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Predgovor

V knjigi so zbrani bistveni algoritmi, ki so potrebni za izvedbo avtonomnih
mobilnih sistemov. Knjiga vsebuje pregled obstoječe (raziskovalno aktualne)
teorije kot tudi številne avtorske raziskovalne prispevke s področja avtonomnih
mobilnih sistemov. Čeprav se knjiga osredotoča na obravnavo algoritmov za
kolesna vozila, se lahko z ustreznimi prilagoditvami velik delež predstavljenega
materiala uporabi tudi za druge vrste mobilnih sistemov in tudi na mnogih drugih
področjih.

Knjiga je po tematikah razdeljana na sedem poglavij, ki jih bralec lahko bere
linearno ali pa se osredotoči le na izbrana poglavja s tematikami, ki ga zanimajo.
Po uvodnem poglavju 1, ki podaja nekaj osnovnih pojmov in kratek zgodo-
vinski pregled, sledi poglavje 2, ki obravnava modeliranje kinematike gibanja
raznovrstnih kolesnih mehanizmov in tudi dinamični model mobilnega sistema z
omejitvami. Nato so v poglavju 3 predstavljeni različni pristopi vodenja kolesnih
mobilnih sistemov in pristopi načrtovanja poti v poglavju 4. V poglavju 5 je
podan pregled senzorjev, ki se uporabljajo v mobilnih sistemih, pri čemer so
predstavljene tudi transformacije koordinatnih sistemov. Poglavje 6 pokriva
stohastičnost v mobilnih sistemih in obravnava ocenjevanje pošumljenih stanj z
Bayesovim in Kalmanovim filtrom ter s filtrom delcev. Na koncu se poglavje 7
dotakne še agentov in večagentnih sistemov, z opisi nekaj praktičnih primerov
uporabe.

Teorija je podprta z mnogimi primeri z rešitvami, ki so opremljeni z izvlečki
programov v Matlabu. Le-te lahko bralec tudi preizkusi in uporabi pri praktičnem
delu. Na spletni strani http://msc.fe.uni-lj.si/ams-kv je na voljo elektron-
ska izdaja knjige in dodatni material, ki knjigo dopolnjuje. Poleg elektronske
knjige lahko bralec v mapo src s spletne strani prenese vse programe, ki so
predstavljeni v knjigi. Ime m-datoteke pri izvlečku programa nato deluje kot
povezava do celotnega programa.

Knjiga je namenjena vsakomur, ki ga zanima področje avtonomnih mobilnih siste-
mov z raziskovalnega in/ali praktičnega stališča. Zaželeno je vsaj nekaj osnovnega
znanja iz matematičnega modeliranja in simulacij dinamičnih sistemov, teorije
regulacij, digitalnega vodenja sistemov, optimizacije, statistike in verjetnosti
ter programiranja. Knjiga se lahko uporabi tudi kot gradivo pri predmetih na

http://msc.fe.uni-lj.si/ams-kv


IV

dodiplomskem ali podiplomskem študiju, ki obravnavajo mobilno robotiko. Tako
je primerno gradivo za študente 2. letnika na podiplomskem študiju 2. stopnje
Elektrotehnike na Univerzi v Ljubljani, Fakulteti za elektrotehniko.

Za nastanek knjige so zaslužni sodelavci Laboratorija za avtomatiko in kibernetiko
(vključno z bivšimi sodelavci, tudi pod prejšnjimi imeni laboratorija) na Univerzi
v Ljubljani, Fakulteti za elektrotehniko. Velika zahvala gre prof. dr. Rihardu
Karbi in prof. dr. Borutu Zupančiču za temeljit pregled dela in številne koristne
komentarje. Posebna zahvala gre prof. dr. Dragu Matku, ki je področje mobilnih
sistemov vpeljal v laboratorij. Hvala as. dr. Matevžu Bošnaku za njegov
prispevek na področju avtonomnih mobilnih sistemov. Hvala vsem študentom,
raziskovalnim partnerjem in tehničnemu osebju na Univerzi v Ljubjani, Fakulteti
za elektrotehniko. Hvala študentki Valentini Stanić za pomoč pri pripravi knjige
v slovenščini. Hvala raziskovalcem z institucij po vsem svetu, s katerimi smo
sodelovali pri najrazličnejših projektih, ki so vplivali na pripravo te knjige. Hvala
tudi Javni agenciji za raziskovalno dejavnost Republike Slovenije, ki je podprla
izvedbo mnogih raziskovalnih in aplikativnih projektov.

Ljubljana G. Klančar, A. Zdešar, S. Blažič, I. Škrjanc
September, 2021
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1
Uvod v mobilne sisteme

1.1 Roboti

Beseda robot izvira iz družine slovanskih jezikov. V poljščini beseda “robota”
pomeni delo, medtem ko je v češčini ali slovenščini bolj arhaična in pomeni
“suženjsko delo” ali corvée. Znani češki pisatelj Karel Čapek je sestavil in uporabil
besedo “robot” v svoji drami R.U.R. - Rossumovi Univerzalni Roboti. Z njo je
opisal umetnega človeka, ki bi ga danes lahko poimenovali kiborg ali android
(slika 1.1). Zaradi velikega uspeha drame, je besedo prevzela večina svetovnih
jezikov. Medtem ko je beseda robot nastala pred manj kot sto leti, je sama ideja
o mehanskem bitju veliko starejša.

V Grški mitologiji najdemo mnogo bitij, kjer ima vsako svoj namen. Spartoi
so oboroženi mitološki vojaki, ki so se razvili iz zmajevih zob, katere je posejal
Kadmos. Vojaki so Kadmosu pomagali pri izgradnji Kadmeje, tj. trdnjave
v Tebah. Talos, ki ga je ustvaril Hefajst, je bil ogromen bronast avtomat,
namenjen zaščiti Evrope na Kreti pred pirati in napadalci. Grški bog kovačev in
obrtnikov Hefajst je zaslužen tudi za nekatere druge mehanske strukture, ki so
bile realizirane. Avtomate lahko najdemo tudi v starodavnih judovskih, kitajskih
in indijskih legendah. Skozi celotno zgodovino je prisotna ideja o mehanskem
avtomatu, ki je podoben ljudem ali živalim; v 19. in 20. stoletju pa je postala
res priljubljena. V 20. stoletju se je pojavil priljubljen medij, ki je upodobil in
oživel robote – film. Nekatere ideje v literaturi in filmu so bile v času nastanka
označene kot znanstvena fantastika, kasneje pa je ta fikcija postala resničnost.

Vendar pa roboti niso samo stvar fikcije. Zelo zgodnji iznajditelji so skušali
ustvari mehanski avtomat. Grški matematik Arhitas naj bi v 4. stoletju p. n. št.
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Slika 1.1: Scena iz dramske predstave R.U.R., ki prikazuje tri robote [Fotografija
v javni domeni (https://commons.wikimedia.org/wiki/File%3ACapek_play.jpg)]

oblikoval in zgradil prvo umetno letečo napravo na lasten pogon. Ta mehanska
ptica na parni pogon naj bi bila zmožna preleteti okoli 200 metrov. Leonardo da
Vinci je v svoji obširni dediščini zapustil mnogo mehanskih načrtov. S pomočjo
grobih skic iz Leonardovih zapiskov je Rosheim [1] rekonstruiral programirljiv
voziček (slika 1.2), ki je služil kot podlaga Leonardovim izumom, med katerimi sta
bila tudi robotski lev in vitez. Z razmahom industrijske revolucije je tehnološki
napredek pripeljal do razcveta avtomatizacije, ki je postopoma vodila do današnje
mobilne robotike.

1.2 Mobilnost

Beseda mobilnost izhaja iz latinske besede z istim pomenom “mōbilis”. Večina
živalskih vrst ima sposobnost lokomocije, tj. premikanja organizma iz enega
mesta na drugo. Medtem ko nekatere živali za premikanje uporabljajo pasivne
sisteme (npr. s pomočjo gibanja vode ali zraka), so druge razvile bolj ali manj
napredne mehanizme za aktivno gibanje. Ene živali se gibajo v tridimenzionalnem
prostoru (plavanje v vodi, letenje po zraku, premikanje po tleh), druge bolj ali
manj sledijo dvodimenzionalni površini vode ali tal, tretje pa so zmožne združiti
različne načine gibanja. V okviru mobilnih robotov nas zanimajo sistemi, ki
se lahko premikajo z uporabo svojega sistema za lokomocijo. Slednji pogosto
posnemajo gibanje človeka ali določene živali. Posnemanje bioloških sistemov
običajno uspešno rešuje nekatere tehnične težave, ki se pojavijo med načrtovanjem
gibanja umetnega sistema.

Drug pomemben vidik mobilnega sistema je avtonomija, saj lahko pri gibanju
pride do prevelike oddaljenosti od človeškega operaterja. Tako mora imeti sistem
določeno stopnjo avtonomnosti, da se lahko premika po prostoru brez pomoči

https://commons.wikimedia.org/wiki/File%3ACapek_play.jpg
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Slika 1.2: Model kolesa in programirljivega vozička, zgrajen na podlagi zapiskov
Leonarda da Vincija

Slika 1.3: Radijsko krmiljen električni čoln Nikole Tesle
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(a) (b)

Slika 1.4: 5200 let staro leseno kolo z osjo, ki so ju našli na Ljubljanskem barju,
je glede na starost kot tudi tehnološko dovršenost eno izmed najpomembnejših
predmetov svetovne kulturne dediščine (premer kolesa meri 70 cm, dolžina osi pa
120 cm) [Muzej in galerije mesta Ljubljane, avtor M. Paternoster]

operaterja oz. da na daljavo sprejema njegove ukaze. Nikola Tesla je konec
19. stoletja prvi oblikoval in sestavil radijsko voden električni čoln (slika 1.3).
Od 20. stoletja nivo avtonomnosti nenehno narašča, vendar človek še vedno na
določenem nivoju upravlja obstoječe mobilne sisteme.

1.3 Kolesa

Čeprav se lahko gibljejo tudi zelo primitivne živalske vrste, ni samoumevno
razviti umetni sistem, ki je sposoben posnemati gibanje živali. Medtem ko koles
in podobnih struktur ni mogoče najti v živalskem svetu, vozila s kolesi omogočajo
energetsko učinkovito gibanje po tleh. Površina tal mora biti dovolj gladka, čeprav
se lahko ustrezno zgrajena kolesna vozila premikajo tudi po neravnem terenu,
stopnicah ipd. Ni znano, kje in kdaj so izumili kolo; uveljavljeno prepričanje je,
da so prva kolesa uporabili približno 4000 let p. n. št. v Mezopotamiji in so se
od tam razširila po celem svetu. Nekateri strokovnjaki ocenjujejo, da so kolo
izumili v prazgodovinski Evropi. Najstarejše ohranjeno leseno kolo z osjo je staro
5200 let in je bilo odkrito v Sloveniji na Ljubljanskem barju (slika 1.4).

1.4 Avtonomni mobilni sistemi

Mobilni sistemi niso (fizično) povezani oziroma vpeti v okolico in se lahko poljubno
premikajo v določenem območju. Glede na okolje, v katerem se premikajo, jih
lahko razvrstimo v tri skupine:
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• Kopenski mobilni sistemi. Med njimi najdemo različne vrste mobilnih
platform, kot so mobilna vozila s kolesi ali gosenicami, roboti z nogami
(humanoidi in roboti, ki posnemajo hojo živali) ter roboti, ki posnemajo
druge načine živalskega premikanja (npr. kačje lezenje). Kopenske mo-
bilne sisteme s kolesi ali gosenicami brez operaterja imenujemo kopenska
brezpilotna vozila (UGV, angl. unmanned ground vehicles).

• Zračni mobilni sistemi. Ta skupina je sestavljena iz mobilnih siste-
mov, ki letijo v določenem zračnem prostoru (letala, helikopterji, droni,
rakete in leteči sistemi, ki posnemajo letenje živali). Če letijo brez pilota
jih imenujemo brezpilotna zračna vozila (UAV, angl. unmanned aerial
vehicles).

• Vodni in podvodni mobilni sistemi. V tej skupino uvrščamo različne
vrste ladij, čolnov, podmornic, avtonomnih podvodnih vozil (AUV, angl.
autonomous underwater vehicles) ipd.

V knjigi bomo obravnavali samo kolesna mobilna vozila, čeprav se lahko z
ustreznimi prilagoditvami velik delež predstavljenega materiala uporabi tudi za
druge vrste mobilnih sistemov.

Mobilne sisteme obravnavamo kot avtonomne, če so sposobni avtonomnega
gibanja v svoji okolici. Avtonomija mora biti zagotovljena

• z energijskega vidika – robot nosi vir energije,

• z vidika odločanja – robot se je sposoben odločati in izvajati ustrezne akcije.

V praksi to pomeni, da mobilni sistem sprejema ukaze človeškega operaterja
glede na stopnjo avtonomnosti, ki mu je vgrajena. Sistem nato poskuša izvesti
ukazane naloge in ustrezne “podnaloge” na nižjih nivojih. V primeru predvidljivih
okoliščin se naloga izvede v določenem časovnem intervalu. Glede na stopnjo
avtonomnosti robota lahko operater izvede naslednje tipične ukaze:

Želene hitrosti koles. Robot sprejema ukaze, ki predstavljajo želene hitrosti
koles. Osnovni algoritmi vodenja z ustreznimi senzorji (običajno so to
rotacijski dajalniki) omogočajo želeno vrtenje koles glede na ukaz.

Želene translacijske in kotne hitrosti robota. Računalniški program, ki de-
luje na robotu, pozna njegov kinematični model in lahko izračuna ustrezne
hitrosti koles, da doseže želene hitrosti robota.

Želena pot ali trajektorija robota. Robot lahko v svoji okolici ugotovi in
vodi svojo lego, ki je običajno določena kot skupna informacija o poziciji
in orientaciji glede na izbrani koordinatni sistem. Na tej ravni najdemo
lokalizacijo robota s pomočjo različnih senzorjev, nameščenih na robotu ali
v okolju, s katerimi poiščemo najboljši približek lege robota. Pri vodenju
se pojavijo tudi težave zaradi nelinearnosti sistema, napačnih informacij
senzorjev, zdrsa koles, slabih modelov, zakasnitev itd.
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Želeno delovanje v znanem okolju z morebitnimi ovirami. Robot mora
izvesti opravilo v znanem okolju z nekaj (statičnimi ali dinamičnimi) ovirami.
Na tej ravni je robot sposoben načrtovati svojo pot, oz. jo ponovno zasnovati
v primeru pojava ovir, ki preprečujejo izpolnitev operacije.

Želena operacija v neznanem okolju. Robot ne pozna svoje okolice, zato
mora sočasno izvajati algoritme za določanje položaja in graditi zemljevid
svoje okolice – tovrsten pristop je znan kot SLAM (angl. simultaneous
localisation and mapping).

Želena naloga. Robot prevzame nalogo, ki jo mora izpolniti v okolju, kjer lahko
sodeluje z drugimi roboti ali agenti. Robot potrebuje določeno stopnjo
razumevanja svojih nalog, poznati pa mora tudi njihove prioritete, da lahko
prekine neko nalogo in/ali prevzame nalogo z višjo prioriteto. Številna
pravila odločanja morajo biti vgrajena v robota. Recimo robot preveri
stanje energije v svojih akumulatorjih in jih po potrebi napolni.

Roboti na prvih dveh (zgoraj opisanih) nivojih niso avtonomni. Obstajajo tudi
druge razvrstitve, pri čemer je pomembno, da razumemo naloge in inteligenco
robota, ki jih ima na določeni ravni.

Glavni mehanski in elektronski sestavni deli avtonomnega mobilnega robota so:

• mehanska konstrukcija: togi in gibljivi sestavni deli (telo, kolesa, gose-
nice, noge itd.),

• aktuatorski pogon: električni motorji (DC, koračni motor, servomotor
itd.),

• senzorji: rotacijski dajalniki, senzorji bližine in razdalje, inercialna navi-
gacijska enota, globalni navigacijski satelitski sistem (GNSS, angl. Global
navigation satellite system) itd.,

• računalniki: mikrokrmilniki, prenosni osebni računalnik, vgrajeni sistemi
itd.,

• napajalna enota: baterije, sončne celice itd.,

• elektronika: elektronika za pogon motorjev, meritve senzorjev, distribu-
cija moči in telekomunikacijska elektronika.

Knjiga obravnava algoritme, potrebne za obdelavo podatkov senzorjev in pogon
motorjev s ciljem zagotavljana avtonomnosti mobilnega robota.

Kolesni mobilni roboti imajo več dobrih lastnosti, zaradi katerih so privlačni
za uporabo. Mobilni roboti omogočajo dostop do okolij, nevarnih za ljudi (npr.
minska polja, radioaktivna okolja, globokomorske raziskave itd.), in oddaljenih
ali nedostopnih okolij (npr. raziskovanje zunajzemeljskih planetov, “nano roboti”
v medicini itd.). Hkrati lahko namesto človeka izvajajo naloge, ki so zanj fizično
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zahtevne. Uvedba avtomatizacije, robotike in mobilnih sistemov omogoča tudi
večjo produktivnost, boljšo kakovost izdelka ali storitve ter zmanjša stroške dela.

Dandanes se mobilni sistemi uporabljajo v številnih aplikacijah na različnih
področjih, ki se zaradi hitrega tehnološkega razvoja nenehno širijo. Nepopoln
seznam aplikacij kolesnih mobilnih robotov vključuje:

• medicinske storitve, kot je pomoč pri operacijah, opravljanje laboratorijskih
analiz (npr. v situacijah, kjer je nevarnost okužbe),

• aplikacije čiščenja (sesanje tal, pometanje in pomivanje v domovih ali
velikih zgradbah, čiščenje oken),

• aplikacije v kmetijstvu, kot je avtomatizirano obiranje sadja, sajenje, košnja
trave,

• gozdna dela, čiščenje gozdov,

• prodaja blaga široke potrošnje,

• pregled in nadzor nevarnih področij (detekcija in deaktivacija min na
minskih poljih, pregled jedrskih reaktorjev, čiščenje kanalizacijskih cevi),

• vesoljske aplikacije (sateliti, pregled in servisiranje satelitov, raziskovanje
planetov),

• pomorske aplikacije (roboti za postavljanje kablov in pregledovanje mor-
skega dna),

• roboti za nakladanje in razkladanje blaga ali materiala iz letal, ladij ter
tovornjakov,

• vojaški roboti (izvidniški roboti, letala in razni avtopilotski izstrelki),

• varnostni roboti (za nadzor skladišč in stavb),

• pomoč starejšim in invalidnim osebam (avtonomni invalidski vozički, roboti
za rehabilitacijo),

• potrošniške aplikacije (robotski hišni ljubljenčki, robotski nogomet),

• sistemi v raziskovalnih ustanovah, namenjeni učenju in razvoju novih
algoritmov.

Nekaj od predhodno naštetih področij uporablja tudi že avtonomne mobilne
sisteme (AMS), torej robote, ki se lahko samostojno gibljejo v okolici med
opravljanjem različnih opravil. Med temi sistemi prevladujejo kolesni avtonomni
sistemi kot tudi letalni avtonomni sistemi. Število praktičnih aplikacij AMS in
tudi komercialno dostopnih sistemov se povečuje. Uporaba avtonomni sesalnikov,
kosilnic in podobnih sistemov je že vsakdanjost. Pogosta je tudi uporaba AMS v
tovarnah, bolnišnicah in distribucijskih centrih za dostavo. Obetajoče so tudi
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bodoče aplikacije v kmetijstvu in javnem transportu, kjer številni raziskovalni
centri razvijajo kmetijske robote in samovozeča vozila, ki bodo kmalu zaživela
v uporabi. Najdemo lahko tudi številne druge aplikacije na področjih kot so:
vojska za izvidniške namene, misije v vesolju za planetarna raziskovanja, pri
naravnih nesrečah za iskanje in reševanje in na področju varovanja. Mobilni
avtonomni sistemi predstavljajo hitro razvijajoče področje raziskav in razvoja,
zato se bo v bližnji prihodnosti pojavilo še veliko novih aplikacij, ki nam trenutno
niso tako očitne. Da dosežemo želeno avtonomijo in novo funkcionalnost, morajo
ti sistemi združevati številne tehnologije in opremo. Ključne tehnologije, ki
so predstavljene v nadaljevanju te knjige so: modeliranje, vodenje, planiranje,
senzorika. lokalizacija in sistemi odločanja.

Predvidevanje prihodnosti je že od nekdaj zahtevna naloga. Današnje tehnologije
in aplikacije so bile še pred desetletjem težko predstavljive. Predvideva se,
da bodo v bližnji prihodnosti avtonomni kolesni mobilni roboti postali še bolj
nepogrešljivi v vsakdanjem življenju: v tovarnah prihodnosti bodo sodelovali z
ljudmi, nam pomagali pri domačih opravilih, nas peljali po cesti, reševali življenja
(v reševalnih misijah) in še veliko več. V naslednjem poglavju je prikazan kratek
pregled zgodovine, oz. kako nas je tehnološki razvoj pripeljal do trenutne točke.

1.5 Kratka zgodovina

Poglavje predstavlja nekaj pomembnih mejnikov v zgodovini kolesnih mobilnih
robotov [2]. Poudarek je na aplikacijah, vendar so omenjeni tudi nekateri
tehnološki dosežki, ki so pomembno vplivali na področje mobilne robotike.

1898 Nikola Tesla je na sejmu elektronike v dvorani Madison Square
Garden v New Yorku demonstriral brezžično radijsko vodeno plovilo
[3], ki je eden izmed njegovih patentiranih izumov [4].

1939–1945 Med drugo svetovno vojno so v Nemčiji razvili avtopilotski raketi
V-1 [5] in V-2 [6]. Hkrati je Američan Norbert Wiener razvijal
sistem za avtomatsko ciljanje protiletalskega orožja [7].

1948–1949 W. Grey Walter je ustvaril avtonomna robota imenovana Elmer in
Elsie [8], ki sta bila podobna želvam in zmožna slediti svetlobnemu
viru (tj. fotodioda), zaznavati ovire (kontaktno stikalo) in se
izogibati oviram.

1961–1963 Univerza Johns Hopkins je razvila mobilnega robota Beast [9], ki
je lahko taval po belih hodnikih in iskal črne stenske vtičnice za
polnjenje svojih baterij.

1966–1972 Raziskovalni inštitut Stanford je razvijal robota Shakey [10], ki je
vseboval kamero, sonar, senzorje za zaznavanje trka in brezžično
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povezavo. To je bil prvi robot za splošno rabo, ki je znal načrto-
vati svoje akcije. Rezultati projekta vključujejo razvoj iskalnega
algoritma A?, Houghovo transformacijo in graf vidljivosti.

1969 Predstavljena in patentirana prva robotska kosilnica MowBot [11].

1970 Sovjetska zveza je na Luni uspešno izkrcala prvi lunarni rover
Lunokhod 1, ki je bil daljinsko voden z Zemlje ter nosil več kamer in
drugih senzorjev. V 301 dneh delovanja je rover prevozil približno
10 km, posnel več kot 25 000 slik in naredil več analiz tal [12].

1973 Sovjetska zveza je na Luni izkrcala drugi lunarni rover Lunokhod 2.
Med štirimesečno misijo je rover prepotoval 39 km, kar je do leta
2014 veljalo za najdaljšo prepotovano razdaljo izven Zemlje [13].

1976 Nasini vesoljski plovili brez posadke Viking 1 in Viking 2 (vsako
sestavljeno iz vesoljskega plovila in pristajalnika) sta vstopili v
Marsovo obrito, nekoliko dni kasneje pa so pristajalniki mehko
pristali na površini Marsa [14].

1977 Francoski laboratorij za analizo in arhitekturo sistemov (LAAS) je
začel z razvojem mobilnega robota Hilare 1 [15], ki je bil opremljen
z ultrazvočnimi in laserskimi pregledovalniki razdalj ter kamero na
robotski roki.

1979 Vozilo Stanford (angl. Stanford cart) (začetni model predstavljen
leta 1962) je bilo zmožno vizualne navigacije po progi z ovirami
[16].

1982 Na voljo je bil prvi model iz serije komercialnih robotov HERO, ki
so bili namenjeni predvsem za domačo in izobraževalno rabo [17].

1986 Ekipa pod vodstvom Ernsta Dietera Dickmannsa [18] je razvila
robotski avto VaMoRs, ki se je lahko sam vozil po ulicah brez
prometa s hitrostjo do 90 km/h.

1995 Na tržišču se je pojavil cenovno ugoden mobilni robot Pioneer za
izobraževalne in raziskovalne namene [19].

1996 Organiziran je bil prvi robotski nogometni turnir, leto kasneje
pa je bila ustanovljena FIRA (angl. Federation of international
robot-soccer association) [20].

1996–1997 NASA je v okviru projekta Mars Pathfinder na Mars poslala rover
Sojourner [21], ki je sprejemal ukaze iz Zemlje ter se je lahko
samostojno peljal po vnaprej določeni poti in se pri tem izogibal
nevarnim situacijam.

2002 Na tržišču se je pojavil prvi model robotskega sesalnika Roomba za
domačo rabo [22].
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2004 Marsova roverja dvojčka Spirit in Opportunity sta pristala na
Marsu [23]. Rover Spirit se je leta 2009 zagozdil, rover Opportunity
pa je še vedno aktiven in je leta 2014 podrl rekord za najdaljšo
zunajzemeljsko prepotovano razdaljo, ki ga je postavil Lunokhod 2.

2004 Prvo tekmovanje DARPA Grand Challenge je potekalo v puščavi
Mojave (ZDA). Nobeno avtonomno vozilo ni dokončalo 240 km
dolge proge [24].

2005 Na drugem tekmovanju DARPA Grand Challenge je avtonomno
vozilo Stanley iz Univerze v Stanfordu prvo dokončalo progo. Še
štiri druga vozila (od 23) so uspešno opravila nalogo [25].

2007 Organizirano je bilo tekmovanje DARPA Urban Grand Challenge,
kjer je šest avtonomnih vozil uspešno prevozilo progo v urbanem
okolju. Zahtevano je bilo upoštevanje vseh prometnih pravil ter
uspešno vključevanje v promet [26].

2009 Izšla je prvotna različica robotskega operacijskega sistema ROS 0.4
(angl. Robot operating system) [27].

2009 Google je začel (na kalifornijskih avtocestah) preizkušati svojo
tehnologijo avtonomne vožnje s predelanim avtom Toyota Prius
[28].

2010 V izzivu VisLab Intercontinental Autonomous Challenge [29] so
štiri avtonomna vozila brez pomoči človeka opravila skoraj 6000 km
dolgo potovanje od Parme v Italiji do Šanghaja na Kitajskem.

2012 Na Marsu je uspešno pristal Nasin robotski rover Curiosity [30], ki
je še vedno aktiven.

2014 Google je razkril nov prototip avtonomnega vozila brez volana in
pedalov [28].

2015 Podjetje Tesla v določenih modelih svojih električnih vozil omogoči
sisteme za avtonomno vožnjo. V petih letih skupno število kilome-
trov, ki jih prevozijo lastniki vozil v avtonomnem načinu delovanja
(druga stopnja avtonomnosti), preseže 5 milijard [31].

2016 Od junija je flota samovoznih vozil podjetja Google v avtonomnem
načinu skupaj prevozila 2 777 585 km [32].

2016 Zagonsko podjetje comma.ai, ki ga je ustanovil George Hotz, izda
prvo delujočo različico odprtokodne programske opreme za razvoj
avtonomne vožnje, ki v osnovi temelji na uporabi kamere za zazna-
vanje okolja.

2017 Izide prva verzija odprtokodnega simulacijskega okolja CARLA za
razvoj algoritmov za avtonomno vožnjo v urbanem okolju [33].
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2018 Podjetje Waymo vzpostavi storitev avtonomnega prevoza oseb za
končne uporabnike v kraju Phoenix (Arizona) [34].

2019 Podjetje Waymo je s svojimi avtonomnimi vozili prevozilo več kot
10 milijonov kilometrov v resničnem svetu (kar je več kot 200-krat
okoli Zemlje oz. 10-krat do Lune in nazaj) in več kot 10 milijard
kilometrov v simulacijskem okolju (kar je več kot pot, ki jo Zemlja
napravi okoli Sonca v 10 letih) [35].

2021 Na Marsu je marca v kraterju Jezero (v bližini dolin Neretva vallis
in Sava vallis) pristal Nasin rover Perserverance s helikopterjem
Ingenuity na krovu [36]. Rover je opremljen s 23 kamerami, od
tega se jih 9 uporablja za navigacijo, detekcijo ovir in planiranje
poti pri avtonomni vožnji. Dva meseca kasneje je na Marsu pristal
še kitajski rover Žurong [37].
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2
Modeliranje gibanja
mobilnih sistemov

2.1 Uvod

Človek že več tisoč let izkorišča prednosti kolesnega pogona. Osnovna zgradba
prazgodovinskega dvokolesnega vozička (slika 2.1) je enaka tisti v modernih
avtomobilih in kolesnih robotih. V tem poglavju je predstavljeno modeliranje
gibanja različnih kolesnih mobilnih sistemov. Dobljeni model se lahko uporabi v
različne namene. V knjigi ga bomo večinoma uporabljali za načrtovanje strategij
lokomocije sistema. Lokomocija je proces gibanja avtonomnega sistem z enega
mesta na drugo.

Modeli gibanja lahko opisujejo kinematiko robota, kjer nas zanima matemati-
čen zapis gibanja brez upoštevanja sil in navorov, ki v splošnem tako gibanje
povzročijo. Kinematični model opisuje geometrijske relacije v sistemu, to so
relacije med vhodnimi parametri in vedenjem sistema, ki jih podajajo stanja
sistema. Kinematični model opisuje hitrosti sistema in je predstavljen z množico
diferencialnih enačb prvega reda.

Dinamični model pa opisuje gibanje sistema zaradi sil, ki delujejo nanj. To-
vrstni model vključuje fizikalne veličine, kot so sile, energije, masa sistema,
vztrajnost in hitrosti. Opisi dinamičnih modelov so podani z diferencialnimi
enačbami drugega reda.

Pri načrtovanju gibanja kolesnih mobilnih robotov običajno uporabimo kine-
matične modele, medtem ko za druge (bolj kompleksne) sisteme, kot so zračna
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Slika 2.1: Dvokolesni voziček [Muzej in galerije mesta Ljubljane, slikar: I. Rehar]

plovila, zračni in nožni roboti, hitra kolesna vozila ipd., uporabljamo dinamične
modele gibanja.

2.2 Kinematika kolesnih mobilnih siste-
mov

Obstaja več različnih kinematičnih modelov:

• Notranja kinematika pojasnjuje relacije med notranjimi spremenljivkami
sistema (npr. kako vrtenje koles vpliva na gibanje vozila).

• Zunanja kinematika opisuje pozicijo in orientacijo vozila glede na refe-
renčni koordinatni sistem.

• Direktna kinematika modelira stanja sistema kot funkcijo vhodov (hi-
trosti koles, gibanje sklepov, zasuk krmilnega kolesa itd.), inverzna ki-
nematika pa se uporablja za načrtovanje gibanja, torej podaja vhode v
sistem, ki so potrebni za doseg želenega stanja.

• Omejitve gibanja se tipično pojavijo, ko ima sistem manj vhodnih spre-
menljivk kot prostostnih stopenj (neholonomične omejitve). Holonomične
omejitve omejujejo dosegljivost določenih stanj sistema, medtem ko neholo-
nomične omejitve omejijo smeri možnih premikov sistema (kolesa robota se
lahko vrtijo le v smeri njihove orientacije). Število prostostnih stopenj je
minimalno število stanj s katerimi lahko opišemo konfiguracijo sistema.

V nadaljevanju sledi nekaj primerov določitve notranje kinematike kolesnih
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Slika 2.2: Vozilo v ravnini

mobilnih robotov. Lega robota v ravnini je podana z vektorjem stanj

q(t) =

x(t)
y(t)
ϕ(t)


v globalnih koordinatah (Xg, Yg), kot je prikazano na sliki 2.2. Premični
koordinatni sistem (Xm, Ym) je pripet na mobilnega robota. Relacija med
globalnim in premičnim koordinatnim sistemom (zunanja kinemtika) je podana
z vektorjem translacije [x, y]T in rotacijsko matriko

R(ϕ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


Kolesni mobilni robot se giblje s pomočjo koles, ki se vrtijo zaradi trenja med
njimi in podlago. Pri zmernih hitrostih običajno predpostavimo model idealnega
kotaljenja koles, kjer se lahko kolo premika le zaradi rotacije (kotaljenja), brez
zdrsov v smeri kotaljenja ali pravokotno na smer kotaljenja. Vsako kolo se lahko
prosto vrti okoli lastne osi, torej obstaja točka, ki leži na presečišču vseh osi koles.
Ta točka se imenuje trenutni center rotacije (ICR, angl. instantaneous center
of rotation) ali trenutni center ukrivljenosti (ICC, angl. instantaneous center
of curvature) in določa točko, okoli katere vsa kolesa krožijo z enako krožno
hitrostjo ω glede na ICR. Za nadaljnje branje si lahko pogledate [1–3].

2.2.1 Diferencialni pogon

Diferencialni pogon je zelo preprost in zato precej pogosto uporabljen mehanizem
pogona, predvsem pri manjših vozilih ali mobilnih robotih. Vozilo s takim
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Slika 2.3: Kinematika diferencialnega pogona

pogonom ima ponavadi eno ali dve dodatni podporni kolesi (angl. castor), ki
podpirata vozilo in preprečujeta njegovo prevračanje. Kolesi diferencialnega
pogona sta vpeti na skupno os, hitrost vrtenja vsakega kolesa pa je poljubna in
gnana s svojim motorjem. Glede na sliko 2.3 sta vhodni (regulirni) spremenljivki
hitrost desnega kolesa vR(t) in hitrost levega kolesa vL(t). Ostale spremenljivke
na sliki 2.3 so: r – radij kolesa, L – razdalja med kolesoma in R(t) – trenutni
radij trajektorije vožnje vozila oz. razdalja med središčem vozila (središčna točka
med kolesoma) in točko ICR. V vsakem časovnem trenutku imata obe kolesi
enako kotno hitrost ω(t) okrog ICR

ω(t) = vL(t)
R(t)− L

2

ω(t) = vR(t)
R(t) + L

2

od koder izrazimo ω(t) in R(t) kot

ω(t) = vR(t)− vL(t)
L

R(t) = L

2
vR(t) + vL(t)
vR(t)− vL(t)

Tangencialna hitrost vozila je

v(t) = ω(t)R(t) = vR(t) + vL(t)
2

Obodni hitrosti koles sta vL(t) = rωL(t) in vR(t) = rωR(t), kjer sta ωL(t) in ωR(t)
kotni hitrosti levega in desnega kolesa okoli njune osi. Upoštevajoč navedene
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relacije lahko zapišemo notranjo kinematiko (v lokalnih koordinatah) kot

ẋm(t)
ẏm(t)
ϕ̇(t)

 =

vXm(t)
vYm(t)
ω(t)

 =

 r
2

r
2

0 0
− r
L

r
L

[ωL(t)
ωR(t)

]
(2.1)

Zunanja kinematika robota (v globalnih koordinatah) pa je

ẋ(t)
ẏ(t)
ϕ̇(t)

 =

cosϕ(t) 0
sinϕ(t) 0

0 1

[v(t)
ω(t)

]
(2.2)

kjer sta v(t) in ω(t) vhodni (regulirni) spremenljivki. Model (2.2) lahko s pomočjo
Eulerjeve integracijske metode zapišemo v diskretni obliki (2.3), ki je veljavna za
diskretne čase vzorčenja t = kTs, k = 0, 1, 2, . . ., kjer je Ts čas vzorčenja

x(k + 1) = x(k) + v(k)Ts cosϕ(k)
y(k + 1) = y(k) + v(k)Ts sinϕ(k)
ϕ(k + 1) = ϕ(k) + ω(k)Ts

(2.3)

Direktna in inverzna kinematika

Lego robota v trenutku t dobimo z integracijo kinematičnega modela, kar ime-
nujemo odometrija (angl. odometry, dead reckoning). Določitev lege robota s
podanimi vhodnimi spremenljivkami imenujemo direktna kinematika

x(t) =
t∫

0

v(t) cosϕ(t) dt

y(t) =
t∫

0

v(t) sinϕ(t) dt

ϕ(t) =
t∫

0

ω(t) dt

(2.4)

Če med časi vzorčenja predpostavimo konstantni hitrosti v in ω, lahko integracijo
v enačbah (2.4) izračunamo numerično z uporabo Eulerjeve metode. Dobimo
direktno kinematiko

x(k + 1) = x(k) + v(k)Ts cosϕ(k)
y(k + 1) = y(k) + v(k)Ts sinϕ(k)
ϕ(k + 1) = ϕ(k) + ω(k)Ts
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Z uporabo trapezne integracijske metode dobimo bolj točen rezultat numerične
integracije

x(k + 1) = x(k) + v(k)Ts cos
(
ϕ(k) + ω(k)Ts

2

)
y(k + 1) = y(k) + v(k)Ts sin

(
ϕ(k) + ω(k)Ts

2

)
ϕ(k + 1) = ϕ(k) + ω(k)Ts

V primeru uporabe eksaktne integracije pa je direktna kinematika

x(k + 1) = x(k) + v(k)
ω(k) (sin (ϕ(k) + ω(k)Ts)− sinϕ(k))

y(k + 1) = y(k)− v(k)
ω(k) (cos (ϕ(k) + ω(k)Ts)− cosϕ(k))

ϕ(k + 1) = ϕ(k) + ω(k)Ts

kjer integriramo znotraj intervala vzorčenja in za hitrosti v in ω predvidimo
sledeče spremembe stanj

∆x(k) = v(k)
∫ (k+1)Ts

kTs

cosϕ(t) dt = v(k)
∫ (k+1)Ts

kTs

cos (ϕ(k) + ω(k)(t− kTs)) dt

∆y(k) = v(k)
∫ (k+1)Ts

kTs

sinϕ(t) dt = v(k)
∫ (k+1)Ts

kTs

sin (ϕ(k) + ω(k)(t− kTs)) dt

Zapis inverzne kinematike je bolj zahtevna naloga, saj moramo določiti ustrezne
vhode, da se bo robot peljal v želeno lego ali po želeni trajektoriji. Mobilni
roboti so običajno izpostavljeni neholonomičnim omejitvam (poglavje 2.3), ki
onemogočajo poljubne smeri vožnje. Obstaja tudi več možnih rešitev (poti) za
doseg želene lege.

Preprosta rešitev inverzne kinematike je možna, če dovolimo le premo gibanje
vozila (vR(t) = vL(t) = vR =⇒ ω(t) = 0, v(t) = vR) ali le kroženje na mestu
(vR(t) = −vL(t) = vR =⇒ ω(t) = 2vR

L , v(t) = 0) s konstantnimi hitrostmi. Za
kroženje na mestu se enačbe gibanja (2.4) poenostavijo v

x(t) = x(0)
y(t) = y(0)

ϕ(t) = ϕ(0) + 2vRt
L

(2.5)

za premo gibanje pa se enačbe gibanja (2.4) poenostavijo v

x(t) = x(0) + vRt cosϕ(0)
y(t) = y(0) + vRt sinϕ(0)
ϕ(t) = ϕ(0)

(2.6)

Možna strategija gibanja je usmeritev vozila proti ciljni legi z rotacijo, nato
sledi prema vožnja proti cilju, na koncu pa poravnava dejanske orientacije vozila
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z želeno (ciljno) orientacijo. Zahtevane vhodne spremenljivke za vsako fazo
(rotacija, premo gibanje, rotacija) se lahko enostavno izrazijo iz (2.5) in (2.6).

Če predpostavimo diskretno notacijo, kjer sta hitrosti vR(k) in vL(k) konstantni
znotraj intervala vzorčenja Ts in se lahko spreminjata le v časovnih trenutkih
t = kTs, lahko zapišemo enačbe gibanja robota. Za kroženje na mestu (vR(k) =
−vL(k)) imamo

x(k + 1) = x(k)
y(k + 1) = y(k)

ϕ(k + 1) = ϕ(k) + 2vR(k)Ts
L

(2.7)

in za premo gibanje (vR(k) = vL(k))

x(k + 1) = x(k) + vR(k)Ts cosϕ(k)
y(k + 1) = y(k) + vR(k)Ts sinϕ(k)
ϕ(k + 1) = ϕ(k)

(2.8)

Za želeno gibanje vozila znotraj intervala vzorčenja t ∈ [kTs, (k + 1)Ts) lahko
za vsak vzorec časa izračunamo inverzno kinematiko tako, da izrazimo vhodne
spremenljivke iz (2.7) in (2.8).

Kot smo že omenili, obstaja več različnih gladkih poti, ki pripeljejo vozilo v
želeno lego, kar otežuje izvedbo inverzne kinematike. Inverzna kinematika pa
je enostavna, če imamo predpisano želeno gladko trajektorijo (x(t), y(t)), ki ji
mora vozilo slediti tako, da je njegova orientacija vedno tangentna na trajektorijo.
Trajektorija je definirana v časovnem intervalu t ∈ [0, T ]. Ob predpostavki, da je
začetna lega vozila na želeni trajektoriji ter imamo idealen kinematični model,
lahko izračunamo potrebne regulirne veličine (vhode) v kot

v(t) = ±
√
ẋ2(t) + ẏ2(t) (2.9)

kjer predznak določa želeno smer vožnje (+ za vožnjo naprej, – za vzvratno
vožnjo). Kot tangente v vsaki točki na trajektoriji je določen z

ϕ(t) = atan2 (ẏ(t), ẋ(t)) + lπ (2.10)

kjer l ∈ {0, 1} definira želeno smer vožnje (0 za vožnjo naprej in 1 za vzvratno
vožnjo). Funkcija atan2 (y, x) je štirikvadrantna razširitev funkcije arctan y

x

atan2 (y, x) =



arctan y
x ; x > 0

arctan y
x + π ; x < 0 in y ≥ 0

arctan y
x − π ; x < 0 in y < 0

π
2 ; x = 0 in y > 0
−π2 ; x = 0 in y < 0
nedoločeno ; x = 0 in y = 0

(2.11)
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Slika 2.4: Kinematika kolesnega pogona

Z odvajanjem (2.10) po času dobimo kotno hitrost vozila ω(t)

ω(t) = ẋ(t)ÿ(t)− ẏ(t)ẍ(t)
ẋ2(t) + ẏ2(t) = v(t)κ(t) (2.12)

kjer je κ(t) ukrivljenost trajektorije. Z uporabo relacij (2.9) in (2.12) ter pred-
pisane referenčne poti vozila (x(t), y(t)) lahko izračunamo potrebni regulirni
veličini v(t) in ω(t). Potrebna pogoja pri načrtovanju poti sta, da je pot dvakrat
odvedljiva in da je tangencialna hitrost različna od nič (v(t) 6= 0). Če je pri
nekem času t tangencialna hitrost v(t) = 0, se robot vrti na mestu s krožno
hitrostjo ω(t). Kota ϕ(t) ne moremo določiti iz enačbe (2.9), torej mora biti
podan eksplicitno. Prikazano inverzno kinematiko za znano trajektorijo lahko
uporabimo pri vodenju kot predkrmiljenje, ki je dodatek povratnozančnemu
vodenju za odpravo motenj, vplivov zaradi netočnega modela kinematike in
začetnih pogreškov lege vozila [4].

2.2.2 Kolesni pogon

Kolesni pogon, prikazan na sliki 2.4, ima krmilno kolo s kotom krmiljenja α in
se kotali s kotno hitrostjo ωs (pogon na prednje kolo). Točka ICR je določena s
presečiščem osi prednjega in zadnjega kolesa. V danem trenutku kolo kroži okoli
ICR s kotno hitrostjo ω, radijem R in razdaljo med kolesoma d

R(t) = d tan
(π

2 − α(t)
)

= d

tanα(t)

Krmilno kolo kroži okoli ICR s kotno hitrostjo ω, zato lahko zapišemo

ω(t) = ϕ̇(t) = vs(t)√
d2 +R2(t)

= vs(t)
d

sinα(t)

kjer je vs(t) = ωs(t)r obodna hitrost in r radij krmilnega kolesa.



2.2. Kinematika kolesnih mobilnih sistemov 23

Notranja kinematika vozila (v koordinatnem sistemu robota) je določena z

ẋm(t) = vs(t) cosα(t)
ẏm(t) = 0

ϕ̇(t) = vs(t)
d

sinα(t)

(2.13)

zunanja kinematika pa z

ẋ(t) = vs(t) cosα(t) cosϕ(t)
ẏ(t) = vs(t) cosα(t) sinϕ(t)

ϕ̇(t) = vs(t)
d

sinα(t)

oziroma v matrični oblikiẋ(t)
ẏ(t)
ϕ̇(t)

 =

cosϕ(t) 0
sinϕ(t) 0

0 1

[v(t)
ω(t)

]
(2.14)

kjer je v(t) = vs(t) cosα(t) in ω(t) = vs(t)
d sinα(t).

Kolesni pogon na zadnje kolo

Običajno imajo vozila (kolo, tricikel in nekateri avtomobili) pogon na zadnja
kolesa. V tem primeru sta regulirni veličini hitrost zadnjega kolesa vr(t) in
kot krmiljenja sprednjega (krmilnega) kolesa α(t). Notranjo kinematiko lahko
enostavno izpeljemo iz (2.13), kjer upoštevamo vr(t) = vs(t) cosα(t)

ẋm(t) = vr(t)
ẏm(t) = 0

ω(t) = ϕ̇(t) = vr(t)
d

tanα(t)

in zunanja kinematika je

ẋ(t) = vr(t) cosϕ(t)
ẏ(t) = vr(t) sinϕ(t)

ϕ̇(t) = vr(t)
d

tanα(t)

(2.15)

oziroma v matrični oblikiẋ(t)
ẏ(t)
ϕ̇(t)

 =

cosϕ(t) 0
sinϕ(t) 0

0 1

[vr(t)
ω(t)

]

kjer je ω(t) = vr(t)
d tanα(t).
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Direktna in inverzna kinematika

Z upoštevanjem (2.14) lahko zapišemo direktno kinematiko kolesa s sprednjim
pogonom z (2.4), podobno kot smo zapisali pri diferencialnem pogonu.

V splošnem je inverzno kinematiko zelo težko rešiti, lahko pa problem precej
poenostavimo z vpeljavo strategije gibanja z dvema osnovnima načinoma premika.
Prvi način predstavlja premo gibanje v smeri naprej (α(t) = 0), drugi način
pa kroženje na mestu (α(t) = ±π2 ). Pri premem gibanju se hitrosti vozila
poenostavijo v v(t) = vs(t) in ω(t) = 0. Z vstavitvijo teh hitrosti v (2.14) in
diskretizacijo dobimo sledeče enačbe gibanja

x(k + 1) = x(k) + vs(k)Ts cosϕ(k)
y(k + 1) = y(k) + vs(k)Ts sinϕ(k)
ϕ(k + 1) = ϕ(k)

(2.16)

V primeru kroženja na mestu pa se hitrosti vozila poenostavijo v v(t) = 0 in
ω(t) = vs(t)

d . Z vstavitvijo teh hitrosti v (2.14) in diskretizacijo dobimo sledeči
model gibanja

x(k + 1) = x(k)
y(k + 1) = y(k)

ϕ(k + 1) = ϕ(k) + vs(t)
d

Ts

(2.17)

Regulirni veličini (vhoda v sistem) lahko določimo iz (2.16) in (2.17) za želeno
gibanje med časi vzorčenja.

2.2.3 Trikolesni pogon

Trikolesni pogon, prikazan na sliki 2.5, ima enako kinematiko kot kolesni pogon

ẋ(t) = vs(t) cosα(t) cosϕ(t)
ẏ(t) = vs(t) cosα(t) sinϕ(t)

ϕ̇(t) = vs(t)
d

sinα(t)

(2.18)

kjer velja v(t) = vs(t) cosα(t), ω(t) = vs(t)
d sinα(t) in vs je obodna hitrost

krmilnega kolesa. Trikolesni pogon je pogosto uporabljen v mobilni robotiki,
ker tri kolesa zagotavljajo stabilnost vozila v vertikalni smeri in tako pomožna
podporna kolesa niso potrebna.

2.2.4 Tricikel s priklopnikom

Kinematika tricikla je opisana v poglavju 2.2.3. Za priklopnik določimo točko
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Slika 2.5: Kinematika trikolesnega pogona

j

x

y

Xg

Yg

Yg

ICR

R

v

w

a

d

ICR
2

R
2

b

L

Slika 2.6: Kinematika tricikla s priklopnikom

ICR2, ki leži na presečišču zadnje osi tricikla in osi priklopnika. Kotna hitrost, s
katero kolesa priklopnika krožijo okoli točke ICR2, je

ω2(t) = v(t)
R2(t) = vs(t) cosα(t)

R2(t) = vs(t) cosα(t) sin β(t)
L

= β̇(t)
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in končna kinematika vozila na sliki 2.6 je določena z

ẋ(t) = vs(t) cosα(t) cosϕ(t)
ẏ(t) = vs(t) cosα(t) sinϕ(t)

ϕ̇(t) = vs(t)
d

sinα(t)

β̇(t) = vs(t) cosα(t) sin β(t)
L

2.2.5 Avtomobilski (Ackermannov) pogon

Avtomobilski pogon uporablja Ackermannov princip krmiljenja, čigar osnovna
ideja je, da ima notranje kolo (tisto, ki je bližje točki ICR) večji zasuk krmi-
ljenja kot zunanje. To omogoča vozilu, da se vrti okoli središčne točke na osi
zadnjih koles. Posledično ima notranje kolo manjšo obodno hitrost kot zunanje.
Ackermannovo krmiljenje omogoča vrtenje zadnjih koles brez zdrsov, zato točka
ICR leži na premici, ki gre skozi zadnjo os. Ta krmilni mehanizem omogoča
manjšo obrabo pnevmatik. Na sliki 2.7 je levo kolo na zunanji strani, desno pa
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Slika 2.7: Shema Ackermannovega pogona

na notranji. Orientacijo prednjih krmilnih koles lahko določimo iz

tan
(π

2 − αL
)

=
R+ l

2
d

tan
(π

2 − αR
)

=
R− l

2
d
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od koder izrazimo kote krmiljenja

αL = π

2 − arctan
R+ l

2
d

αR = π

2 − arctan
R− l

2
d

Notranje in zunanje zadnje kolo krožita okoli točke ICR z enako kotno hitrostjo
ω, torej sta njuni obodni hitrosti

vL = ω

(
R+ l

2

)
vR = ω

(
R− l

2

)

Ackermannov kinematični pogon je primeren za modeliranje gibanja večjih vozil.
Model gibanja lahko opišemo tudi z uporabo kinematike tricikla (2.18), kjer
uporabimo povprečen Ackermannov kot krmiljenja α = π

2 − arctan R
d . Inverzna

kinematika Ackermannovega pogona je zahtevna in presega namen tega dela.

2.2.6 Sinhroni pogon

Vozilo s sinhronim pogonom lahko vsa svoja kolesa sinhrono krmili okoli vertikalne
osi (v danem trenutku imajo vsa kolesa enako orientacijo). Tipično ima vozilo s
sinhronim pogonom tri kolesa, ki so razporejena simetrično (v enakostraničnem
trikotniku) okoli središča vozila, kot je prikazano na sliki 2.8. Vsa kolesa so
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v
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w w
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Slika 2.8: Sinhroni pogon

krmiljena sinhrono, torej so njihove osi vrtenja zmeraj vzporedne in zato se točka
ICR nahaja v neskončnosti. Vozilo lahko neposredno spreminja orientacijo koles,
kar predstavlja tretje stanje v vektorju stanj (2.19). Regulirne veličine so hitrost
krmiljenja koles ω in njihova obodna hitrost v.
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Kinemtika vozila s sinhronim pogonom je podobna kinematiki difencialnega
pogona ẋ(t)

ẏ(t)
ϕ̇(t)

 =

cosϕ(t) 0
sinϕ(t) 0

0 1

[v(t)
ω(t)

]
(2.19)

kjer sta v(t) in ω(t) regulirni spremenljivki ali vhoda, ki ju lahko neodvisno
spreminjamo (to pri diferencialnem pogonu ni možno).

Direktna in inverzna kinematika

Direktno kinematiko dobimo z integracijo kinematičnega modela (2.19).

x(t) =
t∫

0

v(t) cosϕ(t) dt

y(t) =
t∫

0

v(t) sinϕ(tdt

ϕ(t) =
t∫

0

ω(t) dt

Splošna rešitev inverzne kinematike ni možna, ker obstaja več rešitev za doseg
želene lege. Inverzna kinematika je enostavno rešljiva v posebnem primeru, kjer
se vozilo vrti na mestu ali pa premo giblje v smeri trenutne orientacije (brez
rotacije). Ko se robot določen časovni interval ∆t vrti na mestu s konstantno
krožno hitrostjo ω, se njegova orientacija spremeni za ω∆t. V primeru premega
gibanja s konstantno hitrostjo v, ki traja ∆t, se vozilo premakne za v∆t v smeri
trenutne orientacije.

2.2.7 Večsmerni pogon

V predhodno opisanih kinematičnih modelih so bila uporabljena preprosta kolesa,
ki se lahko vrtijo (kotalijo) le v smeri njihove orientacije (npr. diferencialni
pogon). Tovrstna preprosta kolesa imajo samo eno možno smer kotaljenja. Da
omogočimo večsmerno kotaljenje, potrebujemo bolj kompleksno konstrukcijo
koles. Primer takega kolesa je kolo Mecanum ali švedsko kolo (slika 2.9), ki ima
po obodu razvrščenih več valjčkov. Osi pasivnih valjčkov niso vzporedne z osjo
glavnega kolesa, ampak so običajno pod kotom γ = 45°. To omogoča različne
smeri gibanja, ki izhajajo iz poljubne kombinacije smeri vrtenja glavnega kolesa
in pasivnih valjčkov.

Drug primer kompleksnega kolesa je kolo omni, ki omogoča večsmerno gibanje,
podobno kot kolo Mecanum. Kolo omni (slika 2.10) ima na svojem obodu
nameščene pasivne valjčke, katerih os je pravokotna glede na os kolesa.
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Slika 2.9: Kolo Mecanum z valjčki, nameščenimi po obodu kolesa. Vsak valjček
ima os vrtenja pod kotom 45° glede na ravnino koles in pod kotom 45° glede na
linijo, vzporedno z osjo kolesa.

Slika 2.10: Kolo omni s šestimi “prostovrtečimi” se valjčki, ki so razporejeni po
obodu kolesa. Kolo se lahko vrti in bočno drsi (vrtijo se valjčki).

Kinematika štirikolesnega večsmernega pogona

Priljubljena štirikolesna platforma Mecanum, prikazana na sliki 2.11, ima kolesa
z levo in desnosučnimi valjčki, kjer sta diagonalni kolesi istega tipa. To omogoča
vozilu, da se premika v poljubni smeri s poljubno rotacijo, kar dosežemo s
spreminjanjem hitrosti in smeri vrtenja glavnih koles. Če se vsa štiri kolesa
vrtijo v isti smeri (z isto hitrostjo), se vozilo giblje naprej ali vzvratno. Ko
pa se glavni kolesi na eni strani platforme vrtijo v nasprotni smeri kot kolesi
na drugi strani platforme, bo le-ta krožila. Bočno gibanje platforme dosežemo
tako, da se kolesi na eni diagonali vrtijo v nasprotni smeri kot kolesi na drugi
diagonali. Kombinacija opisanih gibanj omogoča gibanje platforme v poljubni
smeri s poljubno rotacijo.

Inverzno notranjo kinematiko štirikolesnega pogona Mecanum na sliki 2.12 lahko
zapišemo na naslednji način. Hitrost sprednjega kolesa (v koordinatnem sistemu
robota) pridobimo iz hitrosti glavnega kolesa v1(t) in hitrosti pasivnih valjčkov
vR(t). V nadaljevanju bomo izpustili zapis s časovno odvisnostjo, da dobimo bolj
kompaktne in enostavne enačbe (npr. v1(t) = v1). Skupna hitrost koles v smereh
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Slika 2.11: Osnovne smeri gibanja večsmernega pogona s štirimi kolesi Mecanum,
ki se lahko vrtijo naprej ali nazaj
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Slika 2.12: Štirikolesna platforma Mecanum

xm in ym v koordinatnem sistemu robota je vm1x = v1 + vR cos π4 = v1 + vR√
2 in

vm1y = vR sin π
4 = vR√

2 , od koder pridobimo hitrost (sprednjega) glavnega kolesa
v1 = vm1x − vm1y. Hitrost sprednjega kolesa v koordinatnem sistemu robota
lahko izrazimo tudi s translacijsko hitrostjo robota vm =

√
ẋ2
m + ẏ2

m in njegovo
kotno hitrostjo ϕ̇ kot vm1x = ẋm− ϕ̇d in vm1y = ẏm + ϕ̇l (pomen razdalj d in l je
mogoče razbrati iz slike 2.12). Iz slednjih relacij lahko izrazimo hitrost glavnega
kolesa s hitrostjo robota kot v1 = ẋm − ẏm − (l + d)ϕ̇. Podobne enačbe lahko
zapišemo za v2, v3 in v4. Torej je inverzna kinematika v lokalnih koordinatah

v1

v2

v3

v4

 =


1 −1 −l − d
1 1 −l − d
1 −1 l + d

1 1 l + d


ẋmẏm
ϕ̇

 (2.20)

ki jo lahko zapišemo v matrični obliki kot v = Jq̇m, kjer je vT = [v1, v2, v3, v4]T

in qTm = [xm, ym, ϕ]T .

Za izračun inverzne kinematike v globalnih koordinatah moramo obravnavati
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rotacijsko matriko RL
G, ki predstavlja orientacijo lokalnih koordinat glede na

globalne (qm = RL
Gq)

RL
G =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


in jo upoštevamo kot v = JRL

Gq̇.

Iz notranje inverzne kinematike v = Jq̇m (2.20) dobimo direktno notranjo
kinematiko q̇m = J+v, kjer je J+ =

(
JTJ

)−1
JT psevdoinverz matrike J .

Direktno notranjo kinematiko platforme Mecanum s štirimi kolesi zapišemo kot

ẋmẏm
ϕ̇

 = 1
4

 1 1 1 1
−1 1 −1 1
−1

(l+d)
−1

(l+d)
1

(l+d)
1

(l+d)



v1

v2

v3

v4



Direktno kinematko v globalnih koordinatah pa dobimo z q̇ =
(
RL
G

)T
J+v.

Kinematika trikolesnega večsmernega pogona

Na sliki 2.13 je prikazana priljubljena večsmerna konfiguracija za trikolesni pogon.
Njegovo inverzno kinematiko (v globalnih koordinatah) dobimo z upoštevanjem
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Slika 2.13: Trikolesni večsmerni pogon (θ2 = 120°, θ3 = 240°)

translacijske hitrosti robota v =
√
ẋ2 + ẏ2 in njegove kotne hitrosti ϕ̇. Hitrost

prvega kolesa v1 = v1t + v1r je sestavljena iz translacije v1t = −ẋ sinϕ+ ẏ cosϕ
in orientacije v1r = Rϕ̇. Torej je skupna hitrost prvega kolesa enaka v1 =
−ẋ sinϕ+ẏ cosϕ+Rϕ̇. Podobno je ob upoštevanju kota (v globalnih koordinatah)
drugega kolesa ϕ+θ2 njegova hitrost enaka v2 = −ẋ sin(ϕ+θ2)+ẏ cos(ϕ+θ2)+Rϕ̇;
hitrost tretjega kolesa pa je v3 = −ẋ sin(ϕ+ θ3) + ẏ cos(ϕ+ θ3) +Rϕ̇. Inverzna
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kinematika trikolesnega pogona v globalnih koordinatah jev1

v2

v3

 =

 − sinϕ cosϕ R

− sin(ϕ+ θ2) cos(ϕ+ θ2) R

− sin(ϕ+ θ3) cos(ϕ+ θ3) R


ẋẏ
ϕ̇

 (2.21)

kar zapišemo v matrični obliki kot v = Jq̇. Včasih je bolj priročno voditi robota
v njegovih lokalnih koordinatah, ki jih pridobimo z upoštevanjem transformacije
rotacije v = J

(
RL
G

)T
q̇m

Direktno kinematiko v globalnih koordinatah dobimo s pomočjo inverzne kine-
matike (2.21) kot q̇ = Sv, kjer je S = J−1ẋẏ

ϕ̇

 = 2
3

− sin θ1 − sin(θ1 + θ2) − sin(θ1 + θ3)
cos θ1 cos(θ1 + θ2) cos(θ1 + θ3)

1
2R

1
2R

1
2R


v1

v2

v3



2.2.8 Gosenični pogon

Gibanje goseničnega pogona (slika 2.14) lahko približno opišemo s kinematiko
diferencialnega pogona ẋ(t)

ẏ(t)
ϕ̇(t)

 =

cosϕ(t) 0
sinϕ(t) 0

0 1

[v(t)
ω(t)

]

Diferencialni pogon predpostavlja idealno kotaljenje koles s točkastim dotikom
kolesa in podlage, kar pa ne drži v primeru goseničnega pogona. Gosenični pogon
ima večjo kontaktno površino med kolesi in tlemi, torej morajo za spremembo
smeri gibanja gosenice (oz. kolesa) drseti. To jim omogoča premikanje po
zahtevnejšem terenu, kjer so ostala kolesna vozila manj uspešna. Koeficient zdrsa

j
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Ym

Yg
vL
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Slika 2.14: Gosenični pogon

med gosenicami in podlago ni konstanten, saj je odvisen od kontakta s tlemi oz.
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vrste podlage. Zato je odometrija (direktna kinematika) še manj zanesljiva za
ocenjevanje lege robota v primerjavi z diferencialnim pogonom.

2.3 Omejitve gibanja

Pri gibanju kolesnega mobilnega robota se srečujemo z dinamičnimi in kinematič-
nimi omejitvami. Dinamične omejitve izvirajo iz dinamičnega modela sistema,
ki ima omejeno odzivnost (pospeševanje) zaradi svoje vztrajnosti (mase) in ome-
jitev motornega pogona (npr. omejen navor motorja zaradi njegovih zmogljivosti
ali preprečevanja podrsavanja koles). Kinematične omejitve pa izvirajo iz
konstrukcije robota in njegovega kinematičnega modela. Zanimive so predvsem
kinematične omejitve, ki jih ločimo na holonomične in neholonomične omejitve.
Neholonomične omejitve omejujejo možne smeri premika mobilnega robota
[5]. Holonomične omejitve pa se nanašajo le na dimenzijo opisa sistema s
posplošenimi koordinatami, zato lahko z njihovo pomočjo odstranimo odvečne
posplošene koordinate, ki so odvisne od drugih.

Nek sistem je holonomičen, če nima kinematičnih omejitev ali pa vsebuje samo
holonomične omejitve, zato nima omejitev v smeri gibanja. Neholonomični
sistem pa vsebuje neholonomične omejitve, torej se ne more premikati v poljubni
smeri (npr. avtomobil se lahko premika le v smeri vrtenja koles, ne more pa
se premikati bočno). Za holonomične sisteme lahko določimo nabor neodvisnih
posplošenih koordinat, ki določajo prostor, v katerem so možne poljubne smeri
gibanja. V neholonomičnih sistemih temu ni tako, saj gibanje v vsakem trenutku
ni poljubno, temveč je dovoljeno le gibanje, ki ustreza neholonomičnim omejitvam.
Za holonomične sisteme torej velja, da so njihova stanja neposredno odvisna
od konfiguracije notranjih spremenljivk (zasuki koles, koti sklepov). V primeru
neholonomičnih sistemov to ne drži, saj vrnitev notranjih spremenljivk v začetno
konfiguracijo ne zagotavlja tudi vrnitve sistema v začetno stanje (pozicijo in
orientacijo). Posplošeno lahko rečemo, da je izhodno stanje neholonomičnih
sistemov odvisno od opravljene poti (zaporedje notranjih spremenljivk).

V nadaljevanju bomo obravnavali mehanske sisteme, katerih konfiguracijo (lega
sistema v okolju in odnosi med deli sistema) lahko opišemo z vektorjem posploše-
nih koordinat q. Pri podani trajektoriji q(t) določimo vektor posplošenih hitrosti
q̇(t).

Holonomične omejitve izrazimo v obliki enačb, ki povezujejo posplošene koordi-
nate. Te enačbe lahko uporabimo za izločitev nekaterih posplošenih spremenljivk,
da dobimo manjši prostor posplošenih spremenljivk, potrebnih za opis sistema.
Neholonomične omejitve pa ne zmanjšujejo dimenzije prostora posplošenih spre-
menljivk temveč samo dimenzije prostora možnih posplošenih hitrosti. Neholono-
mične omejitve torej vplivajo na problem načrtovanja poti. V zvezi z njimi se
pojavljajo naslednja vprašanja:
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• Kako ugotoviti, ali je kinematična omejitev neholonomična? Če je omejitev
integrabilna, se lahko enačba, ki vsebuje hitrostne parametre (odvode
posplošenih koordinat), prevede v holonomično omejitev.

• Ali neholonomična omejitev omejuje množico dostopnih konfiguracij (tj. lege
sistema)? Z uporabo orodij teorije vodenja lahko pridemo do preprostih
pogojev, pod katerimi neholonomične omejitve ne vplivajo na območje
dosegljivih leg.

• Kako zgraditi generator izvedljivih oz. možnih poti za robota z neholono-
mičnimi omejitvami?

2.3.1 Holonomične omejitve

Holonomične omejitve so vezane na posplošene koordinate (stanja) sistema. Za
sistem z n posplošenimi koordinatami q = [q1, . . . , qn]T je holonomična omejitev
izražena kot

f(q) = f(q1, . . . , qn) = 0 (2.22)

kjer je f gladka funkcija z zveznimi odvodi. Ta omejitev določa podmnožico vseh
možnih konfiguracij v posplošenih koordinatah (delovni prostor), ki zadostujejo
omejitvi (2.22) (zmanjša število prostostnih stopenj sistema). Z upoštevanjem
(2.22) lahko namreč izločimo določeno posplošeno koordinato (izrazimo jo lahko
z n− 1 ostalimi koordinatami).

V splošnem imamo lahko m holonomičnih omejitev (m < n). Če so omejitve
linearno neodvisne, določajo (n−m)–dimenzionalni “podprostor”, ki je dejanski
delovni prostor sistema (sistem ima n−m prostostnih stopenj).

2.3.2 Neholonomične omejitve

Neholonomične omejitve omejujejo možne hitrosti ali smeri gibanja sistema.
Zapišemo jih v obliki

f(q, q̇) = f(q1, . . . , qn, q̇1, . . . , q̇n) = 0 (2.23)

kjer je f gladka funkcija z zveznimi odvodi in q̇ vektor hitrosti sistema v posplo-
šenih koordinatah. V primeru, da sistem nima omejitev (2.23), se lahko giblje v
poljubnih smereh.

Kinematična omejitev (2.23) je holonomična, če je integrabilna, kar pomeni, da
lahko hitrosti q̇1, . . . , q̇n izločimo iz enačbe (2.23) in zapišemo omejitev v obliki
(2.22). Če omejitev (2.23) ni integrabilna, je neholonomična.

Če obstaja m linearno neodvisnih neholonomičnih omejitev v obliki (2.23), je
prostor dostopnih hitrosti (n−m)–dimenzionalen. Neholonomična omejitev torej
omeji dovoljene hitrosti sistema. Za primer lahko vzamemo dvokolesnega robota
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(invalidski voziček), ki se lahko premika v smeri trenutne orientacije koles, v
bočni smeri (pravokotno na kolesa) pa ne.

Predpostavimo, da so omejitve linearne v odvisnosti od q̇ = [q̇1, . . . , q̇n)]T . Potem
lahko (2.23) zapišemo kot

f(q, q̇) = aT (q)q̇ =
[
a1(q) . . . an(q)

]
q̇1
...
q̇n

 = 0

kjer je a(q) vektor členov omejitve (nedovoljena smer pomika). V kolikor imamo
m neholonomičnih omejitev, lahko njihove člene zapišemo v matriko omejitev

A(q) =


aT1 (q)

...
aTm(q)


in vse neholonomične omejitve sistema podamo v matrični obliki

A(q)q̇ = 0

Nadalje določimo matriko dosegljivih smeri gibanja sistema (m omejitev določa
n−m dosegljivih smeri)

S(q) =
[
s1(q) s2(q) . . . sn−m(q)

]
Ta matrika podaja kinematični model sistema, za katerega velja

q̇(t) = S(q)v(t) (2.24)

kjer je v(t) regulirni vektor (glejte kinamatični model (2.2)). Produkt matrike
omejitev A in kinematične matrike S je ničelna matrika

AS = 0

2.3.3 Integrabilnost omejitev

Da ugotovimo, ali je določena omejitev neholonomična (oz. hitrostna), moramo
preveriti, če jo je mogoče integrirati in s tem prevesti v holonomično omejitev. V
kolikor to ni mogoče, je omejitev neholonomična.

