven¢ni nestacionarni signali (npr. lezenje),
periodiéni signali ali kakSen drug tip signalov (npr. Spice, osamelci). Eden od
najpomembnejsih stohasti¢nih signalov je beli Sum.

Frekvencni spekter in porazdelitev signala sta najpomembnejsi lastnosti, ki opi-
sujeta signal. Porazdelitev signala poda verjetnost, s katero amplituda zavzame
doloéeno vrednost. Najpogostejsi porazdelitvi signalov sta enakomerna poraz-
delitev in Gaussova (normalna) porazdelitev (glejte poglavje 6.2). Frekvenc¢ni
spekter signala predstavlja soodvisnost signala v vsakem trenutku, ki je povezan
s porazdelitvijo frekvenc¢nih komponent signala. V primeru belega Suma so vse
frekvencne komponente enakomerno porazdeljene, zato je vrednost signala v

vsakem Casovnem trenutku neodvisna od prejsnjih vrednosti signala.

6.3.2 Ocena konvergence in pristranskosti

Kot smo Ze omenili, ocenjevanje stanj podaja ocene notranjih stanj glede na
izmerjene vhodno-izhodne signale, razmerje med spremenljivkami (modela sis-
tema), nekatere statisti¢ne lastnosti signalov (npr. varianca) in druge informacije
o sistemu. Vse te podatke je treba zdruziti tako, da dobimo to¢no in natan¢no

oceno notranjih stanj. Na zalost so meritve, model in vnaprej znane lastnosti
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signalov same po sebi negotove zaradi Suma, motenj, parazitske dinamike, napac-
nih predpostavk o modelu sistema in drugih virov napak. Zato se ocene stanj
obic¢ajno razlikujejo od dejanskih stanj.

Vse zgoraj omenjene tezave povzrocajo dolo¢eno stopnjo negotovosti signalov.
Matematicno lahko problem resimo v stohasti¢nem okolju, kjer se signali obrav-
navajo kot slucajne spremenljivke. Signali so tako predstavljeni s pripadajoc¢imi
gostotami verjetnosti ali pa s srednjo vrednostjo in varianco. V stohasti¢cnem
okolju je pomembno vprasanje kakovost dolocene ocene stanja. Zlasti je potrebno
analizirati konvergenco ocene stanja glede na pravo vrednost. Zastaviti si moramo

dve pomembni vprasanji:

1. Ali je matematicno upanje ocene enako pravi vrednosti? Ce to drzi, je
ocena nepristranska. Ocena je konsistentna, ¢e se izboljsa s ¢asom
(vedji interval opazovanja) in konvergira k pravi vrednosti s podaljSevanjem

intervala opazovanja proti neskonénosti.

2. Ali varianca pogreska ocene konvergira proti 0, ko gre cas opazovanja proti
neskoncnosti? Ce to drz in je ocena konsistentna, je ocena konsistentna
v srednjekvadratic¢ni vrednosti. To pomeni, da se z naras¢anjem casa
opazovanja tofnost in natanénost ocen izboljSuje (vse ocene so v blizini
prave vrednosti).

Na zgornji vprasanji lahko razmeroma enostavno odgovorimo, ¢e so predpostavke
o sistemu preproste (popoln model sistema, Gaussov Sum itd.). Pri obravnavi
zahtevnejsega problema je zelo tezko najti odgovore in analiti¢ne resitve niso vec
mozne. Vendar se moramo zavedati, da ocenjevalniki stanj podajajo zadovoljive
rezultate, ¢e niso krSene nekatere pomembne predpostavke. Zato je izjemno
pomembno, da pred uporabo doloc¢enega algoritma ocenjevanja stanj preberemo
drobni tisk, saj lahko v nasprotnem primeru algoritem poda ocene, ki so dalec¢
od dejanskih stanj. Problem je, da se tega ponavadi sploh ne zavedamo.

6.3.3 Spoznavnost

Stanja, ki jih je potrebno oceniti, so obi¢ajno skrita, saj navadno informacije o
njih niso neposredno dostopne. Stanja lahko ocenimo na podlagi meritev izhodov
sistema, ki so neposredno ali posredno odvisni od stanj. Preden izvedemo algori-
tem ocenjevanja, moramo odgovoriti na naslednje vprasanje: Ali lahko enolicno
ocenimo stanja v konénem casu na podlagi opazovanja izhodov sistema? Odgovor
na to vprasanje podaja spoznavnost sistema. Ce je sistem spoznaven, lahko
ocenimo stanja z opazovanjem njegovih izhodov. Sistem je le delno spoznaven, ¢e
lahko ocenimo samo podmnozico stanj sistema, pri ¢emer preostalih stanj morda
ne bomo ocenili. V primeru popolnoma spoznavnega sistema so vsa stanja in

izhodi povezani.
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Preden za¢nemo z opredelitvijo spoznavnosti, moramo vpeljati koncept neraz-
poznavnih stanj (angl. indistinguishable state). Predstavljajmo si splosen
nelinearen sistem v obliki (z € R", u € R™ in y € R!)

(6.10)

Stanji o in x; sta nerazpoznavni, ¢e za vsak dopusten vhod u(t) v konénem
Casovnem intervalu t € [to, t1] dobimo enake izhode [2]

y(t,(l?()) = y(t7w1) Vite [to, tl]

MnozZica vseh nerazpoznavnih stanj iz stanja x je oznacena kot Z(xy).
Sedaj lahko recemo, da je sistem spoznaven pri x(, ¢e mnozica nerazpoznavnih
stanj Z(xq) vsebuje samo stanje g, torej Z(xg) = {xo}. Sistem je spoznaven,
¢e mnozica nerazpoznavnih stanj Z(x) vsebuje samo stanje x za vsako stanje
@ v definicijskem obmodcju, torej Z(x) = {x} V x. Spoznavnost ne pomeni, da
je ocena stanja @ opazovanega izhoda mozna za vsak vhod u(t), t € [to, t1]. V
dolocenih primerih je za razlikovanje med stanji potreben dolg ¢as opazovanja.
Poznamo razliéne nacine spoznavnosti [2]: lokalna spoznavnost ali moénejsi
koncept spoznavnosti, sibka spoznavnost ali oslabljeni koncept spoznavnosti in
lokalna $ibka spoznavnost. V primeru avtonomnih linearnih sistemov so vse tri
oblike spoznavnosti enakovredne.

Preverjanje spoznavnosti splosnih nelinearnih sistemov (6.10) zahteva napredno
matemati¢no analizo. Lokalno sibko spoznavnost sistema lahko preverimo s
preprostim algebrai¢nim testom. V ta namen vpeljemo operator Liejev odvod
kot ¢asovni odvod izhodne funkcije h vzdolz trajektorije sistema x

Vzemimo avtonomen sistem (6.10) (u(t) = 0 za vsak t). Lokalno §ibko spo-
znavnost preverimo tako, da (veckrat) odvajamo sistemski izhod y, dokler se ne
poveca rang matrike @ (definicija sledi v nadaljevanju)

y = h(z) = L}[h(z)]
. Oh(xz) dz  Oh(x)
Y= "0z at~ oz
i= 2 (8’5;“3) f@)) @) = Ly[Ls @) = L3 (@) (6.11)

f(z) = Ly[h(z)] = Ly[h(x)]

Y~ Lyh@)




6.4. Bayesov filter 293
Casovne odvode izhoda sistema (6.11) lahko zapisemo v matriko L(x)

0
!
]
#lh(z)] (6.12)

Ly[h()]

Rang matrike Q(zo) = a%L(CB”wO dolo¢a lokalno sibko spoznavnost sistema pri
xo. Ce je rang matrike Q(xo) enak stevilu stanj, torej rang(Q(zo)) = n, naj bi
sistem zadostoval spoznavnostnemu pogoju za rang pri x, ki je zadosten,
ne pa potreben pogoj za lokalno §ibko spoznavnost sistema pri xo. Ce je za
vsak @ iz definicijskega obmocja izpolnjen spoznavnostni pogoj za rang, je sistem
lokalno sibko spoznaven. Bolj podrobna studija na temo spoznavnosti je na voljo
v [2-4].

Pogoj za rang spoznavnosti se lahko poenostavi za ¢asovno nespremenljive linearne
sisteme. Za sistem z n stanji v obliki @(t) = Ax(t) + Bu(t), y(t) = Cz(t) so
Liejevi odvodi (6.12)

LY[h(z)] = Cx(1)
Li[h(z)] = C(Ax(t) + Bu(1))
L3[h(x)] = CA(Az(t) + Bu(1)) (6.13)

Delno odvajanje Liejevih odvodov (6.13) privede do Kalmanove spoznavno-
stne matrike @

Q" =[cT aTcT .. (AT)yc7]

Sistem je spoznaven, e ima spoznavnostna matrika n neodvisnih vrstic, torej je
rang spoznavnostne matrike enak stevilu stanj

rang(Q) = n

6.4 Bayesov filter

6.4.1 Markovove verige

Obravnavali bomo sisteme, za katere lahko predpostavimo, da je stanje vse-
bovano. To pomeni, da se vse informacije o sistemu v danem trenutku lahko
pridobijo iz stanj sistema. Sistem lahko opisemo na podlagi trenutnih stanj, kar
je lastnost Markovovega procesa. Na sliki 6.6 je prikazan skriti Markovov proces,
kjer stanja niso neposredno dostopna, ampak jih lahko samo ocenimo iz meritev,
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Zp Z,

Slika 6.6: Skriti Markovov proces. Meritev zj je stohasti¢no odvisna od trenu-
tnega stanja xy, ki ni neposredno dostopno in je odvisno od prejsnjega stanja

/@‘)@H

”k.z l uk-]

Te—1

Zpy Zy

Slika 6.7: Skriti Markovov proces z zunanjimi vhodi. Meritev zj je stohasticno
odvisna od trenutnega stanja xj. Stanje xy ni neposredno dostopno ter je odvisno
od prejsnjega stanja xi_1 in trenutno aktualnega vhoda wug_1.

ki so stohasti¢no odvisne od trenutnih vrednosti stanj. Zaradi tega je trenutno
stanje sistema odvisno le od prejsnjega stanja in ne celotne zgodovine stanj

p(wk\m, e 7xk—1) = p($k|Ik—1)

Podobno je tudi meritev neodvisna od celotne zgodovine stanj sistema, ce je

znano le trenutno stanje

p(zklzo, ..., zk) = p(zk|zk)

Struktura skritega Markovovega procesa, kjer je trenutno stanje xj odvisno od
prejsnjega stanja xp_; in vhoda sistema wug_1, je prikazana na sliki 6.7. Vhod
ug—1 je trenutno aktualen vhod, ki vpliva na notranja stanja od trenutka k& — 1
do k.

6.4.2 Ocenjevanje stanj iz opazovanj

Bayesov filter predstavlja najbolj splosen algoritem za izrac¢un porazdelitve.
Bayesov filter je mocno statisticno orodje, ki ga lahko uporabimo za oceno
lokacije (stanj sistema) ob prisotnosti sistemskih in merilnih negotovosti [5].

Porazdelitev stanja po merjenju p(x|z) lahko ocenimo, e sta znana statisti¢ni
model senzorja p(z|x) (porazdelitev izida meritve ob poznanem stanju) in po-
razdelitev meritve p(z). To smo predstavili v primeru 6.3 za diskretno slu¢ajno
spremenljivko.
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Poglejmo si primer ocenjevanja stanja x, ko imamo ve¢ zaporednih meritev z.
Zelimo oceniti porazdelitev p(xy|z1,...,2,) stanja = v trenutku k, pri ¢emer
upostevamo zaporedje vseh meritev do aktualnega trenutka. Bayesovo formulo
lahko podamo v rekurzivni obliki

p(zklTr, 21, - ooy 2h—1)D(Tk |21, - -+ 2H—1)
p(zklz1, -y 2k—1)

p(xk|z1, ... 28) =

kar lahko krajSe zapisemo kot

p(zk|Tk, 210—1)P(Tk|21:0—1)
p(2k|21:k—1)

p(zrlz1:k) = (6.14)

Pomen posameznih ¢lenov v (6.14) je:

o p(xk|z1.1) je ocenjena porazdelitev stanja v trenutku &, posodobljenega z
merilnimi podatki,

o p(zk|Tk, 21.6—1) je porazdelitev meritve v trenutku k, ¢e poznamo trenutno
stanje xj in pretekle meritve do trenutka k — 1,

o p(2k|21:6—1) je napovedana porazdelitev stanja na osnovi preteklih meritev,

o p(zk|z1:6—1) je porazdelitev opravljene meritve (zaupanje v opravljeno
meritev) v trenutku k.

Nadalje velja, da je trenutna meritev zj v (6.14) neodvisna od preteklih meritev
z1:x—1 (stanje je vsebovano, Markovov proces), ¢e poznamo stanje sistema xy,

p(2kl @k, 21:6-1) = p(2k|2k)
Zato se enacba (6.14) poenostavi v

p(z]zr)p(Tr|21:0-1)
P(Zk |lek71)

p(xrlz1:k) = (6.15)

Izpeljava enacbe (6.15) je podana v primeru 6.4.

Primer 6.4

Za vajo izpeljite (6.15) iz (6.14), pri ¢emer predpostavite vsebovano stanje
(p(2k |2k 21:1-1) = P(28|2))-



296 Nedeterministicnost v mobilnih sistemih

Resitev

Izpeljava porazdelitve (6.15)

p(k|z1:6) = Plavklon)p(ee) =
p(21:%)
P2k, 21:6—1|Tk)p(TH)
B p(zkazl:k71> B
_ p(2k]21:6—1, Tk)p(21:6—1|78 )P(Tk) _
B p(2zk|21:6—1)P(21:6-1) B
_ plaklzin—1, e)p(@n|21:6-1)p (216 —1)P(@k)

p(zk |Z1:k71)p(21;k71)29(9€k)
_ p(Zk|21;k—1,»’Bk)P(wk\ZLk—l) -

p(2k|21:k71)
_ pQeklzk)p(@r|z1:0-1)
p(2k|21:6-1)

Rekurzivna enacba (6.15) za posodobitev stanja na podlagi preteklih meritev
vsebuje tudi predikcijo p(zk|21.4—1). Postopek ocenjevanja stanja lahko razdelimo
na predikcijski in korekcijski korak.

Predikcijski korak
Predikcijo p(xg|2z1.5—1) doloé¢imo kot

p(Tk|21:6-1) = /p(xk|$k—1aZl:k—l)p(xk—ﬂzlzk—l)dl‘k—l

kar lahko poenostavimo s predpostavko, da je stanje vsebovano

p(@klz1m 1) = / p(@rlzn 1 )p(@n1]21m 1) dop_s (6.16)

kjer p(xy|xg—1) predstavlja porazdelitev prehajanja med stanji in p(zr—1]21.5—1)
je popravljena porazdelitev ocenjenega stanja iz prejSnjega ¢asovnega trenutka.

Korekcijski korak

Ocenjena porazdelitev stanj po opravljeni meritvi v trenutku & in izra¢unana
napovedana porazdelitev stanj v predikcijskem koraku je

p(zrlrr)p(rr]21:6-1)

p(2k|21:k—1) (6.17)

P($k|z1;k) =

Verjetnost p(zx|z1.6—1), ki opisuje merilno zaupanje, lahko dolo¢imo s pomodcjo
relacije

Pl 21n1) = / p(zle)p(erlzre—1) doe
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Najverjetnejsa ocena stanj

Kako lahko ocenjeno porazdelitev p(xg|z1.) uporabimo pri oceni najverjetnejsega
stanja xy ? Najbolj verjetna ocena stanja (matematiéno upanje) E{xx} je podana
kot vrednost, ki minimizira povpreéni kvadratni pogresek meritve

E{z} = /xkp(mk\zm)dxk

Ocenimo lahko tudi vrednost zy, ., ki maksimira trenutno verjetnost p(zx|z1.x)

rax )

Thyo, = Max p(zr|21:1)
Tl

Primer 6.5

Imamo senzor iz primera 6.3. Kaksna je verjetnost ¢istih tal, ¢e senzor v trenutku
k = 2 ponovno zazna ¢ista tla?

Resitev

V primeru 6.3 so bila v trenutku k£ = 1 tla ¢ista, senzor pa je tudi zaznal, da so

ista (21 = clean). Izra¢unali smo pogojno verjetnost

0,8-0,4

P(x1|z1) = 038

=0,8421
V naslednjem trenutku k& = 2 senzor vrne zo = clean z verjetnostjo pravilne
zaznave senzorja P(zs|ze) = 0,8 in z verjetnostjo napacne zaznave senzorja

P(23]Z2) = 0,1 (predpostavljamo ¢asovno nespremenljivo karakteristiko senzorja).

Najprej ovrednotimo predvideno verjetnost P(z2|z1), torej da so tla umazana
glede na prejsnjo meritev. V enacbi (6.16) zamenjamo integracijo z vsoto in
dobimo

P(zplzik-1) = Y Plak|r-1)P(@r—1|21:5-1)
Tp_1€X

Za zdaj predpostavimo, da mobilni sistem lahko le zazna stanje tal in ne more
vplivati nanj, torej ne izvaja ¢iscenja tal in tal tudi ne more umazati. Tako je
verjetnost prehajanja stanja preprosto P(zz]z1) =1 in P(x2|Z;) = 0. Dobimo
torej

P(l‘g‘Zl;l) = P($2|$1)P($L’1|21) + P(a?g‘fl)P(fl‘Zl) =
=1-0,84214+0-0,1579 =
= 0,8421
kar je logi¢en rezultat. Ce namre¢ nimamo meritve 2o, nismo pridobili novih

informacij o sistemu. Zato ima stanje tal enako verjetnost v trenutku k = 2 kot
v prejsnjem trenutku k = 1.
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Z upostevanjem razmerja (6.17) lahko v korekcijskem koraku zdruzimo meritev s

trenutno oceno
P(22|$2)P($2|21;1)
P(x3]21.2) = P(oalo1) =
. 0,8 -0,8421

B P(22|21:1)

kjer moramo izracunati vrednost normirnega ¢lena, ki podaja verjetnost Cistih
tal v trenutku k& = 2. Faktor lahko dolo¢imo z vsoto vseh moznih kombinacij
stanj, ki vodijo do trenutne meritve z; ob upostevanju izidov preteklih meritev

21:k—1

P(zk|z1:0-1) = Y Plakler) P(aklz1k-1)
rreX

V nasem primeru zapisemo
P(z2|21) = P(za|x2) P(x2|21) + P(22|Z2) P(Z2|21) =
=0,8-0,8421 4+ 0,1-0,1579 =
= 0,6895

Verjetnost, da so tla ¢ista, ¢e je senzor dvakrat zapored zaznal cista tla, je

P($2|Zl:2) = 0,9771

Primer 6.6

Za primer 6.3 dolocite, kako se spremeni verjetnost stanja, ¢e so tla Cista, senzor
pa opravi tri meritve z1.3 = (clean, clean, dirty).

Resitev

Prvi dve pogojni verjetnosti smo ze izrac¢unali v primeru 6.3 in 6.5, tretja pa je

P(23|$3)P($3|21;2)
P(x3|z1:3) = Plsl1) =
- 0,2-0,9771
~0,2-0,977140,9 - (1-0,9771)

= 0,9046

kjer je P(Z = dirty|X = clean) = 1 — P(Z = clean|X = clean). Verjetnosti
stanj v treh zaporednih meritvah, opravljenih v ¢asovnih trenutkih ¢ = 1,2, 3, so

P(x]21.) = (0,8421, 0,9771, 0,9046)
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Porazdelitev trenutnega stanja za trenutke k = 1,2, 3 je prikazana na sliki 6.8.
Implementacija resitve v programskem okolju Matlab je prikazana v programu
6.2.

Program 6.2
./src/prb/example_nocleaning.m

1 % Verjetnost ¢istih (clean) in umazanih (dirty) tal
2 P_Xc = 0.4 % P(X=clean)

3 P_Xd = 1-P_Xc % P(X=dirty)

4 % Pogojna verjetnost merjenja Cistocle

5 P_ZcXc = 0.8 % P(Z=clean|X=clean)
6 P_ZdXc = 1-P_ZcXc % P(Z=dirtyl|X=clean)
7 P_ZdXd = 0.9 % P(Z=dirtyl|X=dirty)

8 P_ZcXd = 1-P_ZdXd % P(Z=clean|X=dirty)

10 disp(’Korak k = 1: Z=clean’)

11 % Verjetnost meritve v primeru, da zaznamo ¢ista tla

12 P_Zc_k1 = P_ZcXc*P_Xc + P_ZcXd*P_Xd

13 % Verjetnost &istih tal po opravljeni meritvi (Bayesovo pravilo)
14 P_XcZc_k1 = P_ZcXc*P_Xc/P_Zc_ki1

15 P_XdZc_k1 = 1-P_XcZc_k1;

16

17 disp(’Korak k = 2: Z=clean’)

18 % Verjetnost meritve v primeru, da zaznamo Cista tla

19 P_Zc_k2 = P_ZcXc*P_XcZc_kl + P_ZcXd*P_XdZc_k1

20 % Verjetnost &istih tal po opravljeni meritvi (Bayesovo pravilo)
21 P_XcZc_k2 = P_ZcXc*P_XcZc_k1/P_Zc_k2

22 P_XdZc_k2 = 1-P_XcZc_k2;

23

24 disp(’Korak k = 3: Z=dirty’)

25 % Verjetnost meritve v primeru, da zaznamo umazana tla

26 P_Zd_k3 = P_ZdXc*P_XcZc_k2 + P_ZdXd*P_XdZc_k2

27 % Verjetnost &istih tal po opravljeni meritvi (Bayesovo pravilo)
28 P_XcZd_k3 = P_ZdXc*P_XcZc_k2/P_Zd_k3

29 P_XdZd_k3 = 1-P_XcZd_k3;

P_Xc =
0.4000
P_Xd =
0.6000
P_ZcXc =
0.8000
P_ZdXc =
0.2000
P_ZdXd =
0.9000
P_ZcXd =
0.1000
Korak k = 1: Z=clean
P_Zc_k1 =
0.3800
P_XcZc_k1 =
0.8421
Korak k = 2: Z=clean
P_Zc_k2 =
0.6895
P_XcZc_k2 =
0.9771
Korak k = 3: Z=dirty
P_Zd_k3 =



300 Nedeterministiénost v mobilnih sistemih

0.2160
P_XcZd_k3 =
0.9046

Z = clean Z = clean Z =dirty

Slika 6.8: Porazdelitev trenutnega stanja v treh trenutkih iz primera 6.6

6.4.3 Ocenjevanje stanj iz opazovanj in akcij

V poglavju 6.4.2 smo ocenjevali stanje sistema samo na podlagi opazovanja
okolice. Obi¢ajno pa akcije mobilnega sistema vplivajo na okolico, torej lahko
spreminjajo tudi stanja sistema (npr. mobilni sistem se premakne, izvaja ¢is¢enje
itd.). Vsaka akcija mobilnega sistema ima neko lastno negotovost, zato izid akcije
ni deterministicen, ampak je podan z neko verjetnostjo. Gostota verjetnosti
p(zk|Tr—1,ur—1) opisuje verjetnost prehoda iz prejsnjega v naslednje stanje pri
znani akciji. Akcija ug_1 nastopi v trenutku k& — 1 in vpliva na sistem do trenutka
k, zato jo obiCajno poimenujemo kar trenutna akcija. V splosnem akcije v okolici
povecujejo stopnjo negotovosti nasega znanja o okolici, meritve v okolici pa
obic¢ajno zmanjsujejo stopnjo negotovosti.

Poglejmo si, kako akcije in meritve vplivajo na nase znanje o stanjih. Zelimo
ugotoviti gostoto verjetnosti p(ag|z1.x, uo.k—1), Kjer so z meritve in u akcije.

Kot v poglavju 6.4.2 lahko zapisemo Bayesov teorem

p(zklxky 21:k—1, uO:kfl)p(xk‘zlzkfh uo:kq)

6.18
P(2k|21:6-1, Uo:k—1) (6.18)

P(Tr|21:k, Uok—1) =
kjer so:

o p(xg|21.k, Uo:k—1) je ocena porazdelitve stanja v trenutku k, posodobljena

z znanimi meritvami in opravljenimi akcijami,

o p(zk|Tk, 21:k—1, U0:k—1) je porazdelitev meritve v trenutku k, ¢e poznamo
trenutno stanje xy, opravljene akcije in pretekle meritve do trenutka k — 1,
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o p(xk|z1:6—1,U0:k—1) je napoved porazdelitve stanja na osnovi preteklih
meritev in opravljenih akcij do trenutka k,

o p(zk|z1:6—1, u0.k—1) je porazdelitev opravljene meritve (zaupanje v opra-
vljeno meritev) v trenutku k.
Indeksi akcij so v razponu od 0 do k — 1, ker akcije v preteklih trenutkih vplivajo
na obnasanje stanja sistema v trenutku k.

Nadalje velja, da lahko trenutno meritev zj v (6.18) opiSemo le z znanim stanjem
sistema xj, saj pretekle meritve in akcije ne prinasajo dodatnih informacij o
sistemu (stanje je vsebovano, Markovov proces)

P(zk|zk, 2101, vo:k—1) = P(2k|7k)
Zato lahko (6.18) poenostavimo v

p(zk|er)p(Tr] 2101, Uo:k—1)
P(Zk |21:k:71» Uo:kq)

k|21, vok—1) = (6.19)

Rekurzivno pravilo za posodobitev verjetnosti ocene stanja (6.19) na podlagi
preteklih meritev in akcij vklju¢uje tudi predikcijo p(xg|z1:6—1,u0:6—1), Kjer
porazdelitev ocene stanja napovemo na podlagi preteklih meritev z1.,_1 in vseh
akcij ug.p—1. Tako lahko postopek ocenjevanja stanj razdelimo na predikcijski in
korekcijski korak. V predikcijskem koraku Se ni znana zadnja meritev, je pa znana
trenutna akcija, zato lahko na podlagi modela sistema napovemo porazdelitev
stanj. Ko je na voljo nova meritev, izvedemo Se korekcijski korak.

Predikcija

Predikcijo p(zk|21.6—1, Uo.k—1) lahko ovrednotimo s teoremom popolne verjetnosti
p(Tk|z1k—1, vo:k—1) = /p(l'k|33k—1,Zl:k-—lauO:k—l)p(xk—ﬂZl:k—hUo:k—l)dmk—l
kjer zaradi vsebovanosti stanja velja

P($k|$k—1, Zl:k—laUO:k—l) = p(ﬂfk|l’k—1,uk—1)

nadalje ugotovimo, da najnovejsa akcija uy_1 ni potrebna za oceno stanja v
prejsnjem trenutku

p($k71|21:k71»u0:k71) = p($k71|21:k71,1’40:k72)
Zapisemo kon¢ni izraz za izracun predikcije
P(xk|21:k—1, Uoik—1) = /p($k|$k717Uk71)P($k71|Z1:k71, Uo:p—2) dzg—1  (6.20)

kjer je p(x|xk—1,ur—1) porazdelitev prehajanja med stanji in p(xg—_1|21.k—1, U0:k—2)
korekcijska ocena porazdelitve stanja iz prejsnjega trenutka.
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Korekcija
Ocena stanj, ko je na voljo meritev v trenutku k& in predhodno izra¢unana
predikcija, je

p(zk|zr)p(@k|21:6-1, Yo:k—1)
(2| 21:6—1, Uo:k—1)

p(Tkl21:k, v0:k—1) = (6.21)

Verjetnost p(zx|21:5—1, uo:k—1), ki predstavlja zaupanje v opravljeno meritev, pa
je

P(2k|21:k—1, Uoik—1) = /p(Zklwk)p(J?klZl:k—hUo:k—1)d$k

Splosni algoritem za Bayesov filter

Splosna oblika Bayesovega filtra je podana v psevdokodi v algoritmu 3. Pogojna
verjetnost korekcijskega koraka p(xr|z1.k,uo.x—1), ki daje oceno porazdelitve
stanja na podlagi znanih akcij in meritev, je znana kot zaupanje in jo zapisemo
kot

bel(xy) = p(k| 212k, Uo:k—1)

pogojno verjetnost predikcije p(@g|z1.5—1, Uo:k—1) Pa oznacimo kot

bely(zr) = p(Tr|21:6—1, U0:k—1)

Bayesov filter ocenjuje porazdelitev ocene stanja. V trenutku, ko je znana
informacija o trenutni akciji ug_1, lahko izvedemo predikcijski korak in ko je na

voljo tudi nova meritev, lahko izvedemo korekcijski korak. Vpeljemo se normirni
1

p(zk|21:6—1,u0:k—1)

najprej izvede predikcijo, nato pa Se korekcijo, ki je ustrezno normirana.

faktor n = 1 = Algoritem za Bayesov filter (algoritem 3)

Algorithm 3 Bayesov filter

function BAYESOV_ FILTER(bel(xg—1), tuk—1, 2k)
a+0
for all z;, do
bely(zr) « [ p(@p|zr—1, uk—1)bel(xr—1) dzr_1
bel' (xy) < p(zk|zr)bely(zk)
a < a+ bel'(zy)
end for
for all z;, do
bel(zi) « Lbel' ()
end for
return bel(zy)
end function

Kot je razvidno iz algoritma 3, moramo resiti integral, da dolo¢imo porazdelitev
v predikcijskem koraku. Izvedba algoritma je torej omejena na enostavne zvezne
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primere, kjer je mozna eksplicitna resitev integrala, in diskretne primere s konénim
stevilom stanj, kjer lahko integral zamenja vsota.

Primer 6.7

Mobilni robot je opremljen s senzorjem, ki lahko zazna, ali so tla cista ali ne
(Z € {clean, dirty}), ter Cistilnim sistemom (komplet krta¢, vakuumska ¢rpalka

vevy .

in posoda za prah) za ¢is¢enje tal. CisGenje se izvaja samo v primeru, ko robot
meni, da je tla potrebno oéistiti (U € {clean, null}). Zanima nas, ali so tla ¢ista
ali ne (X € {clean, dirty}).

Zacetna verjetnost (zaupanje), da so tla Cista, je
bel(Xo = clean) = 0,5
Veljavnost meritev senzorja je podana s statisticnim modelom senzorja

P(Zy = clean| X}, = clean) = 0,8 P(Zy, = dirty| Xy = clean) = 0,2
P(Zy = dirty| Xy, = dirty) = 0,9 P(Zy, = clean| X}, = dirty) = 0,1

Verjetnosti izida, ¢e se robot odloci za ¢iscenje tal, je

P(Xy = clean|Xy_1 = clean,Ux_1 = clean) =

ae I~

(Xk
P(Xy = dirty| Xg_1 = dirty, Uy,—1 = clean) = 0,

)=1

(Xy = dirty| Xg—1 = clean,Uy_1 = clean) =0
clean| Xy_1 = dirty, Ux—1 = clean) = 0,8
)=0,2

V kolikor pa cistilni sistem ni aktiviran, lahko domnevamo naslednje verjetnosti
izida

P(X}, = clean| X1 = clean, Ux_1 = null
(X
(Xk

v

)
I
Q.
)
=)
S
>
Eal
L
I
Q
=~
S
3
=
-

.,
I
S
£,

)=1
= dirty|Xy—_1 = clean,Ug_1 = null) = 0
)=0
)=1

Predpostavimo, da mobilni sistem najprej opravi akcijo in Sele nato prejme
meritev. Dolocite zaupanje bel,(zx) na osnovi opravljene akcije (predikcija) in
zaupanje bel(zy) na osnovi meritve bel(zy) (korekcija) za naslednje sekvence
opravljenih akcij in zaznanih meritev

k' Usr Zy

1 null dirty
2
3

clean clean

clean clean
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Resitev

Za boljSo preglednost bomo oznacdevali Xy, € {clean, dirty} kot Xy, € {x, Ty},
Zy € {clean, dirty} kot Zy € {zx, zr} in Uy € (clean, null) kot Uy € {ug, ug}.

Uporabimo algoritem 3. Za trenutek k£ = 1, ko je opravljena akcija ug = null,
lahko dolo¢imo predikcijo zaupanja, da so tla Cista

belp(x1) = D Pla1lro, io)bel(wo) =
roEX

= P(1'1|{f0, ﬂo)bel(fo) + P(LU1|.’IJ0, ﬂo)bel(ﬁo) =
=0-0,54+1-05=
—05

in predikcijo zaupanja, da so tla umazana

bely(Z1) = > P(&1|zo, tio)bel(wo) =

ro€eX
= P(i’ﬂii‘o, ﬂo)bel(fo) ety P(Ifﬂéto,ﬂo)bel(’l}o) =
=1-05+0-0,5=
=05

Ker nismo izvedli nobene akcije, so verjetnosti stanja nespremenjene. Glede na
meritev z; = dirty lahko dolo¢imo korekcijo zaupanja

bel(z1) = np(Z1|x1)bely(z1) = 10,2 - 0,5 = 10,1
in

bel(Z1) = np(z1|Z1)bel,(Z1) = 10,9 - 0,5 = n0,45
Ocenimo se normirni faktor n

1

= =182
0,1+0,45

n
in konéne vrednosti zaupanj

bel(z1) = 0,182 bel(s1) = 0,818

Postopek ponovimo Se za trenutek k& = 2, kjer je u; = clean in 2z = clean

bel,(x2) = 0,8364 bel,(z2) = 0,1636
bel(xz2) = 0,9761 bel(z2) = 0,0239
in trenutek k = 3, kjer je us = clean in z3 = clean
bely(z3) = 0,9952 bel,(z3) = 0,0048
bel(xz3) = 0,9994 bel(z3) = 0,0006

Resitev primera 6.7 v programskem okolju Matlab je podana v programu 6.3.



6.4. Bayesov filter 305

Program 6.3

./src/prb/example_cleaning.m

1 % Notacija: X === X(k), X’ === X(k-1)

2 disp(’Zaietno zaupanje v Cista in umazana tla’)

3 bel_Xc = 0.5; % bel(X=clean)

4 bel_X = [bel_Xc 1-bel_Xcl % bel(X=clean), bel(X=dirty)
5

6 disp(’Pogojne verjetnosti meritev senzorja’)

7 P_ZcXc = 0.8; % P(Z=clean|X=clean)

8 P_ZdXc = 1-P_ZcXc; % P(Z=dirty|X=clean)

9 P_ZdXd = 0.9; % P(Z=dirty|X=dirty)

10 P_ZcXd = 1-P_ZdXd; % P(Z=clean|X=dirty)
11 p_ZX = [P_ZcXc, P_ZcXd;

12 P_ZdXc, P_ZdXd]

13

14 disp(’Pogojne verjetnosti v primeru ¢&iscenja’)

15 P_XcXcUc = 1; % P(X=clean|X’=clean,U’=clean)
16 P_XdXcUc = 1-P_XcXcUc; % P(X=dirty|X’=clean,U’=clean)
17 P_XcXdUc = 0.8; % P(X=clean|X’=dirty,U’=clean)

18 P_XdXdUc = 1-P_XcXdUc; % P(X=dirty|X’=dirty,U’=clean)
19 p_ZXUc = [P_XcXcUc, P_XdXcUc;

20 P_XcXdUc, P_XdXdUc]

21

22 disp(’Pogojne verjetnosti, e ni nobene akcije’)

23 P_XcXcUn = 1; % P(X=clean|X’=clean,U’=null)
24 P_XdXcUn = 1-P_XcXcUn; % P(X=dirtyl|X’=clean,U’=null)
25 P_XcXdUn = 0; % P(X=clean|X’=dirty,U’=null)

26 P_XdXdUn = 1-P_XcXdUn; % P(X=dirty|X’=dirty,U’=null)
27 p_ZXUn = [P_XcXcUn, P_XdXcUn;

28 P_XcXdUn, P_XdXdUn]

29

30 U = {’null’, ’clean’, ’clean’};

31 Z = {’dirty’, ’clean’, ’clean’};

32 for k=1:length(U)

33 fprintf (’Predikcijski korak: U(%d)=%s\n’, k-1, U{k})
34 if strcmp(U(k), ’clean’)

35 belp_X = bel_X*p_ZXUc

36 else

37 belp_X = bel_X*p_ZXUn

38 end

39

40 fprintf (’Korekcijski korak: Z(%d)=%s\n’, k, Z{k})
41 if strcemp(Z(k), ’clean’)

42 bel X = p_ZX(1,:).*belp_X;

43 else

44 bel_X = p_ZX(2,:).*belp_X;

45 end

46 bel_X = bel_X/sum(bel_X)

47 end

Zacetno zaupanje v Cista in umazana tla

bel X =

0.5000 0.5000
Pogojne verjetnosti meritev senzorja
p_ZX =

0.8000 0.1000

0.2000 0.9000
Pogojne verjetnosti v primeru cisScenja
p_ZXUc =

1.0000 0

0.8000 0.2000

Pogojne verjetnosti, ¢e ni nobene akcije
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p_ZXUn =

1 0

0 1
Predikcijski korak: U(0)=null
belp X =

0.5000 0.5000
Korekcijski korak: Z(1)=dirty
bel_X =

0.1818 0.8182
Predikcijski korak: U(l)=clean
belp X =

0.8364 0.1636
Korekcijski korak: Z(2)=clean
bel_X =

0.9761 0.0239
Predikcijski korak: U(2)=clean
belp_X =

0.9952 0.0048
Korekcijski korak: Z(3)=clean
bel_X =

0.9994 0.0006

6.4.4 Primer lokalizacije

Na preprostem primeru si poglejmo princip lokalizacije, ki predstavlja osnovno
idejo algoritma za lokalizacijo Monte Carlo. Mobilni robot se premika v okolju in
zaznava svojo lego s senzorjem. Algoritem za lokalizacijo mora na podlagi meritev
senzorja in izvedenih premikov dolociti lego robota v okolju. Pri tem uporabimo
teorem popolne verjetnosti in Bayesovo pravilo, ki predstavljata osnovo za izvedbo
Bayesovega filtra. V nadaljevanju je predstavljen proces zaznavanja ob prisotnosti
negotovosti senzorja, ki mu sledi proces izvajanja akcije ob prisotnosti negotovosti
aktuatorja. Mobilni robot izvaja akcije z namenom spreminjanja stanja v okolju
(lega mobilnega sistema se spreminja z njegovim premikanjem).

Primer 6.8

Mobilni robot se vozi po krozni poti v smeri naprej ali nazaj. Pot je sestavljena
iz koncnega Stevila svetlih in temnih ploscic v naklju¢nem vrstnem redu, kjer
Sirina ploscice ustreza Sirini poti. Mobilni sistem lahko namestimo na katerokoli
osteviléeno ploscico. Brez izgube splosnosti predpostavimo, da je pot sestavljena
iz petih ploséic, kot je prikazano na sliki 6.9.



6.4. Bayesov filter 307

Akcija premik naprej

(w)

Senzor barve (z)

Mobilni robot (z)

x5 xr2

1

Slika 6.9: Pot v okolju je sestavljena iz petih ¢rnih in belih plos¢ic. Mobilni
sistem se lahko premika med njimi in zaznava barvo trenutne ploscice.

Vsaka ploscica predstavlja celico, v katero lahko postavimo mobilni sistem, torej
imamo diskretno predstavitev okolja. Mobilni sistem pozna zemljevid okolice,
torej pozna zaporedje svetlih in temnih plosé¢ic, vendar ne ve, v kateri celici se
nahaja. ZacCetno zaupanje v pozicijo mobilnega sistema je podano z enakomerno
porazdelitvijo, saj je vsaka celica enako verjetna. Mobilni sistem ima senzor
za zaznavanje svetlih in temnih ploscic, vendar so njegove meritve negotove.
Mobilni sistem se lahko premika za Zeleno stevilo plos¢ic v smeri naprej ali nazaj,
vendar je gibanje samo po sebi negotovo (lahko se premakne premalo ali prevec).
Na omenjenem primeru bosta razlozena procesa zaznavanja okolja in gibanja v
okolju.

6.4.5 Zaznavanje okolja

S pomodjo meritve, izvedene v okolici, lahko izboljsamo oceno stanja X (npr.
lokacija) v tem okolju. Predstavljajmo si, da sredi no¢i hodimo v spanju in
tavamo po hisi. Ko se zbudimo, lahko s svojimi ¢uti (vid, dotik itd.) ugotovimo,
kje se nahajamo.

Zadetno znanje o okolici lahko matemati¢no opiSemo s porazdelitvijo p(z). To
porazdelitev lahko izboljsamo ob nastopu nove meritve z (z zaupanjem p(z|z)),
e je verjetnost po opravljeni meritvi p(z|z). To lahko dosezemo z Bayesovim
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p(z|z)p(z)
p(z)  °
model senzorja, bel(x) pa je zaupanje v oceno stanja po opravljeni meritvi. V

pravilom p(z|z) = bel(z) = Verjetnost p(z|x) predstavlja statisti¢ni

procesu zaznavanja se torej izvede korekcijski korak Bayesovega filtra.

Primer 6.9

Za primer 6.8 predpostavimo, da mobilni sistem zazna temno celico Z = dark.
Mobilni sistem pravilno zazna temno celico z verjetnostjo 0,6, napako pa naredi
z verjetnostjo 0,2, kjer svetlo celico razpozna kot temno. Tako zapiSemo

p(Z =dark|X =x4) =0,6 de{3, 4}
p(Z =dark|X =x,) =0,2 be{l, 2, 5}

kjer indeks b oznacuje svetle celice, indeks d pa temne. Na zacetku mobilni
sistem ne pozna svoje pozicije, kar opisemo z enakomerno porazdelitvijo P(X =
x;) = bel(x;) =0,2,4 € {1,...,5}. Kaksna je porazdelitev lokacije po opravljeni
meritvi?

Resitev

Zelimo doloc¢iti porazdelitev pogojne verjetnosti p(X|Z = dark), kar je zaupanje
v oceno stanja po opravljeni meritvi. Zeleno verjetnost lahko dolo¢imo s pomoéjo
korekcijskega koraka Bayesovega filtra

Z = X X
p(X1|Z = dark) = p( dark| Xy) > p(X1) _

P(Z = dark)
[0,2, 0,2, 0,6, 0,6, 072}T*[0,27 0,2, 0,2, 0,2, 072]T
B P(Z = dark) -
0,04, 0,04, 0,12, 0,12, 0,04]T
B P(Z = dark)

kjer operator x predstavlja mnozenje istoleznih elementov vektorja.

IzraGunati moramo verjetnost zaznave temne celice P(Z = dark). Zato je po-
trebno oceniti polno verjetnost, tj. verjetnost zaznave temne celice ob upostevanju
vseh celic

P(Z =dark) =) P(Z = dark|X, = 2;)P(X; = z;) =
i
=p'(Z = dark|X,)p(X,) =
= [0’27 0723 0367 0767 072”:032? 0727 072? 032? O’Q]T =
= 0,36

Iskana (posteriorna) porazdelitev je torej

p(X1|Z = dark) = [0,11, 0,11, 0,33, 0,33, 0,11]7
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od koder lahko sklepamo, da se mobilni robot s trikrat vecjo verjetnostjo nahaja
v celici 3 ali 4, kot pa v preostalih treh. Porazdelitve so graficno prikazane na
sliki 6.10, resitev tega primera pa je podana v programu 6.4.

Program 6.4

./src/prb/example_sensing.m

disp(’Porazdelitev meritev senzorja p(Z=dark|X)’)
p_ZdX = [0.2 0.2 0.6 0.6 0.2]

disp(’Porazdelitev meritev senzorja p(Z=bright|X)’)
p_ZbX = 1-p_ZdX

disp(’ZacCetna porazdelitev p(X)’)

p_X = ones(1,5)/5

disp(’Verjetnost detekcije temne celice P(Z=dark)’)
P_Zd = p_ZdX*p_X.’

disp(’Porazdelitev p(X|Z=dark)’)
p_Xzd = p_zdX.*p_X/P_zd

Porazdelitev meritev senzorja p(Z=dark|X)

p_ZdX =
0.2000 0.2000 0.6000 0.6000 0.2000
Porazdelitev meritev senzorja p(Z=bright|X)
p_ZbX =
0.8000 0.8000 0.4000 0.4000 0.8000
Zagetna porazdelitev p(X)
p_X =
0.2000 0.2000 0.2000 0.2000 0.2000
Verjetnost detekcije temne celice P(Z=dark)
P_Zd =
0.3600
Porazdelitev p(X|Z=dark)
p_XZd =

0.1111 0.1111 0.3333 0.3333 0.1111
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p(Z = dark)

0.5
0

X1 X2 X3 X4 X5

p(X)

0.5
0

X1 X2 X3 X4 X5

p(X|Z = dark)

0.5
0

X1 X2 X3 X4 X5

Slika 6.10: Porazdelitve iz primera 6.9

Primer 6.10

Za primer 6.9 odgovorite na naslednja vprasanja:

1. Ali lahko veckratne zaporedne meritve izboljSajo oceno pozicije mobilnega
robota (robot med meritvami miruje)?

2. Kaksna je porazdelitev pozicije mobilnega robota, ¢e robot dvakrat zapored
zazna ploscico kot temno?

3. Kaksna je porazdelitev pozicije mobilnega robota, ¢e robot najprej zazna
ploscico kot temno nato pa kot svetlo?

4. Kaksna je porazdelitev pozicije mobilnega robota, ¢e robot najprej zazna
ploséico kot temno, nato kot svetlo, nato pa spet kot temno?

Resitev
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1. Veckratne zaporedne meritve lahko izboljSajo oceno pozicije mobilnega
robota, e je verjetnost pravilne meritve vecja od verjetnosti napake pri
meritvi.

2. Ce senzor zazna celico kot temno dvakrat zapored, je porazdelitev

p(Xs2|Zy = dark, Zy = dark) = p(Xa|z1, 22) =
_ p(22|X2) xp(Xa|z1) _
P(23|21)
0,2, 0,2, 0,6, 0,6, 0,2]7 %[0,11, 0,11, 0,33, 0,33, 0,11]T
P(22]21)

kjer je j-ti element v porazdelitvi p(Xs|z1) podan s P(Xy = z;|z1) =
pT(Xs = z;|X1)p(Xi1|z1) = P(Xy = z]21), ker nimamo vpliva na stanja
(glejte primer 6.5), ampak jih le merimo (opazujemo). Pogojna verjetnost
v imenovalcu je

P(ZQ|21) = ZP(ZQ‘XQ = {,CZ)P(XQ = xi\zl)) =

T

= p" (22| X2)p(Xa|21)) =
=[0,2, 0,2, 0,6, 0,6, 0,2][0,11, 0,11, 0,33, 0,33, 0,11]7 =
= 0,4667

Koncna resitev je

0,2, 0,2, 0,6, 0,6, 0,2]” % [0,11, 0,11, 0,33, 0,33, 0,11]7 _
0,2, 0,2, 0,6, 0,6, 0,2][0,11, 0,11, 0,33, 0,33, 0,11]T
= [0,0476, 0,0476, 0,4286, 0,4286, 0,0476]7

p(Xalz1,22) =

3. Svetla celica je pravilno zaznana z verjetnostjo p(Z = bright| X = bright) =
1 —p(Z = dark|X = bright) = 0,8 in nepravilno z verjetnostjo p(Z =
bright|X = dark) = 1 — p(Z = dark|X = dark) = 0,4. Drugo meritev
lahko izvedemo na osnovi porazdelitve p(X2|Z; = dark)

p(Xs|Zy = dark, Zy = bright) = p(Xa|z1, 22) =

[0,8, 0,8, 0,4, 0.4, 0,8]T 0,11, 0,11, 0,33, 0,33, 0,11]7
P(Zy = bright|Z, = dark)

P(Zy = bright|Z, = dark) =
= P(Zy = bright| X, = 2;) P(Xy = z;|Z = dark) =

= p"(Zy = bright| X2)p(X2|Z1 = dark) =
—[0.8, 0,8, 0.4, 0,4, 0,8][0,11, 0,11, 0,33, 0,33, 0,11]T = 0,533

p(X2|Zy = dark, Zo = bright) = [0,167, 0,167, 0,25, 0,25, 0,167)7
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4. Porazdelitev stanja po treh meritvah je

p(X3|Z1 = dark, Zy = bright, Z3 = dark) =
= (0,083, 0,083, 0,375, 0,375, 0,083]7

V programu 6.5 je prikazana Matlab koda resitve. Porazdelitev trenutnega
stanja za tri casovne trenutke je graficno predstavljena na sliki 6.11.

Program 6.5

./src/prb/example_sensing_ans34.m

1 p_ZdX = [0.2 0.2 0.6 0.6 0.2];
2 p_ZbX = 1-p_ZdX;

3 p_X = ones(1,5)/5;

4

5 disp(’Verjetnost detekcije temne celice P(Zl=dark)’)
6 P_zl = p_ZdX*p_X.~’

7 disp(’Porazdelitev p(X1|Zi=dark)’)

8 p_Xzl = p_ZdX.*p_X/P_z1

10 disp(’Verjetnost detekcije svetle celice P(Z2=bright|Zl=dark)’)
11 P_z2 = p_ZbX*p_Xzl.’

12 disp(’Porazdelitev p(X2|Zl=dark,Z2=bright)’)

13 p_Xz2 = p_ZbX.*xp_Xz1/P_z2

15 disp(’Verjetnost detekcije temne celice P(Z3=dark|Zl=dark,Z2=bright)’)
16 P_z3 = p_ZdX*p_Xz2.’

17 disp(’Porazdelitev p(X3|Zl=dark,Z2=bright,Z3=dark)’)

18 p_Xz3 = p_ZdX.*xp_Xz2/P_z3

Verjetnost detekcije temne celice P(Zl=dark)

P_z1 =

0.3600
Porazdelitev p(X1|Zi=dark)
p_Xz1l =

0.1111 0.1111 0.3333 0.3333 0.1111
Verjetnost detekcije svetle celice P(Z2=bright|Zl=dark)
P_z2 =

0.5333
Porazdelitev p(X2|Zl=dark,Z2=bright)
p_Xz2 =

0.1667 0.1667 0.2500 0.2500 0.1667
Verjetnost detekcije temne celice P(Z3=dark|Zl=dark,Z2=bright)
P_z3 =

0.4000
Porazdelitev p(X3|Zl=dark,Z2=bright,b Z3=dark)
p_Xz3 =

0.0833 0.0833 0.3750 0.3750 0.0833
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X1|Z, =dark
- pXi|Z; )

0.2

X1 X2 X3 X4 X5

- p(X2|Zy = dark,Z, = bright)

0.2

X1 X2 X3 X4 X5

" p(X3|Z, = dark,Z, = bright,Z3 = dark)

0.2

X1 X2 X3 X4 X5

Slika 6.11: Porazdelitve trenutnega stanja v treh trenutkih iz primera 6.10

6.4.6 Gibanje v okolju

Gibanje mobilnih sistemov v okolju je izvedeno s pomocjo aktuatorjev (npr.
motorna kolesa) in regulacijskega sistema (algoritem). Pri vsakem gibanju je
prisotna manjsa ali veCja negotovost, zato gibanje mobilnega sistema povecuje
negotovost stanja mobilnega sistema (lege) v okolju.

Predstavljajmo si, da stojimo v znanem okolju. Z zaprtimi o¢mi naredimo nekaj
korakov. Priblizno vemo, kako velike korake smo naredili in tudi v katero smer,
zato si lahko predstavljamo, kje v okolici se nahajamo. Vendar pa dolzine nasih
korakov niso natan¢no znane, prav tako tezko ocenimo smeri korakov, zato se
nase znanje o legi v prostoru s¢asoma zmanjsuje, saj naredimo vedno ve¢ korakov.

V primeru gibanja brez zaznavanja stanj preko meritev lahko enac¢bo (6.20)
preuredimo

+oo

p(xk|uor—1) = / (k| Tr—1, uk—1)P(Tk—1|U1:k—2) dTp 1

— 00
Zaupanje v novo stanje p(xg|ug.x—1) je odvisno od zaupanja v prejSnjem tre-
nutku p(zx_1|up.x—2) in pogojne verjetnosti prehoda med stanji p(zg|Tr—1, ug—1).
Porazdelitev p(zk|, uo.x—1) dolocimo z integracijo (ali seStevanjem v diskretnem
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primeru) vseh moznih verjetnosti prehodov p(zg|zk—1,ur—1) iz predhodnih stanj
Tr_1 v stanje xj pri poznani akciji ug_1.

Primer 6.11

Za primer 6.8 predpostavimo, da je zacetna pozicija mobilnega robota v prvi
celici (X = 1), torej lahko zacdetno stanje podamo s porazdelitvijo p(Xy) =
[1, 0, 0, 0, 0]. Mobilni sistem se lahko premika med celicami, kjer je izid akcije
premika pravilen v 80 %. V 10 % se robot premakne za eno celico premalo in v
10 % za eno prevec, kot je potrebno. To lahko opiSemo z naslednjimi verjetnostmi

prehoda med stanji

P(Xk=$i|Xk_1:$j,Uk_1Zu):0,8 zat=7j+u
P(Xk:xi|Xk_1::rj,Uk_lzu):O,l zait=7+u—1
P(Xy = 2| Xp-1 =2,Up—1 =u) =0,1 zal=j+u+1

Mobilni robot se mora premakniti za dve celici v nasprotni smeri urinega kazalca
(Up = 2). Doloéite zaupanje v pozicijo mobilnega sistema po premiku.

Resitev

Porazdelitev (zaupanje) po premiku lahko dolo¢imo tako, da izra¢unamo ver-
jetnosti pozicije mobilnega robota v vsaki celici (popolna verjetnost). Mobilni
sistem lahko prispe v prvo celico samo iz celice 3 (premik prevec), celice 4 (pravi
premik) in celice 5 (premik premalo). Tako dobimo porazdelitev prehoda v prvo
celico p(X;1 = 21| Xo,Up = 2) = [0, 0, 0,1, 0,8, 0,1]7. Po premiku se mobilni
sistem nahaja v prvi celici z verjetnostjo
P(X1 = ,T1|U0 = 2) = ZP(XI = $1|X0 = .”L'i,Uo = 2)P(X0 = LUZ‘) =
B
= p" (X1 = 21| X0, Uy = 2)p(Xo) =
=100, 0, 0,1, 0,8, 0,1][1, 0, 0, 0, 0]" =0

Verjetnost, da se mobilni sistem po premiku nahaja v drugi celici, je

P(Xy =x2|Up =2) =Y P(X1 = 22| X0 = 2;,Up = 2)P(Xo = 2;) =

x5
= p" (X1 = 2| X0, Uy = 2)p(Xo) =
=[0,1, 0, 0, 0,1, 0,8][1, 0, 0, 0, 0]F =0,1
Podobno lahko izracunamo Se verjetnosti za ostale celice
P(X: = 23Uy =2) =[0,8, 0,1, 0, 0, 0,1][1, 0, 0, 0, 0]" =0,8
P(X; = z4|Uy = 2) = [0,1, 0,8, 0,1, 0, 0][1, 0, 0, 0, 0]F =0,1
P(X; =x5|Up=2) = [0, 0,1, 0,8, 0,1, 0][1, 0, 0, 0, 0]7 =0
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Zato je zaupanje v pozicijo po premiku

p()(lﬂjb ::2) ::[07 0717 078a 0a17 O]T

Porazdelitev trenutnega (a posteriori) stanja je grafiéno predstavljena na sliki

AW N R

o N o o

6.12. V programu 6.6 je prikazana Matlab koda resitve.

Program 6.6
./src/prb/example_motion.m

disp(’Za&etno zaupanje p(X0)’);
p_X0 = [1 0 0 0 0]

P_xxu_null =
P_xxu_less =

o O o

P_xxu_more =

disp(’Zaupanje p(X1|U0=2)’);

8; % P(X=ilX’=j,U’=u), i=j+u
.1; % P(X=ilX’=j,U’=u), i=j+u-1
1; % P(X=ilX’=j,U’=u), i=j+u+l

p_xXu = [0 0 P_xxu_more P_xxu_null P_xxu_less]; 7 Za U=2
p_Xu = zeros(1,5);
for i=1:5
p_Xu(i) = p_xXux*xp_X0.7;
p_xXu = p_xXu([end 1:end-1]);
end
p_X1 = p_Xu
Za&etno zaupanje p(X0)
p_X0 =
1 0 0 0 0
Zaupanje p(X1|U0=2)
p_X1 =
0 0.1000 0.8000 0.1000 0
] Zaupanje p(Xo)
0.5
0 1 1 1 1
X1 X2 X3 X4 X5
i Zaupanje p(X|Uy =2)
05F
0
X1 X2 X3 X4 X5

Slika 6.12: Porazdelitvi trenutnega stanja v dveh trenutkih iz primera 6.11
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Primer 6.12

Kaksno je zaupanje v pozicijo mobilnega robota, ¢e robot po premiku iz primera
6.11 izvede premik za eno celico v nasprotni smeri urinega kazalca (U; = 1)?

Resitev

Porazdelitev (zaupanje) po premiku ponovno dolo¢imo tako, da za vsako celico iz-
racunamo verjetnost pozicije mobilnega robota v vsaki celici (popolna verjetnost).
V primeru premika za eno celico je prva celica dosegljiva iz celice 1 (premik
premalo), celice 4 (premik preveé) in celice 5 (pravi premik). Mobilni sistem
lahko prispe v drugo celico iz celic 1, 2 ter 5 in tako naprej. Po opravljenem
premiku lahko izracunamo naslednje verjetnosti

P(Xy = 21Uy =2,U; =1)=[0,1, 0, 0, 0,1, 0,8][0, 0,1, 0,8, 0,1, 0]" = 0,01
P(Xy = x5|Up =2,U; =1) =[0,8, 0,1, 0, 0, 0,1][0, 0,1, 0,8, 0,1, 0]" = 0,01
P(Xy = 23|Up =2,U; =1)=[0,1, 0,8, 0,1, 0, 0][0, 0,1, 0,8, 0,1, 0]7 = 0,16
P(Xo = 24Uy =2,U; = 1) = [0, 0,1, 0,8, 0,1, 0]0, 0,1, 0,8, 0,1, 0]” = 0,66
P(Xy = 25Uy =2,U; =1) =0, 0, 0,1, 0,8, 0,1][0, 0,1, 0,8, 0,1, 0]* = 0,16

Torej je zaupanje v pozicijo po drugem premiku
p(Xa|Uy = 2,U; = 1) = [0,01, 0,01, 0,16, 0,66, 0,16]"

kar je prikazano na sliki 6.13. Opazimo, da je mobilni sistem najverjetneje v celici
4. Vendar pa porazdelitev nima tako izrazitega maksimuma, kot pred izvedbo
drugega premika (primerjajte srednjo s spodnjo porazdelitvijo na sliki 6.13). To
je v skladu z izjavo, da vsak premik poveca negotovost stanj v okolici.

Implementacija resitve v programskem okolju Matlab je prikazana v programu
6.7.

Program 6.7
./src/prb/example_motion2.m
disp(’Zaietno zaupanje p(X0)’)

p_X0 = [1 0 0 0 0]

P_xxu_null % P(X=il|X’=j,U’=u), i=j+u

0.8;
0.1; % P(X=ilX’=j,U’=u), i=j+u-1
0.1;

P_xxu_less

P_xxu_more % P(X=i|X’=j,U’=u), i=j+u+l
disp(’Zaupanje p(X1]U0=2)");

p_xXu = [0 O P_xxu_more P_xxu_null P_xxu_lessl; % Za U=2
p_Xu = zeros(1,5);

for i=1:5

p_Xu(i) = p_xXuxp_X0.7’;
p_xXu = p_xXu([end 1l:end-1]);
end
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p_X1 = p_Xu

disp(’Zaupanje p(X2|U1=1)’);
p_xXu = [P_xxu_less O O P_xxu_more P_xxu_nulll; % Za U=1
p_Xu = zeros(1,5);
for i=1:5
p_Xu(i) = p_xXuxp_X1.7’;
p_xXu = p_xXu([end 1:end-1]);
end
p_X2 = p_Xu

Za&etno zaupanje p(X0)

p_X0 =
1 0 0 0 0
Zaupanje p(X1|U0=2)
p_X1 =
0 0.1000 0.8000 0.1000 0
Zaupanje p(X2|U1l=1)
p_X2 =
0.0100 0.0100 0.1600 0.6600 0.1600
i Zaupanje p(Xo)
0.5
0 1 1 1 1
X1 X2 X3 X4 X5

Zaupanje p(X,|Up = 2)

0.5F
0
X1 X2 X4 X5
| Zaupanje p(X2|U; = 1)
0.5F
0 L L
X1 X2 X3 X4 Xs

Slika 6.13: Porazdelitve stanj v treh ¢asovnih trenutkih iz primera 6.12

Primer 6.13

Mobilni robot iz primera 6.11 se na zafetku nahaja v prvi celici p(Xp) =
[1, 0, 0, 0, 0]. Nato se v vsakem ¢asovnem trenutku premakne za eno ce-
lico v nasprotni smeri urinega kazalca.
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1. Kaksno je zaupanje v pozicijo mobilnega sistema po desetem premiku?

2. H kateri vrednosti konvergira zaupanje po neskon¢nem Stevilu premikov?

Resitev

1. Zaupanje v stanje po desetih premikih je

p(X10|Uo:0) = [0,29, 0,22, 0,13, 0,13, 0,22]7

2. Po neskon¢nem stevilu premikov dobimo enakomerno porazdelitev, kjer so

vse celico enako verjetne

P(Xoo|Uoio) = [0,2, 0,2, 0,2, 0,2, 0,2]"

Te rezultate smo potrdili tudi v programskem okolju Matlab (program 6.8).

Rezultati so graficno prikazani na sliki 6.14.

Program 6.8
./src/prb/example_motion3.m

disp(’ZaCetno zaupanje p(X0)’)
p_X0 = [1 0 0 0 0]

P_xxu_null = 0.8; % P(X=ilX’=j,U’=u), i=j+u
P_xxu_less = 0.1; % P(X=ilX’=j,U’=u), i=j+u-1
P_xxu_more = 0.1; % P(X=il|X’=j,U’=u), i=j+u+l
p_-X = p_X0;
for k=1:1000

p_xXu = [P_xxu_less 0 O P_xxu_more P_xxu_null];

p_Xu = zeros(1,5);
for i=1:5
p_Xu(i) = p_xXu*xp_X.’;
p_xXu = p_xXu([end 1:end-1]);

end
p_X = p_Xu;
if k==10

disp(’Zaupanje p(X10|U9=1)’);
p_X10 = p_X
elseif k==1000
disp(’Zaupanje p(X1000|U999=1)’);
p_X1000 = p_X
end
end

Za&etno zaupanje p(X0)
p_X0 =

1 0 0 0 0
Zaupanje p(X10|U9=1)

% Za U=1
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p_X10 =

0.2949 0.2243 0.1283 0.1283 0.2243
Zaupanje p(X1000|U999=1)
p_X1000 =

0.2000 0.2000 0.2000 0.2000 0.2000

| Zaupanje p(Xo)
0.5
0 ' : ' '
X1 X2 X3 X4 X5
1 Zaupanje p(Xi0|Us = 1)
0.5
0
x1 X2 X3 X4 X5
) Zaupan je p(Xi000|Usgy = 1)
0.5
0

X1 X2 X3 X4 X5

Slika 6.14: Porazdelitve trenutnega stanja v treh casovnih trenutkih iz primera
6.13

6.4.7 Lokalizacija v okolju

Ko mobilni robot pozna zemljevid okolja, lahko oceni svojo lokacijo v okolju, tudi
Ce ne pozna svoje zacetne lokacije. Lokacijo mobilnega sistema lahko natanc¢no
dolo¢imo s porazdelitvijo. Proces ugotavljanja lokacije v okolju imenujemo
lokalizacija. Lokalizacija zdruzuje proces zaznavanja (meritev) in akcije (pre-
mik). Kot smo Ze omenili, meritve v okolju povecujejo znanje o lokaciji, gibanje
mobilnega sistema v okolju pa to znanje zmanjsuje.

Lokalizacija je postopek, pri katerem mobilni sistem stalno posodablja porazdeli-
tev, ki predstavlja njegovo znanje o svoji lokaciji v okolju. Maksimum porazdelitve
(Ce obstaja) predstavlja najverjetnejSo lokacijo mobilnega sistema.

Pri procesu lokalizacije v bistvu izvajamo Bayesov filter (algoritem 3), ki zdruzuje
procesa premikanja in zaznavanja.
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Primer 6.14

Mobilni sistem se premika v okolici iz primera 6.8, kjer najprej izvede premik,
nato pa zaznava okolico. Njegova zacetna lega ni znana, kar lahko opisemo z
enakomerno porazdelitvijo p(Xo) = bel(Xo) = [0,2, 0,2, 0,2, 0,2, 0,2].

Premik za wuy, celic v nasprotni smeri urinega kazalca je tocen v 80 %, v 10 % pa
je za eno celico prekratek ali predolg

P(Xp = 23| Xp—1 = 25, Up—1 = up—1) = 0,8 za i =7+ ug_1
P(Xp = 24| Xp_1 = 25, U1 = up_1) = 0,1 zat=j+up_1—1
P(Xp = 24| X1 =25, U1 = up_1) = 0,1 zat=j+ug_1+1

Mobilni robot pravilno zazna temno celico z verjetnostjo 0,6, svetlo celico pa

pravilno zazna z verjetnostjo 0,8. To lahko v matemati¢ni obliki zapisemo kot

P(Z = dark|X = dark) = 0,6 P(Z = bright|X = dark) =0,4
P(Z = bright| X = bright = 0,8 P(Z = dark|X = bright = 0,2

V vsakem casovnem trenutku dobi mobilni robot ukaz za premik za eno celico
v nasprotni smeri urinega kazalca (ux—1 = 1). Zaporedje prvih treh meritev je
z1.3 = [bright, dark, dark].