2.3.4 Vektorska polja, porazdelitev, Liejevi okle-
paji

V trenutnem času t in stanju q dobimo možne smeri premikov iz določene točke
prostora q z linearno kombinacijo vektorskih polj v matriki dosegljivih smeri S.
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Porazdelitev tako podaja dosegljiv “podprostor” iz določene točke prostora q s
premiki, ki predstavljajo linearno kombinacijo vektorskih polj (stolpci matrike S).
Vektorska polja so odvodi posplošenih koordinat, torej predstavljajo hitrosti
ali smeri možnih premikov v prostoru. Vektorsko polje je zvezno odvedljiva
preslikava, ki vsaki točki prostora priredi natanko določen vektor. Prikaz določitve
dosegljivih vektorskih polj je podan v primeru 2.1.

Primer 2.1

Za robota z diferencialnim pogonom s kinematičnim modelom (2.2) določite
dosegljive hitrosti (smeri premikov) in omejitve gibanja.

Rešitev

Vektorski polji dosegljivih hitrosti (smeri premikov) sta

s1(q) =

cosϕ
sinϕ

0

 s2(q) =

0
0
1

 (2.25)

kar pomeni, da so možne smeri premika v danem trenutku, ko se nahajamo v
legi q, podane z linearno kombinacijo

q̇ = u1s1(q) + u2s2(q) (2.26)

kjer sta u1 in u2 poljubni realni števili, ki predstavljata regulirni veličini. Enačba
(2.26) je le preurejen zapis kinematičnega modela (2.2).

V kolikor vektorskih polj si nimamo podanih, jih lahko določimo iz znanih
omejitev aj , kjer upoštevamo ortogonalnost smeri omejitev in smeri gibanja,
torej si⊥aj . Iz slike 2.3 lahko določimo omejitev s smerjo, v kateri se robot ne
more premikati, to je bočno na kolesa. Edina omejitev je

a(q) =

− sinϕ
cosϕ

0


kar je ravno pravokotno na vektor možnega premika s1(q) (translacijski premik
v smeri kotaljenja koles) in na vektor s2(q) (rotacija okoli osi pravokotne na
ravnino gibanja).

V kolikor porazdelitev določenih vektorskih polj definira celoten prostor, je
vsebovana (angl. involutive). Če osnovna porazdelitev ni vsebovana, lahko
določimo množico novih vektorskih polj, ki so linearno neodvisna od vektorskih
polj osnovne porazdelitve. Nova vektorska polja (smeri pomika) lahko dobimo
s končnim številom preklopov osnovnih smeri pomika, kjer dolžino pomikov
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limitiramo proti 0. Nove smeri lahko določimo s pomočjo Liejevih oklepajev, ki
predstavljajo operacijo nad dvema vektorskima poljema, kot bo kasneje podano
z enačbo (2.28). Praktičen primer uporabe je paralelno parkiranje avtomobila
(tudi vozila z diferencialnim pogonom), kjer ni možen neposreden bočni premik
na parkirno mesto zaradi neholonomičnih omejitev sistema (kolesa ne drsijo
bočno). Kljub temu pa lahko dosežemo premik v stran z zaporedno kombinacijo
gibanja naprej in nazaj ter zasukov, kar prikazuje primer 2.2.

Primer 2.2

Predstavite manever za paralelno parkiranje vozila z diferencialnim pogonom.

Rešitev

Z uporabo osnovnih smeri pomika, definiranih z vektorskimi polji s1(q) in s2(q)
(glejte enačbo (2.25)), in začetnim stanjem (lega vozila) q0 = q(0) določimo novo
stanje sistema. Začnemo v stanju q0 = q(0) in se za kratek čas ε gibljemo v
smeri s1, nato v smeri s2 za čas ε, nato v smeri −s1 za čas ε in na koncu v
smeri −s2 za čas ε, kjer je dosežena končna lega vozila. To lahko matematično
zapišemo kot

q(4ε) = φ−s2
ε

(
φ−s1
ε (φs2

ε (φs1
ε (q0)))

)
kar predstavlja nelinearno diferencialno enačbo, katere rešitev (integracija ki-
nematičnega modela) lahko aproksimiramo z razvojem v Taylerjevo vrsto (za
podrobnosti glejte [1]) kot

q(4ε) = q0 + ε2
(
∂s2

∂q
s1(q0)− ∂s1

∂q
s2(q0)

)
+O(ε3) (2.27)

kjer so parcialni odvodi ovrednoteni v q0, O(ε3) pa predstavlja prispevek višjih
odvodov, ki je za kratke čase ε zanemarljiv. Dobljeni končni premik manevra
parkiranja je tako dolžine ε2 v smeri vektorja, ki je podan v oklepaju in predstavlja
operacijo Liejev oklepaj, definiran v enačbi (2.28).

Manever paralelnega parkiranja lahko predstavimo z eksperimentom. Predpo-
stavimo, da je začetna lega robota q0 = [0, 0, 0]T . V prvem koraku izvajanja
manevra pridemo v točko

q1 = q0 + εs1 =

0
0
0

+ ε

cos 0
sin 0

0

 =

ε0
0


v drugem koraku izvedemo rotacijo

q2 = q1 + εs2 =

ε0
0

+ ε

0
0
1

 =

ε0
ε


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v tretjem koraku imamo translacijo v negativni smeri

q3 = q2 − εs1 =

ε0
ε

− ε
cos ε

sin ε
0

 =

ε− ε cos ε
−ε sin ε

ε


in v zadnjem koraku rotacijo v negativni smeri

q4 = q3 − εs2 =

ε− ε cos ε
−ε sin ε

ε

− ε
0

0
1

 =

ε− ε cos ε
−ε sin ε

0


Na sliki 2.15 so prikazani izračunani premiki in vmesne točke.
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Slika 2.15: Manever paralelnega parkiranja v delovnem prostoru (levo), kjer je
orientacija predstavljena z osjo z, in pogled na manever od zgoraj (desno)

Opazimo lahko, da končni premik v stran ni neposredno izvedljiv (v enem
koraku) z možnimi smermi gibanja s1 in s2, je pa izvedljiv v več korakih z njuno
kombinacijo. Dobljen končni premik ni točno v bočni smeri zaradi končnega časa
ε in člena O(ε3) v relaciji (2.27). V kolikor so premiki majhni s kratkim časom
trajanja ε→ 0, je dobljen premik točno v stran, torej je končna lega

q4 =

 0
−ε2

0



Kot smo videli v primeru 2.2, lahko s pomočjo Liejevih oklepajev določimo nove
smeri gibanja, ki jih osnovna porazdelitev ne dovoljuje. Te nove smeri lahko
dosežemo s končnim številom neskončno kratkih premikov v smereh vektorskih
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polj v osnovni porazdelitvi. Liejevi oklepaji so operacija nad vektorskima poljema
i(q) in j(q), katere rezultat je novo vektorsko polje [i, j]. Definiramo ga kot

[i, j] = ∂j

∂q
i− ∂i

∂q
j (2.28)

kjer sta

∂i

∂q
=


∂i1
∂q1

∂i1
∂q2

. . . ∂i1
∂qn

∂i2
∂q1

∂i2
∂q2

. . . ∂i2
∂qn

...
...

. . .
...

∂in
∂q1

∂in
∂q2

. . . ∂in
∂qn



∂j

∂q
=


∂j1
∂q1

∂j1
∂q2

. . . ∂j1
∂qn

∂j2
∂q1

∂j2
∂q2

. . . ∂j2
∂qn

...
...

. . .
...

∂jn
∂q1

∂jn
∂q2

. . . ∂jn
∂qn


Porazdelitev je vsebovana, če z Liejevimi oklepaji ne moremo pridobiti novih
linearno neodvisnih vektorskih polj. Vsebovana porazdelitev je zaprta znotraj
Liejevih oklepajev [6] in sistem je popolnoma holonomičen, torej nima omejitev gi-
banja ali pa so vse omejitve holonomične. Ta ugotovitev izhaja iz Frobeniusovega
teorema [7]: Če je osnovna porazdelitev vsebovana, je sistem holonomičen in vse
morebitne omejitve sistema so integrabilne. Predpostavimo, da je iz m omejitev k
omejitev holonomičnih in (m− k) neholonomičnih. Glede na Frobeniusov teorem
obstajajo tri možnosti za k [8]:

• k = m: dimenzija vsebovane porazdelitve (število linearno neodvisnih
vektorskih polj) je enaka dimenziji osnovne porazdelitve (n−m).

• 0 < k < m: imamo k integrabilnih omejitev, torej lahko iz opisa sistema
izločimo k posplošenih koordinat. V tem primeru je dimenzija vsebovane
porazdelitve enaka n− k.

• k = 0: dimenzija vsebovane porazdelitve je n (dimenzija prostora) in vse
omejitve so neholonomične.

Primer 2.3

Določite omejitve gibanja in smeri možnih premikov za primer enojnega kolesa,
ki se kotali po podlagi. Določite število prostostnih stopenj sistema ter število in
vrsto njegovih omejitev.
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Rešitev

Kinematika enojnega kolesa je enaka kot pri diferencialnem pogonu (kolesi damo
skupaj), prikazan na sliki 2.3 s kinematičnim modelom 2.2. Omejene in možne
smeri gibanja smo že določili v primeru 2.1. Imamo samo eno hitrostno omejitev,
ki ne omejuje dosegljivosti leg q v prostoru, zato ima sistem tri prostostne
stopnje. Da je omejitev res hitrostna (neholonomična), lahko pokažemo z uporabo
Liejevih oklepajev in Frobeniusovega teorema. Najprej določimo Liejev oklepaj
za dosegljivi vektorski polji s1 in s2 (2.25)

s3 = [s1, s2] = ∂s2

∂q
s1 −

∂s1

∂q
s2

=

0 0 0
0 0 0
0 0 0


cosϕ

sinϕ
0

−
0 0 − sinϕ

0 0 cosϕ
0 0 0


0

0
1


=

 sinϕ
− cosϕ

0


Dobimo novo smer možnega pomika, ki je linearno neodvisna od vektorskih polj
s1 in s2 ter je zato ni v osnovni porazdelitvi. Posledično lahko sklepamo, da je
omejitev neholonomična, dimenzija vsebovane porazdelitve pa je 3 (sistem ima 3
prostostne stopnje), kar je enako dimenziji sistema. Hkrati z dodatnimi Liejevimi
oklepaji ([s1, s3], [s2, s3]) ni možno določiti novih linearno neodvisnih vektorskih
polj.
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Primer 2.4

Določite omejitve gibanja in smeri možnih premikov za primer avtomobila brez
krmilnega mehanizma (kolesa so fiksno vpeta), prikazan na sliki 2.16. Določite
število in vrsto omejitev ter število prostostnih stopenj sistema.

Xg

Yg

j
( )x,y

Slika 2.16: Avtomobil brez krmilnega mehanizma
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Rešitev

Vozilo se ne more premikati bočno niti vrteti (njegova orientacija ϕ se ne spremi-
nja), torej imamo naslednje smeri omejitev gibanja

a1(q) =

 sinϕ
− cosϕ

0

 a2(q) =

0
0
1


in omejitvi gibanja

aT1(q) q̇ = ẋ sinϕ− ẏ cosϕ = 0
aT2(q) q̇ = ϕ̇ = 0

ki sta integrabilni, kar lahko preprosto pokažemo s tem, da ju integriramo

ϕ = ϕ0

(x− x0) sinϕ− (y − y0) cosϕ = 0

Vozilo se lahko premika le v smeri vektorskega polja

s1 =

cosϕ
sinϕ

0


Ker sta obe omejitvi holonomični, je porazdelitev vektorskega polja s1 vsebovana,
kar pomeni, da je sistem holonomičen in ima eno prostostno stopnjo. Z Liejevimi
oklepaji ne moremo določiti novih vektorskih polj (smeri premikov), saj imamo
le eno vektorsko polje možnega premika.

Primer 2.5

V programskem okolju Matlab izvedite simulacijo platforme z diferencialnim
pogonom. Parametri vozila so: računski korak Ts = 0,033 s, čas simulacije 10 s,
polmer kolesa r = 0,04 m, razdalja med kolesoma L = 0,08 m.

Naloge:

1. Analitično izračunajte in izvedite simulacijo poti, ki jo opravi robot, če je
začetno stanje q(0) = [x, y, ϕ]T = [0, −0,5, 0]T in so vhodi robota (v treh
primerih):

• v(t) = 0,5 m/s, ω(t) = 0 rad/s;
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• v(t) = 1 m/s, ω(t) = 2 rad/s;

• kotni hitrosti koles ωL(t) = 24 rad/s, ωR(t) = 16 rad
s .

Kakšni sta kotni hitrosti koles? Ali sta izračunana in simulirana pot enaki?
Zakaj ne?

2. Z uporabo odometrije izvedite lokalizacijo vozila pri konstantnih vhodnih
hitrostih v(t) = 0,5 m/s, ω(t) = 1 rad/s. Primerjajte ocenjeno in simulirano
pot robota. Dobljene rezultate ovrednotite tudi v primeru idealne situacije,
tj. brez šuma in pogreška modeliranja.

3. Izvedite lokalizacijo iz drugega vprašanja z upoštevanjem začetnega po-
greška stanja. Predpostavite, da je pravo začetno stanje neznano, in za
lokalizacijo uporabite drugačna začetna stanja kot pri simulaciji.

4. Izberite si pot, sestavljeno iz dveh ali treh daljic, kjer začetna točka sovpada
z začetno lego robota. Izračunajte potrebno zaporedje vhodov za vožnjo
robota po tej poti (čas simulacije je 10 sekund).

5. Izberite poljubno trajektorijo, definirano kot časovna parametrična funkcija
(x(t) = f(t) in y(t) = g(t), f in g sta gladki funkciji). Izračunajte potrebne
vhode za sledenje predpisani trajektoriji. Kaj se zgodi, če na začetku robot
ni na tej poti?

6. Simulirajte manever paralelnega parkiranja, opisan v primeru 2.2. Izberite
ustrezen ε ter konstantni hitrosti v in ω.

7. Za dano začetno stanje q(0) = [0, −0,5, 0]T izračunajte kinematično
matriko S in matriko omejitev A.

Rešitev

Osnovna koda za simulacijo diferencialnega pogona je podana v programu 2.1.
Kodo lahko priredimo in dobimo želene rešitve.

Program 2.1
./src/mdl/example_diff_drive.m

1 r = 0.04; % Radij kolesa
2 L = 0.08; % Dolžina osi med kolesoma
3 Ts = 0.03; % Rač unski korak
4 t = 0: Ts :10; % Čas simulacije
5 q = [4; 0.5; pi /6]; % Začetna lega
6

7 for k = 1: length (t)
8 wL = 12; % Hitrost levega kolesa
9 wR = 12.5; % Hitrost desnega kolesa
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10 v = r/2*( wR+wL ); % Hitrost robota
11 w = r/L*(wR -wL ); % Kotna hitrost robota
12 dq = [v*cos(q(3)+ Ts*w/2); v*sin(q(3)+ Ts*w/2); w];
13 q = q + Ts*dq; % Integracija
14 q(3) = wrapToPi (q (3)); % Zapis kota v območje [-pi , pi]
15 end

Primer 2.6

V programskem okolju Matlab izvedite simulacijo platforme s trikolesnim po-
gonom na zadnjih kolesih. Parametri vozila so: računski korak Ts = 0,033 s,
čas simulacije 10 s, polmer kolesa r = 0,2 m, razdalja med zadnjima kolesoma
L = 0,08 m ter razdalja med sprednjim in zadnjima kolesoma D = 0,07 m.

Naloge:

1. Analitično izračunajte in izvedite simulacijo poti, ki jo opravi robot, če je
začetno stanje q(0) = [x, y, ϕ]T = [0, −0,5, 0]T in so vhodi robota (v
dveh primerih):

• v(t) = 0,5 m/s, α(t) = 0

• v(t) = 1 m/s, α(t) = π
6

Kakšne so kotne hitrosti koles? Ali sta izračunana in simulirana pot enaki?
Zakaj ne?

2. Z uporabo odometrije izvedite lokalizacijo vozila pri konstantnih vhodih
v(t) = 0,5 m/s, α(t) = π

6 . Primerjajte ocenjeno in simulirano pot robota.
Dobljene rezultate ovrednotite tudi v primeru idealne situacije, tj. brez
šuma in pogreška modeliranja.

3. Izvedite lokalizacijo iz druge naloge z upoštevanjem začetnega pogreška
stanja. Predpostavite, da je pravo začetno stanje neznano, in za lokalizacijo
uporabite drugačna začetna stanja kot pri simulaciji.

4. Izberite si pot, sestavljeno iz dveh ali treh daljic, kjer začetna točka sovpada
z začetno lego robota. Izračunajte potrebno zaporedje vhodov za vožnjo
robota po tej poti (čas simulacije je 10 sekund).

5. Izberite poljubno trajektorijo, definirano kot časovno parametrična funkcija
(x(t) = f(t) in y(t) = g(t), f in g sta gladki funkciji). Izračunajte potrebne
vhode za sledenje predpisani trajektoriji. Kaj se zgodi, če na začetku robot
ni na tej poti?
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Rešitev

Osnovna koda za simulacijo trikolesnega pogona je podana v programu 2.2. Kodo
lahko priredimo in dobimo želene rešitve.

Program 2.2
./src/mdl/example_tricycle_drive.m

1 D = 0.07; % Razdalja med prednjim kolesom in zadnjo osjo
2 Ts = 0.03; % Rač unski korak
3 t = 0: Ts :10; % Čas simulacije
4 q = [4; 0.5; pi /6]; % Začetna lega
5

6 for k = 1: length (t)
7 v = 0.5; % Hitrost robota
8 alpha = 0.04*(1+ sin(k*Ts*pi /2)); % Orientacija prednjega kolesa
9 w = v/D*tan( alpha ); % Kotna hitrost robota

10 dq = [v*cos(q(3)+ Ts*w/2); v*sin(q(3)+ Ts*w/2); w];
11 q = q + Ts*dq; % Integracija
12 q(3) = wrapToPi (q (3)); % Zapis kota v območje [-pi , pi]
13 end

2.3.5 Vodljivost kolesnih mobilnih robotov

Pred načrtovanjem vodljivosti sistema se moramo vprašati: Ali lahko robot doseže
katerokoli točko q v delovnem prostoru z izvajanjem svojih možnih manevrov?
Odgovor na vprašanje je povezan z vodljivostjo sistema. Če je sistem vodljiv,
lahko doseže poljubno konfiguracijo q s kombiniranjem razpoložljivih manevrov
gibanja.

Če ima robot kinematične omejitve, jih moramo analizirati in ugotoviti, ali
vplivajo na vodljivost sistema. Robot z neholonomičnimi omejitvami se lahko
premika le v svojih osnovnih smereh gibanja (osnovni manevri, kot sta vožnja
naravnost in kroženje). Vendar lahko tak robot z združevanjem osnovnih mane-
vrov še vedno doseže želeno konfiguracijo q. Nova smer gibanja se razlikuje od
vsake osnovne smeri ali linearne kombinacije osnovnih smeri, kot je prikazano v
(2.24). Vodljivost robota določimo z analizo vsebovane porazdelitve, pridobljene
z zaporednimi operacijami Liejevih oklepajev v osnovnih smereh gibanja (s1, s2,
s3 itd.) na naslednji način ([7, 9–12])

{s1, s2, s3, [s1, s2] , [s1, s3] , [s2, s3] , . . . , [s1, [s1, s2]] , [s1, [s1, s3]] , . . .}

Če ima vsebovana porazdelitev rang n (n je dimenzija vektorja q), lahko robot v
delovnem prostoru doseže katerokoli točko q in je zato vodljiv. Sledeča izjava
je znana kot Chowov izrek: Sistem je vodljiv, če je rang njegove vsebovane
porazdelitve glede na Liejeve oklepaje enak dimenziji delovnega prostora. Torej
je robot vodljiv, če so vse njegove omejitve neholonomične in je rang njegove
vsebovane porazdelitve enak n. Ta test vodljivosti je namenjen nelinearnim
sistemom, vendar ga je možno uporabiti tudi za linearne sisteme q̇ = Aq +Bu,
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kjer sta osnovni vektorski polji s1 = Aq in s2 = B. Izračun njegove vsebovane
porazdelitve vodi v Kalmanov test za vodljivost linearnih sistemov

rang
[
B AB A2B . . .

]
= n

Vsebovano porazdelitev pridobimo z zaporednim izračunavanjem Liejevih okle-
pajev nad osnovnimi in predhodno določenimi novimi smermi gibanja. Število
zaporednih stopenj (nivojev izračunov) določa indeks težavnosti manevriranja
kolesnega mobilnega robota [13]. Višji kot je ta indeks, več osnovnih manevrov
je potrebnih za doseg želene smeri gibanja.

Primer 2.7

Pokažite, da je diferencialni pogon vodljiv.

Rešitev

Diferencialni pogon ima tri (n = 3) stanja q = [x, y, ϕ] ter dve osnovni smeri
gibanja s1 in s2

s1(q) =

cosϕ
sinϕ

0

 s2(q) =

0
0
1


Nova smer gibanja, pridobljena z Liejevim oklepajem, je

s3 = [s1, s2] = ∂s2

∂q
s1 −

∂s1

∂q
s2

=

 sinϕ
− cosϕ

0


Z izračunom Liejevih oklepajev iz poljubne kombinacije vektorskih polj s1, s2

in s3 ne dobimo nove linearno neodvisne smeri gibanja, zato je porazdelitev
[s1, s2, s3] vsebovana (zaprta z Liejevimi oklepaji) in ima rang

rang
[
s1 s2 s3

]
= n = 3

torej je sistem vodljiv.

Primer 2.8

Določite omejitve gibanja in smeri možnih premikov za primer vozila (slika 2.17)
s pogonom na zadnjih kolesih. Vozilo upravljamo z obodno hitrostjo zadnjih
koles v in kotno hitrostjo krmilnega mehanizma γ.
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Določite število in vrsto omejitev, kinematični model ter število prostostnih
stopenj sistema. Ali je sistem vodljiv?

Xg

Yg

v

a

( )x,y

j

g

d

Slika 2.17: Vozilo s pogonom na zadnji osi, ki ga upravljamo s hitrostjo zadnjih
koles v in kotno hitrostjo krmilnega mehanizma γ

Rešitev

Vozilo opišemo s štirimi stanji q = [x, y, ϕ, α]T , saj sta regulirni veličini hitrost

v in kotna hitrost krmilnega mehanizma γ. Četrto stanje (α =
t∫

0
γ dt) opisuje

trenutno stanje krmila.

Velja opomniti, da je kinematika obravnavanega vozila podobna kinematiki
kolesa z zadnjim pogonom (2.15), le da ima slednja samo tri stanja, saj je zasuk
krmilnega mehanizma že določen z enim od izhodov (2.15).

Iz slike 2.17 vidimo, da se vozilo ne more premikati v smeri bočno na kolesa,
torej sta vektorja omejitev gibanja

a1(q) =


sinϕ
− cosϕ

0
0

 a2(q) =


sin(α+ ϕ)
− cos(α+ ϕ)
−d cosα

0


Vektorski polji osnovnih smeri gibanja sta določeni s smerjo kotaljenja zadnjih
koles (smer gibanja, ko je γ = 0 in konstanten zasuk krmilnega kolesa α) ter
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vrtenjem krmilnega kolesa (smer gibanja, ko je v = 0)

s1 =


cosϕ
sinϕ

1
d tanα

0

 s2 =


0
0
0
1


Kinematika vozila je podana z

q̇ =
[
s1 s2

] [v
γ

]
=


cosϕ 0
sinϕ 0

1
d tanα 0

0 1


[
v

γ

]

kar je podobno kinematiki (2.15), le da imamo še dodatno stanje α in vhod
γ = α̇.

Sistem je torej opisan s štirimi stanji ter ima dve omejitvi in dva vhoda. Želimo
imeti štiri linearno neodvisne smeri gibanja si. Dve že določa kinematični model,
zato poskušamo z Liejevimi oklepaji določiti še preostali dve

s3 = [s1, s2]

= ∂s2

∂q
s1 −

∂s1

∂q
s2

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




cosϕ
sinϕ

1
d tanα

0

−


0 0 − sinϕ 0
0 0 cosϕ 0
0 0 0 1

d cos2 α

0 0 0 0




0
0
0
1



=


0
0
−1

d cos2 α

0


in

s4 = [s1, s3]

= ∂s3

∂q
s1 −

∂s1

∂q
s3

=


0 0 0 0
0 0 0 0
0 0 0 −2 sinα

d cos3 α

0 0 0 0




cosϕ
sinϕ

1
d tanα

0

−


0 0 − sinϕ 0
0 0 cosϕ 0
0 0 0 1

d cos2 α

0 0 0 0




0
0
−1

d cos2 α

0



=


− sinϕ
d cos2 α

cosϕ
d cos2 α

0
0


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Vse štiri dobljene smeri si, i = 1, . . . , 4 so linearno neodvisne, zato ima sistem
štiri prostostne stopnje in obe omejitvi sta neholonomični.

Rang vsebovane porazdelitve je 4, kar je enako številu prostostnih stopenj sistema.
Vozilo je torej vodljivo.

2.4 Dinamični model mobilnega sistema
z omejitvami

Kinematični model opisuje le statično transformacijo hitrosti robota (psevdohitro-
sti) v osnovni koordinatni sistem, podan s posplošenimi koordinatami. Dinamični
model gibanja mehanskega sistema pa podaja dinamične zakonitosti, kot je
gibanje sistema pod vplivom zunanjih sil in vztrajnosti sistema. Z uporabo
Lagrangeove formulacije, ki je še posebej primerna za opis mehanskih sistemov
[14], lahko določimo dinamični model sistema

d
dt

(
∂L
∂q̇k

)
− ∂L
∂qk

+ ∂P

∂q̇k
+ gk + τdk = fk (2.29)

kjer indeks k opisuje posplošene koordinate qk (k = 1, . . . , n). Z L je označena
razlika med kinetično in potencialno energijo sistema, imenovana Lagrangian,
P je močnostna funkcija zaradi trenja in dušenja v sistemu, gk označuje sile
zaradi gravitacije, τdk predstavlja vse neznane motnje, ki jih z enačbo 2.29 nismo
zajeli v modelu, fk pa je posplošena sila (zunanji vplivi na sistem), povezana s
posplošeno koordinato qk. Enačba (2.29) velja samo za sisteme brez omejitev
gibanja, torej za sisteme, ki imajo n prostostnih stopenj in so brez hitrostnih
omejitev. Za sisteme s kinematičnimi omejitvami lahko zapišemo dinamične
enačbe gibanja z uporabo Lagrangeovih multiplikatorjev [15]

d
dt

(
∂L
∂q̇k

)
− ∂L
∂qk

+ ∂P

∂q̇k
+ gk + τdk = fk −

m∑
j=1

λjajk (2.30)

kjer je m število linearno neodvisnih omejitev gibanja, λj Lagrangeov multipli-
kator, povezan z j-to omejitveno enačbo, ajk (j = 1, . . . ,m, k = 1, . . . , n) pa
koeficienti omejitev.

Končni nabor enačb vsebuje n + m diferencialnih in algebrajskih enačb (n
Lagrangeovih enačb in m omejitvenih enačb) z n+m neznankami (n posplošenih
koordinat qk in m Lagrangeovih multiplikatorjev λj). Enačbe so diferencialne v
smislu posplošenih koordinat in algebrajske glede na Lagrangeove multiplikatorje.

Splošni dinamični model (2.30) mehanskega sistema z omejitvami lahko zapišemo
v matrični obliki

M(q)q̈ + V (q, q̇) + F (q̇) +G(q) + τd = E(q)u−AT (q)λ (2.31)
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Tabela 2.1: Pomen matrik v dinamičnem modelu (2.31)

Oznaka Opis

q vektor posplošenih koordinat (dimenzije n× 1)
M(q) pozitivno definitna matrika mas in vztrajnosti

(dimenzije n× n)
V (q, q̇) vektor Coriolisovih in centrifugalnih členov (dimenzije n× 1)
F (q̇) vektor sil trenja in dušenja (dimenzije n× 1)
G(q) vektor gravitacijskih sil in navorov (dimenzije n× 1)
τd vektor neznanih motenj, vključno z dinamiko,

ki ni zajeta v modelu (dimenzije n× 1)
E(q) matrika preslikav aktuatorskega prostora v prostor posplošenih

spremenljivk (dimenzije n× r)
u vektor vhodov (dimenzije r × 1)
AT (q) matrika kinematičnih omejitev (dimenzije m× n)
λ vektor omejitvenih sil (Lagrangeovi multiplikatorji)

(dimenzije m× 1)

kjer je pomen matrik opisan v tabeli 2.1.

2.4.1 Predstavitev dinamičnega modela mobilnega
sistema z omejitvami v prostoru stanj

V nadaljevanju bomo izpeljali dinamični model sistema z m kinematičnimi
omejitvami v prostoru stanj. Nadalje bomo izvedli delno linearizacijo sistema,
opisanega v prostoru stanj, z vpeljavo nelinearne povratnozančne relacije [6].
Dobljeni sistem bomo zapisali kot kinematični model drugega reda.

Dinamični sistem z m kinematičnimi omejitvami zapišemo kot

M(q)q̈ + V (q, q̇) + F (q̇) +G(q) = E(q)u−AT (q)λ (2.32)

kjer smo vpliv neznanih motenj na sistem τd iz (2.31) zanemarili. Kinematični
model gibanja pa podaja enačba

q̇ = S(q)v(t) (2.33)

Dinamični model (2.32) in kinematični model (2.33) lahko združimo v enoten zapis
v prostoru stanj. Poenoteno obravnavo neholonomičnih in holonomičnih omejitev
lahko najdemo v [16], kjer so holonomične omejitve izražene v diferencialni obliki
(s hitrostmi) kot neholonomične.

Zaradi enostavnosti zapisa bomo v nadaljevanju izpustili odvisnost od q. Če
odvajamo relacijo (2.33) po času, dobimo

q̈ = Ṡv + Sv̇
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Dobljen izraz vstavimo v (2.32) ter zamenjamo posplošene koordinate q s psev-
dohitrostmi v. Tako dobimo

MṠv +MSv̇ + V + F +G = Eu−ATλ (2.34)

Prisotnost Lagrangeovih multiplikatorjev λ zaradi omejitev gibanja lahko izločimo
z upoštevanjem relacij AS = 0 in STAT = 0. Z množenjem enačbe (2.34) z
matriko ST dobimo skrčeno obliko dinamičnega modela

STMṠv + STMSv̇ + STV + STF + STG = STEu

s čimer smo izločili Lagrangeove multiplikatorje λ. Z vpeljavo zamenjav M̃ =
STMS, Ṽ = STMṠv + ST (V + F + G) in Ẽ = STE lahko pregledneje
zapišemo

M̃v̇ + Ṽ = Ẽu (2.35)

od koder izrazimo vektor psevdopospeškov v̇

v̇ = M̃−1
(
Ẽu− Ṽ

)
Če je nadalje izpolnjen pogoj detSTE 6= 0, kar v večini realističnih primerov je,
lahko iz enačbe (2.35) izrazimo vhod v sistem

u = Ẽ−1
(
M̃v̇ + Ṽ

)
(2.36)

Z razširitvijo vektorja stanj s psevdohitrostmi x = [qTvT ]T in zapisom sistema
v splošni nelinearni obliki ẋ = f(x) + g(x)u (člen f(x) vsebuje nelinearno
odvisnost od stanj) dobimo zapis sistema v prostoru stanj

ẋ =
[

Sv

−M̃−1Ṽ

]
+
[

0n×r

M̃−1Ẽ

]
u (2.37)

kjer je r število vhodov v vektorju u. Dimenzija vektorja stanj x je (2n−m)× 1.

Z inverznim modelom (2.36) lahko za želene psevdopospeške sistema izračunamo
potreben vhod v sistem. Z uporabo izračunanih vhodov v sistemu (2.37) dobimo
naslednji skupni model

ẋ =
[

Sv

0(n−m)×1

]
+
[

0n×(n−m)
I(n−m)×(n−m)

]
uz

kjer uz predstavlja psevdopospeške sistema. Izraz (2.36) lahko torej uporabimo
za izračun napovedanih vhodov sistema. Te vhode lahko pri vodenju upora-
bimo samostojno (odprtozančno vodenje) ali pa v kombinaciji z zaprtozančnim
vodenjem ter tako dobimo regulacijo s predkrmiljenjem.

2.4.2 Kinematični in dinamični model robota z
diferencialnim pogonom

Vozilo z diferencialnim pogonom na sliki 2.3 ima kolesa, gnana s pomočjo dveh
elektromotorjev. Predpostavimo, da je težišče robota v njegovem geometrijskem
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Slika 2.18: Vozilo z diferencialnim pogonom

središču. Masa vozila brez koles je mv, masa koles pa je mw. Vozilo se giblje
po ploskvi; njegov vztrajnostni moment okoli osi z označimo kot Jc (os z je
pravokotna na ploskev) in vztrajnostni moment koles kot Jw.

V praksi je običajno masa koles veliko manjša od mase ohišja vozila, zato lahko
uporabimo skupno maso m in vztrajnost J . Gibanje vozila opišemo s tremi
posplošenimi koordinatami q = [x, y, ϕ], vhod v sistem pa predstavlja navor na
levo in desno kolo (τl, τr prikazano na sliki 2.18).

Kinematični model in omejitve

Kinematični model vozila (2.2) jeẋẏ
ϕ̇

 =

cosϕ 0
sinϕ 0

0 1

[v
ω

]

neholonomična omejitev gibanja pa je (vozilo se ne more premikati pravokotno
na smer vrtenja koles)

−ẋ sinϕ+ ẏ cosϕ = 0

kar pomeni, da stolpci kinematične matrike predstavljajo dosegljive smeri premi-
kov

S =

cosϕ 0
sinϕ 0

0 1


in matrika koeficientov omejitev je

A =
[
− sinϕ cosϕ 0

]
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Dinamični model

Dinamični model izpeljemo z Lagrangeovo formulacijo

d
dt

(
∂L
∂q̇k

)
− ∂L
∂qk

+ ∂P

∂q̇k
= fk −

m∑
j=1

λjajk (2.38)

kjer smo iz relacije (2.30) izpustili člen, povezan z vplivi neznanih motenj τdk .
Podobno ne upoštevamo sil in navorov zaradi gravitacije gk, ker se vozilo vozi
po ploskvi in je tako potencialna energija konstantna (brez izgube posplošenosti
lahko predpostavimo WP = 0).

Skupno kinetično energijo sistema lahko opišemo z relacijo

WK = m

2
(
ẋ2 + ẏ2)+ J

2 ϕ̇
2

Ker je potencialna energija sistema WP = 0, je Lagrangian enak

L = WK −WP = m

2
(
ẋ2 + ẏ2)+ J

2 ϕ̇
2

Hkrati zanemarimo še vpliv dušenja in trenja pri kotaljenju koles (P = 0). Sile
in navori v enačbi (2.38) so

d
dt

(
∂L
∂ẋ

)
= mẍ

d
dt

(
∂L
∂ẏ

)
= mÿ

d
dt

(
∂L
∂ϕ̇

)
= Jϕ̈

in

∂L
∂x

= 0

∂L
∂y

= 0

∂L
∂ϕ

= 0

Za dinamični model lahko glede na Lagrangeovo formulacijo (2.38) zapišemo
sledeče diferencialne enačbe

mẍ− λ1 sinϕ = Fx

mÿ + λ1 cosϕ = Fy

Jϕ̈ = T

r je radij kolesa. Rezultanta sil na levem in desnem kolesu je F = 1
r (τr + τl).

Sila v smeri osi x je Fx = 1
r (τr + τl) cosϕ, v smeri osi y pa Fy = 1

r (τr + τl) sinϕ.
Navor, ki deluje na vozilo, je T = L

2r (τr − τl), pri čemer je L razdalja med kolesi.
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Imamo torej model

mẍ− λ1 sinϕ− 1
r

(τr + τl) cosϕ = 0

mÿ + λ1 cosϕ− 1
r

(τr + τl) sinϕ = 0

Jϕ̈− L

2r (τr − τl) = 0

Dobljeni dinamični model lahko zapišemo v matrični obliki

M(q)q̈ + V (q, q̇) + F (q̇) = E(q)u−AT (q)λ

kjer so matrike

M =

m 0 0
0 m 0
0 0 J


E = 1

r

cosϕ cosϕ
sinϕ sinϕ
L
2 −L2


A =

[
− sinϕ cosϕ 0

]
u =

[
τr
τl

]
ostale matrike pa so ničelne.

Model v prostoru stanj (2.37), ki vključuje kinematiko in dinamiko, je določen z
matrikami (glejte poglavje 2.4.1)

M̃ =
[
m 0
0 J

]

Ṽ =
[

0
0

]

Ẽ = 1
r

[
1 1
L
2 −L2

]
od koder lahko glede na enačbo (2.37) zapišemo sistem v prostoru stanj v obliki
ẋ = f(x) + g(x)u, kjer je vektor stanj določen z x = [qT , vT ]T . Dobimo

ẋ

ẏ

ϕ̇

v̇

ω̇

 =


v cosϕ
v sinϕ
ω

0
0

+


0 0
0 0
0 0
1
mr

1
mr

L
2Jr

−L
2Jr


[
τr
τl

]

Inverzni model sistema določimo glede na relacijo (2.36) kot[
τr
τl

]
=
[
v̇mr

2 + ω̇Jr
L

v̇mr
2 −

ω̇Jr
L

]
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Z uporabo inverznega modela lahko za določene hitrosti in pospeške robota
izračunamo potrebna navora na obe kolesi. Izračunana vhoda lahko uporabimo
za odprtozančno vodenje ali bolje v kombinaciji z zaprtozančnim vodenjem
(regulacija s predkrmiljenjem).

Primer 2.9

Zapišite kinematični in dinamični model za vozilo z diferencialnim pogonom,
prikazano na sliki 2.19. Modela izrazite s koordinatama masnega središča (xc,
yc), ki sta od geometrijskega središča (x, y) oddaljeni za razdaljo d.

j

x

y

Xg

YgYg

m,J

tl

tr

v

w

b

r

xc

yc

d

Slika 2.19: Vozilo z diferencialnim pogonom z masnim središčem (xc, yc) in
geometrijskim središčem (x, y)

Rešitev

Če upoštevamo transformacijo med geometrijskim in masnim središčem x =
xc − d cosϕ in y = yc − d sinϕ ter njuna časovna odvoda ẋ = ẋc + dϕ̇ sinϕ in
ẏ = ẏc − dϕ̇ cosϕ, ki ju vstavimo v kinematični model (slika 2.3), sta končni
kinematični model in kinematična omejitev masnega središča

ẋcẏc
ϕ̇

 =

cos(ϕ) −d sin(ϕ)
sin(ϕ) d cos(ϕ)

0 1

[v
ω

]

−ẋc sinϕ+ ẏc cosϕ− ϕ̇d = 0

Lagrangian za masno središče je L = m
2
(
ẋ2
c + ẏ2

c

)
+ J

2 ϕ̇
2. Glede na (2.38) je

dinamični model
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mẍc − λ1 sinϕ = 1
r

(τr + τl) cosϕ

mÿc + λ1 cosϕ = Fy = 1
r

(τr + τl) sinϕ

Jϕ̈− λ1d = L

2r

in matrike modela

M =

m 0 0
0 m 0
0 0 J


E = 1

r

cosϕ cosϕ
sinϕ sinϕ
L
2 −L2


A =

[
− sinϕ cosϕ −d

]
S =

cos(ϕ(t)) −d sin(ϕ)
sin(ϕ(t)) d cos(ϕ)

0 1


Glede na (2.37) je skupna predstavitev sistema v prostoru stanj

ẋc
ẏc
ϕ̇

v̇

ω̇

 =


v cosϕ− ωd sinϕ
v sinϕ+ ωd cosϕ

ω

dω2

−dvωm
md2+J

+


0 0
0 0
0 0
1
mr

1
mr

L
2r(d2m+J)

−L
2r(d2m+J)


[
τr
τl

]

Primer 2.10

Zapišite kinematični in dinamični model vozila iz primera 2.9, kjer masno in
geometrijsko središče nista enaka. Modela izrazite s pomočjo koordinat geo-
metrijskega središča (x, y), saj je to bolj ustrezno, če se masno središče vozila
spreminja z različnim tovorom.
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Rešitev

Kinematični model in kinematična omejitev geometrijskega središča staẋẏ
ϕ̇

 =

cos(ϕ) 0
sin(ϕ) 0

0 1

[v
ω

]

−ẋc sinϕ+ ẏc cosϕ = 0

Lagrangian je L = m
2
(
ẋ2
c + ẏ2

c

)
+ J

2 ϕ̇
2 kjer je masno središče izraženo z geome-

trijskim. Končni model v prostoru stanj je
ẋ

ẏ

ϕ̇

v̇

ω̇

 =


v cosϕ
v sinϕ
ω

dω2

C

+


0 0
0 0
0 0
1
mr

1
mr

L−2d sin(2ϕ)
2r(d2m+J)

−L−2d sin(2ϕ)
2r(d2m+J)


[
τr
τl

]

kjer je C = −dωm(ẋ cosϕ+ẏ sinϕ−v cos(2ϕ)−dω sin(2ϕ))
md2+J .

Primer 2.11

V programskem okolju Matlab izračunajte potrebne navore za gibanje mobilnega
robota iz primera 2.9 po referenčni trajektoriji xr = 1,1 + 0,7 sin(2π/30), yr =
0,9 + 0,7 sin(4π/30) brez uporabe senzorjev (odprtozančno vodenje). S pomočjo
simulacije izračunajte navore robota z uporabo inverznega dinamičnega modela
in prikažite dobljeno trajektorijo sistema. Parametri robota so: m = 0,75 kg,
J = 0,001 kgm2, L = 0,075 m, r = 0,024 m in d = 0,01 m.

Rešitev

Glede na (2.36) je inverzni model robota[
τr
τl

]
=

 r(v̇m−dω2m)
2 + r(ω̇(md2+J)+dω2m)

L

r(v̇m−dω2m)
2 − r(ω̇(md2+J)+dω2m)

L


Iz referenčne točke izračunamo referenčno hitrost vr in referenčno kotno hitrost
ωr ter njuna časovna odvoda v̇r in ω̇r.

Koda Matlab je podana v programu 2.3. Rezultati simulacije pa so prikazani na
slikah 2.20 in 2.21.
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Program 2.3
./src/mdl/example_dynamic_model.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3

4 % Referenca
5 freq = 2* pi /30;
6 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
7 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
8 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);
9 dddxRef =-freq ^3*0.7* cos(freq*t); dddyRef = -8* freq ^3*0.7* cos (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 dvRef = ( dxRef .* ddxRef + dyRef .* ddyRef )./ vRef;
14 dwRef = ( dxRef .* dddyRef - dyRef .* dddxRef )./ vRef .^2 - 2.* wRef .* dvRef ./ vRef;
15

16 q = [qRef (: ,1); vRef (1); wRef (2)]; % Začetna lega robota
17 m = 0.75; J = 0.001; L = 0.075; r = 0.024; d = 0.01; % Parametri robota
18

19 for k = 1: length (t)
20 % Izračun navorov iz trajektorije in inverznega modela
21 v = vRef(k); w = wRef(k); dv = dvRef (k); dw = dwRef (k);
22 tau = [(r*( dv*m-d*w*m*w))/2 + (r*( dw *(m*d^2+J) + d*w*m*v))/L; ...
23 (r*( dv*m-d*w*m*w))/2 - (r*( dw *(m*d^2+J) + d*w*m*v))/L];
24

25 % Simulacija kinemati čnega in dinami čnega modela gibanja robota
26 phi = q(3); v = q(4); w = q(5);
27 F = [v*cos(phi) - d*w*sin(phi ); ...
28 v*sin(phi) + d*w*cos(phi ); ...
29 w; ...
30 d*w^2; ...
31 -(d*w*v*m)/(m*d^2 + J)];
32 G = [0, 0; ...
33 0, 0; ...
34 0, 0; ...
35 1/(m*r), 1/(m*r); ...
36 L/(2*r*(m*d^2 + J)), -L/(2*r*(m*d^2 + J))];
37 dq = F + G*tau; % Model v prostoru stanj
38 q = q + dq*Ts; % Eulerjeva integracija
39 q(3) = wrapToPi (q (3)); % Zapis kota v območje [-pi , pi]
40 end
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Slika 2.20: Izračunana pot robota (polna krivulja) in referenčna pot (črtkana
krivulja)
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Slika 2.21: Navora na kolesi
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3
Vodenje kolesnih mobilnih
sistemov

3.1 Uvod

Vodenje kolesnih mobilnih robotov v okolju brez ovir lahko izvedemo z vodenjem
od začetne do končne lege (klasično sledilno vodenje, kjer niso predpisana vmesna
stanja trajektorije) ali pa preko sledenja referenčni trajektoriji. V primeru
neholonomičnih kolesnih mobilnih sistemov se izkaže, da je bolj težavno vodenje
v referenčno lego, kot pa sledenje referenčni trajektoriji, ki povezuje začetno in
ciljno lego. Za uspešno vodenje (tako klasično vodenje kot sledenje trajektoriji)
moramo uporabiti nezvezen ali časovno spremenljiv regulator [1], ker je sistem,
ki ga vodimo, nelinearen in časovno spremenljiv. Nadalje mora robot pri gibanju
upoštevati neholonomične omejitve, torej njegova pot ne more biti poljubna.
Dodatni razlog za uporabo sledenja trajektoriji se skriva v dejstvu, da se mobilni
robot pogosto giblje v prostoru z omejitvami, ovirami in raznimi zahtevami, ki v
določeni meri predpisujejo želeno pot do cilja.

Neholonomične sisteme je smiselno voditi z dvoprostostnim regulatorjem, sesta-
vljen iz predkrmiljenja (angl. feedforward) in povratne zanke (angl. feed-
back). Predkrmiljenje se izračuna iz referenčne trajektorije, kjer določimo oz.
predhodno izračunamo potrebne vhode v sistem, da bo le-ta sledil referenčni
trajektoriji brez povratnih informacij senzorjev (odprtozančno vodenje). To-
vrstno vodenje ni praktično uporabno, saj ni odporno na motnje v delovanju
sistema in pogreške začetnih stanj. Zato je potrebno vključiti še povratno zanko
(zaprtozančni del). Dvoprostostni regulator je naraven in prikladen za vodenje
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neholonomičnih mehanskih sistemov, zato bo uporabljen v večini prikazanih
primerov v nadaljevanju.

Kolesni mobilni roboti so dinamični sistemi, kjer je za želeno gibanje platforme
potreben ustrezen navor na kolesa. Zato morajo algoritmi za vodenje gibanja
upoštevati dinamične lastnosti sistema. Običajno se to težavo reši s pomočjo
kaskadnih regulacijskih shem z zunanjim regulatorjem za vodenje hitrosti in
notranjim za vodenje navora (sila, tok motorja itd.). Zunanji regulator določa
potrebne hitrosti sistema, da sistem doseže referenčno lego ali sledi referenčni
trajektoriji. Notranji (hitrejši) regulator pa izračuna potrebne navore (sila,
tok motorja itd.), da doseže hitrosti sistema, ki jih določa zunanji regulator.
Notranji regulator mora biti dovolj hiter, da dodatni fazni zamik ne povzroča
težav. Pri večini primerov je notranji regulator navora že vgrajen v mobilnega
robota, uporabnik pa z vodenjem določa želene hitrosti sistema glede na njegovo
kinematiko.

Preostali del tega poglavja je razdeljen na različne pristope vodenja za doseg
referenčne lege ter pristope vodenja sledenja referenčni trajektoriji. Prvi bodo
vključevali osnovno idejo in nekaj preprostih primerov uporabe na različnih
platformah, slednji pa bodo obravnavani bolj podrobno, saj so ti pristopi bolj
naravni za kolesne mobilne robote, ki se vozijo v okoljih z znanimi ovirami.

3.2 Vodenje v referenčno lego

V nadaljevanju bomo predstavili osnovne pristope k vodenju mobilnega robota
v referenčno lego, ki jo določata pozicija in orientacija. V tem primeru pot ali
trajektorija do referenčne lege ni predpisana, zato se lahko robot vozi do cilja
po katerikoli izvedljivi poti. To pot lahko eksplicitno določimo in jo med vožnjo
tudi sproti prilagajamo ali pa jo podamo implicitno z izvedbo algoritma vodenja
v referenčno lego.

Običajno sta podani samo začetna (ali trenutna) in končna (ali referenčna) lega
s poljubno potjo med njima, kar odpira nove možnosti npr. za izbiro “optimalne”
poti. Pri izbiri poti moramo upoštevati vse omejitve – kinematične, dinamične in
okoljske. To nam običajno še vedno omogoča izbiro neskončno mnogo poti, kjer pa
izberemo tisto, ki upošteva tudi dodatna merila, kot so čas, dolžina, ukrivljenost,
poraba energije ipd. V splošnem je načrtovanje poti zahtevna naloga, zato v tem
razdelku ne bomo upoštevali teh vidikov.

V nadaljevanju bo vodenje v referenčno lego razdeljeno na dve ločeni nalogi:
vodenje orientacije in vodenje gibanja naprej. Ne moremo ju obravnavati ločeno,
potrebno je uporabiti kombinacijo, kar privede do več regulacijskih shem za doseg
referenčne lege. Ti pristopi so splošni in jih je mogoče uporabiti pri različnih
kinematikah mobilnih robotov. V tem poglavju ju bomo ponazorili s primeri na
diferencialnemu in Ackermannovemu pogonu.
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3.2.1 Vodenje orientacije

Pri ravninskem gibanju je za izvedbo gibanja z želeno orientacijo potrebno
vodenje orientacije. Vodenje orientacije je pomembno tudi zaradi prisotnosti
neholonomičnih omejitev, ki onemogočajo premik kolesnega robota v določenih
smereh. Čeprav orientacije ni možno voditi neodvisno od gibanja naprej, lahko
na težavo pogledamo tudi z vidika klasičnega vodenja, kar nam pokaže, kako
ojačenja regulatorja vplivajo na klasična merila uspešnosti pri povratnozančnem
vodenju orientacije.

Predpostavimo, da je orientacija kolesnega robota v nekem času t enaka ϕ(t),
referenčna ali želena orientacija pa ϕref (t). Pogrešek vodenja lahko določimo kot

eϕ(t) = ϕref (t)− ϕ(t)

V vsakem sistemu vodenja je potrebna regulirna veličina, ki lahko spremeni ali
vpliva na regulirano veličino, kar je v našem primeru orientacija. Cilj vodenja je
izničiti pogrešek vodenja. Običajno mora rešitev hitro konvergirati proti 0, pri
čemer morajo biti upoštevane nekatere dodatne zahteve, kot so poraba energije,
obremenitev aktuatorja ter robustnost sistema ob prisotnosti motenj, šuma,
parazitske dinamike itd. Običajno načrtovanje vodenja začnemo z modelom
sistema, ki ga želimo voditi. V nadaljevanju bomo zapisali kinematični model,
natančneje enačbo za opis njegove orientacije.

Vodenje orientacije diferencialnega pogona

Kinematiko diferencialnega pogona podaja (2.2), kjer tretja enačba določa potek
orientacije

ϕ̇(t) = ω(t) (3.1)

Z vidika vodenja enačba (3.1) opisuje sistem z regulirno veličino ω(t) in ima
integrirni značaj (njegov pol leži v izhodišču kompleksne ravnine s). Znano je, da
lahko preprost proporcionalni regulator izniči pogrešek pri vodenju integrirnega
procesa. Regulacijski zakon zapišemo kot

ω(t) = K(ϕref (t)− ϕ(t)) (3.2)

kjer je ojačenje regulatorja K poljubna pozitivna konstanta. Regulacijski zakon
(3.2) kaže, da je kotna hitrost platforme ω(t) sorazmerna pogrešku orientacije
robota. S pomočjo enačb (3.1) in (3.2) lahko zapišemo dinamiko regulacijske
zanke za orientacijo

ϕ̇(t) = K (ϕref (t)− ϕ(t))

kar določa zaprtozančno prenosno funkcijo vodenega sistema

Gcl(s) = φ(s)
φref (s) = 1

1
K s+ 1
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kjer sta φ(s) in φref (s) Laplaceovi transformaciji ϕ(t) in ϕref (t). Prenosna funk-
cija Gcl(s) je prvega reda, torej se orientacija eksponentno približuje konstantni
referenci (s časovno konstanto T = 1

K ) in ima ojačenje 1, zato v ustaljenem
stanju ni pogreška orientacije.

Regulator (3.2) torej povzroči, da se zaprtozančna prenosna funkcija obnaša
kot sistem prvega reda. Včasih je zaželena prenosna funkcija drugega reda
Gcl(s) = φ(s)

φref (s) , saj omogoča več svobode pri načrtovanju poteka med prehodnim
pojavom. Razvoj regulatorja začnemo z definiranjem kotnega pospeška platforme
ω̇(t), ki je sorazmeren pogrešku orientacije robota

ω̇(t) = K(ϕref (t)− ϕ(t)) (3.3)

Dobljen regulirani sistem

ω̇ = ϕ̈(t) = K(ϕref (t)− ϕ(t))

s prenosno funkcijo

Gcl(s) = φ(s)
φref (s) = K

s2 +K

je sistem drugega reda z lastno frekvenco ωn =
√
K in koeficientom dušenja

ζ = 0. Tak sistem je mejno stabilen, njegovi oscilatorni odzivi pa so nesprejemljivi.
Dušenje sistema dosežemo z dodatnim členom v regulatorju (3.3)

ω̇(t) = K1(ϕref (t)− ϕ(t))−K2ϕ̇(t) (3.4)

kjer sta K1 in K2 poljubni pozitivni ojačenji regulatorja. Z upoštevanjem (3.1)
in (3.4) dobimo zaprtozančno prenosno funkcijo

Gcl(s) = φ(s)
φref (s) = K1

s2 +K2s+K1

kjer je ωn =
√
K1 lastna frekvenca, ζ = K2

2
√
K1

koeficient dušenja in sta s1,2 =
−ζωn ± jωn

√
1− ζ2 zaprtozančna pola. Vidimo, da z izbiro K1 in K2 vplivamo

na primerno dušenje zaprtozančnega sistema.

Vodenje orientacije Ackermannovega pogona

Regulacijo orientacije Ackermannovega pogona lahko zasnujemo podobno kot
v primeru diferencialnega pogona. Edina razlika se pojavi zaradi drugačnega
kinematičnega modela (2.15) za orientacijo, ki ga zapišemo kot

ϕ̇ = vr(t)
d

tan (α(t)) (3.5)

Regulirna veličina α je sorazmerna velikosti pogreška orientacije

α(t) = K(ϕref (t)− ϕ(t)) (3.6)
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S pomočjo (3.5) in (3.6) zapišemo diferencialno enačbo, s katero lahko opišemo
dinamiko pogreška orientacije

ϕ̇(t) = vr(t)
d

tan (K(ϕref (t)− ϕ(t)))

Sistem je torej nelinearen. Za majhne kote α(t) in konstantno hitrost zadnjih
koles vr(t) = V dobimo linearni približek modela

ϕ̇(t) = V

d
K (ϕref (t)− ϕ(t))

ki ga lahko zapišemo kot prenosno funkcijo

Gcl(s) = φ(s)
φref (s) = 1

d
V K s+ 1

Podobno kot v primeru diferencialnega pogona se pogrešek orientacije ekspo-
nentno približuje 0 (pri konstantni referenčni orientaciji) in s časovno konstanto
T = d

V K .

Če je želena povratnozančna prenosna funkcija (orientacije) drugega reda, lahko
uporabimo podoben pristop kot pri diferencialnem pogonu. Regulacijski zakon,
ki ga podaja enačba (3.4), lahko uporabimo tudi na Ackermannovemu pogonu

α̇(t) = K1(ϕref (t)− ϕ(t))−K2ϕ̇(t) (3.7)

Ob predpostavki, da je hitrost konstantna (vr(t) = V ) ter so koti α majhni,
zapišemo linearno aproksimacijo enačbe (3.5) kot

ϕ̇(t) = V

d
α(t) (3.8)

Kot α(t) iz (3.8) vstavimo v (3.7)

ϕ̈(t) = K1
V

d
(ϕref (t)− ϕ(t))−K2

V

d
ϕ̇(t)

Tako dobimo zaprtozančno prenosno funkcijo

Gc(s) = φ(s)
φref (s) =

K1
V
d

s2 +K2
V
d s+K1

V
d

Dobljeni odziv orientacije robota z lastno frekvenco ωn =
√
K1

V
d dušimo s

koeficientom dušenja ζ = K2
2

√
V
dK1

.

3.2.2 Vodenje gibanja naprej

Z vodenjem gibanja naprej mislimo na algoritme, ki določajo translatorno hitrost
mobilnega robota v(t), da dosežejo določen cilj vodenja. Vendar za vodenje
mobilnega robota ne moremo uporabiti samo vodenja gibanja naprej. Kot primer
vzemimo diferencialni pogon. Z vodenjem orientacije, kjer spreminjamo kotno
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hitrost ω(t), robot brez težav doseže ciljno orientacijo. S pomočjo vodenja naprej
pa robot v splošnem ne more doseči želene pozicije, razen v primeru, ko je robot
že na začetku usmerjen proti cilju. To pomeni, da je vodenje gibanja naprej
neločljivo povezano z vodenjem orientacije.

Torej je potrebno za doseg cilja voditi translatorno in kotno hitrost. V primeru
sledenja trajektoriji, le-ta bolj ali manj določa hitrost, medtem ko se pri vodenju
v referenčno lego hitrost zmanjša, ko se robot približa cilju. Primerna izbira
regulatorja je proporcinalna odvisnost hitrosti glede na razdaljo do referenčne
točke (xref (t), yref (t))

v(t) = K
√

(xref (t)− x(t))2 + (yref (t)− y(t))2 (3.9)

Referenčni položaj je lahko konstanten ali pa se spreminja glede na neko referenčno
trajektorijo. Regulator (3.9) ima vsekakor nekaj omejitev, pa tudi v primeru
zelo velikih ali zelo majhnih razdalj do referenčne točke je potrebna posebna
obravnava:

• Če je razdalja do referenčne točke velika, je velika tudi regulirna veličina
(3.9). Priporočljivo je omejiti regulirno veličino za največjo hitrost. V praksi
omejitve narekujejo omejitve pogona, vozne razmere podlage, ukrivljenost
poti itd.

• Če je razdalja do referenčne točke zelo majhna, lahko robot prevozi refe-
renčno točko (zaradi šuma ali nepopolnega modela vozila). Ko se robot
oddaljuje od referenčne točke, se razdalja povečuje in robot pospešuje v
skladu z enačbo (3.9). S to težavo se bomo spoprijeli po združitvi regulatorja
gibanja naprej in regulatorja orientacije.

Hitrost je neločljivo povezana s pospeškom. Slednji je v praktičnih situacijah
vedno omejen zaradi omejenih sil in navorov, ki jih proizvajajo aktuatorji. To je
potrebno upoštevati pri načrtovanju vodenja gibanja naprej. Ena od možnosti je
omejitev pospeška. Običajno je dovolj, da na izhodu regulatorja v(t) uporabimo
nizkoprepustni filter, preden se regulirna veličina posreduje robotu v obliki
signala v∗(t). V ta namen lahko uporabimo najpreprostejši filter prvega reda z
enosmernim ojačenjem 1, podan z diferencialno enačbo

τf v̇
∗(t) + v∗(t) = v(t)

ali z enakovredno prenosno funkcijo

Gf (s) = V ∗(s)
V (s) = 1

τfs+ 1

kjer je τf časovna konstanta filtra.

V primeru 3.1 je uporabljen preprost algoritem vodenja, ki pripelje robota z
Ackermannovim pogonom v referenčno točko. Algoritem vsebuje tako vodenje
orientacije kot vodenje gibanja naprej.
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Primer 3.1

Napišite algoritem za vodenje trikolesnega robota s pogonom na zadnjem paru
koles na referenčno pozicijo xref = 4 m in yref = 4 m. Robota vodimo z zasukom
prednjega krmilnega kolesa α in s hitrostjo pogonskih koles vr. Medosna razdalja
je d = 0,1 m, začetna lega vozila pa [x(0), y(0), ϕ(0)] = [1 m, 0 m,−π]. Algoritem
vodenja mora upoštevati omejitvi vozila vmax = 0,8 m/s in αmax = π

4 .

Napišite algoritem vodenja in ga preizkusite na simulaciji kinematike vozila z
uporabo Eulerjeve integracijske metode.

Rešitev

V tem primeru je mogoče hkrati voditi orientacijo in gibanje naprej. Zapis rešitve
v programskem okolju Matlab je podan v programu 3.1. Rezultati simulacije so
prikazani na slikah 3.1 in 3.2, iz katerih je razvidno, da vozilo doseže referenčno
točko in se tam ustavi. Na sliki 3.2 so regulirne veličine omejene s fizičnimi
omejitvami vozila.

Program 3.1
./src/ctr/example_ackerman_control_point.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 d = 0.1; % Medosna razdalja
4 xyRef = [4; 4]; % Referen čni položaj
5 q = [1; 0; -pi ]; % Začetna lega
6

7 for k = 1: length (t)
8 phi_ref = atan2 ( xyRef (2) -q(2) , xyRef (1) -q (1)); % Referen čna orientacija
9 qRef = [ xyRef ; phi_ref ];

10

11 e = qRef - q; % Pogre šek
12

13 % Regulator
14 v = 0.3* sqrt(e (1)^2+ e (2)^2);
15 alpha = 0.2*e(3);
16

17 % Omejitve vozila
18 if abs( alpha )>pi/4, alpha = pi /4* sign( alpha ); end
19 if abs(v) >0.8 , v = 0.8* sign(v); end
20

21 % Simulacija gibanja robota
22 dq = [v*cos(q (3)); v*sin(q (3)); v/d*tan( alpha )];
23 noise = 0.00; % Spremeni standardno deviacijo šuma (npr. 0.001)
24 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
25 end
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Slika 3.1: Pot robota do ciljne pozicije iz primera 3.1
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Slika 3.2: Regulirni signali iz primera 3.1
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Primer 3.2

Za diferencialni pogon rešite enako nalogo kot v primeru 3.1, pri čemer je največja
hitrost vozila vmax = 0,8 m/s.

Rešitev

Ustrezno prilagodite regulator iz primera 3.1 in popravite kinematiko v simulaciji.

3.2.3 Osnovni pristopi

V nadaljevanju bomo predstavili nekaj uporabnih pristopov k vodenju kolesnega
mobilnega robota v referenčno lego. Omenjeni pristopi na različne načine zdru-
žujejo predhodno predstavljeno vodenje orientacije in vodenje gibanja naprej
(poglavji 3.2.1 in 3.2.2) ter tako omogočajo uspešno vodenje kolesnih mobilnih
robotov v referenčno lego. Ponazorjeni bodo na robotu z diferencialnim pogonom,
lahko pa jih prilagodimo tudi drugim vrstam kolesnih robotov.

Vodenje v referenčno pozicijo

V tem primeru mora robot priti v referenčno (končno) pozicijo, pri tem pa
ni predpisana končna orientacija, torej je lahko poljubna. Da robot prispe
do referenčne točke, moramo nenehno voditi njegovo orientacijo v smeri proti
referenčni točki. To smer označimo z ϕr (slika 3.3) in jo lahko enostavno določimo
s pomočjo geometrijskih relacij

ϕr(t) = arctan yref − y(t)
xref − x(t)

Vodenje kotne hitrosti ω(t) je tako določeno kot

ω(t) = K1(ϕr(t)− ϕ(t)) (3.10)

kjer je K1 pozitivno ojačenje regulatorja. Osnovno vodenje je podobno kot v
primeru 3.1 in je prikazano na sliki 3.3. Najprej s pomočjo enačbe (3.9) določimo
translatorno hitrost robota

v(t) = K2

√
(xref (t)− x(t))2 + (yref (t)− y(t))2 (3.11)

Kot smo že omenili, je potrebno v začetni fazi omejiti največjo hitrost zaradi šte-
vilnih fizičnih omejitev. Upoštevati moramo zlasti omejitve hitrosti in pospeška.

Regulacijski zakon (3.11) skriva tudi potencialno nevarnost, ko se robot približa
ciljni legi. Ukaz za hitrost (3.11) je vedno pozitiven, zato se lahko robot med
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Slika 3.3: Vodenje v referenčno lego

zaviranjem proti končni poziciji pomotoma zapelje preko nje. Težava je v tem,
da se bo takrat regulirna veličina za hitrost povečala, ker se poveča razdalja med
robotom in referenco (robot se oddaljuje od cilja). Druga težava je v tem, da
prečkanje referenčne točke prav tako obrne referenčno orientacijo, kar vodi do
hitrega vrtenja robota. Obstaja nekaj preprostih rešitev:

• Ko robot prevozi referenčno točko, se pogrešek orientacije nenadoma spre-
meni za 180°. Zato bo algoritem preveril, ali njegova absolutna vrednost
presega 90°. Pogrešek orientacije se bo nato povečal ali zmanjšal za 180°
(tako da se nahaja v intervalu [−180°, 180°]), preden vstopi v regulator. Po-
leg tega izhod regulatorja (3.11) spremeni svoj predznak. Torej nadgrajeni
različici regulacijskih zakonov (3.10) in (3.11) zaobideta omenjene težave

eϕ(t) = ϕr(t)− ϕ(t)
ω(t) = K1 arctan(tan(eϕ(t)))

v(t) = K2

√
(xref (t)− x(t))2 + (yref (t)− y(t))2sgn(cos(eϕ(t)))

(3.12)

• Ko robot doseže določeno okolico referenčne točke, se konča faza približe-
vanja in regulirne veličine za hitrosti postanejo ničelne. Ta mehanizem za
popolno zaustavitev vozila je potrebno uporabiti tudi pri spremenjenem
regulacijskem zakonu (3.12), zlasti v primeru šumnih meritev.

Vodenje v referenčno lego z vpeljavo vmesne točke

Naslednji algoritem vodenja je enostaven za izvedbo, saj uporablja preprost
regulator, določen z (3.11) in (3.10), ki robota pripelje v želeno referenčno točko.
Ker imamo poleg (xref (t), yref (t)) tudi zahtevo za referenčno smer ϕref , moramo
dodati vmesno točko, ki bo oblikovala trajektorijo tako, da dobimo pravilno
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Slika 3.4: Vodenje v referenčno lego z vpeljavo vmesne točke

končno orientacijo. Vmesna točka (xt, yt) je od referenčne točke oddaljena za
razdaljo r, pri čemer smer od vmesne točke proti referenčni sovpada z referenčno
orientacijo, kot prikazuje slika 3.4. Vmesno točko določimo z

xt = xref − r cosϕref
yt = yref − r sinϕref

Algoritem vodenja je sestavljen iz dveh faz. V prvi fazi vodimo robota proti vmesni
točki. Ko se ji dovolj približa (kar preverja pogoj

√
(x− xt)2 + (y − yt)2 < dtol),

algoritem preide v drugo fazo, kjer vodimo robota proti referenčni točki. Ta
pristop zagotavlja, da robot pride na referenčno pozicijo z zahtevano orientacijo
(v referenčni legi je možen zelo majhen pogrešek orientacije). Možne so različne
variacije algoritma in vpeljava več vmesnih točk za boljše delovanje.

Predstavljen algoritem je zelo enostaven in uporaben na mnogih področjih. Glede
na aplikacijo je potrebno izbrati ustrezno razdaljo r in tolerančno področje dtol.

Primer 3.3

Za robota z diferencialnim pogonom napišite algoritem vodenja v referenčno
lego [xref , yref , ϕref ] = [4 m, 4 m, 0°] z vpeljavo vmesne točke. Poiščite ustre-
zne vrednosti parametrov r in dtol. Začetna lega vozila je [x(0), y(0), ϕ(0)] =
[1 m, 0 m, 100°].

Preizkusite algoritem vodenja s pomočjo simulacije kinematike vozila z diferenci-
alnim pogonom.
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Rešitev

Matlab koda možne rešitve je podana v programu 3.2. Rezultati simulacije so
prikazani na slikah 3.5 in 3.6.

Program 3.2
./src/ctr/example_diff_control_intermediate_point.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :15; % Čas simulacije
3 r = 0.5; % Razdalja vmesne točke od cilja
4 dTol = 0.05; % Toleran čna razdalja od vmesne točke za preklop
5 qRef = [4; 4; 0]; % Referen čna lega
6 q = [1; 0; 100/180* pi ]; % Začetna lega
7

8 % Vmesna točka
9 xT = qRef (1) - r*cos(qRef (3));

10 yT = qRef (2) - r*sin(qRef (3));
11

12 state = 0; % Vodenje proti : 0 - vmesni točki , 1 - referen čni točki
13 for k = 1: length (t)
14 D = sqrt (( qRef (1) -q (1))^2 + (qRef (2) -q (2))^2);
15 if D<dTol % Ustavitev v bližini cilja
16 v = 0;
17 w = 0;
18 else
19 if state ==0
20 d = sqrt ((xT -q (1))^2+( yT -q (2))^2);
21 if d<dTol , state = 1; end
22

23 phiT = atan2 (yT -q(2) , xT -q (1));
24 ePhi = phiT - q(3);
25 else
26 ePhi = qRef (3) - q(3);
27 end
28 ePhi = wrapToPi (ePhi );
29

30 % Regulator
31 v = D *0.8;
32 w = ePhi *5;
33 end
34

35 % Simulacija gibanja robota
36 dq = [v*cos(q (3)); v*sin(q (3)); w];
37 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
38 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
39 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
40 end
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Slika 3.5: Pot robota do ciljne lege z uporabo vmesne točke iz primera 3.3
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Slika 3.6: Regulirni signali iz primera 3.3
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Slika 3.7: Vodenje v referenčno lego z vpeljavo vmesne usmeritve

Vodenje v referenčno lego z vpeljavo vmesne usmeritve

Robot se mora pripeljati iz začetne v referenčno lego, kjer sta podani pozi-
cija (xref , yref ) in orientacija ϕref . Ideja algoritma z vpeljavo vmesne usme-
ritve je prikazana na sliki 3.7 [2]. Najprej določimo pravokotni trikotnik in
postavimo referenčno točko v oglišče s pravim kotom. Kateta, dolžine D =
+
√

(xref (t)− x(t))2 + (yref (t)− y(t))2, povezuje trenutni položaj robota z refe-
renčnim in določa orientacijo ϕr, ki kaže od robota proti cilju. Druga kateta ima
določeno dolžino r > 0, ki jo izberemo sami. Kot med kateto D in hipotenuzo
označimo z β(t). Pri tem pristopu imata ključno vlogo dva kota, ki ju določimo
kot

α(t) = ϕr(t)− ϕref

β(t) =
{

arctan +r
D ; α(t) > 0

− arctan r
D ; sicer

Upoštevamo, da imata kota α(t) in β(t) vedno enak predznak (v primeru na sliki
3.7 sta oba pozitivna). Če je α ob določenem času 0, je takrat β nepomemben
in je lahko njegov znak poljuben. Velike (absolutne) vrednosti α nakazujejo, da
vožnja naravnost do referenčne točke ni dobra ideja, saj bo pogrešek orientacije
v referenčni legi velik. Zato je potrebno zmanjšati (absolutno) vrednost kota α.
To dosežemo z vpeljavo vmesne usmeritve, ki je premaknjena iz ϕr, premik pa je
vedno stran od referenčne orientacije ϕref ; če referenčna orientacija kaže desno
(z vidika robota), se robot približa referenčni poziciji z leve strani in obratno.
Medtem ko se med približevanjem cilju (absolutna) vrednost kota α(t) običajno
zmanjšuje, se (absolutna) vrednost kota β(t) povečuje z manjšanjem oddaljenosti
od reference. To bomo izkoristili pri načrtovanju algoritma vodenja.

Podobno kot v primeru vodenja z vpeljavo vmesne točke je algoritem sestavljen iz
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dveh faz. V prvi fazi (kjer je |α(t)| velik) vodimo orientacijo robota proti vmesni
usmeritvi ϕt(t) = ϕr(t) + β(t) (omenjen primer je prikazan na sliki 3.7). V drugi
fazi, ko postaneta kota α in β enaka, trenutna referenčna orientacija preide v
ϕt(t) = ϕr(t) + α(t). Torej v prvem delu robota vodimo v smeri referenčne
pozicije, v drugem delu pa poskrbimo, da se robot pripelje na referenčno pozicijo
z referenčno orientacijo. Preklop med fazama je izveden brez nezveznega skoka,
saj sta obe usmeritvi v času prehoda enaki. Regulacijski zakon za orientacijo
zapišemo kot

eϕ(t) = ϕr(t)− ϕ(t) +
{
α(t) ; |α(t)| < |β(t)|
β(t) ; sicer

ω(t) = Keϕ(t)

Vidimo, da trenutna referenčna usmeritev nikoli ne kaže proti referenčni točki,
ampak je vedno rahlo zamaknjena. Zamik je izbran tako, da gre kot α(t) proti
0. To pomeni, da referenčna usmeritev kaže proti referenčni točki in robot bo
prispel do nje s pravilno referenčno orientacijo. Upoštevamo, da ta algoritem
velja tudi za negativne vrednosti kotov α in β. Paziti moramo le, da so vsi koti
v intervalu (−π, π].

Translatorna hitrost je določena podobno kot v prejšnjem poglavju.

Primer 3.4

Za robota z diferencialnim pogonom napišite algoritem vodenja do referenčne lege
[xref , yref , ϕref ] = [4 m, 4 m, 0°] z vpeljavo vmesne usmeritve. Poiščite ustrezno
vrednost parametra r. Začetna lega vozila je [x(0), y(0), ϕ(0)] = [1 m, 0 m, 100°].
Preizkusite algoritem na simulaciji kinematičnega modela.

Rešitev

Matlab koda možne rešitve je predstavljena v programu 3.3. Rezultati simulacije
so prikazani na slikah 3.8 in 3.9.

Program 3.3
./src/ctr/example_diff_control_intermediate_direction.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :15; % Čas simulacije
3 r = 0.2; % Parameter razdalje
4 qRef = [4; 4; 0]; % Referen čna lega
5 q = [1; 0; 100/180* pi ]; % Začetna lega
6

7 for k = 1: length (t)
8 % Izračunaj zamik zaradi referen čne usmeritve
9 phiR = atan2 (qRef (2) -q(2) , qRef (1) -q (1));

10 D = sqrt (( qRef (1) -q (1))^2 + (qRef (2) -q (2))^2);
11
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12 alpha = wrapToPi (phiR - qRef (3));
13 beta = atan(r/D);
14 if alpha <0, beta = -beta; end
15

16 % Controller
17 if abs( alpha ) < abs(beta)
18 ePhi = wrapToPi (phiR - q(3) + alpha ); % Drugi del
19 else
20 ePhi = wrapToPi (phiR - q(3) + beta ); % Prvi del
21 end
22 v = D *0.8;
23 w = ePhi *5;
24

25 % Simulacija gibanja robota
26 dq = [v*cos(q (3)); v*sin(q (3)); w];
27 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
28 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
29 q(3) = wrapToPi (q (3)); % Zapis kota v območje [-pi , pi]
30 end
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Slika 3.8: Pot robota do ciljne lege z vpeljano vmesno usmeritvijo iz primera 3.4
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Slika 3.9: Regulirni signali iz primera 3.4

Vodenje po odsekoma zvezni poti, določena s premico in
krožnim lokom

Pot, sestavljena iz daljic in krožnih lokov, je znana kot najkrajša možna pot za
robote z Ackermannovim pogonom, kjer polmer krožnic predstavlja najkrajši
možni polmer zavoja vozila [3–5]. Takšna pot je najkrajša tudi za robota z
diferencialnim pogonom, kjer je najkrajši polmer kroga omejen na nič, kar
pomeni, da se lahko robot vrti na mestu.

Osnovna ideja algoritma je prikazana na sliki 3.10. Najprej skozi referenčno točko
narišemo krožnico s polmerom R, ki je tangencialen na referenčno orientacijo. O
primerni dolžini polmera R bomo razpravljali kasneje. Obstajata dve rešitvi –
izberemo krožnico, katere središče je bližje robotu. Ta krožnica oz. natančneje
določen lok predstavlja drugi del načrtovane poti. Robot najprej sledi premici, ki
se v bližini referenčne točke tangencialno poveže na krožnico. Ponovno obstajata
dve rešitvi tangente in izberemo tisto, ki daje pravilno smer vožnje po krožnem
loku; smer vožnje po loku je določena z referenčno orientacijo (v primeru na sliki
3.10 se bo robot peljal v smeri urinega kazalca). Rešitev preprosto izberemo s
preverjanjem predznakov vektorskih produktov radialnih vektorjev (od središča
krožnice do potencialne tangentne točke na njej) in tangencialnih vektorjev (od
robota do potencialne tangentne točke na krožnici).
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Slika 3.10: Vodenje po odsekoma zvezni poti, sestavljeni iz premice in krožnega
loka

Cilj prvega dela algoritma je vodenje robota proti točki (xt, yt), kjer se premica
dotika krožnega loka. Vzemimo preprost regulator orientacije

ω(t) = K(ϕt(t)− ϕ(t))

kjer je ϕt(t) = arctan yt−y(t)
xt−x(t) . Ko je razdalja do vmesne točke dovolj majhna, se

začne druga faza, ki vključuje vožnjo vzdolž trajektorije. Regulator spremenimo
v

ω(t) = v(t)
R

+K(ϕtang(t)− ϕ(t))

kjer je R polmer kroga, v(t) želena translatorna hitrost in ϕtang(t) smer tangente
na krožni lok v trenutni poziciji robota. Prvi del regulatorja predstavlja predkr-
miljenje, ki zagotavlja vožnjo robota po krožnem loku s polmerom R, drugi del
pa povratno zanko, ki popravlja regulacijske pogreške.

Da dosežemo večjo robustnost, se referenčna pot izračuna v vsakem računskem
koraku regulacijske zanke, kar zagotovi, da je robot vedno na referenčni premici
ali krožnici. Končna prevožena pot se zato nekoliko razlikuje od idealne poti,
sestavljene iz daljice in krožnega loka. Omenjena razlika v gibanju nastane
zaradi neujemanja začetnih pogojev (orientacija robota se ne ujema popolnoma s
tangento), šuma in motenj (zdrs koles ipd.).

Referenčno pot je v realnem času razmeroma enostavno določiti. Sama pot je
zvezna, vendar zahtevani vhodi niso. Zaradi prehoda iz premice na krožni lok
kotna hitrost robota hipoma skoči iz nič na v(t)

R . V praksi to ni možno zaradi
omejenega pospeška robota, zato se pri tem prehodu pojavi nekaj sledilnega
pogreška.

Takšno vodenje je primerno za primere, ko mora robot priti v referenčno lego po
najkrajši poti poljubne oblike (npr. robotski nogomet). Pri robotih z omejenim
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polmerom zavoja (npr. Ackermannov pogon) je najkrajša pot do ciljne lege, ko
je parameter R enak najkrajšemu polmeru zavoja robota. Seveda pa to vodi v
visoke vrednosti radialnih pospeškov, zato je morda zaželena večja vrednost R.

Primer 3.5

Za robota z diferencialnim pogonom napišite algoritem vodenja v referenčno lego
[xref , yref , ϕref ] = [0 m, 0 m, 0°]. Polmer krožnice naj bo R = 0,4 m. Začetna
lega vozila je [x(0), y(0), ϕ(0)] = [−3 m,−3 m, 100°]. Preizkusite algoritem na
simulaciji kinematičnega modela.

Rešitev

Čeprav je osnovna ideja algoritma vodenja dokaj preprosta, je izvedba nekoliko
bolj zapletena, saj je potrebno izračunati ustrezna središča krožnice in tangentne
točke na njej ter nekatere druge parametre. Možna rešitev je podana v programu
3.4, rezultati simulacije pa so prikazani na slikah 3.11 in 3.12.

Program 3.4
./src/ctr/example_diff_control_line_circle.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :15; % Čas simulacije
3 r = 0.2; % Parameter razdalje
4 qRef = [4; 4; 0]; % Referen čna lega
5 q = [1; 0; 100/180* pi ]; % Začetna lega
6

7 aMax = 5; % Maksimalni pospe šek
8 vMax = 0.4; % Maksimalna hitrost
9 accuracy = vMax*Ts; % Točnost

10 curveZone = 0.6; % Radij
11 Rr = 0.99* curveZone /2; % Radij
12 slowDown = false ; v = 0; vDir = 1; w = 0; % Začetna stanja
13 X = [0, 1; -1, 0]; % Pomožna matrika : a.’*X*b = a(1)*b(2) - a(2)*b(1)
14

15 for k = 1: length (t)
16 fin = [cos(qRef (3)); sin(qRef (3))];
17 D = qRef (1:2); % Ciljna točka
18 S = q (1:2); % Položaj robota
19 M = (D + S)/2;
20 Ov = [cos(q (3)); sin(q (3))]; % Vektor orientacije
21 SDv = D - S; % Vektor SD
22 l2 = norm(SDv ); % Razdalja
23

24 if slowDown
25 v = v - aMax*Ts; if v < 0, v = 0; end
26 w = 0;
27 else
28 if fin .’*X*SDv > SDv .’*X*fin
29 Ps = D - Rr*X.’* fin; % Center kroga
30 else
31 Ps = D - Rr*X*fin; % Center kroga
32 end
33

34 l = norm(Ps -S);
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35 if l < curveZone /2
36 Dv = fin;
37 else
38 d = sqrt(sum ((S-Ps ).^2) - Rr ^2);
39 alpha = atan(Rr/d);
40 phi = wrapTo2Pi ( atan2 (Ps (2) -S(2) , Ps (1) -S (1)));
41 U1 = S + d*[ cos(phi+ alpha ); sin(phi+ alpha )];
42 U2 = S + d*[ cos(phi - alpha ); sin(phi - alpha )];
43 if (( U1 - S). ’*X*( Ps - U1 )) * (fin .’*X*( Ps - D)) >= 0
44 D = U1;
45 else
46 D = U2;
47 end
48 M = (D + S)/2;
49 SDv = D - S;
50 Dv = SDv /( norm(SDv )+ eps );
51 end
52

53 if l2 > accuracy % Če položaj ni dosežen
54 v = v + aMax*Ts; if v > vMax , v = vMax; end
55

56 Ev = X*(D-S);
57 DTv = X*Dv;
58 if abs(DTv .’*X*Ev) < 0.000001 % Pojdi naravnost
59 gamma = 0;
60 Sv = SDv /( norm(SDv )+ eps );
61 else % Go on a circle
62 C = DTv * Ev.’*X*(D - M)/( DTv .’*X*Ev) + D; % Center kroga
63 if SDv .’*X*Dv > 0, a = 1; else a = -1; end
64 Sv = a*X*(C-S);
65 Sv = Sv /( norm(Sv )+ eps );
66 gamma = a*acos(Dv.’*Sv );
67 if a*Sv.’*X*Dv < 0, gamma = a*2* pi - gamma ; end
68 l = abs( gamma *norm(S-C)); % Dolžina krivulje
69 end
70

71 if v > eps
72 if Ov.’*Sv < 0, vDir = -1; else vDir = 1; end % Usmerjenost
73 ePhi = acos(vDir*Sv.’*Ov ); % Kotni pogre šek
74 if vDir*Ov.’*X*Sv < 0, ePhi = -ePhi; end
75 dt = l/v; if dt < 0.00001 , dt = 0.00001; end
76 w = gamma /dt + ePhi/dt *10*(1 - exp(-l2 /0.1)); % Kotna hitrost
77 else
78 w = 0;
79 end
80 else
81 slowDown = true;
82 end
83 end
84 u = [vDir*v; w]; % Tangencialna in kotna hitrost
85

86 % Simulacija gibanja robota
87 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
88 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
89 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
90 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
91 end
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Slika 3.11: Pot robota do ciljne lege na podlagi premic in krožnic iz primera 3.5
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Slika 3.12: Regulirni signali iz primera 3.5
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Slika 3.13: Vodenje po odsekoma zvezni poti, določeni s sekvenco točk. Referenčna
pot med sosednjima točkama je daljica, ki ti dve točki povezuje.

Od vodenja v referenčno lego do vodenja po referenčni poti

Pogosto je cilj vodenja določen z zaporedjem referenčnih točk, ki naj bi jih robot
prevozil. V tem primeru ne govorimo več o vodenju v referenčno lego, temveč je
skozi te točke speljana referenčna pot. Za povezave med posameznimi točkami so
pogosto uporabljene daljice. Cilj vodenja je, da robot prispe v vsako referenčno
točko s pravilno orientacijo ter se samodejno odpelje v naslednjo referenčno točko.
Ta pristop je enostaven za izvedbo in običajno zadostuje za uporabo v praksi.
Njegova pomanjkljivost je nezveznost med sosednjimi daljicami, zato se tam
pojavi skokovit pogrešek sledenja.

Pot je določena z zaporedjem točk Ti = [xi, yi]T , kjer je i ∈ 1, 2, . . . , n in n število
točk. Na začetku mora robot slediti prvemu segmentu (daljica med točkama T1

in T2) in tako priti do T2 z orientacijo, ki jo določa vektor −−−→T1T2. Ko doseže konec
tega segmenta, začne slediti naslednjemu (med točkama T2 in T3) in tako naprej.
Slika 3.13 prikazuje aktualen segment med točkama Ti in Ti+1 z označenimi
veličinami. Vektor v = Ti+1−Ti = [∆x,∆y]T predstavlja smer segmenta, vektor
r = R−Ti pa smer od točke Ti proti središču robota R. Vektor vn = [∆y,−∆x]
je pravokoten na vektor v.

Robot mora slediti trenutnemu segmentu, medtem ko je projekcija vektorja r
na vektor v znotraj intervala, ki ga določata točki Ti in Ti+1. Ta pogoj lahko
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izrazimo na naslednji način{
Sledi trenutnemu segmentu (Ti, Ti+1) če 0 < u < 1
Sledi naslednjemu segmentu (Ti+1, Ti+2) če u > 1

kjer je u skalarni produkt

u = vTr

vTv
Spremenljivka u nam torej pove, ali je trenutni segment še vedno aktualen ali pa
je potreben prehod na naslednjega.

Pravokotna razdalja med robotom in segmentom (daljico) je določena z normalnim
vektorjem vn

d = vTn r√
vTn vn

Normiramo razdaljo d z dolžino daljice ter dobimo normirano pravokotno razdaljo
dn med robotom in daljico

dn = vTn r

vTn vn

Ko je robot na segmentu (daljici), je normirana razdalja dn nič. Ko pa je robot na
desni strani segmenta (glede na vektor v), je dn pozitivna in obratno. Normirana
razdalja dn se uporablja za določanje želene smeri vožnje robota. Če je robot
na daljici ali v njeni neposredni bližini, ji mora slediti. Če pa je robot daleč
stran od daljice, se mora voziti pravokotno nanjo, da (čim hitreje) prispe do nje.
Referenčno smer vožnje v nekem trenutku lahko določimo kot

ϕref = ϕlin + ϕrot

kjer je ϕlin = atan2 (∆y,∆x) (štirikvadratna inverzna funkcija tangens je defini-
rana v (2.11)) smer daljice in ϕrot = arctan (K1dn) popravek dodatne referenčne
rotacije, ki robotu omogoča, da doseže daljico. Ojačenje K1 spreminja obču-
tljivost dodatnega referenčnega kota ϕrot glede na dn. Ker je ϕref pridobljen
s seštevanjem dveh kotov, je potrebno poskrbeti, da bo v veljavnem območju
[−π, π] (cikličnost kota).

Zaenkrat smo določili referenčno smer, ki ji mora robot slediti, kar lahko dose-
žemo z uporabo primernega regulacijskega algoritma. Regulacijski pogrešek je
opredeljen kot

eϕ = ϕref − ϕ

kjer je ϕ orientacija robota. Iz pogreška orientacije s pomočjo proporcionalnega
regulatorja izračunamo kotno hitrost robota

ω = K2eϕ

kjer je K2 proporcionalno ojačenje. Podobno lahko izvedemo tudi PID regulator,
kjer z integracijskim členom povečujemo hitrost približevanja robota daljici (vse
manjši eϕ), z diferencialnim členom pa zmanjšamo oscilacije, ki nastanejo zaradi
dodanega integracijskega člena. Translatorno hitrost robota v lahko vodimo z
osnovnimi pristopi, obravnavanimi v prejšnjih poglavjih.
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Primer 3.6

Napišite algoritem vodenja za robota z diferencialnim pogonom, ki naj prevozi
zaporedje daljic, ki jih definirajo točke T1 = [3, 0], T2 = [6, 4], T3 = [3, 4],
T4 = [3, 1] in T5 = [0, 3]. Poiščite ustrezne vrednosti parametrov K1 in K2.
Začetna lega vozila je [x(0), y(0), ϕ(0)] = [5 m, 1 m, 108°]. Preizkusite algoritem
na simulaciji kinematičnega modela.

Rešitev

Matlab koda možne rešitve je podana v programu 3.5. Referenčna pot in dejanska
trajektorija gibanja robota sta prikazani na sliki 3.14, regulirni signali pa na sliki
3.15.

Program 3.5
./src/ctr/example_diff_point_sequence.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 T = [3, 0; 6, 4; 3, 4; 3, 1; 0, 3]. ’; % Točke referen čnih daljic
4 q = [5; 1; 0.6* pi ]; % Začetna lega
5

6 i = 1; % Indeks prve točke
7 for k = 1: length (t)
8 % Referen čna daljica
9 dx = T(1,i+1) - T(1,i);

10 dy = T(2,i+1) - T(2,i);
11

12 v = [dx; dy ]; % Usmeritveni vektor referen čne daljice
13 vN = [dy; -dx ]; % Vektor ortogonalne usmeritve
14 r = q (1:2) - T(:,i);
15 u = v.’*r/(v.’*v);
16

17 if u >1 && i<size(T ,2) -1 % Pogoj za preklop na naslednjo daljico
18 i = i + 1;
19 dx = T(1,i+1) - T(1,i);
20 dy = T(2,i+1) - T(2,i);
21 v = [dx; dy ];
22 vN = [dy; -dx ];
23 r = q (1:2) - T(:,i);
24 end
25

26 dn = vN.’*r/( vN.’*vN ); % Normirana ortogonalna razdalja
27

28 phiLin = atan2 (v(2) , v (1)); % Usmeritev premice daljice
29 phiRot = atan (5* dn ); % Če smo daleč od premice , potem je potreben
30 % dodaten zasuk , da se usmerimo proti premici . Če smo na levi strani ,
31 % se obrnemo v smeri urinega kazalca , sicer v obratni smeri .
32 % Ojačenje 5 poveča obč utljivost .
33

34 phiRef = wrapToPi ( phiLin + phiRot );
35

36 % Kotni pogre šek
37 ePhi = wrapToPi ( phiRef - q (3));
38

39 % Regulator
40 v = 0.4* cos(ePhi );
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41 w = 3* ePhi;
42

43 % Simulacije gibanja robota
44 dq = [v*cos(q (3)); v*sin(q (3)); w];
45 noise = 0.00; %SL Parameter za nastavljanje šuma (npr. 0.001)
46 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
47 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
48 end
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Slika 3.14: Referenčna pot in dejansko gibanje robota iz primera 3.6
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Slika 3.15: Regulirni signali iz primera 3.6

Poskusite dopolniti kodo, da bo robot lahko vozil tudi vzvratno, če je |eϕ| > π
2 .

3.3 Vodenje po referenčni trajektoriji

V mobilni robotiki je pot krivulja, ki jo mora robot prevoziti v prostoru po-
splošenih koordinat. Če je pot parametrizirana po času, torej gibanje po poti
je sinhronizirano s časom, govorimo o trajektoriji. Kadarkoli je načrt gibanja
robota znan vnaprej, lahko (referenčno) trajektorijo robota zapišemo kot časovno
funkcijo v prostoru posplošenih koordinat: qref (t) = [xref (t), yref (t), ϕref (t)]T .
Iz praktičnih razlogov je trajektorija vedno definirana na končnem časovnem
intervalu t ∈ [0, T ], kar pomeni, da ima referenčna trajektorija začetno in končno
točko. Vodenje po referenčni trajektoriji je mehanizem, ki zagotavlja, da je
trajektorija robota q(t) kljub morebitnim težavam čim bolj podobna referenčni
qref (t).
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3.3.1 Osnovni pristopi k vodenju po referenčni
trajektoriji

Pri načrtovanju vodenja si najprej predstavljamo referenčno trajektorijo kot
referenčno pozicijo, ki se v vsakem računskem koraku regulatorja premakne na
trenutno točko referenčne trajektorije (xref (t), yref (t)). V ta namen uporabimo
vodenje do referenčne pozicije z regulacijskima zakonoma (3.10) in (3.11). Pozorni
moramo biti na to, da se robot čimbolj približa namišljeni referenčni točki. Pri
majhni hitrosti in šumni meritvi pozicije se lahko zgodi, da se meritev pozicije
robota znajde pred trajektorijo. Zato je v takšnih situacijah izredno pomembno,
da pravilno ukrepamo, npr. z uporabo posodobljenega regulacijskega zakona
(3.12).

Ta pristop je nekoliko problematičen zaradi dejstva, da je tu povratna zanka
bolj obremenjena in so zato potrebna sorazmerno velika ojačenja regulatorja, da
bi bili regulacijski pogreški majhni. Posledično je omenjen pristop dovzeten za
motnje v regulacijski zanki. Zatorej je koristno vpeljati predkrmiljenje, kar bo
predstavljeno v poglavju 3.3.2.

Primer 3.7

Trikolesni robot s pogonom na zadnjih kolesih iz primera 3.1 naj bo voden tako,
da sledi referenčni trajektoriji xref = 1,1+0,7 sin( 2πt

30 ) in yref = 0,9+0,7 sin( 4πt
30 ).

Začetna lega vozila je [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. Napišite dva algoritma
vodenja in ju preizkusite na simulaciji kinematičnega modela:

• Prvi algoritem naj uporabi osnovna regulacijska zakona (3.10) in (3.11).

• Drugi algoritem naj uporabi nadgrajen regulacijski zakon (3.12).

Rešitev

S spreminjanjem vrednosti spremenljivke UpgradedLaw lahko vodenje preklopimo
med t. i. osnovnim načinom, podanim s (3.10) in (3.11), ter nadgrajenim, ki
ga podaja (3.12). Rezultati primera 3.7 so prikazani na slikah 3.16 in 3.17. V
prikazanem primeru osnovni in nadgrajeni regulacijski zakon delujeta enako.

Matlab koda je podana v programu 3.6.

Program 3.6
./src/ctr/example_tracking_simple_control.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 d = 0.1; % Razdalja med prednjo in zadnjo osjo



88 Vodenje kolesnih mobilnih sistemov

4 q = [1.1; 0.8; 0]; % Začetna lega
5

6 % Referen čna trajektorija
7 freq = 2* pi /30;
8 xRef = 1.1 + 0.7* sin(freq*t);
9 yRef = 0.9 + 0.7* sin (2* freq*t);

10

11 % Ojačenja regulatorja
12 Kphi = 2;
13 Kv = 5;
14

15 upgradedControl = true; % Ta nastavitev se lahko spremeni na false
16 for k = 1: length (t)
17 % Referenca
18 phiRef = atan2 (yRef(k)-q(2) , xRef(k)-q (1));
19 qRef = [xRef(k); yRef(k); phiRef ];
20

21 % Pogre šek glede na trenutno referen čno točko
22 e = qRef - q; % Pogre šek po x, y in kotu
23 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
24

25 % Regulator
26 alpha = e(3)* Kphi; % Regulacija usmeritve ( osnovna )
27 v = sqrt(e (1)^2+ e (2)^2)* Kv; % Krmiljenje ( osnovno )
28 if upgradedControl
29 % % Če e(3) ni v območju [-pi/2, pi /2] , je potrebno prišteti +/- pi
30 % k e(3) in hitrost mora obrniti predznak
31 v = v*sign(cos(e (3))); % Sprememba predznaka hitrosti , če je potrebno
32 e(3) = atan(tan(e (3))); % Zapis kota v območju [-pi , pi]
33 alpha = e(3)* Kphi; % Regulacija usmeritve ( nadgradnja )
34 end
35

36 % Mehanske omejitve robota
37 if abs( alpha )>pi/4, alpha = pi /4* sign( alpha ); end
38 if abs(v) >0.8 , v = 0.8* sign(v); end
39

40 % Simulacija gibanja robota
41 dq = [v*cos(q (3)); v*sin(q (3)); v/d*tan( alpha )];
42 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
43 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
44 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
45 end
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Slika 3.16: Preprosto vodenje po referenčni trajektoriji Ackermannovega pogona.
Črtkana krivulja prikazuje referenčno pot, polna krivulja pa dejansko pot.
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Slika 3.17: Regulirni signali preprostega vodenja po referenčni trajektoriji Acker-
mannovega pogona
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3.3.2 Razčlenitev vodenja na predkrmiljenje in
povratno zanko

Vodenje po referenčni trajektoriji je pomembno tako s praktičnega kot teoretič-
nega vidika, saj se po Brockettovem pogoju neholonomični sistemi ne morejo
asimptotično stabilizirati okoli težišča z uporabo gladke (tj. zvezno odvedljive)
časovno nespremenljive povratne zanke [1]. Dobljeni rezultat je mogoče enostavno
preveriti na diferencialnem pogonu ter ga razširiti na druge kinematike, vključno
z Ackermannovo. Najprej preverimo, ali je sistem brez lezenja (stanja se ne
spreminjajo, če ni vzbujanja). Ker je pri diferencialnem pogonu brez vodenja
(v = 0, ω = 0) odvod vektorskega polja q̇(t) enak 0, je to sistem brez lezenja.
Brockett [1] je dokazal, da mora imeti tak sistem enako število vhodov in stanj, da
ga lahko stabiliziramo z uporabo zvezne časovno nespremenljive povratne zanke.
V primeru diferencialnega pogona je ta pogoj očitno kršen, zato je potrebno
poiskati druge vrste povratnih zank. Kljub temu so popolnoma neholonomični
sistemi brez lezenja še vedno vodljivi v nelinearnem smislu, zato je možno izvesti
asimptotično stabilizacijo z uporabo časovno spremenljivih, nezveznih ali hibri-
dnih regulacijskih zakonov. Omejitvi, ki jo določa Brockettov pogoj, se lahko
izognemo z uvedbo drugačne strukture vodenja. V primeru vodenja po referenčni
trajektoriji se zelo pogosto uporablja dvoprostostni regulator, kjer en del pripada
predkrmiljenju, drugi pa povratni zanki.

Pred uvedbo predkrmiljenja in povratne zanke moramo določiti še eno pomembno
lastnost sistema. Sistem je diferencialno plosk (angl. differentially flat), če
obstaja nabor t. i. ploskih izhodov ter so lahko vsa stanja in vhodi sistema
zapisani kot funkcije teh ploskih izhodov in končnega števila njihovih časovnih
odvodov. To pomeni, da morata obstajati nelinearni funkciji fx in fu, ki
izpolnjujeta

x = fx(zf , żf , z̈f , . . .
dp

dtp zf )

u = fu(zf , żf , z̈f , . . .
dp

dtp zf )

kjer vektorji x, u in zf predstavljajo stanja sistema, vhode in ploske izhode,
medtem ko je p končno celo število. Potrebno je omeniti, da morajo biti ploski
izhodi funkcije stanj sistema, njegovih vhodov in končnega števila njihovih
(vhodnih) odvodov. To pomeni, da so v splošnem ploski izhodi fiktivni – niso
podobni dejanskim izhodom.

V primeru kinematičnega modela diferencialnega pogona, ki ga podaja (2.2),
sta ploska izhoda dejanska izhoda sistema x in y. Oba vhoda (hitrosti) in
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tretje stanje (orientacija robota) so lahko predstavljeni kot funkciji x in y ter
njuni odvodi. Vemo, da si lahko ẋ in ẏ predstavljamo kot kartezični koordinati
translatorne hitrosti robota, zato ju uporabimo v izračunu hitrosti s pomočjo
Pitagorovega izreka

v(t) =
√
ẋ2(t) + ẏ2(t) (3.13)

Zaradi neholonomičnih omejitev se kolesni robot z diferencialnim pogonom vedno
vozi v smeri svoje orientacije, kar pomeni, da je tangenta orientacije enaka
količniku kartezičnih komponent translatorne hitrosti

ϕ(t) = arctan
(
ẏ(t)
ẋ(t)

)
(3.14)

Kotna hitrost ω(t) je določena kot časovni odvod orientacije ϕ(t), ki jo podaja
enačba (3.14)

ω(t) = d
dt

[
arctan

(
ẏ(t)
ẋ(t)

)]
= ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

ẋ2(t) + ẏ2(t) (3.15)

in ni definirana le v primeru, ko je translatorna hitrost enaka 0.

Kartezični koordinati pozicije x in y sta prav tako ploska izhoda kinematičnega
modela kolesnega pogona na zadnje kolo, ki ga podaja enačba (2.15). Prvi dve
enačbi tega kinematičnega modela sta enaki kot pri diferencialnem pogonu (2.2),
zato lahko orientacijo in hitrost zadnjega kolesa izračunamo s pomočjo (3.13) in
(3.14). Tretja enačba v sistemu enačb (2.15) je

ϕ̇ = vr(t)
d

tan (α(t))

od koder sledi
α(t) = arctan dϕ̇(t)

vr(t)
(3.16)

Vhod α(t) lahko zapišemo z ploskimi izhodi in njihovimi odvodi z vstavitvijo
izrazov (3.13) in (3.15) v (3.16) namesto vr(t) in ϕ̇(t)

α(t) = arctan d (ẋ(t)ÿ(t)− ẏ(t)ẍ(t))
(ẋ2(t) + ẏ2(t))(3/2)

Zgornja analiza nam poda pomembno ugotovitev, da je Ackermannov pogon
strukturno enak diferencialnemu. Če je določena regulirna veličina {v(t), ω(t)}
uporabljena na robotu z diferencialnim pogonom, je dobljena trajektorija enaka,
kot če bi regulirno veličino (vr(t), α(t)) = (v(t), arctan dω(t)

v(t) ) uporabili na
robotu z Ackermannovim pogonom. Večina primerov v nadaljevanju obravnava
robota z diferencialnim pogonom. Te rezultate je torej mogoče enostavno razširiti
na robote z Ackermannovim pogonom in tudi na nekatere druge kinematične
strukture.

Če je sistem plosk, lahko vse sistemske spremenljivke izrazimo iz ploskih izhodov
brez integracije. Koristna posledica tega dejstva je, da se lahko na podlagi refe-
renčne trajektorije analitično izračunajo zahtevane regulirne veličine. V primeru



92 Vodenje kolesnih mobilnih sistemov

kolesnega robota z diferencialnim pogonom enačbi (3.13) in (3.15) podajata
formule za izračun referenčnih hitrosti vref (t) in ωref (t) iz referenčne trajektorije,
ki jo podajata xref (t) in yref (t)

vref (t) =
√
ẋ2
ref (t) + ẏ2

ref (t)2 (3.17)

ωref (t) = ẋref (t)ÿref (t)− ẏref (t)ẍref (t)
ẋ2
ref (t) + ẏ2

ref (t) (3.18)

Podobne formule lahko pridobimo tudi za druge kinematične strukture, ki so
ploski sistemi.

Enačbi (3.17) in (3.18) podajata odprtozančno vodenje, ki zagotavlja, da se v
idealnem primeru, kadar kinematični model robota natančno opisuje gibanje
ter ni motenj, merskih napak in pogreška začetne lege, robot vozi po referenčni
trajektoriji. Teh predpostavk nikoli popolnoma ne izpolnimo, zato je potrebno
tudi povratnozančno vodenje. V teh primerih sta referenčni hitrosti iz enačb
(3.17) in (3.18) uporabljeni v predkrmiljenju regulacijskega zakona, medtem ko je
za povratnozančno vodenje mogoče uporabiti širok spekter regulacijskih zakonov.
Nekatere od njih bomo obravnavali tudi v nadaljevanju.

3.3.3 Povratnozančna linearizacija

Ideja povratnozančne linearizacije je uvedba transformacije (običajno sistemskega
vhoda), ki linearizira sistem med novim vhodom in izhodom. Ker je novi sistem
linearen je možna uporaba kateregakoli od obstoječih linearnih načrtovalnih
postopkov vodenja. Najprej moramo zagotoviti, da je sistem diferencialno plosk
[6, 7]. V razdelku 3.3.2 smo pokazali, da je veliko kinematičnih struktur ploskih.
Nato je postopek načrtovanja povratnozančne linearizacije sledeč:

• Izbrati moramo ustrezne ploske izhode. Njihovo število naj bo enako številu
sistemskih vhodov.

• Ploske izhode odvajamo, za dobljene odvode pa je potrebno preveriti
funkcijsko odvisnost od vhodov sistema. Ta korak ponavljamo, dokler se
vsi vhodi (ali njihovi odvodi) ne pojavijo v odvodih ploskih izhodov. Če
lahko iz tega sistema enačb izrazimo vse vhode (natančneje njihove najvišje
odvode), lahko preidemo na naslednji korak.

• Rešimo sistem enačb za najvišje odvode posameznih vhodov. Za pridobitev
dejanskih vhodov sistema je potrebno na njihovih odvodih uporabiti verigo
integratorjev. Po drugi strani pa odvodi ploskih izhodov služijo kot novi
vhodi v sistem.

• Ker je dobljeni sistem linearen, lahko na teh novih vhodih uporabimo širok
nabor možnih regulacijskih zakonov.
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V primeru kolesnega mobilnega robota z diferencialnim pogonom sta ploska
izhoda x(t) in y(t). Njun prvi odvod glede na kinematični model (2.2) je

ẋ = v cosϕ
ẏ = v sinϕ

V prvih odvodih se pojavi le translatorna hitrost v, zato ponovno odvajamo

ẍ = v̇ cosϕ− vϕ̇ sinϕ
ÿ = v̇ sinϕ+ vϕ̇ cosϕ

V drugih odvodih pa sta prisotni obe hitrosti (v in ω = ϕ̇). Zdaj je sistem enačb
preurejen tako, da so drugi odvodi ploskih izhodov opisani kot funkcije najvišjih
odvodov posameznih vhodov (v tem primeru sta to v̇ in ω)[

ẍ

ÿ

]
=
[

cosϕ −v sinϕ
sinϕ v cosϕ

][
v̇

ω

]
= F

[
v̇

ω

]

Uvedemo matriko F , ki je nesingularna, če je v 6= 0. Sistem enačb je torej mogoče
rešiti za v̇ in ω [

v̇

ω

]
= F−1

[
ẍ

ÿ

]
=
[

cosϕ sinϕ
− sinϕ

v
cosϕ
v

][
ẍ

ÿ

]
(3.19)

Rešitev ω iz enačbe (3.19) je dejanski vhod robota, medtem ko je treba rešitev v̇
integrirati, preden jo lahko uporabimo kot vhod. Novo pridobljeni linearni sistem
ima vhoda [u1, u2]T = [ẍ, ÿ]T in stanja z = [x, y, ẋ, ẏ]T (kinematični model (2.2)
ima tri stanja, četrto je posledica dodatnega integratorja). Dinamiko novega
sistema lahko priročno opišemo z zapisom v prostoru stanj

ẋ

ẍ

ẏ

ÿ

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x

ẋ

y

ẏ

+


0 0
1 0
0 0
0 1


[
u1

u2

]
(3.20)

ali v matrični obliki kot
ż = Az +Bu (3.21)

Sistem (3.21) je vodljiv, ker ima matrika vodljivosti

Qc =
[
B AB

]
(3.22)

polni rang in zato regulator stanj obstaja za poljubno izbran karakteristični
polinom zaprte zanke. Dodatna zahteva je zasnova regulacijskega zakona, da bo
robot sledil referenčni trajektoriji. Pri ploskih sistemih je za ploske izhode podana
referenčna trajektorija, v tem primeru je to xref (t) in yref (t). Potem je mogoče
zlahka pridobiti referenco za stanje sistema zref (t) = [xref , ẋref , yref , ẏref ]T

in vhod sistema uref = [ẍref , ẍref ]T . Enačbo (3.21) lahko zapišemo tudi za
referenčne signale

żref = Azref +Buref (3.23)
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Slika 3.18: Povratnozančna linearizacija za sledenje referenci

Pogrešek med dejanskimi in referenčnimi stanji je opredeljen kot z̃ = z − zref .
Če odštejemo (3.23) od (3.21), dobimo

˙̃z = Az̃ +B(u− uref ) (3.24)

Enačba (3.24) opisuje dinamiko pogreška stanj. Ta dinamika mora biti stabilna
in primerno hitra. Dinamiko zaprte zanke lahko dosežemo s predpisanimi za-
prtozančnimi poli. Kot smo že pokazali, je par (A,B) vodljiv in tako lahko
s pravilno izbiro konstantne matrike ojačenj regulatorja K (dimenzije 2 × 4)
dosežemo poljubne lokacije zaprtozančnih polov na levi strani kompleksne ravnine
s. Enačbo (3.24) lahko preuredimo kot

˙̃z = (A−BK)z̃+BKz̃+B(u−uref ) = (A−BK)z̃+B(Kz̃+u−uref ) (3.25)

Če je zadnji člen enačbe (3.25) enak 0, pogreški stanj konvergirajo proti 0 s
predpisano dinamiko, ki jo podaja zaprtozančna matrika (A − BK). Da bo
zadnji izraz 0, moramo definirati sledeči regulacijski zakon

u(t) = K(zref (t)− z(t)) + uref (t) (3.26)

Shematski prikaz celotnega sistema vodenja je podan na sliki 3.18.

Parametre regulatorja (matriko ojačenj K) lahko določimo z metodo premikanja
polov s pomočjo Ackermannove formule, ki jo najdete v klasičnih knjigah s
področja teorije regulacij [8]. Zaradi posebne oblike matrik A in B v (3.20),
kjer u1 vpliva samo na stanji z1 in z2 ter u2 vpliva samo na stanji z3 in z4, ima
matrika ojačenj regulatorja posebno obliko

K =
[
k1 k2 0 0
0 0 k3 k4

]
Regulacijski zakon (3.26) je torej mogoče popolnoma razčleniti

u1(t) = ẍ(t) = k1(xref (t)− x(t)) + k2(ẋref (t)− ẋ(t)) + ẍref (t)
u2(t) = ÿ(t) = k3(yref (t)− y(t)) + k4(ẏref (t)− ẏ(t)) + ÿref (t)

(3.27)
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Predlagan pristop zahteva, da so vsa stanja znana. Medtem ko običajno izme-
rimo x in y, njihovih odvodov ne. Odvode sicer lahko ocenimo z numeričnim
odvajanjem, vendar to povečuje šum in se ga zato v praksi izogibamo. Na voljo
sta dve rešitvi:

• Neizmerjena stanja lahko ocenijo opazovalniki stanj.

• Če izmerimo orientacijo robota ϕ, lahko izračunamo odvode kot ẋ = v cosϕ,
ẏ = v sinϕ.

Praktična uporaba tega pristopa je prikazana v primeru 3.8.

Primer 3.8

Vodite vozilo z diferencialnim pogonom, da sledi referenčni trajektoriji xref =
1,1 + 0,7 sin( 2πt

30 ) in yref = 0,9 + 0,7 sin( 4πt
30 ). Računski korak je Ts = 0,033 s.

Začetna lega je [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite algoritem,
predstavljen v tem razdelku, in grafično prikažite rezultate.

Rešitev

Koda je predstavljena v programu 3.7, rezultati primera 3.8 pa so prikazani na
slikah 3.19 in 3.20. V tem pristopu se ne pojavijo težave periodične orientacije
(ni potrebno preslikati kotov na interval (−π, π]). To izhaja iz dejstva, da se
orientacija vedno pojavi znotraj trigonometričnih funkcij, ki so same po sebi
periodične.

Program 3.7
./src/ctr/example_tracking_feedback_lin.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3

4 % Referenca
5 freq = 2* pi /30;
6 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
7 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
8 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);
9 qRef = [xRef; yRef; atan2 (dyRef , dxRef )];

10 uRef = [ ddxRef ; ddyRef ];
11

12 q = [xRef (1)+.05; yRef (1) -0.1; 0]; % Začetna lega
13 z1 = [q(1); dxRef (1)]; % Začetno stanje [x, x ’]
14 z2 = [q(2); dyRef (1)]; % Začetno stanje [y, y ’]
15 v = sqrt(z1 (2)^2+ z2 (2)^2); % Začetno stanje hitrosti
16

17 % Matrike lineariziranega sistema
18 A = [0, 1; 0, 0]; B = [0; 1]; C = [1, 0];
19 % Regulator stanj
20 desPoles = [-2-1i; -2+1i]; % Ž eleni zaprtozan čni poli
21 K = acker (A, B, desPoles ); % Ojačenje regularja po metodi premikanja polov
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22

23 for k = 1: length (t)
24 % Referen čna stanja
25 zRef1 = [xRef(k); dxRef (k)];
26 zRef2 = [yRef(k); dyRef (k)];
27

28 % Pogre šek in regulator
29 ez1 = zRef1 - z1;
30 ez2 = zRef2 - z2;
31 uu = [ ddxRef (k); ddyRef (k)] + [K*ez1; K*ez2 ];
32

33 % Izračun regulirnih signalov
34 F = [cos(q(3)) , -v*sin(q (3)); ...
35 sin(q(3)) , v*cos(q (3))];
36 vv = F\uu; % Translatorni pospe šek in kotna hitost
37 v = v + Ts*vv (1); % Integracija translatornega pospe ška
38 u = [v; vv (2)]; % Regulirna signala
39

40 % Simulacija gibanja robota
41 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
42 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
43 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
44 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
45

46 % Izračun stanj na podlagi znane ( izmerjene ) orientacije in hitrosti
47 z1 = [q(1); u(1)* cos(q (3))];
48 z2 = [q(2); u(1)* sin(q (3))];
49 end
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Slika 3.19: Vodenje po referenčni trajektoriji diferencialnega pogona na podlagi
povratnozančne linearizacije iz primera 3.8 (referenca je označena s črtkano
krivuljo)
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Slika 3.20: Regulirni signali vodenja po referenčni trajektoriji diferencialnega
pogona na podlagi povratnozančne linearizacije iz primera 3.8

3.3.4 Izpeljava kinematičnega modela pogreška
vodenja pri sledenju referenčne trajekto-
rije

Da rešimo problem vodenja, običajno izvedemo ustrezno transformacijo koordinat
robota. Pozicijski pogrešek je ponavadi podan v lokalnem koordinatnem sistemu
(robota), poravnan s pogonskim mehanizmom, in izražen kot odstopanje virtu-
alnega referenčnega robota od dejanskega robota, kar prikazuje slika 3.21. Na
sliki 3.21 so predstavljeni tudi vsi dobljeni pogreški: ex podaja pogrešek v smeri
vožnje, ey podaja pogrešek v pravokotni smeri in eϕ podaja pogrešek orientacije.
Opisani pristop je bil prvič uporabljen v [9].

Pogrešek lege e(t) = [ex(t), ey(t), eϕ(t)]T je določen z dejansko lego q(t) =
[x(t), y(t), ϕ(t)]T resničnega robota in referenčno lego qref (t) = [xref (t), yref (t), ϕref (t)]T

virtualnega referenčnega robotaex(t)
ey(t)
eϕ(t)

 =

 cos(ϕ(t)) sin(ϕ(t)) 0
− sin(ϕ(t)) cos(ϕ(t)) 0

0 0 1

 (qref (t)− q(t)) (3.28)
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jref

j

( )x , yref ref

( )x, y

ey

ex e
j= -refj j

Slika 3.21: Prikaz pozicijskega pogreška v lokalnih koordinatah

Ob predpostavki, da imata dejanski in referenčni robot enak kinematični model,
ki ga podaja (2.2), in ob upoštevanju transformacije (3.28), lahko model pogreška
lege zapišemo na naslednji načinėxėy

ėϕ

 =

cos eϕ 0
sin eϕ 0

0 1

[vref
ωref

]
+

−1 ey
0 −ex
0 −1

u (3.29)

kjer sta vref in ωref linearna in kotna referenčna hitrost, podani z (3.17) in
(3.18). Regulator določa vhod u = [v, ω]T . Zelo pogosto [10] je regulirna veličina
u razčlenjena kot

u =
[
v

ω

]
=
[
vref cos eϕ + vfb
ωref + ωfb

]
(3.30)

kjer sta vfb in ωfb povratnozančna (regulacijska) signala, ki bosta določena ka-
sneje, vref cos eϕ in ωref pa sta signala predkrmiljenja, čeprav je tehnično gledano
vref cos eϕ moduliran s pogreškom orientacije, ki izvira iz izhoda. Po drugi strani
pa vref cos eϕ postane “pravo” predkrmiljenje, ko je pogrešek orientacije enak 0.
Če vstavimo regulirno veličino (3.30) v (3.29), dobimo model sledilnega pogreška

ėx = ωrefey − vfb + eyωfb

ėy = −ωrefex + vref sin eϕ − exωfb
ėϕ = −ωfb

(3.31)

Cilj vodenja je izničiti pogreške modela sledilnega pogreška (3.31) z ustreznima
regulirnima veličinama vfb in ωfb. S tem se bomo ukvarjali v nadaljevanju.

3.3.5 Linearni regulator

Model pogreška (3.31) je nelinearen. V tem razdelku ga bomo linearizirali,
kar omogoča uporabo linearne regulacije. Linearizacija mora potekati okoli



3.3. Vodenje po referenčni trajektoriji 99

ravnotežne točke, zato izberemo točko ničelnega pogreška (ex = ey = 0, eϕ = 0),
ki je logična ravnotežna točka modela (3.31), če sta tudi obe hitrosti povratne
zanke enaki 0 (vfb = 0, ωfb = 0). Linearizacijo modela (3.31) okoli točke
ničelnega pogreška zapišemo v oblikiėxėy

ėϕ

 =

 0 ωref 0
−ωref 0 vref

0 0 0


exey
eϕ

+

−1 0
0 0
0 −1

[vfb
ωfb

]
(3.32)

Ta linearen sistem je časovno spremenljiv, ker sta vref (t) in ωref (t) časovno
odvisni.

Sistem (3.32) je predstavitev dinamičnega sistemskega pogreška v prostoru stanj,
kjer so vsa stanja (v tem primeru pogreški) dostopna. Povratna zanka iz stanj je
torej mogoča (rezultira v uspešno vodenje), če je sistem vodljiv. Ob predpostavki,
da sta vref in ωref konstantni (referenčna pot je sestavljena iz daljic in krožnih
lokov), lahko enostavno dokažemo, da je matrika vodljivosti (3.22) polnega ranga
in lahko vse pogreške izničimo z regulatorjem stanj. V primeru da vref in ωref
nista konstantni, je sistem še vedno vodljiv, če je katerikoli od referenčnih signalov
različen od 0. Tovrstna analiza pa je veliko bolj zapletena.

Zaradi posebne strukture sistema (3.32) se pogosto uporablja linearni regulator
stanj s preprosto obliko matrike ojačenj

[
vfb
ωfb

]
=
[
kx 0 0
0 ky kϕ

]exey
eϕ


Vidimo, da se pogrešek v smeri vožnje popravi za vfb, medtem ko se pogreški v
orientaciji in bočnih smereh popravijo z ωfb.

Ojačenja regulatorja (kx, ky, kϕ) je mogoče določiti s poskušanjem, z njihovo
optimizacijo na modelu sistema, z metodo premikanja polov itd. V nadaljevanju
so ojačenja regulatorja določena z metodo premikanja polov tako, da poli sistema
ležijo na ustreznih lokacijah v kompleksni ravnini s. Sistem ima tri pole, torej je
vsaj en pol realen, druga dva pa lahko izberemo, da sta konjugirano kompleksna.
Predpostavimo, da so želene lege zaprtozančnih polov s1 = −2ζωn in s2,3 =
−ζωn ± ωn

√
1− ζ2. Lastna frekvenca ωn > 0 in koeficient dušenja 0 < ζ < 1

sta parametra, ki ju lahko nastavimo tako, da dosežemo zadovoljivo dušenje in
hiter prehodni pojav. Če karakteristični polinom zaprtozančnega sistema∣∣∣∣∣∣∣sI3×3 −

 0 ωref 0
−ωref 0 vref

0 0 0

−
−1 0

0 0
0 −1

[kx 0 0
0 ky kϕ

]∣∣∣∣∣∣∣
primerjamo z želenim

(s+ 2ζωn)(s2 + 2ζωns+ ω2
n)
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lahko dobimo rešitev za ojačenja regulatorja [6]

kx = kϕ = 2ζωn

ky(t) =
ω2
n − ω2

ref (t)
vref (t)

(3.33)

Upoštevamo, da mora biti ωn večja od največje vrednosti |ωref (t)|. Ojačenja
regulatorja (3.33) se praktično ne uporabljajo, ker ky(t) postane izjemno velik, ko
je referenčna hitrost vref (t) majhna. To težavo odpravimo s časovno spremenljivo
lastno frekvenco ωn. Ker je smiselno prilagoditi čas umiritve prehodnega pojava
glede na referenčne hitrosti, se zdi primerna izbira: ωn(t) =

√
ω2
ref (t) + gv2

ref (t),
g > 0. Po ponovitvi podobnega postopka (kot zgoraj), dobimo naslednja ojačenja
regulatorja

kx(t) = kϕ(t) = 2ζ
√
ω2
ref (t) + gv2

ref (t)

ky(t) = gvref (t)

V okviru algoritmov vodenja, predstavljenih v tem poglavju, moramo izpostaviti
dve pripombi:

• Regulacijski zakoni so zasnovani na podlagi lineariziranih modelov. Line-
ariziran model je veljaven le v bližini delovne točke (v tem primeru je to
točka ničelnega pogreška) in pri velikih regulacijskih pogreških njegova
učinkovitost morda ne bo takšna, kot je bila pričakovana.

• Če imamo opravka z linearnim, a časovno spremenljivim sistemom, nekateri
rezultati linearnih časovno nespremenljivih sistemov niso več veljavni. Tu
je potrebno omeniti, da je sistem morda nestabilen, četudi vsi poli ležijo
na (fiksnih) lokacijah na levi strani kompleksne ravnine s.

Kljub omenjenim možnim težavam se linearni regulacijski zakoni v praksi pogosto
uporabljajo zaradi njihove enostavnosti, razmeroma enostavne prilagoditve ter
sprejemljive zmogljivosti in robustnosti. Simulacija uporabe je podana v primeru
3.9.

Primer 3.9

Vodite vozilo z diferencialnim pogonom, da sledi referenčni trajektoriji xref =
1,1 + 0,7 sin( 2πt

30 ) in yref = 0,9 + 0,7 sin( 4πt
30 ). Računski korak je Ts = 0,033 s,

začetna lega pa [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. Zapišite predstavljen algoritem
z ojačenji regulatorja, ki jih podaja (3.33), in grafično prikažite rezultate.
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Rešitev

Matlab koda je podana v programu 3.8. Rezultati simulacije so prikazani na
slikah 3.22 in 3.23, kjer je prikazano dobro sledenje.

Program 3.8
./src/ctr/example_tracking_linear_control.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Reference trajectory
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 for k = 1: length (t)
16 e = [cos(q(3)) , sin(q(3)) , 0; ...
17 -sin(q(3)) , cos(q(3)) , 0; ...
18 0, 0, 1]*( qRef (:,k) - q); % Vektor pogre ška
19 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
20

21 % Trenutni referen čni vhodi
22 vRef = uRef (1,k);
23 wRef = uRef (2,k);
24

25 % Regulator
26 eX = e(1); eY=e(2); ePhi=e(3);
27 zeta = 0.9; % Parameter za nastavljanje
28 g = 85; % Parameter za nastavljanje
29 Kx = 2* zeta*sqrt(wRef ^2+g*vRef ^2);
30 Kphi = Kx;
31 Ky = g*vRef;
32 % Ojačenja so lahko tudi konstantna , npr .: Kx = Kphi = 3; Ky = 30;
33

34 % Regulator : krmiljenje in regulacija
35 v = vRef*cos(e (3))+ Kx*e(1);
36 w = wRef + Ky*e(2) + Kphi*e(3);
37

38 % Simulacija gibanja robota
39 dq = [v*cos(q (3)); v*sin(q (3)); w];
40 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
41 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
42 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
43 end
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Slika 3.22: Vodenje diferencialnega pogona po referenčni trajektoriji iz primera
3.9 (referenca je označena s črtkano krivuljo)
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Slika 3.23: Regulirni signali vodenja diferencialnega pogona po referenčni trajek-
toriji iz primera 3.9
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3.3.6 Načrtovanje vodenja na osnovi funkcij Lja-
punova

Kot smo že omenili, je model pogreška (3.31) sam po sebi nelinearen. Nelinearne
sisteme je najbolje voditi z nelinearnim regulatorjem, ki med načrtovanjem
vodenja upošteva vse lastnosti sistema. Teorija, ki temelji na funkcijah Ljapunova,
se pogosto uporablja za reševanje težav pri stabilizaciji nelinearnega sistema. V
našem primeru bomo (asimptotično) stabilnost modela pogreška (3.31) analizirali
glede na različne regulacijske zakone.

Stabilnost Ljapunova

Na kratko je predstavljena druga metoda Ljapunova, ki zagotavlja zadostne
pogoje za (asimptotično) stabilnost ravnotežnih točk nelinearnega dinamičnega
sistema ẋ = f(x), x ∈ R. Najprej predpostavimo, da ravnotežje leži v x = 0.
Pristop temelji na pozitivno definitnih skalarnih funkcijah V (x) : Rn → R, za
katere velja V (x) = 0, če je x = 0, in V (x) > 0, ko je x 6= 0. Stabilnost
ravnotežne točke preverimo z odvodom funkcije V . Pomembno je, da dobimo
odvod kot rešitev diferencialne enačbe sistema

V̇ = ∂V

∂x
ẋ = ∂V

∂x
f(x)

Če velja V̇ ≤ 0 (V̇ je negativno semidefinitna funkcija), je ravnotežje (lokalno)
stabilno. Če pa velja V̇ < 0, razen pri x = 0 (V̇ je negativno definitna funkcija),
je ravnotežje (lokalno) asimptotično stabilno. Ko je lim|x|→∞ V (x) = ∞, so
rezultati globalni. Zato pristop temelji na iskanju funkcij z navedenimi lastnostmi,
ki jih imenujemo funkcije Ljapunova. Za kandidata običajno izberemo kvadratno
funkcijo Ljapunova in če je možno pokazati, da je njen odvod negativen ali vsaj
nič, je sistem stabilen.

Klasična razlaga funkcij Ljapunova temelji na energiji sistema. Če se energija
disipativnega sistema uporablja kot funkcija Ljapunova, se njegova energija ne
more povečati (odvod funkcije ni pozitiven). Posledično ostanejo vsi signali
omejeni in lahko potrdimo stabilnost sistema. Vendar je potrebno poudariti,
da funkcija Ljapunova morda ni povezana z energijo sistema. Predvsem pa
je v okviru nelinearnosti “stabilnost sistema” napačen termin. Namesto tega
je potrebno analizirati stabilnost ravnotežnih točk ali bolj splošno stabilnost
invariantnih množic. Možno je najti sisteme, v katerih obstajajo tako stabilne
kot nestabilne ravnotežne točke.
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Načrtovanje vodenja v okviru stabilnosti Ljapunova

V nadaljevanju bomo pokazali, kako lahko teorem stabilnosti Ljapunova upo-
rabimo za namen načrtovanja vodenja. Naš nelinearni sistem (3.31) ima tri
stanja z ravnotežno točko pri e = 0. Želimo oblikovati vodenje, ki bo to točko
stabiliziralo; če je možno, naj bo točka asimptotično stabilna, kar pomeni, da bi se
vse trajektorije sčasoma približale referenčni in tam ostale za vedno. Najočitnejši
kandidat za funkcijo Ljapunova je vsota treh kvadratov pogreškov

V (e) = ky
2 (e2

x + e2
y) + 1

2e
2
ϕ

to si lahko razlagamo kot uravnoteženo vsoto kvadratov pogreškov razdalje
in orientacije. Zaradi različnih enot moramo dodati pozitivno konstanto ky,
vendar se bo pozneje pokazalo, da ta konstanta igra pomembno vlogo pri zasnovi
regulacijskega zakona. Časovni odvod funkcije V je

V̇ = kyexėx + kyey ėy + eϕėϕ

vendar je potrebno ta odvod ovrednotiti glede na rešitve modela (3.31), kar
pomeni, da moramo vpeljati odvode pogreška iz (3.31)

V̇ (e) = kyex (ωrefey − vfb + eyωfb) +
+ kyey (−ωrefex + vref sin eϕ − exωfb) + eϕ (−ωfb)

= −kyexvfb + kyvrefey sin eϕ − eϕωfb

(3.34)

Osnovna ideja vodenja, ki temelji na metodi Ljapunova, je ustrezna izbira
regulacijskega zakona, ki zagotovi, da je odvod funkcije Ljapunova negativen.
V tem primeru je precej očitno, kako lahko izvedemo regulacijski algoritem.
Člen −kyexvfb v (3.34) bo negativen, če bo linearna hitrost vfb proporcionalna
pogrešku ex, saj je kvadrat pogreška e2

x pozitiven. Podobno bo člen −eϕωfb v
(3.34) vedno negativen, če bo kotna hitrost ωfb proporcionalna pogrešku eϕ. S
primerno modifikacijo kotne hitroste ωfb lahko dosežemo še, da izničimo člen
kyvrefey sin eϕ v (3.34). S tem zagotovimo, da je odvod funkcije Ljapunova (3.34)
negativen. Regulacijski zakon, ki to izpolnjuje, je

vfb = kxex

ωfb = kyvref
sin eϕ
eϕ

ey + kϕeϕ
(3.35)

Ta regulacijski zakon je dobro znan in uveljavljen [6, 11]. Uvedemo predlagano
vodenje (3.35) in V̇ postane

V̇ = −kxkye2
x − kϕe2

ϕ (3.36)

Ojačenja vodenja so pozitivna, kasneje pa se bo pokazalo, da sta lahko kx in kϕ
poljubni enakomerno zvezni pozitivni funkciji, medtem ko mora biti ky pozitivna
konstanta. Odvod funkcije Ljapunova očitno ni pozitiven, ker pa je ocenjen na
nič pri ex = 0, eϕ = 0, ne glede na ey, je odvod negativen in semidefiniten; tudi
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ravnotežje je stabilno. To pomeni, da bo pogrešek ostal omejen, vendar nismo
dokazali njegove konvergence proti 0.

Analiza konvergence pogreška je bistveno težja, zato moramo uvesti nekaj doda-
tnih matematičnih orodij. Pomembno vlogo bodo igrale norme signalov. Norma
Lp funkcije x(t) je definirana kot

‖x‖p =
(∫ ∞

0
|x(τ)|p dτ

)1/p

kjer je | · | (skalarna) dolžina vektorja. Če zgornji integral obstaja (je končen),
funkcija x(t) pripada Lp. Omejitev p na neskončnost zagotavlja zelo pomemben
razred funkcij L∞, t. i. omejene funkcije.

Za dokazovanje stabilnosti regulacijskih zakonov bomo uporabili dve zelo znani
lemi. Prva je Barbălatova lema, druga pa je njena izpeljava. Obe lemi sta vzeti
iz [12].

Lema 3.1 (Barbălatova lema). Če limt→∞
∫ t

0 f(τ) dτ obstaja in je končna ter
je f(t) enakomerno zvezna funkcija, potem velja limt→∞ f(t) = 0.

Lema 3.2. Če velja f, ḟ ∈ L∞ in f ∈ Lp za določene p ∈ [1,∞), potem f(t)→ 0
ko t→∞.

Zdaj smo pripravljeni obravnavati problem konvergence pogreška v (3.31). Zaradi
(3.36) je V̇ ≤ 0, zato funkcija Ljapunova ne narašča in ima limito limt→∞ V (t).
Posledično so stanja modela (3.31) omejena

ex, ey, eϕ ∈ L∞

Poleg tega iz (3.35) izhaja, da so regulirni signali omejeni, iz (3.31) pa da so
omejeni odvodi pogreškov

vfb, ωfb, ėx, ėy, ėϕ ∈ L∞

kjer smo upoštevali, da so vref , ωref , kx in kϕ omejeni. Slednje velja v primeru
ploskih referenčnih trajektorij (xref , yref , ϕref ).

Da dokažemo asimptotično stabilnost modela (3.31), najprej izračunamo integral
V̇ iz (3.36)∫ ∞

0
V̇ dt = V (∞)− V (0) = −

∫ ∞
0

kxkye
2
x dt−

∫ ∞
0

kϕe
2
ϕ dt

Ker je V pozitivno definitna funkcija, velja naslednja neenakost

V (0) ≥
∫ ∞

0
kxkye

2
x dt+

∫ ∞
0

kϕe
2
ϕ dt ≥ kxky

∫ ∞
0

e2
x dt+ kϕ

∫ ∞
0

e2
ϕ dt

kjer sta uvedeni spodnji meji funkcij kx(t) in kϕ(t)

kx(t) ≥ kx > 0
kϕ(t) ≥ kϕ > 0
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Iz (3.3.6) izhaja, da pogreška ex(t) in eϕ(t) pripadata L2. Na podlagi leme 3.2 je
možno enostavno pokazati, da pogreška ex(t) in eϕ(t) konvergirata proti 0. Ker
obstaja limita limt→∞ V (t), potem obstaja tudi limt→∞ ey(t).

Videli smo, da je razmeroma enostavno prikazati konvergenco pogreškov ex(t) in
eϕ(t) proti 0. Tudi pogoji za konvergenco so dokaj blagi – ojačenja regulatorja
in referenčne trajektorije morajo biti omejeni. Konvergenco ey proti 0 pa je težje
dokazati, saj so zahteve veliko težje dosegljive, kot bo prikazano v nadaljevanju.
Poleg tega, da so ojačenja regulatorja enakomerno zvezna, morajo biti referenčne
hitrosti neprestano vzbujene, torej vref in ωref ne smeta limitirati proti 0. Zato
bomo obravnavali dva primera. V prvem predpostavimo vref 9 0, v drugem pa
ωref 9 0.

Predpostavimo, da je limt→∞ vref (t) 6= 0. Uporaba leme 3.1 na ėϕ(t) iz (3.31)
zagotavlja, da limt→∞ ėϕ(t) = 0, saj limita limt→∞ eϕ(t) obstaja in je končna,
odvod ėϕ(t) pa je enakomerno zvezen. Slednje velja zaradi (3.31), če je ωfb
enakomerno zvezna. Enakomerno zveznost funkcije f(t) na [0,∞) preverimo
tako, da pogledamo, ali velja f, ḟ ∈ L∞. Prej smo dokazali, da sta ey in
eϕ enakomerno zvezna, medtem ko sta ojačenje regulatorja kϕ in referenčna
hitrost vref enakomerno zvezna ob predpostavki iz (3.35), da je odvod ėϕ(t) tudi
enakomerno zvezen. Tako smo dokazali, da limt→∞ ėy(t) = 0 velja (kar je enako
limt→∞ ωfb(t) = 0). Konvergenca ey proti 0 izhaja iz (3.35)

eϕ → 0, kϕ ∈ L∞, ωfb → 0⇒ kyvref
sin eϕ
eϕ

ey → 0

kyvref
sin eϕ
eϕ

ey → 0, sin eϕ
eϕ
→ 1, ky > 0, vref → 0⇒ ey → 0

Zdaj predpostavimo limt→∞ ωref (t) 6= 0. Spet je potrebno zagotoviti, da velja
limt→∞ ωfb = 0. Kot smo že pokazali, to drži, če sta vref in kϕ enakomerno
zvezna. Nato se Barbălatova lema (lema 3.1) uporabi na ėx v (3.31). Za ex, ey
in ωfb smo tudi že pokazali, da so enakomerno zvezni. Ob predpostavki, da je kx
enakomerno zvezen, sta tudi vfb in ωref enakomerno zvezni. To dokazuje izraz
limt→∞ ėx(t) = 0. Podobno lahko sklepamo, da zadnja dva izraza v enačbi (3.31)
za ėx limitirata proti 0, ko gre t proti neskončnosti. Posledično gre tudi produkt
ωrefey proti 0. Ker je ωref neprestano vzbujena in ne gre proti 0, mora iti ey
proti 0.