1. Kaksno je zaupanje v prvem trenutku k& = 17

2. Kaksno je zaupanje v drugem trenutku k& = 27

3. Kaksno je zaupanje v tretjem trenutku k = 37

4. V kateri celici se mobilni robot nahaja z najvecjo verjetnostjo po tretjem
koraku?

Resitev

Po vsakem premiku izvedemo predikcijski korak Bayesovega filtra (algoritem 3),
po meritvi (zaznavi) pa korekcijski korak.

1. Predikcijski korak izvedemo na osnovi izvedenega premika. Mali z;, i €
{1,...,5}, oznacuje, da se lokacija (stanje) mobilnega sistema nahaja v
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celici ¢, veliki X pa oznacuje vektor vseh moznih stanj v trenutku &

belp(Xl = $1) = ZP(Xl = LI’J1|X0 = a:i,uo)bel(XO = xl) =

Zq

= pl (X, = 21| X0, uo)bel(Xy) =
=[0,1, 0, 0, 0,1, 0,8][0,2, 0,2, 0,2, 0,2, 0,2]7 =0,2
bel, (X1 = z2) =108, 0,1, 0, 0, 0,1][0,2, 0,2, 0,2, 0,2, 0,2]7 =0,2
bel, (X7 = z3) =[0,1, 0,8, 0,1, 0, 0][0,2, 0,2, 0,2, 0,2, 0,2]T =0,2
bel, (X1 =z4) = [0, 0,1, 0,8, 0,1, 0][0,2, 0,2, 0,2, 0,2, 0,2]T =0,2
bel, (X1 =25)=[0, 0, 0,1, 0,8, 0,1][0,2, 0,2, 0,2, 0,2, 0,2]7 =0,2
Torej je celotna porazdelitev (zaupanje) predikcijskega koraka

bel,(X;) =[0,2, 0,2, 0,2, 0,2, 0,2]”

Na osnovi meritve se oceni korekcijski korak Bayesovega filtra
bel(X1 = x1) = np(Z1 = bright|z1) bel, (X1 = 1) =10,8-0,2 =170,16
bel(X1 = x2) = np(Z1 = bright|zs) bel, (X1 = z2) =10,8-0,2=170,16
bel(X1 = x3) = np(Z1 = bright|zs) bel, (X1 = 23) =n0,4-0,2 =1n0,08
bel(X1 = x4) = np(Z1 = bright|zs) bel, (X1 = 24) = 10,4 - 0,2 = 170,08
bel(X1 = x5) = np(Z1 = bright|zs) bel, (X1 = z5) =10,8-0,2=170,16
Ko upostevamo se normirni faktor
1
0,16 + 0,16 + 0,08 4+ 0,08 4+ 0,16

dobimo posodobljeno porazdelitev (zaupanje)

n= = 1,56

bel(X,) = [0,25, 0,25, 0,125, 0,125, 0,25]7

Enak rezultat lahko dobimo iz
T(Z, = bright| X1) ~ belT (X
bel(x;) = 2L = VrightiXy) xbel, (Y1) _
pT(Z1 = bright| X,)bel,(X1)
B [0,8, 0,8, 0,4, 0,4, 0,8] x[0,2, 0,2, 0,2, 0,2, 0,2] B
- [078’ 0’8’ 0747 074’ 0’8][0’27 0727 0’2’ 0’27 072]T

=[0,25, 0,25, 0,125, 0,125, 0,25]7

2. Postopek iz prvega primera ponovimo na zadnjem rezultatu, da dobimo
zaupanje v stanje v trenutku £ = 1. Najprej ponovimo predikcijski korak

bel,(Xo = 21) = [0,1, 0, 0, 0,1, 0,8][0,25, 0,25, 0,125, 0,125, 0,25]7 = 0,237

[ Il ]
bel,(Xo = z5) = [0,8, 0,1, 0, 0, 0,1][0,25, 0,25, 0,125, 0,125, 0,25]7 = 0,25
bel,(Xo = 23) = [0,1, 0,8, 0,1, 0, 0][0,25, 0,25, 0,125, 0,125, 0,25]7 = 0,237
bel, (X = 24) = [0, 0,1, 0,8, 0,1, 0][0,25, 0,25, 0,125, 0,125, 0,25]7 = 0,138
bel, (X2 = 25) = [0, 0, 0,1, 0,8, 0,1][0,25, 0,25, 0,125, 0,125, 0,25]7 = 0,138
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Celotna porazdelitev za predikcijski korak je
bel,(X,) = (0,237, 0,25, 0,237, 0,138, 0,138]7
za korekcijski korak pa

0,2, 0,2, 0,6, 0,6, 0,2]7 x[0,237, 0,25, 0,237, 0,138, 0,138]7
[0,2, 0,2, 0,6, 0,6, 0,2][0,237, 0,25, 0,237, 0,138, 0,138]7
= (0,136, 0,143, 0,407, 0,236, 0,079]"

bel(Xg) =

Podobno kot v prejsnjih dveh primerih lahko dobimo porazdelitev oz.
zaupanje za trenutek k = 3

bel,(X3) =[0,1, 0,131, 0,167, 0,363, 0,237]7

bel(X3) = [0,048, 0,063, 0,245, 0,528, 0,115)7
Po tretjem koraku se mobilni robot najverjetneje nahaja v cetrti celici,

z verjetnostjo 52,8 %. Druga najverjetnejsa celica je tretja celica, kjer se
nahaja z verjetnostjo 24,5 %.

Zaupanja stanj za vse tri ¢casovne trenutke so graficno predstavljena na sliki 6.15.

V programu 6.9 je prikazana Matlab koda resitve.

Program 6.9

./src/prb/example_localization.m

disp(’Za&etno zaupanje p(X0)’)
bel_X0 = ones(1,5)/5
P_xxu_null = 0.8; % P(X=ilX’=j,U’=u), i=j+u
P_xxu_less = 0.1; % P(X=il|X’=j,U’=u), i=j+u-1
P_xxu_more = 0.1; J P(X=i|X’=j,U’=u), i=j+u+l
p_ZdX = [0.2 0.2 0.6 0.6 0.2]; % p(Z=darkl|X)
pP_ZbX = 1-p_ZdX; % p(Z=bright|X)
bel_X = bel_XO;
for k=1:3

% Predikcijski korak

p_xXu = [P_xxu_less O O P_xxu_more P_xxu_nulll; % Za U=1
belp_X = zeros(1,5);
for i=1:5

belp_X(i) = p_xXu*bel X.’;
p_xXu = p_xXu([end 1:end-1]);

end

)

Korekcijski korak

if k==1

bel_X = p_ZbX.*belp_X;

else

bel_X = p_ZdX.*belp_X;

end
bel_X = bel_X/sum(bel_X);
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if k==

disp(’Zaupanji belp_X1
belp_X1 = belp_X
bel_X1 = bel_X

elseif

k==

disp(’Zaupanji belp_X2
belp_X2 = belp_X
bel_X2 = bel_X

elseif

disp(’Zaupanji belp_X3 in bel_X3’)

k==

belp_X3 = belp_X
bel_X3 = bel_X

disp(’Najmanj do najbolj verjeten poloZaj’)
[m,

end

mi] = sort(bel_X)

Zaietno zaupanje p(X0)

bel_X0 =
0.2000

0.2000 0.2000

Zaupanji belp_X1 in bel_X1

belp_X1 =
0.2000

bel_X1 =
0.2500

0.2000 0.2000

0.2500 0.1250

Zaupanji belp_X2 in bel_X2

belp_X2 =
0.2375

bel_X2 =
0.1357

0.2500 0.2375

0.1429 0.4071

Zaupanji belp_X3 in bel_X3

belp_X3 =
0.1000
bel_X3 =
0.0484
Najmanj do
m =
0.0484
mi =
1

0.1307 0.1686

0.0633 0.2450

in bel_X1’)

in bel_X2°)

0.

najbolj verjeten polozaj

0.0633 0.1149

0.

.2000

.2000

.1250

.1375

.2357

.3636

5284

2450

.2000

.2000

.2500

.1375

.0786

L2371

.1149

.5284
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belp(Xl) bel(Xl)
0.5 0.5
0 0
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
bel,(X,) bel(X,)
0.5 0.5
0 0
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
bel,,(X3) bel(X3)
0.5 0.5
0 0
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

Slika 6.15: Porazdelitev trenutnega stanja v treh trenutkih iz primera 6.14

6.5 Kalmanov filter

Kalmanov filter [6] je eden najpomembnejsih algoritmov za ocenjevanje in napo-
vedovanje stanj, ki se uporablja v Stevilnih aplikacijah na razli¢nih inzenirskih
podrodjih, tudi v avtonomnih mobilnih sistemih. Zasnovan je kot ocenjevalnik
stanj linearnih sistemov, kjer lahko signali sistema vsebujejo Sum. Algoritem
sestavljata dva (tipi¢na) koraka, predikcijski in korekcijski korak, ki se izvedeta
v vsakem Casovnem trenutku. V predikcijskem koraku napovemo najnovejse
stanje skupaj z njegovimi negotovostmi. Ko je nova meritev na voljo, se izvede
korekcijski korak, kjer se stohasti¢na meritev utezno zdruzi s napovedno oceno
stanja, pri ¢emer imajo manj negotove vrednosti veéjo utez. Algoritem je rekur-
ziven in omogoca sprotno ocenjevanje trenutnega stanja sistema ob upostevanju

negotovosti sistema in meritve.

Klasicen Kalmanov filter predvideva normalno porazdeljene Sume, torej je poraz-
delitev suma Gaussova funkcija

(@) 1 -1 <z—5)2
Tr) = ——=¢e o
P V2mo?

kjer je p srednja vrednost (matematiéno upanje) in o>

varianca. Gaussova funk-
cija je unimodalna (levo in desno od (edinega) maksimuma funkcija monotono
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0.4
~0.3
=

20.2

0.1

Slika 6.16: Primer porazdelitve zvezne spremenljivke x (polna krivulja), aproksi-
macija z Gaussovo funkcijo (¢rtkana krivulja) in aproksimacija s histogramom
(pikcasta krivulja)

pada proti 0) za razliko od splosnih porazdelitev, ki so obi¢ajno ve¢modalne
(obstaja ve¢ lokalnih maksimumov). Pri predpostavki, da je porazdelitev zve-
znih spremenljivk unimodalna, lahko Kalmanov filter uporabimo za optimalno
ocenjevanje stanj. V kolikor pa niso vse spremenljivke unimodalne, je ocena
dobljenih stanj suboptimalna. Poleg tega je vprasljiva tudi konvergenca ocene
k pravi vrednosti. Bayesov filter nima omenjenih problemov, vendar je njegova
uporabnost omejena na enostavna zvezna ali diskretna okolja s kon¢nim Stevilom
stanj.

Na sliki 6.16 je prikazan primer zvezne porazdelitve, ki ni unimodalna. Zvezna
porazdelitev je aproksimirana z Gaussovo funkcijo in histogramom (prostor je
razdeljen na diskretne intervale). Aproksimacija z Gaussovo funkcijo se uporablja
pri Kalmanovem filtru, histogram pa pri Bayesovem filtru.

Bistvo korekcijskega koraka (glejte Bayesov filter (6.21)) je zdruzevanje informacij
iz dveh neodvisnih virov, to je iz meritve senzorja in napovedi stanja na osnovi
predhodnih ocen stanja. Na primeru 6.15 si poglejmo, kako lahko optimalno
zdruzimo dve neodvisni oceni iste spremenljivke x, ¢e poznamo vrednost in
varianco (zaupanje) obeh virov.

Primer 6.15
Imamo dve neodvisni oceni spremenljivke z. Vrednost prve ocene je x; z varianco

o2, vrednost druge ocene pa je x3 z varianco o3. Kaksna je optimalna linearna
kombinacija teh dveh ocen, ki predstavljata oceno stanja & z minimalno varianco?

Resitev
Ocena optimalne vrednosti spremenljivke z je linearna kombinacija dveh meritev

T = wix1 + wals
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kjer sta parametra w; in ws iskani utezi, ki izpolnjujeta pogoj wi + we = 1.
Optimalni vrednosti utezi minimizirata varianco o2 optimalne ocene £. Varianca

ocene je torej

o? = E{(¢ — E{#})*}
= E{(wlxl —+ Walg — E{wlxl -+ wg’l}g})z}
= E{(wlxl + wozg —w E{x 1} — OJQE{.’L'Q})Q}
— E{ w1 (z1 — E{z1}) + wa (22 — E{xz}))Q}
= B{w} (&1 = B{21})” + o (22 — B{22})” + 2wrn(z1 — B{z1})(w2 — E{za}) }

= w%E{(xl — E{xl})Q} + w%E{(mg — E{Z‘Q})Z} + 2wy wo E{(z1 — E{z1})(z2 — E{x2})}
= wfo% + w%cr% + 2wiwe E{(z1 — E{z1})(xo — E{x2})}

Ker sta spremenljivki 21 in 2o neodvisni, sta neodvisni tudi razliki 1 — E{z;} in
x9 — E{xo} ter velja E{(z1 — E{z1})(z2 — E{z2})} = 0. Torej lahko zapisemo

2 _ 2 2 2 2
0° = wijo] + w305

ali pouvedbi wy =winw; =1—w

0? = (1 -w)?0? + w?ol
Istemo vrednost utezi w, ki minimizira varianco, in jo lahko pridobimo s pomocjo

odvoda variance

%02 = —2(1 —w)o? + 2wo2 =0

kjer je resitev
of
Y= o2+ o2
1103
Konéna ocena (z minimalno varianco) je

0'%1’1 + 0'%1'2

= —=5—5= 6.22
o3 + o3 (6.22)
najmanjsa varianca ocene pa
oio? 1 1\
o2 = 21 22_<2+2> (6.23)
o1+ 03 oy 03

Dobljeni rezultati potrjujejo, da vir z manjSo varianco (vecje zaupanje) bolj
prispeva h konéni oceni in obratno.
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Primer 6.16

V dolo¢enem trenutku je podana zacetna ocena stanja x = 2 z varianco 02 = 4.
Nato s senzorjem izmerimo vrednost stanja z = 4 z varianco senzorja o2 = 1.
Gaussovi porazdelitvi stanja in meritve sta prikazani na sliki 6.17.

04 T PEX‘)) ey
= —— zlx / \
=031 g / \
= / \
30.2 - e Fee \
- SN \

S0.1F e /! N

0 AL ——‘1/ - /‘/I 1 \‘T\"\--...__I

—6 —4 -2 0 2 4 6 8 10

Slika 6.17: Porazdelitev stanja (¢rtkana krivulja) in meritve (krivulja érta-pika)

Kaksna je posodobljena optimalna ocena stanja, ki zdruzuje informacijo pred-
hodne ocene stanja in trenutne meritve? Kaksna je porazdelitev posodobljene

optimalne ocene stanja?

Resitev

Na podlagi slike 6.17 lahko predvidimo, da bo srednja vrednost posodoblje-
nega stanja z’ blizje srednji vrednosti meritve, ker ima le-ta manjSo varianco
(negotovost). Z upostevanjem (6.22) dobimo posodobljeno oceno stanja

2 2
, OLx+ 07z
=g 0
0° + 03

Varianca posodobljene ocene o’ 2 je manjsa od obeh predhodnih varianc, saj inte-
gracija informacij predhodne ocene in meritve zmanjSuje negotovost posodobljene
ocene. Varianca posodobljene ocene, izracunana s pomocjo (6.23), je

=il
1 1
0'/2: <2+2> :0,8
g (o)

in standardna deviacija je
o =Vo'? =0,894

Posodobljena porazdelitev p(x|z) stanja po opravljeni korekciji na osnovi meritve

je prikazana na sliki 6.18.
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8 10

Slika 6.18: Porazdelitev zacetnega stanja (Crtkana krivulja), meritve (krivulja
érta-pika) in posodobljenega stanja (polna krivulja)

Za izpeljavo algoritma rekurzivnega ocenjevanja stanja uporabimo ugotovitve iz
primera 6.15. V vsakem c¢asovnem trenutku s pomocjo senzorja pridobimo novo
meritev stanja z(k) = x(k) + n(k), kjer je n(k) Sum meritve. Predpostavimo,

2

2(k) znana. Posodobljena optimalna ocena stanja je

da je varianca meritve o

kombinacija prejsnje ocene stanja #(k) in trenutne meritve z(k)
Fk4+1)=(1-w)ik)+wlk)z(k) = 2(k) + w(z(k) — 2(k))

Varianca posodobljenega stanja je

o?(k)o?(k)

z

D) = e+ o2 (0

= (1—w)o?(k)

kjer je

Glede na podano zadetno oceno stanja x, #(0) in njeno varianco o(0) lahko opti-
malno zdruzimo meritve z(1), 2(2), ..., z(k) tako, da ocenimo trenutno vrednost
stanja in njegovo varianco. To predstavlja osnovno idejo korekcijskega koraka
Kalmanovega filtra.

Predikcijski korak Kalmanovega filtra podaja napoved stanja ob znani vhodni
akciji. Izhodiséna ocena stanja #(k) ima porazdelitev z varianco o2(k). Na enak
nac¢in ima akcija u(k), ki izvede premik iz stanja x(k) v x(k + 1), porazdelitev
(negotovost premika) o2 (k). Na primeru 6.17 si poglejmo vrednost stanja in
njegove variance po izvedeni akciji (premiku).
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Primer 6.17

Imamo izhodi$éno oceno stanja #(k) z varianco o2(k). Nato izvedemo akcijo
u(k), ki predstavlja neposreden premik stanja z negotovostjo (varianco) o2 (k).
Kaksna je vrednost ocene stanja in njene negotovosti po premiku?

Resitev
Posodobljena ocena stanja po premiku je
Z(k+1)=2(k) + u(k)

in negotovost te ocene je

+ E{2(2(k) — E{Z(k)}) (u(k) — E{u(k)})}
= o?(k) + o2 (k)+
+E{2(2(F) — E{2(k)})(u(k) — E{u(k)}))}

Ker sta Z in u neodvisna, velja E{2 (2(k) — E{&(k)}) (u(k) — E{u(k)})} = 0 in
(6.24) se poenostavi v
o2 +1) = 02 (k) + o2 (k)

Algoritem za poenostavljeno izvedbo Kalmanovega filtra

Kalmanov filter za enostaven primer z enim stanjem je podan v algoritmu 4,
kjer velicine z oznako (-)x—1 predstavljajo ocenjene vrednosti iz predikcijskega
koraka in velicine z oznako (-), vrednosti iz korekcijskega koraka. Zavoljo boljse

preglednosti uporabimo zapis u(k — 1) = ug—1 in z(k) = zx.

Kalmanov filter je sestavljen iz dveh korakov (predikcija in korekcija), ki se
izvajata eden za drugim v zanki. V predikcijskem koraku uporabimo samo znano
akcijo in dolo¢imo (napovemo) vrednost stanja v naslednjem ¢asovnem trenutku.
Torej iz zacetnega zaupanja dolo¢imo novo zaupanje, katerega negotovost je
vecja od zacetne. V korekcijskem koraku pa uporabimo meritev za izboljsanje
napovedanega zaupanja tako, da ima ocena novega (popravljenega) stanja manjso
negotovost kot prejsnje zaupanje. V obeh korakih sta potrebna samo dva vhoda:
v predikcijskem koraku morata biti znana vrednost predhodnega stanja 1|51
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Algorithm 4 Kalmanov filter za eno stanje

function KALMAN__FILTER(Zp_1jk—1, Uk—1, 2k, Uz_l‘k_l, Our 1, Os2)
Predikcijski korak:
Tpih—1 ¢ Tp—1)h—1 + Uk—1
Okt € Thijpor T Oui_y

Korekcijski korak:

2
g
k1
Wk o2 +0,2
klk—1T%2k

Tppk < Tppp—1 + wr(2k — Tpjp—1)
Uzlk +—(1- W’f)‘72|k71

return Zyy, O’ﬁ‘k
end function

in izvedena akcija ug_1, v predikcijskem koraku pa napovedano stanje Zy;—; in
meritev z;. Podana mora biti tudi varianca premika stanja ai_ll x_1> varianca
vhodne akcije Uuﬁ_l in varianca meritve azi.

Primer 6.18

Imamo mobilnega robota, ki se lahko premika samo v eni dimenziji. Njegova
zacetna pozicija je neznana (slika 6.19). Predpostavimo zacetno pozicijo £o = 3
z veliko varianco o3 = 100 (dejanske pozicije ro = 0 ne poznamo).

Mobilni robot se v vsakem trenutku & = 0,...,4 premakne za wug4 =
(2, 3, 2, 1, 1) enot, nato pa izvedemo meritve pozicije robota z1.5 = (2, 5, 7, 8, 9)
v trenutkih k£ = 1,...,5. Pomik in meritev sta motena z normalno porazdeljenim
belim $umom, kar lahko opisemo s konstantno negotovostjo pomika o2 = 2 in
negotovostjo meritve o2 = 4.

0o 1 2 3 4 5 6 7 & 9 <X
Slika 6.19: Lokalizacija mobilnega robota v enodimenzionalnem prostoru z
neznano zacetno pozicijo

Kaksna je ocenjena pozicija robota in negotovost te ocene?
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Resitev

Dani problem lokalizacije mobilnega robota resimo z izvajanjem algoritma 4.
V prvem ¢asovnem trenutku (k = 1) najprej izracunamo predikcijo stanja in

varianco

@1‘0:.’%0‘0+U0:3+2:5
030 = Tgj0 + 0w’ = 100 + 2 = 102

nato pa izvedemo korekcijski korak Kalmanovega filtra v prvem c¢asovnem tre-
nutku k£ = 1 in dobimo

a2 102

0%t o2 102+4

= 0,962

w1 =

E1p1 = 210 +wi(z1 — #1)0) =5+ 0,962(2 — 5) = 2,113
(1 —wi)ot)o = (1—0,962)102 = 3,849

C’%u

Predikcijo in korekcijo izvedemo Se za ostale casovne trenutke. Za predikcijske
korake dobimo

Z1:510.4 = (5,00, 5,11, 7,05, 8,02, 9,01)

035104 = (102, 5,85, 4,38, 4,09, 4,02)
in za korekcijske korake

£1:5|1:5 = (25117 57057 77027 87017 9701)

03.51:5 = (3,85, 2,38, 2,09, 2,02, 2,01)

Dobljeni rezultati kazejo, da lahko pozicijo mobilnega robota dolo¢imo po ne-
kaj korakih z negotovostjo 2, kar ustreza negotovosti predikcije in meritve

954 z

< — + 012> = 2,01. Negotovost predikcijske ocene pozicije konvergira proti

4, kar je v skladu z negotovostjo korekcije iz prejsnjega casovnega trenutka in
meritve o3|, + o7 = 4,02.

6.5.1 Kalmanov filter v matricni obliki

Sisteme z ve¢ vhodi, stanji in izhodi lahko za vecjo preglednost podamo v matri¢ni
obliki. Splosni linearni sistem zapiSemo v prostoru stanj kot

z(k+1) = Ax(k) + Bu(k) + Fw(k)

(6.25)
z(k) = Cz(k) + v(k)

kjer je x vektor stanj, u je vhodni vektor (akcija), z je izhodni vektor (meritev),
A je sistemska matrika, B je vhodna matrika, F' je vhodna matrika Suma, C
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je izhodna matrika, w(k) je vektor procesnega suma in v je vektor izhodnega
(merilnega) Suma. V kolikor se Sum w doda vhodu sistema u, velja F' = B.
Predpostavimo, da sta procesni Sum w(k) in merilni Sum wv(k) medsebojno
neodvisna bela Suma z niéelno srednjo vrednostjo in kovarianénima matrikama

Qi = E{w(k)w” (k)} in R, = E{v(k)v”(k)}.

Porazdelitev stanj @, ki so motena z belim Gaussovim Sumom, podamo v matri¢ni
obliki

p(x) = det (27TP)_% e—%(m_H)TPﬂ(m_N)

kjer je P kovarianc¢na matrika napake ocene stanj.

Kalmanov filter predstavlja pristop za filtriranje in ocenjevanje zveznih stanj
linearnih sistemov, ki so motena z normalnim Sumom. Porazdelitev sSuma je
podana z Gaussovo funkcijo (Gaussov Sum). Vhodni in merilni Sum vplivata
na notranja stanja sistema, ki jih zelimo oceniti. V primeru linearnega modela
sistema je tudi filtriran Sum preko linearnega modela (npr. od vhodov do stanj)
Gaussov Sum. Torej mora biti sistem linearen, saj to zagotavlja Gaussovo
porazdelitev Suma na stanjih, kar je izhodisce pri izpeljavi Kalmanovega filtra.
Kalmanov filter bo konvergiral k pravi oceni stanj le v primeru linearnih sistemov,
ki so moteni z Gaussovim Sumom.

Kalmanov filter za linearni sistem (6.25) ima predikeijski korak

Tpjp—1 = AZp_1 -1 + Bug_1

(6.26)
Pyji—1 = APy 1 AT + FQy_F7

in korekcijski korak

-1
Kj, = Py_1C" (CPy,-:C" + Ry,)
ik = Trjp—1 + Kr(zx — C2pp—1) (6.27)
Py = Pyjp—1 — KpCPyjp—y

V predikcijskem koraku dolo¢imo napovedno oceno &j,;—1, ki temelji na predho-
dni oceni #;,_1|x—1, dobljeni iz meritev do trenutka k£ — 1, in vhodu u(k —1). V
korekcijskem koraku pa izra¢unamo trenutno oceno &y, ki temelji na meritvah
do trenutka k. Korekcijo stanja izvedemo z izra¢unom razlike med dejansko
in ocenjeno meritvijo zy — C&y,—1. Ta razlika je znana tudi kot inovacija ali
residuum meritve. Celotna korekcija stanja se izra¢una kot produkt Kalmanovega
ojacenja K}, in inovacije. Predikcijski korak lahko ovrednotimo vnaprej, medtem
ko ¢akamo na novo meritev v trenutku k. Opazimo podobnost matricnega zapisa
(6.26) in (6.27) z zapisom v algoritmu 4.

Izpeljimo izraz za kovariancno matriko napake ocene stanj v predikcijskem koraku



6.5. Kalmanov filter 333

Kalmanovega filtra

Pyji—1 = E{(@x — Zppp—1) (@ — Zppp-1)" }

= cov{wk - :fck‘k,l}

= cov{Awy_1 + Buj_1 + Fwi_1 — AZj_1_1 — Buy_1}

= cov{Amk_l + Fwg_1 — Aff?k—1|k—1}

= COV{A(wk,l — Xy qp—1) + ka,l}

= cov{A(@p_1 — &p_1)k-1) } + cov{Fwy_1}

= E{(A(zr-1 — #p—1j6-1)) (A(@r—1 — Br_15-1))" }+
+E{(Fwi_1)(Fwy_1)"}

=BE{(A(xr-1 — Br—1p-1)(@h—1 — Br_1p—1)" AT }+
+E{Fw,_jw]_F"}

= AP,_ 1 AT + FQ_F"

kjer smo v Sesti vrstici upostevali, da je procesni (vhodni) Sum wy, v trenutku k
neodvisen od napake ocene stanj v prejSnjem trenutku (g1 — £x_1jx—1)-

Izpeljimo Se izraz za kovariancno matriko napake ocene stanj v korekcijskem delu
Kalmanovega filtra

Py = E{ (@), — &) (@1, — &11)" }

= cov{:c;~C — j’klk}

= cov{xy — Brpp_1 — Ki(zk — Cgpp_1)}

= cov{mk — &y — Kip(Cxp +vp — C:%k|k_1)}

= cov{(I — K},C)(xr — Zpp—1) — Kyvp}

= cov{(I — K.C)(x}, — &pjp—1)} + cov{Kyvi}

= (I - K;,C)Pyp1(I - K;,C)T + Ky R K}
kjer smo v Sesti vrstici upostevali, da je merilni Sum v nekoreliran z ostalimi
Cleni. Dobljeni izraz za kovarian¢no matriko Py, je splosen in ga lahko upo-
rabimo za poljubno ojacenje Kj. Vendar pa izraz za Py, v (6.27) velja le za
optimalno ojacenje (Kalmanovo ojacenje), ki minimizira povprecni kvadratni
pogresek korekcije E{ |a:k — Ty k|2}. To je ekvivalentno minimizaciji vsote vseh

diagonalnih elementov kovarian¢ne matrike korekcije Py

Splosni izraz za Py, lahko razsirimo in preuredimo

Py = (I — K;,C)Pyy1 (I - K;:C)" + K Ry K[
= Pyj—1 — K ,CPyj—1 — Py C"K[ + K;,CPy_C"K}| + K R K[
= Pyj—1 — KyCPyjy — Py 1 CT K| + K (CPy_1C" + Ry K,
= Pyi—1 — KiCPyj—1 — Py 1 CT K}l + K. Si K[|

kjer Sy = CPk‘k_lcT + Ry predstavlja kovarianéno matriko inovacije (S =
cov{zk = CZyp—1 }) Vsota diagonalnih ¢lenov Py, je minimalna, ko je odvod
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Py, po Ky, enak 0

OP,M
0K},

kar vodi do optimalnega ojacenja v (6.27)

= —2(CPyy-1)" + 2K, S, =0

Ky, = Py_1C" St = Py 1CT (CPy— 1 C" + Ry,) ™!

Kovarian¢no matriko korekcije pri optimalnem ojacenju lahko izpeljemo, ce

optimalno ojacenje z desne strani pomnozimo s SkKkT in vstavimo v izraz za

Py

Py, = Pyj—1 — KiCPyj—y — Py CT K[ + K;,S, K[
= Pyjy—1 — KyCPyj—1 — Py 1C" K[ + Py CTK[
= Ppp—1 — KyCPy

Primer 6.19

Mobilni robot se vozi po ravnini in meri svojo pozicijo z GPS-om desetkrat v
sekundi (Cas vzorcéenja Ts = 0,1s). Meritev poloZzaja je motena z Gaussovim
Sumom, ki ima varianco 10m?2. Robot se premika s hitrostjo 1m/s v smeri z in
s hitrostjo 0m/s v smeri y. Varianca Gaussovega Suma hitrosti je 0,1 m?/s2. Na
zacetku opazovanja se mobilni robot nahaja v izhodis¢u z = [0, 0]7, vendar je
naSa ocena zadetne pozicije £ = [3, 3|7 z zacetno varianco

P, = 10 O
0 10

Kaksen je casovni potek ocene pozicije in njene variance?

Resitev

Do resitve lahko pridemo s pomocjo simulacije v okolju Matlab. Dolo¢imo
model gibanja robota, kjer ocena stanja predstavlja pozicijo robota na ravnini
&pjk—1 = [Tk, yk]®, vhod u = [v,, vy]T pa predstavlja hitrost robota v smereh
z in y. Torej je model za predikcijo stanja sistema

1

. 0] . Ts 0
Tklk—1 = 01 Tr—1]k—1 T

0 T,

u

Model meritve pozicije z GPS-om pa je

2—105:
Ll P

Matlab koda resitve je podana v programu 6.10, rezultati simulacije pa so
graficno prikazani na slikah 6.20, 6.21 in 6.22. Rezultati simulacije potrjujejo, da
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dobljena ocena pozicije konvergira k pravi oceni pozicije robota iz napacne zacetne
ocene. Rezultati so pricakovani, saj je srednja vrednost merjenega Suma nic.
Vendar se varianca ocene s ¢asom zmanjsuje in pade veliko pod varianco meritve
(kinemati¢nemu modelu zaupamo bolj). Kalmanov filter omogoca optimalno
zdruzitev podatkov iz razliénih virov (notranji kinematiéni model in zunanji model
meritve), ¢e so znane variance teh virov. Bralci lahko prosto eksperimentirate s
parametri sistema in opazujete potek variance ocene in stopnjo konvergence.

Program 6.10: Resitev primera 6.19

./src/prb/example_kfl.m

% Linearni model sistema v prostoru stanj

Ts = 0.1; % Racdunski korak

A = [1 0; 0 1];

B = [Ts 0; 0 Ts]l;

c = [10; 0 1];

F = B; % Sum je dodan na vhod.

xTrue = [0; O0]; % Prava zadetna vrednost stanj

x = [3; 3]; % ZacCetna ocena stanj

P = diag([10 10]); % Varianca zaetne ocene stanj
Q = diag([1 11/10); % Varianca Suma modela gibanja
R = diag([10 101); 7% Varianca Suma meritev GPS

% Zanka

N = 150;

for k = 1:N
u = [1; 0]; % Ukazi za gibanje

% Simulacija pravega poloZaja robota in pravih meritev
xTrue = A*xTrue + B*u + Fxsqrt(Q)*randn(2, 1);
zTrue = C*xTrue + sqrt(R)*randn(2, 1);

% Ocena poloZaja na podlagi znanih ukazov in meritev
%%% Predikcija

xPred = Axx + Bxu;

PPred = AxPxA.’ + Fx*Qx*F.’;

%%% Korekcija
K = PPred*C.’/(C*PPred*C.’ + R);
x = xPred + K*(zTrue - Cx*xPred);
P = PPred - KxC*PPred;

end
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(.

15

20

Slika 6.20: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
z meritvami (pikice na pikéasti krivulji) iz primera 6.19. Koné¢na pozicija robota

je oznacena s krogom.

20 F 20
__10F _10F
£ £
= o B2 = O&"‘
—10E 1 1 —10k 1 1
10 15 0 5 10 15

Slika 6.21: Prava pozicija (¢rtkana krivulja) in ocena pozicije (polna krivulja)

1 [s]

mobilnega robota na podlagi meritev (pikcasta krivulja) iz primera 6.19
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6 6
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& >
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(1 1 1 (= 1 1

0 5 10 15 0 5 10 15
t[s] t[s]

Slika 6.22: Casovni potek variance pozicije mobilnega robota iz primera 6.19
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6.5.2 RazSirjeni Kalmanov filter

Kalmanov filter je razvit za linearne sisteme, vse motnje in Sumi pa morajo biti
opisljivi z (normalno) Gaussovo porazdelitvijo. Sum z Gaussovo porazdelitvijo
je invarianten za linearne transformacije. Ce Gaussov um transformiramo z
linearno funkcijo, je dobljeni Sum Se vedno Gaussov, spremenili so se samo njegovi
parametri, ki jih lahko eksplicitno izracunamo iz znane linearne funkcije. Ravno
zaradi tega je Kalmanov filter racunsko ucinkovit. V primeru transformacije
vhodnega Gaussovega suma z nelinearno funkcijo, izhodni Sum ni ve¢ Gaussov,
ceprav ga lahko se vedno aproksimiramo z Gaussovim Sumom.

Ce je katerokoli prehajanje stanja ali izhodna enacba sistema nelinearna funkcija,
osnovni Kalmanov filter ne zagotavlja ve¢ optimalne ocene stanja. Problem neline-
arnosti lahko resimo z uporabo razsirjenega Kalmanovega filtra (EKF, angl.
extended Kalman filter), kjer nelinearnosti modela aproksimiramo z lokalnimi
linearnimi modeli. Lokalni linearni model pridobimo iz nelinearnega sistema s
pomocjo linearizacije (razvoj v Taylorjevo vrsto prvega reda) okoli trenutne ocene
stanja. Z linearizacijo dobimo obc¢utljivostne matrike (Jacobijeve matrike) za
trenutne vrednosti ocenjenih stanj in meritev. Dobljeni linearni model omogoca

izracun priblizka Suma, ki ni nujno Gaussov, z Gaussovo porazdelitvijo.

Uporaba linearizacije pri modeliranju suma omogoca racunsko ucéinkovito izvaja-
nje razsirjenega Kalmanovega filtra, kar je razlog za njegovo pogosto uporabo v
praksi. To¢nost linearne aproksimacije je odvisna od variance Suma (pri velikih
negotovostih ali amplitudah Suma je linearni priblizek slabsi, saj je signal (morda)
izven linearnega obmodja) in stopnje nelinearnosti. Zaradi pogreska, ki ga v
sistem vnaga linearizacija, se lahko konvergenca filtra poslabsa ali pa ocena sploh
ne konvergira k pravi resitvi.

Nelinearni sistem lahko zapiSemo v splosni obliki

T = f(Tp—1,Ur—1, Wr—1) (6.28)
zr=h ($k) —+ Vg .

kjer se lahko sum wy, pojavi na vhodu sistema ali pa vpliva neposredno na stanja.

Razsirjeni Kalmanov filter za nelinearni sistem (6.28) je podan s predikcijskim
korakom

Erjp—1 = F (®p—1)h—1, Uk—1) (6.29)
Pyji—1 = APy_1_1 AT + FQ_F"

in korekcijskim korakom
-1
K = Py -1C" (CPy1C" + Ry,)
Ty = Typp—1 + Ki(zr — 21) (6.30)
Py = Pyjp—1 — KxCPyjp—y

V predikcijskem koraku (6.29) uporabimo nelinearni model prehajanja stanj

za izracun ocene predikcije stanja. Za izracun kovariancne matrike Suma iz
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modela stanj (6.28) dolo¢imo Jacobijevo matriko A, ki opisuje prehajanje Suma
iz prejsnjih na trenutna stanja, in Jacobijevo matriko F', ki opisuje Sirjenje Suma
od vhodov na stanja

a=Y

z (ik—l\k—lvuk—l)
o o

Ow (Br—1jh—1,uk-1)

V korekcijskem koraku (6.30) dolo¢imo oceno meritve na podlagi predikcijske
ocene stanja £, = h (&xx_1). Dolo¢imo tudi Jacobijevo matriko C, ki opisuje

Sirjenje Suma iz stanj na izhode (meritve)

Ok

C—%(

(6.31)

Brjp—1)

Kovarianéni matriki $uma sta Qj, = E{w(k)w” (k)} in Ry, = E{v(k)vT(k)}. V
mnogih aplikacijah so uporabili razsirjeni Kalmanov filter za resevanje problema
lokalizacije kolesnih mobilnih robotov [7, 8] in gradnje zemljevida [9].

Primer 6.20

Kolesni mobilni robot z diferencialnim pogonom se premika po ravnini. Vhoda
sta translatorna hitrost v; in kotna hitrost wyg, ki sta motena z Gaussovim Sumom
z variancama var{vy} = 0,1 m?/s? in var{wy} = 0,1rad?/s?.

Mobilni robot ima senzor, s katerim lahko izmeri razdaljo do znacke, ki se nahaja
v izhodiscu globalnega koordinatnega sistema. Robot je opremljen tudi s kompa-
som, ki omogoca merjenje orientacije mobilnega robota (odklon). Predstavljena
situacija je prikazana na sliki 6.23. Meritev razdalje je motena z Gaussovim
gumom z varianco 0,5m?, meritev kota pa z Gaussovim Sumom z varianco
0,3 rad?.

Na zacetku opazovanja je prava lega robota xo = [1, 2, m/6]7, ocenjena lega
robota pa je &9 = [3, 0, 0]7 z zadetno varianco

0

Py, = 0

S O ©
S © O

0,6

Kaksen je casovni potek ocene lege mobilnega robota (k-1 = [k, Yk, @k]T)

in varianca ocene, ¢e ob vsakem casu vzorcenja Ty = 0,1s posljemo robotu ukaz
_ T _ T,

u = [vg, wg]” =105, 0,5]" 7
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Slika 6.23: Postavitev, predstavljena v primeru 6.20. Mobilni robot ima senzor za
merjenje razdalje do znacke M (namescena v izhodisc¢u globalnega koordinatnega
sistema) in kompas za dolo¢itev orientacije robota v globalnem koordinatnem
sistemu (odklon).

Resitev

Do resitve lahko pridemo s pomocjo simulacije v okolju Matlab. Dolo¢imo model
premikanja mobilnega robota. V tem primeru je kinemati¢ni model nelinearen

Tsvi—1 cos(pr—1)
Bpjk—1 = Br—1|k—1 + | Tsvrp—1sin(pr_1)
TSWk,1

Model meritve razdalje in kota pa je

;0 = [\/x% +y2

Pk

Matlab koda resitve je predstavljena v programu 6.11. Rezultati simulacije so
prikazani na slikah 6.24 — 6.28. Rezultati potrjujejo, da ocenjena lega konvergira
k pravi legi mobilnega robota, ¢eprav je bila prvotna ocena pristranska. Cleni
inovacije se ustalijo okoli nicle.
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Program 6.11: Izvedba resitve primera 6.20
./src/prb/example_ekfldefault.m

Ts = 0.1; % Radunski korak

xTrue = [1; 2; pi/6]; % Prava zaletna lega

x = [3; 0; 0]; % Ocena zaletne lege

P = diag([9 9 0.6]); % Zacetna kovariancéna matrika ocene lege

Q = diag([0.1 0.1]); % Kovarianéna matrika Suma modela gibanja

R = diag([0.5 0.3]); % Kovariancéna matrika Suma merjenja razdalje
% kota

enableNoise = 1; % OmogoCi Sum: 0 ali 1

N = 300; % Stevilo simulacijskih korakov

% Zanka

for k = 1:N
u = [0.5; 0.5]; % Ukazi (translatorna in kotna hitrost)
uNoisy = u + sqrt(Q)*randn(2, 1)*enableNoise;

% Simulacija pravih stanj (lege) robota

xTrue = xTrue + Ts*[uNoisy (1)*cos(xTrue(3));
uNoisy (1) *sin (xTrue(3));
uNoisy (2)];

xTrue (3) = wrapToPi (xTrue(3));

% Simulacija meritev s Sumom
zTrue = [sqrt(xTrue(1)"2 + xTrue(2)72 );
xTrue (3)] + sqrt(R)*randn(2, 1)*enableNoise;
zTrue (1) = abs(zTrue(1));
zTrue (2) = wrapToPi(zTrue(2));

%%% Predikcija (ocena lege in hitrosti glede na znane vhode)
xPred = x + Ts*[u(1)*cos(x(3));

u(1)*sin(x(3));

u(2)7];
xPred(3) = wrapToPi(xPred(3));

% Jacobijeve matrike

A = [1 0 -Ts*xu(1)*sin(x(3));
01 Ts*u(1)*xcos(x(3));
00 1]1;

F = [Ts*cos(x(3)) 0;
Ts*sin(x(3)) O;
0 Ts];

PPred = A*PxA.’ + FxQx*F.’;

% Ocenjene meritve
[sqrt (xPred (1)"2 + xPred(2)°2);
xPred (3)];

N
"

%%% Korekcija
d = sqrt(xPred(1)72 + xPred(2)72);
C = [xPred(1)/d xPred(2)/d 0;...

0 0 11;
K = PPred*C.’/(C*PPred*C.’ + R);
inov = zTrue - z;

inov(2) = wrapToPi(inov(2));
x = xPred + Kx*xinov;
P = PPred - K*C*PPred;

end

in

341
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Slika 6.24: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.20
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Slika 6.25: Ocenjena lega (polna krivulja) in pravo stanje (¢rtkana krivulja)
mobilnega robota z zac¢etnim nenicelnim pogreskom ocene iz primera 6.20
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Slika 6.26: Meritvi razdalje in kota iz primera 6.20
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Slika 6.27: Variance ocene lege robota iz primera 6.20
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Slika 6.28:

10 15 20 25 30

Casovni potek inovacije iz primera 6.20

Ce stanja sistema niso neposredno merljiva (kot v tem primeru), se pojavi

vprasanje spoznavnosti sistema. Analiza spoznavnosti lahko obi¢ajno zagotovi

zadostne pogoje za spoznavnost sistema. Vendar moramo analizo opraviti pred

nacértovanjem ocenjevanja stanj, saj nam to lahko pomaga pri izbiri ustrezne

mnozice merilnih signalov, ki omogocajo ocenjevanje. Spoznavnost sistema lahko

preverimo z uporabo naprednih matemati¢nih orodij ali pa izberemo preprost

grafiéni pristop, ki temelji na definiciji nerazpoznavnih stanj (glejte poglavje

6.3.3). Analiza spoznavnosti sistema iz tega primera je prikazana na sliki 6.29, iz

katere je razvidno, da so stanja sistema obicajno razpoznavna, razen v nekaterih
posebnih primerih (slika 6.29d). Ce stanja sistema opazujemo dovolj dolgo in so

regulirne veli¢ine mobilnega robota ustrezno vzbujene, je sistem spoznaven.
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R1

(a) Tri zadetne lege robotov, ki imajo enako (b) Posodobljena situacija s slike (a) po

smer in oddaljenost od znacke tem, ko so roboti prepotovali enako razdaljo
v smeri naprej. Z vidika meritev so lege
robotov razpoznavne.

4 4
R2
2 2F
o Tk 0
=9 1 1 1 —3
4 -2 0 2 4 ~4
X

(c) Tri zacetne lege robotov, ki imajo enako (d) Posodobljena situacija s slike (¢) po tem,
smer in oddaljenost od znacke — poseben ko so roboti prepotovali enako razdaljo v
primer smeri naprej. Z vidika meritev je robot v

legi 1 nerazpoznaven od robota v legi 2,

robot v legi 3 pa je razpoznaven od ostalih
dveh.

(e) Posodobljena situacija s slike (c¢) po tem, ko so roboti prepotovali isto neravno pot.
Z vidika meritev so vsi roboti razpoznavni.

Slika 6.29: Analiza spoznavnosti sistema iz primera 6.20
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Primer 6.21

Mobilni robot iz primera 6.20 naj ima malce drugacen senzor, ki meri razdaljo in
kot do znacke v izhodiscu globalnega koordinatnega sistema. Meritve kota so
znotraj intervala « € [—m, 7]. Meritev razdalje je motena z Gaussovim Sumom z
varianco 0,5 m?, meritev kota pa z Gaussovim $umom z varianco 0,3 rad?.

Slika 6.30: Postavitev iz primera 6.21. Mobilni robot ima senzor za merjenje
razdalje in kota do znacke M, ki se nahaja v izhodiscu globalnega koordinatnega

sistema.

Kaksen je casovni potek ocene lege robota (Zyjk—1 = [k, Uk, @k]T) in varianca

ocene, ¢e ob vsakem casu vzorcenja Ts = 0,1s posljemo robotu ukaz u =
T T

[vlm Wk} = [0’57 075} ¥

Resitev

Do resitve lahko pridemo s pomocjo simulacije v okolju Matlab. Dolo¢imo model
gibanja mobilnega robota. Kinemati¢ni model kolesnega mobilnega robota je
enak kot v primeru 6.20

Tsvi—1 cos(pr—_1)
Epjk—1 = Br—1)k—1 + | TsVr—15in(pr—1)
Tswkfl
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Model meritve razdalje in kota je

2 2
~ VX +
Z = k yk

~ |atan2 (0 — g, 0 — %) — @k
pri éemer je Stirikvadratna inverzna funkcija tangens definirana v (2.11).

Matlab koda resitve je podana v programu 6.12. Rezultati simulacije, prikazani
na slikah 6.31 — 6.35, kazejo, da ocenjena stanja konvergirajo k pravi legi robota.
Ceprav je ta primer podoben primeru 6.20, se lahko zgodi, da ocena ne konvergira
k pravi legi robota, ¢e so okoljski pogoji nekoliko drugacni. Primer konvergence k
napacni resitvi prikazujejo slike 6.36 — 6.40. Ker sta oba izhoda senzorja (razdalja
in kot) relativni meritvi, ocenjena stanja morda ne konvergirajo k pravi resitvi,
Ceprav je inovacija (razlika med meritvijo in predikcijo meritve) blizu nic¢elne
vrednosti (slika 6.40).

Program 6.12: Izvedba reSitve iz primera 6.21
./src/prb/example_ekf2default.m

Ts = 0.1; % Racdunski korak

xTrue = [1; 2; pi/6]; ) Prava zacdetna lega

x = [3; 0; 0]; % Ocena zaietne lege

P = diag([9 9 0.6]); % Zaetna kovarianéna matrika ocene lege

Q = diag([0.1 0.1]); % Kovarianéna matrika Suma modela gibanja

R = diag([0.5 0.3]); % Kovarian¢na matrika Suma merjenja razdalje in
% kota

enableNoise = 1; 7 Omogoci Sum: 0 ali 1

N = 300; % Stevilo simulacijskih korakov

% Loop

for k = 1:N
u = [0.5; 0.5]; % Ukazi (translatorna in kotna hitrost)
uNoisy = u + sqrt(Q)*randn(2, 1)*enableNoise;

% Simulacija pravih stanj (lege) robota

xTrue = xTrue + Ts*[uNoisy (1)*cos(xTrue(3));
uNoisy (1) *sin(xTrue(3));
uNoisy (2)1;

xTrue (3) = wrapToPi(xTrue(3));

% Simulacija meritev s Sumom (razdalja in kot)
zTrue = [sqrt(xTrue(1)~2 + xTrue(2)72);
atan2 (0-xTrue(2), 0-xTrue(1))-xTrue(3)] +
sqrt (R)*randn (2, 1)*enableNoise;
zTrue (1) = abs(zTrue(1));
zTrue (2) = wrapToPi(zTrue(2));

%%h% Predikcija (ocena lege in hitrosti glede na znane vhode)
xPred = x + Ts*x[u(1)*cos(x(3));

u(1)*sin(x(3));

u(2)];
xPred(3) = wrapToPi(xPred(3));

% Jacobijeve matrike

A = [1 0 -Ts*u(1)*sin(x(3));
0 1 Ts*u(l)*cos(x(3));
00 11;
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end

Slika 6.31: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija

NedeterministicCnost v mobilnih sistemih

F = [Ts*cos(x(3)) 0;
Ts*sin(x(3)) 0;
0 Ts];
PPred = AxPxA.’ + F*xQx*F.’;

% Ocenjene meritve
z= [sqrt(xPred(1)"2 + xPred(2)72);

atan2 (0-xPred(2), 0-xPred(1)) - xPred(3)];
z(2) = wrapToPi(z(2));

%%h% Korekcija

d = sqrt(xPred(1)72 + xPred(2)72);

C = [xPred(1)/d xPred (2)/d 0;
-xPred(2)/d~2 xPred(1)/d~2 -1];

K = PPred*C.’/(C*PPred*C.’ + R);

inov = zTrue - z;

% Izbira primerne inovacije, zaradi Suma in ciklinosti kota
inov (2) = wrapToPi (inov(2));

x = xPred + Kx*inov;
PPred - K*Cx*PPred;

o
[

iz primera 6.21
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Slika 6.32: Ocena lege (polna krivulja) in pravo stanje (¢rtkana krivulja) mobil-

nega robota z zacetnim nenicelnim pogreskom ocene iz primera 6.21
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Slika 6.33: Meritvi razdalje in kota iz primera 6.21
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Slika 6.34: Variance ocene lege robota iz primera 6.21
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Slika 6.35: Casovni potek inovacije iz primera 6.21
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Slika 6.36: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.21 (reprezentativni primer)
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tivni primer)

Slika 6.37: Ocena lege (polna krivulja) in pravo stanje (¢rtkana krivulja) mobil-
nega robota z zacetnim nenicelnim pogreskom ocene iz primera 6.21 (reprezenta-
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Slika 6.38: Meritvi razdalje in kota iz primera 6.21 (reprezentativni primer)
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Slika 6.39: Variance ocene lege robota iz primera 6.21 (reprezentativni primer)

Iﬂnnvarion
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Slika 6.40: Casovni potek inovacije iz primera 6.21 (reprezentativni primer)

Grafi¢ni prikaz spoznavnosti na sliki 6.41 omogoca vpogled v razloge za pri-
stranskost ocene. Analiza kaZe, da obstajajo stanja, ki so z vidika meritev
nerazpoznavna, ne glede na regulirne veli¢ine. Poleg tega za vsako meritev
obstaja neskon¢na mnozica stanj, zato sistem ni spoznaven. Pristranskost ocene
lahko odpravimo s hkratnim opazovanjem vec znack, saj nam to zagotovi dovolj
informacij za izbiro ustrezne resitve, kot je prikazano v primeru 6.22.
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(a) Tri zacetne lege robotov z enako odda- (b) Posodobljena situacija s slike (a) po

ljenostjo od znacke tem, ko so roboti prepotovali enako razdaljo
v smeri naprej. Z vidika meritev so lege
robotov razpoznavne.

(c) Tri zacetne lege robotov, ki imajo enak (d) Posodobljena situacija s slike (c) po tem,

kot in oddaljenost do znacke — poseben ko so roboti prepotovali enako razdaljo v

primer smeri naprej. 7 vidika meritev so vse tri
lege robotov nerazpoznavne.

(e) Posodobljena situacija s slike (c¢) po tem, ko so roboti prepotovali enako neravno
pot. Z vidika meritev so vse tri lege robotov nerazpoznavne.

Slika 6.41: Analiza spoznavnosti sistema iz primera 6.21
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Primer 6.22

Nadgradimo primer 6.21 tako, da lahko robot hkrati opazuje dve prostorsko
loceni znacki, ki sta postavljeni na xp;1 =0, ypr1 = 0 in xp0 =5, ypyr2 = 5. Vsi
ostali podatki so enaki kot v primeru 6.21.

! ®

dp

Slika 6.42: Postavitev iz primera 6.22. Mobilni robot ima senzor za merjenje
kota in oddaljenosti od znack M1 in M2.

Resitev

Prilagoditi moramo le korekcijski del algoritma. Vektor meritve sedaj vsebuje
Stiri elemente

V(@ —zx)% + (Y — yr)?
atan2 (Y1 — Ye, TM1 — Th) — Pk
V(@2 — 26)? + (yarz — yi)?
atan2 (Yo — Yk, T2 — Tk) — Pk

razdaljo in kot do prve znacke ter razdaljo in kot do druge znacke. Dolo¢imo

&y =

izhodno matriko C' (glejte (6.31)) z linearizacijo okoli trenutne predikcijske ocene

stanja (zk, yk)
ET T

d1 dl
e
C = di d3

Te Yk
d2 d2 0
5 o
2 d
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kjer je dy = \/(le —2)? + (yarn —yp)” indy = \/($M2 —z1)? + (yar2 — wi)”
Doloc¢imo tudi kovariané¢no matriko Suma meritve kot

05 0 0 0
R_|0 03 0 0
0 0 05 0

0 0 0 03

Matlab koda resitve je podana v programu 6.13. Rezultati simulacije, predsta-
vljeni na slikah 6.43 — 6.47, potrjujejo, da ocenjena stanja konvergirajo k pravi
legi robota.

Program 6.13: ReSitev primera 6.22
./src/prb/example_ekf3default.m

1 Ts = 0.1; % Racunski korak

2 xTrue = [1; 2; pi/6]; % Prava zaletna lega

3 x = [3; 0; 0]; % Ocena zaietne lege

4 P = diag([9 9 0.6]); % Zaletna kovariancna matrika ocene lege

5 Q = diag([0.1 0.1]); % Kovarianéna matrika Suma modela gibanja

6 R = diag([0.5 0.3]); % Kovarianéna matrika Suma merjenja razdalje in
7 % kota

s enableNoise = 1; 7 Omogoci Sum: 0 ali 1

9 N = 300; % Stevilo simulacijskih korakov
10 marker = [0 0; 5 5]; % Polozaji znack

12 % Zanka

13 for k = 1:N

14 u = [0.5; 0.5]; % Ukazi (translatorna in kotna hitrost)
15 uNoisy = u + sqrt(Q)*randn(2, 1)*enableNoise;

17 % Simulacija pravih stanj (lege) robota

18 xTrue = xTrue + Ts*[uNoisy (1)*cos(xTrue(3));

19 uNoisy (1) *sin(xTrue(3));

20 uNoisy (2)1];

21 xTrue (3) = wrapToPi(xTrue(3));

22

23 % Simulacija meritev s Sumom (razdalja in kot)

24 zTrue = [];

25 for m = 1:size(marker, 1)

26 dist = sqrt((marker(m,1)-xTrue(1))~2 + (marker (m,2)-xTrue(2))72);
27 alpha = atan2(marker (m,2)-xTrue(2), marker(m,1)-xTrue(1))-xTrue(3);
28 zz = [dist; alphal + sqrt(R)*randn(2, 1)*enableNoise;

29 zz (1) = abs(zz(1));

30 zz (2) = wrapToPi(zz(2));

31 zTrue = [zTrue; zz];

32 end

33

34 %%% Predikcija (ocena lege in hitrosti glede na znane vhode)
35 xPred = x + Ts*x[u(1)*cos(x(3));

36 u(1)*sin(x(3));

37 u(2)];

38 xPred (3) = wrapToPi(xPred(3));

39

40 % Jacobijeve matrike

41 A =[1 0 -Ts*u(1)*sin(x(3));

42 01 Ts*u(l)*cos(x(3));
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end

00 1]1;
F = [Ts*cos(x(3)) 0;
Ts*sin(x(3)) 0;
0 Ts1;
PPred = AxPxA.’ + Fx*Qx*F.’;

%%% Korekcija

2 = [
c = [1;
for m = 1:size(marker,1)

dist = sqrt((marker(m,1)-xPred(1))~2 + (marker(m,2)-xPred(2))72);

357

alpha = atan2(marker(m,2)-xPred(2), marker(m,1)-xPred(1))-xPred(3);

zz = [dist; alphal;
zz(2) = wrapToPi(zz(2));
z = [z; zzl;

% Matrika C za korekcijo

c = [xPred(1)/dist xPred (2)/dist 0;
-xPred (2)/dist~2 xPred(1)/dist~2 -1];
c = [C; cl;

% Kovarianéna matrika meritev
RR = diag(repmat ([R(1,1) R(2,2)], 1, size(marker, 1)));
K = PPred*C.’/(C*PPred*C.’ + RR);

inov = zTrue - z;
% Izbira primerne inovacije, zaradi Suma in cikliénosti kota
for m = 1:size(marker, 1)
inov (2*m) = wrapToPi(inov (2*m));
end
x = xPred + Kx*(inov);

P = PPred - K*Cx*PPred;
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i ®

Slika 6.43: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.22
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Slika 6.44: Ocena lege (polna krivulja) in pravo stanje (¢rtkana krivulja) mobil-
nega robota z zacetnim nenicelnim pogreskom ocene iz primera 6.22

Slika 6.45: Meritve razdalje in kota iz primera 6.22
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Slika 6.46: Variance ocene lege robota iz primera 6.22
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Slika 6.47: Casovni potek inovacije iz primera 6.22

Ponovno lahko graficno preverimo spoznavnost sistema. Tudi v tem primeru

lahko najdemo posebno situacijo, kjer so vsa stanja nerazpoznavna, kar prikazuje

slika 6.48. Na prvi pogled so obravnavana stanja z vidika meritev nerazpoznavna,

ker pa predpostavljamo, da merilni podatki vsebujejo tudi oznako (ID) znack,

ima ta posebna situacija razpoznavna stanja in sistem je spoznaven.
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(a) Dve posebni legi, ki sta z vidika meritev (b) Posodobljena situacija s slike (a) po

simetricni enakih prepotovanih relativnih poteh glede
na obe zacetni legi. Z vidika meritev sta
obe legi razpoznavni, ¢e merilni podatki
vsebujejo oznako (ID) znack.

Slika 6.48: Analiza spoznavnosti sistema iz primera 6.22
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6.5.3 Druge razlicice Kalmanovega filtra

Poleg Kalmanovega filtra za linearne sisteme in razsirjenega Kalmanovega filtra
za nelinearne sisteme [10] obstaja vrsta izpeljank.

Nepristranski Kalmanov filter (UKF, angl. unscented Kalman filter) se obi-
Cajno uporablja v sistemih z izrazito nelinearnostjo, kjer razsirjeni Kalmanov
filter morda ne zagotavlja zadovoljivih rezultatov. V tem primeru se kovariancne
matrike statisticno ocenijo na podlagi manjse mnozice vhodnih tock, ki se presli-
kajo preko nelinearne funkcije ter se nato uporabijo za oceno srednje vrednosti in
kovarianéne matrike. Te tocke, znane kot sigma tocke, so razprsene okoli ocenjene
vrednosti po nekem algoritmu (obi¢ajno je 2n + 1 tock za n dimenzij).

Informacijski filter uporablja informacijsko matriko in informacijski vektor
namesto kovarianéne matrike in ocene stanj. Informacijska matrika predstavlja
inverz kovarian¢ne matrike, informacijski vektor pa je produkt informacijske
matrike in ocene vektorja stanj. Informacijski filter je dualen Kalmanovemu
filtru, kjer je korekcijski korak racunsko bistveno enostavnejsi (le matriéna vsota),
vendar je predikcijski korak ra¢unsko bolj zahteven.

Kalman-Bucyjev filter je oblika Kalmanovega filtra za zvezne sisteme.

6.6 Filter delcev

Do zdaj smo uporabljali Bayesov filter za sisteme z diskretnim prostorom stanj
s konénim $tevilom vrednosti, ki jih spremenljivke stanj lahko zavzamejo. Ce
zelimo uporabiti Bayesov filter za zvezne spremenljivke, lahko te spremenljivke
kvantiziramo na koné¢no stevilo vrednosti. Tovrstna izvedba Bayesovega filtra za

zvezne spremenljivke stanj je splosno znana kot histogramski filter.

Za zvezne spremenljivke stanj in eksplicitno resSitev Bayesovega filtra (6.21)

moramo resiti enacbo

p(xk|z1:k; U'O:k—l) =

p(zk|zk) / (6.32)

p(xr|Tr—1, Up—1)P(Tr—1|Z1:8—1, U0:k—2) dTr_1
p(zk |21:k—1, Uo;/c—l)

kjer smo predpostavili, da so stanja vsebovana in da obravnavamo Markovov
proces (glejte poglavje 6.2). Trenutna porazdelitev stanj (6.32) je potrebna za
izrac¢un najverjetnejSe ocene stanj (matemati¢no upanje)

E{&y} = /wk|k p(xk| 21k, Woik—1) AT

Eksplicitna resitev (6.32) je mozna le za omejen nabor primerov, kjer pred-
postavimo Gaussovo porazdelitev in linearnost sistema, kar vodi v Kalmanov
filter. V primeru nelinearnih sistemov lahko nelinearnost sistema (v modelu
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gibanja, aktuatorja in/ali senzorja) lineariziramo, kar nas privede do razsirjenega
Kalmanovega filtra.

Filter delcev (angl. particle filter) je bolj sploSen pristop, kjer nista potrebna
Gaussova porazdelitev in linearnost sistema. Osnovna ideja je, da trenutno oceno
porazdelitve stanj (6.21) po opravljeni meritvi aproksimiramo z mnozico N delcev.
Vsak delec v mnozici predstavlja vrednost ocenjenega stanja a:};, ki je nakljuc¢no
vzoréena iz porazdelitve (simulacija Monte Carlo). Vsak delec podaja svojo
hipotezo o dejanskem stanju sistema. Porazdelitev je opisana s pomo¢jo mnozice
naklju¢no generiranih delcev, torej gre za neparametri¢ni opis porazdelitve, ki
ni omejen samo na Gaussove porazdelitve. Opis porazdelitve z delci omogoca
modeliranje nelinearnih transformacij Suma (model aktuatorja in/ali senzorja).
Torej lahko z delci opiSemo porazdelitev Suma, ki se iz vhodov ali izhodov sistema
prenasa preko nelinearnih funkcij na stanja sistema.

Algoritem 5 predstavlja osnoven princip filtra delcev.

Algorithm 5 Algoritem za filter delcev. Funkcijo Filter_delcev klicemo v
vsakem casovnem trenutku s trenutnimi vhodi in meritvami ter predhodno oceno
stanja.

function FILTER DELCEV(Zj_1k—1, Ur—1, 2&)
Inicializacija:
if £ > 0 then
Inicializacija mnozice N delcev x! na osnovi nakljuénega vzorcenja
porazdelitve p(xo).
end if

Predikcija:

Transformiraj (premakni) vsak delec ﬁ:z_l‘k_l na osnovi modela premika
in znanega vhoda wuy_1, kateremu dodaj nakljuéno vrednost glede na lastnosti
Suma, ki je del modela premika. Model premika podaja p(xg|Tr—1,Uk—1)-
Dobljena predikcija je mnozica delcev a?};‘k_l.

Korekcija:

Za vsak delec :i:;€|k71 oceni vrednost meritve, ki bi jo sistem izmeril, ¢e
bi njegovo stanje ustrezalo stanju delca.

Glede na opravljeno meritev in primerjavo z ocenjenimi meritvami delcev
oceni pomembnost delcev.

Nato dolo¢i nov nabor delcev glede na njihovo pomembnost z naklju¢nim
izborom delcev z verjetnostjo, ki je proporcionalna njihovi pomembnosti, torej
p(zﬂ:ﬁfdkfl). Bolj verjetni delci so izbrani veckrat, manj verjetni delci pa
manjkrat.

Ocena filtriranega stanja 2y, je enaka povprecni vrednosti vseh delcev.
end function

V zagetnem koraku moramo dolo¢iti za¢etno populacijo delcev, &) zai € 1,..., N,
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katere raztros je odvisen od zaupanja (porazdelitve) p(xg) v zafetno stanje
sistema. V kolikor zacetno stanje ni znano, je porazdelitev uniformna in so delci
enakomerno (enako verjetno) razporejeni po celotnem prostoru stanj.

V predikcijskem koraku izra¢unamo novo stanje za vsak delec glede na podan
vhod sistema. Dobljenim ocenam stanj za vsak delec dodamo naklju¢no vrednost
Suma, ki ga pricakujemo na vhodu sistema. Tako dobimo predikcijo stanja za
vsak delec jj?vl x_1- Dodani sum zagotavlja, da se delci razprsijo, saj to omogoca
oceno prave vrednosti ob prisotnosti razlicnih motenj.

V korekcijskem koraku ovrednotimo pomembnost delcev tako, da za vsak delec (iz
njegovih ocenjenih stanj) izratunamo odstopanje dejanske meritve z; od ocenjene
meritve delca 2. Razlika med dejansko in ocenjeno meritvijo je splosno znana
kot inowacija in se lahko oceni za vsak delec kot

innov;, = z, — 2,

katere vrednost je manjsa za bolj verjetne delce.