Še enkrat je potrebno poudariti, da je za konvergenco ex in eϕ potrebna le
omejenost vref ali ωref . Precej težja naloga je voditi ey na 0. To dosežemo z
neprestanim vzbujanjem vref ali ωref . Vsi rezultati so veljavni globalno, kar
pomeni, da je konvergenca zagotovljena ne glede na začetno lego.

Primer 3.10

Vodite vozilo z diferencialnim pogonom, da sledi referenčni trajektoriji xref =
1,1 + 0,7 sin( 2πt

30 ) in yref = 0,9 + 0,7 sin( 4πt
30 ). Računski korak je Ts = 0,033 s,

začetna lega pa je [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite
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predstavljeni algoritem vodenja, preizkusite različna ojačenja in grafično prikažite
rezultate.

Rešitev

Koda je podana v programu 3.9. Rezultati simulacije primera 3.10 so prikazani
na slikah 3.24 in 3.25, kjer je ponazorjeno dobro sledenje. Upoštevamo, da se za
kx(t) in kϕ(t) lahko uporabi poljubna pozitivna funkcija. V tem primeru smo
izbrali takšne funkcije, da dobimo enak linearni model sistema kot v primeru
linearnega regulatorja (primer 3.9). Regulacijski zakoni niso enaki razen v mejnih
primerih (eϕ → 0). Tako je oblika prehoda podobna referenčni trajektoriji, ne
glede na referenčne hitrosti.

Program 3.9
./src/ctr/example_tracking_nonlinear_control.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 for k = 1: length (t)
16 e = [cos(q(3)) , sin(q(3)) , 0; ...
17 -sin(q(3)) , cos(q(3)) , 0; ...
18 0, 0, 1]*( qRef (:,k) - q); % Vektor pogre ška
19 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
20

21 % Trenutni referen čni vhodi
22 vRef = uRef (1,k);
23 wRef = uRef (2,k);
24

25 % Regulator
26 zeta = 0.9; % Parameter za nastavljanje
27 g = 85; % Parameter za nastavljanje
28 Kx = 2* zeta*sqrt(wRef ^2 + g*vRef ^2);
29 Kphi = Kx;
30 Ky = g;
31 % Ojačenji Kx in Kphi sta lahko tudi konstantni .
32 % Ta oblika omogo ča, da je dušenje v prehodnem pojavu
33 % neodvisno od referen čnih hitrosti .
34

35 % Regulator : krmiljenje in regulacija
36 v = vRef*cos(e(3)) + Kx*e(1);
37 w = wRef + Ky*vRef*sinc(e(3)/ pi )*e(2) + Kphi*e(3);
38

39 % Simulacija gibanja robota
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40 dq = [v*cos(q (3)); v*sin(q (3)); w];
41 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
42 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
43 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
44 end
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Slika 3.24: Nelinearno vodenje po referenčni trajektoriji vozila z diferencialnim
pogonom iz primera 3.9 (referenca je označena s črtkano krivuljo)
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Slika 3.25: Regulirni signalni nelinearnega vodenja po referenčni trajektoriji
vozila z diferencialnim pogonom iz primera 3.9

Razvoj periodičnega regulacijskega zakona

Težava sledenja je očitno periodičnost glede na orientacijo. To je mogoče opaziti
iz kinematičnega modela z uporabo poljubne regulirne veličine in poljubnega
začetnega pogoja, ki podajata določeno trajektorijo robota. Če isto regulirno
veličino uporabimo na dejanskem robotu in se začetni pogoj razlikuje od prejšnjega
samo za večkratnik 2π, dobimo enak odziv za x(t) in y(t); tudi ϕ(t) se od prejšnje
rešitve razlikuje za isti večkratnik 2π. Periodična narava se mora odražati tudi
v uporabljenemu regulacijskemu zakonu. To pomeni, da moramo poiskati tak
regulacijski zakon, ki je periodičen glede na pogrešek orientacije eϕ (perioda je
2π) in zagotavlja, da je konvergenca pogreška lege e enaka [0 0 2kπ]T (k ∈ Z).
Tako zmanjšamo vse običajne probleme s preslikavo orientacije na (−π, π]. Ti
problemi lahko v določenih aplikacijah postanejo kritični okoli ±180°, npr. pri
uporabi opazovalnika za oceno lege robota iz zakasnelih meritev. Velja opomniti,
da so določeni regulacijski zakoni periodični v smislu predhodne diskusije, npr.
regulacijski zakon povratnozančne linearizacije, ki ga podajata (3.19) in (3.27).

Očitno bi morale biti funkcije, uporabljene v razdelku o analizi konvergence, peri-
odične tudi glede na eϕ. To pomeni, da imajo te funkcije več lokalnih minimumov
in zato ne izpolnjujejo pogojev za klasične funkcije Ljapunova. Čeprav je analiza
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stabilnosti podobna direktni metodi Ljapunova (druga metoda Ljapunova), s to
teorijo stabilnosti konvergenca ni dokazana, ker pri našem pristopu ni potrebno,
da e konvergira proti nič. Kljub temu bomo v tem poglavju funkcije, uporabljene
za analizo konvergence, še vedno imenovali “funkcije Ljapunova”.

Naš cilj je spraviti pozicijski pogrešek na nič, medtem ko pogrešek orientacije
konvergira proti poljubnemu večkratniku 2π. Da to dosežemo, bomo uporabili
funkcijo Ljapunova, ki je periodična glede na eϕ (z osnovno periodo 2π). Najprej
bo koncept prikazan na eni funkciji Ljapunova, kasneje pa ga bomo posplošili.
Prvi kandidat za funkcijo Ljapunova je izbran kot

V = ky
2
(
e2
x + e2

y

)
+ 1

2

( tan eϕ
2

1
2

)2

kjer je ky pozitivna konstanta. Njen odvod, upoštevajoč enačbe (3.31), pa je

V̇ = kyex (ωrefey − vfb + eyωfb) +

+ kyey (−ωrefex + vref sin eϕ − exωfb)− 2
tan eϕ

2
cos2 eϕ

2
ωfb

= −kyexvfb + kyvrefey sin eϕ − 2
tan eϕ

2
cos2 eϕ

2
ωfb

(3.37)

Če uporabimo regulacijski zakon

vfb = kxex

ωfb = kyvrefey cos4 eϕ
2 + kϕ sin eϕ

kjer sta kx in kϕ pozitivno omejeni funkciji, je odvod V̇ iz enačbe (3.37) enak

V̇ = −kxkye2
x − kϕ

( tan eϕ
2

1
2

)2

Nato lahko sledimo istim korakom kot v analizi regulacijskega zakona (3.35)
in ugotovimo, da ex in tan eϕ

2 konvergirata proti 0 (to pomeni, da velja eϕ →
2kπ, k ∈ Z) v primeru omejenih ojačenj regulatorja in omejene trajektorije.
Konvergenca ey proti 0 se lahko zaključi tudi po dolgotrajni analizi, če so
izpolnjeni isti pogoji kot v primeru regulacijskega zakona (3.35).

Primer 3.11

Vodite vozilo z diferencialnim pogonom, da sledi referenčni trajektoriji xref = 1,1+
0,7 sin( 2πt

30 ) in yref = 0,9 + 0,7 sin( 4πt
30 ). Računski korak je Ts = 0,033 s, začetna

lega pa [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite predstavljeni
algoritem vodenja, preizkusite različna ojačenja regulatorja in grafično prikažite
rezultate.
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Rešitev

Koda je predstavljena v programu 3.10. Rezultati simulacije so prikazani na
slikah 3.26 in 3.27, kjer je ponazorjeno dobro sledenje.

Program 3.10
./src/ctr/example_tracking_periodic_control.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 for k = 1: length (t)
16 e = [cos(q(3)) , sin(q(3)) , 0; ...
17 -sin(q(3)) , cos(q(3)) , 0; ...
18 0, 0, 1]*( qRef (:,k) - q); % Vektor pogre ška
19 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
20

21 % Trenutni referen čni vhodi
22 vRef = uRef (1,k);
23 wRef = uRef (2,k);
24

25 % Regulator
26 eX = e(1); eY = e(2); ePhi = e(3);
27 zeta = 0.9; % Parameter za nastavljanje
28 g = 85; % Parameter za nastavljanje
29 Kx = 2* zeta*sqrt(wRef ^2+g*vRef ^2);
30 Kphi = Kx;
31 Ky = g;
32 % Ojačenji Kx in Kphi sta lahko tudi konstantni .
33 % Ta oblika omogo ča, da je dušenje v prehodnem pojavu
34 % neodvisno od referen čnih hitrosti .
35

36 % Regulator : krmiljenje in regulacija
37 v = vRef*cos(e(3)) + Kx*eX;
38 w = wRef + Ky*vRef *( cos(ePhi /2))^4* eY + Kphi*sin(ePhi );
39

40 % Simulacija gibanja robota
41 dq = [v*cos(q (3)); v*sin(q (3)); w];
42 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
43 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
44 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
45 end
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Slika 3.26: Nelinearno vodenje po referenčni trajektoriji vozila z diferencialnim
pogonom iz primera 3.11 (referenca je označena s črtkano krivuljo)
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Slika 3.27: Regulirni signali nelinearnega vodenja po referenčni trajektoriji vozila
z diferencialnim pogonom iz primera 3.11
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Dobro znan regulacijski zakon Kanayama [10] lahko analiziramo v predlaganem
okvirju. Rezultat izbire funkcije Ljapunova

V = ky
2
(
e2
x + e2

y

)
+ 1

2

(
sin eϕ

2
1
2

)2

in uporabe regulacijskega zakona, predlaganega v [10] (v drugem izrazu za ωfb
je bil tudi tretji faktor |vref |, ki ga lahko vključimo v kϕ)

vfb = kxex

ωfb = kvrefey + kϕ sin eϕ
(3.38)

je stabilen sistem pogreškov, kjer se lahko konvergenca vseh pogreškov prikaže pod
enakimi pogoji kot prej. Upoštevamo, da poleg stabilnih ravnotežij pri eϕ = 2kπ,
k ∈ Z obstaja tudi nestabilno (odbijajoče se) ravnotežje pri eϕ = (2k + 1)π,
k ∈ Z.

Okvir za zasnovo periodičnega zakona vodenja je predstavljen v [13]. Velja
omeniti, da je precej preprosto razširiti predlagane tehnike na zasnovo vodenja
za simetrična vozila, ki se lahko med normalnim delovanjem premikajo naprej in
nazaj. V tem primeru morajo biti funkcije Ljapunova periodične s periodo π na
eϕ.

Model pogreška sistema s štirimi stanji

Zdaj se bomo lotili istega problema kot v prejšnjem poglavju. Z vidika vodenja
pogosto želimo slediti vsaki legi robota, ki se razlikuje od referenčne za večkratnik
kota 360°. Model (3.31) ne olajša omenjenega problema, ker je običajno potrebno
pogrešek orientacije izničiti z uporabo (3.31). V tem poglavju je predstavljen
kinematični model sistema, kjer so vse lege, ki se v orientaciji razlikujejo za
večkratnik kota 360°, predstavljene kot ena lega. To lahko dosežemo z razširitvijo
vektorja stanj za en element. Spremenljivko ϕ(t) iz prvotnega kinematičnega
modela (2.2) zamenjata dve novi spremenljivki s(t) = sin(ϕ(t)) in c(t) = cos(ϕ(t)).
Njuna odvoda sta

ṡ(t) = cos(ϕ(t))ϕ̇(t) = c(t)ω(t)
ċ(t) = − sin(ϕ(t))ϕ̇(t) = −s(t)ω(t)

Tako dobimo nov kinematični model

q̇ =


ẋ

ẏ

ṡ

ċ

 =


c 0
s 0
0 c

0 −s


[
v

ω

]
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Novi pogreški so opredeljeni kot

ex = c(xref − x) + s(yref − y)
ey = −s(xref − x) + c(yref − y)
es = sin(ϕref − ϕ) = c sinϕref − s cosϕref

ecos = cos(ϕref − ϕ) = c cosϕref + s sinϕref

(3.39)

Po odvajanju enačb (3.39) in nekaj manipulacij dobimo naslednji sistem

ėx = vrefecos − v + eyω

ėy = vrefes − exω
ės = ωrefecos − ecosω

ėcos = −ωrefes + esω

Tako kot v (3.30) bosta tudi v tem regulacijskem zakonu uporabljena v =
vrefecos + vfb in ω = ωref + ωfb. Cilj vodenja je voditi ex, ey in es proti 0.
Spremenljivka ecos je pridobljena kot kosinus pogreška orientacije in jo je treba
voditi proti 1. Zato bo nov pogrešek definiran kot ec = ecos − 1 in tako je končni
model sistemskega pogreška

ėx = ωrefey − vfb + eyωfb

ėy = −ωrefex + vrefes − exωfb
ės = −ecωfb − ωfb
ėc = esωfb

(3.40)

Na podlagi pristopa Ljapunova bomo razvili regulator, ki doseže asimptotično
stabilnost modela pogreška (3.40). Zelo neposredna ideja je uporaba sledeče
funkcije Ljapunova

V0 = k

2
(
e2
x + e2

y

)
+ 1

2
(
e2
s + e2

c

)
(3.41)

Zanimivo, ta funkcija Ljapunova vodi do regulacijskega zakona (3.38). Vendar
bo tukaj predlagana nekoliko bolj kompleksna funkcija, ki kot poseben primer
vključuje tudi funkcijo (3.41). Za doseg cilja vodenja je predlagan naslednji
kandidat za funkcijo Ljapunova

V = k

2
(
e2
x + e2

y

)
+ 1

2
(
1 + ec

a

) (e2
s + e2

c

)
(3.42)

kjer sta k > 0 in a > 2 konstanti. Upoštevamo, da je [−2, 0] območje funkcije
ec = cos(ϕref − ϕ)− 1 in zato

0 < a− 2
a
≤ 1 + ec

a
≤ 1

1 ≤ 1
1 + ec

a

≤ a

a− 2

(3.43)

Zaradi (3.43) je funkcija V0 (3.41) spodnja meja funkcije V (3.42), pa tudi V
izpolnjuje pogoje za funkcijo Ljapunova. Vloga člena (1 + ec

a ) bo pojasnjena
kasneje. Funkcijo V lahko poenostavimo na naslednji način

e2
s + e2

c = e2
s + (ecos − 1)2 = 2− 2ecos = −2ec (3.44)
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Upoštevajoč enačbe modela pogreška (3.40) in (3.44), je odvod V (3.42) enak

V̇ = −kexvfb + kvrefeyes + 1
2
(
1 + ec

a

) (−2esωfb) +
− 1
aesωfb(−2ec)
2
(
1 + ec

a

)2
= −kexvfb + es

(
kvrefey −

ωfb(
1 + ec

a

)2
)

Da bo V̇ negativno semidefinitna, predlagamo sledeči regulacijski zakon

vfb = kxex

ωfb = kvrefey

(
1 + ec

a

)2
+ kses

[(
1 + ec

a

)2
]n (3.45)

kjer sta funkciji kx(t) in ks(t) pozitivni za n ∈ Z. Iz praktičnih razlogov je
n majhno število (običajno izberemo −2, −1, 0, 1 ali 2). Z upoštevanjem
regulacijskega zakona (3.45) postane funkcija V̇

V̇ = −kkxe2
x − kse2

s

[(
1 + ec

a

)2
]n−1

(3.46)

Ponovno je preprosto prikazati konvergenco ex in es na podlagi (3.46). Prikaz
konvergenc ey in ec pa je spet nekoliko zahtevnejši [14].

Primer 3.12

Vodite vozilo z diferencialnim pogonom, da sledi referenčni trajektoriji xref =
1,1 + 0,7 sin( 2πt

30 ) in yref = 0,9 + 0,7 sin( 4πt
30 ). Računski korak je Ts = 0,033 s,

začetna lega pa je [x(0), y(0), ϕ(0)] = [1,1, 0,8, 0]. V Matlab kodi izvedite
predstavljeni algoritem vodenja ter preizkusite različna ojačenja in dodatne
parametre vodenja (a in n).

Rešitev

Matlab koda je navedena v programu 3.11. Rezultati simulacije so prikazani na
slikah 3.28 in 3.29, kjer je predstavljeno dobro sledenje.

Program 3.11
./src/ctr/example_tracking_four_state_control.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);
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10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna lega
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 for k = 1: length (t)
16 e = [cos(q(3)) , sin(q(3)) , 0; ...
17 -sin(q(3)) , cos(q(3)) , 0; ...
18 0, 0, 1]*( qRef (:,k) - q); % Vektor pogre ška
19 eX = e(1); eY = e(2); % Pogre šek po razdalji
20 eS = sin(e (3)); eCos = cos(e (3)); eC = eCos - 1; % Kotni pogre šek
21

22 % Trenutni referen čni vhodi
23 vRef = uRef (1,k);
24 wRef = uRef (2,k);
25

26 % Regulator
27 zeta = 0.9; % Parameter za nastavljanje
28 g = 85; % Parameter za nastavljanje
29 a = 10; % Parameter za nastavljanje
30 n = 2; % Parameter za nastavljanje (celo š tevilo )
31 Kx = 2* zeta*sqrt(wRef ^2+g*vRef ^2);
32 Ks = Kx;
33 K = g;
34 % Ojačenji Kx in Ks sta lahko tudi konstantni .
35 % Ta oblika omogo ča, da je dušenje v prehodnem pojavu
36 % neodvisno od referen čnih hitrosti .
37

38 % Regulator : krmiljenje in regulacija
39 v = vRef*cos(e(3)) + Kx*eX;
40 w = wRef + K*vRef*eY *(1+ eC/a)^2 + Ks*eS *(1+ eC/a )^(2* n);
41

42 % Simulacija gibanja robota
43 dq = [v*cos(q (3)); v*sin(q (3)); w];
44 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
45 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
46 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
47 end
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Slika 3.28: Nelinearno vodenje po referenčni trajektoriji vozila z diferencialnim
pogonom iz primera 3.12 (referenca je označena s črtkano krivuljo)
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Slika 3.29: Regulirni signalni nelinearnega vodenja po referenčni trajektoriji
vozila z diferencialnim pogonom iz primera 3.12
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3.3.7 Načrtovanje mehkega vodenja Takagi-Sugeno
v okviru linearnih matričnih neenačb

Kot smo že poudarili, je model pogreška (3.31) nelinearen. Modeli Takagi-Sugeno
(TS) opisujejo dinamiko nelinearnih sistemov. V tem poglavju bo model (3.31)
zapisan v obliki modela Takagi-Sugeno, ki omogoča zasnovo vodenja kot t. i.
paralelno porazdeljena kompenzacija v okviru linearnih matričnih neenačb (LMI,
angl. linear matrix inequality).

Mehki model pogreška Takagi-Sugeno kolesnega mobilnega
robota z diferencialnim pogonom

Modeli Takagi-Sugeno (TS) imajo svoje korenine v mehki (angl. fuzzy) logiki,
kjer je model podan v obliki pravil če-potem (angl. if-then). Model TS je lahko
predstavljen tudi v bolj kompaktni obliki [15]

ξ̇ (t) =
r∑
i=1

hi (z (t)) (Aiξ (t) +Biu (t))

υ (t) =
r∑
i=1

hi (z (t)) (Ciξ (t))

kjer je ξ (t) ∈ Rn vektor stanj, υ (t) ∈ Rp izhodni vektor in z (t) ∈ Rq pogojni
vektor, odvisen od vektorja stanj (ali neke druge veličine), Ai, Bi, Ci pa so
konstantne matrike. Nelinearne utežnostne funkcije hi (z (t)) so vse nenegativne
in takšne, da velja

∑r
i=1 hi (z (t)) = 1 za poljuben z(t). Za vsak nelinearen

model je mogoče najti enakovreden mehki model TS v kompaktnem območju
spremenljivke prostora stanj z razdelitvijo nelinearnega področja, kjer se vsak
omejeni nelinearni izraz razgradi v konveksno kombinacijo njegovih meja. Šte-
vilo pravil r je povezano s številom nelinearnosti modela, kot bo prikazano v
nadaljevanju.

V tem poglavju bomo izkoristili dejstvo, da so v primeru modela pogreška
kolesnega robota nelinearne funkcije znane vnaprej, kar omogoča uporabo prej
omenjenega koncepta. Nelinearen model sledilnega pogreška (3.31) bo torej
prepisan v enakovredno matrično oblikoėxėy

ėϕ

 =

 0 ωref 0
−ωref 0 vref

sin eϕ
eϕ

0 0 0


exey
eϕ

+

−1 ey
0 −ex
0 −1

[vfb
ωfb

]
(3.47)
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V tem modelu se pojavijo štiri omejene nelinearne funkcije: ωref , vref sin eϕ
eϕ

(ali
z drugačno oznako vrsinc(ϕ)), ey in ex. Tako dobimo pogojni vektor

z(t) =


ωref

vref (t)sinc (eϕ(t))
ey(t)
ex(t)


Najprej bomo v linearnem smislu analizirali vodljivost modela (3.47). V bližini
točke, v kateri je pogrešek sistema enak nič, je sistem (3.47) vodljiv, če je vref
različen od 0 in |eϕ| drugačen od π ali pa če je ωref različna od 0. V praktičnih
primerih ωref pogosto prečka 0, zato vref ne more biti enak 0 in |eϕ| ne more
biti enak π. Da preprečimo izgubo vodljivosti in se osredotočimo na določeno
kompaktno območje prostora pogreška, so potrebne naslednje predpostavke

ωref ≤ ωref ≤ ω̄ref
|eϕ| ≤ ēϕ < π, 0 < vref ≤ vref ≤ v̄ref ⇒ vref sinc (ēϕ) ≤ vref sinc (eϕ) ≤ v̄ref
|ey| ≤ ēy
|ex| ≤ ēx

Meje od vref in ωref so pridobljene iz dejanske referenčne trajektorije, medtem
ko so meje sledilnega pogreška izbrane na podlagi (predhodno) znanih informacij.
Pomembno je, da so te meje nižje od pogreška zaradi merilnega šuma, začetnih
pogreškov itd. Meje iz (3.3.7) označujemo kot zj in z̄j , j = 1, 2, 3, 4. V sistemu
so 4 nelinearnosti, zato je število pravil če-potem r enako 24 = 16. Model TS
(3.47) je

ė (t) = Az(t)e (t) +Bz(t)ufb (t)

Ai =

 0 ε1
i 0

−ε1
i 0 ε2

i

0 0 0

 Bi =

−1 ε3
i

0 −ε4
i

0 −1


Indeks i gre poljubno skozi vsa oglišča hiperkocke, ki jo definira (3.3.7). Običajno
se uporabi binarno naštevanje

i1 =
{

0 ; i ≤ r
2

1 ; sicer

i2 =
{

0 ; i− r
2 i1 ≤

r
4

1 ; sicer

i3 =
{

0 ; i− r
2 i1 −

r
4 i2 ≤

r
8

1 ; sicer

i4 =
{

0 ; i− r
2 i1 −

r
4 i2 −

r
8 i3 ≤

r
16

1 ; sicer
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Potem je εji v (3.3.7) opredeljen kot

εji = zj + ij
(
z̄j − zj

)
; i = 1, 2, . . . , 16, j = 1, 2, 3, 4

Na koncu pa določimo še pripadnostne funkcije hi
hi(z) = w1

i1(z1)w2
i2(z2)w3

i3(z3)w4
i4(z4) i = 1, 2, . . . , 16

wj1(zj) =
zj − zj
z̄j − zj

, wj0(zj) = 1− wj1(zj) j = 1, 2, 3, 4

Model TS (3.3.7) modela sledilnega pogreška predstavlja natančen model sistema
(3.47), torej pri tem pristopu model TS ne deluje kot aproksimator, ampak
upošteva vse znane nelinearnosti v sistemu. Tako je izraz (3.3.7) zelo primeren
za naloge načrtovanja in analize, kot bo prikazano v nadaljevanju.

Vodenje kolesnega mobilnega robota z diferencialnim pogo-
nom z uporabo paralelne porazdeljene kompenzacije

Za stabilizacijo modela TS (3.3.7) se uporablja paralelna porazdeljena kompen-
zacija (PDC, angl. parallel distributed compensation) [16]

ufb (t) = −
r∑
i=1

hi (z (t))Fie (t) = −Fz(t)e (t)

Problem stabilizacije z uporabo PDC je dobro znan. Zaradi posebne strukture, v
kateri imata model naprave in regulator enake pripadnostne funkcije, je mogoče
temu nelinearnemu sistemu prilagoditi določena orodja za analizo in načrtovanje
linearnih sistemov. Še posebej pomembna je možnost formalne in neposredne
obravnave stabilnosti sistema. V grobem je sistem, ki ga opisujeta (3.3.7) in
(3.3.7), asimptotično stabilen, če je (Ai −BiFj) Hurwitzeva matrika za vsak
i in j, kar pomeni, da vsi njeni poli ležijo na levi polovici kompleksne ravnine
s. Število matrik, potrebnih za analizo, zelo hitro narašča, zato uporabimo
sistematičen pristop. Dokaj kmalu so ugotovili, da je LMI popolno orodje za
to nalogo [17]. Parametri naprave so podani v obliki matrik Ai in Bi, zato je
mogoče najti tak nabor parametrov regulatorja Fj , ki asimptotično stabilizirajo
sistem.

Prvotni pristop je preveč konzervativen, saj ne upošteva posebnih lastnosti
sistema, kot je oblika pripadnostnih funkcij ipd. Izvirne pogoje LMI je možno
omiliti. Prilagoditev rezultata glede na [18] je:

Model TS (3.3.7) je mogoče stabilizirati z regulacijskim zakonom PDC (3.3.7), če
obstajajo matrike Mi (i = 1, 2, . . . , r) in X > 0, tako da veljata naslednja pogoja
LMI

Υii < 0 ; i = 1, 2, . . . , r
2

r − 1Υii + Υij + Υji < 0 i, j = 1, 2, . . . , r, i 6= j

kjer je Υij = XAT
i +AiX−MT

j B
T
i −BiMj . Ojačenja Fi regulacijskega zakona

PDC (3.3.7) podaja Fi = MiX
−1.
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3.3.8 Modelno prediktivno vodenje

Modelno prediktivno vodenje (MPC, angl. model-based predictive control) temelji
na naprednih metodah, ki jih je mogoče uporabiti na različnih področjih; tudi v
mobilni robotiki, kjer je referenčna trajektorija znana vnaprej. Uporaba predik-
tivnih pristopov vodenja v mobilni robotiki se običajno nanaša na lineariziran
(lahko tudi nelinearen) kinematični ali dinamični model za napovedovanje stanj
sistema. Znane so številne uspešne implementacije v kolesni mobilni robotiki,
kot so posplošeno prediktivno vodenje v [19], prediktivno vodenje s Smithovim
prediktorjem za upravljanje časovne zakasnitve sistema v [20], MPC na osnovi
linearnega časovno spremenljivega sistema v [21], nelinearni prediktivni regulator
z modelom sistema v obliki večplastnega nevronskega omrežja v [22] in mnoge
druge. Rešitve regulacijskih zakonov so v večini pristopov pridobljene z optimi-
zacijo cenilke. Drugi pristopi pridobijo regulacijski zakon kot analitično rešitev,
ki je računsko učinkovita in jo je mogoče enostavno uporabiti pri hitrih izvedbah
v realnem času [23].

To poglavje obravnava mobilnega robota z diferencialnim pogonom in vodenje po
referenčni trajektoriji, ki mora biti zvezna in dvakrat zvezno odvedljiva funkcija
časa. Za napovedovanje se uporablja linearni dinamični model pogreška, ki
ga pridobimo z linearizacijo sistema okoli referenčne trajektorije. Regulator
zmanjšuje razliko med napovedanim sledilnim pogreškom robota in referenčnim
pogreškom z definirano želeno dinamiko.

Modelne strategije vodenja združujejo rešitev predkrmiljenja in akcija povratne
zanke v vhodnem vektorju u, kar zapišemo kot

u = uff + ufb =
[
vref cos eϕ + vfb
ωref + ωfb

]
kjer se vhodni vektor predkrmiljenja uff = [vref cos eϕ ωref ]T izračuna iz refe-
renčne trajektorije z uporabo relacij (3.17) in (3.18). Vhodni vektor povratne
zanke je ufb = [vfb ωfb]T , kar je izhod MPC regulatorja.

Problem vodenja upošteva linearen dinamični model sledilnega pogreška (3.32),
ki ga lahko na kratko zapišemo kot

ė = Ac(t)e+Bcufb (3.48)

kjer sta Ac(t) in Bc matriki zveznega modela prostora stanj in e je sledilni
pogrešek v lokalnih koordinatah robota, ki so določene s transformacijo (3.28) in
prikazane na sliki 3.21.

Diskretno modelno prediktivno vodenje

Modelno prediktivno vodenje (MPC), predstavljeno v [23], je zasnovano za
diskretne čase, zato je potrebno zapisati model (3.48) v diskretni obliki

ė(k + 1) = A(k)e(k) +Bufb(k) (3.49)
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kjer je A(k) ∈ Rn × Rn, n je število spremenljivk stanj, in B ∈ Rn × Rm, m je
število vhodnih spremenljivk. Diskretni matriki A(k) in B dobimo na naslednji
način

A(k) = I +Ac(t)Ts
B = BcTs

kar je zadosten približek za kratek računski korak Ts.

Glavna ideja MPC je izračunati optimalne akcije vodenja, ki minimizirajo kri-
terijsko funkcijo, določeno v intervalu predikcijskega horizonta h. Kriterijska
funkcija je kvadratna cenilka

J(ufb, k) =
h∑
i=1

εT (k, i)Qε(k, i) + uTfb(k + i− 1)Rufb(k + i− 1) (3.50)

sestavljena iz prihodnjega referenčnega sledilnega pogreška er(k + i), napove-
danega sledilnega pogreška e(k + i|k), razlike med omenjenima pogreškoma
ε(k, i) = er(k + i)− e(k + i|k) in prihodnje akcije ufb(k + i− 1), kjer i označuje
i-ti korak napovedi (i = 1, . . . , h); Q in R sta utežnostni matriki.

Za napoved stanja e(k + i|k) se uporabi model pogreška (3.49), kot sledi

e(k + 1|k) = A(k)e(k) +Bufb(k)
e(k + 2|k) = A(k + 1)e(k + 1|k) +Bufb(k + 1)

...
e(k + i|k) = A(k + i− 1)e(k + i− 1|k) +Bufb(k + i− 1)

...
e(k + h|k) = A(k + h− 1)e(k + h− 1|k) +Bufb(k + h− 1)

(3.51)

Napovedi e(k + i|k) v (3.51) so preurejene tako, da so odvisne od trenutnega
pogreška e(k), trenutnih in prihodnjih vhodov ufb(k+i−1) ter matrikA(k+i−1)
in B. Napoved izhoda modela v trenutku h lahko potem zapišemo kot

e(k + h|k) = Πh−1
j=1A(k + j)e(k)+

+
h∑
i=1

(
Πh−1
j=i A(k + j)

)
Bufb(k + i− 1) +Bufb(k + h− 1)

Prihodnji referenčni pogrešek (er(k + i)) določa, kako naj se zmanjša sledilni
pogrešek, ko robot ni na trajektoriji. Določimo lahko, da naj se prihodnji
referenčni pogrešek eksponentno zmanjša od trenutnega sledilnega pogreška e(k)
kot

er(k + i) = Ai
re(k)

za i = 1, . . . , h. Dinamiko referenčnega pogreška določa matrika referenčnega
modela Ar.
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Glede na (3.51) in (3.3.8) je določen vektor predikcijskega pogreška sledenja
robota

E∗(k) =
[
eT (k + 1|k) eT (k + 2|k) . . . eT (k + h|k)

]T
pri čemer je E∗ podan za celoten interval opazovanja (h), kjer je regulirni vektor

Ufb(k) =
[
uTfb(k) uTfb(k + 1) . . . uTfb(k + h− 1)

]T
(3.52)

in

Λ(k, i) = Πh−1
j=i A(k + j) = A(k + h− 1)A(k + h− 2) . . .A(k + i+ 1)A(k + i)

Vektor predikcijskega pogreška sledenja robota lahko zapišemo v strnjeni obliki

E∗(k) = F (k)e(k) +G(k)Ufb(k)

kjer je
F (k) =

[
AT (k) AT (k)AT (k + 1) . . . ΛT (k, 0)

]T
in

G(k) =


B 0 . . . 0

A(k + 1)B B . . .
...

...
...

. . .
...

Λ(k, 1)B Λ(k, 2)B . . . B


pri čemer sta dimenziji F (k) in G(k) enaki (nh× n) ter (nh×mh).

Vektor referenčnega sledilnega pogreška je

E∗r (k) =
[
eTr (k + 1) eTr (k + 2) . . . eTr (k + h)

]T
ki se v strnjeni obliki zapiše kot

E∗r (k) = Fre(k)

kjer je
Fr =

[
AT
r

(
A2
r

)T
. . .

(
Ah
r

)T ]T
matrika dimenzije (nh× n).

Optimalni vhodni vektor (3.52) dobimo z numerično ali analitično optimizacijo
funkcije (3.50). V nadaljevanju bo izpeljana analitična rešitev.

Kriterijska funkcija (3.50) se v matrični obliki glasi

J(Ufb) = (E∗r −E∗)
T

Q (E∗r −E∗) +UT
fbRUfb (3.53)

minimum (3.53) pa je izražen kot

∂J

∂Ufb
= −2QGTE∗r + 2GTQE∗ + 2RUfb = 0
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Dobimo rešitev za optimalni vhodni vektor kot

Ufb(k) =
(
GTQG+ R

)−1
GTQ (Fr − F ) e(k) (3.54)

kjer sta utežnostni matriki naslednji

Q =


Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 R =


R 0 . . . 0

0 R . . . 0
...

...
. . .

...
0 0 . . . R


Rešitev (3.54) vsebuje vhodne vektorje uTfb(k+ i−1) za celoten interval napovedi
(i = 1, . . . , h). Akcijo povratne zanke v trenutku k uveljavimo tako, da na robotu
uporabimo samo prvi vektor uTfb(k) (prve m vrstice od Ufb(k)). Rešitev je
pridobljena analitično, zato omogoča hitre izvedbe v realnem času, kar morda ni
možno, če uporabimo numerično optimizacijo funkcije (3.50).

Primer 3.13

Izvedite modelno prediktivno vodenje, podano v (3.54), za vodenje robota z
diferencialnim pogonom po trajektoriji. Referenčna trajektorija in robot sta
določena v primeru 3.9.

Predikcijski horizont je h = 4, matrika referenčnega modela je Ar = I3×3 · 0,65,
utežnostni matriki pa sta

Q =

4 0 0
0 40 0
0 0 0,1

 R = I2×2 · 10−3

Rešitev

Z uporabo MPC izračunamo povratnozančni del krmilnega signala ufb(k) in ga
uporabimo na robotu skupaj s predkrmiljenjem uff (k). V programu 3.12) so
podane možne rešitve in rezultati vodenja po referenčni trajektoriji. Pridobljeni
rezultati simulacije so prikazani na slikah 3.30 in 3.31.

Program 3.12
./src/ctr/example_tracking_mpc.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
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8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 for k = 1: length (t)-4
16 e = [cos(q(3)) , sin(q(3)) , 0; ...
17 -sin(q(3)) , cos(q(3)) , 0; ...
18 0, 0, 1]*( qRef (:,k) - q); % Vektor pogre ška
19 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
20

21 A1 = [1, Ts*uRef (2,k), 0;-Ts*uRef (2,k), 1, Ts*uRef (1,k); 0 ,0 ,1];
22 A2 = [1, Ts*uRef (2,k+1) , 0;-Ts*uRef (2,k+1) , 1, Ts*uRef (1,k+1); 0 ,0 ,1];
23 A3 = [1, Ts*uRef (2,k+2) , 0;-Ts*uRef (2,k+2) , 1, Ts*uRef (1,k+2); 0 ,0 ,1];
24 A4 = [1, Ts*uRef (2,k+3) , 0;-Ts*uRef (2,k+3) , 1, Ts*uRef (1,k+3); 0 ,0 ,1];
25 B = [-Ts , 0; 0, 0; 0, -Ts ];
26

27 Z = zeros (3 ,2);
28 Hm = [B, Z, Z, Z; ...
29 A1*B, B, Z, Z; ...
30 A1*A2*B, A1*B, B, Z; ...
31 A1*A2*A3*B, A1*A2*B, A1*B, B];
32 Fm = [A1 , A1*A2 , A1*A2*A3 , A1*A2*A3*A4 ]. ’;
33

34 ar = 0.65;
35 Ar = eye (3)* ar; % Dinamika referen čnega pogre ška
36 H = 0;
37 Fr = [Ar ^(H+1) , Ar ^(H+2) , Ar ^(H+3) , Ar ^(H+4)]. ’;
38

39 % Utež nostne matrike
40 Qt = diag( repmat ([1; 40; 0.1] , 4, 1));
41 Rt = diag( repmat ([0.001; 0.001] , 4, 1));
42

43 % Izračun optimalnih regulirnih signalov
44 KKgpc = (Hm.’*Qt*Hm + Rt )\( Hm.’*Qt *(Fr -Fm ));
45 KK = KKgpc (1:2 ,:); % Izbira trenutnih ojačenj regulatorja
46

47 v = KK*e;
48 uF = [uRef (1,k)* cos(e (3)); uRef (2,k)];
49 u = v + uF;
50

51 vMAX = 1; wMAX = 15; % Maksimalni hitrosti
52 if abs(u(1)) > vMAX , u(1) = sign(u (1))* vMAX; end
53 if abs(u(2)) > wMAX , u(2) = sign(u (2))* wMAX; end
54

55 % Simulacija gibanja robota
56 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
57 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
58 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
59 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
60 end
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Slika 3.30: Rezultati vodenja, pridobljeni z eksplicitnim regulatorjem MPC
(referenca je označena s črtkano krivuljo)
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Slika 3.31: Vzbujanje robota izračunano z uporabo eksplicitnega MPC-ja (črtkana
krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)
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3.3.9 Vodenje na podlagi optimizacije z rojem
delcev

Vodenje mobilnega robota lahko interpretiramo tudi kot optimizacijski problem,
kjer je potrebno v vsakem računskem koraku regulacijske zanke najti najboljšo
rešitev med vsemi možnimi rešitvami v iskalnem prostoru. Tako vodenje nima
eksplicitne strukture, kar pomeni, da regulacijskega zakona ni mogoče podati
kot funkcijo preslikave stanj sistema v akcije vodenja. Optimalno rešitev, ki
minimalizira nekatere kriterijske funkcije, najdemo z uporabo iterativnega opti-
mizacijskega algoritma, kot so Newtonove metode, metode gradientnega sestopa
ali pa stohastične metode, kot so genetski algoritmi, optimizacija z rojem delcev
(PSO, angl. particle swarm optimization) ipd.

Če kriterijska funkcija ni konveksna za problem minimizacije, je lahko večina
optimizacijskih algoritmov ujetih v lokalnem minimumu, kar pa ni optimalna
rešitev. Verjetnost pojava take rešitve lahko zmanjšamo z uporabo stohastične
optimizacije, kjer je vzorec iskanja do neke mere naključen.

Osnovna ideja PSO izhaja iz družabnega vedenja malih živali, kot so jate ptic
ali rib [24, 25]. PSO uporablja skupino (roj) delcev, kjer vsak delec predstavlja
svojo hipotetično rešitev. Vsak delec i je opisan s parametričnim vektorjem xi,
ki določa njegov položaj v parametričnem prostoru, in inkrementalnim vektorjem
vi, ki določa njegovo hitrost v parametričnem prostoru. Med optimizacijo se
populacija vseh potencialnih rešitev posodablja glede na kriterijsko funkcijo, ki
določa merilo kakovosti. Vsak delec spremlja svoje parametre in si zapomni
njihove (doslej) najboljše vrednosti pBesti skupaj s pripadajočo kriterijsko
funkcijo Ji = f(pBesti). Med optimizacijo je shranjen tudi (doslej) najboljši
parametrični vektor za celoten roj pBesti. V lokalni različici PSO pa se za
neko okolico delcev spremlja najboljši parametrični vektor gBest vsakega delca
(okolica se določi s topologijo obroča, k najbližjimi delci ipd. [26]). Za lokalne
različice PSO je manj verjetno, da bodo ujete v lokalnem minimumu.

V nadaljevanju je razložena osnovna (globalna) različica PSO. V vsakem račun-
skem koraku regulacijske zanke delci posodobijo svoje kognitivno in socialno
vedenje glede na naslednja pravila

vi ← ωvi + c1rand(0,1)(pBesti − xi) + c2rand(0,1)(gBest− xi)
xi ← xi + vi

(3.55)

kjer je ω faktor vztrajnosti, c1 samozavedna konstanta in c2 socialna konstanta.
Poleg tega je rand(0, 1) vektor enakomerno razporejenih vrednosti v območju
(0, 1). Dimenzije vektorjev v (3.55) so enake dimenziji iskalnega prostora.
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Parametri ω, c1 in c2 so pozitivni nastavitveni parametri. Osnovna koda PSO je
podana v algoritmu 1.

Algorithm 1 Optimizacija z rojem delcev
Inicializacija:
for vsak delec i = 1, . . . , N do

Naključno inicializiraj položaje delcev xi znotraj meja
parametričnega prostora.
Naključno inicializiraj hitrost delcev vi ali jih nastavi na nič.
Nastavi pBesti = xi.

end for

Optimizacija:
Jbest =∞
repeat

for vsak delec i = 1, . . . , N do
Izračunaj trenutno kriterijsko funkcijo Ji = f(xi) za vsak delec.
Shrani najboljše parametre
if Ji < f(pBesti) then
pBesti = xi

end if
if f(pBesti) < Jbest then
gBest = pBesti
Jbest = f(gBest)

end if
end for
for vsak delec i = 1, . . . , N do

Posodobi hitrost in položaj delca
vi ← ωvi + c1rand(0, 1)(pBesti − xi) + c2rand(0, 1)(gBest− xi)
Preveri, ali je hitrost vi izvedljiva:
xi ← xi + vi

end for
until največje število iteracij ali izpolnjen kriterij za konvergenco

Primer 3.14

S pomočjo PSO določite regulator za robota in trajektorijo iz primera 3.9. PSO
uporabite v vsakem računskem koraku t = kTs, da najdete najboljše regulirne
veličine (translatorna in kotna hitrost), ki pripeljejo robota čim bližje trenu-
tnemu referenčnemu položaju xref (t), yref (t). Nato izračunajte predikcijo lege
robota glede na njegovo kinematiko in predlagano rešitev delcev (akcija regula-
torja). Cenilka je sestavljena iz sledilnega pogreška e(t) = [ex(t), ey(t), eϕ(t)]T

in povratne zanke ufb = [vfb, ωfb]T . Optimalno vodenje minimizira cenilko
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J(t) = e(t)TQe(t) +uTfbRufb, kjer sta Q in R diagonalni utežnostni matriki, ki
se uporabljata za nastavitev delovanja regulatorja.

Rešitev

Regulacijski zakon vključuje podobne akcije predkrmiljenja in povratne zanke kot
v primeru 3.9. Akcijo predkrmiljenja izračunamo iz znane trajektorije, medtem
ko akcijo povratne zanke določimo z uporabo PSO. Sledilni pogrešek je izražen
v lokalnih koordinatah robota (glejte sliko 3.21), saj je s tem optimizacija bolj
učinkovita, zaradi bolje razklopljenega zaprtozančnega sistema. Pogrešek v
lokalni x koordinati je lahko preprosto kompenziran s translatorno hitrostjo,
pogrešek v y in ϕ pa s kotno hitrostjo. To namreč ne velja pri uporabi globalnega
sledilnega pogreška, zaradi nelinearne transformacije rotacije v (3.28).

V programu 3.13 je podana Matlab koda možne rešitve. Pridobljeni rezultati
simulacije so prikazani na slikah 3.32 in 3.33. Rezultati vodenja so podobni kot
v primeru 3.13, vendar je računska zahtevnost algoritma precej večja. Rezultati
primera 3.14 niso deterministični, ker PSO pri optimizaciji uporablja naključno
porazdeljene delce, da najde najboljše regulirne veličine v vsakem računskem
koraku. Zato se lahko pridobljene trajektorije mobilnega robota do neke mere
razlikujejo, še posebej v začetni prehodni fazi dokler robot ne doseže reference.
Kljub temu so rezultati večine simulacijskih tekov primerljivi z rezultati drugih
predstavljenih determinističnih regulatorjev (npr. iz primera 3.9).

Program 3.13
./src/ctr/example_tracking_pso.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 vMax = 1; wMax = 15; % Omejitve hitrosti
16

17 % Inicializacija roja delcev
18 iterations = 20; % Š tevilo iteracij
19 omega = 0.5*0.5; % Faktor vztrajnosti
20 c1 = 0.5*1; % Samozavedna konstanta
21 c2 = 0.5*1; % Socialna konstanta
22 N = 25; % Velikost roja delcev
23 swarm = zeros ([2 ,N ,4]);
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24 uBest = [0; 0];
25

26 for k = 1: length (t)-1
27 % Začetni položaji delcev
28 swarm (: ,: ,1) = repmat (uBest , 1, N) + diag ([0.1; 3])* randn (2,N);
29 swarm (: ,: ,2) = 0; % Začetne hitrosti delcev
30 swarm (1 ,: ,4) = 1000; % Najbolj ša vrednost kriterijske funkcije
31

32 for iter = 1: iterations % Iterativno iskanje optimalne rešitve s PSO
33 % Vrednotenje parametrov delcev
34 for i = 1:N
35 % Izračun nove predvidene lege robota na podlagi parametrov
36 % i-tega delca ( vhodnih hitrosti ) in primerjava predvidene
37 % lege z referen čno lego.
38 vwi = swarm (:,i ,1);
39 ui = vwi + uRef (:,k); % Regulacija in krmiljenje
40 qk = q; % Trenutna lega robota
41 % Predikcija lege robota na podlagi parametrov delcev ( hitrosti )
42 qk = qk + Ts *[ cos(qk (3)) , 0; sin(qk (3)) , 0; 0, 1]* ui;
43 qk (3) = wrapToPi (qk (3)); % Zapis kota v območju [-pi , pi]
44 e = [cos(qk (3)) , sin(qk (3)) , 0; ...
45 -sin(qk (3)) , cos(qk (3)) , 0; ...
46 0, 0, 1]*( qRef (:,k+1) - qk ); % Pogre šek
47 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
48 Qt = diag ([4; 80; 0.1]); Rt = diag ([1; 1]*0.0001); % Uteži
49 J = e.’*Qt*e + vwi .’*Rt*vwi; % Kriterijska funkcija
50 if J< swarm (1,i ,4) % Če je novi parameter boljši, posodobi :
51 swarm (:,i ,3) = swarm (:,i ,1); % vrednosti parametrov (v in w)
52 swarm (1,i ,4) = J; % in najbolj šo vrednost kriterijske funkcije .
53 end
54 end
55 [~, gBest ] = min( swarm (1 ,: ,4)); % Parametri globalno najbolj šega delca
56

57 % Posodobitev parametrov s hitrostnimi vektorji
58 a = omega * swarm (: ,: ,2) + ...
59 c1*rand (2,N).*( swarm (: ,: ,3) - swarm (: ,: ,1)) + ...
60 c2*rand (2,N).*( repmat ( swarm (:,gBest ,3) , 1, N) - swarm (: ,: ,1));
61 % Maksimalna sprememba parametrov , pospe šek: aMax =3 ==> 3* Ts =0.1
62 a(1,a(1 ,:) >0.1) = 0.1; a(1,a(1 ,:) < -0.1) = -0.1;
63 % Maksimalna sprememba parametrov , kotni pospe šek: aMax =60 ==> 60* Ts =2
64 a(2,a(1 ,:) >2) = 2; a(2,a(1 ,:) < -2) = -2;
65

66 v = swarm (: ,: ,1) + a; % Posodobitev hitrosti
67 % Omejitev hitrosti z ohranjanjem ukrivljenosti
68 [m, ii] = max ([v(1 ,:)/ vMax; v(2 ,:)/ wMax; ones (1,N)]);
69 i = ii ==1; v(1,i) = sign(v(1,i))* vMax;
70 v(2,i) = v(2,i)./m(i);
71 i = ii ==2; v(2,i) = sign(v(2,i))* wMax;
72 v(1,i) = v(1,i)./m(i);
73

74 swarm (: ,: ,2) = a; % Posodobitev hitrosti delcev ( pospe ški)
75 swarm (: ,: ,1) = v; % Posodobitev položajev delcev ( hitrosti )
76 end
77

78 % Vzmememo najbolj ši delec za izračun regulirnih signalov
79 uBest = swarm (:,gBest ,1);
80 u = uBest + uRef (:,k); % Regulacija in krmiljenje
81

82 % Omejitve hitrosti
83 if abs(u(1)) > vMax , u(1) = sign(u (1))* vMax; end
84 if abs(u(2)) > wMax , u(2) = sign(u (2))* wMax; end
85

86 % Simulacija gibanja robota
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87 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
88 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
89 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
90 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
91 end
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Slika 3.32: Pridobljeni rezultati vodenja na podlagi optimizacije z rojem delcev
(referenca je označena s črtkano krivuljo)
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Slika 3.33: Akcija vodenja, izračunana na podlagi optimizacije z rojem delcev
(črtkana krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)

PSO je splošni algoritem, ki ga je mogoče uporabiti v številnih aplikacijah, dokler
računska zahtevnost in čas, potrebna za izračun rešitve, ustrezata dejanskim
realno-časovnim zahtevam vodenega sistema.

Modelno prediktivno vodenje z uporabo optimizacije z ro-
jem delcev

Reševanje optimizacije kriterijske funkcije v MPC lahko opravi tudi PSO, če le-ta
išče najboljše parametre (akcije regulatorja) za predikcijski interval (t, t+ hTS),
kjer je h horizont. Če ima sistem m = 2 regulirni veličini, mora optimizacija
najti m · h optimalnih parametrov, kar hitro lahko postane računsko zahtevno in
posledično problematično za sisteme s kratkim računskim korakom regulacijske
zanke. Vseeno pa obstaja nekaj možnosti za zmanjšanje računskega časa. Ena
možnost je, da v predikcijskem horizontu predpostavimo konstantne regulirne
veličine. Če se akcija regulatorja v relativno kratkem času horizonta bistveno
ne spremeni, lahko v intervalu horizonta predpostavimo konstantne regulirne
veličine. To pomeni, da je potrebno optimizirati le m parametrov namesto m · h.
Druga možnost je zmanjšanje števila potrebnih iteracij pri optimizaciji za vsak
računski korak regulacijske zanke. To lahko storimo z inicializacijo delcev okoli
optimalne rešitve iz prejšnjega časovnega vzorca. Tako bi bilo potrebno manj
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iteracij za konvergenco delcev.

V primeru 3.15 je podana možna rešitev za implementacijo MPC na PSO.

Primer 3.15

Razširite primer 3.14 na modelni prediktivni regulator s predikcijskim horizontom
h = 3.

Rešitev

Predstavljena rešitev predvideva, da je akcija regulatorja (povratnozančni del) v
intervalu predikcijskega horizonta konstantna ufb(t+ (i− 1)TS) = ufb. Akcija
predkrmiljenja (uff ) je pridobljena iz znane trajektorije, medtem ko se akcija
povratne zanke izračuna z uporabo PSO. Iz trenutne lege robota je h-koračna
predikcija pridobljena s pomočjo kinematičnega modela robota in akcij regulatorja
u(t+ (i− 1)TS) = ufb + uff (t+ (i− 1)TS) (i = 1, . . . , h) kot

q̂(t+ iTS) = f (q̂ (t+ (i− 1)TS) ,u (t+ (i− 1)TS))

kjer je začetno stanje enako q̂(t) = q(t) in i = 1, . . . , h. Akcijo regulatorja dobimo
z optimizacijo cenilke znotraj horizonta

J(t+ hTS) =
h∑
i=1

e(t+ iTS)TQe(t+ iTS) + uTfbRufb

kjer je e(·) sledilni pogrešek v lokalnih koordinatah. Optimalna akcija regulatorja
se izračuna z uporabo PSO, kot je predstavljeno v Matlab kodi v programu 3.14.
Rezultati simulacije so prikazani na slikah 3.34 in 3.35. Sledilni pogrešek je
nekoliko manjši, pa tudi začetni prehodni pojav je boljši kot v primeru 3.14.

Program 3.14
./src/ctr/example_tracking_pso_mpc.m

1 Ts = 0.033; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [1.1; 0.8; 0]; % Začetna lega
4

5 % Referenca
6 freq = 2* pi /30;
7 xRef = 1.1 + 0.7* sin(freq*t); yRef = 0.9 + 0.7* sin (2* freq*t);
8 dxRef = freq *0.7* cos(freq*t); dyRef = 2* freq *0.7* cos (2* freq*t);
9 ddxRef =-freq ^2*0.7* sin(freq*t); ddyRef = -4* freq ^2*0.7* sin (2* freq*t);

10 qRef = [xRef; yRef; atan2 (dyRef , dxRef )]; % Referen čna trajektorija
11 vRef = sqrt( dxRef .^2+ dyRef .^2);
12 wRef = ( dxRef .* ddyRef - dyRef .* ddxRef )./( dxRef .^2+ dyRef .^2);
13 uRef = [vRef; wRef ]; % Referen čni vhodi
14

15 vMax = 1; wMax = 15; % Omejitve hitrosti
16

17 % Inicializacija roja delcev
18 iterations = 20; % Š tevilo iteracij
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19 omega = 0.5*0.5; % Faktor vztrajnosti
20 c1 = 0.5*1; % Samozavedna konstanta
21 c2 = 0.5*1; % Socialna konstanta
22 N = 25; % Velikost roja delcev
23 swarm = zeros ([2 ,N ,4]);
24 uBest = [0; 0];
25

26 H = 3; % Dolžina predikcijskega horizonta
27

28 for k = 1: length (t)-H
29 % Začetni položaji delcev
30 swarm (: ,: ,1) = repmat (uBest , 1, N) + diag ([0.1; 3])* randn (2,N);
31 swarm (: ,: ,2) = 0; % Začetne hitrosti delcev
32 swarm (1 ,: ,4) = 1000; % Najbolj ša vrednost kriterijske funkcije
33

34 for iter = 1: iterations % Iterativno iskanje optimalne rešitve s PSO
35 % Vrednotenje parametrov delcev
36 for i = 1:N
37 % Izračun nove predvidene lege robota na podlagi parametrov
38 % i-tega delca ( vhodnih hitrosti ) in primerjava predvidene
39 % lege z referen čno lego.
40 vwi = swarm (:,i ,1);
41 ui = vwi + uRef (:,k); % Regulacija in krmiljenje
42 qk = q; % Trenutna lega robota
43 % Predikcija lege robota na podlagi parametrov delcev ( hitrosti )
44 J = 0;
45 for h = 1:H
46 qk = qk + Ts *[ cos(qk (3)) , 0; sin(qk (3)) , 0; 0, 1]* ui;
47 qk (3) = wrapToPi (qk (3)); % Zapis kota v območju [-pi , pi]
48 e = [cos(qk (3)) , sin(qk (3)) , 0; ...
49 -sin(qk (3)) , cos(qk (3)) , 0; ...
50 0, 0, 1]*( qRef (:,k+h)-qk ); % Pogre šek
51 e(3) = wrapToPi (e (3)); % Zapis kota v območju [-pi , pi]
52 Qt = diag ([4; 80; 0.1]); Rt = diag ([1; 1]*0.0001); % Uteži
53 J = J + e.’*Qt*e + vwi .’*Rt*vwi; % Kriterijska funkcija
54 end
55 if J< swarm (1,i ,4) % Če je novi parameter boljši, posodobi :
56 swarm (:,i ,3) = swarm (:,i ,1); % vrednosti parametrov (v in w)
57 swarm (1,i ,4) = J; % in najbolj šo vrednost kriterijske funkcije .
58 end
59 end
60 [~, gBest ] = min( swarm (1 ,: ,4)); % Parametri globalno najbolj šega delca
61

62 % Posodobitev parametrov s hitrostnimi vektorji
63 a = omega * swarm (: ,: ,2) + ...
64 c1*rand (2,N).*( swarm (: ,: ,3) - swarm (: ,: ,1)) + ...
65 c2*rand (2,N).*( repmat ( swarm (:,gBest ,3) , 1, N) - swarm (: ,: ,1));
66 % Maksimalna sprememba parametrov , pospe šek: aMax =3 ==> 3* Ts =0.1
67 a(1,a(1 ,:) >0.1) = 0.1; a(1,a(1 ,:) < -0.1) = -0.1;
68 % Maksimalna sprememba parametrov , kotni pospe šek: aMax =60 ==> 60* Ts =2
69 a(2,a(1 ,:) >2) = 2; a(2,a(1 ,:) < -2) = -2;
70

71 v = swarm (: ,: ,1) + a; % Posodobitev hitrosti
72 % Omejitev hitrosti z ohranjanjem ukrivljenosti
73 [m, ii] = max ([v(1 ,:)/ vMax; v(2 ,:)/ wMax; ones (1,N)]);
74 i = ii ==1; v(1,i) = sign(v(1,i))* vMax;
75 v(2,i) = v(2,i)./m(i);
76 i = ii ==2; v(2,i) = sign(v(2,i))* wMax;
77 v(1,i) = v(1,i)./m(i);
78

79 swarm (: ,: ,2) = a; % Posodobitev hitrosti delcev ( pospe ški)
80 swarm (: ,: ,1) = v; % Posodobitev položajev delcev ( hitrosti )
81 end
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82

83 % Vzmememo najbolj ši delec za izračun regulirnih signalov
84 uBest = swarm (:,gBest ,1);
85 u = uBest + uRef (:,k); % Regulacija in krmiljenje
86

87 % Omejitve hitrosti
88 if abs(u(1)) > vMax , u(1) = sign(u (1))* vMax; end
89 if abs(u(2)) > wMax , u(2) = sign(u (2))* wMax; end
90

91 % Simulacija gibanja robota
92 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
93 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
94 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
95 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
96 end
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Slika 3.34: Pridobljeni rezultati vodenja z uporabo MPC in PSO (referenca je
označena s črtkano krivuljo)
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Slika 3.35: Akcija regulatorja, izračunana z uporabo MPC in PSO (črtkana
krivulja predstavlja le signal predkrmiljenja, brez regulirnega signala)

3.3.10 Vodenje mobilnega sistema s pristopom
vodenja na osnovi slike

V tem poglavju bo predstavljeno vodenje na osnovi slike (VS, angl. visual
servoing), ki se pogosto uporablja v mobilni robotiki. Glavni poudarek je na
razvoju mobilnega robotskega sistema, ki lahko avtonomno opravi podano nalogo
le na podlagi vizualnih informacij od kamere, nameščene na mobilnem sistemu.

Pri vodenju na osnovi slike se za določitev regulacijskega pogreška uporabljajo t.
i. značilke. Značilke so neodvisne spremenljivke, ki opisujejo določen vizualni
signal, torej lahko z njimi opišemo točke, črte, kroge, območje objekta, kote
med črtami itd. Regulacijski pogrešek splošne regulacijske sheme pri vodenju na
osnovi slike lahko zapišemo kot razliko med vektorjem želenih značilk xref (t) in
vektorjem trenutnih značilk x(y(t), ζ) [27]

e(t) = xref (t)− x(y(t), ζ) (3.56)

K-ti element vektorja značilk x(y(t), ζ) ∈ RK v (3.56) je pridobljen iz meritev
na podlagi slike y(t) (npr. pozicija, območje ali oblika vzorcev na sliki) in
dodatnega časovno nespremenljvega znanja o sistemu ζ (npr. notranji parametri
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kamere, znane lastnosti opazovane scene, omejitve sistema). Eden od ključnih
izzivov pri načrtovanju vodenja na osnovi slike je ustrezna opredelitev vektorja
značilk, saj se ta vektor uporablja za določanje regulacijskega pogreška. Če je
vektor značilk neustrezno določen, lahko obstaja več situacij, kjer je regulacijski
pogrešek najmanjši — problem lokalnih minimumov. Nekatere značilke so
primerne samo za določene vrste gibanja (npr. samo translacija) in so lahko
popolnoma neprimerne za nekatere druge vrste gibanja (npr. translacija z
rotacijo). Če značilke niso skrbno izbrane, lahko v nekaterih situacijah pride do
neželenih, nepotrebnih ali celo nepričakovanih ukrepov vodenja — težava, znana
kot samovoljnost kamere (angl. camera retreat). Tekom sledenja lahko nekatere
značilke zapustijo vidno polje kamere, kar lahko onemogoči dokončanje naloge
vodenja na osnovi slike, zato mora algoritem vodenja preprečiti tovrstne situacije.
To lahko doseže z uporabo alternativnih značilk, če se nekatere neizogibno
izgubijo, ali z oceno lokacije značilk, ki so začasno izven vidnega polja.

Glede na definicijo vektorja značilk x lahko vodenja na osnovi slike razvrstimo v
tri glavne kategorije [28]: položajno vodenje na osnovi slike (PBVS, angl. position-
based visual servoing), direktno vodenje na osnovi slike (IBVS, angl. image-based
visual servoing) in hibridno vodenje na osnovi slike (HVS, angl. hybrid visual
servoing). V primeru PBVS je regulacijski pogrešek opredeljen kot razlika
med želeno in trenutno lego robota v tridimenzionalnem delovnem prostoru.
V strukturi vodenja PBVS se kamera uporablja za oceno tridimenzionalnih
položajev objektov in robota iz slike, ki je projekcija realnega okolja. Zato
je mogoče tudi tukaj neposredno uporabiti vse do zdaj predstavljene načine
vodenja. Običajno je mogoče s PBVS doseči optimalne premike, vendar ta pristop
zahteva točno kalibracijo kamere, drugače ni možno odpraviti pravega pogreška
vodenja. Po drugi strani je regulacijski pogrešek pri IBVS definiran neposredno
v dvodimenzionalnem prostoru slike (npr. kot razlika med slikovnima točkama),
zato ima točnost kalibracije kamere manjši vpliv na IBVS. Vendar pa IBVS
običajno dosega manj optimalne trajektorije, kot jih je mogoče doseči s pristopom
PBVS. IBVS je tudi bolj dovzeten za težave, ki jih povzroča samovoljnost kamere
(primer kjer se kamera z rotacijo bliža cilju, ga preseže v normalni smeri in se
nato vrača nazaj), če značilke niso pravilno izbrane. Pristopi IBVS so še posebej
zanimivi, saj omogočajo opredelitev naloge neposredno na sliki in regulacijski
pristop, znan kot nauči-s-prikazom (angl. teach-by-showing). HVS skuša združiti
dobre lastnosti regulacijskih shem PBVS in IBVS. Nekatere regulacijske sheme
preklapljajo med PBVS in IBVS v skladu s kriterijem preklopa, ki na podlagi
trenutnih stanj sistema izbere najprimernejši način vodenja [29]. V nekaterih
drugih HVS je regulacijski pogrešek sestavljen iz značilk dvodimenzionalnega
slikovnega prostora kot tudi značilk tridimenzionalnega delovnega prostora [30,
31]. Še posebej zahtevno je vodenje na osnovi slike neholonomičnih sistemov
[32–35]. Sheme vodenja na osnovi slike se včasih uporabljajo v kombinaciji z
nekaterimi dodatnimi senzorji [36], ki lahko podajo dodatne podatke ali olajšajo
obdelavo slike.

V [27, 37] so avtorji predstavili splošni pristop načrtovanja vodenja na osnovi
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slike, ki ga je mogoče uporabiti ne glede na njegovo kategorijo. Vzemimo primer,
ko je vektor referenčnih značilk v (3.56) časovno nespremenljiv (xref (t) = xref =
const.). Običajno se uporabi hitrostni regulator. V tem primeru lahko zapišemo
vhodni vektor kot kombinacijo vektorja translatorne hitrosti v(t) in vektorja
kotne hitrosti ω(t) v kombiniranem vektorju uT (t) = [vT (t), ωT (t)] ∈ RM . V
splošnem sta tako vektor translatorne hitrosti kot vektor kotne hitrosti nekega
objekta (v tridimenzionalnem prostoru) sestavljena iz treh hitrosti: vT (t) =
[vx(t), vy(t), vz(t)] in ωT (t) = [ωx(t), ωy(t), ωz(t)]. Vendar pa imata v kolesni
mobilni robotiki ta dva vhodna vektorja običajno nekaj ničelnih elementov, saj se
mobilni robot v normalnih voznih razmerah premika po ravnini in ne pričakujemo
prevračanja ali dvigovanja. Razmerje med hitrostjo premika uT (t) in hitrostjo
spreminjanja značilk ṡT (t) lahko zapišemo kot

ẋ(t) = L(t)u(t) (3.57)

kjer je matrika L(t) ∈ RK ×RM znana kot interakcijska matrika. Iz relacij (3.56)
in (3.57) lahko določimo hitrost spreminjanja pogreška

ė(t) = −L(t)u(t) (3.58)

Regulirni signal u(t) mora minimizirati pogrešek e. Če je zaželeno eksponentno
padanje pogreška e v obliki ė(t) = −ge(t), g > 0, lahko izpeljemo sledeči
regulacijski zakon

u(t) = gL†(t)e(t) (3.59)

kjer je L†(t) Moore-Penroseov psevdoinverz interakcijske matrike L(t). Če ima
matrika L(t) poln rang, je njen psevdoinverz enak L†(t) = (LT (t)L(t))−1LT (t).
V primeru da je interakcijska matrika kvadratna (K = M) in ni singularna
(det(L(t)) 6= 0), se izračun psevdoinverza v (3.59) poenostavi v običajno inverzno
matriko L−1(t).

V praksi je znana le približna vrednost prave interakcijske matrike. Zato lahko v
regulacijskem zakonu (3.59) uporabimo samo oceno interakcijske matrike L̂(t)
ali njenega psevdoinverza L̂†(t)

u(t) = gL̂†(t)e(t) (3.60)

Oceno psevdoinverzne interakcijske matrike L̂†(t) lahko določimo z linearizacijo
sistema okoli njegovega trenutnega stanja (L̂†(t) = L̂†t(t)) ali okoli njegovega
želenega (referenčnega) stanja (L̂†(t) = L̂†ref (t)). Včasih lahko uporabimo tudi
kombinacijo v obliki L̂†(t) = 1

2 (L̂ref (t) + L̂t(t))† [37].

Če vstavimo (3.60) v (3.58), dobimo diferencialno enačbo zaprtozančnega sistema

ė(t) = −gL(t)L̂†(t)e(t) (3.61)

Funkcijo Ljapunova V (t) = 1
2e

T (t)e(t) lahko uporabimo za preverjanje stabilnosti
zaprtozančnega sistema (3.61). Odvod funkcije Ljapunova je

V̇ (t) = −geT (t)L(t)L̂†(t)e(t)
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Zadosten pogoj za globalno stabilnost sistema (3.61) je izpolnjen, če je matrika
L(t)L̂†(t) pozitivno definitna. V primeru, da je število opazovanih značilk K
enako številu regulirnih veličin M , torej K = M , ter imata matriki L(t) in L̂†(t)
poln rang, je zaprtozančni sistem (3.61) stabilen, če le ocena matrike L̂†(t) ni
pregroba [27]. Vendar je potrebno opozoriti, da v primeru IBVS ni preprosto
izbrati ustreznih značilk v slikovnem prostoru, ki odpravijo problem vodenja v
delovnem prostoru.

Primer 3.16

Kamera C je nameščena na kolesnem mobilnem robotu R z diferencialnim
pogonom na tRC = [0, 0, 0,5]T z orientacijo RR

C = Rx(90°)Ry(−90°)Rx(45°).
Parametri kamere so (model kamere je opisan v poglavju 5.2.4): αxf = αyf =
300, γ = 0 (brez striga), središče slike pa je v središču slike z dimenzijo 1024 krat
768. Načrtajte IBVS, ki vodi mobilnega robota iz začetne lege [x(0), y(0), ϕ(0)] =
[1 m, 0 m, 100°] do ciljne pozicije xref = 4 m in yref = 4 m. Zavoljo poenostavitve
predpostavimo, da je na sliki vidno središče vrtenja mobilnega robota.