Na podlagi inovacije lahko dolo¢imo pomembnost vsakega delca oz. verjetnost
p(zk|®};, ), ki predstavlja utez wj od i-tega delca. Utez lahko dolo¢imo z
Gaussovo porazdelitvijo kot

wi — det (27TR)—%67%(innov;"v)TR_1(innovi)

kjer je R kovariancéna matrika meritve.

Zelo pomemben korak v procesu uporabe filtra delcev je vzorcenje po po-
membnosti (angl. importance sampling) glede na utezi wf. Mnozica N delcev
je naklju¢no vzorcena tako, da je verjetnost izbire doloc¢enega delca iz mnozice
sorazmerna njegovi utezi wi. Torej so delci z vecjo utezjo izbrani veckrat kot
delci z manjso utezjo, oz. delci z najmanjSo utezjo ne smejo biti nikoli izbrani.
Pristop izbora nove mnozice delcev lahko izvedemo na vec¢ nacinov. Enega od
njih bomo predstavili v nadaljevanju:

v ; . N .
o Utezi delcev wj, normiramo z vsoto vseh utezi ) ;_; wj, in tako dobimo
w

N A
w?
Zi:l k

e Kumulativno sestejemo normirane utezi, da dobimo kumulativne utezi

nove utezi wnj, =

wel = E;Zl wns, kot prikazuje slika 6.49.

o Nakljuéno izberemo N $tevil med 0 in 1 (iz enakomerne porazdelitve) in
preverimo, katere utezi pripadajo izbranim Stevilom. Torej primerjamo
kumulativne utezi wcj in nakljuéno generirana Stevila. Glede na sliko
6.49 so delci z vedjimi utezmi bolj verjetno izbrani (te utezi na sliki 6.49
zavzemajo ve¢ prostora).

e Izbrane delce uporabimo v korekcijskem koraku za oceno trenutne vrednosti

SN N i 4
stanja &y, = 21':1 wllcm?clk—l'
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Slika 6.49: Vzorcenje po pomembnosti v korekcijskem koraku filtra delcev. Utezi
delcev nanizamo eno za drugo in nato normiramo tako, da je vsota vseh delcev
enaka 1. Bolj verjetni delci zavzamejo ve¢ prostora na enotskem intervalu
in obratno. Novo populacijo delcev dolod¢imo tako, da naklju¢no izberemo (z
enakomerno porazdelitvijo) N Stevil iz enotskega intervala in pogledamo, katerim
delcem pripadajo.

V kolikor sistem miruje (trenutno stanje je enako preteklemu), je priporoceno,
da ne vzorc¢imo po pomembnosti, ampak uporabimo kar stari nabor delcev in
jim le prilagodimo nove utezi, kot je predstavljeno v [11].

V primeru 6.23 je prikazan primer uporabe filtra delcev.

Primer 6.23

Uporabite filter delcev za ocenjevanje najverjetnejsega stanja v primeru 6.22.
Pri implementaciji uporabimo N = 300 delcev. Vsi drugi podatki so enaki kot v
primeru 6.22.

Resitev

Matlab koda resitve je podana v programu 6.14, rezultati simulacije pa so
prikazani na slikah 6.50 in 6.51.

Program 6.14: Implementacija resitve primera 6.23
./src/prb/example_pfldefault.m

1 Ts = 0.1; % Racdunski korak
2 xTrue = [1; 2; pi/6]; % Prava zacetna lega
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3 x = [3; 0; 0]; % Ocena zaletne lege

4 P = diag([9 9 0.6]1); % Zadetna kovarianéna matrika ocene lege

5 Q = diag([0.1 0.1]); 7% Kovarianina matrika Suma modela gibanja

6 R = diag([0.5 0.3]); 7% Kovarianéna matrika Suma merjenja razdalje in
7 % kota

8 enableNoise = 1; 7 Omogoc¢i Sum: 0 ali 1

9 N = 300; % Stevilo simulacijskih korakov

10 marker = [0 0; 5 5]; % Polozaji znack

11

12 % Inicializacija delcev

13 nParticles = 300;

14 xP = repmat (xTrue, 1, nParticles) + diag([4 4 1])*randn(3, nParticles);
15 W = ones(nParticles, 1)/nParticles; % Vsi delci so enako verjetni

16
17 % Zanka
18 for k = 1:N

19 u = [0.5; 0.5]; % Ukazi (translatorna in kotna hitrost)
20 u_sum = u + sqrt(Q)*randn(2, 1)*enableNoise;

21

22 % Simulacija pravih stanj (lege) robota

23 xTrue = xTrue + Ts*[u_sum(1)*cos(xTrue(3));

24 u_sum(1)*sin(xTrue (3));

25 u_sum(2)];

26 xTrue (3) = wrapToPi(xTrue(3));

27

28 % Simulacija meritev s Sumom (razdalja in kot)

29 zTrue = [];

30 for m = 1:size(marker, 1)

31 dist = sqrt((marker(m,1)-xTrue(1))~2 + (marker(m,2)-xTrue(2))~2);
32 alpha = atan2(marker (m,2)-xTrue(2), marker(m,1)-xTrue(1))-xTrue(3);
33 zz = [dist; alphal] + sqrt(R)*randn(2, 1)*enableNoise;
34 zz (1) = abs(zz(1));

35 zz(2) = wrapToPi(zz(2));

36 zTrue = [zTrue; zz];

37 end

38

39 % Predikcija

40 for p = 1:nParticles

41 % Delci se premikajo glede na model Suma

42 un = u + sqrt(Q)*randn(2, 1)x*1;

43 xP(:,p) = xP(:,p) + Ts*[un(1)*cos(xP(3,p));

44 un (1) *sin(xP(3,p));

45 un(2)1;

46 xP(3,p) = wrapToPi(xP(3,p));

47 end

48

49 % Korekcija

50 for p = 1:nParticles

51 % Ocenjena meritev za vsak delec

52 z = []1;

53 for m = 1:size(marker, 1)

54 dist = sqrt((marker(m,1)-xP(1,p))"2 + (marker(m,2)-xP(2,p))"2);
55 alpha= atan2(marker(m,2)-xP(2,p), marker(m,1)-xP(1,p))-xP(3,p);
56 zz = [dist; alphal;

57 zz (1) = abs(zz(1));

58 zz (2) = wrapToPi(zz(2));

59 z = [z; zz];

60 end

61

62 Innov = zTrue - z; ) Izracun inovacije

63

64 % Izbira primerne inovacije,

65 % zaradi Suma in cikliénosti kota
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66 for m = 1:size(marker, 1)

67 iii = zTrue (2*m) - (z(2*m) + [0; 2*pi; -2%pil);
68 [tmp, index] = min(abs(iii));

69 Innov (2*m) = iii(index);

70 end

71

72 % Utezi delcev (verjetnosti delcev)

73 % Kovarianéna matrika meritev

74 RR = diag(repmat (diag(R), size(marker, 1), 1));

75 W(p) = exp(-0.5*Innov.’*inv(RR)*Innov) + 0.0001;

76 end

77

78 iNextGeneration = obtainNextGenerationOfParticles (W, nParticles);
79 xP = xP(:,iNextGeneration);

80

81 % Nova ocena stanj je povprecje vseh delcev

82 x = mean(xP, 2);

83 x(3) = wrapToPi(x(3));

84 % Usmeritev robota je dololena z najbolj verjetnim delcem
85 % namesto s povprelnim kotom vseh delcev.

86 [gg, ggil = max(W);

87 x(3) = xP(3,ggi);

88 end

Program 6.15: Funkcija, uporabljena v programih 6.14 in 6.16

./src/prb/obtainNextGeneration0fParticles.m

1 function iNextGeneration = obtainNextGenerationOfParticles (W, nParticles)

2 % Izbira glede na utezi delcev

3 CDF = cumsum(W)/sum(W);

4 iSelect = rand(nParticles, 1); % Nakljulne Stevilke

5 % Indeksi novih delcev

6 CDFg = [0; CDFI;

7 indg = [1; (1:nParticles).’];

8 iNextGeneration_float = interpl (CDFg, indg, iSelect, ’linear’);

9 iNextGeneration=round (iNextGeneration_float + 0.5); % ZaokroZevanje indeksov

10 end
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! ®

Slika 6.50: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
ter generirani delci v zadnjem koraku simulacije primera 6.23



6.6. Filter delcev 369

Slika 6.51: Ocena lege (polna krivulja) in pravo stanje (¢értkana krivulja) mobil-
nega robota z zacetnim nenicelnim pogreskom ocene iz primera 6.23
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V primeru 6.23 merimo kote in razdalje do znack, pri ¢emer moramo upostevati
omejitev kota. Primer lokalizacije, kjer merimo le razdalje do znack za oceno
lege mobilnega robota, je prikazan v primeru 6.24.

Primer 6.24

Uporabite filter delcev za oceno najverjetnejSega stanja v primeru 6.23, vendar
upostevajte le merjenje razdalj do znack. V implementaciji uporabite N = 500
delcev. Vsi ostali podatki so enaki kot v primeru 6.23.

Resitev

Matlab koda resitve je prikazana v programu 6.16. Rezultati simulacije so
prikazani na slikah 6.52 in 6.53, od koder je razvidno, da ocenjena vrednost
konvergira k pravi vrednosti podobno kot v primeru 6.23.

Program 6.16: Implementacija resitve primera 6.24
./src/prb/example_pf2default.m

Ts = 0.1; % Racdunski korak

xTrue = [1; 2; pi/6]; ) Prava zacetna lega

x = [3; 0; 0]; % Ocena zaletne lege

P = diag([9 9 0.6]); % Zaletna kovariancna matrika ocene lege

Q = diag([0.1 0.1]); % Kovarianéna matrika Suma modela gibanja

R = diag([0.5 0.3]); % Kovarianina matrika Suma merjenja razdalje in
% kota

enableNoise = 1; % OmogoCi Sum: 0 ali 1

N = 300; % Stevilo simulacijskih korakov

marker = [0 O; 5 5]; % PoloZzaji znack

R = R(1,1); % Le merjenje razdalje

% Inicializacija delcev

nParticles = 500;

xP = repmat (xTrue, 1, nParticles) + diag([4 4 1])*randn(3, nParticles);
W = ones(nParticles, 1)/nParticles; % Vsi delci so enako verjetni

% Zanka

for k = 1:N
u = [0.5; 0.5]; % Ukazi (translatorna in kotna hitrost)
u_sum = u + sqrt(Q)*randn(2, 1)*enableNoise;

% Simulacija pravih stanj (lege) robota

xTrue = xTrue + Ts*[u_sum(1)*cos(xTrue(3));
u_sum(1)*sin(xTrue (3));
u_sum(2)];

xTrue (3) = wrapToPi(xTrue(3));

% Simulacija meritev s Sumom (razdalja)

zTrue = [];
for m = 1:size(marker, 1)
dist = sqrt((marker(m,1)-xTrue(1))”"2 + (marker (m,2)-xTrue(2))72);
zz = [dist] + sqrt(R)*randn(l, 1)*enableNoise;
zz (1) = abs(zz(1));
zTrue = [zTrue; zz];

end
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end

% Predikcija

for

end

p
%
un
xP

xP

= 1:nParticles

Delci se premikajo glede na model Suma

= u + sqrt(Q)*randn(2, 1)*1;

(:,p) = xP(:,p) + Ts*[un(1)*cos(xP(3,p));
un (1) *sin(xP(3,p));
un(2)];

(3,p) = wrapToPi(xP(3,p));

% Korekcija

for

end

p
%
z
fo

en

In

%
%
RR
W (

= 1:nParticles
Ocenjena meritev za vsak delec
= [1;

rm = 1:size(marker, 1)

371

dist = sqrt((marker(m,1)-xP(1,p))~2 + (marker (m,2)-xP(2,p))~2);

zz = [dist];
zz (1) = abs(zz(1));
z = [z; zz];

d

nov = zTrue - z; % Izracun inovacije

Utezi delcev (verjetnosti delcev)

Kovarianéna matrika meritev

= diag(repmat (diag(R), size(marker, 1), 1));
p) = exp(-0.5%Innov.’*inv(RR)*Innov) + 0.0001;

iNextGeneration = obtainNextGenerationOfParticles (W,

xP =

X

P(:,iNextGeneration);

% Nova ocena stanj je povprecje vseh delcev

X =

x(3)

me

an(xP, 2);
wrapToPi (x(3));

nParticles);

% Usmeritev robota je dololena z najbolj verjetnim delcem

% namesto s povprelnim kotom vseh delcev.
[gg, ggil = max(W);

x (3)

xP(3,ggi);
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Slika 6.52: Dejanska (¢rtkana krivulja) in ocenjena (polna krivulja) trajektorija
ter generirani delci v zadnjem koraku simulacije primera 6.24
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Slika 6.53: Ocena lege (polna krivulja) in pravo stanje (¢rtkana krivulja) mobil-

nega robota z zaCetnim nenicelnim pogreskom ocene iz primera 6.24

Filter delcev je implementacija Bayesovega filtra za zvezne sisteme (zvezni pro-
stor stanj), ki omogoca opis nelinearnih sistemov in lahko uposteva poljubno
porazdelitev Suma. V primeru sistemov vecjih dimenzij postane racunsko precej
zahteven, saj je za ustrezno konvergenco filtra potrebno veliko stevilo delcev.
Stevilo potrebnih delcev naraséa z dimenzijo prostora stanj.

Dobra lastnost filtra delcev je robustnost ter zmoznost resitve problema globalne
lokalizacije in ugrabitve robota. Pri problemu globalne lokalizacije je zacetna lega
(vrednost stanj) neznana, zato se lahko mobilni robot nahaja kjerkoli v prostoru.
Pri problemu ugrabitve pa je robot premaknjen (ugrabljen) na poljubno novo
lokacijo. Robustni lokalizacijski algoritmi so sposobni resiti te tezave.
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Agenti in vecagentni

sistemi

7.1 Uvod

Eden od nacinov resevanja dolocenih nalog je vpeljava agenta ali entitete, tj.
smiselno zakljucena celota, ki je zmozna sama bolj ali manj uspesno resevati
dolocen problem. Agenti so lahko fiziéni (robot) in vplivajo na stvarni svet, ali
pa virtualni (simulacije, programske komponente) in vplivajo na virtualno okolje.
Agenti, ki delujejo v nekem okolju, sestavljajo vecagentni sistem. Vecagentni
sistemi podajajo principe za gradnjo kompleksnih sistemov s pomocjo agentov in

mehanizmov za koordinacijo delovanja neodvisnih agentov.

Osnovno vodenje ali delovanje agenta je potrebno, ne pa tudi zadostno, za
usklajeno delovanje skupine agentov pri doseganju skupnega cilja. Vodenje
vecagentnega sistema je tako vedno kombinacija ucinkovitega delovanja na nivoju

osnovnih agentov in ustreznega sodelovanja med njimi.

V nadaljevanju je podanih nekaj definicij ter klasifikacij agentov in vecagentnih

sistemov.

7.2 Vecagentni sistemi

Vecagentni sistemi so razmeroma mlada veda na podroéju umetne inteligence.
Pristopi vecagentnih sistemov posegajo na podrocje porazdeljene umetne inte-
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ligence in umetnega zivljenja. Namen prvega je razvoj organizacije sistemov,
ki so zmozni resevati probleme z razmisljanjem, drugi pa skusa modelirati zive
organizme, zato preucuje tudi zmoznost prezivetja in prilagajanja v obicajno
sovraznem okolju. Porazdeljeni sistemi so v racunalnistvu zelo dobro uvelja-
vljeni (veéprocesorski sistemi), medtem ko metode za koordinacijo ve¢ agentov v
robotiki pridobivajo na priljubljenosti.

Vecagentni sistem je sestavljen iz ve¢ popolnoma ali delno avtonomnih agentov
in podaja mehanizme za koordinacijo njihovega delovanja. Agenti izkazujejo
neko obnasanje, ki ga pogosto doloc¢ajo enostavna pravila in na katerega vpliva
komunikacija z drugimi agenti ter interakcije z okoljem in objekti v okolju. Izziv
veCagentnih sistemov je predvsem sodelovanje ve¢ agentov, kar dosezemo z izvedbo
nekaj korakov za zagotovitev njihove sinhronizacije, komunikacije (neposredno:
sistem sporo¢il, skupne tabele ipd.; posredno: opazovanje ostalih, sklepanje) in
pogajanj o delitvi dela.

Vecagentni sistem, prikazan na sliki 7.1, lahko torej opredelimo kot sistem, ki v
splosnem vsebuje

o okolje,
e mnozico pasivnih objektov,
« mnozico agentov (aktivni objekti v okolici) ter

e mnozico odnosov in metod interakcije agentov z objekti okolice.

@ REPREZENTACIJE

* KOMUNIKACUA
———————
—

ZAZNAVANJE
AKCIA

' . OBJEKTI V OKOUU
VIR - .

Slika 7.1: Prikaz vecagentnega sistema, kjer agent zaznava in vpliva na okolje
ter ostale agente v okolju

Vecagentne sisteme, kjer so edini objekti agenti ter okolje ni definirano, imenujemo
komunikacijski vecagentni sistemi. V tem primeru odnosi med agenti predstavljajo
omrezje, v katerem je vsak agent povezan z ostalimi. Taki sistemi so pogosti na
podrocju porazdeljene umetne inteligence (DAI), kjer so agenti tipi¢no programski
moduli.
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V kolikor pa so agenti situirani v okolju ter komunikacija poteka le posredno
preko zaznavanja in delovanja na okolje, imamo izkljucno situiran vecagentni
sistem. Splosni vecagentni sistemi imajo lastnosti obeh omenjenih skrajnih oblik.

7.3 Agenti

Ceprav stroga, uveljavljena definicija agenta ne obstaja, lahko re¢emo, da agenta
predstavlja entiteta v nekem okolju, ki lahko okolje tudi zazna in v njem deluje,
ima cilje, znanje iz dolo¢enega podrocja ter zmoznost odloCanja. Agent ima
senzorje, s katerimi zaznava okolje (npr. senzor blizine zazna oviro), aktuatorje,
s katerimi vpliva na okolje (npr. kolesni pogon premakne robota in/ali odrine
oviro), ter znanje o okolju, v katerem deluje in mu omogoca, da s pomocjo
informacije iz senzorjev upravlja svoje aktuatorje za doseg cilja (npr. doseg
Zelene lokacije).

Nastejmo nekaj lastnosti, ki opisujejo fizicnega ali virtualnega agenta:

e zmoznost delovanja v okolju,

e zmoznost komunikacije z ostalimi agenti,

e ima nabor svojih tezenj in ciljev,

 ima dostop do virov (napajanje, CPU, spomin, informacije),
o ima zmoznost zaznavanja svoje okolice (do dolo¢ene mere),

 ima svojo (delno) predstavitev okolice, ali pa je sploh nima,
e lahko se reproducira,

e njegovo delovanje stremi k dosegu ciljev, kjer uporablja vire, svoja zna-
nja, zaznave senzorjev, svojo predstavitev okolice (0z. znanje o njej) in

komunikacijo.

Pomembna lastnost agenta je avtonomnost, kar pomeni, da agent ni upravljan
preko operaterja ali drugega agenta, ampak je sposoben samostojnega delovanja
glede na lastne cilje in situacije, v katerih se znajde. Avtonomni agent ima tudi
dostop do lastnih virov, kot so napajanje, pomnilnik, informacije, itd. Agentovo
zaznavanje je omejeno z lastnostmi lastnih senzorjev, zato ima le delno predstavi-
tev okolja, saj ne more zaznavati vsega dogajanja v okolju. Na voljo so mu samo
lokalne informacije, torej tiste v dosegu njegovih senzorjev, zato so vecagentni
sistemi ve¢inoma decentralizirani (obnasanje agentov ni centralno nadzorovano).
Agent ima svoje trenutno stanje v okolju predstavljeno s spremenljivkami, njegovo
delovanje pa je odvisno od stanja, v katerem se nahaja. Ve¢ ko ima moznih stanj,
na vec¢ razlicnih na¢inov lahko deluje. Agenti v veCagentnem sistemu se lahko
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razlikujejo po lastnostih, obnasanju, virih, zmoznosti predstavitev, sposobnosti
pomnjenja dogodkov in interpretaciji razpolozljivih informacij.

Agent mora imeti sposobnost prilagajanja. Hkrati mora biti njegovo vgrajeno
znanje fleksibilno, da ga lahko dopolnjuje s spreminjanjem doloc¢enih parametrov.
Mozni so tudi doloc¢eni algoritmi, ki slonijo na evoluciji zivih bitij, ter ostali
algoritmi strojnega ucenja (genetski algoritmi, nevronske mreze, ucenje z nagra-
jevanjem). Uspeh teh metod pogojuje dejstvo, da je problem umetne inteligence
pogosto kombinacijsko preve¢ kompleksen, da bi bil resljiv v realnem casu. Zato
se inteligenca agenta skoraj vedno sestoji le iz dveh virov: znanja, pridobljenega

na osnovi lastnih izkuSenj (ucenje, adaptiranje), ter vgrajenega znanja.

Agent ima za razliko od ostalih programov in objektno orientiranega programira-
nja naslednje lastnosti:

e zaznava okolje, v katerem se nahaja,
« ima sposobnost interakcije z ostalimi agenti in (najpomembnejse)

e na poti k izpolnjevanju lastnih ciljev se odloca in deluje samoiniciativno.

Objekti so pasivni elementi, ki nimajo moznosti izbire svojega delovanja, temvec
delujejo le na zunanjo iniciativo.

7.4 Arhitektura in delovanje agentov

Klasic¢en in uveljavljen nacin vodenja v mobilni robotiki in avtomatiki (od leta
1985 dalje) temelji na nacelu zaznaj-planiraj-ukrepaj (SPA, angl. sense-plan-
act). Sistem najprej s senzorji pridobi informacijo iz okolja, nato pa zgradi model
z uporabo pridobljene informacije in nacrta, oz. izracuna naslednji korak. Agent
mora torej ugotoviti, kako naj se z vgrajeno strategijo odzove na zaznane podatke.
Na koncu agent ukrepa in izvede akcijo. SPA poteka v iteracijah — po zaznavanju,
planiranju in ukrepanju se celoten cikel ponovi.

SPA je osnova avtomatskega vodenja, kjer se poskusSa postopno zmanjsevati
pogresek med Zelenim in dejanskim stanjem mobilnega (ali kateregakoli drugega)
sistema (slika 7.2).

7.4.1 Kognitivni agenti

Kognitivni agenti (angl. deliberative agents) delujejo po principu SPA. Ko agent
zazna okolico s pomocjo modela sveta (simboli¢na predstavitev okolice), naredi
nacrt za izvedbo akcije.

Agent dolo¢i nacrt resevanja problema (slika 7.3) korak za korakom (interpretacija

zaznav senzorjev, modeliranje, odlo¢anje, planiranje, izvedba opravil, upravljanje
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okolje

zaznaj planiraj
(meri, ocent), (izracunaj)

ukrepaj
(izvedi)

Slika 7.2: Osnovni nac¢in upravljanja agenta (SPA)

aktuatorjev) na osnovi svojega zaznavanja okolja. Vsak tak agent ima obic¢ajno
bazo podatkov in znanje, potrebno za resevanje problemov. V nepredvidljivem
dinamicnem okolju agent z izkljuéno kognitivnimi sposobnostmi ni uc¢inkovit, saj
njegov nacrt reSevanja problemov ne more predvideti sprememb okolja in bi ga
moral nenehno spreminjati.

senzorji aktuatorji

odlocanje

i)
=| &
Q
| =

L
2| 9
L | O
| g

planiranje
izvedba opravil

Slika 7.3: Kognitivni agent naredi nacrt resevanja problema na osnovi zaznav

Kognitivni agenti imajo nedvomno prednost v statiénih in poznanih okoljih. V
primeru nepri¢akovanih dogodkov, glede na njihov model sveta, pa lahko odpovejo.
Potrebujejo precej natanc¢en model sveta (npr. zemljevid), ki ga je pogosto tezko
dobiti in vzdrzevati. Za svoje delovanje potrebujejo veliko procesno moc, kar se
lahko odraza v poc¢asnem odzivu na spremembe v oklici.

7.4.2 Odzivni agenti

Odzivni agenti (slika 7.4) so zmozni povezati svoje zaznavanje okolja z akcijami
vodenja (razlicno vnaprej definirano obnasanje) in s tem kar najbolje izvrsiti
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naloge brez gradnje internega modela okolja (kar je sorodno obnasanju manjsih
Zivali, npr. mravelj).

Delujejo torej po principu zaznaj-deluj brez uporabe simboli¢ne predstavitve
okolja (modela sveta) in planiranja. ZanasSajo se le na eno ali ve¢ enostavnih
pravil, ki neposredno povezejo zaznave senzorjev z akcijami.

V osnovi odzivni agenti nimajo stanj (ne shranjujejo nekaterih preteklih podatkov),
so brez spomina in internega modela okolice, nimajo moznosti planiranja akcij
vnaprej ter niso zmozni ucenja. Njihova prednost je ravno v njihovi preprostosti,
kar jim omogoca hiter (trenuten) odziv.

okolje

odzivna pravila

odziv 1

odziv 2

senzorji  |—» odziv 3 —>| aktuatorji

odziv N

Slika 7.4: Odzivni agent reagira na zaznave brez nacrtovanja

7.4.3 Hibridni agenti

V nepredvidljivem dinami¢nem okolju so primernejsi hibridni agenti, ki zdruzujejo
dobre lastnosti odzivnih in kognitivnih agentov. Obstajajo agenti, ki nimajo
celotne ali obsezne simboli¢ne predstavitve sveta okoli njih, ampak si zapomnijo
le nekaj pomembnejsih parametrov, kar jim lahko pomaga pri boljsi asociaciji
zaznav z akcijami ali izvedbi bolj dovrsene akcije (npr. agent si lahko zapomni,
da je v blizini stene).

Nadalje ima lahko agent zmoznost adaptacije. To pomeni, da spreminja vzorce
delovanja (obnaSanje) in se prilagaja spreminjajo¢im se razmeram glede na svoje
prejsnje izkusnje. Z drugimi besedami lahko temu recemo tudi uéenje. Za ucenje
na individualni ravni mora imeti agent spomin — torej pri popolnoma odzivnih
agentih to ni mogoce.

Obstaja tudi prilagodljivost na ravni sistema, ki je mogoca tudi pri vecagentnih
sistemih, sestavljenih iz odzivnih agentov. Ce se agenti v sistemu lahko reprodu-
cirajo, se lahko poveca stevilo tistih agentov, ki so bolj primerni za novonastale
razmere.
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7.4.4 QOdzivno vedenjski agenti

Njihovo delovanje je enako delovanju odzivnih agentov, le da namesto enostavnih
pravil uporabljajo vloge. Vloge predstavljajo module, ki se izvajajo paralelno
(slika 7.5), torej ima vsak modul dostop do senzorjev in lahko neposredno upravlja
z aktuatorji. Vsaka vloga vsebuje neko znanje v obliki algoritmov vodenja, ki
agentu omogocajo primerno delovanje v doloceni situaciji (sledenje steni, iskanje
predmeta, izogibanje oviri, prihod v zacetni polozaj itd.).

Podajmo nekaj lastnosti vedenjskih agentov:

o vsebujejo razliéne vloge za doseg ali sledenje ciljem,

¢ vhodne informacije prejmejo vloge od senzorjev in drugih vlog ter posredu-
jejo ukaze aktuatorjem,

o vloge so lahko kompleksne in sestavljene iz razlicnih akcij (akcije: stop,
naprej, levo itd.; vloge: sledenje cilju, izogibanje oviri).

Ker se vloge izvajajo hkrati in neodvisno, so taki agenti primerni za aplikacije v
realnem Casu. Vloge imajo lahko stanja (si zapomnijo zgodovino), model okolice
in zmoznost planiranja vnaprej, kar omogoca izvedbo uc¢inkovitih vlog.

okolje

odzivna pravila

vloga 1

vloga 2

senzorji  |—» —>| aktuatorji

vloga 3

Slika 7.5: Vedenjski agent se odziva na zaznave z izvajanjem vlog

Primer 7.1

Poglejmo si primer izvedbe enostavnega kognitivnega agenta in odzivnega agenta.
Agent je mobilni robot, ki Zeli iti skozi zaklenjena vrata.

Resitev
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Kognitivni agent lahko planira svoje delovanje, torej bo zgradil nacrt v vec
zaporednih korakih v obliki:

Nacrt odpiranja vrat:

Grem do mesta, kjer je spravljen kljuc,
vzamem kljuc,

grem do vrat,

odprem vrata s kljucem.

Odzivni agent pa se brez nacrtovanja ali razmisljanja odzove na situacije iz
okolja. Njegovo obnasanje omogoca skupek enostavnih pravil Pi oz. vlog:

P1: Ce sem pred vrati in imam klju&, potem odprem vrata.
P2: Ce sem pred vrati in nimam klju&a, potem poskusim
odpreti vrata.
P3: Ce se vrata ne odprejo in nimam kljuéa,
potem grem iskat kljuc.
P4: Ce iSCem klju¢ in vidim klju& pred sabo, potem

vzamem kljué in grem proti vratom.

Vidimo, da kognitivni agent zgradi nacrt, medtem ko ima odzivni agent ze
predhodno vgrajena pravila. Kognitivni agent bo gotovo odprl vrata hitreje, z
manj akcijami, saj lahko predvidi zaporedje potrebnih akcij. Odzivni agent pa
bo najprej Sel do vrat in nato ugotovil, da nima kljuca in da ga mora iti iskat.
Vendar je odzivni agent bolj robusten: ¢e so vrata odprta, jih bo odprl takoj, ne
da bi Sel po kljué. Kognitivni agent pa bo Sel najprej po kljué, saj njegov model
ne predvideva moznosti, da so vrata mogoce ze odprta.

7.4.5 Osnovne vedenjske arhitekture

Moznih je ve¢ nacinov izvedbe arhitekture odzivno vedenjskih agentov. Osnovni
arhitekturi sta tekmovalna in vsebovana shema.

Tekmovalna shema

Tekmovalna shema (angl. competitive architecture, motor schema architecture) je
princip, ki ga je vpeljal Arkin [1]. Vloga sestoji iz sheme percepcije, ki procesira
vhode iz senzorjev in jih posreduje motornim shemam. Tekmovalne ali motorne
sheme generirajo izhode za vodenje, ki doloc¢ajo premikanje robota, da doseze
cilj. Gre za to, da ve¢ konkurencnih vlog (shem) posreduje svoje ukaze (hitrost,
smer gibanja itd.) agentu, ukazi posameznih vlog pa so z uporabo potencialnega
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polja predstavljeni kot vektorji, ki so normirani glede na percepcijo in motorno
shemo vloge. Prispevki posameznih vlog se nato zdruzijo v konc¢en ukaz, ki je
posredovan aktuatorju agenta. Druga moznost pa je, da se izmed vseh vlog izbere
le najbolj uspesno (uspesnost se oceni na podlagi dolo¢enih parametrov).

V osnovi gre za privlacna in odbojna polja. Predstavljajmo si primer, kjer
agenta privladi cilj (vektor smeri voznje je v smeri cilja), hkrati pa ga odbija
od ovire (vektor Zelene smeri voZnje kaze stran od ovire). BliZe je agent oviri,
bolj prevladuje odbojni vektor smeri in privlacni vektor proti cilju se zmanjsuje.
Koncna usmeritev je vektorska vsota teh dveh normiranih vektorskih polj.

Primer 7.2

Poglejmo si primer vedenjskega agenta, katerega vloge so organizirane v tekmo-
valno oz. motorno shemo. Imamo preprostega raziskovalnega robota, ki raziskuje
okolje in ob zaznavi predmeta gre ponj. Ko mu zmanjka energije, gre napolnit
akumulatorje. Nabor vlog za izvedbo delovanja agenta povezemo v strukturo,
kot nakazuje slika 7.6.

- ™~
agent

koordinator

Raziskuj okolje

senzorji Pojdi in primi objekt

Z —| aktuatorji

%

Polni baterije

/

Slika 7.6: Tekmovalna shema
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Vsebovana shema

Vsebovana shema (angl. subsumption architecture) je na¢in dekompozicije inteli-
gentnega obnasanja agenta v ve¢ preprostih vlog, ki so organizirane po nivojih
glede na prioriteto. Posamezne nivoje lahko zgradimo z uporabo konc¢nih av-
tomatov. Pojem je vpeljal Rodney Brooks [2]. Vse vloge se izvajajo hkrati in
prejemajo informacijo od senzorjev. Vloge z visjo prioriteto posredujejo ukaze
aktuatorjem. Tu velja opomniti, da dolo¢ene vloge (opravila) lahko onemogocijo
ali spremenijo percepcijo, pa tudi povozijo akcije nizjih prioritetnih vlog.

Vloge lahko onemogodéijo svoje delovanje (onemogocijo vhode ali izhode), ¢e na
podlagi senzorjev ni izpolnjen pogoj za njihovo izvajanje. Vloga z visjo prioriteto
lahko onesposobi vloge z nizjo prioriteto. Vloga z najvisjo prioriteto, ki ostane
aktivna, doloc¢a novo akcijo.