Rešitev

Kamera opazuje prizor pred mobilnim robotom. Ker je kamera nameščena brez
možnosti zasuka okoli središča optične osi, uporabimo razklopljeno vodenje (angl.
decoupled control) neposredno na podlagi slikovnega pogreška med opazovano
ciljno pozicijo in sliko središča rotacije robota. Možna implementacija rešitve
v Matlabu je prikazana v programu 3.15. Dobljena pot mobilnega robota je
prikazana na sliki 3.36, pot opazovanega cilja na sliki pa je prikazana na 3.37.
Regulirni signali so prikazani na sliki 3.38. Rezultati potrjujejo uporabnost IBVS.
Robot doseže ciljno lego, saj je opazovana značilka (cilj) ves čas vidna (slika
3.37).

Program 3.15
./src/ctr/example_diff_vs_point.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :15; % Čas simulacije
3 r = 0.5; % Razdalja vmesne točke od cilja
4 dTol = 1; % Toleran čna razdalja od vmesne točke za preklop
5 qRef = [4; 4; 0]; % Referen čna lega
6 q = [1; 0; 100/180* pi ]; % Začetna lega
7

8 % Kamera
9 alphaF = 300; % % alpha *f, v px/m

10 s = [1024; 768]; % Dimenzije zaslona , v px
11 c = s/2; % Optično sredi šče, v px
12 S = [alphaF , 0, c(1); 0, alphaF , c(2); 0, 0, 1]; % Notranji model kamere
13 RL2C = rotX(pi /2)* rotY(-pi /2)* rotX(pi /4); tL2C =[0;0;0.5]; % Lega kamere
14 % Simulacija kamere
15 p0P = S*RL2C . ’*([0; 0; 0]- tL2C ); p0P = p0P/p0P (3);
16 RW2L = rotZ(-q (3)); tW2L = [q (1:2); 0];
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17 pP = S*RL2C . ’*( RW2L . ’*([ qRef (1:2); 0]- tW2L)-tL2C ); pP = pP/pP (3);
18

19 u = [0; 0];
20 for k = 1: length (t)
21 if pP (1) <0 || pP (2) <0 || pP (1) >s(1) || pP (2) >s(2) % Nevidna značilka
22 u = [0; 0]; % Sledena značilka je izgubljena
23 else
24 D = sqrt(sum (( pP (1:2) - p0P (1:2)).^2));
25 if D<dTol % Ustavitev v bližini cilja
26 u = [0; 0];
27 else
28 u = [0, 0.002; 0.005 , 0]*( p0P (1:2) - pP (1:2));
29 end
30 end
31

32 % Simulacija gibanja robota
33 dq = [u(1)* cos(q (3)); u(1)* sin(q (3)); u (2)];
34 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
35 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
36 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
37

38 % Simulacija kamere
39 RW2L = rotZ(-q (3)); tW2L = [q (1:2); 0];
40 pP = S*RL2C . ’*( RW2L . ’*([ qRef (1:2); 0]- tW2L)-tL2C ); pP = pP/pP (3);
41 end
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Slika 3.36: Pot pridobljena z IBVS iz primera 3.16
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Slika 3.37: Pot opazovane značilke (cilja) v slikovnem prostoru iz primera 3.16
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3.4 Ocena optimalnega profila hitrosti
za znano pot

Kolesni mobilni roboti se morajo pogosto voziti po obstoječi vnaprej določeni
poti (npr. po cesti ali koridorju), ki je prostorsko določena z nekim parametrom
u kot xp(u), yp(u), u ∈ [uSP , uEP ]. Za vožnjo robota po tej poti je potrebno
določiti želeni hitrostni profil, če mora robot v najkrajšem času priti od neke
začetne točke (SP) do neke končne točke (EP) in pri tem upoštevati zmožnosti
robota ipd. Za vožnjo robota po takšni poti mora biti njegova pozicija odvisna
od časa x(t), y(t) z določenim hitrostnim profilom v(t), ω(t), kot bo prikazano v
nadaljevanju.

Predpostavimo poseben primer u = t, kjer je referenčna pot v bistvu trajektorija
z implicitno podanim hitrostnim profilom. Robot mora voziti po trajektoriji z
referenčnima hitrostma v(t) = vref (t) in ω(t) = ωref (t), izračunani iz referenčne
trajektorije z uporabo relacij (3.17) in (3.18).

Pri načrtovanju želenega hitrostnega profila za prostorsko podano pot, je potrebno
najti razpored u = u(t). Načrtovani hitrostni profil mora biti skladen z omejitvami
robota, kot sta največja hitrost in pospešek, ki ju lahko proizvajajo motorji ali pa
ki zagotavljata varno vožnjo brez vzdolžnega in bočnega drsenja koles. Referenčne
hitrosti so podobno kot v (3.17) in (3.18), izražene kot

v(t) =
√
x′p (u (t))2 + y′p (u (t))2

u̇ (t) = vp (u) u̇ (t) (3.62)

ω(t) =
x
′

p(u(t))y′′p (u(t))− y′p(u(t))x′′p (u(t))
x′p(u(t))2 + y′p(u(t))2 u̇(t) = ωp (u) u̇ (t)

in ukrivljenost je

κ(t) =
x
′

p(u(t))y′′p (u(t))− y′p(u(t))x′′p (u(t))(
x′p(u(t))2 + y′p(u(t))2

)3/2 = κp (u)

kjer črtice označujejo odvode po u, pike pa odvode po t. Časovni odvodi poti
upoštevajo razpored u(t) na način dx(t)

dt = dxp
du

du
dt = x

′

pu̇ (t), dy(t)
dt = dyp

du
du
dt =

y
′

pu̇ (t).

Glavna ideja načrtovanja hitrostnega profila je povzeta iz [38], ki se določi glede
na omejitev idealnega kotaljenja. To pomeni, da so regulirne hitrosti enake
dejanskim hitrostim robota (brez drsenja koles), kar dosežemo z omejitvijo
celotnega dovoljenega pospeška

a =
√
a2
t + a2

r

kjer sta
at = dv

dt ar = vω = v2κ (3.63)
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tangencialni in radialni pospešek. Največja vrednost pospeška, ki preprečuje
drsenje, je določena s silo trenja Ffric

aMAX = Ffric
m

= mgcfric
m

= gcfric

kjer je m masa vozila, g gravitacijski pospešek in cfric koeficient trenja. Največji
tangencialni pospešek aMAXt in radialni pospešek aMAXr se zaradi konstrukcije
vozila ponavadi razlikujeta in ju je mogoče eksperimentalno oceniti. Pomembno
je, da se skupni pospešek nahaja znotraj elipse

a2
t

a2
MAXt

+ a2
r

a2
MAXr

≤ 1 (3.64)

ali pa, v primeru časovno optimalnega načrtovanja, na njenem robu. V zavojih
na poti mora robot zaradi večjih radialnih pospeškov voziti počasneje. Zato za
oceno razporeda u(t) najprej na poti označimo prelomne točke (TP, angl. turning
points), kjer je absolutna vrednost ukrivljenosti lokalno največja. Parameter u je
v intervalu [uSP , uEP ]. Pozicije TP so označene z u = uTPi, kjer je i = 1, . . . , nTP
in nTP je število TP. V TP je translatorna hitrost lokalno najmanjša, tangencialni
pospešek naj bi bil 0, radialni pospešek pa je največji. Tangencialno hitrost v
TP lahko glede na (3.63) izračunamo kot

vp(uTPi) =
√

aMAXr

|κ(uTPi)|
(3.65)

Pred in po TP se lahko robot premika hitreje, ker je ukrivljenost manjša kot v
TP. Zato mora robot pred vsako TP upočasniti (u < uTPi) in po njej pospešiti
(u > uTPi) v skladu z omejitvijo pospeška (3.64).

Iz (3.62) sledi, da sta v(t) in vp(u) v vsaki fiksni točki na poti sorazmerni s
časovno odvisnim proporcionalnim faktorjem u̇(t). Najkrajši izvedljiv hitrostni
profil je torej določen z odvodom razporeda u̇(t), kjer minimiziramo največje
hitrostne profile, ki izpolnjujejo omejitve pospeška, kot je opisano v nadaljevanju.
Radialni in tangencialni pospešek sta izražena iz (3.63) z upoštevanjem (3.62)
kot

ar(t) =
(
x
′

p (u)2 + y
′

p (u)2
)
κp (u) u̇2 (t) = v2

p (u)κp (u) u̇2 (t) (3.66)

at(t) =
x
′

p(u)x′′p (u) + y
′

p(u)y′′p (u)√
x′p(u)2 + y′p(u)2

u̇2(t) +
√
x′p (u)2 + y′p (u)2

ü2 (t)

= dvp (u)
du u̇2 (t) + vp (u) ü (t)

(3.67)

kjer je zaradi krajšega zapisa izpuščena odvisnost od časa za u(t). Z mejnim
primerom (3.64) in (3.66) iz (3.67) dobimo optimalno diferencialno enačbo raz-
poreda

ü = ±aMAXt

√
1

x′2p + y′2p
−

(x′2p + y′2p )κ2
pu̇

4

a2
MAXr

−
x
′

px
′′

p + y
′

py
′′

p

x′2p + y′2p
u̇2 (3.68)
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Rešitev diferencialne enačbe najdemo z eksplicitno simulacijo z integracijo iz TP
naprej in nazaj po času. Pri pospeševanju uporabimo pozitiven predznak, pri
upočasnjevanju pa negativen predznak. Začetna pogoja u(t) in u̇ sta določena s
položajem vseh TP uTPi in z (3.66), ki pove, da je največja dovoljena vrednost
radialnega pospeška v TP enaka

u̇|TPi =
√

aMAXr(
x′p (uTPi)2 + y′p (uTPi)2

)
κp (uTPi)

(3.69)

Prikazan je le pozitivni začetni pogoj (3.69), ker mora biti u(t) strogo naraščajoča
funkcija. Diferencialne enačbe rešujemo, dokler ne najdemo kršitve omejitve
pospeška ali pa u zapusti interval [uSP , uEP ].

Kršitev se običajno pojavi pri (pospešenem) premikanju iz trenutne TPi proti
naslednji TP (i − 1 ali i + 1) in vrednost translatorne hitrosti močno preseže
največjo dovoljeno vrednost, ki jo določa trajektorija. Rešitev diferencialne
enačbe (3.68) je tako sestavljena iz segmentov u̇ okoli vsake TP

u̇l = u̇l(u) ; u ∈ [ul, ul] , l = 1, . . . , nTP (3.70)

kjer je u̇l = u̇l (u (t)) odvod razporeda, odvisen od u in ul, ul pa so meje l-tega
segmenta. Tu so segmenti v (3.70) podani kot funkcije od u, čeprav je simulacija
funkcije (3.68) izvedena v času, ker časovni zamik (čas, potreben za prihod v
TP) ni znan. Kar je znano na tej točki, je relativni časovni interval, ki ustreza
rešitvi vsakega segmenta u̇l.

Rešitev časovno optimalnega hitrostnega profila, pridobljena s pospeševanjem
na meji zdrsa (maksimalno pospeševanje) celotne trajektorije, je možna, če
unija intervalov pokriva celoten interval zanimanja [uSP , uEP ] ⊆

⋃nTP
l=1 [ul, ul].

Dejanski u̇ najdemo z minimizacijo posameznih maksimalnih profilov v okolici
TP-jev

u̇ = min
1≤l≤nTP

u̇l(u) (3.71)

Absolutni čas, ki ustreza razporedu u(t), dobimo iz pretvorbe u̇ (u (t)) = du
dt , da

dobimo dt = u̇−1(u)du in izvedemo integracijo

t =
∫ uEP

uSP

du
u̇(u) = t(u)

kjer u̇(u) ne sme postati 0. V našem primeru je iskana časovno optimalna rešitev,
zato je hitrost (tudi u̇(u)) vedno večja od 0. Izraz u̇(u) = 0 bi namreč pomenil,
da je hitrost enaka nič, ko bi se sistem ustavil – to pa ne more voditi do časovno
optimalne rešitve.

Začetne (v SP) in končne (v EP) hitrosti se lahko obravnavajo na naslednji način.
SP in EP obravnavamo kot običajne TP, kjer so začetne hitrosti vSP , vp(uSP ),
vEP , vp(uEP ) znane, zato lahko izračunamo začetne pogoje za u̇SP = vSP

vp(uSP ) ,
u̇EP = vEP

vp(uEP ) . Če so ti začetni pogoji za SP ali EP večji od rešitve za u̇

(upoštevajoč vse TP), rešitev ne obstaja, ker bi bilo nemogoče priti skozi prvo



3.4. Ocena optimalnega profila hitrosti za znano pot 145

TP, tudi če robot maksimalno (popolnoma) zavira. Če rešitev za dane hitrosti v
SP in EP obstaja, vključimo tudi segmente u̇, izračunane za SP in EP v (3.70)
in (3.71).

Iz izračunanega razporeda u(t), u̇(t), je referenčna trajektorija podana kot x(t) =
xp (u (t)) in y(t) = yp (u (t)) ter referenčna hitrost z (3.17) in (3.18).

Primer 3.17

Izračunajte optimalni hitrostni profil, ki bo omogočil najkrajši čas potovanja
po poti xp(u) = cos(u), yp(u) = sin(2u) (na sliki 3.39), kjer je u ∈ [0, 2π], ter
upošteval največji tangencialni aMAXt = 2 m/s2 in radialni pospešek aMAXr =
4 m/s2.

x [m]

y
[m

]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Slika 3.39: Pot
.

Izračunajte razpored u(t) in hitrostna profila v(u), v(t).

Rešitev

Za izračun optimalnega razporeda u(t) uporabimo algoritem, predstavljen v tem
poglavju. Najprej moramo izračunati vse TP z začetnimi pogoji, ki so podani v
(3.65) in (3.69), nato pa simulirati rešitve za vsako TP z uporabo (3.68). Končno
minimiziramo časovni odvod razporeda glede na (3.71).
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Možna izvedba rešitve je podana v programu 3.16 (zanemarite dele kode za
omejevanje hitrosti, ki bi jih lahko ovrednotili, če bi bila spremenljivka velCnstr
nastavljena na true). Optimalna določitev razporeda za primer 3.17 je prikazana
na slikah od 3.40 do 3.42. Iz slike 3.40 je razvidno, da je rešitev za vsako TP
integrirana vse do točke, kjer so kršene omejitve pospeška, kar je označeno s
tanko linijo. Končna rešitev je označena z odebeljeno krivuljo.

Program 3.16
./src/ctr/example_velocity_profile_planning.m

1 % Definicija trajektorije v obliki funkcij
2 x = @(u) cos(u); y = @(u) sin (2*u); % Pot
3 dx = @(u) -sin(u); dy = @(u) 2* cos (2*u); % Prvi odvod
4 ddx = @(u) -cos(u); ddy = @(u) -4* sin (2*u); % Drugi odvod
5 v = @(u) sqrt(dx(u).^2 + dy(u ).^2); % Tangencialna hitrost
6 w = @(u) (dx(u).* ddy(u)-dy(u).* ddx(u ))./( dx(u ).^2+ dy(u ).^2); % Kotna hitrost
7 kappa = @(u) w(u)./v(u); % Ukrivljenost
8 dv = @(u) (dx(u).* ddx(u) + dy(u).* ddy(u))./v(u);
9

10 u = 0:0.001:2* pi; % Čas
11 arMax = 4; atMax = 2; % Omejitvi pospe ška
12 vSP = 0.2; vEP = 0.1; % Začetna in končna hitrost
13 uSP = u(1); uEP = u(end ); % Začetni in končni položaj
14 uTP = []; % Točke zavojev
15 for i = 2: length (u)-1 % Določitev točk zavojev
16 if all(abs( kappa (u(i))) > abs( kappa (u([i-1, i +1]))))
17 uTP = [uTP , u(i)];
18 end
19 end
20 up0 = sqrt( arMax ./ abs(v(uTP ).*w(uTP ))) ; % Odvodi v točkah zavojev
21

22 velCnstr = false ; % Omogo či omejitev hitrosti
23 if velCnstr
24 vMax = 1.5; % Omejitev hitrosti
25 for i = 1: length (uTP) % Prilagodi uTP glede na hitrostno omejitev
26 vvu = v(uTP(i)); vvt = vvu*up0(i);
27 if abs(vvt) > vMax , up0(i) = abs(vMax/vvu ); end
28 end
29 % Dodaj zahtevo za začetno in končno hitrost
30 uTP = [uSP , uTP , uEP ]; up0 = [vSP/v(uSP), up0 , vEP/v(uEP )];
31 end
32

33 Ts = 0.001; % Rač unski korak
34 N = length (uTP ); ts = cell (1,N); us = cell (1,N); ups = cell (1,N);
35 for i = 1:N % Zanka čez vse točke zavojev
36 uB = uTP(i); upB = up0(i); tB = 0;
37 uF = uTP(i); upF = up0(i); tF = 0;
38 uBs =[]; upBs = []; tBs = []; uFs = []; upFs =[]; tFs = []; % Spomin
39 goB = true; goF = true;
40

41 while goB || goF
42 % Integracija nazaj od točke zavoja
43 if uB > uSP && goB
44 dxT = dx(uB ); dyT = dy(uB );
45 ddxT = ddx(uB ); ddyT = ddy(uB );
46 vT = v(uB )* upB; wT = w(uB )* upB; kappaT = kappa (uB );
47 arT = vT*wT; atT = atMax *sqrt (1 - (arT/ arMax )^2);
48

49 if velCnstr && abs(vT) > vMax
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50 upB = vMax/v(uB ); upp = -dv(uB )* upB ^2/v(uB );
51 elseif abs(arT)- arMax > 0.001
52 arT = arMax ; atT = 0; upp = 0; goB = false ;
53 else
54 atT = -real(atT );
55 upp = real(- atMax *sqrt (1/( dxT ^2 + dyT ^2) - ...
56 (dxT ^2 + dyT ^2)* kappaT ^2* upB ^4/ arMax ^2) - ...
57 (dxT*ddxT + dyT*ddyT )/( dxT ^2 + dyT ^2) * upB ^2);
58 end
59

60 uBs = [uBs; uB ]; upBs = [upBs; upB ]; tBs = [tBs; tB ]; % Shranjevanje
61 tB = tB + Ts;
62 uB = uB - upB*Ts; % Eulerjeva integracija
63 upB = upB - upp*Ts; % Eulerjeva integracija
64 else
65 goB = false ;
66 end
67

68 % Integracija naprej of točke zavoja
69 if uF < uEP && goF
70 dxT = dx(uF ); dyT = dy(uF );
71 ddxT = ddx(uF ); ddyT = ddy(uF );
72 vT = v(uF )* upF; wT = w(uF )* upF; kappaT = kappa (uF );
73 arT = vT*wT; atT = atMax *sqrt (1 - (arT/ arMax )^2);
74

75 if velCnstr && abs(vT) > vMax
76 upF = vMax/v(uF ); upp = -dv(uF )* upF ^2/v(uF );
77 elseif abs(arT)- arMax > 0.001
78 arT = arMax ; atT = 0; upp = 0; goF = false ;
79 else
80 atT = real(atT );
81 upp = real (+ atMax *sqrt (1/( dxT ^2 + dyT ^2) - ...
82 (dxT ^2 + dyT ^2)* kappaT ^2* upF ^4/ arMax ^2) - ...
83 (dxT*ddxT + dyT*ddyT )/( dxT ^2 + dyT ^2) * upF ^2);
84 end
85

86 uFs = [uFs; uF ]; upFs = [upFs; upF ]; tFs = [tFs; tF ]; % Shranjevanje
87 tF = tF + Ts;
88 uF = uF + upF*Ts; % Eulerjeva integracija
89 upF = upF + upp*Ts; % Eulerjeva integracija
90 else
91 goF = false ;
92 end
93 end
94

95 ts{i} = [tBs; tB+tFs (2: end )];
96 us{i} = [ flipud (uBs ); uFs (2: end )];
97 ups{i} = [ flipud (upBs ); upFs (2: end )];
98 end
99

100 % Iskanje minimuma med vsemi profili
101 usOrig = us;
102 for i = 1:N -1
103 d = ups{i+1} - interp1 (us{i}, ups{i}, us{i +1});
104 j = find(d(1: end -1).* d(2: end )<0, 1); % ups{i} je pribli žno enak ups{i+1}
105 % Iskanje bolj natan čnega u-ja , kjer sta profila ups{i} in ups{i+1} enaka
106 uj = us{i+1}(j) + (us{i+1}(j+1) - us{i+1}(j))/(d(j+1) -d(j))*(0 -d(j));
107 rob = interp1 (us{i}, ups{i}, uj );
108

109 keep = us{i} < uj;
110 us{i} = [us{i}( keep ); uj ]; ups{i} = [ups{i}( keep ); rob ];
111 keep = us{i+1} > uj;
112 us{i+1} = [uj; us{i+1}( keep )]; ups{i+1} = [rob; ups{i+1}( keep )];
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113 end
114

115 % Konstrukcija končne rešitve
116 tt = interp1 ( usOrig {1} , ts {1} , us {1}); uu = us {1}; uup = ups {1};
117 for i = 2:N
118 ti = interp1 ( usOrig {i},ts{i},us{i});
119 tt = [tt; ti + tt(end) - ti (1)];
120 uu = [uu; us{i} + uu(end) - us{i }(1)];
121 uup = [uup; ups{i}];
122 end
123 vv = v(uu ).* uup;
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Slika 3.40: Optimalno določen razpored, ki poišče najmanjši profil u̇ vseh prelo-
mnih točk (TP)
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Slika 3.41: Optimalni razpored u(t), ki je nelinearna funkcija, čeprav je v tem
primeru videti skoraj linearna
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Slika 3.42: Optimalni hitrosti v(u) in v(t)

Primer 3.18

Razširite primer 3.17, da vključuje tudi zahteve za začetno in končno hitrost:
vSP = 0,2 m/s in vEP = 0,1 m/s. Poleg tega upoštevajte, da je največja hitrost
omejena na vMAX = 1,5 m/s.

Izračunajte razpored u(t) in profile hitrosti v(u), v(t).

Rešitev

Kodo iz primera 3.17 je mogoče spremeniti tako, da vsebuje dodatne zahteve.
Zahteve za začetno in končno hitrost se obravnavajo podobno kot v drugih TP. SP
in EP sta obravnavani kot novi TP, katerih začetni pogoji so uSP = 0, uEP = 2π,
u̇SP = vSP

vp(uSP )
in u̇EP = vEP

vp(uEP ) .

Omejitve hitrosti se upoštevajo, če je spremenljivka velCnstr v programu 3.16
nastavljena na true. Optimalna določitev razporeda za primer 3.18 je prikazana
na slikah 3.43 – 3.45.
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Slika 3.43: Optimalno določen razpored, ki poišče najmanjši u̇ vseh prelomnih
točk (TP)
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Slika 3.44: Optimalni razpored u(t), ki je nelinearna funkcija, čeprav je v tem
primeru videti skoraj linearna



3.4. Ocena optimalnega profila hitrosti za znano pot 151

t [s]

v
[m
/

s]

1 2 3 4 5 6 7 8
0

0.5

1

1.5

u [1]

v
[m
/

s]

0 1 2 3 4 5 6
0

0.5

1

1.5

Slika 3.45: Optimalni hitrosti v(u) in v(t)
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4
Načrtovanje poti

4.1 Uvod

Načrtovanje poti od točke A do točke B, hkratno izogibanje oviram in upošteva-
nje sprememb v okolju so za človeka enostavne naloge, medtem ko kolesnemu
mobilnemu robotu predstavljajo izziv, ki ga mora (vsaj delno) premagati, da
postane avtonomen. Robot s pomočjo senzorjev z določeno negotovostjo zaznava
prostor okoli sebe in tako izdeluje ali dopolnjuje svoj zemljevid okolice. Za izračun
premikov do cilja se s pomočjo algoritmov odloča in načrtuje potrebne akcije.
Pri tem je potrebno upoštevati dinamične in kinematične omejitve robota.

Načrtovanje poti se uporablja za reševanje problemov na različnih področjih,
od preprostega načrtovanja poti znotraj znanega okolja do določitve ustreznega
zaporedja premikov za doseg cilja. Načrtovanje poti je pogosto omejeno na
vnaprej zgrajena okolja in okolja, ki jih lahko vnaprej dovolj dobro opišemo.
Načrtovanje poti se lahko uporablja v okoljih, ki so v celoti ali delno poznana, ter
v popolnoma neznanih okoljih, kjer zaznane informacije določajo želeno gibanje
robota.

Načrtovanje poti v znanih okoljih je aktualno področje raziskovanja, ki je temelj
kompleksnejših primerov, kjer okolje ni znano vnaprej. V nadaljevanju so pred-
stavljene najpogosteje uporabljene metode načrtovanja poti za kolesne mobilne
robote. Za nadaljnje branje o metodah načrtovanja poti glejte [1–3]. Najprej
podajmo definicije nekaj osnovnih pojmov pri načrtovanju poti.
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Slika 4.1: (a) Okolica robota z ovirami ter začetno in ciljno konfiguracijo; (b)
ena izmed možnih poti od začetne do ciljne konfiguracije

4.1.1 Okolica robota

Robot se giblje v okolju, ki je sestavljeno iz prostega območja in območja z
ovirami (slika 4.1). V prostem območju se nahajata začetna in ciljna konfigu-
racija – množica parametrov, ki določa robota v prostoru. Parametri običajno
vključujejo pozicijo in orientacijo robota, lahko pa tudi zasuke v njegovih sklepih.
Število teh parametrov je enako številu prostostnih stopenj robota.

Okolje, ki vsebuje premikajoče se ovire, imenujemo dinamično okolje, okolje,
ki se časovno ne spreminja, pa statično okolje. Pri znanem okolju je pozicija
ovir vnaprej znana. V nasprotnem primeru govorimo o neznanem okolju.

4.1.2 Načrtovanje poti

Načrtovanje poti je proces iskanja zvezne poti, ki bo robota pripeljala od začetne
do ciljne konfiguracije, tako da bo njegova celotna pot ležala v prostem območju,
kot je prikazano na sliki 4.1. Pri načrtovanju poti mobilni sistem uporablja
zemljevid okolja, ki je shranjen v njegovem spominu.

Stanje (ali konfiguracija) podaja možno lego mobilnega robota v okolju. Pred-
stavimo ga lahko kot točko v konfiguracijskem prostoru, ki vključuje vsa možna
stanja robota. Robot lahko preide iz enega stanja v drugo s pomočjo različnih
akcij. Ustrezno pot opišemo z zaporedjem akcij, ki vodijo robota od začetne
konfiguracije (oz. stanja) skozi nekaj vmesnih konfiguracij, potrebnih za doseg
ciljne konfiguracije (oz. stanja). Izbira akcije v trenutnem ali naslednjem stanju,
je odvisna od izbranega algoritma načrtovanja poti. Ta se glede na cenilko
(kriterijsko funkcijo) odloči, katero je naslednje najprimernejše stanje iz množice
ustreznih stanj. Cenilka je običajno določena z merjenjem razdalje, npr. najkrajša
evklidska razdalja do ciljne točke.
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Začetno in ciljno stanje pogosto povezuje več poti, ali pa pot sploh ne obstaja.
Običajno obstaja več izvedljivih poti, na katerih robot ne trči z ovirami. Izbor
zožimo z dodatnimi zahtevami ali kriteriji, ki določajo želeno optimalnost:

• dolžina poti naj bo najkrajša,

• ustrezna pot naj bo tista, ki jo robot lahko prevozi v najkrajšem možnem
času,

• pot naj bo čim bolj oddaljena od ovir,

• pot naj bo gladka, brez ostrih zavojev,

• pot naj upošteva omejitve gibanja robota (primer neholonomičnosti, kjer v
danem trenutku niso možne vse smeri vožnje).

4.1.3 Konfiguracija in konfiguracijski prostor

Stanje mobilnega sistema v nekem okolju imenujemo konfiguracija in jo opišemo
z n podatki, ki predstavljajo vektor stanj q = [q1, . . . , qn]T , kjer je n število
prostostnih stopenj. Stanje q je točka v n-dimenzionalnem prostoru, ki ga
imenujemo konfiguracijski prostor Q (angl. configuration space) in predstavlja
vse možne konfiguracije mobilnega sistema glede na njegov kinematični model.

Del konfiguracijskega prostora, ki predstavlja ovire Oi, označimo z Qobst =
⋃
iOi.

Torej je prosti del okolja brez ovir Qfree enak

Qfree = Q−Qobst

in predstavlja prostor, kjer lahko mobilni sistem načrtuje svoje gibanje.

Predpostavimo, da imamo robota krožne oblike, ki je zmožen le translacij v
ravnini, torej ima dve prostostni stopnji q = [x, y]T . Njegovo konfiguracijo
lahko obravnavamo točkovno in jo enostavno predstavimo s točko njegovega
centra x, y. Konfiguracijski prostor Q pa določimo s pomikanjem robota ob
oviri, tako da je ves čas v stiku z njo, kar prikazuje slika 4.2. Pri tem točka
centra robota, ki določa njegovo pozicijo, opiše mejo med Qfree in Qobs. Na ta
način razširimo dimenzije ovir za znano dimenzijo robota (njegov radij), da lahko
robota obravnavamo kot točko.

Še en primer konfiguracijskega prostora za trikotnega robota in ovire je prikazan
na sliki 4.3. Robot se lahko premika samo v smereh x in y (q = [x, y]T ).

Če za robota na sliki 4.3 predpostavimo, da je zmožen tudi rotacije, ima njegova
konfiguracija tri dimenzije q = [x, y, ϕ]T , njegov konfiguracijski prostor pa je
kompleksnejši. Poenostavljeno lahko konfiguracijski prostor določimo tako, da
obliki robota očrtamo krog, ki ima središče v točki centra robota. Dobljeni
prostor Qfree je v tem primeru nekoliko manjši kot dejanski prosti prostor, ker
ima očrtan krog večjo površino kot robot. Vendar pa to poenostavi problem
načrtovanja poti.
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Slika 4.2: (a) Krožni robot v okolju z oviro, z označeno začetno in ciljno konfigu-
racijo, (b) določitev konfiguracijskega prostora in (c) načrtovanje poti, ki okolje
(a) prevede v konfiguracijski prostor, kjer je robot predstavljen s točko svojega
centra
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Slika 4.3: (a) Pravokotna ovira in trikotni robot s točko, ki določa njegovo
konfiguracijo q, (b) določitev konfiguracijskega prostora, (c) prosti konfiguracijski
prostor Qfree in prostor ovir Qobs

4.1.4 Matematični zapis oblike in lege ovire v
okolici

Za izračun konfiguracijskega prostora robota in uporabo nadaljnjih poenostavitev
okolja je potreben matematični opis oblike in lege ovir v prostoru. Najpogostejša
pristopa za opis ovir sta: predstavitev meje s pomočjo oglišč in predstavitev s
polravninami.

Predstavitev ovir z zapisom meje s pomočjo oglišč

Ovira na tlorisu predstavlja m-strani poligon, ki ima m oglišč. Mejo ovire lahko
zapišemo z nizanjem oglišč v obratni smeri urinega kazalca, pri čemer so luknje
v ovirah in okoliška stena zapisane v nasprotni smeri, tj. v smeri urinega kazalca
(slika 4.4). To velja tako za zapis konveksnih kot tudi nekonveksnih poligonov.

Predstavitev ovir s presekom polravnin

Konveksni poligon z m oglišči lahko zapišemo kot unijo m polravnin, kjer je
vsaka določena s svojo enačbo premice f(x, y) ≤ 0 oz. ravnine f(x, y, z) ≤ 0 (tri-
dimenzionalne ovire). Slika 4.5 prikazuje primer tovrstnega opisa peterokotnika.
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Slika 4.4: Primer opisa ovire z nizom oglišč: luknja ovire je opisana z nizom
v smeri urinega kazalca, zunanja meja ovire pa z nizom v nasprotni smeri.
Leva stran vsakega usmerjenega linearnega segmenta pripada oviri (zasenčena
površina).

Slika 4.5: Primer opisa ovire s polravninami

Nekonveksne like in like z luknjami opišemo s pomočjo operacij nad množicami,
npr. unija, presek, razlika množic itd.

4.2 Predstavitev okolja za načrtovanje
poti

Pred samim načrtovanjem poti moramo okolje predstaviti na poenoten matema-
tičen način, primeren za obdelavo z algoritmi iskanja poti.

4.2.1 Predstavitev z grafi

Konfiguracijski prostor je sestavljen iz prostega območja, ki predstavlja vse
možne konfiguracije (stanja) mobilnega sistema, in območja z ovirami. Če prosto
območje skrčimo in ga predstavimo s podmnožico konfiguracij (npr. središča
področij ali celic), ki vključujejo začetne in ciljne konfiguracije ter želeno število
vmesnih konfiguracij s prehodi med njimi, dobimo graf prehajanja stanj.
Stanja v grafu so prikazana s krogi in jih imenujemo vozlišča grafa, povezave
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Slika 4.6: Primer (a) uteženega grafa in (b) usmerjenega uteženega grafa

med njimi pa s črtami, ki predstavljajo akcije, potrebne za prehod med stanji.

Graf je utežen, če vsaki povezavi pripišemo neko utež ali ceno, ki je potrebna za
izvršitev akcije pri prehodu med stanjema te povezave. V usmerjenem grafu
(angl. directed graph) pa povezave označimo še s smerjo. V usmerjenem grafu
je cena odvisna od smeri prehoda, medtem kot je v neusmerjenem grafu možen
prehod v obeh smereh. Slika 4.6 prikazuje utežen in usmerjen utežen graf. Iskanje
poti v grafu prehajanja stanj je možno z različnimi algoritmi iskanja, kot je A?,
Dijkstrov algoritem itd.

4.2.2 Razcep na celice

Okolje lahko razdelimo na celice, ki predstavljajo enostavne geometrijske like.
Celice so konveksne, saj mora vsaka daljica, ki povezuje poljubni konfiguraciji v
celici, v celoti ležati znotraj celice. Po razcepu okolja na celice lahko izvedemo graf
prehajanja stanj, kjer so stanja določene točke v celici (npr. težišča), povezave
med stanji (vozlišča grafa) pa so možne le med sosednjimi celicami s skupnim
robom ali ogliščem.

Natančen razcep na celice

Razcep okolja na celice je natančen, če celice v celoti ležijo ali v prostem območju
ali v območju z ovirami. Natančen razcep je “brezizguben”, saj je unija vseh
prostih celic enaka prostemu konfiguracijskemu prostoru Qfree.

Primer natančnega razcepa na celice je navpičen razcep, prikazan na sliki 4.7. V
tem primeru se z navidezno navpično črto pomikamo čez okolico od leve proti
desni (meji). Vsakič, ko prečkamo oglišče katerega izmed večkotnikov, ustvarimo
navpično mejo med celicama, ki lahko poteka samo navzgor, samo navzdol ali pa
gor in dol od oglišča. Kompleksnost tega pristopa je močno odvisna od geometrije
okolice. V enostavnih okolicah bo število celic in povezav med njimi majhno. Z
večanjem števila poligonov (ovir) in njihovih oglišč, narašča tudi število celic.

Natančen razcep na celice lahko predstavimo z grafom prehajanja stanj, kjer so
vozlišča središča celic, prehodi med središči celic pa gredo skozi točke na središču



4.2. Predstavitev okolja za načrtovanje poti 161

1

2
3

4 5

6

9

11

12

10

87

13

14

1516

17

1

2 3

6

7 8

9

10

11 12

13

14

15 16

17

4 5

start

goal

Slika 4.7: Navpičen razcep na celice (zgoraj) in pripadajoč graf (spodaj) z vrisano
potjo med začetno in ciljno konfiguracijo (odebeljena črta)
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Slika 4.8: Približen razcep na celice je sestavljen iz dveh korakov: (a) na okolico
položimo mrežo celic enake velikosti in (b) označimo celice kot proste ali zasedene
(zasenčene celice)

mej med celicami.

Približen razcep na celice

Razcep okolja na celice je približen, ko posamezna celica vsebuje tako prosti
konfiguracijski prostor kot tudi oviro ali del nje. Celice, ki vsebujejo vsaj del
ovire, označimo kot zasedene, ostale pa so proste. Večinoma se uporablja razcep
na celice enakih velikosti, kjer dobimo mrežo zasedenosti (angl. occupancy
grid) (slika 4.8). Center vsake celice (na sliki 4.8 so proste celice pobarvane
z belo barvo) je v grafu predstavljen kot vozlišče. Povezave med celicami so
možne v štirih ali osmih smereh, odvisno od tega, ali je dovoljeno prehajanje v
diagonalni smeri. Omenjen pristop je zelo enostaven za uporabo, vendar lahko
zaradi konstantne velikosti celic pride do izgube informacij o okolici (ta razcep ni
“brezizguben”); npr. ovire se povečajo in obstoječi ozki prehodi med njimi lahko
izginejo pri približnem razcepu na celice. Glavna pomanjkljivost tega pristopa
je poraba pomnilnika, ki je za večja okolja velika, ne glede na to, ali so okolja
enostavna ali kompleksna.

Do manjše izgube informacij pri majhni porabi pomnilnika pride pri uporabi
spremenljive velikosti celic. Na okolje položimo eno celico, ki ga popolnoma
pokrije. Če je celotna celica v prostem območju ali območju z ovirami, ostane
takšna kot je. Če pa je le del nje pokrit z oviro, celico razdelimo na 4 manjše
celice. Postopek, imenovan štiriško drevo (angl. quadtree), ponavljamo, dokler
ni dosežena želena resolucija. Dobljeno razdelitev okolja na celice (slika 4.9) lahko
prav tako pretvorimo v graf stanj. Približen razcep na celice je enostavnejši od
natančnega, vendar lahko zaradi izgube informacij vodi do problema, ko proces
načrtovanja poti ne najde rešitve, čeprav le-ta obstaja.
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Slika 4.9: Približen razcep na celice z uporabo spremenljive velikosti celic —
štiriško drevo. Proste celice so označene z belo barvo, zasedene pa so zasenčene

Primer 4.1

Napišite program, ki z uporabo štiriškega drevesa razgradi okolje s pravokotnimi
ovirami. Program 4.1 ustvari naključno okolje z ovirami; v programu je določena
tudi funkcija za izračun štiriškega drevesa. Funkcija sprejme ovire, dimenzijo
okolja in želeno globino (število delitev) štiriškega drevesa ter vrne štiriško drevo
v obliki Matlab strukture.

Program 4.1: Implementacija štiriškega drevesa
./src/pth/example_quad_tree.m

1 bb = [0, 16, 0, 12]; % Dimenzija okolja : xa , xb , ya , yb
2 N = 10; % Š tevilo ovir
3 minDim = [0.1; 0.1]; % Minimalne dimenzije ovire : xMin in yMin
4 maxDim = [2; 2]; % Maksimalne dimenzije ovire : xMax in yMax
5 % Naklju čni zemljevid ovir , oglišča v stolpcu : x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4
6 obst = zeros (8, N);
7 for i = 1:N
8 p = [bb (1); bb (3)] + [diff(bb (1:2)); diff(bb (3:4))].* rand (2 ,1);
9 phi = 2* pi*rand (); d = minDim /2 + (maxDim - minDim )/2* rand ();

10 R = [cos(phi),-sin(phi ); sin(phi), cos(phi )];
11 v = repmat (p, 1, 4) + R*([ -1 , 1, 1,-1; -1,-1, 1, 1].* repmat (d, 1, 4));
12 obst (:,i) = reshape (v, [], 1);
13 end
14

15 tree = quadTree (obst , bb , 4); % Izdelava štiriškega drevesa globine 4
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Rešitev

Možna izvedba algoritma s štiriškim drevesom je podana v Matlab kodi v pro-
gramu 4.2. Rezultat algoritma na naključnem zemljevidu je prikazan na sliki
4.10.

Program 4.2: Razcep na celice s štiriškim drevesom
./src/pth/quadTree.m

1 function tree = quadTree (obst , bb , level )
2 % Izdelava štiriškega drevesa $tree$ globine $level >=0$ okoli ovir $obst$
3 % (vsak stolpec vsebuje oglišča ovire : x1 , y1 , x2 , y2 , ...) in
4 % za okolje dimenzij $bb$ (xa , xb , ya , yb)
5 minDim = [diff(bb (1:2)); diff(bb (3:4))]/2^ level ; % Minimalna velikost celice
6 % Osnovno vozli šče
7 tree (1). leaf = true; % % Ali je celica končno vozli šče?
8 tree (1). free = false ; % Ali je celica zasedena ?
9 tree (1). bounds = bb; % Meje celice : xa , xb , ya , yb

10 tree (1). center = [mean(bb (1:2)); mean(bb (3:4))]; % Center celice
11

12 id = 1; k = 2;
13 while id < k
14 occupied = isOccupied (tree(id ). bounds , obst );
15

16 d = [diff(tree(id ). bounds (1:2)) , diff(tree(id ). bounds (3:4))]/2;
17 if occupied && d(1) > minDim (1)/2 % Razdelitev celice na štiri nove celice
18 tree(id ). leaf = false ;
19 tree(id ). free = false ;
20

21 b = tree(id ). bounds ;
22 bs = [b(1) , b(1)+d(1) , b(3) , b(3)+d(2); ...
23 b(1)+d(1) , b(2) , b(3) , b(3)+d(2); ...
24 b(1) , b(1)+d(1) , b(3)+d(2) , b(4); ...
25 b(1)+d(1) , b(2) , b(3)+d(2) , b (4)];
26 for i = 1:4
27 tree(k). leaf = true;
28 tree(k). free = false ;
29 tree(k). bounds = bs(i ,:);
30 tree(k). center = [mean(bs(i ,1:2)); mean(bs(i ,3:4))];
31 k = k + 1;
32 end
33 elseif ~ occupied
34 tree(id ). free = true;
35 end
36 id = id + 1;
37 end
38

39 % Izdelava vidljivostnega grafa
40 a = zeros (2, length (tree )*4); leafs = zeros (1, length (tree ));
41 for i = 1: length (tree)
42 a(:,i*4 -3:i*4) = tree(i). bounds ([1 , 2, 2, 1; 3, 3, 4, 4]);
43 leafs (i) = tree(i). leaf;
44 end
45 offset = [-1, 1, 1,-1; -1,-1, 1, 1]/2.* repmat (minDim , 1, 4);
46 for i = 1: length (tree)
47 tree(i). neighbours = [];
48 if tree(i). leaf
49 b = tree(i). bounds ([1 , 2, 2, 1; 3, 3, 4, 4]) + offset ;
50 c = reshape ( inpolygon (a(1 ,:) , a(2 ,:) , b(1 ,:) , b(2 ,:)) , 4, []);
51 tree(i). neighbours = setdiff (find(any(c).* leafs ), i);
52 end
53 end
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54 end
55

56 function occupied = isOccupied (bounds , obst)
57 occupied = false ;
58 pb = bounds ([1 , 2, 2, 1, 1; 3, 3, 4, 4, 3]);
59 for j = 1: size(obst , 2) % Sprehod čez vse ovire
60 pa = reshape (obst (:,j), 2, []); N = size(pa , 2);
61 ina = inpolygon (pa (1 ,:) , pa (2 ,:) , pb (1 ,:) , pb (2 ,:));
62 inb = inpolygon (pb (1 ,:) , pb (2 ,:) , pa (1 ,:) , pa (2 ,:));
63 if any(ina) || any(inb) % Ali so oglišča v oviri ali celici ?
64 occupied = true; break ;
65 else % Ali so kakšna prese čišča robov ?
66 for k = 1: size(pb , 2) -1 % Sprehod čez vse mejne robove
67 for i = 1:N % Sprehod čez robove ovir
68 a1 = [pa(:,i); 1]; a2 = [pa(:, mod(i,N )+1); 1];
69 b1 = [pb(:,k); 1]; b2 = [pb(:,k+1); 1];
70 pc = cross ( cross (a1 , a2), cross (b1 , b2 ));% Prese čišče
71 if abs(pc (3)) > eps
72 pc = pc/pc (3);
73 da = a2 -a1; ca = pc -a1; ea = (ca.’*da )/( da.’*da );
74 db = b2 -b1; cb = pc -b1; eb = (cb.’*db )/( db.’*db );
75 if eb >eps && eb <1 && ea >eps && ea <1
76 occupied = true; break ;
77 end
78 end
79 end
80 if occupied , break ; end
81 end
82 end
83 if occupied , break ; end
84 end
85 end
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Slika 4.10: Razcep okolja z naključnimi ovirami s pomočjo štiriškega drevesa. Na
štiriško drevo je položena mreža, ki povezuje središča vseh sosednjih celic.

4.2.3 Zemljevid cest

Zemljevid cest, sestavljen iz črt, krivulj in njihovih stičišč, podaja povezljivost
prostega območja okolja. Proces načrtovanja poti mora povezati začetno in ciljno
točko z obstoječimi povezavami na zemljevidu in poiskati povezano zaporedje
cest. Postavitev cest je odvisna od geometrije okolice. Cilj je uporabiti najmanjše
število cest, ki robotu omogočajo dostop do kateregakoli dela prostega območja. V
nadaljevanju so predstavljeni trije načini izdelave zemljevida cest: graf vidljivosti,
Voronojev graf in triangulacija prostora.

Graf vidljivosti

Graf vidljivosti je sestavljen iz vseh možnih povezav med dvema ogliščema, ki v
celoti ležita v prostem območju. To pomeni, da so za vsako oglišče vzpostavljene
povezave z vsemi (drugimi) oglišči, ki so vidna z njegove pozicije. Pri tem začetno
in ciljno točko obravnavamo kot dodatni oglišči. Povezave ustvarimo tudi med
sosednjima ogliščema istega poligona. Primer grafa vidljivosti je prikazan na
sliki 4.11a. Pot, dobljena s pomočjo grafa vidljivosti, je najkrajša možna, saj
so ceste speljane kar se da blizu oviram. Da rešimo problem trka robota in
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Slika 4.11: Zemljevid cest: (a) graf vidljivosti in (b) Voronojev graf

ovir, lahko le-te povečamo vsaj za polmer robota, kot je opisano v podpoglavju
4.1.3. Grafi vidljivosti so dokaj enostavni za uporabo, vendar z večanjem števila
ovir in njihove kompleksnosti narašča število cestnih povezav in vozlišč, zato se
manjša njihova učinkovitost. Grafe vidljivosti lahko poenostavimo z odstranitvijo
redundantnih povezav, ki jih je možno nadomestiti z obstoječo krajšo povezavo.

Voronojev graf

Voronojev graf (slika 4.11b) je sestavljen iz odsekov cest, ki so najbolj oddaljeni
od ovir. To pomeni, da je povezava med dvema ovirama enaka razdalji do obeh
ovir.

Osnovni Voronojev graf (diagram) je opredeljen za ravnino z n točkami (npr.
točkovna ovira). Ravnina se razdeli na n območij, katerih meje sestavljajo
zemljevid. Vsako območje ima natanko eno izvorno točko in velja, da so vse
točke znotraj določenega območja bližje svoji izvorni točki, kot katerikoli drugi
izvorni točki (drugih območij). Na sliki 4.11 je prikazan primer splošnega
Voronojevega grafa za ravninsko okolje, v katerem so ovire poljubnih oblik
(trikotnik, pravokotnik, mnogokotnik itd.). Tu je prostor razdeljen na območja,
kjer ima vsako območje točno eno izvorno oviro. Vsaka točka znotraj določenega
območja je bližje izvorni oviri kot katerikoli drugi oviri.

Vožnja po takšni cesti zmanjšuje tveganje za trk robota z ovirami, kar je zaželeno,
ko je lega robota znana z neko negotovostjo zaradi merilnega šuma ali vodenja.
Zemljevid okolja, zgrajen iz poligonov, vsebuje tri značilneVoronojeve krivulje,
kot je prikazano na sliki 4.12. Voronojeva krivulja, ki ima enako razdaljo med:

• dvema ogliščema (premica),

• dvema robovoma (ista premica),

• ogliščem in daljico (parabola).

V cestno omrežje povežemo še začetno in ciljno konfiguracijo. Tako dobimo graf,
po katerem iščemo rešitev.
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Slika 4.12: Tipične Voronojeve krivulje

Kot smo že omenili, ta pristop maksimira oddaljenost robota do ovir, vendar
pridobljena dolžina poti še zdaleč ni optimalna (najkrajša). Robot s senzorji
oddaljenosti (npr. z ultrazvočnim ali laserskim pregledovalnikom razdalj) lahko
z enostavno regulacijo, kjer se giba na enaki oddaljenosti od vseh okoliških ovir,
sledi cestam po Voronojevem grafu. Roboti z bližinskimi tipali ali senzorji za
kratke razdalje pa imajo pri tem pristopu probleme z lokalizacijo, ki jih pri grafu
vidljivosti ne bi imeli.

Primer 4.2

Z uporabo Matlab funkcije voronoi izračunajte Voronojev graf za okolje na sliki
4.11. Koordinate okolja (o) in objektov (o1, o2, o3) so podane v programu 4.3.

Program 4.3: Oglišča ovir v okolju
./src/pth/param_map.m

1 o = 1000*[0.0149 , 0.0693; ...
2 1.6228 , 0.0679; ...
3 1.6241 , 1.0867; ...
4 0.0112 , 1.0854];
5 o1 = 1000*[0.4263 , 0.4569; ...
6 0.6144 , 0.6857; ...
7 0.3097 , 0.9414; ...
8 0.1190 , 0.7126];
9 o2 = 1000*[0.8151 , 0.2079; ...

10 1.0885 , 0.3008; ...
11 0.9644 , 0.6574; ...
12 0.8753 , 0.6278; ...
13 0.9706 , 0.3573; ...
14 0.7838 , 0.2927];
15 o3 = 1000*[1.3319 , 0.4865; ...
16 1.4723 , 0.5659; ...
17 1.3845 , 0.7112];
18 % Prosto območje je na desni strani od ovire
19 obstacles = { flipud (o), o1 , o2 , o3 };

Rešitev

S pomočjo Matlab funkcije voronoi lahko narišemo Voronojev graf za seznam
točk. Okolje na sliki 4.11 vključuje tudi like z robovi, ki so opisani z daljicami,
zato ni možno neposredno uporabiti funkcije voronoi. Vsako daljico lahko po-
ljubno natančno predstavimo z diskretno množico (enakomerno) porazdeljenih
pomožnih točk. S pomočjo funkcije voronoi lahko nato izračunamo aproksi-
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macijo Voronojevega grafa, kot je prikazano na sliki 4.13. Poleg iskanih robov
med ovirami dobimo s tem postopkom tudi veliko dodatnih robov, ki so na
sliki 4.13 označeni črtkano. Gre za robove, ki ločujejo pomožne točke, niso v
prostem prostoru ali pa so posledica nekonveksnosti ovir. Program 4.4 vsebuje
filtrirne mehanizme, ki odstranijo vse dodatne robove, tako da dobimo končno
aproksimacijo Voronojevega grafa — polno izvlečeni robovi na sliki 4.13.

Slika 4.13: Aproksimacija Voronojevega grafa z uporabo Matlab funkcije voronoi
in pomožnih točk za predstavitev robov

Program 4.4
./src/pth/example_voronoi.m

1 param_map ;
2

3 % Opis daljic z množico pomožni /( vmesnih ) točk
4 dMin = 50;
5 points = []; obst = [];
6 B = length ( obstacles );
7 for i = 1:B
8 ob = obstacles {i};
9 M = size(ob , 1);

10 for j = 1:M
11 k = mod(j, M)+1; % j+1
12 d = sqrt (( ob(j ,1) - ob(k ,1))^2 + (ob(j ,2) - ob(k ,2))^2);
13 n = ceil(d/dMin )+1;
14 x = linspace (ob(j ,1) , ob(k ,1) , n). ’;
15 y = linspace (ob(j ,2) , ob(k ,2) , n). ’;
16 points = [ points ; x(1: end -1) y(1: end -1)];
17 end
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18 obst = [obst; obstacles {i }([1: end ,1] ,:); nan (1 ,2)];
19 end
20

21 % Izračun Voronoijevih daljic iz množice pomožnih točk
22 [vx , vy] = voronoi ( points (: ,1) , points (: ,2));
23

24 % Odstanjevanje pomožnih (niso v prostem prostoru ) Voronoijevih robov
25 s = false (1, size(vx , 2));
26 for j = 1: size(vx , 2)
27 in = inpolygon (vx(:,j), vy(:,j), obst (: ,1) , obst (: ,2));
28 s(j) = all(in ==1);
29 end
30 ux = vx(:,s); uy = vy(:,s); % Pribli žni Voronoijevi robovi
31

32 % Odstranjevanje nazaklju čenih robov pri konveksnih objektih
33 r = [];
34 for j = 1: length (ux (:))
35 c = length (find (( ux (:) - ux(j )).^2 + (uy (:) - uy(j )).^2 < eps ));
36 if c==1
37 a = j; % Odkrita robna točka na nezaklju čenem robu
38 while true % Iskanje vseh točk na nezaklju čenem robu
39 if mod(a, 2) == 0, b = a -1; else b = a+1; end
40 r = [r, max(a,b )/2];
41 c = find (( ux (:) - ux(b )).^2 + (uy (:) - uy(b )).^2 < eps );
42 if length (c)>2, break ; end
43 a = c(c~=b);
44 end
45 end
46 end
47 ux(:,r) = []; uy(:,r) = [];
48

49 % Izris
50 plot ([ vx;nan (1, size(vx ,2))] , [vy;nan (1, size(vy ,2))] , ’b:’); hold on;
51 plot( points (: ,1) , points (: ,2) , ’b.’);
52 plot ([ ux;nan (1, size(ux ,2))] , [uy;nan (1, size(uy ,2))] , ’g-’, ’LineWidth ’, 1);
53 axis equal tight ;

Triangulacija prostora

Pri triangulaciji prostora je okolje razcepljeno na trikotne celice. Čeprav obstajajo
različni algoritmi triagulacije, je dober pristop, ki preprečuje ozke trikotnike, še
vedno aktualen raziskovalni problem [2]. Eden od možnih algoritmov je Delau-
nayeva triangulacija prostora, ki je dual Voronojevega grafa. V Delaunayevem
grafu središče vsakega trikotnika (središče očrtanega kroga) sovpada z vsakim
ogliščem Voronojevega poligona. Primer delaunayeve triangulacije prostora je
prikazan na sliki 4.14.

Iz pristopov, ki brezizgubno upodobijo okolico, je s pomočjo kasneje predstavljenih
algoritmov možno v končnem času dobiti informacijo, ali iskana pot obstaja ali
ne. Pravimo, da so ti pristopi popolni (angl. complete).
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Slika 4.14: Delaunayeva triangulacija prostora, kjer nekateri robovi trikotnika
sovpadajo z robovi ovir

Primer 4.3

Uporabite Delaunayevo triangulacijo prostora za okolje na sliki 4.11. Točke, ki
določajo meje ovir, so navedene v programu 4.3.

Rešitev

Za znana oglišča lahko v programskem okolju Matlab s pomočjo funkcije
DelaunayTri izračunamo Delaunayevo triangulacijo prostora, s funkcijo triplot
pa jo narišemo, kot je prikazano v programu 4.5.

Program 4.5: Delaunayeva triangulacija prostora
./src/pth/example_delaunay.m

1 param_map ;
2

3 points = cell2mat ( obstacles (:));
4 dt = delaunayTriangulation ( points );
5 triplot (dt , ’b-’); axis equal tight ;

4.2.4 Potencialno polje

Okolica je predstavljena s potencialnim poljem, ki ga lahko razumemo kot
namišljeno višino. Ciljna točka je na dnu, višina polja pa narašča z oddaljenostjo
od ciljne točke ter je na ovirah še višja. Postopek načrtovanja poti si lahko
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Slika 4.15: Potencialno polje za znano ciljno točko (zgoraj) ter ekvipotencialne
krivulje in izračunana pot za dve začetni točki (spodaj), kjer izračunana pot
doseže cilj (levo) in kjer je pot ujeta v nekonveksno oviro (desno)

predstavljamo kot premikanje žoge, ki se kotali po hribu navzdol do cilja v dolini,
kar je prikazano na sliki 4.15.

Potencialno polje je vsota privlačnega polja ciljne točke Uattr(q) in odbojnega
polja ovir Urep(q)

U(q) = Uattr(q) + Urep(q) (4.1)

Ciljna točka je globalni minimum potencialnega polja.

Privlačni potencial Uatr(q) v (4.1) je lahko določen tako, da je sorazmeren kva-
dratu evklidske razdalje do ciljne točkeD(q, qgoal) =

√
(x− xgoal)2 + (y − ygoal)2

kot
Uattr(q) = kattr

1
2D

2(q, qgoal)

kjer je katr pozitivna konstanta.
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Odbojni potencial Urep(q) naj bo zelo velik v bližini ovir, z oddaljenostjo od ovir
D(q, qobst) pa se zmanjšuje. Njegova vrednost je nič, ko je D(q, qobst) večja od
mejne vrednosti D0. Odbojni potencial je lahko predstavljen kot

Urep(q) =

 1
2krep

(
1

D(q,qobst) −
1
D0

)2
; D(q) ≤ D0

0 ; D(q) > D0

(4.2)

kjer je krep pozitivna konstanta, D(q, qobst) pa razdalja do najbližje točke na
najbližji oviri.

Za opis poti od začetne do ciljne točke mora robot slediti negativnemu gradientu
potencialnega polja (−∇U(q)).

Primer 4.4

Določite negativni gradient potencialnega polja (4.1).

Rešitev

Negativni gradient privlačnega polja (4.2.4) je

−∇Uattr(q) = −kattr
1
2

[
2(x− xgoal)
2(y − ygoal)

]
= kattr(qgoal − q)

in kaže v smeri od lege robota q do cilja qgoal, njegova dolžina pa je proporcionalna
razdalji od q do qgoal.

Določimo še negativni gradient odbojnega polja 4.2 za primer, ko je D(q) ≤ D0

−∇Urep(q) = −krep
(

1
Dobst

− 1
D0

)
−1
D2
obst

∇Dobst =

= krep

(
1

Dobst
− 1
D0

)
1

D3
obst

(q − qobst)

kjer je Dobst = D(q, qobst) =
√

(x− xobst)2 + (y − yobst)2. Vidimo, da smer
odbojnega polja vedno kaže stran od ovire, njegova jakost pa se zmanjšuje z
oddaljenostjo od ovire. Za primer, ko je Dobst > D0, pa je odbojni gradient
−∇Urep(q) = 0.

Pri predstavitvi okolja z uporabo potencialnega polja lahko robot preprosto
doseže ciljno točko s sledenjem negativnega gradienta potencialnega polja, ki
ga eksplicitno izračunamo iz znane pozicije robota. Glavna pomanjkljivost
tega pristopa je možnost ujetosti robota (tresenje – angl. jittering behaviour)
v lokalnem minimumu. Do tega lahko pride, če okolje vsebuje kakršnokoli
nekonveksno oviro (slika 4.15) in začne robot oscilirati med več enako oddaljenimi
točkami od ovire. Načrtovanje poti z uporabo potencialnega polja se lahko uporabi
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za izračun referenčne poti, ki ji mora robot slediti, ali pa pri vodenju gibanja za
usmerjanje robota v trenutni smeri negativnega gradienta.

Primer 4.5

Izračunajte potencialno polje iz slike 4.15 za okolico z ovirami. Koordinate ovir
so podane v programu 4.3.

Rešitev

Potencialno polje izračunamo s pomočjo enačb (4.1) – (4.2), kjer je pot izračunana
kot integral negativnega gradienta iz primera 4.4.

4.2.5 Načrtovanje poti z metodami vzorčenja pro-
stora

Do sedaj predstavljene metode za predstavitev okolja za namen planiranja poti so
zahtevale znano eksplicitno predstavitev prostega konfiguracijskega prostora. Z
večanjem dimenzije konfiguracijskega prostora postanejo te metode preveč časovno
potratne, zato lahko v teh primerih uporabimo metode vzorčenja prostora.

Pri načrtovanju poti z vzorčenjem prostora (angl. sampling-based path planning)
se naključno zajemajo točke iz okolja (konfiguracije robota), nato se s pomočjo
zaznavanja trka preverja, če le-te ležijo v prostem območju [4, 5]. Iz množice
zajetih točk in povezav med njimi, ki prav tako v celoti ležijo v prostem območju,
poiščemo pot med znano začetno in želeno ciljno točko.

Pri metodah vzorčenja prostora ni potreben izračun prostega konfiguracijskega
prostora Qfree, ki pri kompleksni postavitvi ovir in visokih prostostnih stopnjah
postane časovno zamuden, ampak ga predstavimo z naključnimi vzorci ter neodvi-
sno od geometrije okolice najdemo rešitev za širok spekter problemov. Prav tako
se izognemo velikemu številu celic, ki ga dobimo pri opisu z razcepom na celice, ter
zamudni implementaciji in računanju, ki spremljata uporabo natančnega razcepa
na celice. Zaradi vključitve stohastičnega mehanizma (naključni sprehod, angl.
random walk) v nekatere algoritme, npr. v RPP (angl. random path planner), ko
se iz točke, v kateri smo ujeti, rešimo s pomočjo premika po naključnih vzorcih
iz prostega območja, močno omilimo problem lokalnih minimumov, ki nas pesti
pri uporabi potencialnega polja.

Da bi zaznavanje trka zavzemalo čim manj računskega časa, ga preverjamo samo
za ovire, ki so dovolj blizu, da bi lahko trčile z robotom. Robot in ovire so lahko
omejeni z enostavnimi liki, tako da kompleksnejše preverjanje trka (med pravo
obliko robota in oblikami ovir) izvajamo samo, ko se dva lika prekrivata. V tem
primeru lahko trk zaznavamo na hierarhičen način, kjer večji lik, ki obkroža
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Slika 4.16: Razdelitev večjega lika na dva manjša pri hierarhičnem zaznavanju
trka robota

celotnega robota, zamenjamo z dvema manjšima, ki obkrožata vsak svojo polovico
robota, kot je to prikazano na sliki 4.16. Če se kateri izmed likov prekriva z oviro,
ga ponovno razdelimo na dva manjša ustrezna lika. S tem nadaljujemo dokler ne
izključimo ali potrdimo trka oz. dosežemo želene resolucije.

Tovrstne pristope delimo na tiste, ki so primerni za enkratno iskanje poti, in tiste,
ki so primerni za večkratno iskanje poti. Pri prvih želimo čim hitreje poiskati
pot med eno začetno in eno ciljno točko, zato se osredotočimo na dele okolice, ki
obetajo rešitev. V drevesno strukturo sproti dodajajmo nove točke in povezave
dokler ne najdemo rešitve. Pri drugih pristopih pa se pred samim načrtovanjem
poti izvede enkraten postopek izdelave neusmerjenega grafa oz. zemljevida cest,
ki predstavlja povezanost prostega območja in s pomočjo katerega lahko nato
rešimo problem načrtovanja poti za več poljubnih parov začetnih in ciljnih točk.
V nadaljevanju sta opisana predstavnika iz obeh skupin.

Metoda hitro-rastočega naključnega drevesa

Metoda hitro-rastočega naključnega drevesa (angl. rapidly-exploring random
tree) je metoda iskanja poti med eno začetno in eno ciljno točko [4]. Metoda v
vsaki iteraciji doda nove povezave v smeri od naključnih točk proti najbližjim
točkam, ki so že v grafu (drevesu).

V prvi iteraciji algoritma začetna konfiguracija qi predstavlja drevo (povezan
graf). V vsaki naslednji iteraciji se naključno izbere konfiguracija qrand in iz
obstoječega grafa poišče najbližje vozlišče qnear. V smeri od qnear proti qrand se
na vnaprej določeni razdalji ε izračuna kandidat za novo vozlišče qnew. Če sta
qnew in povezava od qnear do qnew v prostem območju, je qnew novo vozlišče in
njegova povezava z qnear je dodana v graf. Postopek je prikazan na sliki 4.17.

Iskanje se zaključi po določenem številu iteracij (npr. sto iteracij) ali ko je
dosežena določena verjetnost (npr. 10%). Takrat se namesto zajema novega
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Slika 4.17: Metoda hitro-rastočega naključnega drevesa — razširitev grafa z novo
točko qnew v smeri naključno vzorčene točke qrand

naključnega vzorca izbere ciljna točka za katero se preveri, ali jo je mogoče
povezati z grafom [6]. Takšno drevo se hitro razširi na neraziskana območja, kar
lahko vidimo na sliki 4.18. Ta metoda ima samo dva parametra: velikost koraka
ε in želena ločljivost ali število iteracij, ki določata pogoje za zaključek algoritma.
Zato je vedenje algoritma hitro-rastočega naključnega drevesa dosledno in njegova
analiza preprosta.

(a) (b) (c)

Slika 4.18: Drevo, zgrajeno z metodo hitro-rastočega naključnega drevesa, hitro
napreduje v neraziskano prosto območje. Slike z leve proti desni prikazujejo
drevesa z 20, 100 in 1000 vozlišči.
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Primer 4.6

Izvedite algoritem hitro-rastočega naključnega drevesa, ki bo ustvaril drevo
za dvodimenzionalno prosto območje, velikosti 10 m × 10 m, kjer je parameter
ε = 0,2 m.

Rešitev

Za podobne rezultate, kot na sliki 4.18, lahko uporabite Matlab kodo iz programa
4.6.

Program 4.6
./src/pth/example_rrt.m

1 xi = [5, 5]; % Začetna konfiguracija
2 D = 0.2; % Razdalja do novega vozli šča
3 maxIter = 1000;
4 M = [xi ]; % Zemljevid
5

6 j = 1;
7 while j < maxIter
8 xRand = 10* rand (1 ,2); % Naklju čna konfiguracija
9 dMin = 100; iMin = 1; % Iskanje najbli žje točke v zemljevidu M

10 for i = 1: size(M ,1)
11 d = norm(M(i ,:) - xRand );
12 if d<dMin
13 dMin = d;
14 iMin = i;
15 end
16 end
17

18 xNear = M(iMin ,:);
19 v = xRand - xNear ;
20 xNew = xNear + v/norm(v)*D; % Izračun nove točke
21

22 con = [ xNear ; xNew ];
23 M = [M; xNew ];
24 j = j + 1;
25

26 line(con (: ,1) , con (: ,2) , ’Color ’, ’b’);
27 end

Primer 4.7

Razširite primer 4.6, da vključuje tudi preproste ovire (npr. krožne ovire).

Rešitev

Predpostavite okolje z enostavnimi ovirami v obliki krogov z znanimi položaji in
premeri. Preverite, ali v prostem območju ležita kandidat za novo vozlišče qnew
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Slika 4.19: Metoda verjetnostnega zemljevida poti: (a) faza učenja in (b) faza
iskanja poti

in daljica, ki povezuje qnear in qnew.

Metoda verjetnostnega zemljevida poti

Metoda verjetnostnega zemljevida poti (angl. probabilistic roadmap) je način
iskanja poti med več začetnimi in več ciljnimi točkami, ki poteka v dveh fazah
[7]. Prva je faza učenja, v kateri se izdela povezan zemljevid cest ali neusmerjen
graf prostega območja (slika 4.19a), druga pa faza iskanja, v kateri se trenutni
par začetne in ciljne točke poveže z grafom in se s pomočjo iskalnih algoritmov
poišče pot (slika 4.19b).

V fazi učenja izdelamo zemljevid cest, ki je na začetku prazna množica, potem pa
se napolni z vozlišči s ponavljanjem v nadaljevanju naštetih korakov. Naključno
izbrano konfiguracijo qrand, ki leži v prostem območju, dodamo v zemljevid
in določimo vozlišča Qn za razširitev zemljevida. To lahko storimo tako, da
izberemo K najbližjih sosednjih vozlišč (Qn) ali pa vsa sosednja vozlišča, katerih
oddaljenost od qrand je manjša od vnaprej določenega parametra D (slika 4.20).
V prvem oz. prvih korakih morda ne najdemo sosednjih vozlišč. Nato dodamo v
zemljevid vse enostavne povezave od qrand do vozlišč iz Qn, ki v celoti ležijo v
prostem območju. S tem postopkom nadaljujemo, dokler zemljevid ne vsebuje
želenega števila vozlišč N .

V fazi iskanja začetno in ciljno točko preko prostega območja povežemo s čim bliž-
jima možnima vozliščema iz zemljevida in nato z iskalnim algoritmom poiščemo
pot med njima.