Vloge 7z visjimi prioritetami (v vi§jih slojih) so bolj abstraktne in lahko popol-
noma dosezejo cilj. Visje vloge vkljuc¢ujejo funkcije nizjih vlog. Vloge z nizjimi
prioritetami (niZji sloji) pa so preprostejSe in hitro odzivne (refleksi).

Primer 7.3

Poglejmo si primer vedenjskega agenta, katerega vloge so organizirane v vsebovano
shemo. Raziskovalnega robota z nekoliko nadgrajeno funkcionalnostjo primera
7.6 podaja slika 7.7. Nabor vlog za izvedbo delovanja agenta povezemo v
vsebovano strukturo, kjer so vloge razdeljene v nivoje. Vloge v visjih nivojih
lahko onemogocijo vloge v nizjih nivojih, kar nakazujejo krogci.
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Izogibanje ovir agent
Polnjenje akumulatorjev —
Optimizacija poti
Gradnja zemljevida
Raziskuj

Prijemanje objekta

senzotji » Naklu¢no tavanje

N J

aktuatorji

Slika 7.7: Vsebovana shema

7.4.6 Ostale delitve agentov in vecagentnih sis-

temov

Vecagentne sisteme lahko obravnavamo glede na stiri lastnosti agentov:

« granulacija agentov (fina ali groba),
« raznolikost znanja agentov (splosno ali specializirano),

« znanje agenta (konstruktivno ali tekmovalno, ekipno ali hierarhi¢no, stati¢no

ali dinami¢no spreminjanje vloge) in

o komunikacija agentov (oglasna deska ali sporoéila, malo ali veliko komuni-
kacije, neposredna ali posredna vsebina).



386 Agenti in veclagentni sistemi

Ponavadi imajo agenti grobo granulacijo in visoko stopnjo komunikacije, v ostalih
lastnostih pa se razlikujejo. Skupina sodelujocih agentov je pri resevanju komple-
ksnega problema lahko bolj prilagodljiva in ekonomi¢na kot en sam zmogljivejsi
agent, ¢e le uspemo ucinkovito resiti oz. zagotoviti njihovo koordinacijo. Dejstvo
pa je, da ni smiselno pretiravati z vecanjem Stevila agentov pri opravljanju nekega
opravila, ker je v tem primeru vlozeno prevec energije v njihovo koordinacijo,
komunikacijo in pogajanja. Isto opravilo lahko enako ali bolj u¢inkovito opravi
tudi manj agentov.

7.5 Primeri uporabe vecagentnih siste-

mov

Podrocje uporabe vecagentnih sistemov je zelo siroko. Tako imamo aplikacije
v avtomatizaciji proizvodnje (avtomobilska proizvodnja, avtonomni vozicki v
skladiscih) in robote skavte (nevarna obmodja). Nekatere aplikacije posiljajo
robote skavte v izvidnico, kjer le-ti med seboj sodelujejo, raziskujejo in kartirajo
teren. To so lahko simulacije ali pa resni¢ne aplikacije (vojska, vesolje, nevarni
tereni: globina, vulkani, minska polja itd.). Modele vecagentnih sistemov lahko
uporabljamo za simulacijo transporta in prometa, za raziskovanje potrosniskih
in financ¢nih trgov, preucevanje razsirjanja epidemij, optimizacijo proizvodnje in
logistike, simulacijo premikov bojnih enot na bojis¢u in simulacijo socialnih mrez.
Vecagentni sistemi se uporabljajo tudi v filmski industriji za simulacijo velikih
mnozic ljudi. V filmih, kot so Avatar, Gospodar prstanov, King Kong ipd., je
bil uporabljen programski paket MASSIVE (angl. Multiple agent simulation
system in virtual environment). Nekateri modeli so enostavnejsi in zajemajo
le bistvene lastnosti sistemov, drugi pa so kompleksnejsi in preverjeni tudi za
uporabo podatkov iz realnega sveta. S pomocjo razvoja specialne programske
opreme za modeliranje vecagentnih sistemov in povecevanjem racunske moci
racunalnikov je mozno ustvarjati vedno bolj napredne vecagentne aplikacije, s
katerimi pridemo do to¢nejsih rezultatov in ugotovitev na raznovrstnih strokovnih
podrocjih.

7.5.1 Robotski nogomet — avtonomna igra ko-
lesnih robotov

Prikazan je primer, kako napisati program za kolesne robote, da ti lahko avto-
nomno igrajo nogomet. Vsak robot je predstavljen kot agent, ki lahko okolje
zaznava in v njem deluje v skladu s svojimi cilji in znanjem, ki ga o okolici ima.
Delovanje agentov je izvedeno s pomocjo predstavljenih arhitektur delovanja
(odzivne, kognitivne, hibridne in vedenjske). Vsak agent ima zakodirano znanje,
potrebno za izvedbo osnovnih opravil, kot so voznja v zeleno lego, streljanje zoge



7.5. Primeri uporabe vecagentnih sistemov 387

=3

l Pozicije l
objektov
Vloge
A2 . . .
Vodenje na Algoritem gibanja

vi§jem nivoju
Strategija

Smer in
hitrost

Regulator smeri

Translatorna in

Vodenje na

nizjem nivoju kotna hitrost

Regulacija vrtenja
motorjev

Vrtenje levega inl
desnega kolesa

Vodenje

Slika 7.8: Poligon za robotski nogomet (levo) in diagram izvedbe vodenja (desno)

v zeleno smer, branjenje gola in podobno. Ker pri igri nogometa sodeluje vec
agentov je potrebno zagotoviti ustrezno koordinacijo njihovega delovanja. Slednje
je zagotovljeno z vsebovano shemo in s predpisanimi prioritetami izvajanja vlog

glede na zeleno strategijo igre.

V nadaljevanju so prikazane osnovne izvedbe vlog (npr. vratar, napadalec,
obrambni igralec itd.), ki jih posamezni agenti lahko izvajajo. Pri tem so klju¢ni
algoritmi, za izvedbo gibanja dvokolesnih robotskih vozil po trajektoriji, v Zeleno
lego in za izogibanja ovir. Te algoritme lahko nato uporabimo za izvedbo vlog
agentov (npr. vratar, napadalec). Vloge lahko na podlagi zaznanih informacij iz
senzorjev dolocCijo ustrezne akcije. Primer je lahko vratar, ki se mora premakniti
na ustrezno pozicijo, da brani strele zoge ali napadalec, ki mora znati priti do zoge
in jo ustreliti (potisniti) v smeri nasprotnikovega gola. Vloge pa se morajo znati
tudi izogibati oviram, ki so lahko drugi igralci ali ograja igrisca. Nekatere vloge
so povsem odzivne druge ali pa vsebujejo tudi elemente planiranja (kognitivne
vloge). Primer slednjega je prediktivno delovanje za bolj uc¢inkovito in hitrejse
prestrezanje gibajoce Zoge.

Slika 7.8 prikazuje testni poligon, ki sestoji iz dvokolesnih robotov (deset robotov
za dve mostvi) kockaste oblike s stranico 7.5 cm, igris¢a velikosti 2.2 x 1.8 m,
barvne kamere in osebnega racunalnika. Kamera je namescena nad igris¢em in
omogoca sledenje objektov (Zoge in igralcev) na podlagi barvne informacije [3].

Osnovno delovanje posameznega agenta (robota) prikazuje levi del slike 7.8.
Na podlagi trenutnih lokacij objektov in izbrane strategije delovanja program
agentom dodeli ustrezne vloge. Vloga med drugim vsebuje algoritem za dolocitev
zelene smeri in hitrosti gibanja agenta. Algoritem vodenja nato doloéi referenéne
ukaze za translatorno in kotno hitrost, ki se robotu posljejo preko brezzi¢ne
povezave. Robot nato s pomocjo internega regulatorja PID doseze zZelene hitrosti
vrtenja koles. Omenjeni cikel se izvaja s frekvenco 30 ali 60 Hz.
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Slika 7.9: Algoritem vodenja napadalnega robota, ki ustreli Zogo proti golu

Podrobnejse delovanje sistema je opisano v treh podpoglavjih. V prvem so
opisani algoritmi za izvedbo gibanja. V drugem delu predstavimo vloge za
izvedbo odzivno vedenjske arhitekture delovanja posameznega agenta. V zadnjem
podpoglavju pa je predstavljen vecagentni sistem s kooperativnim delovanjem
upostevajoC strategijo igre.

Izvedba algoritmov za razlicne vloge

Za izvedbo zelenega delovanja agentov je potrebno napisati ustrezne algoritme
vodenja. Ti algoritmi bodo npr. napadalcu omogocili, da se zogi pribliza s prave
strani in jo potisne v smeri gola. Podobno se mora vratar voziti v liniji pred
golom in prestreci strele na gol. V nadaljevanju predstavimo nekaj osnovnih vlog
uporabljenih v igri robotskega nogometa.

Vloga napadalec

Osnovni nadin delovanja napadalca (oz. agenta z vlogo napadalec) je, da pride
do Zoge in jo potisne v smeri gola. Torej referenc¢na lokacija vsebuje pozicijo Zoge
(Tref,Yres) in referenéno orientacijo (¢res), ki je v smeri zelene smeri gibanja
7oge po trku (glejte sliko 7.9).

Za strel proti golu (x4, y,) definiramo referen¢no orientacijo kot

Pref = atan2 (yg — Yrefs Tg — xref)

kjer je atan2 (y, z) Stirikvadrantna razsiritev funkcije arctan £. Za izvedbo vode-
nja lahko uporabimo enega od prikazanih algortimov v poglavju 3.2.3.

V primeru, ko se Zoga premika, je vodenje proti trenutni poziciji zoge (zp, yp),
kot ga prikazuje slika 7.9, manj ucinkovito. Boljse delovanje lahko dosezemo, ce
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Slika 7.10: Predikcija gibanja zoge in ocena tocke, kjer robot Zogo lahko prestreze.
Predpostavimo premocrtno gibanje robota in konstantno hitrost v.

izracunamo prihodnjo pozicijo Zoge, kjer jo prestreze. V splosnem je izracun pre-
dikcije zoge za poljubno gibanje robota zahteven problem. Zato tu predpostavimo,
da se robot lahko giblje premocrtno, kot prikazuje slika 7.10.

Relativni kot o med smerjo kotaljenja zoge in povezavo z robotom lahko ocenimo
iz skalarnega produkta

[y cos oy, vpsingy)” - [z — 2, Yy — )"
v/ (@ — )% + (y — 1)?

Up - v
sin 3 sin o

— COos

dolo¢imo se kot § in kot v =

d __ upt
siny ~ sinfg
potreben cas, ki ga robot rabi, da doseze predvideno pozicijo zoge (Zref, Yres)-

¢ = dsin 3

Nadalje z uporabo sinusnega izreka

m — a — . Konc¢no lahko z uporabo sinusnega izreka izracunamo

Vp Sin 7y

Predikcija pozicija zoge oziroma referencna pozicija je

Tref = Xp + Vpt COS Py
Yref = Yo + vpt sin 2133

Izracunana referencna tocka bo dosegljiva le, ¢e bo robot na zacetku usmerjen
proti zogi in bo hkrati Zelena smer strela Zoge ¢,.; podobna zacetni orientaciji
robota . Slednje je redko izpolnjeno saj je dejanska pot robota vec¢inoma daljsa
od direktne linije, ki jo pri izracunu predpostavimo. Robot v splosnem tudi ni
obrnjen proti predvideni referencni tocki in kon¢na smer strela mora biti v smeri
gola. Upostevajo¢ priblizno oceno dejanske razdelje voznje [ do referencne lege
Trefs Yref, Pref lahko prilagodimo hitrost voZnje robota v, = %7 da ta doseze
izracunano predikcijo zoge v predvidenem casu t.

Vloga napadalec s premocrtnim enakomerno pospesenim strelom
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Slika 7.11: Premocrtni, enakomerno pospeseni strel na gol. Robot na zacetku
miruje in je usmerjen proti golu. Potrebno pospesevanje in predikcijo pozicije
zoge je potrebno izracunati.

Gibajoco zogo lahko natanc¢no ustrelimo na gol, ¢e je zacetna orientacija robota
v smeri gola x4, y, in je gibanje robota enakomerno pospeseno. Razmere so
prikazane na sliki 7.11. Neznano referen¢no pozicijo (z,es, Yres) lahko izra¢unamo
iz trenutne znane pozicije Zoge in njenega gibanja (hitrost vy in smer ¢p)

Tref = Xp + Vpt COS Py

) (7.1)
Yref = Yb + vpt sin gy
oziroma jo lahko doloc¢imo tudi iz pozicije robota
T =+ (ry—T
ref (g )p (7.2)

Yref =Y+ (Yg — y)p

kjer je t cas, ko robot lahko doseze Zogo s predpisanim premocrtnim gibanjem
in p je ustrezen parameter. Z upoSevanjem enacb (7.1) in (7.2) lahko napisemo
sledeCo matri¢no relacijo

Ty —x —wvpcosgy| |p|  |Tp— T
Yg— Yy —uvpsingy| |t Yy — Y
ki je krajSe predstavljena kot Au = b. Doloé¢imo njeno resitev u = A~1b. ReSitev

je veljavna, ¢e je 0 < p < 1, kar pomeni, da je tocka prestrezanja zoge med
robotom in golom. Referen¢no tocko dolo¢imo kot

Tref = Xp + Vpt COS Py

Yref = Yp + Vpt Sin @y
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Slika 7.12: Gibanje robota pri vlogi vratar

in potreben pospesek voznje a(t) upostevajo¢ trenutno hitrost voznje v(t) dolo-

¢imo iz

2 (\/(xref =)+ (Yres —Y)* — v(t))

alt) = -

V kolikor je vloga uspesna (0 < p < 1) robotu ukazemo novo translatorno
hitrost gibanja v ((k+ 1) Ts) = v(kTs) + a(kTs)Ts, kjer je v((k + 1)T's) hitrost
v naslednjem trenutku, v(kTy) trenutna hitrost, T je rac¢unski korak in k je
naravno stevilo. Kotno hitrost robota vodimo, da se ta pelje v Zeleni smeri

Yg—Y
Tg—x"

Prey = arctan

Vloga vratar

Vratar se se giblje v ravni liniji pred golom med tockama T in T kot je prikazano
na sliki 7.12. Trenutno referencno pozicijo Zrct, Yres je potrebno dolociti glede
na pozicijo zoge xp, yp, njeno hitrostjo v, in smerjo kotaljenja ¢;,. Robot se
mora prediktivno premakniti na pozicijo kjer bo zoga preckala ¢rtkano ¢rto pred
golom. Iz znanih podatkov doloc¢imo cas, v katerem bo zoga preckala linijo gola

in referen¢no pozicijo

_ Tg — Tp
Vp COS @y
Tref = Tg

Yref = Yp + Upt SIN @y
iy
Pref = 5

kjer je x4 koordinata linije gola.
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Za voznjo po liniji gola lahko uporabimo linearen algoritem vodenja za sledenje
trajektoriji predstavljen v poglavju 3.3.5. Kjer nastavimo referenc¢ne hitrosti
(Vref, wrer) za referencno pozicijo na nié. Regulacijski zakon se tako poenostavi
v

v =kgey

w = kpe, + sign(v)kyey

kjer so ojacenja k;, k, in k, lahko konstantna in doloc¢ena eksperimentalno.
Lokalne pogreske e, e, in e, izracunamo z izrazom (3.28), kjer poskrbimo, da
je e, v obmocju —m < e, < 7.

Delovanje vratarja lahko nadalje izboljSamo, ¢e zagotovimo, da se vratar nikoli
ne obraca za vec kot |Z|. V primeru, ko je |e,| > 7, to doseZemo z vzvratno
voznjo in popravljenim pogreskom orientacije

. s

. _{e@—w i €p > g
L s
eot+m 5 e < —3

Izogibanje oviram

Igrisce je obkrozeno z ograjo in v igri sodeluje ve¢ igralcev, zato morajo opisane
vloge (predvsem napadalec) vsebovati tudi algoritem izogibanja oviram. Tako
obnasanje lahko ucinkovito dosezemo z uporabo metode potencialnega polja, ki
je predstavljena v poglavju 4.2.4.

Arhitektura delovanja posameznega agenta

Za namen lazje razlage predpostavimo, da mostvo sestoji iz treh robotov oziroma
agentov. Vsak agent lahko v danem trenutku izbira med naborom razli¢nih vlog
(npr. vratar, napadalec, sredinski igralec, itd.). Izbira vlog in s tem delovanje
agenta je izvedena z vsebovano shemo, kjer so vloge organizirane po prioritetah,
kot je opisano v poglavju 7.4.5. Z izbiro prioritet lahko dolo¢amo strategijo igre.
Bolj obrambno strategijo dosezemo z vec¢jimi prioritetami obrambnih vlog in
obratno, bolj napadalno strategijo dobimo, ¢e imajo visjo prioriteto napadalne
vloge.

V danem trenutku glede na trenutno situacijo igre (lega agenta, pozicija Zoge,
pozicije soigralcev in nasprotnih igralcev) se agent odlo¢i katero vlogo bo izvajal.
Agent najprej preverja pogoje za izvedbo bolj prioritetnih vlog, ¢e pogoji niso
izpolnjeni, potem preverja manj prioritetne vloge. Primer pogoja za vlogo vratar
je razdalja agenta do gola, v kolikor je najblizje golu (med soigralci) je pogoj za
izvajanje vloge vratar izpolnjen. Podobno lahko definiramo pogoj za napadalne
vloge upostevajo¢ razdaljo do Zoge.
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Posamezne vloge lahko imajo ve¢ moznih nac¢inov delovanja. Pri izvajanju vloge
vratar se mora agent nahajati pred golom. Ce temu ni tako, se mora agent
najprej pripeljati pred gol. Ce se nahaja pred golom, potem lahko brani gol,
izra¢una pot Zoge in se prediktivno premakne na pozicijo, kjer bo zoga preckala
linijo gola (kot je opisano v podpoglavju 7.5.1).

Podobno lahko agent izvaja napadalne vloge, ¢e je najblizje zogi oziroma jo
lahko najhitreje doseze (glede na ostale soigralce). Agent lahko izvaja osnovno
vlogo napadalec brez predikcije gibanja Zoge, ¢e je hitrost kotaljenja Zoge nizka,
drugace pa izbere prediktivno delovanje. Ce je izpolnjen pogoj za premocrtno
pospesen strel, potem izvaja to vlogo, saj je njena uspesnost vecja in ima zato
nastavljeno visjo prioriteto. Dodatno napadalec preverja moznost trka z ovirami
in se jim izogiba. Izogibanje pa ni vselej zazeleno, npr. ¢e ima napadalec Zogo v
posesti, izogibanje soigralcem ali nasprotnikom ni vselej smiselno.

Tretji agent je sredinski igralec, ki se poskusa pozicionirati na strateske lokacije
(preddolocene) in se orientirati proti nasprotnikovem golu. Najprej se mora
pripeljati v zeleno pozicijo, nato pa Se zavrteti v Zeleno smer proti nasprotnemu
golu. Ta vloga je pomembna za potek igre, saj agenti lahko dinamic¢no spremi-
njajo vloge med igro (vloge niso staticno dodeljene). Igralec s to vlogo lahko
v naslednjem trenutku, ¢e je izpolnjen pogoj, prevzame vlogo prediktivnega
napadalca in izvede pospesen strel na gol.

Vecagentna igra, koordinacija in strategija igre

Izvajanje vseh predhodno definiranih vlog z razpolozljivimi agenti lahko rezultira
v avtonomno igro robotskega nogometa. Za boljSo uéinkovitost mostva pa je
potrebno poskrbeti Se za koordinacijo izvajanja vlog med agenti. V danem
trenutku je namrec lahko vratar le en igralec in tudi ni smiselno, da ve¢ agentov
hkrati zeli prevzeti zogo, saj bi se pri tem ovirali.

Opisane vloge imajo dodeljene prioritete, kar definira zeleno strategijo igre (bolj
obrambno ali napadalno). Dodatno ima vsaka vloga tudi funkcijo kriterij, s katero
lahko posamezen agent preveri njeno ucinkovitost v dani situaciji. Kriteriji so
lahko enostavni kot na primer: razdalja do zoge, razdalja do gola in podobno. Vsi
agenti tako najprej preverijo njihovo ucinkovitost izvajanja za najbolj prioritetno
vloge (npr. vratar) in se pogajajo za njeno izvajanje. Najbolj uspesen agent
lahko prevzame vlogo v naslednjem trenutku igre, ostali pa se potegujejo za manj
prioritetne preostale vloge (napadalec, prediktivni napadalec, sredinski igralec in
podobno) iz seznama vlog.

Za izvedbo pogajanja, kateri agent lahko v danem trenutku izvaja doloceno
vlogo, je potrebno zagotoviti medagentno komunikacijo. Agenti si lahko sporocijo
kriterije uc¢inkovitosti za posamezne vloge in se koordinirano odloé¢ijo za njihovo

izvajanje.

Vloge se med igro dinami¢no dodeljujejo agentom, kot je podrobneje opisano v
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[4] in prikazano tudi na dveh izsekih igre s slikama 7.13 and 7.14. V tem primeru
igra pet robotov proti petim nasprotnikom in strategija domacega mostva sestoji
iz enajstih vlog. Nekatere od njih so zelo podobne predhodno opisanim.

Sliki 7.13 prikazuje daljsi prodor agenta 1. Agent se zac¢ne priblizevati zogi z
vlogo napadalec (indeks 0) in se nato priblizuje bodoci tocki srecanja z Zogo
(vloga prediktivni napadalec z indeksom 8). Napad se zakljuci tako, da agent
preklopi v vlogo kreatorja (indeks 4), kjer robot v kontaktu z Zogo pospeseno vozi
proti golu. Omeniti je potrebno, da nasprotnikove pozicije na sliki 7.13 ustrezajo
¢asu posnetka 12.08 sekund. Zdi se, da bo nasprotnikov igralec blokiral agenta
1 in smer kotaljenja zoge, vendar se ta kasneje premakne proc¢ in tako je imel
agent 1 prosto pot v gol. Iz diagrama potekov indeksov vlog na sliki 7.13 lahko
pri prvem agentu opazimo kratek skok iz vloge z indeksom 4 (kreator) na vlogo
z indeksom 3 (prediktivni napadalec) in nato nazaj. To se je zgodilo zato, ker se
je zoga nekoliko bolj oddaljila od agenta 1 in kriterijska funkcija za vlogo 4 ni
bila ve¢ izpolnjena. V tem primeru je postala aktivna neka druga aktivna vloga
(prediktivni napadalec). Nadalje lahko opazimo, da so ostali agenti zavzeli vloge
vratarja (agent 2 ,vloga 1) in sredinskih igralcev (agenti 3 do 5, vloga 5).

Primer dobre podaje agenta 3 z vlogo napadalec (indeks 0) preko odboja zZoge od
ograje prikazuje slika 7.14. Po odboju zogo prestreze agent 5 z vlogo napadalca
s premo¢rtnim pospesenim strelom (indeks 6) in akcijo zakljuci z vlogo kreatorja
(vloga z indeksom 4, kjer robot v kontaktu z Zogo pospeSeno vozi proti golu).

7.5.2 Voznja vozil v formaciji
Bodoce inteligentne transportne sisteme si tezko predstavljamo brez avtonomnih
kolesnih vozil. Pomembna tovrstna aplikacija je avtomatiziran vod (formacija)
vozil na avtocestah, ki lahko vozijo avtonomno en za drugim z minimalno varno-
stno razdaljo kot virtualni vlak. Gre za primer vecagentnega sistema. Vozila v
formaciji morajo natanc¢no in varno sledi svojemu predhodnemu vozilu z uposteva-
njem minimalne varnostne razdalje. Tak pristop bi povecal gostoto transportnih
vozil na avtocestah, izboljsal prometne zastoje, preto¢nost in varnost.

Prikazan je primer izvedbe algoritma vodenja za mobilna vozila v linearni forma-
ciji. Za avtomatizirano voznjo potrebujemo natancen senzorski sistem, ki meri
globalne informacije vozil (npr. GPS senzorji) ali relativne informacije kot je
razdalja in smer med vozili (npr. laserski pregledovalnih razdalj, LRF) oziroma
oboje.

V prikazanem primeru se bomo omejili le na relativne senzorje. Vodenje vozil bo
izvedeno decentralizirano, kjer vozila (agenti) upostevajo le lokalno informacije,
ki jih lahko izmerijo s pomodjo laserskega pregledovalnika razdalj (LRF), kot je
prikazano v [5]. Predpostavimo, da ima vsako vozilo LRF za merjenje razdalje in
azimuta svojega predhodnega vozila. Pot vodilnega vozila se zabelezi v lokalnih
koordinatah sledilnega vozila z uporabo odometrije in LRF meritev (razdalje D
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Slika 7.13: Primer usklajenega izvajanja vlog v igri robotskega nogometa. Slika

prikazuje trajektorije robotov in diagram dinamiénega dodeljevanja vlog.
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Slika 7.14: Primer usklajenega izvajanja vlog v igri robotskega nogometa. Slika
prikazuje trajektorije robotov in diagram dinamiénega dodeljevanja vlog.
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Slika 7.15: Voznja vozil v linearni formaciji. Vsako sledilno vozilo ocenjuje pot
svojega predhodnika in ji sledi s pomocjo algoritma sledenje po trajektoriji.

in smeri «) kot je prikazano na sliki 7.15. Sledilna vozila sledijo ocenjeni poti
svojih predhodnikov z uporabo algoritma sledenja trajektoriji, predstavljenega v
poglavju 3.3.

Znano je, da je lokalizacija vozila z uporabo odometrije podvrzena akumulaciji
razliénih pogreskov skozi ¢as (zdrs koles, Sum senzorjev in aktuatorjev ter po-
dobno). Torej je uporabnost odometrije omejena le na krajsa ¢asovna obdobja,
ko je napaka zaradi akumulacije Se zanemarljiva. V nadaljevanju je pokazano,
da absolutna napaka lege zaradi odometrije ni klju¢na pri vodenju v linearni
formaciji saj je tu pomembna le relativna informacija med vozili (D in ). Slednja
je izmerjena z natan¢nim senzorjem LRF, medtem ko je odometrija uporabljena
le za kratko obdobje, da ocenimo odsek poti predhodnega vozila, ki mu sledilno
vozilo mora slediti v bliznji prihodnosti.

V nadaljevanju najprej predstavimo tri podsisteme, ki jih kasneje integriramo v
koncno aplikacijo linearne formacije vozil. Prvi sklop opisuje izvedbo lokalizacije
z odometrijo. Drugi sklop opiSe oceno trajektorije predhodnega vozila. Tretji
sklop pa predstavi algoritem vodenja za sledenje ocenjeni trajektoriji za formacijo.
Vsako vozilo predstavlja neodvisnega agenta, ki izvaja omenjene algoritme. Vsi
agenti (razen vodilnega) imajo enako obnasanje, s senzorji zbirajo informacije
o predhodniku, ocenjujejo njegovo pot in sledijo ocenjeno pot predhodnika na
predpisani varnostni razdalji.

Lokalizacija z uporabo odometrije

Odometrija je najpreprostejSa metoda za lokalizacijo, kjer lego ocenjujemo z
integracijo kinematic¢nega modela pri znanih hitrosti vozila. Hitrosti vozila
z diferencialnim pogonom so znane v diskretnih ¢asovnih trenutkih ¢ = kT,
k=0,1,2,...kjer je Ty Cas vzorcenja. Naslednjo lego vozila (pri (k+1)) ocenimo



398 Agenti in veclagentni sistemi

iz. trenutne lege (k) in trenutnih hitrosti (glejte poglavje 2.2.1)
x(k+1) = z(k) +v(k)Ts cos(p(k))
y(k +1) = y(k) + v(k)T; sin(o(k))
pk+1) = o(k) + w (k)T
Ker za namen sledenja v linearni formaciji zacetna absolutna lega vozila ni

pomembna jo lahko postavimo kar v zacetno (pri k& = 0) koordinatno izhodisée
sledilnega vozila.

Ocena referencne trajektorije

Vsako sledilno vozilo pozna svojo lego v globalnih koordinatah ocenjeno z odo-
metrijo. Vozilo lahko tako tudi dolo¢i lokacijo svojega predhodnika iz poznanih
relativnih pozicij med njima. Ta relativna pozicija je izmerjena s pomocjo meri-
tev senzorja LRF in vsebuje razdaljo D(k) in kot do predhodnega vozila a(k).
Osnovna ideja je sledenje pozicije predhodnega vozila, ocena njegove trajektorije
voznje in nato lahko sledilno vozilo uporabi to trajektorijo kot referenco in ji
sledi.

Lega predhodnega vozila (z1(k), yi(k), ¢r(k)) je ocenjena kot
zr (k) = x(k) + D(k) cos(p(k) + a(k))
yr(k) = y(k) + D(k) sin(p(k) + a(k))

Ce potrebujemo pozicijo predhodnega vozila ob dolo¢enem casu t # kT, jo lahko

ocenimo s pomocjo interpolacije

t— kT,
() = o (kTs) +

(zp (k+1)Ts — zp, (KT5))

yr(t) = yo(kTs) +

o (g (e DT -y (KT3)

Vsako sledilno vozilo mora slediti opravljeni poti svojega predhodnika (vodilnega
vozila) na razdalji Dj, merjeno po opravljeni trajektoriji vodilnega vozila. Torej
moramo ob trenutnem casu ¢y oceniti pozicijo vodilnega pri ¢asu t =T (x5 (T),
yr(T)) tako, da je razdalja med trenutno pozicijo vodilnega robota pri ¢y in
prejsnjo pozicija vodilnega robota pri ¢t =T enaka Dy . Ta pozicija predstavlja
referenco za sledilno vozilo (glejte sliko 7.16).

Da sledimo opravljeni trajektoriji vodilnega vozila mora sledilno vozilo poznati
referencno trajektorijo in ne zgolj trenutno referen¢no pozicijo. Trajektorija
vodilnega vozila je ocenjena v parametri¢ni polinomski obliki

& (t) = a5t* 4+ aft +a®
g1 (t) = aJt* + a¥t + ay
upostevajo¢ Sest pozicij vodilnega vozila, tri pred in tri za referen¢no pozicijo, kot

je prikazano na sliki 7.16. Koeficienti polinoma a? in a (i = 0, 1,2) so ocenjeni
z metodo najmanjsih kvadratov.
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xL(’A’))’ yL(t())
1,=KT,

D, interval za oceno trajektorije:
x((k-n+2)T) , y(k-n+2)T)
x,((k-n+ DT, y((k-n+D)T)
x((k-m)T.), y,((k=m)T)
x,((k-n-1)T), y,((k-n-DT)
x,((k-n-2)T,), y,((k-n-2)T)
x,((k-n-3)T,), y,(k-n-3)T)

X, (t)=x,(T)
Vol t)=y(T)

sledilec

x(t,), ¥(1;)

1,=kT,
Slika 7.16: Sledilno vozilo mora slediti predhodno vozilo na razdalji Dy, vzdolz
trajektorije. Oblika referencne trajektorije v okolici trenutne referencéne lege
Zref(to), Yref(to) je ocenjeno s pomocjo Sestih okoliskih tock okrog referenéne
tocke.

Referenc¢na pozicija za sledilno vozilo ob trenutnem casu t; je ocenjena z

Tret(to) 2r(T) asT? + a¥T + af
Yref(to) | = |90(T) | = ayT? + a¥T + af) (7.3)
Oref(to) or(T) atan2 (2a3T + a¥,2a3T + af)

kjer je atan2 (y, x) Stirikvadrantna razsiritev funkcije arctan £.

Vodenje vozil v linearni formaciji

Vsako sledilno vozilo mora oceniti in slediti referencéno trajektorijo (7.3) z uporabo
nelinearnega regulatorja predstavljenega v poglavju 3.3.6 kot sledi

Vfp = Uref COS €y + kpey

S €,

Wy = Wref + kyvrey ey + ke,

€y

kjer so predkrmilni signali (glejte poglavje 3.3.2) doloceni iz ocenjene referenéne
trajektorije (7.3) kot

vrep(fo) = [#2; + 92,5 = \/(205T + af)? + (2047 + a})?

wrer(to) = Eref ()ijres (t) — Yres ()Eres(t) _ (25T + a¥)2ay — (2a3T + a¥)2a}
e e (0 + 50y (1) (2037 + af)? + (23T +af)?

in
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Sledilni pogresek pa je izra¢unan upostevajo¢ dejansko lego sledilnega vozila

(z(to0), y(to), ¢(to)) in referencne lege (zres(to), Yres(to), @ref(to)) z enacbo
(3.28).