Za ti dve fazi ni nujno, da ju izvedemo ločeno. Lahko ju ponavljamo, dokler
nimamo dovolj vozlišč za odkritje rešitve. Če ni možno najti rešitve, zemljevid
razširimo z novimi vozlišči in povezavami, dokler ne dobimo izvedljive rešitve.
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Slika 4.20: Pri metodi verjetnostnega zemljevida poti dodamo v zemljevid vse
možne povezave od naključnih točk qrand do sosednjih vozlišč Qn

Slika 4.21: Pri preizkusu mostu sta izbrani dve naključni bližnji točki, ki določata
daljico. Če se srednja točka nahaja v prostem območju, zunanji dve pa znotraj
ovir, je srednja točka dodana kot vozliče na zemljevidu.

Na ta način se iterativno približujemo čim bolj ustrezni predstavitvi prostega
območja.

Metoda je zelo učinkovita pri robotih z velikim številom prostostnih stopenj,
vendar ima težave pri iskanju povezave med dvema območjema preko ozkih
prehodov. To lahko premagamo z dodajanjem vozlišč s pomočjo preizkusa
mostu (angl. bridge test), v katerem izberemo tri naključne “blizuležeče” točke
na daljici (slika 4.21). Če sta krajni točki v trku z ovirami, srednja pa ne, potem
srednjo točko vključimo v zemljevid kot vozlišče ter jo nato skušamo na enak
način kot ostale povezati s sosednjimi vozlišči. Z združitvijo preizkusa mostu
in enakomernega vzorčenja [8] v “hibridno strategijo vzorčenja” lahko dobimo
manjše zemljevide poti, ki bolj učinkovito pokrivajo prosto območje ter ohranjajo
dobre povezave preko ozkih prehodov.
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Primer 4.8

Izvedite algoritem verjetnostnega zemljevida poti za dvodimenzionalno prosto
območje, velikosti 10 m× 10 m. Poskusite razširiti algoritem za okolje z ovirami.

Rešitev

Rešitev je podana v programu 4.7.

Program 4.7
./src/pth/example_prm.m

1 D = 1; % Parameter razdalje
2 maxIter = 200;
3 M = []; % Zemljevid
4

5 j = 1;
6 while j <= maxIter
7 xRand = 10* rand (1 ,2); % Naklju čna konfiguracija
8 M = [M; xRand ];
9 con = []; % Povezave

10 for i = 1: size(M ,1) % Iskanje povezav do sosednjih vozli šč
11 d = norm(M(i ,:) - xRand );
12 if d<D && d>eps % Dodajanje povezav od xRand do soseda
13 con = [con; xRand , M(i ,:)];
14 end
15 end
16 j = j + 1;
17

18 line( xRand (1) , xRand (2) , ’Color ’, ’r’, ’Marker ’, ’.’);
19 for i = 1: size(con ,1)
20 line(con(i ,[1 ,3]) , con(i ,[2 ,4]) , ’Color ’, ’b’);
21 end
22 end

4.3 Preprosti algoritmi načrtovanja poti
— algoritmi tipa hrošč

Algoritmi tipa hrošč (angl. bug algorithm) so najbolj enostavni algoritmi pla-
niranja poti. Za planiranje ne potrebujejo zemljevida okolice, zato so primerni,
ko zemljevid okolice ni znan ali pa se okolica stalno spreminja in tudi ko ima
mobilna platforma zelo omejeno moč računanja. Ti algoritmi uporabljajo le
lokalno informacijo o okolju, pridobljeno iz senzorjev (npr. senzor razdalje), in
globalno podan cilj, ne potrebujejo pa globalnega znanja v obliki zemljevida
okolja. Njihovo delovanje sestoji iz dveh enostavnih vzorcev obnašanja: gibanje
po ravni liniji proti cilju in sledenje obrisu ovire.

Mobilni roboti, ki uporabljajo te algoritme, se lahko izogibajo oviram in pre-
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Slika 4.22: Algoritem Hrošč0 (varianta vedno zavij levo) uspešno najde pot do
cilja (leva slika) in neuspešno (desna slika)

mikajo proti cilju. Tovrstni algoritmi imajo majhno porabo spomina, vendar
je lahko najdena pot daleč od optimalne. Algoritmi tipa hrošč so bili najprej
implementirani v [9], temu pa so sledile številne izboljšave kot v [10–12].

V nadaljevanju so predstavljeni trije osnovni algoritmi tipa hrošč.

4.3.1 Algoritem Hrošč0

Algoritem Hrošč0 deluje v naslednjih dveh korakih:

1. V ravni liniji se premika proti cilju, dokler ne naleti na oviro ali cilj.

2. Če naleti na oviro, vedno zavije levo (oz. vedno desno, če je tako določeno
v algoritmu) in sledi obrisu ovire, dokler ni možno ponovno nadaljevati
proti cilju.

Primer delovanja algoritma Hrošč0 je prikazan na sliki 4.22.

4.3.2 Algoritem Hrošč1

Algoritem Hrošč1 uporablja glede na Hrošč0 nekaj več spomina in zahteva malo
več računanja, saj v vsaki iteraciji izračuna evklidsko razdaljo do cilja in si
zapomni najbližjo točko na obodu ovire do cilja. Njegovo delovanje podajata
koraka:

1. V ravni liniji se premika proti cilju, dokler ne naleti na oviro ali cilj.

2. Če naleti na oviro, ob oviri zavije levo in sledi celotnemu obrisu ovire ter
ves čas meri evklidsko razdaljo do cilja. Ko ponovno prispe do točke, kjer
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Slika 4.23: Algoritem Hrošč1 najde pot do cilja v obeh primerih na zgornjih
slikah. V najslabšem primeru je njegova pot za 3

2 obsega vseh ovir daljša od
evklidske razdalje med začetno in ciljno točko. Algoritem zna ugotoviti, kdaj cilj
ni dosegljiv (primer na spodnji sliki).

je naletel na oviro, gre po krajši poti ob obodu ovire do točke, ki je bila
najbliže cilju. Nato gre po ravni liniji proti cilju.

Primer delovanja algoritma Hrošč1 je prikazan na sliki 4.23.

Dobljena pot ni optimalna; v najslabšem primeru je za 3
2 obsega vseh ovir do

cilja daljša kot evklidska razdalja med začetno in ciljno točko. Algoritem za
vsako oviro, na katero naleti na poti do ciljne točke, najde samo eno točko naleta
na oviro in samo eno točko, v kateri zapusti obod ovire. Tako na nobeno oviro ne
naleti več kot enkrat in zaradi tega nikoli ne ustvari ciklov med istimi ovirami. Ko
algoritem naleti na isto oviro več kot enkrat, je to znak, da je znotraj ovire ujeta
ali začetna ali ciljna točka. Takrat se algoritem konča, saj ne obstaja nobena
izvedljiva pot do cilja (spodnji primer na sliki 4.23).
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Slika 4.24: Algoritem Hrošč2 sledi glavni liniji do cilja. Na isto oviro lahko naleti
večkrat, zato pride do kroženja. Algoritem Hrošč2 zna prepoznati nedosegljiv
cilj.

4.3.3 Algoritem Hrošč2

Algoritem Hrošč2 se vedno poskuša premikati po glavni liniji, tj. daljici, ki
povezuje začetno in ciljno točko. Deluje s ponavljanjem naslednjih korakov:

1. Robot naj se premika po glavni liniji, dokler ne naleti na oviro ali ciljno
točko. V ciljni točki se iskanje zaključi.

2. Če je robot naletel na oviro, sledi obodu ovire toliko časa, da doseže glavno
linijo, kjer je evklidska razdalja do cilja manjša kot evklidska razdalja do
točke, kjer je (zadnjič) naletel na oviro.

Čeprav se zdi algoritem Hrošč2 veliko bolj učinkovit kot Hrošč1 (leva slika 4.24),
ne zagotavlja, da bo robot samo enkrat naletel na določeno oviro. Pri nekaterih
postavitvah in oblikah ovir po prostoru lahko Hrošč2 dolgo časa po nepotrebnem
kroži, preden prispe do ciljne točke, kar je prikazano na desni sliki 4.24. Algoritem
lahko razbere, da ciljne točke ni možno doseči, če večkrat v isti točki naleti na
isto oviro.

Iz primerjave algoritmov Hrošč1 in Hrošč2 lahko zaključimo sledeče:

• Hrošč1 je bolj temeljit algoritem iskanja, saj preišče vse možnosti pred
izvršitvijo naslednjega koraka,

• Hrošč2 je požrešen algoritem, saj izbere prvo obetavno opcijo,

• v večini primerov je Hrošč2 bolj učinkovit kot Hrošč1, toda

• Hrošč1 ima bolj predvidljivo delovanje.
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Primer 4.9

Izvedite načrtovanje poti z algoritmom Hrošč0 za mobilnega robota z diferenci-
alnim pogonom. Predpostavite, da zemljevid okolja ni na voljo in robot pozna
samo svojo trenutno lego, ciljno točko in trenutno razdaljo do cilja (meritev
senzorja).

Glede na algoritem Hrošč0 bi moral robot zapeljati proti cilju, če je dovolj
oddaljen od katerekoli ovire (npr. več kot 0.2 m), in slediti oviri, če je blizu
ovire. Napišite kodo svoje implementacije algoritma s pomočjo programa 4.8,
ki že omogoča simulacijo gibanja robota in meritev senzorjev. Okolje in primer
pridobljene poti robota sta prikazana na sliki 4.25.

Program 4.8
./src/pth/example_bug0.m

1 Ts = 0.03; % Rač unski korak
2 t = 0: Ts :30; % Čas simulacije
3 q = [0; 0; 0];% Začetna lega
4 goal = [4; 4]; % Ciljna lega
5 % Ovire
6 obstacles {1} = flipud ([ -1 -1; 7 -1; 7 5; -1 5]);
7 obstacles {2} = [0.5 1; 4 1];
8 obstacles {3} = [3 3.5; 3 2.5; 5 2.5; 3 2.5];
9 obst = [];

10 for i = 1: length ( obstacles )
11 obst = [obst; obstacles {i }([1: end ,1] ,:); nan (1 ,2)];
12 end
13

14 for k = 1: length (t)
15 % Razdalja do najbli žje ovire in usmeritev daljice
16 [dObst , ~, z] = nearestSegment (q(1:2). ’ , obst );
17 phiObst = atan2 (obst(z+1 ,2) - obst(z ,2) , obst(z+1 ,1) - obst(z ,1));
18

19 % Sem pride regulacijski algoritem ...
20

21 % Simulacija gibanja robota
22 dq = [v*cos(q (3)); v*sin(q (3)); w];
23 noise = 0.00; % Parameter za nastavljanje šuma (npr. 0.001)
24 q = q + Ts*dq + randn (3 ,1)* noise ; % Eulerjeva integracija
25 q(3) = wrapToPi (q (3)); % Zapis kota v območju [-pi , pi]
26 end
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Slika 4.25: Načrtovanje poti in vodenje z algoritmom Hrošč0 za vožnjo robota
do cilja ob izogibanju oviram

Rešitev

Možna implementacija rešitve, ki ustvari pot na sliki 4.25, je podana v programu
4.9 — kodo vstavite v označeno vrstico programa 4.8. Oblika dobljene poti je
odvisna tudi od uporabljenega regulacijskega algoritma za vodenje robota.

Program 4.9
./src/pth/script_bug0.m

1 % Regulacija na podlagi razdalje do ovire
2 if dObst >0.2 % Vožnja proti cilju
3 phiRef = atan2 (goal (2) -q(2) , goal (1) -q (1));
4 ePhi = wrapToPi ( phiRef - q (3));
5 dGoal = sqrt(sum (( goal -q (1:2)).^2));
6 g = [ dGoal /2, 1]; % Ojačenji regulatorja
7 else % Vožnja okoli ovire po desni
8 phiRef = wrapToPi ( phiObst + pi *0); % Priš tejte pi za vožnjo po levi
9 ePhi = wrapToPi (phiRef -q (3));

10 g = [0.4 , 5]; % Ojačenji regulatorja
11 end
12 % Enostavni regulator za diferencialni pogon
13 v = g(1)* abs(cos(ePhi ));
14 w = g(2)* ePhi;
15 v = min ([v, 0.5]);
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Primer 4.10

Z razširitvijo primera 4.9 izvedite tudi algoritma Hrošč1 in Hrošč2.

Rešitev

Za implementacijo algoritma Hrošč1 lahko prilagodite program 4.9 iz primera 4.9,
kjer je glavno vedenje sestavljeno iz dveh delov. Prvo vedenje (vožnja proti cilju)
ostaja nespremenjeno, drugo pa je treba spremeniti. Shranite začetni položaj,
kjer robot najprej zazna oviro. Vozite se okoli ovire in izmerite razdaljo do cilja
ter si zapomnite najbližjo točko. To izvajajte, dokler robot ne pride v shranjeni
začetni položaj ali vsaj dovolj blizu. Vrnite se na najbližjo zapomnjeno točko.

Podobno lahko program 4.9 iz primera 4.25 prilagodite algoritmu Hrošč2. Shranite
začetni položaj, kjer robot najprej zazna oviro. Robot naj kroži okoli ovire, dokler
ne prečka glavne linije. Če je točka prečkanja bližje cilju kot izhodiščni točki,
pelje proti cilju; v nasprotnem še naprej kroži okoli ovire.

4.4 Metode iskanja poti v grafu

Ko imamo okolje z ovirami ustrezno predstavljeno z grafom (npr. prostor stanj,
razcep na celice, zemljevid cest), lahko uporabimo enega izmed algoritmov, ki
poiščejo pot od začetne do ciljne konfiguracije. V nadaljevanju je podanih nekaj
znanih algoritmov iskanja poti v grafu.

V splošnem začnemo iskanje tako, da preverimo, ali je začetno vozlišče hkrati
tudi ciljno vozlišče. Ponavadi to ne drži, zato razširimo iskanje na vozlišča, ki
sledijo sedanjemu vozlišču. Na podlagi izbranega algoritma (in vrednosti cenilke)
izberemo enega izmed sosednjih vozlišč. Če izbrano vozlišče ni ciljno, raziskujemo
naslednja vozlišča, ki sledijo temu novemu vozlišču. Postopek nadaljujemo, dokler
ne najdemo rešitve ali dokler ne preiščemo celotnega grafa.

Pri iskanju v grafu vodimo sezname vozlišč, ki smo jih med iskanjem že obiskali,
s čimer preprečimo, da bi večkrat obiskali isto vozlišče. Tako imenovana živa
vozlišča, iz katerih lahko nadaljujemo iskanje, shranimo na seznam odprtih
vozlišč. Mrtva vozlišča nimajo naslednikov ali pa smo jih že preverili in jih
shranimo na seznam zaprtih vozlišč.

Od strategije algoritma je odvisno, po kakšnem zaporedju izbiramo vozlišča za
razširitev območja iskanja. Seznam odprtih vozlišč razvrstimo glede na določen
kriterij in ob izbiranju naslednjega vozlišča za razširitev iskanja vzamemo prvo s
seznama, torej tisto, ki najbolj ustreza razvrščevalnemu kriteriju (ima najmanjšo
vrednost glede na kriterij).
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Slika 4.26: Algoritem iskanja v širino najprej razišče najbližja vozlišča. Trenutno
vozlišče je označeno s puščico, odprta (živa) vozlišča so označena s svetlo sivimi,
zaprta (mrtva) vozlišča s črnimi in nepreverjena vozlišča z belimi krogi.

Na začetku je na seznamu odprtih vozlišč Q samo začetno vozlišče. Izračunamo
vozlišča, ki sledijo začetnemu, in jih zapišemo na seznam odprtih vozlišč, začetno
vozlišče pa damo na seznam zaprtih vozlišč. Nato iskanje razširimo s prvim
vozliščem na odprtem seznamu tako, da izračunamo njegove naslednike. Tako so
na odprtem seznamu preostali nasledniki (razen prvega že raziskanega vozlišča)
in pravkar izračunani nasledniki prej izbranega vozlišča. Postopek je prikazan na
sliki 4.26, kjer so odprta vozlišča prikazana z svetlo sivimi krogi in lahko vidimo,
zakaj se ta vozlišča med iskanjem v drevesni strukturi imenujejo listi. Zaprta
vozlišča so prikazana s črnimi krogi, nepreverjena vozlišča pa z belimi.

Ločimo neinformirane in informirane algoritme iskanja po grafu. Neinformi-
rani algoritmi posedujejo samo informacije, ki so podane z definicijo problema
(slepo iskanje po stanjih oz. vozliščih). Graf pregledujejo sistematično in ne
razlikujejo med bolj ali manj obetavnimi vozlišči. Informirano ali hevristično
iskanje vsebuje dodatne informacije o vozliščih, zato je zmožen razlikovati med
bolj in manj obetavnimi vozlišči in posledično je lahko algoritem učinkovitejši.

4.4.1 Iskanje v širino

Iskanje v širino (BFS, angl. breadth-first search) je algoritem neinformiranega
iskanja. Najprej raziščemo najbolj plitva vozlišča, torej vozlišča, ki so najbliže
začetnemu vozlišču. Vsa vozlišča, do katerih lahko dostopamo v k korakih,
obiščemo prej kot katerokoli vozlišče, do katerega pridemo v k + 1 korakih, kar
je prikazano na sliki 4.26.

Seznam odprtih vozlišč Q razvrščamo po metodi prvi noter, prvi ven (FIFO,
angl. first in, first out): na novo odprta vozlišča dodajamo na konec seznama Q,
vozlišča za razširjanje iskanja pa jemljemo z začetka seznama.

Algoritem je popoln, saj pri končnem faktorju razvejitve najde rešitev, če le-ta
obstaja. Če pa je možnih več rešitev, najde tisto, ki je najmanj korakov oddaljena
od začetnega vozlišča. To ne pomeni, da je najdena rešitev hkrati tudi optimalna,
saj ni nujno, da imajo vsi prehodi med vozlišči enako ceno.

Poraba spomina in računski čas sta pri tej metodi velika, saj z razvejanostjo
drevesa eksponentno naraščata.
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cilj

Slika 4.27: Iskanje v globino ima majhno porabo spomina, saj hranimo le liste
(svetlo siva) in na poti razširjena vozlišča (temno siva). Prečrtana vozlišča so
odstranjena iz spomina.

4.4.2 Iskanje v globino

Iskanje v globino (DFS, angl. depth-first search) je algoritem neinformiranega
iskanja, kjer iščemo v globino. Vozlišče, ki je najbolj oddaljeno od začetnega,
razširimo in iskanje na ta način nadaljujemo v globino, dokler neko vozlišče nima
več nobenih naslednikov. Takrat iskanje nadaljujemo z naslednjim najglobljim
vozliščem, katerega nasledniki še niso bili raziskani, kot je to prikazano na sliki
4.27

Seznam odprtih vozlišč Q obravnavamo kot sklad (angl. stack), ki ga razvrščamo
po metodi zadnji noter, prvi ven (angl. last in, first out – LIFO): na novo odprta
vozlišča dodajamo na začetek seznama Q, od koder tudi jemljemo vozlišča za
razširjanje iskanja.

Algoritem iskanja v globino ni popoln, saj bi v primeru neomejene globine
(neskončno število vej, ki se ne končajo) neskončno časa raziskoval samo eno vejo
grafa. Temu se lahko izognemo tako, da iskanje omejimo do določene globine,
kjer pa je možno, da ima rešitev večjo globino in jo zato algoritem ne najde. Prav
tako algoritem ni optimalen, saj najdena pot ni nujno tudi najkrajša.

Iskanje v globino ima majhno porabo spomina, saj mora hraniti samo pot od
začetnega do trenutnega vozlišča in vmesna neraziskana vozlišča, s katerimi še
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cilj

Globina

0 korakov

1 korak

2 koraka

3 koraki

Slika 4.28: Prikaz iterativnega poglabljanja iskanja v globino do globine treh
korakov. Prečrtana vozlišča so odstranjena iz spomina. Algoritem se zaključi v
tretjem koraku, kjer najde ciljno vozlišče.

nismo nadaljevali iskanja. Ko raziščemo neko vozlišče in vse njegove naslednike,
lahko to vozlišče prenehamo hraniti v spominu.

4.4.3 Iterativno iskanje v globino

Iterativno iskanje v globino (IDDFS, angl. iterative deepening depth-first search)
združuje prednosti iskanja v širino in iskanja v globino. Algoritem po korakih
veča globino, do katere raziskujemo z iskanjem v globino, dokler ne najdemo
ciljnega vozlišča. Najprej izvedemo iskanje v globino za vozlišča oddaljena nič
korakov od začetnega. V primeru, da ne najdemo ciljnega vozlišča, iskanje v
globino ponovimo za vozlišča, oddaljena en korak od začetnega vozlišča itd. Tako
se iskanje izvaja tudi v širino.

Algoritem ima majhno porabo spomina, je popoln, saj najde rešitev, če le-ta
obstaja, in optimalen, ker najde najkrajšo pot, če so vse cene prehodov enake
ali ne naraščajo z globino vozlišča. Če imajo vsa vozlišča približno enak faktor
razvejitve tudi večkratno računanje stanj ni pretirano potratno, saj je večina
vozlišč na dnu drevesa in jih algoritem obišče le občasno.
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4.4.4 Dijkstrov algoritem

Dijkstrov algoritem je neinformiran algoritem za iskanje najkrajše poti od enega
začetnega vozlišča do vseh preostalih vozlišč v grafu [13]. Prvotno ga je zasnoval
Edsger Dijkstra [14], kasneje pa so ga razširili z raznimi prilagoditvami. V
primeru iskanja poti med eno začetno in eno ciljno točko deluje neučinkovito,
zaradi izračunavanja optimalnih poti do vseh vozlišč, zato lahko določimo, da se
konča, ko izračuna najkrajšo želeno pot.

Algoritem zagotovo najde najkrajšo pot od začetnega do ciljnega vozlišča, saj
temelji na računanju cene poti od začetnega do trenutnega vozlišča, ki jo imenujmo
cena-do-sem.

Ceno poti do trenutno obravnavanega vozlišča izračunamo kot vsoto cene celotne
poti do vozlišča, iz katerega smo prišli do trenutnega vozlišča, in cene povezave
med njima. V primeru več najkrajših poti (z isto ceno) algoritem vrne eno in ni
pomembno katero.

Za izvajanje algoritma je potrebno označiti povezave med vozlišči in jim določiti
ceno. Za vsako obiskano vozlišče shranjujemo ceno trenutno najkrajše poti do
njega (cena-do-sem) in povezave, po kateri smo prišli do trenutnega vozlišča. Pri
iskanju vodimo tudi seznam odprtih in zaprtih vozlišč.

Na začetku je v seznamu odprtih vozlišč samo začetno vozlišče, katerega cena-do-
sem je nič in brez predhodne povezave (ni prejšnjega vozlišča). Seznam zaprtih
vozlišč je prazen. Nato ponavljamo naslednje korake, ki so ilustrirani na sliki 4.29

1. Iz seznama odprtih vozlišč vzamemo prvo vozlišče; to naj bo trenutno
vozlišče. Seznam naj bo urejen naraščajoče glede na ceno-do-sem, kjer je
prvo vozlišče tisto z najmanjšo ceno-do-sem.

2. Vsem vozliščem, do katerih lahko pridemo iz trenutnega vozlišča in niso na
seznamu zaprtih vozlišč, izračunamo ceno-do-sem kot vsoto cene-do-sem
trenutnega vozlišča in cene vmesne povezave.

3. Izračunamo in shranimo ceno-do-sem ter povezavo do trenutnega vozlišča
za vsa vozlišča, ki še nimajo shranjenih teh informacij.

4. Če je v prejšnjem koraku katero izmed teh vozlišč že imelo shranjeno ceno-
do-sem in ustrezno povezavo v grafu iz katere od prejšnjih iteracij, ti dve
ceni primerjamo in kot končen podatek shranimo manjšo ceno in ustrezno
povezavo.

5. Vozlišča dodamo na seznam odprtih vozlišč in ga uredimo po naraščajoči
vrednosti cene-do-sem. Takšen seznam, ki ga imenujemo vrsta s prednostjo
(angl. priority queue), omogoča, da hitreje najdemo vozlišče z najmanjšo
vrednostjo cene-do-sem kot pa z iskanjem po neurejenem seznamu. Trenu-
tno vozlišče premaknemo na seznam zaprtih vozlišč.
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Slika 4.29: Dijkstrov algoritem za iskanje najkrajše poti med začetnim vozliščem
A in ostalimi vozlišči. Trenutno oglišče je označeno s sivim kvadratom, njegovi
nasledniki pa s puščicami. Cene poti so označene ob povezavah. Ob vozliščih je
označena cena-do-sem in povezava do predhodnega vozlišča. Odprta vozlišča so
označena s svetlo sivo, zaprta vozlišča pa s temno sivo. Primer: Zanima nas
najkrajša pot med vozliščema A in F. Vidimo, da je CenaF−D−E−C−A = 6, pot
pa gre skozi vozlišča A→ C → E → D → F .
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V osnovni verziji naj bi se Dijkstrov algoritem končal, ko je seznam odprtih
vozlišč prazen in rezultat vsebuje najkrajše poti iz začetnega v vsa ostala vozlišča.
Če potrebujemo samo najkrajšo pot od začetnega do končnega vozlišča, iskanje
zaključimo, ko dodamo ciljno vozlišče na seznam zaprtih vozlišč.

Ustrezno pot dobimo tako, da vzvratno sledimo in izpišemo po katerih povezavah
smo prišli do ciljnega vozlišča, gledamo torej povezave v smeri od ciljnega
do začetnega vozlišča. Najprej pogledamo povezavo od ciljnega vozlišča do
predhodnega, nato sledimo povezavi do predhodega vozlišča, kjer prav tako
preberemo in izpišemo po kateri povezavi smo prišli do tja. S tem nadaljujemo,
dokler ne dosežemo začetnega vozlišča. Na koncu seznam izpisanih povezav le še
obrnemo.

Dijkstrov algoritem je popoln (če pot obstaja, jo najde) in optimalen (najdena
pot je najkrajša), če so vse uteži (cene) povezav večje od nič.

4.4.5 Algoritem A?

A? (prebrano kot a zvezdica ali a star) je informiran algoritem iskanja, saj
vsebuje dodatno informacijo ali hevristiko. Hevristika je ocena cene poti od
trenutnega vozlišča do cilja, zaradi česar lahko algoritem razlikuje med bolj
ali manj obetavnimi vozlišči in je učinkovitejši pri iskanju rešitve. Algoritem
za vsako vozlišče izračuna vrednost izbrane hevristične funkcije, ki predstavlja
oceno cene, potrebne za pot od tega vozlišča do cilja, imenovana cena-do-cilja.
Hevristična funkcija je lahko evklidska razdalja, razdalja Manhattan (vsota
premikov v navpični in vodoravni smeri) ali kakšna druga primerna funkcija.

Tekom izvajanja algoritem za vsako vozlišče računa ceno-celotne-poti tako, da za
določeno vozlišče sešteje ceno-do-sem in ceno-do-cilja. Hkrati vodi tudi seznama
odprtih in zaprtih vozlišč.

Algoritem deluje tako, da je na začetku v seznamu odprtih vozlišč samo začetno
vozlišče, katerega cena-do-sem je nič in nima predhodne povezave, seznam zaprtih
vozlišč pa je prazen. V nadaljevanju se ponavljajo naslednji koraki, ki so ilustrirani
na sliki 4.30:

1. Iz seznama odprtih vozlišč vzamemo prvo vozlišče, imenovano trenutno
vozlišče. Seznam je urejen naraščajoče glede na ceno-celotne-poti, kjer ima
prvo vozlišče najmanjšo ceno-celotne-poti.

2. Vsem vozliščem, do katerih lahko pridemo iz trenutnega vozlišča, izraču-
namo

• ceno-do-cilja,

• ceno-do-sem kot vsoto cene-do-sem trenutnega vozlišča in vmesne
povezave ter

• ceno-celotne-poti kot vsoto cene-do-sem in cene-do-cilja.
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3. Za vsako izmed teh vozlišč, ki še nima shranjene izračunane cene-do-sem,
ustrezne vmesne povezave od trenutnega vozlišča, cene-do-cilja in cene-
celotne-poti, shranimo vse naštete vrednosti.

4. Če je v prejšnjem koraku katero izmed teh vozlišč že imelo shranjene
izračunane vrednosti iz katere od prejšnjih iteracij, primerjamo obe ceni-do-
sem in kot končen podatek shranimo manjšo skupaj s pripadajočo povezavo
in ustrezno ceno-celotne-poti.

5. Vozlišča, katerih vrednosti smo računali prvič, dodamo na seznam odprtih
vozlišč. Vozlišča, ki smo jim posodobili vrednosti in so že bila na seznamu
odprtih vozlišč, jih tam tudi obdržimo. Vozlišča, ki so bila na seznamu
zaprtih vozlišč in katerih vrednosti smo posodobili (do njega smo našli
pot z manjšo ceno-do-sem), premaknemo na seznam odprtih vozlišč, ki ga
nato uredimo po naraščajoči vrednosti cene-celotne-poti. Trenutno vozlišče
premaknemo na seznam zaprtih vozlišč.

Na prvi sliki 4.30 je trenutno vozlišče hkrati tudi začetno ter so izbrana njegova
naslednja vozlišča, ki so dosegljiva iz štirih smeri: levo, desno, gor in dol. Za
vsa ta naslednja vozlišča je cena-do-sem enaka 1, saj so samo en korak stran od
začetnega vozlišča, ceno-do-cilja pa določa razdalja Manhattan (hevristika) iz
naslednjega do ciljnega vozlišča, ki jo lahko izmerimo preko ovire. Vsota obeh
cen je cena-celotne-poti. Vozlišča, ki sledijo, imajo s puščico označeno povezavo
do trenutnega vozlišča (označeno s krogom). Odprti seznam vozlišč tako vsebuje
ta štiri naslednja vozlišča, zaprti seznam vozlišč pa vsebuje samo začetno vozlišče.
Na drugi sliki 4.30 iz odprtega seznama izberemo za trenutno vozlišče tisto, ki
ima najmanjšo ceno-celotne-poti (v tem primeru je enaka 6). Trenutno vozlišče
ima samo enega naslednika, saj druge celice blokira ovira ali pa se nahajajo na
zaprtem seznamu. Cena-do-sem za naslednje vozlišče je 2, ker se nahaja dva
koraka stran (razdalja Manhattan) od začetnega vozlišča, in cena-do-cilja je 8.
Trenutno vozlišče premaknemo na zaprti seznam, naslednje vozlišče pa na odprti
seznam. Na tretji sliki 4.30 izberemo trenutno vozlišče kot vozlišče iz odprtega
seznama, ki ima najmanjšo ceno-celotne-poti (v našem primeru je 6). Algoritem
ponavlja korake dokler ne doseže ciljnega vozlišča.

Algoritem A? zagotavlja optimalnost najdene poti v grafu, v kolikor je hevristika
(cena-do-cilja) optimistična, kar pomeni, da je cena-do-cilja za vsako vozlišče
manjša ali kvečjemu enaka pravi ceni-do-cilja. Algoritem zaključimo, ko dodamo
ciljno vozlišče na seznam zaprtih vozlišč.

Algoritem A? je popoln, saj vedno najde pot, če le-ta obstaja, pri uporabi
optimistične hevristike pa je tudi optimalen. Slabost A? je velika poraba spomina.
V primeru, da so vse cene-do-cilja enake nič, je delovanje algoritma A? enako
Dijkstrovemu. Na sliki 4.31 je prikazana primerjava delovanja Dijkstrovega
algoritma in A?.
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Slika 4.30: Trenutno vozlišče je označeno s krogom. Začetno vozlišče je zeleno,
končno vozlišče oranžno, odprta vozlišča so svetlo siva, zaprta vozlišča temno siva
in ovire so črne. Možne so štiri smeri prehodov: levo, desno, gor in dol. V vsaki
celici (vozlišče) je označena smer do trenutnega vozlišča in cena poti, ki je vsota
cene-do-sem in cene-do-cilja. Za izračun cene je uporabljena razdalja Manhattan.
Najdeno pot razberemo s sledenjem povezavam, označene so s puščicami.
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Slika 4.31: Primerjava algoritmov iskanja poti: Dijkstrov (levo) in A? (desno).
Oba najdeta najkrajšo pot do cilja, vendar A? porabi precej manj iteracij zaradi
uporabe dodatne informacije (hevristike) pri iskanju poti.
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Slika 4.32: Primerjava algoritmov iskanja poti: Pohlepno iskanje najprej-najboljši
(levo) in A? (desno). Pot, ki jo najdemo s pohlepnim iskanjem na način najprej
najboljši, ni vedno optimalna. Odprta vozlišča so označena s svetlo sivo, zaprta
vozlišča pa s temno sivo.

4.4.6 Pohlepno iskanje najprej najboljši

Pohlepno iskanje na način najprej najboljši (GBFS, angl. greedy best-first search)
je informiran oz. hevrističen algoritem. Seznam odprtih vozlišč razvrščamo po
naraščajoči ceni-do-cilja. Tako v vsaki iteraciji razširimo iskanje na tisto odprto
vozlišče, ki je najbliže cilju (ima najmanjšo ceno do cilja), saj predvidevamo, da
bomo tako najhitreje dosegli cilj. Vendar najdena celotna pot ni nujno optimalna
(najkrajša), kot prikazuje slika 4.32, saj algoritem upošteva le ceno od trenutnega
do ciljnega vozlišča in ga ne zanima cena do trenutnega vozlišča. Posledično tudi
ni pomembno, ali je hevristika optimistična ali ne, kot je bilo pomembno pri
algoritmu A?.

Primer 4.11

Izvedite načrtovanje poti z algoritmom A? v okolju na sliki 4.32. Primerjajte
dobljene rezultate z rezultati na sliki 4.32. Za izračun razdalje uporabite raz-
daljo Manhattan, medtem ko za hevristiko (cena-do-cilja) uporabite razdaljo
Manhattan ali evklidsko razdaljo ter tudi primerjajte njune rezultate.

Nato prilagodite kodo za pohlepno iskanje najprej najboljši.

Rešitev

V splošnem je zaželena uporaba algoritma A?. Možna izvedba algoritma je
prikazana v programu 4.10, kjer smo za izračun cene-do-sem uporabili razdaljo
Manhattan, za izračun hevristike pa evklidsko razdaljo.
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Program 4.10: Implementacija algoritma A?

./src/pth/AStarBase.m
1 classdef AStarBase < handle
2 properties
3 map = []; % Zemljevid : 0 - prosto , 1 - ovira
4 open = []; closed = []; start = []; goal = []; act = []; path = [];
5 end
6

7 methods
8 function path = find(obj , start , goal) % start =[ is; js], goal =[ ig; jg]
9 obj. start = start ; obj.goal = goal; obj.path = [];

10 obj. closed = []; % Prazen zaprti seznam
11 obj.open = struct (’id ’, start , ’src ’, [0; 0], ’g’, 0, ...
12 ’h’, obj. heuristic ( start )); % Začetni odprti seznam
13

14 if obj.map( start (1) , start (2))~=0 || obj.map(goal (1) , goal (2))~=0
15 path = []; return ; % Pot ne obstaja !
16 end
17

18 while true % Iskanje
19 if isempty (obj.open), break ; end % Pot ni bila najdena :(
20

21 obj.act = obj.open (1); % Vozli šče z urejenega odprtega seznama
22 obj. closed = [obj.closed , obj.act ]; % damo na zaprti seznam
23 obj.open = obj.open (2: end ); % in ga odstranimo z odprtega seznama .
24

25 if obj.act.id (1)== obj.goal (1) && obj.act.id (2)== obj.goal (2)
26 % Pot obstaja :) Poiščemo pot s pomočjo zaprtega seznama ...
27 p = obj.act.id; obj.path = [p]; ids = [obj. closed .id ];
28 while sum(abs(p- start ))~=0 % Sledimo staršem do starta
29 p = obj. closed (ids (1 ,:)==p(1) & ids (2 ,:)==p (2)). src;
30 obj.path = [p, obj.path ];
31 end
32 break ;
33 end
34

35 neighbours = obj. getNodeNeighbours (obj.act.id );
36 for i = 1: size( neighbours , 2)
37 n = neighbours (:,i);
38 % Vozli šče dodamo na odprti seznam , če ni že na zaprtem
39 % seznamu in ni ovira
40 ids = [obj. closed .id ]; z = ids (1 ,:)==n(1) & ids (2 ,:)==n(2);
41 if isempty (find(z, 1)) && ~obj.map(n(1) , n(2))
42 obj. addNodeToOpenList (n);
43 end
44 end
45 end
46 path = obj.path;
47 end
48

49 function addNodeToOpenList (obj , i)
50 g = obj.act.g + obj.cost(i); % Cena poti
51 % Preverimo , če je vozli šče že na odprtem seznamu
52 ids = [obj.open.id ]; s = [];
53 if ~ isempty (ids)
54 s = sum(abs(ids - repmat (i, 1, size(ids , 2))))==0;
55 end
56 if isempty (find(s, 1)) % Dodamo vozli šče na odprti seznam
57 node = struct (’id ’, i, ’src ’, obj.act.id , ...
58 ’g’, g, ’h’, obj. heuristic (i));
59 obj.open = [obj.open , node ];
60 else % Posodobimo vozli šče na odprtem seznamu , če ima boljšo ceno
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61 if g<obj.open(s).g
62 obj.open(s).g = g;
63 obj.open(s). src = obj.act.id;
64 end
65 end
66 % Uredimo odprti seznam
67 [~,i] = sortrows ([[ obj.open.g]+[ obj.open.h]; obj.open.h].’, [1 ,2]);
68 obj.open = obj.open(i);
69 end
70

71 function n = getNodeNeighbours (obj , a)
72 n = [a(1) -1 , a(1) , a(1) , a (1)+1; a(2) , a(2) -1 , a(2)+1 , a (2)];
73 [h, w] = size(obj.map );
74 n = n(:, n(1 ,:) >=1 & n(1 ,:) <=h & n(2 ,:) >=1 & n(2 ,:) <=w); % Meje
75 end
76

77 function g = cost(obj , a)
78 g = sum(abs(a-obj.act.id )); % Manhattanska razdalja
79 end
80

81 function h = heuristic (obj , a)
82 h = sqrt(sum ((a-obj.goal ).^2)); % Evklidska razdalja
83 end
84 end
85 end

V programu 4.11 je prikazana uporaba algoritma A? iz programa 4.10. Stolpci
izhodne spremenljivke path predstavljajo urejen seznam celic (vozlišč), ki vodijo
od začetka do cilja. Za uporabo različnih hevristik je potrebna minimalna
sprememba algoritma (npr. razdalja Manhattan, ki je bila uporabljena za
pridobitev poti, prikazana na sliki 4.32).

Program 4.11: Uporaba algoritma A?

./src/pth/example_astar_base.m

1 map = zeros (14 , 14); % Zemljevid
2 map (5:10 ,[4 11]) = 1; map (5 ,4:11) = 1; % Ovire
3

4 astar = AStarBase ();
5 astar .map = map;
6 path = astar .find ([11; 6], [4; 10])

path =
Columns 1 through 13

11 11 11 11 11 11 11 10 9 8 7 6 5
6 7 8 9 10 11 12 12 12 12 12 12 12

Columns 14 through 16
4 4 4

12 11 10

Algoritem A? se lahko prevede v pohlepno iskanje najprej najboljši, če je cena-
do-sem nastavljena na nič.
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Primer 4.12

Razširite primer 4.11 za razcep okolja s pomočjo štiriškega drevesa in poiščite
optimalno pot z algoritmom A?.

Rešitev

Za razširitev algoritma A? iz programa 4.10 s štiriškim drevesom je potrebnih
le nekaj manjših sprememb. V tem primeru niso vse celice enako velike, zato
so med njimi različne razdalje in vsaka celica ima drugačno število sosedov.
Torej moramo spremeniti način določanja sosednjih celic. Izvedba algoritma za
razgradnjo s pomočjo štiriškega drevesa v programu 4.2 ustvari graf vidljivosti
tako, da za vsako celico v štiriškem drevesu poišče vse sosednje celice. Za določitev
cene-do-sem lahko izračunamo razdaljo med celicami kot evklidsko razdaljo med
središči celic (glejte sliko 4.10).
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5
Senzorji v mobilnih
sistemih

5.1 Uvod

Kolesni mobilni roboti zaznavajo okolje s pomočjo senzorjev, kar jim omogoča
avtonomno delovanje v okolju. Senzorji se uporabljajo za obvladovanje negotovosti
in motenj, ki so vedno prisotne v okolju in v vseh robotskih podsistemih, kot
je negotovost zemljevida okolice, neznani model gibanja, neznana dinamika
itd. Negotovi so tudi izidi akcij (premiki mobilnega robota), zaradi neidealnih
aktuatorjev. Primarni namen senzorjev torej je, da zmanjšajo ali odpravijo te
negotovosti in s tem omogočijo ocenjevanje stanj mobilnega robota kot tudi
izgleda okolice.

Običajno z enim senzorjem ni možna elegantna rešitev, zlasti za uporabo v
zaprtih prostorih, za (dovolj) natančno in robustno merjenje želenih informacij,
npr. leg robota. Lega je potrebna za lokalizacijo robota, kar pa predstavlja
enega izmed največjih izzivov v mobilni robotiki. Zato je potrebna uporaba več
senzorjev, kjer s pomočjo metod zlivanja (fuzije) njihovih informacij dobimo bolj
kakovostne in robustne informacije. Ocena lege robota običajno združuje relativne
in absolutne senzorje. Relativni senzorji podajajo informacije relativno glede
na koordinate mobilnega robota, medtem ko so meritve absolutnih senzorjev
podane v nekem globalnem koordinatnem sistemu (npr. zemeljske koordinate).

S pomočjo senzorjev lahko mobilni robot zaznava stanje okolice, pri čemer je
potrebno informacije senzorjev predhodno ustrezno analizirati in interpretirati.
Meritve v realnem okolju se spreminjajo dinamično (npr. spremembe osvetlitve,
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različna absorpcija zvoka ali svetlobe na površinah). Pogrešek merjenja pogosto
statistično modeliramo z neko gostoto verjetnosti, za katero običajno predpo-
stavimo, da je simetrična ali celo normalna. Vendar ta predpostavka ni vedno
pravilna; npr. ultrazvočni merilnik razdalje lahko zaradi večkratnih odbojev (od
oddajnika do sprejemnika) izmeri preveliko razdaljo.

V nadaljevanju so na kratko opisane transformacije koordinatnih sistemov, ki
so potrebne za pravilno predstavitev senzorskih meritev robotu in za oceno
relevantnih informacij v koordinatnem sistemu robota. Sledi poglavje, v katerem
so pojasnjene glavne metode za lokalizacijo, ki se uporabljajo za oceno lege
robota v okolici z uporabo izbranih senzorjev. Na koncu je podan kratek pregled
pogosto uporabljenih senzorjev v mobilni robotiki.

5.2 Transformacije koordinatnih sistemov

Senzorji običajno niso nameščeni v središču robota ali izhodišču njegovega ko-
ordinatnega sistema. Njihova pozicija in orientacija na robotu sta opisani s
translacijskim vektorjem in rotacijo glede na koordinatni sistem robota. S po-
močjo transformacij lahko izmerjene veličine v koordinatnem sistemu senzorja
prevedemo v koordinatni sistem robota.

S transformacijami lahko izrazimo izmerjeni smerni vektor (npr. pospeškometer,
magnetometer) ali izmerjene pozicijske koordinate (npr. laserski pregledovalnik
razdalj, kamera) v koordinatnem sistemu robota. Poleg tega se mobilni roboti
premikajo po prostoru, zato lahko njihovo lego ali premike opišemo z ustreznimi
transformacijami.

V nadaljevanju je podan kratek splošni pregled transformacij za tridimenzionalni
prostor, čeprav sta v mobilni robotiki običajno dovolj dve dimenziji (npr. ravnin-
sko gibanje, ki ga opisujeta dve translaciji in ena rotacija). Najprej bo opisana
transformacija rotacije, nato pa še translacije.

5.2.1 Orientacija in rotacija

Orientacijo nekega lokalnega koordinatnega sistema (npr. senzor) glede na
referenčni koordinatni sistem (npr. robot) opisuje rotacijska matrika R

R =

u1 u2 u3

v1 v2 v3

w1 w2 w3


kjer so enotski vektorji lokalnega koordinatnega sistema u, v in w izraženi v
referenčnem koordinatnem sistemu kot u = [u1, u2, u3]T , v = [v1, v2, v3]T ,
w = [w1, w2, w3]T in velja u×v = w. Vrstice matrikeR so komponente lokalnih
enotskih vektorjev vzdolž referenčnih enotskih vektorjev x, y in z. Elementi
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matrike R so kosinusi kotov med posameznimi osmi obeh koordinatnih sistemov,
zato jo imenujemo matrika smernih kosinusov (DCM, angl. direction cosine
matrix) ali rotacijska matrika. Ker so vektorji u, v in w ortonormalni, sta
inverz in transponiranka matrike R enaki (detR = 1 in R−1 = RT ). Rotacijska
matrika ima 9 parametrov za opis treh stopenj prostosti, vendar ti parametri
niso medsebojno neodvisni, ampak so definirani s šestimi omejitvenimi relacijami
(vsota kvadratov elementov poljubne vrstice ali stolpca matrike R je 1 in skalarni
produkt poljubnih dveh vrstic ali stolpcev matrike R je 0).

Vektor vL v lokalnem koordinatnem sistemu izrazimo z vektorjem vG v globalnem
koordinatnem sistemu s pomočjo rotacije

vL = RL
GvG

Rotacijska matrika RL
G torej transformira vektor iz globalnega G v lokalni L

koordinatni sistem.

Osnovne transformacije rotacije dobimo z vrtenjem okoli osi x, y in z z osnovnimi
rotacijskimi matrikami

Rx(ϕ) =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 (5.1)

Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (5.2)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (5.3)

kjer Ros(kot) označuje rotacijo okoli osi za dani kot. Zaporedne rotacije opišemo
s produktom rotacijskih matrik, kjer je pomemben vrstni red rotacij. Z rotacij-
sko matriko opišemo orientacijo togega telesa, vendar so v nekaterih primerih
primernejše druge predstavitve, zato bomo v nadaljevanju opisali še dve dodatni
obliki: Eulerjeve kote in kvaternione.

Eulerjevi koti

Eulerjevi koti opisujejo orientacijo togega telesa z vrtenjem okoli osi x, y in z.
Ti koti so označeni kot:

• ϕ – nagib ali kot valjanja (angl. roll), okoli osi x,

• θ – naklon ali kot prevračanja (angl. pitch), okoli osi y,

• ψ – zasuk ali kot sukanja (angl. yaw ali heading), okoli osi z.
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Možnih je 12 različnih kombinacij treh osnovnih rotacij okoli osi x, y in z [1].
Najpogosteje se uporablja kombinacija 3-2-1, kjer dobimo orientacijo lokalnega
koordinatnega sistema glede na referenčni koordinatni sistem tako, da iz začetne
lege, kjer sta oba koordinatna sistema poravnana, izvedemo rotacije lokalnega
koordinatnega sistema v naslednjem zaporedju:

1. rotacija okoli osi z za kot sukanja ψ,

2. rotacija okoli na novo pridobljene osi y za kot prevračanja θ,

3. rotacija okoli na novo pridobljene osi x za kot valjanja ϕ.

Rotacijska matrika te transformacije je

R = Rx(ϕ)Ry(θ)Rz(ψ) =

=

 cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ


in predstavitev z Eulerjevimi koti je

ϕ = arctan
(
R23

R33

)
θ = − arcsin(R13)

ψ = arctan
(
R12

R11

) (5.4)

Parametrizacija z uporabo Eulerjevih kotov ni redundantna (trije parametri za
tri prostostne stopnje). Njena pomanjkljivost pa je singularnost pri θ = π/2,
kjer imata rotaciji okoli osi z in x enak učinek (sovpadeta). Ta učinek izgube
prostostne stopnje je v klasičnih letalskih žiroskopih znan kot problem blokade
kardanskega sklopa (angl. gimbal lock). Pri zapisu rotacije z Eulerjevimi koti se
ta singularnost pojavi zaradi deljenja s cos θ (glejte (5.23) v poglavju 5.2.3).

Kvaternioni

Kvaternioni predstavljajo orientacijo v tridimenzionalnem prostoru z uporabo
štirih parametrov in ene omejitvene enačbe. So brez problema singularnosti, ki se
je pojavil pri predstavitvi z Eulerjevimi koti. Matematično gledano so kvaternioni
nekomutativna razširitev kompleksnih števil, ki jih zapišemo kot

q = q0 + q1i+ q2j + q3k

kjer za kompleksne elemente i, j in k velja i2 = j2 = k2 = ijk = −1; q0 je
skalarni del kvaterniona in q1i+ q2j + q3k je vektorski del. Norma kvaterniona
je določena z

‖q‖ =
√
qq∗ =

√
q2
0 + q2

1 + q2
2 + q2

3
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kjer je q∗ konjugiran kvaternion, ki ga izračunamo kot q∗ = q0 − q1i− q2j − q3k.
Inverzno vrednost kvaterniona določimo s pomočjo njegove konjugirane vrednosti
in norme

q−1 = q∗

‖q‖2

Z enotskimi kvaternioni lahko parametriziramo rotacijo v prostoru

q0 = cos ∆ϕ/2
q1 = e1 sin ∆ϕ/2
q2 = e2 sin ∆ϕ/2
q3 = e3 sin ∆ϕ/2

(5.5)

kjer je eT = [e1, e2, e3] enotski vektor osi vrtenja in ∆ϕ kot zasuka okoli te osi.
Za enotske kvaternione velja q2

0 + q2
1 + q2

2 + q2
3 = 1.

Transformacija
qv′ = q−1 ◦ qv ◦ q

zavrti vektor v = [x, y, z]T , podan s kvaternionom

qv = xi+ yj + zk

(ali enakovredno qv = [0, x, y, z]T ), okoli osi e za kot ∆ϕ v vektor v′ =
[x′, y′, z′]T , izražen s kvaternionom

qv′ = x′i+ y′j + z′k

kjer ◦ označuje produkt kvaternionov, definiran v (5.6) in (5.7).

Druga prednost kvaternionov je relativno enostavna kombinacija zaporednih
rotacij. Kvaternion, ki ustreza produktu dveh rotacijskih matrik, je enak produktu
obeh kvaternionov [1]. Imamo kvaterniona

q = q0 + q1i+ q2j + q3k

in
q′ = q′0 + q′1i+ q′2j + q′3k

Če nek vektor zavrtimo iz njegove začetne orientacije za zasuk q′, nato pa še za
zasuk q, je celoten zasuk vektorja

q′′ = q′ ◦ q = (q′0q0 − q′1q1 − q′2q2 − q′3q3)
+ i(q′1q0 + q′2q3 − q′3q2 + q′0q1)
+ j(−q′1q3 + q′2q0 + q′3q1 + q′0q2)
+ k(q′1q2 − q′2q1 + q′3q0 + q′0q3)

(5.6)

ali v vektorsko-matrični obliki
q′′0
q′′1
q′′2
q′′3

 =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



q′0
q′1
q′2
q′3

 (5.7)
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Povezava med kvaternionom in predstavitvijo z rotacijsko matriko je podana z

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q0q3 + q1q2) 2(q1q3 − q0q2)
2(q1q2 − q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (5.8)

ali v obratni smeri

q0 = 1
2
√

1 +R11 +R22 +R33 (5.9)

q1 = 1
4q0

(R23 −R32)

q2 = 1
4q0

(R31 −R13)

q3 = 1
4q0

(R12 −R21) (5.10)

Če je q0 v enačbi (5.9) blizu nič, je pretvorba iz rotacijske matrike v kvaternion
(enačbe (5.9) – (5.10)) singularna. V tem primeru lahko izračunamo kvaternion z
uporabo ekvivalentne oblike (enačbe (5.11) – (5.12)) brez numeričnih problemov

q0 = 1
4T (R32 −R23) (5.11)

q1 = T

q2 = 1
4T (R12 +R21)

q3 = 1
4T (R13 +R31) (5.12)

kjer je T = 1
2
√

1 +R11 −R22 −R33.

Povezavo med kvaternioni in Eulerjevimi koti (notacija 3-2-1 ) dobimo z matri-
kami Rx(ϕ), Ry(θ) in Rz(ψ), kar ustreza kvaternionom [cos(ϕ/2) + i sin(ϕ/2)],
[cos(θ/2) + j sin(θ/2)] in [cos(ψ/2) +k sin(ψ/2)]. Kvaternion za rotacijo 3-2-1 je

q = [cos(ψ/2) + k sin(ψ/2)][cos(θ/2) + j sin(θ/2)][cos(ϕ/2) + i sin(ϕ/2)]

ali v vektorski obliki

q =


cos(ϕ/2) cos(θ/2) cos(ψ/2) + sin(ϕ/2) sin(θ/2) sin(ψ/2)
sin(ϕ/2) cos(θ/2) cos(ψ/2)− cos(ϕ/2) sin(θ/2) sin(ψ/2)
cos(ϕ/2) sin(θ/2) cos(ψ/2) + sin(ϕ/2) cos(θ/2) sin(ψ/2)
cos(ϕ/2) cos(θ/2) sin(ψ/2)− sin(ϕ/2) sin(θ/2) cos(ψ/2)


Obratna transformacija se glasi

ϕ = arctan
(

2(q1q0 + q2q3)
q2
0 − q2

1 − q2
2 + q2

3

)
θ = − arcsin (2(q1q3 − q2q0))

ψ = arctan
(

2(q3q0 + q1q2)
q2
0 + q2

1 − q2
2 − q2

3

)
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Primer 5.1

Koordinatni sistem senzorja (magnetometer) je glede na koordinatni sistem
robota zasukan. Naj bo koordinatni sistem senzorja lokalen (L), koordinatni
sistem robota pa globalen (G). Orientacija senzorja glede na robota je opisana
z dvema rotacijama. Na začetku sta oba koordinatna sistema poravnana, nato
(L) zavrtimo okoli osi x za kot αx = 90° in nato še enkrat okoli nove osi y za kot
αy = 45°.

1. Kakšna je orientacija senzorja, izražena z rotacijsko matriko RL
G, glede

na koordinatni sistem robota? Določite Eulerjeve kote (notacija 3-2-1 ) in
kvaternion qLG, ki opisujejo to transformacijo.

2. Magnetometer meri smerni vektor v = [0, 0, 1]T magnetnega polja. Kakšna
je predstavitev tega vektorja v koordinatah robota?

Rešitev

1. Končno orientacijo opisuje skupna rotacijska matrika, kjer je pomemben
vrstni red množenja

RL
G = Ry(αy)Rx(αx) =

=

cos(αy) 0 − sin(αy)
0 1 0

sin(αy) 0 cos(αy)


1 0 0

0 cos(αx) sin(αx)
0 − sin(αx) cos(αx)


=

0,7071 0,7071 0
0 0 1

0,7071 −0,7071 0


(5.13)

Vrstice v matriki RL
G predstavljajo komponente novih osi senzorja, izražene

v koordinatnem sistemu robota, kar je prikazano grafično na sliki 5.1.

x

y

z x
y

z

Rx Ry

z

y

x

Slika 5.1: Prikaz rotacij v enačbi (5.13)
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2. Eulerjeve kote za notacijo 3-2-1 izračunamo iz matrike R = RL
G

ϕ = arctan(R23

R33
) = 90°

θ = − arcsin(R13) = 0°

ψ = arctan(R12

R11
) = 45°

(5.14)

kjer dobimo rotacijsko matriko z RL
G = Rx(ϕ)Ry(θ)Rz(ψ), katere osnovne

rotacije Rx(ϕ), Ry(θ) in Rz(ψ) so določene v enačbi (5.3) — glejte sliko
5.2.

x

y

z

Rx
Rz Ry

x

y

z

xy

z

x

y

Slika 5.2: Prikaz rotacij z Eulerjevimi koti (5.14)

3. Kvaternion qLG dobimo s produktom kvaternionov zaporednih rotacij

qLG = qx ◦ qy

kjer je qx, glede na enačbo (5.5), definiran s kotom zasuka ∆ϕx = 90°
okoli rotacijske osi ex = [1, 0, 0]T in qy s kotom zasuka ∆ϕy = 45° okoli
rotacijske osi ey = [0, 1, 0]T

qx =


cos ∆ϕx/2

ex1 sin ∆ϕx/2
ex2 sin ∆ϕx/2
ex3 sin ∆ϕx/2

 =


0,7071
0,7071

0
0



qy =


cos ∆ϕz/2

ey1 sin ∆ϕy/2
ey2 sin ∆ϕy/2
ey3 sin ∆ϕy/2

 =


0,9239

0
0,3827

0


Končni kvaternion (glejte definicijo produkta kvaternionov v (5.7)) ima
obliko

qLG = qx ◦ qy =


0,6533
0,6533
0,2706
0,2706


kar ustreza kotu zasuka ∆ϕ = 2 arccos(q0) = 2 arccos(0,6533) = 98,41°
okoli rotacijske osi e = 1

sin ∆ϕ
2

[q1, q2, q3]T = [0,8630, 0,3574, 0,3574]T .
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4. Merjeni smerni vektor vL = [0, 0, 1]T zapišemo v koordinatah robota kot

vG = RG
LvL = [0,707 11, −0,707 11, 0]T

kjer je RG
L = (RL

G)−1 = (RL
G)T .

Enako dobimo s kvaternioni, kjer je vektor po rotaciji enak

qvG = (qGL )−1 ◦ qvL ◦ qGL

ter velja qvL = [0, vTL ]T in qGL = (qLG)−1 (glejte 5.2.1). Produkt kvaternio-
nov je definiran v (5.7). Dobimo

qvG =


0,6533
0,6533
0,2706
0,2706

 ◦


0
0
0
1

 ◦


0,6533
−0,6533
−0,2706
−0,2706

 =


0

0,7071
−0,7071

0


kar ustreza vektorju vG = [0,7071, −0,7071, 0]T (upoštevamo le vektorski
del kvaterniona).

Primer 5.2

Na začetku sta globalni koordinatni sistem G in lokalni koordinatni sistem L

poravnana, nato pa se L zavrti okoli osi x za kot αx = 90° in nato ponovno okoli
nove osi z za kot αz = 90°.

1. Kakšna je orientacija koordinatnega sistema L, izražena z rotacijsko matriko
(RL

G), glede na koordinatni sistem G? Določite Eulerjeve kote (notacija
3-2-1 ) in kvaternion qLG, ki opisujejo to transformacijo.

2. Vektor v globalnih koordinatah je vG = [0, 0, 1]T . Kakšna je predstavitev
tega vektorja v lokalnih koordinatah?

Rešitev

1. Za rotacijo zapišemo rotacijsko matriko (na sliki 5.3 je še grafična predsta-
vitev te rotacije)

RL
G =

 0 0 1
−1 0 0
0 −1 0

 (5.15)
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x

y

z x
y

z

Rx

x

y

z

Rz

Slika 5.3: Prikaz rotacije (5.15)

2. Eulerjeve kote (notacija 3-2-1 ) ocenimo iz matrike RL
G

ϕ = arctan
(
R23

R33

)
= nedefinirano

θ = − arcsin (R13) = −90°

ψ = arctan
(
R12

R11

)
= nedefinirano

Opazimo, da je θ = −90°, kar pomeni, da je parametrizacija z Eulerjevimi
koti singularna in sta zato ϕ ter ψ nedefinirana. Z uporabo Eulerjevih
kotov torej ne moremo zapisati te orientacije (rotacije).

3. Kvaternion qLG je
qLG = qx ◦ qz

kjer je

qx =


0,7071
0,7071

0
0



qz =


0,7071

0
0

0,7071


Torej je

qLG = qx ◦ qz =


0,5
0,5
−0,5
0,5


kar ustreza zasuku za kot ∆ϕ = 2 arccos(0,5) = 120° okoli rotacijske osi
e = 1

sin ∆ϕ
2

[q1, q2, q3]T = [0,5774, −0,5774, 0,5774]T .
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4. Vektor vG = [0, 0, 1]T je v lokalnih koordinatah zapisan kot

vL = RL
GvG = [1, 0, 0]T

ali s kvaternioni

qvL = (qLG)−1 ◦ qvG ◦ qLG =


0
1
0
0


kjer je vektorski del enak vL = [1, 0, 0]T .

5.2.2 Translacija in rotacija

Za posplošeno predstavitev bomo označili koordinatni sistem senzorja kot L
(lokalne koordinate) in koordinatni sistem robota kot G (globalne koordinate).
Lokacija senzorja glede na koordinatni sistem robota je opisana s translacijskim
vektorjem tGL = [tx, ty, tz] in rotacijsko matriko RL

G. Translacija tGL opisuje
pozicijo izhodišča lokalnega koordinatnega sistema v globalnih koordinatah
in rotacijska matrika RL

G opisuje orientacijo lokalnega koordinatnega sistema
glede na globalni koordinatni sistem (robota). Točko pG, podano v globalnih
koordinatah, lahko opišemo z lokalnimi koordinatami z uporabo transformacije

pL = RL
G

(
pG − tGL

)
njena inverzna transformacija pa je podana z

pG = (RL
G)−1pL + tGL =

(
RL
G

)T
pL + tGL

Primer 5.3

Robot ima laserski pregledovalnik razdalj (LPR), ki izmeri položaj najbližje točke
ovire pL = [1, 0,5, 0,4]T m v koordinatah senzorja. Ima tudi magnetometer, ki
ob istem času izmeri vektor zemeljskega magnetnega polja vTL = [22, 1, 42] nT.

LPR je glede na (globalni) koordinatni sistem robota premaknjen za t1 =
[0,1, 0, 0,25]T in zasukan za 30° okoli osi z. Magnetometer pa je premaknjen za
t2 = [0, 0,1, 0,2] in zasukan za Eulerjeve kote ϕ = 0°, θ = 10°,ψ = 20° (notacija
3-2-1 ).

1. Katere so najbližje koordinate točke ovire v koordinatnem sistemu robota?

2. Kakšen je vektor magnetnega polja v koordinatnem sistemu robota?
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Rešitev

1. Rotacijska matrika je

RL
G =

 cos(30°) sin(30°) 0
− sin(30°) cos(30°) 0

0 0 1

 =

0,866 0,5 0
−0,5 0,8660 0

0 0 1


Točka, izražena v koordinatah robota, pa je

pG = (RL
G)TpL + t1 = [0,716, 0,933, 0,65]T

2. Pri transformaciji vektorja je pomembna le rotacija, tako da so kompo-
nente magnetnega vektorja v koordinatah robota dobljene z rotacijsko
transformacijo

RL
G = Rx(0°)Ry(10°)Rz(20°) =

 0,9254 0,3368 −0,1736
−0,3420 0,9397 0
0,1632 0,0594 0,9848


vG = (RL

G)TvL = [26,8705, 10,8443, 37,5417]T

5.2.3 Kinematika rotacijskih koordinatnih siste-
mov

V tem poglavju bomo pokazali, kako je orientacija togega telesa, ki je predsta-
vljena s kvaternionom ali rotacijsko matriko, povezana s kotnimi hitrostmi okoli
lokalnih osi togega telesa. Togo telo se vrti okrog svojih osi x, y in z s kotnimi
hitrostmi ωx, ωy in ωz, zato se orientacija togega telesa (npr. robota ali senzorske
enote) spreminja glede na referenčni koordinatni sistem.

Rotacijska kinematika izražena s kvaternioni

Časovno odvisnost rotacije togega telesa (podana z diferencialno enačbo) lahko
izpeljemo iz definicije produkta dveh kvaternionov (5.7). Če je orientacija togega
telesa q(t) v času t znana, lahko njegovo orientacijo v času t+ ∆t zapišemo kot

q(t+ ∆t) = q(t) ◦∆q(t) (5.16)

kjer ∆q(t) podaja spremembo orientacije togega telesa iz q(t) v q(t + ∆t). Z
drugimi besedami, ∆q(t) je orientacija telesa v času t + ∆t glede na njegovo
orientacijo v času t. Do končne orientacije telesa q(t+ ∆t) torej pridemo tako, da
najprej zavrtimo telo za rotacijo q(t) glede na nek referenčni koordinatni sistem
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in nato za rotacijo ∆q(t) glede na q(t). Tako s pomočjo enačbe (5.5) zapišemo
∆q(t) kot

∆q(t) =


cos ∆ϕ/2
ex sin ∆ϕ/2
ey sin ∆ϕ/2
ez sin ∆ϕ/2


kjer je e(t) = [ex, ey, ez]T os rotacije, izražena v lokalnih koordinatah togega
telesa v času t in ∆ϕ je kot zasuka v časovnem intervalu ∆t. Ob predpostavki,
da sta e(t) in ∆ϕ konstantna v časovnem intervalu ∆t, lahko preoblikujemo
produkt kvaternionov (5.16) s pomočjo (5.7) kot

q(t+ ∆t) =

cos
(

∆ϕ
2

)
I + sin

(
∆ϕ
2

)
0 −ex −ey −ez
ex 0 ez −ey
ey −ez 0 ex
ez ey −ex 0


 q(t) (5.17)

kjer je I enotska matrika dimenzij 4× 4. Za kratke intervale ∆t lahko upošte-
vamo aproksimacijo ∆ϕ ≈

√
ωx2 + ωy2 + ωz2∆t, kjer je ω(t) = [ωx, ωy, ωz]T

vektor trenutnih kotnih hitrosti, ki ga lahko zapišemo tudi v obliki ω(t) =√
ωx2 + ωy2 + ωz2e. Za majhne kote lahko (5.17) aproksimiramo z

q(t+ ∆t) ≈
(
I + ∆tΩ

2

)
q(t)

kjer je

Ω =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


Diferencialno enačbo, ki opisuje orientacijo togega telesa, dobimo z limitiranjem
∆t proti nič

dq
dt = lim

∆t→0

q(t+ ∆t)− q(t)
∆t = 1

2Ωq (5.18)

kjer so kotne hitrosti v Ω podane v koordinatnem sistemu togega telesa.

Rotacijska kinematika izražena z rotacijsko matriko

Izpeljimo še diferencialno enačbo za predstavitev orientacije togega telesa, ki jo
podaja rotacijska matrika. Podobno kot v (5.16) lahko zapišemo

R(t+ ∆t) = ∆R(t)R(t) (5.19)

kjer je R(t) orientacija togega telesa v času t, R(t+ ∆t) orientacija togega telesa
v času t+∆t in ∆R(t) sprememba orientacije (orientacija telesa v času t = t+∆t)
glede na orientacijo v času t.

Sprememba orientacije ∆R(t) je definirana kot

∆R(t) = e

∫ t+∆t

t
Ω′ dt (5.20)
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kjer je

Ω′ =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0


in ω(t) = [ωx, ωy, ωz]T je vektor trenutnih kotnih hitrosti telesa.

Ob predpostavki, da je Ω′ konstantna matrika v časovnem intervalu ∆t, lahko
aproksimiramo izraz

∫ t+∆t
t

Ω′(t) dt ≈ Ω′∆t = B. Eksponent v (5.20) razvijemo
v Taylorjevo vrsto

∆R(t) = eB =

=
(
I +B + B2

2! + B3

3! + . . .

)
=

=
(
I +B + B2

2! −
σ2B

3! −
σ2B2

4! + σ4B

5! + . . .

)
=

=
(
I + sin σ

σ
B + 1− cosσ

σ2 B2
)

(5.21)

kjer je I enotska matrika dimenzij 3×3 in σ = ∆t
√
ωx2 + ωy2 + ωz2. Za majhne

kote σ lahko (5.21) aproksimiramo z

∆R(t) = I +B = I + Ω′∆t

kar lahko uporabimo za izračun rotacijske matrike (5.19) v času t+ ∆t

R(t+ ∆t) = (I + Ω′∆t)R(t)

Končno diferencialno enačbo dobimo z limitiranjem ∆t proti nič

dR
dt = lim

∆t→0

R(t+ ∆t)−R(t)
∆t = Ω′R (5.22)

Zavoljo popolnosti je podana tudi enakovredna parametrična predstavitev rotacije
z Eulerjevimi koti (notacija 3-2-1 )

ϕ̇ = ωx + ωy sinϕ tan θ + ωz cosϕ tan θ
θ̇ = ωy cosϕ− ωz sinϕ

Ψ̇ = ωy sinϕ+ ωz cosϕ
cos θ

(5.23)

kjer lahko vidimo, da postane notacija (prva in tretja enačba (5.23)) singularna
pri θ = ±π/2.