7.5.3 Avtomatsko vodeni vozicki

Vecagentni sistem so tudi avtomatsko vodeni vozicki (AGV, angl. automated
guided vehicle), ki jih dandanes sreCamo v mnogih modernih industrijskih halah.
Gre za floto mobilnih vozil, ki se avtonomno gibljejo in opravljajo naloge, ki
so jim dodeljene. Pogosto se uporabljajo za razvoz materiala in/ali izdelkov.
V ta namen imajo AGV-ji lahko vgrajen tovorni prostor, pogosteje pa imajo
le posebne mehanizme (obicajno preproste, lahko pa tudi dvizne vilice ali celo
robotske roke), ki omogoc¢ajo prijemanje in odlaganje tovora. To lahko storijo
tako, da se pripeljejo pred/pod pasivni mobilni vozicek, ga zapnejo in nato
vleéejo. Ali tako, da pridejo do standardiziranega zabojnika (npr. paleta), ki
ga dvignejo, prepeljejo in nato odlozijo. Lahko pa so mehanizmi ali robotske
roke za natovarjanje/raztovarjanje kar na postajah, med katerimi tovor razvazajo
AGV-ji. Gibanje AGV-jev med postajami obi¢ajno ni povsem prosto, temvec
so postaje med seboj povezane z omrezjem oznacenih prog, po katerih se AGV-
ji lahko gibljejo. Okolje je torej prirejeno za avtomatsko delovanje AGV-jev
tako, da so v okolju na primeren nacin oznacene proge. Pogosto se v ta namen
uporabljajo magnetni trakovi in RFID-znacke, ki so vgrajeni v podlago. Lahko
se uporabljajo tudi vidne oznake (npr. kontrastne/barvne ¢rte, QR-kode). AGV
lahko tako s primernimi senzorji sledi talnim oznakam in tudi doloéa svoj polozaj
v omrezju prog na podlagi unikatnih znack, ki se najajajo ob progah. Lahko pa
so proge definirane tudi virtualno, ¢e imamo na voljo globalni ali lokalni sistem,
ki omogoca lokalizacijo AGV-ja v okolju. AGV-ji imajo vgrajene Se dodatne
senzorje blizine, ki jim omogocajo varno delovanje in zaustavitev v primeru ovir
na poti. Ce je v okolju prisoten tudi ¢lovek, potem se pogosto zahteva, da je
AGYV opremljen z varnostnim laserskih merilnikom razdalj.

V nadaljevanju je predstavljen fizi¢ni model pomanjSane industrijske hale (slika
7.17) z omrezjem poti po katerih se vozijo miniaturni avtomatsko vodeni vo-
zicki. Dimenzije poligona so 2,2m x 1,8 m, dimenzije miniaturnega AGV-ja pa
0,1m x 0,2m x 0,06 m. Sistem je bil izdelan za raziskave, razvoj in preizkusa-
nje algoritmov, ki omogocajo avtonomno delovanje AGV-jev, ter za pedagoske
namene. Pri izdelavi miniaturnih AGV-jev nismo zahtevali natancne preslikave
dejanske situacije iz industrijskega okolja, saj vseh sistemov (npr. laserskega me-
rilnika razdalj, pogonskega mehanizma) ni mo¢ primerno pomanjsati. S fizicnim
modelom tako posnemamo le tiste lastnosti avtomatsko vodenih vozickov, ki so
potrebne za ucenje in razvoj algoritmov za avtonomno voznjo. Celoten sistem
smo zasnovali tako, da je mozna izvedba in studija razli¢nih algoritmov za avtono-
mno delovanje mobilnih vozi¢kov: odometrija, vodenje po poti, nacrtovanje poti
med poljubnimi cilji, iskanje alternativnih poti in obvozov v primeru zastojev,
lokalizacija v znanem zemljevidu okolja, vecagentno vodenje in podobno. Zaradi
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Referen¢na znacka RFID-znacka (pod podlago)

Sledilna ¢rta

Slika 7.17: Fizi¢ni model industrijske hale z AGV-ji

boljse povezljivost med razliénimi sistemi in modularnosti smo se odlocili, da
bomo uporabili okolje ROS (angl. Robot operating system).

Globalni sistem za merjenje lege s strojnim vidom

Nad poligonom z miniaturnimi AGV-ji se nahaja kamera, ki omogoca sledenje
vseh objektov, ki se gibljejo v ravnini poligona. Lega kamere glede na poligon je
poljubna, dokler so vsi objekti vidni v njenem vidnem polju. Predpostavimo, da
je lega kamere glede na globalni koordinatni sistem (glede na poligon) podana z
rotacijsko matriko R = [ry, 7o, 73] in translacijskih vektorjem t. Ce uporabimo
model kamere z luknjico, je povezava med homogeno tocko p%{, = [zw, yw, 1] v
poljubni globalni ravnini in homogeno to¢ko na sliki p% = [zp, yp, 1] podana z

pp x S [’I‘l 9 t} pw = Hpw (7.4)

Matrika S v (7.4) vsebuje notranje parametre kamere (glejte poglavje 5.2.4).
Matriko S lahko dolo¢imo s postopkom kalibracije kamere, npr. z uporabo dobro
znanega pristopa s Sahovnico [6]. Preslikava H v (7.4) je znana kot homografija
— predstavlja preslikavo med ravninama.

Homografijo H lahko ocenimo na podlagi vsaj stirih parov tock v slikovni in
globalni ravnini. Zato vsebuje poligon Stiri referencne znacke (glejte sliko 7.17) —
lokacija teh znack glede na globalni koordinatni sistem je znana. Vsak AGV (ali
drug objekt, katerega lego Zelimo meriti) mora tudi biti opremljen z unikatno
znacko, ki ni nujno, da se nahaja v ravnini tal. Med gibanjem AGV-ja po
ravni podlagi se znacka na njem giblje po virtualni ravnini, ki je vzporedna z
ravnino tal. Situacija je prikazana na sliki 7.18. zatorej lege AGV-ja ne moremo
oceniti neposredno iz znane homografije H. Ker predpostavljamo, da je visina
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Referenc¢na ravnina

Referen¢na znacka

Slika 7.18: Sistem za merjenje lege s kamero

h, na kateri je namescena znacka glede na podlago, znana, je mozno dolociti
homografijo Hp(h) za to vzporedno ravnino iz znane homografije H.

Slika polozaja pp znacke, ki se nahaja v vzporedni ravnini glede na referenc¢no
ravnino (tla) na visini A, lahko preslikamo (z ortogonalno projekcijo) v tocko py
v ravnini tal:

pw o H; '(h)pp

Da lahko ocenimo homografijo Hp(h), moramo poznati notranje parametre

kamere S
Hy(h) =S [‘h @ (@ xq)t+ q3] (7.5)

kjer lahko koeficient normiranja n doloc¢imo kot

n=(llgill +llg=1)/2 (7.6)

Vektorji q; do g3 v enacbah (7.5) in (7.6) so

S'H = [‘h q2 %}

Ce uporabljene znacke niso invariantne na rotacijo, lahko dolo¢imo tudi usmer-
jenost znacke in torej celotno lego (polozaj in orientacijo) oznacenega objekta
v globalni ravnini. Predstavljen pristop merjenja lege objektov na ravnini je
mogoc¢ za poljubno postavitev kamere, dokler so vsi objekti vidni in v vidnem
polju kamere, a to¢nost in natanc¢nost meritev lahko variira. Sledenje objektov
je mogoce izvesti tudi pri premikajoci se kameri, ¢e pri tem ne pride do okluzij
nobenih znack. Sicer pa lahko homografijo H ocenimo le kadar so vidne vse
oz. vsaj Stiri referencne znacke. V kolikor se AGV-ji gibljejo le po ravni podlagi
poligona, omogoca predstavljen pristop ocenjevanja leg zelo toéne meritve, saj je
omejitev gibanja na ravnino upostevana implicitno. Ce je kamera kalibrirana,
lahko globino znack ocenimo tudi na podlagi znane velikosti znack. V nasem
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primeru je globina ocenjena implicitno glede na Stiri referenc¢ne znacke na ravnini
tal. Te znacke niso kolinearne in so relativno dale¢ narazen, kar omogoca, da je
ocena homografije H zelo toc¢na.

V primeru moc¢ne popacitve slike, zaradi distorzij le¢, lahko le-te opiSemo z
nelinearnim modelom

pp = f(pp) (7.7)

kjer p} predstavlja tocko na popaceni sliki in pp je tocka na popravljeni sliki, kjer
je popacditev odpravljena. Model distorzije (7.7) lahko ocenimo tekom postopka
kalibracije kamere (glejte npr. [7]).

Za detekcijo in sledenje unikatnih znack (s posebnimi ¢rno-belimi vzorci) na sliki
smo uporabili knjiznico ArUco [8, 9], ki je ra¢unsko uéinkovita in robustna, torej
je primerna za delovanje v realnem c¢asu, tudi ob spremenljivi osvetlitvi. Celoten
sistem za sledenje ve¢ objektov je racunsko precej uc¢inkovit in ga je mogoce izvesti
na nizkocenovni strojni opremi. V nasem primeru smo izvedli celoten sistem
na vgradnem racunalniku Raspberry Pi 8 B+ s kamero Raspberry Pi Camera
Board v2, ki se nahaja priblizno 2,5 m nad poligonom. V nasi izvedbi smo dosegli
merjenje lege ve¢ objektov v globalnem koordinatnem sistemu s frekvenco 15 Hz.
Pri mirujocih objektih smo dosegli standardno deviacijo 0,0001 m pri merjenju
polozaja in 0,003 rad pri merjenju orientacije (Sirina znack je 0,1 m). Vse meritve
se sproti objavljajo v omrezje ROS in so tako na voljo vsem AGV-jem in ostalim
sistemom. Sistem je modularen in precej enostaven za uporabo. Ko imamo na
voljo notranje parametre kamere (le-te lahko dolo¢imo s postopkom kalibracije,
npr. s Sahovnico), moramo vnesti le Se lokacije Stirih referen¢nih znack na ravnini

tal in izmeriti viSine vseh znack na objektih nad ravnino tal.

Miniaturni avtomatsko vodeni vozicki

Na sliki 7.19 je prikazana zgradba miniaturnega avtomatsko vodenega vozicka z
glavnimi sestavnimi deli. Prednji pogonski del predstavlja vozicek z diferencialnim
pogonom, ki je na Sasijo pritrjen pasivno preko lezaja. Taksna oblika mehanskega
mehanizma omogoca enostavno izvedbo, pri tem pa Se vedno dosezemo zeleni
kinemati¢ni model trikolesnika s prednjim pogonom.

Miniaturni AGV je opremiljen z ve¢ senzorji, ki omogocajo implementacijo
algoritmov za avtonomno voznjo. Motorja na prednjem vozicku, ki zZeneta obe
kolesi, sta opremljena z inkrementalnim enkoderjem. Poleg tega imamo Se
absolutni enkoder, ki omogoca merjenje kota prednjega vozicka glede na Sasijo.
Na dnu prednjega vozicka se nahaja namensko tiskano vezje z mikrokrmilnikom,
ki skrbi za nizkonivojsko obdelavo signalov v realnem casu in regulacijo hitrosti
vrtenja motorjev. Na tiskanem vezju se nahaja tudi sedem segmentni linijski
opticni detektor ¢rte. Zadnji kolesi sta pasivni in v trenutni izvedbi nista
opremljeni z enkoderji. Na spodnjem delu Sasije se nahaja Se RFID-bralnik. Za
obdelavo informacij s senzorjev, komunikacijo z zunanjimi sistemi in izvedbo

regulacijskih algoritmov za avtonomno voznjo se znotraj sasije nahaja racunalnik
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Drsni obro¢

Absolutni enkoder Baterija

Zadnje
levo kolo

Racunalnik

Prednje

desno kolo RFID-bralnik

Prednje levo kolo

Desni motor

. Prednji vozicek
z enkoderjem

Optic¢ni detektor crte

Slika 7.19: Zgradba miniaturnega AGV-ja v prerezu

Raspberry Pi Zero W. V Sasiji se nahaja se baterija. Na vrhu Sasije se nahaja
posebna unikatna znacka s ¢rnobelim vzorcem, ki omogoca, da dolo¢imo lego

AGV-ja s sistemom za globalno merjenje lege s strojnim vidom (glejte poglavije
7.5.3).

Slika 7.20: Stirikolesni robot s kinemati¢nim modelom bicikla

Stirikolesni robot na sliki 7.19 ima enake kinemati¢ne omejitve kot bicikel (slika
7.20). Omejitve so posledica dejstva, da se kolesa (brez spodrsavanja) ne morejo
gibati v smeri osi rotacije

Zsing —ycosp =0
4 4 (7.8)
Tsina —ycosa — D¢ cosy =0
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V enacbi (7.8) je D razdalja med osjo zadnjih koles in centrom rotacije vozicka,
na katerega sta pritrjeni prednji kolesi. Vpeljimo posploseni vektor stanj g7 =
[, ¥, ¢, 7]. Kinemati¢ne omejitve lahko tako zapiSemo v vrstice t. i. omejitvene
matrike A(q):

) sinp —cosy 0 0f .
Alg)d= | . qg=0 (7.9)
sina¢ —cosae —Dcosy O
Kinemati¢ni model s hitrostnim vhodom w je
q==Su (7.10)

kjer je matrika S jedro (nicelni prostor) omejitvene matrike A(q), torej zadosca
enacbi A(q)S = 0.

T = [uy, uz] lahko izberemo razli¢ne veli¢ine: pri

Za hitrosti vhodnega vektorja u
prednjem pogonu je u; = vg, pri zadnjem pogonu pa je u; = vs; kotna hitrost
prednjega vozicka je lahko podana glede na globalni (us = w, = &) ali lokalni
(ug2 = wy = *) koordinatni sistem. Razli¢ni zapisi kinemati¢nega modela, ki jih
pri tem dobimo, so zbrani v tabeli 7.1. Vsi ti modeli zadostujejo omejitvam, ki
so podane v (7.9). Ker so si kinemati¢nimi modeli med seboj precej podobni,

moramo biti pri uporabi pozorni, da ne pride do zmede in napacne uporabe.

Tabela 7.1: Kinemati¢ni modeli bicikla ¢ = Swu glede na hitrostne vhode (q7 =
[, ¥, ¢, 7))

Globalna kotna hitrost w,  Lokalna kotna hitrost w.

g cosycosyp 0 cosycosy 0

%ﬁ P cos'y‘singa 0 [vs] g= cos*yvsincp 0 lvs]
= — 2T 0f |w -2 0f |w
= D a D y
—g sin y 1 0 1

o L D L

—

[al

=

g cosp 0 cosp 0

g . sing 0 v sinp Of |wv
R R Y B sl

= a

3 e 1 oD 1 ’
3 L "D L

N

T =

V nasem primeru je vhodni vektor u Vs, Wg| in je kinematiéni model (7.10)

torej (model v prvi vrstici in prvem stolpcu v tabeli 7.1)

cosycosp O
. cosysing Of |wvs
A L}]
o mg’y 1

Linearna hitrost vs in kotna hitrost w, = & sta neposredno povezani s hitrostjo
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levega kolesa vy, in hitrostjo desnega kolesa vp

Lwa Lwa
5 VR = Vg + 5

Vv = Vg —

(7.11)

kjer je L razdalja med prednjima kolesoma.

Omrezje krizis¢ in prog

Oglejmo si primer poligona, ki je prikazan na sliki 7.21. Poligon je sestavljen
zdruzijo v eno progo. AGV se lahko vozi le po progah in le v oznacenih smereh.
Izjema je osrednji del poligona, kjer imamo podrocje brez prog. V tem podrocju
je dovoljeno poljubno gibanje, za kar mora biti robot opremljen s primernimi
sistemi za lokalizacijo. V nadaljevanju se bomo posvetili predvsem obravnavi
navigacije v delu prostora s progami.
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konci prog). Celoten zemljevid prog lahko tako predstavimo v obliki grafa, ki je
prikazan na sliki 7.22. Iz grafa so razvidne le povezave med sosednjimi vozlisci, ni

vvvvv
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se izkaze za koristno, saj nam omogoca uporabo razliénih algoritmov iz teorije
grafov. Uporabimo lahko npr. Dijkstrov algoritem za iskanje optimalne poti —
najkrajso pot dobimo, ¢e povezave med vozlis¢i utezimo z razdaljami prog.

in koncev prog (vozlis¢) ter obliko vseh prog, ki so v grafu predstavljene s

povezavami med vozliséi. Eden izmed moznih nacinov zapisa posamezne proge je
s pomocjo parametricnih krivulj oz. zlepkov parametri¢nih krivulj. Na sliki 7.23
so prikazane tri bazi¢ne krivulje, ki jih lahko uporabimo za gradnjo zlepka: daljica
(slika 7.23a), krozni lok (slika 7.23b) in Bézierjeva krivulja (slika 7.23c). Enacbe
in parametri teh krivulj so podani v tabeli 7.2. Uporabimo lahko tudi kaksne
druge parametri¢ne krivulje, a ze z Bézierjevimi krivuljami lahko aproksimiramo
skoraj poljubno krivuljo. Ker pri Bézierjevih krivuljah visokega reda v praksi
naletimo na numericne tezave, se raje posluzujemo uporabe zlepkov Bézierjevih
krivulj nizjega reda. Bézierjeva krivulja prvega reda (n = 1) je enaka daljici,
kar je razvidno tudi iz enacb v tabeli 7.2. Nikakor pa z Bézierjevo krivuljo
(neglede na red) ne moremo natancéno opisati kroznega loka — z Bézierjevo
krivuljo ali zlepkom Bézierjevih krivulj lahko krozni lok le aproksimiramo s
poljubno natanc¢nostjo. Torej bi celoten zemljevid prog lahko opisali tudi le z
zlepki Bézierjevih krivulj.

Pomembna lastnost krivulj je tudi njihova dolzina. Za ravninsko krivuljo, ki je
podana s p(A) = [z(A), y(A)] in parametrom A € [0, 1], izra¢unamo njeno dolzino
z integralom

o= (50 () o
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Slika 7.23: MnoZica osnovnih krivulj za opis poti: (a) daljica, (b) krozni lok in

(c) Bézierjeva krivulja tretjega reda

Tabela 7.2: Mnozica osnovnih krivulj podanih v parametri¢ni obliki za opis poti

Krivulja Enacba in parametrs Omejitve

Daljica p(A) = (1= XNpa+ Aps Ael0,1]
zacetna tocka pa = [z a4, ya]
koné¢na tocka pp = [z, yB]

Krozni lok P(A) = po + rlcos(a + A\B), sin(a+ A3)] A€ ]0,]1]
center pc = [z¢, yc|
radij r r>0
zacetni kot o
lo¢ni kot 8 18] < 27
Bézierjeva krivulja  p(A) = >0, (7)(1 — A)""Aip; A€ [0,1]

kontrolna tocka p; = [x;, v 1=0,1,...,n
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Definiramo lahko tudi dolzino po krivulji od zacetne tocke krivulje do tocke p())

=[5 (e
0

Torej je celotna dolzina krivulje D = d(1).

Dolzina daljice je enaka evklidski razdalji d(A\) = A||ps — pall2, dolZina kroZnega
loka pa je d(\) = ABr. Medtem ko sta dolzini daljice in kroZznega loka lahko
dolodljivi, v splos$nem ne obstaja analiti¢na resitev integrala (7.12) za izracun
dolzine splosne Bézierjeve krivulje, razen za krivulje do tretjega reda. Dolzino
krivulje v tem primeru zato poiS¢emo s pomocjo primerne numeri¢ne metode.
Velja omeniti, da je parameter A v primeru daljice in kroznega loka proporcionalen
dolzini krivulje od zacetne tocke do tocke p(A). To pa v splosnem ne velja za
Bézierjeve krivulje, kjer se Se vedno z monotonim vecanjem parametra A monotono
veca oddaljenost (po krivulji) tocke p(\) od zacetne tocke, a ne linearno.

7 zlepkom, ki je sestavljen iz bazi¢nih krivulj, lahko aproksimiramo poljubno
krivuljo. Glede na zahteve v sti¢nih tockah poznamo razli¢ne nacine tvorjenja
zlepka, ki je v sti¢nih tockah lahko le zvezen, lahko pa ima tudi zvezne prve
in/ali vi§je odvode. Tako lahko dosezemo Zeleno gladkost zlepka v sti¢nih tockah.
Zadetna oblika vsake (razen prve) krivulje v zlepku je torej pogojena z obliko
predhodne krivulje v zlepku. Zveznost zlepka, ki je sestavljen iz krivulj p;—1(}\)
in p;(\), v tocki p;(0) dosezemo z

pi(0) = pi—1(1)
Zahtevamo lahko tudi zveznost prvega odvoda koordinat obeh krivulj v sti¢ni

tocki
dp;(0) _ dpi—1(1)
d\ d\

in/ali tudi n-tega odvoda

d"pi(0) _ d"pi—1(1)

dAn dAn

Zahtevamo lahko tudi zveznost katere druge veli¢ine, kot je usmerjenost ali

ukrivljenost krivulje v sti¢ni tocki.

Na sliki 7.24 je narisana usmerjena pot, ki vodi od vozliséa 11 preko vozlisca 12
do vozliséa 8 (glejte sliko 7.21). Pot lahko opiSemo z naslednjim zlepkom bazi¢nih
krivulj (koordinate in razdalje so podane v milimetrih):

1. kroznim lokom s parametri pc = [1400, 1200], r = 75, @ = 180° in
f=-90%

2. daljico s parametroma p4 = [1400, 1275] in pp = [1550, 1275] ter

3. Bézierjevo krivuljo s parametri n = 3, po = [1550, 1275], p; = [1775, 1275],
pe = [1775, 1575] in p3 = [2000, 1575].
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2000, 1575
(1775, 1575) Qi ( = )

(1400, 1275) ;
---------------------- 8 (1775, 1275)
(1550, 1275)

ny . 4 (1400, 1200)
(1325, 1200)

Slika 7.24: Pot od vozlis¢a 11 preko vozlis¢a 12 do vozlis¢a 8 (koordinate so v

milimetrih)

Vse krivulje so podane tako, da parameter A vedno narasca v smeri usmerjenosti
poti. V danem primeru gre za zvezen zlepek krivulj, ki ima tudi zvezno ukri-
vljenost v sti¢nih tockah, kar je za namen vodenja robota po ¢rti smiselno in
zazeleno, saj ne zelimo, da bi kjerkoli prislo do prehitre ali celo hipne spremembre
usmerjenosti poti. Krivulje lahko zdruzimo tudi kako drugace — npr. tako
da so krivulje v sti¢nih tockah le zvezne, brez zveznih odvodov, kot je to med
vozliséema 11 in 6 na sliki 7.21.

7 omenjenimi bazi¢nimi krivuljami lahko opisemo celoten zemljevid na sliki 7.21.
Proga med vozlis¢ema 12 in 8 je podana z eno Bézierjevo krivuljo, medtem ko je
proga med vozliscema 11 in 12 podana z zlepkom kroznega loka in daljice. Vsako
progo lahko torej opiSemo z urejeno mnozico krivulj

proga = (krivuljay, krivuljas, ..., krivuljar)

Posamezne proge, ki se stikajo, lahko zdruzimo tako, da tvorimo pot, ki jo zopet
lahko zapisemo v obliki urejenega seznama

pot = (progai, progas, ..., progar)

zemljevidu.

Ce zelimo pot, ki je opisana z urejenim seznamom osnovnih parametri¢nih krivulj,
razdeliti na dva ali ve¢ delov, moramo znati razdeliti vsako izmed osnovnih krivulj
na poljubnem mestu. Razdelitev daljice na mestu A na daljici p(A) (med tockama

pa in p(A)) in p(N) (med tockama p(A) in pp) je enostavna (slika 7.25a):

(A) =1 =X)pa+Ap(A); [0, 1]
1

A€
A) =1 =Np\) +App; A€o, 1]
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pba

Slika 7.25: Mnozica osnovnih krivulj za opis poti: (a) daljica, (b) krozni lok in
(c) Bézierjeva krivulja tretjega reda

Podobno lahko enostavno razdelimo tudi krozni lok (slika 7.25b):

cos(a + AN3)

P =PCHT | ot ANG)

T
] ;o A€o, 1]

P cos(a+ A3+ A(1 = N)p) ' Y
p()\)_pc—i_rLin(a—i—)\ﬁ—i-)\(l_)\w)] oAl

Tudi za Bézierjeve krivulje velja, da lahko krivuljo na poljubnem mestu razdelimo
na dve krivulji, ki sta zopet Bézierjevi krivulji enakega reda kot osnovna krivulja.
Kontrolne tocke, ki definirajo novi Bézierjevi krivulji, lahko dolo¢imo z de
Casteljaujevim algoritmom [10] (slika 7.25c). V vseh primerih velja, da je
delitvena tocka p(\) na krivulji (daljica/krozni lok/Bézierjeva krivulja) enaka
kon¢ni tocki prve krivulje in zacetni tocki druge krivulje: p(A) = p(1) = p(0).

......

vvvvv

Omrezje postaj

Pod progami se vgrajene RFID-znacke z unikatnimi oznakami, ki jih AGV lahko
zazna 7z RFID-bralnikom. Te RFID-znacke omogocajo, da AGV ugotovi na kateri
progi in kje na progi se nahaja. Ce se RFID-znacka nahaja pred kriziséem,

vvvvv
vvvvv

vvvvv

vvvvvvvvvvvv

RFID-znac¢k, mora AGV svojo lego ocenjevati s postopkom lokalizacije (npr. z
uporabo RFID-znack in na podlagi odometrije). Za namen planiranja poti in
vodenja zato graf kriziS¢ in prog predstavimo v nekoliko spremenjeni obliki.

Mesta na progah, kjer se nahajajo RFID-znacke, obravnavamo kot postaje, kjer
se AGV lahko ustavi oz. se odlo¢i o svoji naslednji akciji — obicajno izbiramo le
med sledenjem levemu ali desnemu robu ¢rte. Proge, ki ne vsebujejo RFID-znack,
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Slika 7.26: Zemljevid z oznacenimi progami in polozaji RFID-znaé¢k (sinje modre

oznake) ter virtualnih znack (rumene oznake)
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opremimo s t. i. virtualnimi znac¢kami (njihov polozaj lahko dolo¢imo le na
podlagi odometrije/lokalizacije), ki jih tudi obravnavamo kot postaje. Vsaka
proga tako vsebuje vsaj eno postajo, ki je oznacena bodisi z RFID-znacko bodisi
z virtualno znacko. Na sliki 7.26 so na zemljevidu prog oznacene vse postaje.
Postaje z ID-jem, ki je manjsi ali enak 100, so oznacene z RFID-znackami,
ostale postaje pa so oznacene z virtualnimi znackami. Vsaka RFID-znacka je
na sliki 7.26 oznacena z dvema tockama: krogec predstavlja dejanski polozaj
RFID-znacke, krizec pa lokacijo prednjega vozicka AGV-ja, ko le-ta znacko zazna.
To je posledica dejstva, da je RFID-bralnik izmaknjen glede na toc¢ko na AGV-ju,
ki potuje po crti.

Slika 7.27: Graf postaj in prog

Graf, ki predstavlja omrezje prog, lahko preslikamo v nov graf, ki predstavlja
omrezje postaj. V novem grafu na sliki 7.27 vozlis¢éa predstavljajo vse postaje,
ki so povezane z usmerjenimi povezavami, ki predstavljajo poti med postajami.
Utezi poleg povezav v grafu na sliki 7.27 predstavljajo razdalje (v milimetrih)
med postajami vzdolz prog Barva usmerjene povezave iz vozliséa doloca, kako

vvvvv

......

levemu ali desnemu robu ¢rte, s katero je oznacena proga. V tej predstavitvi
zemljevida se doloceni deli prog med postajami torej prekrivajo. Z upostevanjem
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pravil za delitev krivulj, ki sestavljajo proge, lahko originalni graf z omrezjem

.....

predstavljene proge, ki povezujejo postaje.
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Slika 7.28: Zemljevid z oznacenimi potmi in polozaji RFID-znack (sinje modre

oznake) ter virtualnih znack (rumene oznake)

Vodenje po poti

Na podlagi grafa postaj (slika 7.27) lahko torej s pomodjo algoritmov iskanja
optimalne poti v grafu (poglavje 4.4) pois¢emo pot med poljubnima postajama.
Optimalno pot lahko opisemo kot urejen seznam postaj, ki jih moramo obiskati,
¢e zelimo priti od zacetne do konéne postaje. Ta urejeni seznam postaj pa lahko
pretvorimo v urejeni seznam akcij, ki jih mora AGV izvesti, da se pelje po zeleni
poti. Vsako akcijo lahko opisemo s tremi parametri:

1. tip akcije: levo, ¢e mora AGV slediti levemu robu ¢rte, desno, ¢e mora
AGYV slediti desnemu robu ¢rte ali posebno za vse ostale primere;

2. ID naslednje postaje;

3. razdalja do naslednje postaje vzdolz proge.

Na podlagi tako zapisanih akcij lahko izvedemo vodenje AGV-ja. AGV se torej
avtomatsko pelje po poti tako, da sledi ¢rtam, ki oznacujejo proge, in izbira
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Ce je (pri trenutni akciji) ID naslednje postaje manjsi ali enak 100, to pomeni, da
je naslednja postaja oznacena z RFID-znacko. V tem primeru izvajamo trenutno
akcijo vse dokler z RFID-bralnikom ne zaznamo ID-ja naslednje postaje. Ce je
ID postaje vecji od 100, potem izvajamo trenutno akcijo toliko casa, dokler AGV
vzdolz proge ne prepotuje razdalje do naslednje postaja — ta podatek je vsebovan
v akciji. Prepotovano razdaljo lahko ocenjujemo s postopkom odometrije, saj je
AGV opremljen z enkoderji, ali globalne lokalizacije.

AGYV ima na prednjem vozicku namescen linijski senzor za zaznavanje ¢rte (slika
7.29). V nasem primeru gre za sedem segmentni opti¢ni senzor, ki oddaja
svetlobo v infrarde¢em spektru in zaznava koli¢ino odbite svetlobe od podlage.
Vsak posamezni segment senzorja na beli podlagi vrne nizko vrednost in pri
¢érni podlagi visoko vrednost. Ce se senzor nahaja nad ¢rto, lahko na podlagi
zaporedja vrednosti senzorja dolo¢imo levi in desni rob ¢rte — iS¢emo prehod iz
nizkih k visokim vrednostim oz. obratno. Tako lahko v koordinatnem sistemu
senzorja podamo polozaj levega roba zj, in polozaj desnega roba xg. Koordinatni
sistem smo v nasem primeru definirali tako, da je koordinatno izhodisce na sredini
senzorja, skrajna robova senzorja pa sta od izhodis¢a oddaljena za vrednost ena.

Slika 7.29: Sledenje ¢rti na podlagi linijskega senzorja ¢rte (pogled od spodaj)

Glede na zelen polozaj roba ¢rte na senzorju xg, lahko definiramo pogresek:
e(t) = xo — 2 (t) za sledenje levemu robu in e(t) = zy — zg(t) za sledenje
desnemu robu. Ce bi zeleli slediti sredini ¢rte, bi lahko pogresek definirali tudi
kot e(t) = x(t) + xr(t). Za sledenje levemu ali desnemu robu ¢érte lahko nato
zasnujemo preprost regulator za kotno hitrost prednjega vozicka

wa(t) = Kye(t)

kjer je K, ojacenje regulatorja. Zelen polozaj roba ¢rte xy nastavimo razliéno za
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sledenje levemu in desnemu robu, tako da pri preklopu med nac¢inom regulacije
ne pride do udara regulirne veli¢ine — razlika med Zelenima vrednostima levega
in desnega roba bo tako ravno enaka Sirini ¢rte. Maksimalna vrednost pogreska
je v naSem primeru enaka dva (|e(t)| < 2). Linearno hitrost lahko nastavimo kar
na konstantno vrednost (vs(t) = vy = konst.), lahko pa jo tudi moduliramo glede
na pogresek (npr. v,(t) = vg cos %(t)), s ¢imer lahko dosezemo bolj robustno
sledenje ¢rti v ovinkih. V kolikor s senzorjem ne moremo zaznati roba ¢rte, ki

mu sledimo, regulacijo prekinemo in robota ustavimo.

Linearno hitrost vs(t) in kotno hitrost we(t) na podlagi enacbe (7.11) pretvorimo
v hitrosti levega in desnega kolesa, vy, (t) in vg(t). Pri izvedbi regulacije moramo
upostevati Se, da sta hitrosti obeh koles omejeni

vmrn < |up ()] < vmax vmrn < |Jvgr(t)| < vmax (7.13)

sicer se lahko zgodi, da se prednji vozi¢ek bodisi ne bo obracal bodisi se bo le

obracdal na mestu. To lahko resimo tako, da primerno omejimo tudi hitrosti v, (%)
we (t)
vs(t)
pred in po upoStevanju omejitve (7.13). Kot Ze omenjeno, za regulacijo hitrosti

in we(t). Lahko pa poskusimo ohraniti razmerje ki predstavlja ukrivljenost,

vrtenja obeh motorjev oz. koles skrbi mikrokrmilnk na prednjem vozicku.