5.2.4 Projekcijska geometrija

Projekcija je preslikava prostora z N > 0 dimenzijami v prostor z M < N

dimenzijami. Običajno se pri projekcijski preslikavi nekaj informacije nepovratno
izgubi. Če pa je na voljo več projekcij objekta iz različnih vidnih kotov, je v
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nekaterih primerih možno rekonstruirati opazovani objekt v N -dimenzionalnem
prostoru. Dve najbolj osnovni projekciji sta: perspektivična projekcija in vzporedna
projekcija (linearna preslikava z goriščem v neskončnosti).

Glede na model kamere z luknjico, se 3D-točka pTC = [xC yC zC ], podana v koor-
dinatnem sistemu kamere C, preslika v 2D-točko pTP = [xP yP ] v koordinatnem
sistemu slike P kot sledi (glejte sliko 5.4)

p
P

= 1
zC
SpC (5.24)

kjer p
P

predstavlja točko pTP = [xP yP ] v homogenih koordinatah, tj. pT
P

=
[xP yP 1]. Matrika S ∈ R3 × R3 opisuje notranji model kamere

S =

αxf γ cx
0 αyf cy
0 0 1

 (5.25)

Intrinzični (notranji) parametri kamere vsebovani v S so: goriščna razdalja f ;
faktorja skaliranja αx in αy v horizontalni in vertikalni smeri; optično središče na
sliki (cx, cy) in strig γ. Parametre modela kamere se običajno določi ali popravi s
postopkom kalibracije kamere. Perspektivični model kamere (5.24) ne nelinearen,
ker vsebuje člen z−1

C (inverz razdalje do točke v smeri osi z v koordinatnem
sistemu kamere C). Čeprav je perspektivična transformacija invariantna za
točke, premice in splošne stožnice (stožnice so dvodimenzionalne krivulje, ki
nastanejo pri preseku stožca z ravnino) — tj. točke se preslikajo v točke, premice
v premice in stožnice v stožnice —, je slika prizora nekoliko popačena predstavitev
opazovanega prizora. V splošnem velja, da se koti med premicami in razmerja
med razdaljami ne ohranjajo (tj. vzporedne premice se v splošnem ne preslikajo v
vzporedne premice). V nekaterih posebnih postavitvah kamere je perspektivično
projekcijo možno zadovoljivo aproksimirati z ustreznim linearnim modelom [2] —
kar lahko poenostavi kalibracijo kamere. Model kamere (5.24) lahko zapišemo
tudi v obliki

p
P
∝ SpC

Slika (projekcija) opazovanega objekta nastane na zaslonu za optičnim središčem
kamere (na goriščni razdalji f v smeri negativne osi zC od optičnega središča) in
je obrnjena za 180° ter pomanjšana. Pri vizualizaciji projekcije kamere si lahko
zamislimo, da nastane ne-obrnjena slika pred optičnim središčem kamere (na
pozitivni osi zC na enaki razdalji od optičnega središča kot prava slika), kot je
prikazano na sliki 5.4.

Primer 5.4

Notranji model kamere (5.25) ima naslednje parametre: αxf = αyf = 1000, brez
striga (γ = 0) in optično središče je na sredini slike, ki je dimenzij 1024 krat 768.
Preslikajte naslednjo množico 3D-točk, ki so podane v koordinatnem sistemu
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Center slike
(cx, cy)

pP
pP

p

Svetovni k. s. W

K. s.
kamere

C

K. s. slike P

K. s. slike P

Optično središče
Optična os

3D-objekt

Virtualna slikovna ravnina

Resnična slikovna ravnina

Slika 5.4: Projekcija pri modelu kamere z luknjico

kamere, na zaslon kamere (v koordinatni sistem slike)

pTC ∈ {[−1 1 4], [1 1 5], [0 − 1 4], [−1 1 − 4], [4 1 5]}

Rešitev

Projekcija 3D-točk na sliko z enačbo (5.24) podana v programu 5.1. Rezultati
so prikazani tudi grafično na levi strani slike 5.5. Opazimo, da četrta točka ni
prikazana na sliki, ker je izven omejene slikovne ravnine (zaslona). Nahaja se za
kamero, in torej ni vidna. To je posledica dejstva, da matematični model (5.24)
ne upošteva omejitev vidnega polja kamere. Zatorej moramo izvesti dodatna
preverjanja, da zagotovimo, da se na slikovno ravnino preslikajo le točke v vidnem
polju kamere: tj. projicirane točke morajo biti znotraj meja slikovne ravnine in
pred kamero. Zatorej se na slikovni ravnini v resnici pojavijo le prve tri točke
(glejte desno stran slike 5.5).

Program 5.1: Rešitev primera 5.4
./src/sen/example_projection.m

1 % Notranji parametri kamere in velikost zaslona
2 alphaF = 1000; % alpha *f, v px/m
3 s = [1024; 768]; % Velikost zaslona , v px
4 c = s/2; % Optično sredi šče na sliki , v px
5 S = [alphaF , 0, c(1); 0, alphaF , c(2); 0, 0, 1]; % Model kamere
6

7 % Množica 3D točk v koordinatnem sistemu kamere
8 pC = [-1 1 4; 1 1 5; 0 -1 4; -1 1 -4; 4 1 5]. ’;
9

10 % Projekcija točk na slikovno ravnino
11 pP = (S*pC )./ repmat (pC (3 ,:) , 3, 1)
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pP =
262 712 512 762 1312
634 584 134 134 584

1 1 1 1 1

0 1024
0

768

pP,1
pP,2

pP,3 pP,4

0 1024
0

768

pP,1
pP,2

pP,3

Slika 5.5: Projicirane točke na slikovno ravnino iz primera 5.4. Na levi so točke,
ki so preslikane z matematičnim modelom (5.24) in na desni so točke, ki so v
resnici vidne na slikovni ravnini.

Jasno je, da je mogoče s preslikavo (5.24) enolično preslikati vsako točko v
3D-prostoru na slikovno ravnino, kar pa ne velja za inverzno preslikavo. Ker
perspektivična preslikava povzroči izgubo informacije o globini prizora, lahko
vsako točko na slikovni ravnini preslikamo le v poltrak (žarek) v 3D-prostoru, če
ni na voljo nobene dodatne informacije. Prizor lahko rekonstruiramo, če lahko
nekako pridobimo podatek o globini. Obstaja veliko metod, ki omogočajo 3D-
rekonstrukcijo in temeljijo na uporabi globinskih kamer, strukturirane svetlobe,
dodatni svetlobnih namigov, gibanja itd. Položaj točke v 3D-prostoru lahko
ocenimo tudi na podlagi več (najmanj dveh) projekcij 3D-točke iz različnih
pogledov. 3D-rekonstrukcija je torej možna z uporabo stereo kamere.

Geometrija več pogledov

Geometrija več pogledov ni pomembna le zato, ker omogoča rekonstrukcijo
opazovanega prizora, temveč tudi zaradi lastnosti, ki jih lahko s pridom izkoristimo
pri razvoju algoritmov strojnega vida (npr. pri iskanju parov točk med slikami
in pri ocenjevanju lege kamere na podlagi pogleda kamere). Predpostavimo, da
rotacijska matrika RC1

C2
in translacijski vektor tC1

C2
opisujeta relativno lego med

dvema kamerama (slika 5.6). Če optični središči obeh kamera ne sovpadata
(tC1
C2
6= 0), lahko po kratki matematični manipulaciji pridemo do izraza (5.27)
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Epipolarna premica
točke pP1
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K. s. slike P1
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kamere C1
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kamere C2

K. s.
slike P2

pC

pP1
pP2

FpP2 FT pP1

RC1
C2

, tC1
C2

Epipolarna ravnina

Slika 5.6: Perspektivična geometrija pogledov dveh kamer

(predpostavljamo, da sta notranja modela kamer enaka)

pC1 = RC1
C2
pC2 + tC1

C2
(5.26)

S−1p
P1
∝ RC1

C2
S−1p

P2
+ tC1

C2

[tC1
C2

]×S−1p
P1
∝ [tC1

C2
]×RC1

C2
S−1p

P2

0 = pT
P1
S−T [tC1

C2
]×RC1

C2
S−1p

P2

0 = pT
P1
Fp

P2
(5.27)

Vektorski produkt vektorjev aT = [a1 a2 a3] in bT = [b1 b2 b3] smo zapisali kot
a× b = [a]×b, kjer je [a]× antisimetrična matrika

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


Matrika F je znana kot fundamentalna matrika in opisuje epipolarno omejitev
(5.27): točka p

P1
leži na premici Fp

P2
na prvi sliki in točka p

P2
leži na premici

F Tp
P1

na drugi sliki. Pomembna je tudi relacija pTC1
EpC2 = 0, kjer je ma-

trika E = [tC1
C2

]×RC1
C2

na področju strojnega vida znana kot esencialna matrika.
Povezava med esencialno in fundamentalno matriko je E = STFS.

Epipolarno omejitev lahko izkoristimo za izboljšanje iskanja parov točk med
slikama istega prizora iz dveh zornih kotov, če je znana medsebojna lega med
kalibriranima kamerama. Ker mora korespondenčni par točke p

P1
na prvi sliki

ležati na premici F Tp
P1

na drugi sliki, se iskanje para na 2D-ravnini slike skrči na
iskanje vzdolž 1D-premice (epipolarne premice). Zato je možna velika pohitritev
iskanja parov točk in tudi iskanje parov je lahko bolj robustno, saj lahko zavržemo
pare, ki ne zadostijo epipolarni omejitvi.
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Primer 5.5

Z dvema kamerama opazujemo množico 3D-točk v prostoru. Medsebojna lega
kamer je podana z rotacijsko matriko RC1

C2
= Rx(30◦)Ry(60◦) in translacijskim

vektorjem tC1
C2

= [4 − 1 2]T . Notranji parametri modela (5.25) obeh kamer so
enaki: αxf = αyf = 1000, brez striga (γ = 0) in optična os poteka skozi središče
slike z dimenzijami 1024 krat 768. Množica točk, ki nastane na zaslonu prve
kamere, je

pTP1 ∈ {[262 634], [762 634], [512 134], [443 457], [412 284]}

Množica točk, ki nastane na zaslonu druge kamere, je

pTP1 ∈ {[259 409], [397 153], [488 513], [730 569], [115 214]}

Točke, ki nastanejo na slikovnih ravninah obeh kamer, so prikazane na sliki 5.7.
Določite vse možne korespondenčne pare točk, ki zadostijo epipolarni omejitvi.
Za vse najdene korespondenčne pare točk rekonstruirajte položaj 3D-točk v
prostoru glede na koordinatna sistema obeh kamer.

0 1024
0

768

pP1,1 pP1,2

pP1,3

pP1,4

pP1,5

0 1024
0

768

pP2,1

pP2,2

pP2,3 pP2,4

pP2,5

Slika 5.7: Točke na dveh slikovnih ravninah iz primera 5.5

Rešitev

Pri iskanju parov točk med dvema slikama iz kamer, katerih medsebojna lega
je znana, velja, da morajo projekcije točk, ki pripadajo isti 3D-točki, zadostiti
epipolarni omejitvi (5.27). Enačba (5.27) je oblike lTp = 0, tj. homogena točka
pT = [x y 1] leži na premici lT = [a b c], saj je ax+ by + c = 0 implicitna oblika
enačbe premice. S pomočjo epipolarne omejitve (5.27) lahko torej najdemo
premico lP2 na drugi sliki za vsako točko p

P1
na prvi sliki, in obratno, premico

lP1 za vsako točko p
P2
. Epipolarne premice za prvo in drugo sliko so prikazane

na sliki 5.8. Glede na sliki 5.7 in 5.8 lahko grafično najdemo štiri možne pare
točk.
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0 1024
0
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0

768
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Slika 5.8: Točke in epipolarne premice na dveh slikah iz primera 5.5

Implementacija algoritma za iskanje parov točk je podana v programu 5.2 (funkciji
rotX in rotY sta Matlabovi implementaciji enačb (5.1) in (5.2)). Pari točk so
zbrani v indeksni matriki pairs.

Program 5.2: Iskanje parov točk iz primera 5.5
./src/sen/example_fundamental.m

1 % Notranji parametri kamere in velikost zaslona
2 alphaF = 1000; % alpha *f, v px/m
3 s = [1024; 768]; % Velikost zaslona , v px
4 c = s/2; % Optično sredi šče na sliki , v px
5 S = [alphaF , 0, c(1); 0, alphaF , c(2); 0, 0, 1]; % Model kamere
6

7 % Lega med kamerama
8 R = rotX(pi /6)* rotY(pi /3); t = [4; -1; 2];
9

10 % Množica točk
11 pP1 = [262 , 634; 762 , 634; 512 , 134; 443 , 457; 412 , 284]. ’;
12 pP2 = [259 , 409; 397 , 153; 488 , 513; 730 , 569; 115 , 214]. ’;
13

14 N1 = size(pP1 , 2); N2 = size(pP2 , 2); % Š tevilo točk
15

16 % Fundamentalna matrika
17 tx = [0, -t(3) , t(2); t(3) , 0, -t(1); -t(2) , t(1) , 0];
18 F = S.’\tx*R/S;
19

20 epsilon = 1e -2; % Toleranca napake po razdalji
21 pP1 = [pP1; ones (1,N1 )]; pP2 = [pP2; ones (1,N2 )]; % Točke v homogenih koordinatah
22

23 % Epipolarne premice v k. s. P1 , ki pripadajo točkam v k. s. P2
24 lP1 = F*pP2;
25 % Epipolarne premice v k. s. P2 , ki pripadajo točkam v k. s. P1
26 lP2 = F.’* pP1;
27

28 % Iskanje parov točk (upoš tevanje epipolarne omejitve )
29 pairs = [];
30 for i = 1: N1
31 d = abs(lP2 (:,i). ’* pP2 );
32 k = find(d< epsilon );
33 if ~ isempty (k), pairs = [pairs , [i; k (1)]]; end
34 end
35 pairs
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pairs =
1 2 3 5
3 4 2 1

Singularni primeri Enačba (5.27) postane singularna, če optični središči obeh
kamer sovpadata. V primeru, če je tC1

C2
nič, lahko iz (5.26) izpeljemo relacijo

p
P1
∝ SRC1

C2
S−1p

P2
(5.28)

Do podobne oblike enačbe pridemo tudi v primeru, če se vse točke v 3D-prostoru
nahajajo le na eni ravnini. Brez izgube na splošnosti lahko predpostavimo, da je
to ravnina zW = 0

p
P1
∝ S[rC1

W,1 r
C1
W,2 t

C1
W ][rC2

W,1 r
C2
W,2 t

C2
W ]−1S−1p

P2
(5.29)

kjer RC
W = [rCW,1 rCW,2 rCW,3]. Preslikava ravnine v svetovnih koordinatah na

slikovno ravnino je
p
P
∝ S[rCW,1 rCW,2 tCW ]p

W
(5.30)

kjer v tem primeru velja pT
W

= [xW yW 1]. Enačbe (5.28), (5.29) in (5.30) imajo
vse podobno obliko: p′ ∝Hp. Matrika H je na področju strojnega vida znana
kot homografija.

3D-rekonstrukcija

V primeru stereo kamere je položaj 3D-točke možno določiti na podlagi obeh
projekcij (slik) točke. Postopek zahteva določitev korespondenčnega para točk
na slikah, ki ustrezata 3D-točki v prostoru, kar je eden izmed fundamentalnih
problemov na področju strojnega vida. Ko je korespondenčni par točk najden in
če je znana lege med obema kamerama (translacija med kamerama ne sme biti
nič) ter če sta znana še notranja modela obeh kamer, lahko določimo položaj točke
v 3D-prostoru. Če sta oba notranja modela kamer enaka, lahko ocenimo globino
točke v koordinatnih sistemih obeh kamer (zC1 in zC2), če rešimo naslednji sistem
enačb (npr. z uporabo metode najmanjših kvadratov)

S−1p
P1
zC1 −R

C1
C2
S−1p

P2
zC2 = tC1

C2
(5.31)

Primer 5.6

Za vse najdene korespondenčne pare točk na slikah iz primera 5.5 določite položaje
točk v 3D-prostoru glede na koordinatni sistem prve in druge kamere.
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Rešitev

Položaje točk v 3D-prostoru lahko določimo, če rešimo sistem enačb (5.31) za
vsak korespondenčni par točk na slikah iz primera 5.5. Rešitev vstavimo v
inverzno transformacijo enačbe (5.24). Implementacija rešitve v okolju Matlab je
podana v programu 5.3. Položaji točk v 3D-prostoru glede na koordinatni sistem
prve in druge kamere so prirejeni spremenljivkam pC1 in pC2.

Program 5.3: Rekonstrukcija točk v 3D-prostoru iz primera 5.6
./src/sen/example_reconstruct.m

1 % Rekonstrukcija
2 M = size(pairs , 2);
3 pC1 = zeros (3,M);
4 for i = 1:M
5 a = pairs (1,i); b = pairs (2,i);
6 c1 = S\pP1 (:,a);
7 c2 = -R*(S\pP2 (:,b));
8 psi = [c1 , c2 ]\t;
9 pC1 (:,i) = psi (1)* c1;

10 end
11 pC2 = R. ’*(pC1 - repmat (t, 1, M));
12 pC1 , pC2

pC1 =
-0.9989 0.9994 0 -0.2999

0.9989 0.9994 -1.0005 -0.2999
3.9956 3.9978 4.0018 2.9994

pC2 =
-0.1372 0.8638 -0.4988 -1.0973

0.7333 0.7327 -1.0013 0.1066
5.6930 3.9635 4.3308 4.3316

Problem rekonstrukcije se poenostavi v primeru kanonične postavitve stereo
kamere, kjer je prva kamera glede na drugo le premaknjena vzdolž osi x za
razdaljo b (kot je prikazano na sliki 5.9). V tem primeru postanejo epipolarne
premice vzporedne in epipolarna premice točke pP1 gre tudi skozi to točko (ne le
točko pP2 na drugi sliki). V primeru digitalnih slik to pomeni, da se par točke na
prvi sliki nahaja na drugi sliki v isti vrstici kot na prvi sliki. Predpostavimo, da
so parametri modelov (5.25) obeh kamer enaki: αx = αy = α in γ = 0. Položaj
točke v 3D-prostoru glede na koordinatni sistem prve kamere lahko dobimo iz
obeh njenih projekcij (slik)

pTC1 = b

d

[
xP1 − cx yP1 − cy αf

]
(5.32)

kjer smo uvedli dispariteto d = xP1 − xP2 . Dispariteta vsebuje informacijo o
globini, kot je razvidno iz zadnjega elementa v vektorju (5.32): zC1 = αfbd−1.
Za vse točke, ki se nahajajo pred kamero, je dispariteta pozitivna: d ≥ 0.
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Koordinatni sistem slike P2Koordinatni sisrem slike P1

b

pP1 pP2

Center slike

Epipolarna premica

Slika 5.9: Kanonična postavitev stereo kamere

Primer 5.7

Predpostavimo kanonično postavitev stereo kamere z razdaljo med kamerama
b = 0,2 in naslednjimi notranjimi parametri obeh kamer: αxf = αyf = 1000,
cx = 512 in cy = 384. Določite položaj 3D-točke, ki se projicira v točko
pTP1

= [351 522] na prvi sliki in v točko pTP2
= [236 522] na drugi sliki.

Rešitev

Ker imamo opravka s kanonično postavitvijo stereo kamere, lahko rešitev dobimo
direktno z uporabo (5.32) (glejte program 5.4).

Program 5.4: Rekonstrukcija 3D-točke iz primera 5.7
./src/sen/example_reconstruct0.m

1 % Notranji parametri kamere in velikost zaslona
2 alphaF = 1000; % alpha *f, v px/m
3 c = [512; 384]; % Optično sredi šče na sliki , v px
4 S = [alphaF , 0, c(1); 0, alphaF , c(2); 0, 0, 1]; % Model kamere
5

6 b = 0.2; % Razdalja med kamerama , v m
7

8 % Pari točk
9 pP1 = [351; 522];

10 pP2 = [236; 522];
11

12 % 3D- rekonstrukcija
13 d = pP1 (1) - pP2 (1);
14 pC1 = b/d*[pP1 -c; alphaF ]

pC1 =
-0.2800

0.2400
1.7391
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5.3 Metode merjenja lege

V nadaljevanju bomo predstavili glavne metodologije uporabe senzorjev za oce-
njevanje lege robota v okolju. Ti pristopi lahko merijo relativno spremembo lege
glede na predhodno določeno lego ali pa absolutno lego glede na nek referenčen
koordinatni sistem.

5.3.1 Relativno določanje lege

Relativno določanje lege (angl. dead reckoning) ocenjuje trenutno lego robota s
pomočjo prejšnje znane lege in izmerjenih relativnih premikov iz prejšnje lege. Ti
premiki ali inkrementi gibanja (razdalja in orientacija) se izračunajo iz izmerjenih
hitrosti v pretečenem času in smeri gibanja. Za te pristope je skupna uporaba
integracije poti za oceno trenutne lege, zato se običajno pojavijo različni pogreški
(pogrešek integracijske metode, merilni pogrešek, pristranskost, šum itd.).

V mobilni robotiki sta najpogosteje uporabljena pristopa odometrija in inercialni
navigacijski sistem.

Odometrija

Odometrija ocenjuje lego robota s pomočjo integracije premikov, ki jih lahko
izmerimo ali pridobimo iz uporabljenih regulirnih veličin za gibanje. V mobilni
robotiki običajno pridobimo relativne premike iz osnih senzorjev (npr. inkre-
mentalni enkoder), ki so pritrjeni na osi koles robota. Z uporabo notranjega
kinematičnega modela (glejte (2.1) za diferencialni pogon) so meritve zasuka
koles povezane s spremembami pozicije in orientacije mobilnega robota. Spre-
membe pozicije in orientacije v določenem časovnem intervalu med zaporednima
meritvama lahko izrazimo s hitrostmi robota. V nekaterih primerih se lahko
kotne hitrosti koles izmerijo neposredno ali pa jih izrazimo iz znanih reguliranih
hitrosti (predpostavimo, da so hitrostni regulatorji točni).

Vzemimo robota z diferencialnim pogonom, ki ima na kolesih nameščena inkre-
mentalna enkoderja. Senzorja merita relativno spremembo zasuka levega ∆αL(t)
in desnega kolesa ∆αR(t) glede na (prejšnjo) orientacijo v času t− = t−∆t. Če
predpostavimo idealno vrtenje koles (brez zdrsov koles ipd.), je njuna prevožena
razdalja

∆dL(t) = ∆αL(t)R ∆dR(t) = ∆αR(t)R

kjer je R polmer koles. Z uporabo notranjega kinematičnega modela (2.1) sta
sprememba orientacije in prevožena razdalja (premik)

∆ϕ(t) = ∆dR(t)−∆dL(t)
L

∆d(t) = ∆dR(t) + ∆dL(t)
2
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kjer je L razdalja med kolesoma.

Lego robota lahko ocenimo iz njegovih izmerjenih hitrosti s pomočjo integracije
zunanjega kinematičnega modela (2.2) ali iz vsote izračunane pozicije robota in
sprememb orientacije. Z uporabo trapezne metode integracije dobimo ocenjeno
lego robota

x(t) = x(t−) + ∆d(t) cos
(
ϕ(t−) + ∆ϕ(t)

2

)
y(t) = y(t−) + ∆d(t) sin

(
ϕ(t−) + ∆ϕ(t)

2

)
ϕ(t) = ϕ(t−) + ∆ϕ(t)

Vendar pa zaradi integralne narave odometrije pride do kumulativnega pogreška
(lezenja), ki ga v glavnem delimo na sistematične in nedeterministične pogreške.
Sistematični pogreški se pojavijo zaradi kinematičnih nepravilnosti (npr. napačen
podatek za polmer koles) ter (ne)točnosti uporabljene integracijske metode in
meritve (neznana pristranskost). Nedeterministični pogreški pa so posledica
zdrsa koles, šuma meritve ipd. Zato je odometrija samostojno uporabna le
za kratkoročno ocenjevanje pri znani začetni legi. Pogosteje se uporablja v
kombinaciji z meritvami absolutnih senzorjev za napovedovanje in filtriranje
absolutnih meritev lege. Tako dobimo boljše ocene lege.

V kolesnih mobilnih sistemih za odometrijo pogosto uporabljamo senzorje, ki jih
pritrdimo na os kolesa (npr. inkrementalni optični dajalniki, potenciometri) in
merijo kot zasuka ali kotno hitrost.

Inercialna navigacija

Inercialni navigacijski sistem (INS) je samostojna tehnika za oceno lege, orientacije
in hitrosti vozila s pomočjo relativnega merjenja položaja. INS vključuje senzorje
gibanja (pospeškometer) in merilnike zasuka (žiroskop), kjer sta pozicija in
orientacija vozila ocenjeni glede na znano začetno lego.

Meritev pospeškometra in žiroskopa predstavljata tridimenzionalna vektorja
pospeškov in kotnih hitrosti v prostoru. Za oceno lege in orientacije robota je
potrebna dvojna integracija meritve pospeška in enojna integracija meritve kotne
hitrosti. Uporaba integracije je glavni vzrok za položajni pogrešek v INS, saj se
ob integraciji akumulirajo konstantni (sistematični) pogreški (lezenje senzorja,
slaba kalibracija itd.). Zaradi stalnega pogreška napaka ocenjevanja pozicije
narašča kvadratično s časom, napaka ocene orientacije pa narašča linearno s
časom. Poleg tega je napaka ocenjevanja pozicije odvisna od napake ocenjevanja
orientacije, ker pospeškometer meri celotni pospešek, torej tudi gravitacijo. Da
lahko ocenimo pospešek vozila, moramo od meritve odšteti gravitacijski pospešek,
kar zahteva natančno poznavanje orientacije vozila. Vsak pogrešek orientacije
(nagnjena podlaga) povzroči napačni navidezni pogrešek zaradi gravitacije, kar
je še posebej problematično, ker so pospeški vozila običajno veliko manjši od
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gravitacije. Pri majhnih pospeških povzroča dodatne težave relativno velik šum
(majhna vrednost razmerja signal-šum). Ti vplivi so jasno razvidni iz modela
meritve pospeškometra, ki je sestavljen iz translacijskega pospeška vozila a,
gravitacije g = [0, 0, 0,981]T in radialnega pospeška

am = Rw
i
T (a+Rw

e g + ω × v) + abias + anoise (5.33)

kjer je am izmerjeni pospešek v lokalnih koordinatah senzorja, Rw
e rotacijska

matrika med koordinatnim sistemom Zemlje (ECEF) in globalnim koordinatnim
sistemom, v katerem sledimo legi, Rw

i rotacijska matrika iz lokalnega koordi-
natnega sistema INS v globalni koordinatni sistem, ω kotna hitrost v globalnih
koordinatah, v translacijska hitrost, abias pristranskost pospeška in anoise šum.

Orientacijo ocenimo s pomočjo meritev žiroskopa. Model meritve žiroskopa je

ωm = ωi + ωbias + ωnoise (5.34)

kjer je ωm vektor izmerjene kotne hitrosti, ωi pravi vektor kotnih hitrosti telesa
v lokalnih koordinatah, ωbias je pristranskost senzorja in ωnoise šum senzorja.

Oceno orientacije INS-enote dobimo s pomočjo ocenjenih enotskih kotnih hitrosti
iz (5.34) kot ωi = ωm − ωbias. Pristranski del se ponavadi oceni sproti s
pomočjo nekega ocenjevalnika (npr. Kalmanov filter) ali pa predpostavimo, da
je konstanten za kratke ocenjevalne intervale, kakovostni žiroskop in začetno
kalibracijo (ocena hitrosti ωbias). Vendar se pristranskost spreminja s časom,
zato je slednji pristop primeren samo za kratkoročno uporabo. Najenostavnejšo
kalibracijo izvedemo s povprečenjem N meritev žiroskopa, medtem ko držimo
INS-enoto v konstantnem položaju (ωbias = 1

N

∑N
i=1 ωm, ko ωi = 0).

S pomočjo rotacijske kinematike za kvaternione (5.18) dobimo relativno oceno
orientacije enote INS glede na začetno orientacijo kot

dqiw(t)
dt = 1

2Ω(t)qiw(t)

qiw(t) =
t∫

0

dqiw(t)
dt dt+ qiw(0) (5.35)

kjer je qiw(t) kvaternion, ki opisuje rotacijo iz globalnega koordinatnega sistema
w v koordinanti sistem INS-enote i, qiw(0) začetna orientacija

Ω(t) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


in ωi(t) = [ωx, ωy, ωz]T . Rotacijsko matriko Ri

w = Rw
i
T pridobimo iz razmerja

(5.8). V (5.35) lahko uporabimo numerično integracijo (5.17).

Da lahko ocenimo lego INS-enote, izračunamo translacijski pospešek v globalnih
koordinatah iz (5.33)

a = Rw
i (am − abias)−Rw

e g − ω × v
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kjer je ω = Rw
i ωi vektor kotne hitrosti v globalnih koordinatah, izraz za pristran-

skost abias pa se ocenjuje sproti s pomočjo nekega ocenjevalnika (npr. Kalmanov
filter). Potrebna je tudi ustrezna kalibracija pospeškometra. Oceno hitrosti v(t)
in pozicije x(t) dobimo z integracijo

v(t) =
t∫

0

a(t) dt+ v(0)

x(t) =
t∫

0

v(t) dt+ x(0)

Primer 5.8

Izvedite simulacijo izmerjenega pospeška in kotnih hitrosti za robota z diferenci-
alnim pogonom in INS-enoto, ki se vozi po krivulji x(t) = cos(t), y(t) = sin(2t)
in z(t) = 0 (v globalnem koordinatnem sistemu). Čas simulacije je 6 s, račun-
ski korak pa 1 ms. INS-enota je usmerjena tako, da je njena x-os tangenta na
trajektorijo, y-os je pravokotna na x-os in z-os je poravnana z z-osjo globalnega
koordinatnega sistema.

Iz meritev ocenite pozicijo in orientacijo INS-enote v globalnem koordinatnem
sistemu. Poleg tega upoštevajte pristranskost senzorjev in šum ter opazujte, kako
vplivata na ocenjeno lego INS-enote.

Rešitev

V simulaciji dobimo kotne hitrosti INS-enote iz razmerja (5.22) in jih uporabimo
za matriko kotnih hitrosti Ω′ = dR

dt Ω′RT . Simulacije meritev pospeškometra in
žiroskopa so modelirane s pomočjo (5.33) in (5.34) ter prikazane na sliki 5.10.
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Slika 5.10: Simulacija meritev pospeška (levi stolpec) in kotne hitrosti (desni
stolpec) INS-enote

Ocenjena pozicija in orientacije INS-enote v idealnem primeru brez šuma in
pristranskosti sta prikazani na sliki 5.11.
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Slika 5.11: Ocenjena pozicija (a) in orientacija (b) INS-enote iz meritev pospe-
škometra in žiroskopa v idealnih razmerah, brez šuma in pristranskosti (prava
vrednost je označena s polno krivuljo, ocena pa s črtkano krivuljo). Na koncu
simulacije lahko opazimo manjši pozicijski pogrešek zaradi numerične integracije.

Ocenjena lega v primeru šumnih meritev in vključene pristranskosti pa je prika-
zana na sliki 5.12, kjer je mogoče opaziti hitro rast pozicijskega pogreška.
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Slika 5.12: Ocenjena pozicija (a) in orientacija (b) INS-enote iz meritev pospe-
škometra in žiroskopa z upoštevanim šumom in pristranskostjo senzorja (prava
vrednost je označena s polno krivuljo, ocena pa s črtkano krivuljo). Ker pri-
stranskost ni kompenzirana, se pojavi velik pogrešek ocene pozicije in majhen
pogrešek ocene orientacije.

V programu 5.5 je podana koda za simulacijo INS-enote in oceno njene lege
(funkcije rotX, rotY in rotZ so Matlabove izvedbe funkcij (5.1), (5.2) in (5.3)).



5.3. Metode merjenja lege 231

Program 5.5
./src/sen/example_inertial_sensors_navigation.m

1 biasA = [1; 1; 1]*0.02; biasW = [1; 1; 1]*0.04; % Sistemati čna napaka senzorja
2 SigmaA = 0.1; SigmaW = 0.05; % Šum senzorja
3

4 nSteps = 6000; dT = 0.001; t = 0; % Š tevilo vzorcev in velikost koraka
5

6 for k = 1: nSteps
7 % Simulacija gibanja senzorja : prava lega in pravi pospe ški
8 x = [cos(t); sin (2*t); 0]; % Lega
9 v = [-sin(t); 2* cos (2*t); 0]; % Hitrost

10 a = [-cos(t); -4* sin (2*t); 0]; % Pospe šek
11

12 fi = [0; 0; atan2 (v(2) , v (1))]; % Eulerjevi koti glede na svetovni k. s.
13 dfi = [0; 0; (v(1)*a(2) - v(2)*a (1))/( v (1)^2 + v (2)^2)]; % Odvod
14 Rx = rotX(fi (1)); Ry = rotY(fi (2)); Rz = rotZ(fi (3));
15 dRx = [0, 0, 0; 0,-sin(fi (1)) , cos(fi (1)); 0,-cos(fi (1)) , - sin(fi (1))];
16 dRy = [-sin(fi (2)) , 0,-cos(fi (2)); 0, 0, 0; cos(fi (2)) , 0,-sin(fi (2))];
17 dRz = [-sin(fi (3)) , cos(fi (3)) , 0;- cos(fi (3)) , - sin(fi (3)) , 0; 0, 0, 0];
18 R = Rx*Ry*Rz;
19 dR = dRx*Ry*Rz*dfi (1) + Rx*dRy*Rz*dfi (2) + Rx*Ry*dRz*dfi (3);
20 q = dcm2quat (R). ’; % Kvaternion med svetovnim k. s. in senzorjem
21

22 % Meritve ž iroskopa
23 Omega = dR*R.’; % Zapis odvoda kotne hitorsti v matri čni obliki
24 wb = -[ Omega (3 ,2); Omega (1 ,3); -Omega (1 ,2)]; % Kotne hitrosti
25

26 % Meritve pospe š kometra
27 agDyn = a; % Dinami čni pospe šek v svetovnem k. s.
28 agGrav = [0; 0; 9.81]; % Gravitacija
29 Rearth = eye (3); % Globalni k. s. sovpada s k. s. Zemlje
30 wg = R.’*wb; % Prave kotne hitrosti v svetovnem k. s.
31 wgSkew = [0 -wg (3) wg (2); wg (3) 0 -wg (1); -wg (2) wg (1) 0];
32 vg = v; % Hitrosti v svetovnem k. s.
33

34 % Izmerjene kotne hitrosti in pospe ški
35 wbMea = wb + biasW + randn (3 ,1)* SigmaW ;
36 abMea = R*( agDyn + Rearth * agGrav + wgSkew *vg) + biasA + randn (3 ,1)* SigmaA ;
37

38 % Inercialna navigacija
39 if k==1 % Inicializacija
40 qEst = q; xEst = x; vEst = v; % Inicializacija zač etnih vrednosti
41 else % Posodobitev
42 % Ž iroskop
43 wx = wbMea (1); wy = wbMea (2); wz = wbMea (3);
44 OMEGA = [ 0 -wx -wy -wz; ...
45 wx 0 wz -wy; ...
46 wy -wz 0 wx; ...
47 wz wy -wx 0];
48 dQest = 0.5* OMEGA *qEst;
49 qEst = qEst + dQest *dT; % Integracija kvaternionov
50 qEst = qEst/norm(qEst ); % Normiranje kvaternionov
51 % Pospe šek
52 agGrav = [ 0; 0; 9.81]; % Gravitacija
53 R_ = quat2dcm (qEst . ’); % Lega senzorja glede na svetovni k. s.
54 Rearth = eye (3); % Svetovni k. s. sovpada s k. s. Zemlje
55 wg_ = R_ . ’*[ wx; wy; wz ]; % Kotne hitrosti v svetovnem k. s.
56 wgSkew_ = [0 -wg_ (3) wg_ (2); wg_ (3) 0 -wg_ (1); -wg_ (2) wg_ (1) 0];
57 Aest = R_.’* abMea - Rearth * agGrav - wgSkew_ *vEst; % Ocena pospe ška
58 vEst = vEst + Aest*dT; % Ocena hitrosti
59 xEst = xEst + vEst*dT; % Ocena lege
60 end
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61 t = t + dT;
62 end

5.3.2 Merjenje smeri gibanja

Sistemi za merjenje smeri podajajo informacijo o orientaciji vozila v prostoru,
oz. v katero smer je vozilo usmerjeno. Za oceno smeri običajno uporabimo več
senzorjev, kot so magnetometer, žiroskop in pospeškometer. Njihove informacije
so vgrajene v senzorske sisteme za oceno smeri (npr. žiroskop, kompas ali
inklinometer).

Magnetometer in pospeškometer zagotavljata absolutne meritve tridimenzionalnih
smernih vektorjev zemeljskega magnetnega polja (jakost in smer) ter smernega
vektorja gravitacije Zemlje (če senzorska enota ne pospešuje). Za zmanjšanje šuma
meritve in izboljšanje točnosti, so v ocenjevalne filtre vključene tudi relativne
meritve žiroskopa.

Za oceno orientacije senzorske enote glede na nek referenčni koordinatni sistem
(npr. fiksni zemeljski koordinatni sistem) sta potrebna vsaj dva smerna vektorja.
Senzorsko enoto lahko sestavljata magnetometer in pospeškometer. Merilni model
magnetometra zapišemo kot

bm = Ri
wR

w
e btrue + bbias + bnoise

kjer je bm izmerjeno magnetno polje v koordinatnem sistemu senzorja, btrue
magnetno polje Zemlje v zemeljskem koordinatnem sistemu za neko mesto na
Zemlji, rotacijski matriki pa sta definirani enako kot v (5.33). Magnetno polje
btrue lahko aproksimiramo kot konstanto za nekaj majhnih površin na Zemlji (npr.
100 km2). Model pospeškometra je podan v (5.33). V primeru enakomernega
gibanja kaže smerni vektor meritve v smeri gravitacije in z-osi fiksnega zemeljskega
koordinatnega sistema.

Orientacija senzorske enote glede na fiksni zemeljski koordinatni sistem je opisana
z rotacijsko matriko Ri

e = Rw
i
TRw

e , ki jo dobimo z zapisom matrike vektorjev osi
zemeljskega koordinatnega sistema, izraženih v lokalnem koordinatnem sistemu.
V primeru mirovanja pospeškometer izmeri smerni vektor, ki kaže od središča
Zemlje proti poziciji INS. Ta smer torej določa z-os zemeljskega koordinatnega
sistema in je izražena v lokalnem (senzorskem) koordinatnem sistemu kot

zd = am
‖am‖

Smer Zemljine x-osi, izražena v lokalnih koordinatah, je določena s komponento
vektorja magnetometra, ki je pravokotna na zd

xd = bm × zd
‖bm × zd‖
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kjer × označuje vektorski produkt. Smer proti severu določa y-os Zemlje, izraženo
v lokalnem koordinatnem sistemu kot

yd = zd × xd

Dobljena rotacijska matrika je

Ri
e = [xd, yd, zd]

kjer je rotacijska matrika med globalnim in zemeljskimi koordinatnim sistemom
enakaRi

w = Rw
i
T =

(
Ri
eR

w
e
T
)T

. To orientacijo lahko opišemo tudi s kvaternioni
s pomočjo enačb (5.9) – (5.10) ali z Eulerjevimi koti s pomočjo relacije (5.4).

Točna ocena orientacije vozila je pomembna tudi pri izvedbi odometrije ali iner-
cialne navigacije za zmanjšanje pogreška orientacije in posledično tudi pogreška
ocene pozicije. Zato v absolutnih meritvah smeri gibanja pogosto uporabimo
relativne meritve v koraku korekcije ocenjevalnikov (npr. Kalmanovega filtra).

5.3.3 Aktivne značke in globalne meritve pozi-
cije

Lokalizacija v okolici je možna tudi z opazovanjem značk, ki se nahajajo na
znanih pozicijah v okolici. Značke so lahko naravne, če so že del okolice (npr. luči
na stropu, brezžični oddajniki itd.), ali pa umetne, če so nameščene v okolico za
namen lokalizacije (npr. radijski oddajniki, ultrazvočni ali infrardeči oddajniki,
v zemljo zakopane žice za robotske kosilnice, GPS-sateliti itd.).

Glavna prednost uporabe aktivnih značk je preprosta, robustna in hitra lokaliza-
cija. Vendar so stroški za njihovo namestitev, delovanje in vzdrževanje relativno
visoki.

Za oceno pozicije ali lege sistema se običajno uporablja triangulacija ali trila-
teracija. Trilateracija s pomočjo izmerjenih razdalj do več oddajnikov (značk)
oceni pozicijo sprejemnika, ki je nameščen na vozilo. Zelo znan tovrstni pristop
je globalni pozicijski sistem, kjer so aktivne značke sateliti na znanih lokacijah
v vesolju. Triangulacija pa uporablja izmerjene kote do treh ali več značk (npr.
svetlobni vir) na znanih lokacijah.

Osnovna ideja triangulacije je ponazorjena na sliki 5.13, kjer robot meri relativne
kote αi glede na aktivne značke. Predpostavimo tri značke, kot je prikazano na
sliki 5.13. Trenutna lega robota q = [x, y, ϕ]T in izmerjeni koti αj (j = 1, 2, 3)
so povezani z naslednjimi relacijami

tan(α1 + ϕ) = ym1 − y
xm1 − x

tan(α2 + ϕ) = ym2 − y
xm2 − x

tan(α3 + ϕ) = ym3 − y
xm3 − x

(5.36)
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Slika 5.13: Lokalizacija robota s pomočjo triangulacije, kjer so izmerjeni relativni
koti αi do značk

Rešitev triangulacije dobimo z rešitvijo enačb (5.36) za q = [x, y, ϕ]T .

Osnovna ideja trilateracije je prikazana na sliki 5.17, kjer so trenutna pozicija
robota, izmerjene razdalje do značk in njihove pozicije povezane z naslednjim
sistemom enačb

d2
1 = (xm1 − x)2 + (ym1 − y)2

d2
2 = (xm2 − x)2 + (ym2 − y)2

d2
3 = (xm3 − x)2 + (ym3 − y)2

(5.37)

V nadaljevanju bomo obravnavali nekaj primerov trilateracije in triangulacije.

Primer 5.9

Robot je opremljen s senzorjem, ki meri smeri do aktivnih značk. V okolici
so tri aktivne značke na znanih lokacijah m1 = [xm1, ym1]T = [0, 0]T , m2 =
[xm2, ym2]T = [5, 3]T in m3 = [xm3, ym3]T = [1, 5]T . Pri trenutni legi robota
q = [x, y, ϕ]T so izmerjene smeri podane kot relativni koti α1 = −2,7691,
α2 = −0,3585 in α3 = 1,4277.

Kakšna je trenutna lega robota q?

Možnih je več rešitev tega triangulacijskega problema, pri čemer bomo v nada-
ljevanju predstavili dve možnosti. V prvem delu je uporabljena optimizacija z
rojem delcev (PSO), ki smo jo predstavili v poglavju 3.3.9. V drugem delu pa je
uporabljen priljubljen geometrijski algoritem, ki temelji na presečišču krožnih
lokov.
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Rešitev A

Trenutna lega robota q = [x, y, ϕ]T in izmerjeni koti αj (j = 1, 2, 3) so povezani
z enačbami (5.36). Naloga algoritma PSO je najti neznanke (x, y in ϕ), da so
relacije (5.36) veljavne. Vsaka pozicija delca predstavlja eno od možnih rešitev
(qi) in med optimizacijami se množica delcev posodobi v smislu bolj optimalnih
rešitev. Merilo optimalnosti rešitve i-tega delca je podana na naslednji način

Ji = f(qi) =
3∑
j=1

(αj − α̂j)2

kjer je α̂j simulacija meritve i-tega delca, ki jo dobimo iz (5.36)

α̂j = arctan ymj − y
xmj − x

− ϕ

Upoštevajte, da mora funkcija arctan vrniti pravilen kot v območju (−π, π] (v
programskem okolju Matlab se za ta namen lahko uporabi funkcijo atan2).

Pravilna rešitev je q = [2, 2,5, π/6]T , katere koda je podana v programu 5.6,
končna situacija pa je prikazana na sliki 5.14.

Program 5.6
./src/sen/example_triangulation_pso.m

1 m = [0, 0; 5, 3; 1, 5]. ’; % Značke
2 r0 = [2; 2.5; pi /6]; % Prava lega robota , ki ni znana .
3

4 % Izmerjeni koti
5 alpha = wrapToPi ( atan2 (m(2 ,:) - r0 (2) , m(1 ,:) - r0 (1)) - r0 (3));
6

7 % Uporaba metode rojenja delcev (PSO)
8 iterations = 50; % Š tevilo iteracij
9 omega = 0.5; % Faktor vztrajnosti

10 c1 = 0.5; % Samozavedna konstanta
11 c2 = 0.5; % Socialna konstanta
12 N = 25; % Velikost roja delcev
13

14 % Začetni položaji delcev
15 swarm = zeros ([3 ,N ,4]);
16 swarm (1 ,: ,1) = 3 + randn (1,N); % Začetne vrednosti x
17 swarm (2 ,: ,1) = 3 + randn (1,N); % Začetne vrednosti y
18 swarm (3 ,: ,1) = 0 + randn (1,N); % Začetne vrednosti fi
19 swarm (: ,: ,2) = 0; % Začetne hitrosti delcev
20 swarm (1 ,: ,4) = 1000; % Najbolj ša vrednost kriterijske funkcije
21

22 for iter = 1: iterations % Iterativno iskanje optimalne rešitve s PSO
23 % Vrednotenje parametrov delcev
24 for i = 1:N
25 % Izračun novega predvidenega kota na podlagi i-tega delca
26 pEst = swarm (:,i ,1); % Ocenjeni parametri delca (x, y, fi)
27

28 % Primerjava predvidenih kotov z izmerjenimi koti
29 alphaEst = wrapToPi ( atan2 (m(2 ,:) - pEst (2) , m(1 ,:) - pEst (1)) - pEst (3));
30

31 % Izračun kriterijske funkcije
32 cost = (alphaEst - alpha )*( alphaEst - alpha ). ’;
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33 if cost < swarm (1,i ,4) % Če je novi parameter boljši, posodobi :
34 swarm (:,i ,3) = swarm (:,i ,1); % vrednosti parametrov (x, y, in fi)
35 swarm (1,i ,4) = cost; % in najbolj šo vrednost kriterijske funkcije .
36 end
37 end
38 [~, gBest ] = min( swarm (1 ,: ,4)); % Parametri globalno najbolj šega delca
39

40 % Posodobitev parametrov s hitrostnimi vektorji
41 swarm (: ,: ,2) = omega * swarm (: ,: ,2) + ...
42 c1*rand (3,N).*( swarm (: ,: ,3) - swarm (: ,: ,1)) + ...
43 c2*rand (3,N).*( repmat ( swarm (:,gBest ,3) , 1, N) - swarm (: ,: ,1));
44 swarm (: ,: ,1) = swarm (: ,: ,1) + swarm (: ,: ,2);
45 end
46

47 r = swarm (:,gBest ,1) % Rešitev , najbolj ša ocena lege
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Slika 5.14: Rešitev problema triangulacije iz primera 5.9 z optimizacijo roja
delcev (PSO). Začetne lege delcev so označene s pika-črtica, končne lege pa s
krog-črta.

Rešitev B

Obstaja mnogo analitičnih rešitev triangulacije, od katerih se najpogosteje upo-
rablja presek krožnih lokov. Opisali bomo osnovno idejo principa in uporabili
končno analitično rešitev za izračun lege robota. Celotno izpeljavo algoritma
lahko najdete v [3].
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Algoritem temelji na treh krogih, kjer je vsak krog definiran s tremi točkami: par
značk mi, mj , (i, j = 1, 2, 3, i 6= j) in pozicija robota x, y (glejte sliko 5.15).
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( )x , ym1 m1

( )x , ym2 m2

( )x , ym3 m3

j

a
1

a
3

a
2

a
12

a
23

Slika 5.15: Lokalizacija robota s triangulacijo na podlagi preseka krožnih lokov

Par značk je povezan s položajem robota z dvema daljicama, med katerima je
kot αij = αj − αi. Središča in polmeri teh treh krogov so

cij =
[
xcij
ycij

]
= 1

2

(
mi +mj +

[
(ymi − ymj cotαij)
(xmj − xmi cotαij)

])

rij = ‖mi −mj‖
2 sinαij

Ker velja α13 = α12 + α23, sta samo dva od teh kotov neodvisna in njuna
pripadajoča kroga (za α12 in α23) sta

(x− x12)2 + (y − y12)2 = r2
12 (5.38)

(x− x23)2 + (y − y23)2 = r2
23

Presek obeh krogov (5.38) je rešitev za pozicijo robota. Za več podrobnosti glede
pridobitve analitične rešitve, glejte [3]; tukaj je navedena le končna rešitev. Novi
začasni koordinatni sistem je definiran tako, da je m2 v njegovem izhodišču
in m3 leži na njegovi x-osi, kar omogoča lažjo pridobitev rešitve. Rotacijska
matrika od referenčnega do začasnega koordinatnega sistema je

R =
[

cosβ − sin β
sin β cosβ

]
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kjer je β = tan ym3−ym2
xm3−xm2

. Značke, izražene v začasnih koordinatah (m̄i =
[x̄mi, ȳmi]T ), dobimo s transformacijo m̄i = R−1(mi −m2). Presečišče krogov
v časovnih koordinatah (x̄, ȳ) je

[
x̄

ȳ

]
= x̄m3

1− η cotα12

1− η2

[
1
−η

]

kjer je η = x̄m3−x̄m1−ȳm1 cotα12
x̄m3 cotα23−ȳm1+x̄m1 cotα12

. Rešitev v referenčnih koordinatah je

[
x

y

]
= m2 +R

[
x̄

ȳ

]

in orientacija robota

ϕ = arctan ym1 − y
xm1 − x

− α1

Celoten algoritem za pridobitev rešitve je podan v Matlab kodi v programu 5.7.
Rešitev je grafično prikazana na sliki 5.16.

Program 5.7
./src/sen/example_triangulation.m

1 m = [0, 0; 5, 3; 1, 5]. ’; % Položaji treh značk
2 r0 = [2; 2.5; pi /6]; % Prava lega robota , ki ni znana .
3

4 % Izmerjeni koti
5 alpha = wrapToPi ( atan2 (m(2 ,:) - r0 (2) , m(1 ,:) - r0 (1)) - r0 (3));
6

7 % Triangulacija : izračun lege na podlagi izmerjenih kotov
8 f = atan2 (m(2 ,3) -m(2 ,2) , m(1 ,3) -m(1 ,2));
9 S = [cos(f) -sin(f); sin(f) cos(f)]; % Rotacija za koordinatni sistem v m2

10 m_ = S. ’*(m - repmat (m(: ,2) ,1 ,3)); % Preslikani položaji značk
11

12 cta = cot( alpha (2) - alpha (1));
13 ctb = cot( alpha (3) - alpha (2));
14 ni = (m_ (1 ,3) - m_ (1 ,1) - m_ (2 ,1)* cta )/( m_ (1 ,3)* ctb -m_ (2 ,1)+ m_ (1 ,1)* cta );
15 p_ = m_ (1 ,3)*(1 - ni*ctb )/(1+ ni ^2)*[1; -ni ];
16

17 % Rešitev
18 p = m(: ,2) + S*p_ % Položaj
19 fi = wrapToPi ( atan2 (m(2 ,1) -p(2) , m(1 ,1) - r0 (1)) - alpha (1)) % Orientacija

p =
2.0000
2.5000

fi =
0.5236
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Slika 5.16: Rešitev problema triangulacije iz primera 5.9 z direktnim pristopom

Primer 5.10

Robot je opremljen s senzorjem, ki meri razdaljo do aktivnih značk na podlagi
merjenja časa potovanja signala od značke (oddajnik) do robota s sprejemnikom.

Imamo tri aktivne značke na znanih lokacijah m1 = [xm1, ym1]T = [0, 0]T ,
m2 = [xm2, ym2]T = [5, 3]T in m3 = [xm3, ym3]T = [1, 5]T .

Pri trenutni poziciji robota r = [x, y]T so izmerjene razdalje d1 = 3,2016 m,
d2 = 3,0414 m in d3 = 2,6926 m, kot je prikazano na sliki 5.17.
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( )x , ym1 m1

( )x , ym2 m2

( )x , ym3 m3

d1

d2

d3

( )x, y

Slika 5.17: Lokalizacija robota s trilateracijo, kjer so merjene razdalje do značk
di

Kakšna je trenutna pozicija robota r?

Rešitev

Naloga trilateracijskega algoritma je najti neznano pozicijo x, y, tako da so
relacije (5.37) veljavne. To lahko storimo s PSO kot v primeru 5.9, kjer je
potrebno izvedbo dopolniti z relacijami (5.37) pri izračunu kriterijske funkcije.

Rešitev (5.37) lahko najdemo tudi analitično. Na voljo imamo več različnih
algoritmov, tukaj pa je podana enostavna rešitev. Od prve in druge enačbe v
(5.37) odštejemo tretjo ter dobimo

d2
1 − d2

3 = (xm1 − x)2 − (xm3 − x)2 + (ym1 − y)2 − (ym3 − y)2

d2
2 − d2

3 = (xm2 − x)2 − (xm3 − x)2 + (ym2 − y)2 − (ym3 − y)2

Enačbi preuredimo v

2(xm3 − xm1)x+ 2(ym3 − ym1)y = d2
1 − d2

3 − x2
m1 + x2

m3 − y2
m1 + y2

m3

2(xm3 − xm2)x+ 2(ym3 − ym2)y = d2
2 − d2

3 − x2
m2 + x2

m3 − y2
m2 + y2

m3

ter tako dobimo linearni enačbi v odvisnosti od x in y, ki ju lahko zapišemo v
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obliki Ar = b, kjer sta

A =
[

2(xm3 − xm1) 2(ym3 − ym1)
2(xm3 − xm2) 2(ym3 − ym2)

]

in

b =
[
d2

1 − d2
3 − x2

m1 + x2
m3 − y2

m1 + y2
m3

d2
2 − d2

3 − x2
m2 + x2

m3 − y2
m2 + y2

m3

]
od koder izračunamo neznano pozicijo

r = A−1b

S tem dobimo pravilno rešitev r = [2, 2,5]T , katere Matlab koda je podana v
programu 5.8.

Program 5.8
./src/sen/example_trilateration.m

1 m = [0, 0; 5, 3; 1, 5]. ’; % Položaji značk
2 r0 = [2; 2.5; pi /6]; % Prava lega robota , ki ni znana .
3

4 % Izmerjene razdalje do značk
5 d = sqrt ((m(1 ,:) - r0 (1)).^2+( m(2 ,:) - r0 (2)).^2);
6

7 % Trilateracija : iskanje lege robota glede na izmerjene razdalje
8 N = size(m ,2); A = zeros (N -1 ,2); b = zeros (N -1 ,1);
9 for i = 1:N -1

10 A(i ,:) = 2*[m(1,N)-m(1,i), m(2,N)-m(2,i)];
11 b(i) = d(i)^2 -d(N)^2 -m(1,i)^2 + m(1,N)^2 -m(2,i)^2 + m(2,N)^2;
12 end
13

14 r = A\b % Izračunan položaj

r =
2.0000
2.5000

Primer 5.11

V primeru 5.10 so bile izmerjene razdalje točne, kar je nerealna predpostavka.
Običajno so v meritvah prisotni šumi in druge motnje, zato je potreben predoločen
sistem z več kot tremi značkami, da se minimizira pogrešek ocene pozicije.
Za ponazoritev uporabimo n = 4 značke na lokacijah m1 = [xm1, ym1]T =
[0, 0]T , m2 = [xm2, ym2]T = [5, 3]T , m3 = [xm3, ym3]T = [1, 5]T in m4 =
[xm4, ym4]T = [2, 4]T . Izmerjene razdalje s šumom so d1 = 3,2297 m, d2 =
3,0697 m, d3 = 2,7060 m in d4 = 1,4759 m. Ocenite trenutno pozicijo robota r.
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Rešitev

Predoločen sistem z n aktivnimi značkami, ki minimizira povprečno kvadratno
napako ‖Ar − b‖, dobimo na naslednji način. Matrika A je

A =


2(xmn − xm1) 2(ymn − ym1)
2(xmn − xm2) 2(ymn − ym2)

...
...

2(xmn − xmn−1) 2(ymn − ymn−1)


in vektor b je

b =


d2

1 − d2
n − x2

m1 + x2
mn − y2

m1 + y2
mn

d2
2 − d2

n − x2
m2 + x2

mn − y2
m2 + y2

mn
...

d2
n−1 − d2

n − x2
mn−1 + x2

mn − y2
mn−1 + y2

mn


Rešitev dobimo z uporabo psevdoinverza

r = (ATA)−1AT b

Za dano razdaljo je rešitev r = [1,9873, 2,5337]T . Matlab koda implementacije
je podana v programu 5.9, rešitev pa je prikazana na sliki 5.18.

Program 5.9
./src/sen/example_trilateration_noise.m

1 m = [0, 0; 5, 3; 1, 5; 2, 4]. ’; % Položaji značk
2

3 % Izmerjene razdalje do značk
4 d = [3.2297 , 3.0697 , 2.7060 , 1.4759];
5

6 % Trilateracija : iskanje lege robota glede na izmerjene razdalje
7 N = size(m ,2); A = zeros (N -1 ,2); b = zeros (N -1 ,1);
8 for i = 1:N -1
9 A(i ,:) = 2*[m(1,N)-m(1,i), m(2,N)-m(2,i)];

10 b(i) = d(i)^2 -d(N)^2 -m(1,i)^2 + m(1,N)^2 -m(2,i)^2 + m(2,N)^2;
11 end
12

13 r = A\b % Izračunan položaj

r =
1.9873
2.5337
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Slika 5.18: Rešitev problema trilateracije iz primera 5.11

Globalni pozicijski sistem

Najpogosteje uporabljen princip trilateracije za lokalizacijo je globalni pozicijski
sistem (GPS, angl. Global positioning system). Sateliti predstavljajo aktivne
značke, ki pošiljajo kodiran signal GPS sprejemni postaji, katere pozicijo je
potrebno oceniti s trilateracijo. Sateliti imajo zelo točno atomsko uro ter znane
pozicije, določene s Keplerjevimi elementi in drugimi dvovrstičnimi parametri.
Obstaja več GPS-sistemov: Navstar iz ZDA, Glonass iz Rusije in Galileo iz
Evrope. GPS-sistem Navstar sestoji iz najmanj 24 satelitov, ki dvakrat dnevno
obkrožijo Zemljo na višini 20 200 km.

GPS se zdi zelo priročen senzorski sistem za lokalizacijo, vendar ima nekatere
omejitve, ki jih je potrebno upoštevati pri uporabi v mobilnih sistemih. Ovire,
kot so drevesa, hribi in zgradbe, blokirajo GPS-signal in onemogočijo sprejem.
Zaradi večkratnih odbojev pa lahko pride do interference signalov in posledično
napačne ocene razdalje. Vseeno gre za zelo zmogljiv sistem, ki dosega točnost
okoli 5 m oz. celo 1 cm za diferencialne sisteme z dodatnim sprejemnikom v
referenčni postaji.

Lokalizacijo z uporabo GPS lahko razložimo na enostaven način. Sprejemnik
meri čas potovanja signala iz določenega satelita. Čas potovanja je razlika med
časom sprejema tr in časom oddaje tt. Signal potuje s svetlobno hitrostjo c,
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GPS-sprejemnik

Slika 5.19: GPS lokalizacija zahteva sprejem od najmanj štirih satelitov za oceno
pozicije GPS-sprejemnika in časovne zakasnitve

zato se lahko izračuna razdalja med sprejemnikom in satelitom. Vendar pa ura
sprejemnika ni tako natančna kot atomska ura na satelitih, zato se pojavi neznana
časovna pristranskost ali pogrešek razdalje, ki je enak za vse razdalje do satelitov.
Torej mora GPS sprejemnik oceniti 4 parametre: svojo tridimenzionalno pozicijo
(x, y, z) in časovno pristranskost tb.

Okoli vsakega satelita narišemo sfero (tj. površina krogle), katere polmer določa
izmerjena razdalja. Presek dveh sfer je krožnica, presek treh sfer pa sta dve točki,
v katerih se lahko nahaja sprejemnik. Zato potrebujemo vsaj še eno sfero, da
zanesljivo ocenimo pozicijo sprejemnika. Če se sprejemnik nahaja na površju
Zemlje, jo lahko obravnavamo kot četrto sfero, s katero izločimo pravilno točko,
pridobljeno iz preseka treh satelitskih sfer. V idealnem primeru bi bili trije
satelitski sprejemniki dovolj. Ampak kot smo že omenili, je ura sprejemnika
netočna, kar povzroča neznano časovno pristranskost tb. Posledično presek štirih
sfer (tri od satelitov in ena od Zemlje) ni točka ampak območje. Za oceno časa tb
in manjši pogrešek lokalizacije je potreben sprejem četrtega satelita, kar pomeni,
da so za GPS-lokalizacijo potrebni vsaj štirje sateliti, kot je prikazano na sliki
5.19. GPS lokalizacija mora rešiti naslednji sistem enačb
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d1 = c(tr1 − tt1 − td) =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

d2 = c(tr2 − tt2 − td) =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2

d3 = c(tr3 − tt3 − td) =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

d4 = c(tr4 − tt4 − td) =
√

(x4 − x)2 + (y4 − y)2 + (z4 − z)2

kjer so neznanke pozicija sprejemnika x, y, z in časovna zakasnitev sprejemnika
td. Za i-ti satelit so znane vrednosti pozicija (xi, yi, zi), čas sprejema tri, čas
prenosa tti in hitrost svetlobe c.

5.3.4 Navigacija z uporabo značilk okolja

Značilke so podmnožica vzorcev, ki jih je mogoče robustno razbrati iz neobde-
lanih meritev senzorja ali drugih podatkov. Značilke so lahko premice, daljice,
krogi, pike, robovi, vogali in drugi vzorci. Zaznavanje značilk v okolju se lahko
uporablja za namene lokalizacije (ocene lege) mobilnega robota in gradnjo ze-
mljevida. V primeru dvodimenzionalnega laserskega pregledovalnika razdalj
lahko iz dobljenih podatkov (razdalja in kot) izločimo značilke v obliki daljic.
Linijske značilke v lokalnem koordinatnem sistemu mobilnega robota lahko nato
primerjamo z globalnim zemljevidom okolice, ki je prav tako predstavljen z nizom
linij, da bi določili lego mobilnega robota na zemljevidu. Dandanes se v mobilni
robotiki uporabljajo različni senzorji, med katerimi je najpopularnejša kamera.
V zadnjih letih so bili razviti številni algoritmi strojnega vida za zaznavanje
slikovnih značilk, ki se lahko uporabijo tudi za merjenje lege robota v okolici.
Pristopi, ki temeljijo na značilkah, običajno vsebujejo naslednje korake: detekcija
značilk, opis značilk in ujemanje značilk. V fazi detekcije značilk se obdelujejo
neobdelani podatki za določitev lokacij značilk. Za opis zaznane značilke se obi-
čajno uporablja območje okoli njene lokacije, nato se lahko uporabijo deskriptorji
(opisi značilk) za iskanje podobnih značilk (faza ujemanja značilk).

Značilke se nahajajo na znanih lokacijah, zato lahko njihovo opazovanje izboljša
znanje o lokaciji mobilnega robota (manjša negotovost lokacije). Seznam značilk
z njihovimi lokacijami se imenuje zemljevid, ki je lahko predhodno shranjen
v pomnilniku ali pa se gradi sproti med lokalizacijo — pristop, ki to omogoča,
se imenuje SLAM (angl. simultaneous localization and mapping). Prvi pristop
je metodološko enostavnejši, a hkrati nepraktičen, še posebej za večja okolja,
saj zahteva uporabo nekega referenčnega sistema lokalizacije ali pa je potrebno
ročno zapisati zaznane značilke. Glavna ideja drugega pristopa pa je možnost
lokalizacije iz opazovanih značilk, ki so že na zemljevidu, in shranjevanje novo
opaženih značilk na podlagi zaznane lokacije. Za zanesljivo zaznavanje značilk in
kar se da točno lokalizacijo robota je priporočljiva metoda relativnega določanja
položaja – odometrija. V primeru težko razpoznavnih značilk (npr. debla dreves
v sadovnjaku ali zaznavanje daljic v stavbah) so za identifikacijo opazovanih
značilk potrebne približne informacije o lokaciji robota. Približna lokacija robota
v trenutnem času je pridobljena iz lokacije v prejšnjem času in napovedi odometrije
za relativno gibanje od prejšnje do trenutne lokacije.
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Značilke so lahko naravne, če so že del okolja, ali umetne, če so izdelane posebej za
namen lokalizacije. Naravne značilke v strukturiranih okoljih (običajno v zaprtih
prostorih) so stene, talne plošče, luči, vogali ipd., v nestrukturiranih okoljih
(običajno na prostem) pa so to drevesna debla, prometni znaki itd. Umetne
značilke so narejene izključno za namen preproste in robustne lokalizacije (barvne
oznake, črtne kode, talne linije itd.).

Običajno pridobivanje značilk zahteva nekaj obdelave podatkov senzorjev, da
bi dobili bolj kompaktno, informativno in abstraktno predstavitev trenutnega
pogleda senzorja (linijska predstavitev proti množici točk). V nekaterih primerih
lahko uporabimo tudi neobdelane meritve senzorja (npr. slika kamere) za proces
lokalizacije s korelacijo pogleda senzorja in shranjenega zemljevida.

Pogosto se uporabljajo vizualne značilke, ki jih je mogoče zaznati z nekaterimi
slikovnimi senzorji. Ena najpreprostejših in najbolj uporabljenih značilk je
premica, ki jo lahko v okolju zazna kamera ali laserski merilnik razdalj.

Premica kot značilka

V lokalizaciji je premica pogosta izbira za značilko, saj gre za preprosto geome-
trijsko obliko. Uporabimo jo lahko za opisovanje notranjega ali zunanjega okolja
(stene, ploski predmeti, cestne proge itd.). S primerjavo trenutno opazovanih
parametrov značilk in parametrov predhodno znanega zemljevida okolja lahko
ocenimo lego robota.

V ta namen se pogosto uporablja laserski merilnik razdalj, ki meri oblak točk
odboja v okolju. Iz tega izmerjenega oblaka točk se s pomočjo različnih namenskih
algoritmov ocenijo (običajno dvodimenzionalni) parametri premic. Postopek
prilagajanja premici navadno zahteva dva koraka: prvi je identifikacija rojev, ki
jih je mogoče predstaviti s premico, drugi pa je ocena parametrov prilagajanja
premici za vsak roj, recimo z metodo najmanjših kvadratov. Običajno se ta dva
koraka izvajata iterativno.

Algoritem razcepi-in-združi Zelo priljubljen algoritem za obdelavo podatkov
laserskega pregledovalnika razdalj je razcepi-in-združi (angl. split-and-merge) [4,
5], ki je preprost za izvedbo, ima nizko računsko zahtevnost in dobro zmogljivost.
Algoritem zahteva paketne podatke, ki so iterativno razdeljeni na roje, kjer je
vsak roj opisan z linearnim prototipom (premica za dvodimenzionalne podatke).
Algoritem se lahko uporabi le za urejene podatke, kjer zaporedni vzorci podatkov
pripadajo isti premici (podatki iz laserskega pregledovalnika razdalj so običajno
urejeni).

Sprva vsi vzorci podatkov pripadajo enemu roju, katerega parametri linearnega
prototipa (premica) so prepoznani. Roj se nato razdeli pri vzorcu, ki ima največjo
razdaljo od prototipa in je ta razdalja večja od praga dsplit. Izbira vrednosti
dsplit je odvisna od šuma podatkov in mora biti večja od pričakovanega merilnega
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pogreška zaradi šuma (npr. tri standardne deviacije). Ko se rojenje zaključi,
se združijo kolinearni roji. Ta korak je neobvezen in običajno ni potreben pri
urejenih podatkovnih vrstah.