Dodatni virtualni senzorji

Zaradi majhnosti miniaturnega AGV-ja, smo omejeni z naborom senzorjev, ki jih
lahko uporabimo, saj dolo¢enih senzorjev, ki se obi¢ajno uporabljajo na AGV-jih,
ni na voljo v tako majhni izvedbi. TaksSen primer je laserski merilnik razdalj
(LMR), ki je pri sodelujo¢ih AGV-jih obi¢ajno obvezen kot varnostni element.
AGV-ji so lahko opremljeni celo z ve¢ LMR-ji, ki omogocajo pokrivanje ¢im
vecjega vidnega kota. LMR-ji se pogosto uporabljajo za namen lokalizacije in
gradnje zemljevida okolja [11].

Ceprav LMR-ja ne moremo primerno pomanjsati, da bi ga vgradili na miniaturni
AGV, pa lahko simuliramo meritve tega senzorja. Globalni sistem s strojnim
vidom nam omogoc¢a merjenje leg miniaturnih AGV-jev, poznamo pa tudi njihove
oblike in obliko poligona. Oblike vseh objektov lahko opisemo z daljicami, nato
pa uporabimo algoritem za detekcijo presecisc¢ laserskih zarkov z daljicami ovir.
Algoritem se sprehodi ¢ez vse daljice vseh objektov, ki predstavljajo staticne ali

dinamicne ovire, pri ¢emer za vsako daljico naredimo naslednje (slika 7.30):

1. Cesta a in b robni tocki daljice zapisani v homogenih koordinatah, potem je
b—a
[b—all"

premica skozi ti dve tocki I, = a X b in enotski vektor daljice e, =

2. Za vsak zarek LMR-ja

ld,:[—sinw cosYy xgsiny — ygcosy

naredimo naslednje:
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Svet

Slika 7.30: Modeliranje laserskega merilnika razdalj
(a) Pois¢emo presecisée

T
p:{mc Ky Ii:| =1y Xl

zarka s premico daljice in izra¢unamo faktor ¢ = eZ, (2 — a).

(b) Ce velja 0 < ¢ < 1, potem presecisée p lezi na daljici. V tem primeru

izraCunamo razdaljo r od objekta do izhodisc¢a laserskega merilnika (v
smeri vektorja zarka):

T

rz(%—pg) [cosz/) siny 0

T
Ce velja 0 < 7 < Fmasp in e je r tudi manjsi od trenutne najkrajse
razdalje ry, posodobimo najkrajso razdaljo: ry = r.

Virtualni LMR lahko namestimo glede na katerikoli koordinatni sistem (npr. na
prednji del AGV-ja). Nastavimo lahko razlicne parametre senzorja, kot so doseg,
natancnost, vidni kot, kotna loc¢ljivost itd. S stalis¢a podatkov ne moremo lociti
med nac¢inom uporabe realnega ali virtualnega senzorja. Virtualni senzor ne
more zaznati objektov, katerih leg ne poznamo oz. jih ne merimo z globalnim
sistemom za merjenje lege — poleg AGV-jev lahko z znackami oznacimo tudi
druge objekte na poligonu in tako omogoc¢imo zaznavanje tudi teh.

Na sliki 7.31 je vizualizacija laserskih meritev (vijolicne tocke), kjer se laserski
merilnik razdalj nahaja na vijolicnem AGV-ju. Vidimo odboje laserskih zarkov
na zelenem, modrem in rumenem AGV-ju, ne pa tudi na sinje modrem AGV-ju,
saj je zasencen z zelenim AGV-jem; rde¢i AGV pa je izven vidnega kota senzorja.
Zaradi omejenega dosega senzor ne zaznava objektov, ki so preve¢ oddaljeni.
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Slika 7.31: Vizualizacija meritev LMR-ja, leg AGV-jev in nacrtovanih poti

Nekoordinirano vecagentno vodenje

Na podlagi algoritmov vodenja, lokalizacije in planiranja poti lahko zagotovimo,
da AGV deluje avtonomno, ¢e je edini agent v okolju. V primeru ve¢ agentov pa
so za primerno delovanje potrebni dodatni sistemi vodenja, sicer lahko prihaja
do blokiranj poti, zastojev ali celo trkov in drugih napak, ki lahko zahtevajo
tudi ro¢no ukrepanje operaterja. Za usklajeno delovanje vseh AGV-jev lahko
tako skrbi centralni nadzorni sistem, lahko pa imajo AGV-ji lastne sisteme, ki
omogocajo razresevanje danih situacij v okolju. Vecagentni sistemi so pogosto
zasnovani tudi hierarhi¢no, kjer imajo AGV-ji vgrajene sisteme za varno in
predvidljivo delovanje, centralni nadzorni sistem pa bedi nad vsemi sistemi in
koordinira celotno floto AGV-jev, tako da so vse naloge opravljene optimalno.

AGV-ji lahko z LMR-senzorjem zaznavajo ovire v svoji okolici. Tako lahko AGV
dolo¢i, ¢e se v njegovi neposredni okolici na predvideni poti nahajajo ovire. V
primeru zaznane ovire mora AGV prilagoditi svojo hitrost, da ne pride do trka.
Hitrost lahko prilagodijo proporcionalno glede na oddaljenost do najblizje tocke
moznega trka. Ko se ovira sprosti, lahko nadaljujejo z voznjo brez omejitev.
V primeru, da je zaznana ovira drug AGV, mu AGV lahko sledi na primerni
varnostni razdalji, vse dokler potujeta po isti progi. TaksSen sistem preprecevanja
trkov je enostaven za izvedbo in je v praksi obicajno zahtevan kot varnostni

mehanizem, ki mora biti tudi ustrezno certificiran.
Na sliki 7.31 so prikazane poti po katerih potujejo AGV-ji. Poti so bile nac¢rtane
povsem neodvisno (za vsak AGV lo¢eno). Miniaturni AGV-ji imamo vgrajen
preprost sistem za preprecevanje trkov na podlagi virtualnega LMR-senzorja,



7.5. Primeri uporabe vecagentnih sistemov 419

ki je namesScéen na prednjem delu AGV-ja. V situaciji na sliki 7.31 bodo rdeci,
rumeni, zeleni in sinje modri AGV predvidoma lahko dosegli zadani cilj, brez da
bi na poti naleteli na oviro. Modri AGV je Ze na cilju in miruje, zato vijoli¢ni
AGYV ne bo mogel povsem doseci ciljne postaje, dokler modri AGV te postaje
ne zapusti. Vijolicni AGV pa se cilju ne bo mogel predvsem priblizati, saj je na
njegovi poti pred njim tudi zeleni AGV, ki bo na svoji kon¢ni postaji blokiral se
pot vijolicnega AGV-ja.

Pri uporabi le preprostega sistema za preprecevanje trkov hitro pride do situacij,
AGV-ja zaznavata eden drugega kot oviro, pride do zastoja, ki bi (brez poseganja
operaterja ali vi§jenivojskega nadzornega sistema) trajal neskonéno dolgo. Pro-
blem lahko resimo z vpeljavo prednostnih pravil, podobno kot imamo v cestnem
prometu desno pravilo in prednostne ceste. Zastoj lahko razresimo tudi tako,
da omogoc¢imo komunikacijo med AGV-jema in vzpostavimo ustrezen sistem

vvvvv

vvvvv
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sistem.

S koordiniranim vodenjem vseh agentov, lahko zagotovimo optimalno delovanje
z minimalnim Stevilom zastojev. V kolikor optimiziramo poti za vse AGV-je
hkrati, lahko poskusimo dosec¢i tudi, da do zastojev na poti ne prihaja in da
lahko vsi AGV-ji doseZejo svoj cilj, ¢e le je kon¢na postaja prosta (glejte poglavje
7.5.4). V primeru na sliki 7.31 bi zZeleli doseci, da je vijoliéni AGV pred zelenim
— vsaj na delu kjer bi sicer prislo do zastoja.

7.5.4 Vecagentno planiranje vozZnje transportnih

vozil

7 vse bolj pogosto avtomatizacijo skladis¢ in proizvodnih obratov je postalo
tudi raziskovanje na podroc¢ju avtonomnih robotskih vozil zelo popularno. Eden
bistvenih izziv avtonomnih robotskih vorzil, je planiranje poti. To je lahko
reSeno centralno, kjer centralna enota, ki povezuje vsa robotska vozila hkrati
dolo¢i nacrt poti za vsa vozila. Glavna prednost centralnih pristopov je vecja
optimalnost nacrtanih poti [12, 13]. Pri bolj obseznih zemljevidih in vedjem
stevilu vozil po navadi postanejo taki pristopi ¢asovno preveC potratni, kar
omejuje uporabo v realnih sistemih. Problem racunske kompleksnost bolje
naslavljajo decentralizirani pristopi, ki so v splosnem hitrejsi od centraliziranih,
bolj prilagodljivi na spremembe okolja in delovnih nalogov a ve¢inoma zagotavljajo
manj optimalne re§itve [14, 15]. V teh pristopih se naloga dolo¢anja poti iz visjega
nivoja prestavi na sama vozila, tako da avtonomno doloc¢ajo vsak svojo pot, hkrati
pa sprotno resujejo konflikte in zbirajo informacije o drugih vozilih.
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Prikazan je pristop planiranja poti za usklajeno delovanje skupine mobilnih
robotskih vozil pri transportu materiala v proizvodnih obratih. Pristop je razvit
v okviru magistrske naloge in je objavljen tudi v prispevku [16]. Predstavljen
algoritem temelji na znanem algoritmu A*, ki je nadgrajen za planiranje poti ve¢
robotskih vozil, tako da najde kompromisno resitev brez trkov in nepotrebnih
zastojev. Pristop uposteva prioritete transportnih nalogov, zemljevid v obliki
utezenega usmerjenega grafa ter predvidena casovna okna zasedenosti segmentov
zemljevida. Algoritem najprej poiSc¢e pot za vozila z viSjimi prioritetami. Ob
vsakem planiranju poti vozila, algoritem na koncu zabelezi predvidena casovna
okna zasedenosti cest in vozlis¢ na zemljevidu za najdeno pot. Te zasedenosti
se nato upostevajo pri iskanju poti za vozilo z nizjo prioriteto, tako da ne ovira
voznje vozil z visjo prioriteto in se izogne konfliktom. Dve pomembni moznosti,
ki jih algoritem uposteva in predlaga, sta cakanje pred vozlis¢em, da se pot
sprosti in pa moznost umika na stransko cesto v primeru onemogocenega cakanja.

Pristop je ilustriran na simulacijskih primerih.

Planiranje z upostevanjem prioritet in oken zasedenosti

Predlagan algoritem je nadgradnja algoritma A* in omogoca planiranje poti
za veC robotskih vozil, ki se hkrati vozijo na istem zemljevidu. Algoritem se
izvaja loceno za vsako vozilo posebej po prioritetnem sistemu. Vsakemu vozilu
dolo¢imo stopnjo prioritete. Veéja kot je stopnja prioritete, bolj pomembno je,
da to vozilo doseze cilj v najkrajSem moznem casu. Preden izvedemo algoritem
na kateremkoli vozilu, je zemljevid popolnoma prost. Vsa vozlis¢a in povezave
so brez predvidenih Casovnih oken zasedenosti. Algoritem najprej izvedemo na
problemu vozila z najvisjo prioriteto. Ker je zemljevid Se prost, bo algoritem
zanj nasel optimalno pot. Hkrati bo dolo¢il ¢asovna okna zasedenosti za ceste
in vozliséa v ¢asovnih trenutkih, ki jih narekuje rezultat planiranja poti. Ko
zazenemo algoritem na robotu z nizjo prioriteto, bo z upostevanjem zasedenosti
casovnih oken cest in vozliS¢ zanj nasel ¢im hitrejso mozno pot, ki ne bo ovirala

vozil z viSjo prioriteto.

Osnovni potek iskanja poti za posamezno vozilo je enak kot pri algoritmu A*.
Algoritem najprej doda zacetno vozlisée na odprti seznam. Nato v zanki izvaja
iterativni postopek, dokler ni odprti seznam prazen oz. dokler iz odprtega
seznama ha zaprti seznam ne prestavi ciljnega vozlis¢a, kar pomeni, da je pot
najdena. V iterativnem postopku najprej iz odprtega na zaprti seznam prestavi
vozlisce z najmanjso skupno ceno. Nato za vsako sosednje vozlis¢e doloci cene
ter preveri zasedenost vozliséa in pripadajoce ceste. Ce je pot prosta, algoritem
nadaljuje z enakim potekom kot A*. Glavna razlika med algoritmoma nastopi,
kadar algoritem pri odpiranju sosednjega vozlis¢a in preverjanju zasedenosti
naleti na konflikt. Konflikt predstavlja zasedenost vozlisca ali ceste do sosednjega
vozlisca. Prisotnost konflikta se ugotavlja s pomocjo casovnih oken zasedenosti
vozliséa ali cest, ki jih za svojo pot definirajo vozila z viSjo prioriteto. V primeru
konflikta se s poizkuSanjem iSc¢e prosta mesta za cakanje in izogib konfliktu z
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vracanjem po poti, po kateri je prisel. Pseudo-algoritem z opisanim postopkom
izogibanja konfliktov je podan v algoritmu 6. S tem se zacne rekurziven postopek

Algorithm 6 Planiranje poti za ve¢ vozil.

Inicializacija:
Dodelitev prioritet transportnim nalogom za N vozil.
Predstavitev prostora z grafom prehajanja stanj in okni zasedenosti.

for vorzilo s prioriteto i = 1,..., N do
V zanki izvajaj iterativni postopek iskanja poti po algoritmu A*.

V primeru konflikta izvajaj:
while mestoKon flikta # zacetniPolozajVozila do
if prosto(cesta pred mestoKonflikta ) then
Predlagaj cakanje na cesti pred mestoKonflikta.
break
end if
if prosto(stranska cesta pred mestoKon flikta) then
Predlagaj umik in cakanje na stranski cesti pred mestoKon flikta.
break
end if
Prestavi mestoKon flikta na predhodno cesto po poti nazaj.
end while

Dolo¢i okna zasedenosti za vozlisca in ceste na poti.
end for

v katerem algoritem s poizkusanjem is¢ée primerno mesto za cakanje na sprostitev
poti in izogib konfliktu. Najprej poizkusi s ¢akanjem na predhodni cesti. Ce tudi
ta cesta ni prosta, poizkusi s cakanjem na kateri od stranskih cest. Stranske
cesta so vse ceste povezane s predhodnim vozlis¢em, razen predhodne in trenutne
ceste. Ce nobena od stranskih cest ni prosta za cakanje, se algoritem rekurzivno
pomakne po poti nazaj. Algoritem nadaljuje z novo iteracijo, kjer poizkusi s
cakanjem na novi predhodni cesti, ¢e ta ni prosta na novih stranskih cestah itd.,
dokler ne najde prostega mesta ali ne pride do zacetka poti.

Dolocitev cen povezav in oken zasedenosti povezav in voz-
lis¢

Predlagan algoritem pri raziskovanju zemljevida prednostno izbira vozlisca z
najmanjso skupno ceno. Cena povezave predstavlja ¢as, ki ga vozilo porabi, da
prevozi pot med dvema vozliséema. Pri tem predpostavimo konstantno hitrost
vozila med premikanjem, ki jo podamo kot vhod algoritma. Predlagan algoritem
vpeljuje moznost ¢akanja vozila na mestu, da se cesta ali vozlisce sprosti, vozilo
pa lahko nadaljuje pot brez konfliktov. Cas, da vozilo prevozi neko pot se tako
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lahko podaljsa s pribitkom cene zaradi ¢akanja na tej poti. Povecana cena torej
predstavlja seStevek Casa voznje in casa cakanja med vozliSéema. V sploSnem
izbira take cene pomeni, da bo algoritem iskal pot, po kateri bo najhitreje prispel
do cilja. Ko algoritem najde pot za vozilo ji doda Se ¢asovna okna zasedenosti
cest in vozlis¢, ki jih bo vozilo prevozilo na najdeni poti ob predvidenih casovnih
trenutkih.

Teoreti¢no se vozilo na vozliséu nahaja zgolj ¢asovni trenutek. A je za dolocitev
okna zasedenosti vozlis¢a potrebno upostevati tudi dimenzije vozila in zZeleno
varnostno razdaljo ter njegovo hitrost voznje, da se prepreci trk z drugim vozilom,
ki pripelje v vozlisée tik za prvim. Casovno okno zasedenosti vozlis¢a tako
doloc¢a interval tyg <t < tyg, kjer so tyg =ty — Atyarn, tve = tv + Atvarn,
ty Cas prihoda vozila v vozlisce, Atygrn = % varnostni ¢as, D sestevek polovicéne

dimenzija vozila in varnostne razdalje in v hitrost voznje.

Casovno okno zasedenosti ceste dolo¢ajo naslednji podatki: ¢as prihoda na
cesto (tystop), Cas voznje (Atees;), Cas Cakanja (At.q,) na cesti (pred konénim
vozlisSéem) in smer voznje. Vozilo lahko ¢aka le na cestah (povezavah), ¢akanje v
vozlis¢ih ni dovoljeno. Ko ¢aka na mestu, je to vedno na cesti pred vozlis¢em.
Casovno okno zasedenosti ceste tako dolo¢a interval tog < t < tep, kjer je
upostevan varnostni ¢as Aty,qrn, (dimenzije vozila in Zelena varnostna razdalja),
tcs = tustop — Atyparn, in morebiten ¢as cakanja, ki je vkljuCen v tcg = tystop +
Ateest + Atyarn + Ateak.

Preverjanje zasedenosti in dolocitev ¢asa cakanja

Preden algoritem doda vozlisc¢e na odprti seznam, preveri ¢e je vozlisce prosto.
Pri tem preveri vstopno cesto in vozlis¢e posebej, saj je lahko zasedena samo
cesta ali samo vozlisCe. Algoritem najprej preveri zasedenost ceste in nato
zasedenost vozlis¢a. V kolikor algoritem zazna zasedenost ceste ali vozlisca izluséi
podatek o koncu zasedenosti ceste oz. vozlis¢a. Na podlagi tega podatka v
nadaljevanju dolodi ¢as ¢akanja vozila. Vozilo lahko ¢aka na trenutni cesti (cesta
pred vozliséem), ko je zasedeno vozliscée oziroma na predhodni cesti trenutne

ceste, Ce je zasedena trenutna cesta.

Preverjanje zasedenosti ceste in dolocitev casa ¢akanja na predhodni
cesti Algoritem pri preverjanju zasedenosti ceste za trenutno vozilo primerja
predvideno ¢asovno okno s ¢asovnimi okni zasedenosti, ki jih je za to cesto prej
dolocil vozilom z visjo prioriteto. Pri tem lo¢imo ¢asovno okno vozila, ki vozi v
nasprotni smeri voznje trenutnega vozila (z indeksom i) in ¢asovno okno vozila,

ki vozi v smeri voznje trenutnega vozila.

V primeru iste smeri voznje po cesti je ¢as ¢akanja trenutnega vozila (Ateqk, ) pred
cesto dolocen upostevajo¢ okna zasedenosti vozil z viSjo prioriteto (tcg <t < tog)
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ter s parametri trenutnega vozila (vstopni ¢as tysiop;, varnostni ¢as tygrn, )

Atcaki _ {0 ; |tvstopi - tC’S‘ Z Atvarni

|tCS - tvstopi| + Atvarni ; |t1)stop,; - tCS‘ < Atvarni

Pri izrac¢unu ¢asa cakanja trenutnega vozila At.,j, na cesti je potrebno upostevati
tudi morebiten ¢as ¢akanja predhodnega vozila z visjo prioriteto. Kjer trenutno
vozilo lahko na cesto vstopi brez ¢akanja pred ali za predhodnikom (At.qk, = 0),
Ce je vsaj za varnostni ¢as Aty,qrn, in za svoj predviden Cas Cakanja (brez
upostevanja predhodnega ¢akanja na cesti) pred predhodnikom oziroma, e je
vsaj za varnostni ¢as At,qry, in Cas ¢akanja predhodnika za njim. V nasprotnem
pa mora svoj cas ¢akanja ustrezno podaljsati.

V primeru nasprotne voznje po cesti, pa je Cas cakanja trenutnega vozila z

indeksom 7 doloc¢en kot

tvstopi Z tCE + Atvarm ali

tizstop,; S tCs - Atvarn,;

Atear, = .
«“ tvstopi < tCE + Atuarm m

tCE - tvstopi + Atvarni ;
tvstopi > tCS - Atvarn,;

Preverjanje zasedenosti vozlis¢a in doloditev ¢asa ¢akanja na trenutni
cesti Potreben ¢as ¢akanja na cesti pred vozlis¢em (trenutni cesti) za vozilo
dolo¢imo glede na okno zasedenosti, ki so ga za to vozlis¢e dolocila vozila z visjo
prioriteto. Cas ¢akanja lahko poenostavljeno (brez upostevanja smeri voznje
skozi vozlisée) dolo¢imo kot

0 5 |tvstopi - tV| Z Atvarni + AtV
Ateak,j =
Atva'r‘ni + tVE - tvstopi 5 |tvstopi - tV| < Atvarni + AtV

kjer je ty = LvsEVE trenutek prihoda (teziséa) predhodnega vozila v vozlisée in
Aty = % je poloviéni interval zasedenosti vozlis¢a (kar je enako varnostnem
¢asu predhodnika).

Izjema je preverjanje zasedenosti vozlisca, ki za trenutno vozilo predstavlja ciljno
vozlis¢e. V tem primeru mora biti vozlis¢e prosto od trenutka prihoda nanj
naprej.

Cakanje zaradi zasedenosti

Ko algoritem pri dodajanju vozlis¢ na odprti seznam naleti na vozlisce, ki je
zasedeno, ali je zasedena cesta do njega, predlaga ¢akanje vozila pred zasedenim
delom, da se ta sprosti. Ta ¢as cakanja algoritem pristeje k ceni-do-sem vozlisca,
da se v nadaljevanju uposteva pri raziskovanju in izbiri poti.

Vozlisce, ki ga algoritem dodaja na odprti seznam je sestavljeno iz dveh delov; iz
vozlis¢a samega in iz ceste, ki vodi do njega.
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Kadar je zasedeno zgolj vozlisée, bo vozilo ¢akalo na trenutni cesti pred vozliscem.
Kadar pa je zasedena trenutna cesta, vozilo ne ¢aka na predhodnem vozliscu,

vvvvv

hkrati. Vedno, ko vozilo ¢aka, je to na cesti pred vozlis¢em. Algoritem pri
doloc¢anju cene ¢akanja vozila lo¢i med ¢akanjem na trenutni cesti in ¢akanjem
na predhodni cesti. Ceno-do-sem zato razdelimo na tri dele: cena-do-sem brez
¢akanja, cena ¢akanja na trenutni cesti in cena ¢akanja na predhodni cesti.

Kadar algoritem posodobi tudi ceno ¢akanja na predhodni cesti, s tem zakasni
prihod vozila na konec predhodne ceste, kar podaljsa ¢as nahajanja vozila na
predhodni cesti. Potrebno je preveriti, ¢e je v tem dodatnem ¢asu predhodna
cesta Se prosta in ¢e je ob novem c¢asu prihoda na predhodno vozlisce le to se
prosto. Ce sta predhodna cesta in predhodno vozlisée prosta, se ponovi postopek
od preverjanja trenutnega vozlis¢a in trenutne ceste naprej.

Ce predhodna cesta ali vozlis¢e ob dodanem ¢akanju na predhodni cesti nista
veC prosta, trenutnega vozlis¢a ne moremo dodati na odprti seznam. V tem
primeru algoritem predlaga umik na stransko cesto ali ¢akanje na cesti, ki je
predhodna sedanji predhodni cesti. Kadar umik na stransko cesto ni mozen,
algoritem predlaga pomik ¢akanja po poti nazaj.

Rezultat algoritma

Ko algoritem raziscée ciljno vozlisce je nasel najhitrejSo pot. Eksplicitno ciljno
vozlis¢e ne nosi informacije o celotni poti, ampak le o ceni te poti in predhodnem
vozliséu. Koc¢no pot je potrebno sestaviti s sledenjem predhodnikov na zaprtem
seznamu vozlisc.

S sledenjem predhodnikov pridemo do zacetnega vozlisca, ¢e si za vsako najdeno
vozlisce zapisemo Se oznako pripadajose ceste dobimo obrnjen seznam cest, ki
vodi od zacetka do cilja in sestavlja najdeno pot. Algoritem poleg seznama cest
za vsako cesto vrne Se podatek, ¢e gre za umik na stransko ceste ter podatek o
casu cakanja na tej cesti.

Primeri delovanja

Algoritem bo predstavljen na primeru, ki je prikazan na sliki 7.32, kjer lahko
vidimo zacetne polozaje treh robotskih vozil. Modro vozilo 1 z najvisjo prioriteto
pot pri¢ne na vozlis¢u 7 in konca na vozlis¢u 1. Zeleno vozilo 2, ki je naslednje
po prioriteti, pri¢ne pot na vozlis¢u 2 in konca na vozliséu 7. Zadnje, rdece vozilo
3, katerega postopek iskanja poti bomo po korakih opisali, pot pri¢ne na vozliséu
1 in konca na vozlis¢u 6. Koordinate so predstavljene v metrih, hitrosti vseh
vozil pa so 1m/s. Poti za vozila 1 in 2 sta Zze nacrtani. Posledi¢no so za te poti
dolocena tudi ¢asovna okna zasedenosti, ki za vsako cesto doloc¢ajo ¢as prihoda,
odhoda in cakanja vozila na njej. Prav tako za vsako vozlis¢e dolocajo trenutek
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Slika 7.32: Zemljevid ter zacetni polozaji, cilji in kon¢ne poti treh robotskih vozil
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Slika 7.33: Casovna okna zasedenosti cest in vozlis¢ za modro in zeleno vozilo na
sliki 7.32

prihoda vozila nanj. Casovna okna zasedenosti za nacértane poti vozil 1 in 2 lahko
vidimo na sliki 7.33. Vsaka ¢rta predstavlja casovni interval oz. ¢asovno okno, ko
vozilo zasede cesto ali vozlis¢e. Levo od ¢rte je zapisana oznaka vozliséa ali ceste,
ki je zasedena. Vse ceste so usmerjene in vodijo od nekega vozlisca k drugemu.
Njihove oznake so sestavljene iz oznak vozlis¢, ki jih povezujejo. Npr. cesta 502
vodi od vozlis¢a 5 proti vozliscu 2. Pri cestah polna ¢rta predstavlja zasedenost z
voznjo v smeri ceste, ¢rtkana ¢érta pa zasedenost z voznjo v nasprotni smeri ceste.
Levo krajisce ¢rte predstavlja cas prihoda na zacetek ceste, desno krajisce pa cas
prihoda na konec ceste. Cakanje na cesti je dolo¢eno z dodatno oznaéeno tocko
na ¢rti, kjer ¢as od srednje tocke do desnega krajiséa predstavlja ¢as cakanja.
Pri vozliscih ¢as prihoda na vozlisce predstavlja sredina c¢rte, ki je razsirjena z
namenom, da vozila na vozlis¢e prihajajo z razmakom varnostnega casa. Izjema
je poltrak oblike ¢rta-pika, ki oznacuje cas od prihoda vozila na ciljno vozlisce
naprej. Ta ¢asovna okna algoritem uposteva pri iskanju poti rdecega vozila 3.

Pri iskanju poti rdecega vozila algoritem uposteva okna zasedenosti in iS¢e mozno
pot v grafu. Zacne z vozliscem 1, nadaljuje do naslednjega moznega vozlisca 4 in
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ker je v ¢asu voznje po cesti 104 (0-2 s) in ob Casu prispetja v vozlisce 4 (2 s)
prosto, ga doda na odprti seznam.

V drugem koraku algoritem preisce naslednike vozlisca 4, torej vozliséi 3 in 5.
Vozlis¢e imata enako ceno-do-sem (4 s) a vozlis¢e 5 ima manjSo ceno-do-cilja (3 s,
vozlis¢e 3 pa ima ceno-do cilja 7 s) in posledi¢no tudi manjSo ceno celotne poti,
zato algoritem raziSce njegove naslednike in ga doda na zaprti seznam.

Nato v tretjem koraku algoritem izbere vozlisce 6, do katerega vodi cesta 506.
Cena-do-sem za vozlis¢e 6 znasa 7 s in predviden interval voznje po cesti 506
je 3-6 s. Cesta je znotraj tega intervala zasedena (glejte sliko 7.33) z voznjo
modrega vozila v nasprotni smeri do ¢asa 6 s. To predstavlja konflikt, kateremu

se zelimo izogniti.

S tem se zacne rekurziven postopek v katerem algoritem s poizkusanjem iSce
primerno mesto za Cakanje na sprostitev poti in izogib konfliktu. Najprej poizkusi
s ¢akanjem na cesti, ki se na poti do zasedene ceste nahaja pred njo, torej je
njena predhodna cesta (cesta 405). Ta je v Casovnem intervalu (2-6 s) (prihod na
zacetek ceste in zakasnjen prihod na konec ceste) prosta, a zasedeno je vozlisce 5
do casa 8s, kar Se podaljSa cakanje na cesti 405 za 2s, v tem dodatnem casu pa
cesta ni veC prosta, torej podaljSanje ¢cakanja ni mogoce.

Nadalje algoritem preveri, ¢e bi lahko vozilo ¢akalo na sprostitev ceste 506
na stranski cesti 502 predhodnega vozlis¢a 5. Tudi cesta 502 v intervalu 4-6
s (vkljucujoé potreben cas ¢akanja 2s) ni prosta. Algoritem v nadaljevanju
preizkusa ostala mozna mesta ¢akanja po poti, ki vodi do trenutnega vozlisca,
nazaj, z namenom, da najde mesto, kjer lahko brez oviranja drugih vozil caka na
sprostitev poti do zeljnega vozliscéa. Po nekaj iteracijah algoritem najde mozno
mesto cakanja na stranski cesti 403 za casovni interval 2-9 s kot je prikazano
na sliki 7.32. Po dodanem cakanje na stranski cesti, algoritem v naslednjem
koraku razisée vozlisée 5, ki nasledi umik na stransko cesto. Vozlisée 5 je ponovno
raziskano, saj je vmes dodano ¢akanje in zakasnitev prihoda. V naslednjem
koraku razisce Se vozlisce 6 in s tem pride do cilja. S tem je algoritem dolocil
optimalne poti za vsa tri vozila brez konfliktov in upostevajo¢ prioritetno listo.

Na slikah 7.34 in 7.35 sta prikazana rezultata planiranja poti Se na dveh drugih
zemljevidih. Prikazani so zaCetni polozaji vozil z njihovimi oznakami ter izris
nacrtanih poti. Vsa vozila vozijo s hitrostjo 1 m/s. Vozilo z oznako 1 ima
najvisjo prioriteto in vozilo z najvisjo oznako ima najnizjo prioriteto. Cakanje
je ponazorjeno z znakom ure s pripisom cCasa zacetka in Casa konca cakanja.
Zemljevid na sliki 7.34 predstavlja skladisce z mesti dolaganja tovora na vozila
(slepe ceste) ter z bolj obremenjenim osrednjim delom iz vozlis¢ 10 in 11. Zemljevid
na sliki 7.35 predstavlja preprost a splosno uporaben mrezast zemljevid, ki ga
lahko, s poljubno odstranitvijo posameznih cest ali vozlis¢ apliciramo na mnoga
skladisca ali tovarne.

Prikazan pristop planiranja vec¢ robotskih vozil nadgrajuje algoritem A*, ki je
v osnovi namenjen planiranju poti enega vozila. Algoritem uposteva prioritete



7.5. Primeri uporabe vecagentnih sistemov 427

12 / 2
10 12s-24:
@ji2s-24s
L \8 11 8
8 A 5
Eql
= 12 & o 7
41+
1.
s-20s
2r 2
1 9
07(\) I | I I | I 1
0 4 8 12 16 20 24 28 x (m)

Slika 7.34: Prikaz rezultata planiranja na primeru s 5 vozili. Izrisani so zacetni
polozaji vozil in na¢rtane poti. Simbol ure s pripisom Casa zacetka in Casa konca
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Slika 7.35: Prikaz rezultata planiranja na primeru mrezastega zemljevida cest.
Izrisani so zacetni polozaji vozil in nacrtane poti. Simbol ure s pripisom casa
zacetka in casa konca Cakanja oznacuje mesto cakanja vozila.
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transportnih nalogov, kar omogoca bolj uéinkovito izvajanje prioritetnih zadol-
zitev, vozila z nizjo prioriteto pa se prilagodijo prvim. Strategija doloc¢anja
casovnih oken zasedenosti omogoca zaznavo potencialnih konfliktov, ki se jim
algoritem izogne z izbiro druge poti, s ¢akanjem pred konfliktom ali z umikom
na stransko pot. Kompleksnost algoritma narascéa s Stevilom vozil, saj se vozila z
nizjo prioriteto veckrat znajdejo v zasedenih delih zemljevida in morajo iskati
alternativne poti brez konfliktov.
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