Za vsak roj j (j = 1, . . . ,m) zapišemo linearni prototip v normalni obliki

[zT (k), 1]θj = 0 (5.39)

kjer je z(k) = [x(k), y(k)]T k-ti vzorec (k = 1, . . . , n; n je število vseh vzorcev), ki
leži na premici, določeni s parametri θ. Za roj j, ki vsebuje vzorce kj = 1, . . . , nj ,
lahko s pomočjo singularnega razcepa ocenimo vektor parametrov θj . Regresijska
matrika

ψ =


zT (1) 1

...
...

zT (nj) 1


določa množico homogenih enačb v matrični obliki ψθj = 0, kjer je potrebno
oceniti parametre prototipa θj v smislu minimizacije najmanjših kvadratov.
Rešitev predstavlja lastni vektor (pr = [px, py, pp]T ) regresijske matrike ψTψ,
ki pripada najmanjši lastni vrednosti (izračunana z uporabo singularnega razcepa).
Parametre prototipa v normalni obliki dobimo z normalizacijo pr

θj = ± pr√
p2
x + p2

y

kjer je izbrani predznak nasproten od tretjega parametra pr (pp). Za podatkovni
vzorec z(k), ki ni v prototipu j, izračunamo ortogonalno razdaljo

dj(k) =
∣∣ [zT (k), 1]θj

∣∣
V primeru dvodimenzionalnih podatkov se lahko linearni prototip alternativno
oceni s povezovanjem prvega in zadnjega podatkovnega vzorca v roju. To ni opti-
malno v smislu najmanjših kvadratov, vendar zmanjšuje računsko kompleksnost
in zagotavlja, da se vzorec, ki definira razcep, ne pojavi v prvem ali zadnjem
podatkovnem vzorcu.

Prikaz prilagoditve podatkov laserskega pregledovalnika razdalj na premice je
podan v primeru 5.12.

Primer 5.12

Za podatke laserskega pregledovalnika razdalj, ki so sestavljeni iz 180 točk odboja
(glejte sliko 5.20 in program 5.10), ocenite roje premic, ki najbolje opisujejo
meritve. Rojenje poteka z uporabo praga razdalje dsplit = 0,06 m.

Program 5.10: Podatki laserskega pregledovalnika razdalj
./src/sen/script_laserscandata.m
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1 data = [-0 -2149 38 -2158 76 -2166 110 -2092 137 -1962 162 -1851 ...
2 185 -1761 222 -1809 255 -1817 289 -1822 324 -1835 358 -1840 ...
3 393 -1849 428 -1853 464 -1862 502 -1873 539 -1879 577 -1887 ...
4 617 -1898 656 -1905 697 -1915 738 -1921 780 -1929 824 -1942 ...
5 860 -1931 873 -1872 885 -1814 898 -1763 911 -1714 957 -1726 ...
6 1001 -1734 1035 -1722 2407 -3852 2431 -3743 2452 -3635 2476 ...
7 -3536 2497 -3437 2519 -3342 2539 -3250 2558 -3158 2576 -3070 ...
8 2596 -2986 2614 -2903 2630 -2821 2649 -2744 2664 -2664 2683 ...
9 -2591 2698 -2516 2715 -2445 2730 -2373 2742 -2301 2759 -2234 ...

10 2774 -2167 2790 -2102 2802 -2036 2817 -1973 2831 -1910 2845 ...
11 -1847 2857 -1785 2869 -1724 2885 -1666 2898 -1606 2908 -1546 ...
12 2924 -1490 2936 -1432 1146 -535 1149 -512 1155 -490 1160 -469 ...
13 1164 -447 1169 -425 1174 -404 1178 -383 1182 -361 1188 -341 ...
14 1190 -319 1195 -298 1199 -277 1205 -256 1210 -235 1214 -214 ...
15 1220 -193 1222 -172 1227 -151 1231 -129 1238 -108 1241 -87 ...
16 1248 -65 1253 -44 1254 -22 1259 0 1265 22 1268 44 1277 67 ...
17 1279 89 1287 113 1291 136 1295 159 1300 183 1306 207 1312 ...
18 231 1315 256 1320 280 1328 307 1178 294 1133 304 1092 313 ...
19 1050 321 1014 329 977 336 944 344 915 351 885 357 856 363 ...
20 829 369 805 375 778 380 756 385 735 391 713 395 694 401 674 ...
21 405 652 408 637 413 617 416 600 420 582 423 566 427 552 432 ...
22 537 435 520 436 507 441 493 444 478 446 463 447 452 452 439 ...
23 455 426 456 414 459 401 461 391 466 380 469 1920 2457 1944 ...
24 2580 1976 2720 2011 2872 2044 3030 2081 3204 2115 3385 2042 ...
25 3399 1971 3415 1903 3433 1832 3445 1764 3462 1694 3474 1629 ...
26 3493 1561 3506 1495 3522 1428 3533 1362 3549 1297 3564 1231 ...
27 3575 1167 3593 1102 3603 187 654 175 655 164 656 153 662 ...
28 141 662 130 667 118 668 106 671 94 670 83 677 71 678 60 681 ...
29 48 683 36 686 24 691 12 690]. ’;
30 x = data (2:2: end )/1000;
31 y = data (1:2: end -1)/1000;

Rešitev

Predstavljena je enostavna izvedba algoritma, ki izračuna parametre premic
vsakega roja v smislu najmanjših kvadratov. Če je potrebno roj razdeliti in se
pojavi delitveni vzorec (ki definira razcep) kot prva ali zadnja točka v roju, potem
roja ni mogoče razcepiti. V tem primeru ponovno izračunamo parametre premic,
da se prilegajo le prvemu in zadnjemu vzorcu, ter izvedemo razcep.

Izvedba ocene premic je podana v programu 5.11, podatki laserskega pregledoval-
nika razdalj pa so v programu 5.10. Ocenjene daljice so prikazane na sliki 5.20.

Program 5.11
./src/sen/example_lines_sandm.m

1 X = [x, y]; % Meritve laserskega merilnika razdalj
2 [N, M] = size(X);
3

4 % Init
5 C = 50; % Maksimalno š tevilo rojev
6 clusters = 1; % Zadnji aktivni roj
7 dMin = 0.06; % Prag razdalje za deljenje roja
8
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9 sizeOfCluster = zeros (C ,1); % Š tevilo točk v rojih
10 clusterBounds = zeros (C ,2); % Indeksi mejnih točk v rojih
11 clusterParams = zeros (C,M+1); % Parametri rojev
12 splitCluster = zeros (C ,1); % Zastavica za deljenje
13

14 % Na začetku so vse točke v enem roju
15 sizeOfCluster (clusters ,1) = N;
16 clusterBounds (clusters ,:)= [1, N]; % Točke so urejene
17 splitCluster (clusters ,1) = 1; % Začetni roj lahko delimo
18

19 exit = false ;
20 while ~exit
21 exit = true;
22 tmpLastCluster = clusters ;
23 for i = 1: tmpLastCluster
24 if splitCluster (i)
25 p0 = clusterBounds (i ,1); % Začetna točka v roju
26 p1 = clusterBounds (i ,2); % Končna točka v roju
27

28 % Ocena parametrov roja v smislu najmanj ših kvadratov
29 Psi = [X(p0:p1 ,:) , ones(p1 -p0 +1 ,1)];
30 [~, ~, V] = svd(Psi );
31 thetaEst = V(: ,3);
32 % Preslikava premice ax+by+c=0 v normalno obliko
33 s = -sign( thetaEst (3)); if s==0 , s = 1; end
34 mi = 1/ sqrt( thetaEst (1)^2+ thetaEst (2)^2)* s;
35 Theta = thetaEst *mi;
36

37 % Ocenitev enostavnih parametrov premice (an podlagi začetne in
38 % končne točke ). Ti parametri se uporabijo , ko je točka deljenja
39 % na meji roja
40 if abs(X(p1 ,1) -X(p0 ,1)) <100* eps % Vertikalna premica
41 a = 1; b = 0; c = -X(1 ,1);
42 else
43 a = (X(p1 ,2) -X(p0 ,2))/( X(p1 ,1) -X(p0 ,1));
44 b = -1;
45 c = -a*X(p0 ,1) + X(p0 ,2);
46 end
47 % Preslikava premice ax+by+c=0 v normalno obliko
48 thetaEst = [a; b; c];
49 s = -sign( thetaEst (3)); if s==0 , s = 1; end
50 mi = 1/ sqrt( thetaEst (1)^2+ thetaEst (2)^2)* s;
51 Theta0 = thetaEst *mi;
52

53 % Shranjevanje optimalnih parametrov
54 clusterParams (i ,:) = Theta .’;
55 ind = p0:p1;
56 XX = X(ind ,:);
57

58 % Izračun razdalje na podlagi prve in zadnje
59 % točke v roju ( enostavna premica )
60 dik = [XX , ones(size(XX ,1) ,1)]* Theta0 ;
61 [dd0 , iii] = max(abs(dik )); ii0 = ind(iii );
62

63 % Izračun razdalje od premice v smislu najmanj ših kvadratov
64 dik = [XX , ones(size(XX ,1) ,1)]* Theta ;
65 [dd , iii] = max(abs(dik )); ii = ind(iii );
66

67 % Deljenje roja
68 doSplit = 0;
69 if dd >dMin && (ii -p0 ) >=2 && (p1 -ii ) >=1 % Optimalne premice
70 if clusters <C
71 iiFin = ii; % Lokacija deljenja
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72 doSplit = 1;
73 clusterParams (i ,:) = Theta .’;
74 end
75 elseif dd0 >dMin && (ii0 -p0 ) >=2 && (p1 -ii0 ) >=1 % Enostavne premice
76 if clusters <C
77 iiFin = ii0; % Lokacija deljenja
78 doSplit = 1;
79 clusterParams (i ,:) = Theta0 .’;
80 end
81 else
82 splitCluster (i) = 0;
83 end
84

85

86 if doSplit ==1 && clusters <C
87 % Deljenje roja v roja A in B
88 clusters = clusters + 1; % Nov roj
89 % Prva in zadnja točka v roju A
90 clusterBounds (i ,1);
91 clusterBounds (i ,2) = iiFin -1;
92 splitCluster (i) = 1;
93 % Prva in zadnja točka v roju B
94 clusterBounds (clusters ,1) = iiFin +1;
95 clusterBounds (clusters ,2) = p1;
96 splitCluster ( clusters ) = 1;
97

98 exit = false ;
99 end

100 end
101 end
102 end

x [m]

y
[m

]

−4 −2 0 2 4
0

1

2

3

Slika 5.20: Podatki LRF in identični roji premic z uporabo algoritma razcepi-in-
združi

Samorazvijajoče se rojenje premic Podobno kot pri algoritmu razcepi-in-
združi lahko ocenimo premice tudi v primeru podatkovnih vrst. Rojenje se izvaja
sproti in se iterativno posodobi, ko prispejo novi podatki. Primer preprostega in



5.3. Metode merjenja lege 251

računalniško učinkovitega algoritma je samorazvijajoče se rojenje premic [6]. V
nadaljevanju bomo na kratko opisali njegove glavne korake.

Zapišemo j-ti prototip, ki modelira podatke z(kj) (kj = 1, . . . , nj) v j-tem roju

(z(kj)− µj)T · pj = 0

kjer je µj(kj) srednja vrednost podatkov v j-tem roju, ki se posodobi v vsaki
iteraciji (ko je na voljo nov vzorec) kot

µj(kj) = kj − 1
kj

µj(kj − 1) + 1
kj
z(kj)

in pj je normalni vektor j-tega prototipa, ki ga izračunamo iz kovariančne matrike
j-tega roja (za dvodimenzionalne podatke)

Σj(kj) =
[
σ2

11 σ2
12

σ2
21 σ2

22

]

kot lastni vektor pri pripadajoči najmanjši lastni vrednosti Σj(kj)

pj =


[

θ√
1+θ2

−1√
1+θ2

]T
; |λ1| ≤ |λ2|[

1√
1+θ2

θ√
1+θ2

]T
; |λ1| > |λ2|

kjer so θ in lastne vrednosti λ1 in λ2 določene z

θ = −σ
2
11 + σ2

22 +
√
σ4

11 + σ4
22 − 2σ2

11σ
2
22 + 4σ4

12
2σ2

12

λ1 = σ2
22 − θσ2

12

λ2 = σ2
22 − θσ2

12 + 1 + θ2

θ
σ2

12

Kovariančna matrika se posodablja iterativno

Σj(kj) = kj − 2
kj − 1Σj(kj − 1) + 1

kj
(z(kj)− µj(kj − 1)) (z(kj)− µj(kj − 1))T

Trenutni vzorec z(k) je potrebno razvrstiti v enega od obstoječih prototipov j
(j ∈ {1, . . . ,m}). To se izvede z izračunom ortogonalne razdalje dj(k) od vsakega
j-tega prototipa

dj(k) = |(z(k)− µj)Tpj |

Če je dj(k) = 0, podatkovni vzorec leži na j-tem linearnem prototipu. Vzorec
spada v j-ti roj, če je razdalja dj(k) za j-ti roj najmanjša ter hkrati manjša od
vnaprej določenega praga dmin (dj(k) < dmin). V [6] je predlagano robustno
rojenje, kjer je dmin sproti ocenjen iz podatkov j-tega roja.

Osnovna ideja algoritma rojenja je prikazana na sliki 5.21. Lahko ga uporabimo
sproti za urejene podatkovne vrste ali pa paketne podatke vzorcev (kot razcepi-
in-združi). Rezultati razvrstitve primera 5.12 so računsko manj zahtevni za
podobno kakovost rojenja kot pri algoritmu razcepi-in-združi.
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Inicializacija prvega roja
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Slika 5.21: Princip samorazvijajočega se rojenja za pretočne podatke, kjer roje
določajo prototipi premic
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Primer 5.13

Za podatke laserskega pregledovalnika razdalj, ki so sestavljeni iz 180 točk odboja
(glejte sliko 5.20 in začetek rešitve za koordinate točk), ocenite roje premic, ki
najbolje opišejo meritve. Rojenje poteka s pomočjo algoritma razvijajočega se
rojenja premic.

Rešitev

Trenutni vzorec pripada j-temu roju, če je njegova razdalja dj(k) do premice roja
manjša od praga dmin (dj(k) < dmin). Prag dmin je lahko konstanta ali pa ga,
kot v tem primeru, ocenjujemo sproti. Prag razdalje dmin se izračuna iz ocenjene
variance razdalje roja σj(kj) (varianca razdalje vzorcev od premice). Rekurzivna
ocena variance je σj(kj) = σj(kj − 1)kj−2

kj−1 + d2
j (k)
kj

in prag je dmin = κmax
√
σj ,

kjer je κmax = 7 nastavitveni parameter.

Izvedba ocene premic je podana v programu 5.12 (podatki laserskega pregledo-
valnika razdalj so opredeljeni v programu 5.10). Ocenjene daljice so prikazane
na sliki 5.22.

Program 5.12
./src/sen/example_straight_lines.m

1 X = [x, y]; % Meritve laserskega merilnika razdalj
2 kappaMax = 7; % Prag za faktor ortogonalne razdalje
3 cosPhiTh = cos (10/180* pi ); % Prag za začetno kolinearnost roja
4

5 [n,m] = size(X); dimension = m;
6 % Parametri
7 Nr_cloud_max = 20; Current_clust = 1;
8

9 Nr_points_in_cloud = zeros ( Nr_cloud_max ,1); % Vektor , ki določa š tevilo
10 % točk v oblaku , kjer vsaka vrstica pripada drugemu oblaku
11 M_of_clouds = zeros ( Nr_cloud_max , dimension ); % Matrika - vrstice pripadajo
12 % razli čnim oblakom in stolpci vsebujejo elemente vhodnega vektorja
13 V_of_clouds = zeros ( Nr_cloud_max , dimension ^2);
14 VarD_of_cloud = zeros ( Nr_cloud_max ,1); % Varianca razdalje točke
15 % od roja
16 M_dist = zeros ( Nr_cloud_max ,1); % Razdalje med točkami v roju
17 Eig_of_clouds = zeros ( Nr_cloud_max , dimension );
18 EigLat_of_cloud = zeros ( Nr_cloud_max , dimension );
19 Points_in_buffer = zeros (6, dimension ); % Shranimo do 6 vzorcev
20 StartEndX_points_in_cloud = zeros ( Nr_cloud_max ,2);
21

22 % Inicializacija
23 % Prvi roj ima tri točke (če so le -te kolinearne )
24 Nr_points_in_cloud ( Current_clust ,1) = 3;
25 Nr_points_in_buffer = 0;
26

27 N = 3; % Začetno š tevilo točk
28 XX = X(1:N ,:);
29 M = sum(XX )/N;
30

31 dXX = XX - repmat (M,N ,1);
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32 Vmat = dXX ’* dXX /(N -1); % Kovarian čna matrika vzorcev
33

34 theta = (( Vmat (1 ,1)^2 - 2* Vmat (1 ,1)* Vmat (2 ,2) + 4* Vmat (1 ,2)^2 ...
35 + Vmat (2 ,2)^2)^(1/2) - Vmat (1 ,1) + Vmat (2 ,2))/(2* Vmat (1 ,2));
36 lam1 = Vmat (2 ,2) - theta *Vmat (1 ,2);
37 lam2 = Vmat (2 ,2) - theta *Vmat (1 ,2) + (1 + theta ^2)/ theta *Vmat (1 ,2);
38 if norm(lam2) > norm(lam1) % Izberi glavni lastni vektor
39 p = [1/ sqrt ((1+ theta ^2)) , theta /sqrt ((1+ theta ^2))];
40 else
41 p = [ theta /sqrt ((1+ theta ^2)) , -1/ sqrt ((1+ theta ^2))];
42 end
43 p = p / sqrt(p*p ’); % Prvi lastni vektor ( normaliziran )
44 pL = [p(1 ,2) , -p(1 ,1)]; % Drugi lastni vektor ( normaliziran )
45

46 % Razdalja od premice
47 sumD = 0;
48 for i = 1:N
49 sumD = sumD + (((X(i ,:) - M)*pL ’)/( pL*pL ’))^2;
50 end
51 varD = sumD /(N -1);
52

53 % Povpre čna razdalja med točkami
54 d1 = sqrt( (X(1 ,:) -X(2 ,:))*(X(1 ,:) -X(2 ,:)) ’ );
55 d2 = sqrt( (X(3 ,:) -X(2 ,:))*(X(3 ,:) -X(2 ,:)) ’ );
56 d_med_toc = (d1+d2 )/2;
57

58 % Shranjevanje
59 M_of_clouds ( Current_clust ,:) = M;
60 V_of_clouds ( Current_clust ,:) = [Vmat (1 ,:) , Vmat (2 ,:)];
61 Eig_of_clouds ( Current_clust ,:) = p;
62 EigLat_of_cloud ( Current_clust ,:) = pL;
63 VarD_of_cloud ( Current_clust ,1) = varD;
64 M_dist ( Current_clust ,1) = d_med_toc ;
65 StartEndX_points_in_cloud ( Current_clust ,1) = 1;
66 StartEndX_points_in_cloud ( Current_clust ,2) = 3;
67

68 for k = 4:n % Sprehod čez vse vzorce
69 % Izračun razdalje do trenutnega vzorca
70 pL = EigLat_of_cloud ( Current_clust ,:);
71 M = M_of_clouds ( Current_clust ,:);
72 Vmat = [ V_of_clouds ( Current_clust ,1:2); V_of_clouds ( Current_clust ,3:4)];
73 varD = VarD_of_cloud ( Current_clust ,1);
74

75 d = abs ((X(k ,:) - M)*pL ’);
76

77 if Nr_points_in_cloud ( Current_clust ) > 1
78 d_med_toc = sqrt ((X(k ,:) - X(k -1 ,:))*(X(k ,:) - X(k -1 ,:)) ’);
79 end
80

81 % Nova točka pripada roju , če je njena razdalja do roja dovolj
82 % majhna in so vzorci dovolj skupaj
83 if d < kappaMax *sqrt(varD) && d_med_toc < 2* M_dist ( Current_clust ,1)
84 StartEndX_points_in_cloud ( Current_clust ,2) = k;
85 Nr_points_in_buffer = 0;
86 j = Nr_points_in_cloud ( Current_clust )+1; % Povečanje vzorcev v roju
87 Mold = M_of_clouds ( Current_clust ,:);
88 dXM = X(k ,:) - Mold;
89 M = Mold + dXM/j; % Rekurzivni izračun srednje vrednosti
90

91 % Kovarian čna matrika podatkov
92 Vmat = Vmat *(j -2)/(j -1) + 1/j*dXM ’* dXM;
93

94 theta = (( Vmat (1 ,1)^2 - 2* Vmat (1 ,1)* Vmat (2 ,2) + 4* Vmat (1 ,2)^2 ...
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95 + Vmat (2 ,2)^2)^(1/2) - Vmat (1 ,1) + Vmat (2 ,2))/(2* Vmat (1 ,2));
96 lam1 = Vmat (2 ,2) - theta *Vmat (1 ,2);
97 lam2 = Vmat (2 ,2) - theta *Vmat (1 ,2) + (1 + theta ^2)/ theta *Vmat (1 ,2);
98 if norm(lam2) > norm(lam1) % Izberi glavni lastni vektor
99 p = [1/ sqrt ((1+ theta ^2)) , theta /sqrt ((1+ theta ^2))];

100 else
101 p = [ theta /sqrt ((1+ theta ^2)) , -1/ sqrt ((1+ theta ^2))];
102 end
103 p = p/sqrt(p*p ’); % Prvi lastni vektor ( normaliziran )
104 pL = [p(1 ,2) , -p(1 ,1)]; % Drugi lastni vektor ( normaliziran )
105

106 % Rekurzivni izračun variance razdalje
107 d = abs( (X(k ,:) - M)*pL ’);
108 varDold = VarD_of_cloud ( Current_clust ,1);
109 varD = varDold *(j -2)/(j -1)+d^2/j;
110

111 % Shranjevanje
112 M_of_clouds ( Current_clust ,:) = M;
113 V_of_clouds ( Current_clust ,:) = [Vmat (1 ,:) , Vmat (2 ,:)];
114 Eig_of_clouds ( Current_clust ,:) = p;
115 EigLat_of_cloud ( Current_clust ,:) = pL;
116 Nr_points_in_cloud ( Current_clust ) = j;
117 VarD_of_cloud ( Current_clust ,1) = varD;
118 else % Nova točka ne pripada roju - ustvarimo nov roj
119 Nr_points_in_buffer = Nr_points_in_buffer + 1;
120 Points_in_buffer ( Nr_points_in_buffer , :) = X(k ,:);
121

122 % Novi roj mora imeti 3 konsistentne vzorce
123 if Nr_points_in_buffer >= 3
124 XX = Points_in_buffer (1: Nr_points_in_buffer ,:);
125 M = sum(XX )/ Nr_points_in_buffer ;
126 dXX = XX - repmat (M, Nr_points_in_buffer ,1);
127 Vmat = dXX ’* dXX /( Nr_points_in_buffer -1);
128

129 theta = (( Vmat (1 ,1)^2 - 2* Vmat (1 ,1)* Vmat (2 ,2) + 4* Vmat (1 ,2)^2 ...
130 + Vmat (2 ,2)^2)^(1/2) - Vmat (1 ,1) + Vmat (2 ,2))/(2* Vmat (1 ,2));
131 lam1 = Vmat (2 ,2) - theta *Vmat (1 ,2);
132 lam2 = Vmat (2 ,2) - theta *Vmat (1 ,2) + (1 + theta ^2)/ theta *Vmat (1 ,2);
133 if norm(lam2) > norm(lam1) % Izberi glavni lastni vektor
134 p = [1/ sqrt ((1+ theta ^2)) , theta /sqrt ((1+ theta ^2))];
135 else
136 p = [ theta /sqrt ((1+ theta ^2)) , -1/ sqrt ((1+ theta ^2))];
137 end
138 p = p / sqrt(p*p ’); % Prvi lastni vektor ( normaliziran )
139 pL = [p(1 ,2) , -p(1 ,1)]; % Drugi lastni vektor ( normaliziran )
140

141 % Testiranje konsistentnosti vzorcev
142 sumD = 0;
143 for i = 1: Nr_points_in_buffer
144 d = abs (( XX(i ,:) - M)*pL ’);
145 sumD = sumD + d^2;
146 end
147 varD = sumD /( Nr_points_in_buffer -1);
148 % Popravek , če je začetna varianca premajhna
149 if varD < mean( VarD_of_cloud (: ,1))
150 varD = mean( VarD_of_cloud (: ,1));
151 end
152

153 d1 = sqrt (( XX (1 ,:) - XX (2 ,:))*( XX (1 ,:) - XX (2 ,:)) ’);
154 d2 = sqrt (( XX (3 ,:) - XX (2 ,:))*( XX (3 ,:) - XX (2 ,:)) ’);
155

156 vv1 = XX (1 ,:) - XX (2 ,:);
157 vv2 = XX (2 ,:) - XX (3 ,:);
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158 cosPhi = vv1*vv2 ’/( norm(vv1 )* norm(vv2 ));
159

160 if d< kappaMax *sqrt(varD) && abs(d2 -d1)<min(d1 ,d2) && cosPhi > cosPhiTh
161 % Vzorci so konsistentni in primerno razmaknjeni
162 Current_clust = Current_clust + 1;
163 M_of_clouds ( Current_clust ,:) = M;
164 V_of_clouds ( Current_clust ,:) = [Vmat (1 ,:) , Vmat (2 ,:)];
165 Eig_of_clouds ( Current_clust ,:) = p;
166 EigLat_of_cloud ( Current_clust ,:) = pL;
167 Nr_points_in_cloud ( Current_clust ) = 3;
168 VarD_of_cloud ( Current_clust ,1) = varD;
169 StartEndX_points_in_cloud ( Current_clust ,1) = k - 2;
170 StartEndX_points_in_cloud ( Current_clust ,2) = k;
171 d_med_toc = (d1 + d2 )/2;
172 M_dist ( Current_clust ,1) = d_med_toc ;
173 end
174 Nr_points_in_buffer = 0; % Brisanje medpomnilnika
175 else % Č akanje na vsaj tri vzorce v medpomnilniku
176 end
177 end
178 end
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Slika 5.22: Podatki laserskega pregledovalnika razdalj in prepoznani roji premic
z uporabo algoritma samorazvijajočega se rojenja premic

Houghova transformacija Houghova transformacija [7] je zelo uporaben
pristop za oceno geometrijskih “primitivov”, ki se večinoma uporabljajo pri
obdelavi slik. Vhodni podatki se zapišejo v parametrični prostor (npr. parametri
premice), kjer maksimumi podajo število in parametre premic.

Algoritem zahteva kvantizacijo parametričnega prostora. Fina kvantizacija poveča
točnost, vendar je računsko in spominsko zahtevna. Da bi se izognili kvantizaciji
in povečali točnost Houghove transformacije, je bilo izvedenih več raziskav, npr.
naključnostna Houghova transformacija ali adaptivne izvedbe, obravnavane v
[8, 9].
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Houghova transformacija lahko zanesljivo oceni roje ob prisotnosti osamelcev. V
osnovni različici sta parametra premice α in d definirana z linearnim prototipom
(5.39), kjer je θj = [cosα, sinα, −d]. Normalna parametra premice, ki se
običajno nahajata v območju −π < α ≤ π in dmin < d ≤ dmax, sta predstavljena
v akumulatorju s kvantizacijo do N diskretnih vrednosti za α in M diskretnih
vrednosti za d.

Za vsak vzorec podatkov x(k), y(k) in vse možne vrednosti α(n) = −π + πn
N ,

n ∈ {1, . . . , N}, se izračunajo rešitve parametra d(n). Vsak par α(n), d(n)
predstavlja možno premico, ki vsebuje vzorec x(k), y(k). Za vsak izračunan
parameter se ustrezna lokacija v akumulatorju poveča za 1. Ko so vsi vzorci
podatkov obdelani, so celice akumulatorja z najvišjimi vrednostmi iskani roji
premic. Za pravilno izbiro kvantizacije parametričnega prostora in vrednosti
praga je potrebno nekaj predhodnega znanja, da dobimo ustrezne maksimume v
akumulatorju.

Primer 5.14

Za podatke laserskega pregledovalnika razdalj, sestavljenih iz 180 točk odboja
(glejte sliko 5.24 in začetek rešitve za koordinate točk), ocenite roje premic, ki
najbolje opišejo meritve. Rojenje se izvede s pomočjo Houghove transformacije,
kjer sta normalna parametra premice α in d kvantizirana na 720 diskretnih
vrednosti.

Rešitev

Možna rešitev v programskem okolju Matlab je predstavljena v programu 5.13
(podatki laserskega pregledovalnika razdalj so podani v programu 5.10), kjer
je za iskanje maksimumov v akumulatorju uporabljena funkcija houghpeaks.
Pridobljeni akumulator je prikazan na sliki 5.23, razpoznani roji pa na sliki 5.24.
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Slika 5.23: Akumulator Houghove transformacije, kjer sta α ∈ (−π, π] in d ∈
[0, 4,5] kvantizirana na 720 diskretnih vrednosti
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Slika 5.24: Podatki laserskega pregledovalnika razdalj in razpoznani roji premic
z uporabo Houghove transformacije

Program 5.13
./src/sen/example_lines_hough.m

1 [x, y]; % Meritve laserskega merilnika razdalj
2 N = length (x);
3
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4 dAlpha = pi /180; % Kvantizacijski kot
5 nAlpha = round (2* pi/ dAlpha );
6 nDist = nAlpha ; % Kvantizacijska razdalja
7 lutDist = zeros (N, nAlpha ); % Preslikovalna tabela za razdaljo
8 for i = 1:N % Za vsako točko izrač unamo premice v območju kota alpha
9 for j = 1: nAlpha

10 alpha = (j -1)* dAlpha -pi;
11 % Razdalja od koordinatnega izhodi šča
12 d = x(i)* cos( alpha )+y(i)* sin( alpha );
13 if d <0
14 if alpha >pi , alpha = alpha - pi;
15 else alpha = alpha + pi; end
16 jj = round (( alpha +pi )/ dAlpha );
17 lutDist (i,jj) = -d;
18 else
19 lutDist (i,j) = d;
20 end
21 end
22 end
23

24 % Določitev območja za parameter razdalje
25 minLutDist = min( lutDist (:));
26 maxLutDist = max( lutDist (:));
27 dDist = ( maxLutDist - minLutDist )/ nDist ; % Kvantizacijska razdalja
28

29 % Akumulator parametri čnega prostora
30 A = zeros (nDist , nAlpha );
31 for i = 1:N % Sprehod čez vse točke
32 for j = 1: nAlpha
33 k = round (( lutDist (i,j)- minLutDist )/ dDist )+1;
34 if k>nDist , k = nDist ; end
35 A(k,j) = A(k,j)+1;
36 end
37 end
38 H = A(2: nAlpha ,:); % Akumulator
39

40 % Določitev maksimumov v skululatorju ( najbolj verjetne premice )
41 nLines = 7; % Š tevilo najverjetnej ših premic
42 peaks = houghpeaks (H, nLines , ’threshold ’, 3, ’NHoodSize ’, [31 , 31]);
43 % Parametri premice : razdalja od izhodi šča in naklon premice
44 distAlpha = [ peaks (: ,1). ’* dDist + minLutDist ; peaks (: ,2). ’* dAlpha -pi ];

Slikovne značilke

Številne dobre lastnosti kamere, računske zmogljivosti sodobnih računalnikov
in napredek pri razvoju algoritmov omogočajo uporabo kamere za reševanje
problemov v robotiki. Kamera se lahko uporablja za zaznavanje, prepoznavanje
in sledenje opazovanih objektov v vidnem polju kamere, saj so slike projekcije
tridimenzionalnih objektov v okolju (glejte poglavje 5.2.4). Digitalna slika je
dvodimenzionalen diskreten signal, predstavljen z matriko kvantiziranih števil,
ki predstavljajo prisotnost ali odsotnost svetlobe, jakost svetlobe (osvetljenost),
barvo ali kakšno drugo veličino. Glavne vrste slik so: barvna (slika 5.25a),
sivinska (slika 5.25b) in binarna (slika 5.25c). Pri strojnem vidu sivinske slike
običajno zadostujejo za iskanje vzorcev, ki niso odvisni od barve. Binarne slike
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Slika 5.25: Primer (a) barvne, (b) sivinske in (c) binarne slike ter (d) histogram
sivinske slike

so rezultat segmentacije slike in se uporabljajo za maskiranje vsebine. Eden
od najpreprostejših načinov segmentacije slike je upragovljanje, pri čemer so
slikovni elementi s sivinsko vrednostjo nad pragom označeni z logično 1, vsi ostali
pa so nastavljeni na logično 0. Upragovljanje sivinske slike 5.25b s pragom 70
privede do binarne slike 5.25c. Za določitev najustreznejše vrednosti praga lahko
pogostost sivinskih vrednosti na sliki predstavimo v histogramu. Slika 5.25d
prikazuje histogram z 256 intervali, ki ustrezajo 256 nivojem sivinske slike 5.25b.

V zadnjih letih so bili razviti številni algoritmi strojnega vida, ki omogočajo
sledenje objektom na podlagi slike. V ta namen je vsebina slike običajno predsta-
vljena z značilkami slike. Značilke so lahko območja slike s podobnimi lastnostmi
(npr. podobna barva), oznake z določenim vzorcem ali nekatere druge značilnosti
slike (npr. robovi, vogali, črte). V določenih situacijah lahko v okolje vstavimo
umetne značke, ki omogočajo hitro in zanesljivo sledenje značilkam (npr. barvne
značke ali matrične črtne kode za sledenje mobilnim robotom pri nogometu).
Kadar to ni mogoče, je potrebno značilke izločiti iz slike (neprilagojene) scene.
V nekaterih aplikacijah je mogoče uporabiti preprosto barvno segmentacijo (npr.
odkrivanje rdečih jabolk v sadovnjaku). V zadnjih letih je bilo razvitih več pri-
stopov za izločanje naravnih lokalnih značilk slike, ki so invariantne za nekatere
transformacije in popačenja slike.
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Slika 5.26: RGB in HSV komponente barvne slike 5.25a

Barvne značilke Zaznavanje območij slike s podobno barvo ni trivialna naloga
zaradi nehomogene osvetlitve, senc in odsevov. Sledenje z uporabo barvnih značilk
je običajno uporabljeno samo v okoljih, kjer je mogoče vzpostaviti nadzorovano
osvetlitev ali pa je možno barvo predmeta, ki mu sledimo, dovolj dobro razločiti
od ostalih predmetov v okolju.

Barva v digitalni sliki je ponavadi predstavljena s tremi barvnimi komponentami,
tj. rdečo, zeleno in modro, kar je znano kot barvni model RGB. Določeno barvo
dobimo s kombinacijo teh treh barvnih komponent, kjer posamezno komponento
filtriramo skozi rdeč, zelen ali moder barvni filter. Druga dva barvna prostora,
ki se pogosto uporabljata pri strojnem vidu, sta HSL (angl. hue-saturation-
lightness) in HSV (angl. hue-saturation-value). Barvni prostor HSV omogoča
bolj naraven opis in boljšo segmentacijo barv kot pa prostor RGB. Vrednosti v
območju [0, 255] iz barvnega prostora RGB lahko pretvorimo v barvni prostor
HSV z

H =


0 ; M −m = 0
60 G−B

M−m mod 360 ; M = R

60 B−R
M−m ; M = G

60 R−G
M−m ; M = B

S =
{

0 ; M = 0
M−m
M ; sicer

V = M

255

(5.40)

kjer je M = max{R,G,B} in m = min{R,G,B}. V (5.40) se nasičenost S in
vrednost V gibljeta v območju [0, 1], barvni odtenek H pa v območju [0, 360).
Matematična operacija x mod y predstavlja ostanek pri deljenju števila x s
številom y. Na sliki 5.26 so prikazane RGB in HSV komponente barvne slike
5.25a.

Barvni histogrami se lahko uporabijo za segmentacijo območij določene barve.
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Slika 5.27: Histogrami različnih barvnih predlog v barvnem prostoru HSV
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HSV histogrami (z 32 intervali) različnih predlog s podobno barvo so prikazani
na sliki 5.27 (barvna področja so vzeta s slike 5.25a). Histograme vsake predloge
je mogoče projicirati nazaj na izvirno sliko, saj je za vsak slikovni element na sliki
nastavljena frekvenca intervala, ki pripada vrednosti slikovnega elementa v ustre-
znem barvnem kanalu na sliki. Nastale sivinske slike lahko združimo kot linearno
kombinacijo barvnih kanalov. Rezultati povratne projekcije HSV-histograma
modre, oranžne, rdeče, rumene barve ter lesa so prikazani v prvem stolpcu na
sliki 5.28. V dobljeni sliki sivinski nivoji predstavljajo merilo podobnosti slikovnih
elementov barvni predlogi. Preden je slika upragovljena (glejte tretji stolpec na
5.28), je mogoče dodatno filtrirati sliko. Sliko lahko zgladimo z dvodimenzio-
nalnim Gaussovim filtrom (glejte drugi stolpec na 5.28), da odstranimo nekaj
šumnih vrhov. Upragovljeno binarno sliko lahko filtriramo z npr. morfološkim
filtrom, da odstranimo ali zapolnimo nekatera povezana območja. Nastalo masko
slike (glejte četrti stolpec na sliki 5.28) lahko uporabimo za filtriranje zaznanih
območij na prvotni sliki (glejte zadnji stolpec na sliki 5.28). Več o algoritmih za
obdelavo slik je med drugim na voljo v [10]. V praktičnih izvedbah segmentacije
slike na podlagi barv se nekateri procesi filtriranja zavoljo hitrejšega delovanja
preskočijo, kar pa zmanjša točnost. V primeru, da so barvne vrednosti vseh
slikovnih komponent znotraj določene spodnje in zgornje meje, se vsak slikovni
element na vhodni sliki šteje za del predmeta. Na sliki 5.27 lahko opazimo, da
vrednosti barvnega odtenka in nasičenosti omogočata preprosto barvno segmen-
tacijo. Vendar je potrebno poudariti, da je barvna segmentacija občutljiva na
spreminjajoče se svetlobne pogoje v prostoru. Čeprav nekateri pristopi lahko
kompenzirajo nehomogene pogoje osvetlitve [11], se barvna segmentacija slike
najpogosteje uporablja le v okoliščinah, kjer je mogoče doseči ustrezne pogoje
osvetlitve.

Rezultat segmentacije slike je binarna slika, v kateri so slikovni elementi, ki ne
pripadajo objektu (ozadje), postavljeni na 0. Obstaja lahko več ali samo eno
povezano območje. Če obstaja več povezanih območij, je potrebno uporabiti
ustrezen algoritem, da najdemo pozicije in oblike teh objektov [11]. Za bolj
robustno iskanje povezanih območij lahko uvedemo nekatere omejitve, ki zavrnejo
območja glede na določen pogoj (npr. velikost območja). Če se opazovan objekt
bistveno razlikuje od okolice in ga je mogoče zanesljivo zaznati kot eno območje
na segmentirani sliki, lahko pozicijo in obliko tega območja opišemo s slikovnimi
momenti.

Definicija osnovnega slikovnega momenta binarne digitalne slike I(x, y) ∈ {0, 1}
je

mp,q =
∑
x

∑
y

xpyqI(x, y)

kjer sta p in q pozitivni celi števili (p + q je red momenta). Moment m0,0

predstavlja maso objekta, ki je v primeru binarne slike enaka njegovi površini.
Da v binarni sliki najdemo središče objekta (x0, y0), lahko uporabimo momente
ničtega in prvega reda

x0 = m10

m00
y0 = m01

m00
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Slika 5.28: Detekcija barvnih značilk. Vsaka vrstica predstavlja drugačno barvo.
Koraki od levega do desnega stolpca: povratna projekcija histograma barvne
predloge, glajenje, upragovljanje, dodatno filtriranje in maskiranje slike

Za opis orientacije in oblike objekta lahko uporabimo središčne momente

µp,q =
∑
x

∑
y

(x− x0)p(y − y0)qI(x, y)

ki so invariantni za transformacije v sliki. Središčne momente lahko uporabimo
za prilagoditev elipsoida na zaznani objekt na sliki. Veliko polos elipse a in malo
polos b lahko dobimo iz lastnih vrednosti λa in λb (λa ≥ λb) matrike Q, ki je
sestavljena iz središčnih momentov drugega reda

Q =
[
µ2,0 µ1,1

µ1,1 µ0,2

]
Osi elipse sta

a = 2
√
λa

m00
b = 2

√
λb

m00

Orientacijo velike polosi elipse podaja kot

θ = 1
2 arctan 2µ1,1

µ2,0 − µ0,2

Na sliki 5.29 so uporabljeni osnovni in središčni momenti, da se elipsoid prilagodi
na binarno oznako (rezultat segmentacije oranžne barve na sliki 5.28). Način za
pridobitev parametrov elipsoida je prikazan v programu 5.14, kjer so središčni
momenti izpeljani iz osnovnih. Vidimo, da lahko momente slike uporabimo za
opis preprostih značilk in določitev njihovih lokacij na sliki. V [12] je opredeljena
množica momentov, ki so invariantni za skaliranje, translacijo in rotacijo.
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Slika 5.29: Prilagoditev elipsoida na masko, ki je pridobljena kot rezultat se-
gmentacije oranžne barve

Program 5.14
./src/sen/example_moments.m

1 im = imread (’colour_orange_mask .bmp ’) >128; % Binarna slika
2

3 [x, y] = meshgrid (1: size(im ,2) , 1: size(im ,1));
4

5 % Osnovni momenti
6 m00 = sum(sum( (x .^0).*( y .^0).* double (im) ));
7 m10 = sum(sum( (x .^1).*( y .^0).* double (im) ));
8 m01 = sum(sum( (x .^0).*( y .^1).* double (im) ));
9 m11 = sum(sum( (x .^1).*( y .^1).* double (im) ));

10 m20 = sum(sum( (x .^2).*( y .^0).* double (im) ));
11 m02 = sum(sum( (x .^0).*( y .^2).* double (im) ));
12

13 % Površina , x in y
14 area = m00
15 x0 = m10/m00
16 y0 = m01/m00
17

18 % Centralni momenti
19 u00 = m00;
20 u11 = m11 -x0*m01; % u11 = m11 -y*m10;
21 u20 = m20 -x0*m10;
22 u02 = m02 -y0*m01;
23

24 % Elipsa
25 v = eig ([u20 , u11; u11 , u02 ]); % Lastne vrednosti
26 a = 2* sqrt(v(2)/ u00) % Velika polos
27 b = 2* sqrt(v(1)/ u00) % Mala polos
28 theta = atan2 (2* u11 , u20 -u02 )/2 % Usmerjenost

area =
14958

x0 =
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Slika 5.30: Umetne značke

ID2

ID3

ID1

ID2
ID3

ID1

Slika 5.31: Zaznane umetne značke v dveh pogledih kamere

248.1951
y0 =

359.7101
a =

71.7684
b =

66.6585
theta =

0.8795

Značke z umetnimi vzorci Uvedba umetnih značk predstavlja minimalno
prilagoditev okolja, ki lahko znatno poenostavi nekatere naloge strojnega vida,
npr. sledenje objektom, ocena lege kamere itd. Trije primeri umetnih značk so
prikazani na sliki 5.30. Vzorci značk so običajno zasnovani tako, da jih je mogoče
zanesljivo in natančno zaznati. Poleg tega je v vzorcu lahko zapisana oznaka
(ID) značke, zato je mogoče sledenje in prepoznava več značk v zaporedju slik.
Eden od priljubljenih algoritmov za zaznavanje umetnih značk je ArUco [13, 14].
Slika 5.31 prikazuje zaznane umetne značke iz slike 5.30 v dveh pogledih kamere.

Algoritmi za zaznavanje umetnih značk običajno obsegajo korak lokalizacije
značke, v katerem se določi pozicija, orientacija in velikost značke. Ta postopek
mora robustno razločiti samo prave značke od preostalih objektov v okolju. Ko
so lokacije značk na sliki znane, je mogoče določiti projekcijo med zaznano
značko in njenim lokalnim koordinatnim sistemom. Na podlagi vzorca značke v
transformiranem lokalnem koordinatnem sistemu se določi njena oznaka (ID).
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Nekateri vzorci umetnih značk so zasnovani tako, da omogočajo popravljanje
vzorcev, zaradi česar je njihovo prepoznavanje bolj zanesljivo in hkrati tudi
robustno na šum in okluzije.

Naravne lokalne slikovne značilke Slike vsebujejo značilke, ki so same po
sebi prisotne v okolju. Skozi leta so bili razviti številni algoritmi strojnega vida, ki
omogočajo samodejno zaznavanje lokalnih značilk na slikah. Nekateri pomembni
algoritmi za detekcijo lokalnih značilk so SIFT (angl. scale invariant feature
transform) [15], SURF (angl. speeded-up robust features) [16], MSER (angl.
maximally stable extremal regions) [17], FAST (angl. features from accelerated
segment test) [18], AGAST (angl. adaptive and generic accelerated segment
test) [19] idr. Večina teh algoritmov je vključena v odprtokodno knjižnico za
računalniški vid OpenCV [20, 21]. V robotskih aplikacijah je pomembna lastnost
opisovanja slik z značilkami ter učinkovitost algoritma, da omogoča delovanje v
realnem času. Možni so različni pristopi za detekcijo lokalnih značilk (lokalizacija
značilk), opis lokalnih značilk (predstavitev lastnosti značilk) in ujemanje značilk.

Cilj detekcije značilk je odkrivanje in lokalizacija točk zanimanja (lokalna
območja), običajno za zmanjšanje dimenzije slike. Običajno značilke detektiramo
na sivinskih slikah. Obstaja več vrst slikovnih vzorcev: robovi (npr. Cannyev
filter, Sobelov operator in Robertsov operator), vogali (npr. Harrisov detektor
oglišč, Hessianova matrika, FAST), mehurčki (npr. Laplaceov operator z Gausso-
vim filtrom, razlika Gaussovih filtrov, MSER). Za zaznavanje značilk različnih
velikosti, je slika običajno predstavljena v ločljivostnem prostoru [15]. Detekcija
značilk mora biti invariantna na nekatere vrste transformacij in popačenj slike,
da je možno ponovljivo odkrivanje značilk v več pogledih istega prizora. Običajno
je zaželeno, da so značilke invariantne za translacijo, rotacijo, skaliranje, glajenje,
osvetlitev in šum. Značilke bi morale biti robustne tudi za nekatere delne oklu-
zije. Zaželena lastnost značilk je torej lokalnost. V mobilni robotiki je običajno
zahtevana točna zaznava zadosti velikega števila značilk, saj je to predpogoj za
točno in robustno izvajanje algoritmov, ki so odvisni od detektiranih značilk
(npr. ocena lege mobilnega robota na podlagi značilk). Primer zaznanih značilk
v dveh pogledih kamere istega prizora je prikazan na sliki 5.32. Vsaka značilka
je določena s pozicijo, orientacijo in velikostjo.

Namen opisa značilke je opisati vsako značilko glede na lastnosti slikovnega
vzorca okoli nje na način, ki omogoča prepoznavo istih značilk na več slikah (če
se te značilke ponovno pojavijo na drugih slikah). Lokalni vzorec okoli značilke
(npr. območje, označeno s kvadratom na sliki 5.32) se uporablja za določitev
njenega ustreznega deskriptorja, ki je običajno predstavljen kot vektor značilke.
Lokalni deskriptorji značilk morajo biti razpoznavni na način, da je možno točno
razpoznati značilke ne glede na spremembe v okolju (npr. spremembe osvetlitve,
okluzije). Čeprav je mogoče lokalne slikovne značilke primerjati neposredno z npr.
konvolucijo območij lokalnih značilk, ta pristop nima ustrezne izrazitosti pa tudi
računsko je zelo zahteven. Vektorji deskriptorjev značilk ponavadi predstavljajo
minimalno predstavitev značilk, ki omogoča ustrezno raven izrazitosti določene
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Slika 5.32: Zaznane značilke na dveh slikah istega prizora

značilke za zanesljivo ujemanje z drugimi. Kateri detektor in način opisa značilke
se uporabljata, je odvisno od posamezne aplikacije. Eksperimentalno primerjavo
različnih detektorjev značilk lahko najdete v npr. [22]. Primer dveh sklopov
vektorjev opisov značilk, izločene iz leve in desne slike na 5.32, je grafično
predstavljen na sliki 5.33.

Ujemanje značilk je eden osnovnih problemov v strojnem vidu. Številni
algoritmi strojnega vida, kot je ocenjevanje globine prizora, tridimenzionalna
rekonstrukcija scene na podlagi slik, ocena lege kamere in drugi, so odvisni od
ustreznih ujemanj značilk med več slikami. Značilke se lahko ujemajo s primerjavo
razdalj med deskriptorji značilk (vektorji). Odvisno od vrste deskriptorja se lahko
uporabijo različne mere razdalje. Za dejanske vrednosti dekriptorjev se običajno
uporablja Evklidska razdalja ali razdalja Manhattan, za binarne deskriptorje
značilk pa Hammingova razdalja. Ujemanje opisov značilk ne zagotavlja vedno
ustreznih ujemanj zaradi nenatančne lokalizacije značilk, njihove popačitve ter
ponavljajočih se vzorcev. Zato je potrebno uporabiti ustrezno tehniko ujemanja
značilk, ki lahko odpravi zmotne pare.

Glede na dve množici deskriptorjev značilkA = {ai}i=1,2,...,NA in B = {bj}j=1,2,...,NB
mora postopek ujemanja najti ustrezne (ujemajoče se) pare značilk iz obeh množic.
Za vsako značilko v množici A je lahko najbližja značilka v množici B (glede na
izbrano mero razdalje za primerjavo med značilkami) možni kandidat ujemanja.
To je v splošnem surjektivna preslikava, saj ima lahko neka značilka iz množice B
več kot samo eno ujemajočo se značilko v množici A. V normalnih pogojih mora
imeti funkcija iz ene množice samo eno ujemanje v drugi množici. Zato običajno
izvedemo dvosmerno iskanje, kjer za vsako značilko iz množice A poiščemo naj-
bližjo značilko iz množice B in obratno, ter upoštevamo samo pare, ki se ujemajo
v obeh smereh. Če je razdalja med najboljšim in drugim najboljšim ujemanjem
premajhna (pod izbranim pragom), moramo par značilk zavrniti, saj obstaja
velika verjetnost napake pri ujemanju. Prav tako zavrnemo par značilk, če je
razdalja med izbranimi deskriptorji značilk nad določenim pragom, ker to pomeni
preveliko neenakost značilk. Na sliki 5.33 so prikazana ujemanja med dvema
množicama deskriptorjev značilk. Čeprav so bile uporabljene zgoraj omenjene
tehnike filtriranja, niso odstranjena vsa napačna ujemanja, kot je razvidno iz slik
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Slika 5.33: Dvosmerna ujemanja med deskriptorji značilk leve in desne slike
na sliki 5.32. Vsak vodoravni trak predstavlja vrednosti opisnega vektorja s 64
elementi, ki je predstavljen kot vzorec z različnimi stopnjami intenzitete sive
barve.
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Slika 5.34: Najdeni pari značilk, ki temeljijo na ujemanju deskriptorjev (glejte
sliko 5.33). Večina parov značilk je pravih (T ), nekateri pa so tudi zmotni (F ).

5.34 in 5.35. Tudi če je samo nekaj osamelcev, lahko ti pomembno vplivajo na
rezultate ocenjevalnih algoritmov, ki domnevajo, da se značilke pravilno ujemajo.

Nekatere ujemajoče se značilke ne bodo ustrezale sistemskim omejitvam; npr. če
par značilk ne izpolnjuje epipolarne omejitve ali če se rekonstruirana tridimenzio-
nalna točka od para značilk pojavi za kamero, moramo par zavrniti. Več omejitev
lahko najdete v [23]. V kolesni mobilni robotiki se lahko uvedejo dodatne omeji-
tve, osnovane na predvidenih stanjih robota iz znanih dejanj in kinematičnega
modela. Za filtriranje ujemajočih se parov značilk, ki niso fizično možni, lahko
v postopek ujemanja vključimo model nekaterih geometrijskih omejitev. V ta
namen je potrebno uporabiti robusten postopek prilagajanja modela. Običajno se
uporablja metoda RANSAC (angl. random sample consensus) [24], ki omogoča

Slika 5.35: Pari ujemajočih se točk
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prileganje modela podatkom, čeprav je veliko osamelcev.

Algoritem RANSAC lahko pojasnimo na problemu prilagajanja premice. V
začetnem koraku se iz podatkov naključno izbere najmanjše število Nmin točk,
ki so potrebne za prilagoditev modela. V primeru premice sta potrebni le dve
točki (Nmin = 2). Model (premica) se nato namesti na izbrani točki. Okoli
nastavljenega modela (premice) je izbrano neko območje zaupanja, znotraj
katerega se prešteje število vseh podatkovnih točk. Nato se med podatki izbere
drugih Nmin točk in postopek se ponovi. Po nekaj iteracijah je za najboljši model
izbran model z največjim številom točk znotraj območja zaupanja. V zadnjem
koraku se model ponovno prilagodi na vse točke v ustreznem območju zaupanja
po metodi najmanjših kvadratov.

5.3.5 Ujemanje modelov okolja — zemljevidi

Zemljevid je predstavitev okolja na osnovi nekaterih parametrov značilk, ki
so lahko točke odboja laserskega pregledovalnika razdalj, množica daljic, ki
predstavljajo robove ovir, množica slikovnih značilk, ki predstavljajo predmete v
okolju in podobno.

Problem lokalizacije lahko predstavimo kot optimalno ujemanje dveh zemljevidov:
lokalnega in globalnega zemljevida. Lokalni zemljevid, ki ga dobimo iz trenutnih
meritev senzorjev, predstavlja del okolja, ki ga je mogoče neposredno opazovati
(meriti) iz trenutne lege robota (npr. trenutne točke laserskega pregledovalnika
razdalj). Globalni zemljevid je shranjen v notranjem pomnilniku mobilnega
sistema in predstavlja znano ali že obiskano območje v okolju. S primerjavo obeh
zemljevidov lahko določimo ali izboljšamo trenutno oceno lege mobilnega robota.

Ko se mobilni sistem giblje v okolju, se lahko globalni zemljevid razširja in sproti
posodablja z lokalnim zemljevidom tako, da se trenutne informacije senzorjev,
ki predstavljajo prej neodkrita mesta, dodajo globalnemu zemljevidu. Pristop,
ki omogoča tovrstno sprotno gradnjo zemljevida, je SLAM (angl. simultaneous
localization and mapping). Njegovi osnovni koraki so opisani v algoritmu 2.

Algorithm 2 Osnovni koraki algoritma SLAM
Določanje ujemanja lokalnega in globalnega zemljevida na podlagi njunih
ujemajočih se parov značilk.
Ocena trenutne lege mobilnega robota na podlagi ujemanja lokalnega in glo-
balnega zemljevida.
Lokalizacija na osnovi kombinacije odometrije in primerjave zemljevidov.
Posodobitev globalnega zemljevida s prej neopaženim delom okolja (nove
značilke so dodane kot nova stanja na zemljevidu).

Primer zemljevida, pridobljen s kombinacijo meritev laserskega pregledovalnika
razdalj in podatkov odometrije z algoritmom SLAM, je prikazan na sliki 5.36.

SLAM je eden od osnovnih pristopov v kolesni mobilni robotiki. Nekateri pogosti
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Soba 1

Soba 2A

Soba 3

Soba 2B

Hodnik

Slika 5.36: Zemljevid notranjega okolja, zgrajen iz meritev laserskega pregledo-
valnika razdalj in podatkov odometrije

izzivi pri lokalizaciji mobilnih robotov so:

• Inicializacije lege mobilnega robota ob zagonu ni mogoče določiti z veliko
verjetnostjo. Če začetna lega ni znana, moramo rešiti problem globalne
lokalizacije.

• Problem ugrabljenega robota se pojavi, ko se med delovanjem mobil-
nega robota njegova (resnična) lega v okolju hipno spremeni (npr. mobilni
robot je prestavljen na novo lokacijo ali pa ponovno vklopljen na drugi
lokaciji). Robustni algoritmi lokalizacije so sposobni obnoviti in oceniti
pravo lego robota.

• Zagotavljanje ustrezne ocene lege med gibanjem mobilnega robota.
V ta namen se uporabljajo podatki odometrije in meritve absolutnih sen-
zorjev.

Najpogosteje uporabljeni algoritmi za reševanje problema SLAM so razširjeni
Kalmanov filter, Bayesov filter in filter delcev (glejte poglavje 6).

5.4 Senzorji

V nadaljevanju je podan kratek pregled najpogosteje uporabljenih senzorjev v
kolesni mobilni robotiki, njihovih značilnostih in razvrstitev.

5.4.1 Karakteristike senzorjev

Delovanje senzorjev, njihova kakovost in lastnosti so določene z različnimi karak-
teristikami. Najpogostejše so opisane v nadaljevanju.
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Območje določa zgornjo mejo (ymax) in spodnjo mejo (ymin) uporabljene veli-
čine, ki jo je mogoče izmeriti. Zgornja in spodnja meja ponavadi nista simetrični.
Senzorje moramo uporabljati v navedenem območju, saj lahko v nasprotnem
primeru pride do poškodbe senzorja.

Dinamično območje je skupno območje od najnižje do največje vrednosti
območja. Lahko je podano kot razlika Rdyn = ymax − ymin ali pogosteje kot
razmerje (v decibelih) Rdyn = A log ymax

ymin
, kjer je A = 10 za meritve, povezane z

močjo, in A = 20 za ostale.

Ločljivost je najmanjša sprememba merjene veličine, ki jo senzor še zazna. Če
ima senzor analogno-digitalni pretvornik, je ločljivost senzorja običajno enaka
ločljivosti pretvornika (npr. za 10-bitni A/D in 5 V senzorsko območje je resolucija
5 V
210 ).

Občutljivost je sprememba izhodne vrednosti senzorja na enoto veličine, ki
jo merimo (npr. senzor razdalje, ki ima na izhodu napetost). Občutljivost je
lahko konstantna v celotnem območju senzorja (linearnost) ali pa se spreminja
(nelinearnost).

Linearnost je lastnost senzorja, kjer je njegov izhod linearno odvisen (proporci-
onalen) od merjene veličine v celotnem območju. Linearni senzor ima konstantno
občutljivost v celotnem območju.

Histereza se nanaša na lastnost, da je izhodna trajektorija senzorja (ali njena
odvisnost od vhoda) drugačna v primeru, ko se vhod senzorja povečuje ali
zmanjšuje.

Pasovna širina se nanaša na frekvenco, s katero lahko senzor zagotavlja meritve
(v Hz). Je najvišja frekvenca, pri kateri izmerimo samo 70,7 % prave vrednosti.

Točnost je določena s pričakovanim merilnim pogreškom, ki je razlika med
izmerjeno m in pravo vrednostjo v. Točnost izračunamo iz relativnega merilnega
pogreška kot točnost = 1− |m−v|v .

Natančnost je stopnja ponovljivosti meritve senzorja pri enaki pravi vrednosti
merjene veličine. Pri večkratni meritvi iste prave vrednosti, izhod realnega
senzorja poda obseg vrednosti. Natančnost je povezana z varianco meritve.

Sistematični pogrešek ali deterministični pogrešek povzročajo nekateri dejav-
niki, ki jih je mogoče napovedati ali modelirati (pristranskost, temperaturno
lezenje, kalibracija senzorja, popačenje zaradi leče kamere itd.).

Naključni pogrešek ali nedeterministični pogrešek je nepredvidljiv, kar lahko
opišemo le z gostoto verjetnosti (npr. normalna porazdelitev). Ta pogrešek
se običajno imenuje šum in je označen kot razmerje signal-šum (SNR, angl.
signal-to-noise ratio).
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5.4.2 Klasifikacija senzorjev

Kolesni mobilni robot lahko meri svoje notranje stanje s pomočjo proprioceptiv-
nih senzorjev ali zunanje stanje okolja z uporabo eksteroceptivnih senzorjev.
Primer proprioceptivne meritve je pozicija in orientacija robota, zasuk koles ali
krmilnega mehanizma, kotna hitrost koles, stanje akumulatorjev, temperatura
ipd. Primer eksteroceptivne meritve pa je razdalja do ovire, slikovni zajem s
kamero, mikrofon, kompas, globalni pozicijski sistem (GPS) in drugi.

Senzorji za zaznavanje okolja se uporabljajo za načrtovanje poti, zaznavanje ovir,
gradnjo zemljevida itd. Ti senzorji so aktivni, če v okolje oddajajo energijo
(elektromagnetno valovanje) in meritve prejmejo odziv okolja (laserski merilniki
razdalj, ultrazvočni merilniki, kamera z integrirano osvetlitvijo itd.). Senzorji so
pasivni, če prejmejo energijo, ki je že del okolja. Pasivni senzorji so torej vsi, ki
niso aktivni (kamera brez osvetlitve, kompas, žiroskop, pospeškometer itd.).

V tabeli 5.1 so navedeni najpogosteje uporabljeni senzorji v mobilni robotiki
glede na njihovo uporabo. Dodatno je podan kratek opis njihove uporabe, namen
(proprioceptivni – PC ali eksteroceptivni – EC) in emitirana energija (aktivna –
A ali pasivna – P).
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Tabela 5.1: Klasifikacija senzorjev v mobilni robotiki glede na njihovo uporabo,
namen (proprioceptivni (PC) / eksteroceptivni (EC)) in oddano energijo (aktivna
(A) / pasivna (P))

Klasifikacija Uporabnost Senzorji PC/EC A/P

Taktilni detekcija trkov, kontaktna stikala EC P
in haptični varnostni izklop, taktilni odbijači EC P
senzorji bližina, rotacija optične bariere EC A

koles ali motorja merilniki bližine EC P/A
kontaktne letve EC P

Osni rotacija koles inkrementalni enkoderji PC A
senzorji ali motorja, absolutni enkoderji PC A

orientacija sklepov, potenciometer PC P
lokalizacija z tahogenerator PC P
odometrijo

Merilniki orientacija v žiroskop PC P
smeri referenčnem k. s., magnetometer EC P
gibanja lokalizacija, kompas EC P

inercialna navigacija inklinometer EC P

Merilniki inercialna navigacija pospeškometer EC P
hitrosti dopplerjev radar EC A

kamera EC P

Oddajniki sledenje objektu, IR-oddajnik EC A
lokalizacija WiFi-oddajnik EC A

RF-oddajnik EC A
ultrazvočni oddajnik EC A
GPS EC A/P

Merilniki merjenje razdalje ultrazvočni senzor EC A
na osnovi do ovire, laserski merilnik razdalj EC A
časa časa preleta, kamera EC P/A

lokalizacija

Merilniki identifikacija, kamera EC P/A
na osnovi detekcija objektov, globinska kamera EC A
strojnega sledenje objektom, stereo kamera EC P/A
vida lokalizacija, RFID EC A

segmentacija radar EC A
optična triangulacija EC A
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6
Nedeterminističnost v
mobilnih sistemih

6.1 Uvod

V realnem svetu so deterministični dogodki zelo redki (skoraj ne obstajajo).
Poglejmo si nekaj primerov.

Predstavljajmo si primer merjenja hitrosti vozila. Nikoli ne moremo z absolutno
natančnostjo določiti prave hitrosti vozila, saj imajo merilniki določeno negotovost
(občutljivost, končna ločljivost, omejeno merilno območje, fizikalne omejitve ipd.).
Dodatno so meritve senzorjev podvržene šumu in motnjam iz okolice, učinkovitost
senzorja se običajno sčasoma spremeni ter senzorji lahko odpovejo ali se pokvarijo.
Vsi ti dejavniki omejujejo koristno informacijo (o veličini, ki jo merimo).

Do podobnih zaključkov lahko pridemo tudi pri aktuatorjih. V primeru motornega
pogona zaradi šuma, trenja, obrabe, neznane obremenitve ali mehanske okvare
ni mogoče določiti prave kotne hitrosti pri danem vzbujanju.

Poleg tega so nekateri algoritmi sami po sebi negotovi. Običajno dajo algoritmi
rezultat z omejeno natančnostjo, ki je zadovoljiva za dani problem, saj je potrebno
rezultat pridobiti v določenem časovnem roku. Sistemi v mobilni robotiki pogosto
delujejo v realnem času, kjer je hitrost računanja pomembnejša od absolutne
natančnosti. Zaradi omejene procesne zmogljivosti številni algoritmi niso izvedljivi
v realnem času z želenimi odzivnimi časi brez zmanjšanja natančnosti.

Tudi delovno okolje mobilnih agentov (kolesnih mobilnih robotov) je negotovo.
Negotovost je običajno nižja v strukturiranih okoljih (npr. stavbe pravilnih oblik)
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in višja v časovno spremenljivih dinamičnih okoljih (npr. domovi, cestni promet,
bližina ljudi, gozdovi itd.).

Pri razvoju avtonomnega kolesnega mobilnega sistema moramo upoštevati pro-
bleme negotovosti in jih uspešno rešiti.

6.2 Osnove verjetnosti

Naj bo X slučajna spremenljivka in x vrednost, ki jo lahko X zavzame. Če je
prostor vzorcev slučajne spremenljivke X množica s končnim številom vrednosti
(npr. metanje kovanca ima le dva možna izida), je X diskretna slučajna
spremenljivka. V primeru, da je njen prostor vzorcev množica realnih števil
(npr. teža kovanca), je X zvezna slučajna spremenljivka. V tem poglavju je
podan kratek pregled osnovnih konceptov verjetnostnega računa. Poglobljeno
obravnavo tematike najdete v številnih učbenikih o statistiki (npr. [1]).

6.2.1 Diskretna slučajna spremenljivka

Diskretna slučajna spremenljivka X ima končni ali števni prostor vzorcev, ki
vsebuje vse možne vrednosti slučajne spremenljivke X. Verjetnost, da diskretna
slučajna spremenljivka X zavzame vrednost x, je

P (X = x)

ali zapisano krajše P (x) = P (X = x). Zaloga vrednosti verjetnostne funkcije
P (x) je znotraj omejenega intervala med 0 in 1 za vsako vrednost v prostoru
vzorcev X, zapišemo P (x) ∈ [0, 1] ∀ x ∈ X. Vsota verjetnosti vseh možnih
vrednosti slučajne spremenljivke X je enaka∑

x∈X
P (x) = 1 (6.1)

Verjetnost dveh (ali več) dogodkov, ki se pojavljajo skupaj (npr. slučajna
spremenljivka X zavzame vrednost x in slučajna spremenljivka Y zavzame
vrednost y), je opisana z verjetnostjo produkta

P (x, y) = P (X = x, Y = y) (6.2)

Če sta slučajni spremenljivki X in Y neodvisni, je verjetnost produkta (6.2)
preprosto produkt posameznih verjetnosti

P (x, y) = P (x)P (y)

Pogojna verjetnost P (x|y) podaja verjetnost, da slučajna spremenljivka X
zavzame vrednost x, če je predhodno znano, da ima slučajna spremenljivka Y
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Slika 6.1: (a) Primer diskretne porazdelitve in (b) enakomerna diskretna poraz-
delitev (vsota višin vseh stolpcev je enaka 1)

vrednost y. Če je P (y) > 0, lahko določimo pogojno verjetnost z

P (x|y) = P (x, y)
P (y) (6.3)

V primeru neodvisnih slučajnih spremenljivk X in Y je izračun (6.3) trivialen

P (x|y) = P (x, y)
P (y) = P (x)P (y)

P (y) = P (x)

Eden od temeljnih rezultatov verjetnostnega računa je teorem popolne verje-
tnosti

P (x) =
∑
y∈Y

P (x, y) (6.4)

V primeru, da je na voljo pogojna verjetnost, lahko teorem (6.4) podamo v drugi
obliki

P (x) =
∑
y∈Y

P (x|y)P (y) = pT (x|Y )p(Y ) (6.5)

V (6.5) smo uvedli diskretno porazdelitev, ki je definirana kot stolpični vektor
p(Y )

p(Y ) =
[
P (y1) P (y2) . . . P (yN )

]T
kjer je N ∈ N število vseh možnih stanj slučajne spremenljivke Y . Podobno je
stolpični vektor p(x|Y ) definiran kot

p(x|Y ) =
[
P (x|y1) P (x|y2) . . . P (x|yN )

]T
Diskretne porazdelitve se lahko prikažejo s histogrami (slika 6.1). V skladu
z (6.1) je vsota višin vseh stolpcev v histogramu enaka 1. Če so vsa stanja
slučajne spremenljivke enako verjetna, lahko slučajno spremenljivko opišemo z
enakomerno porazdelitvijo (slika 6.1b).
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Slika 6.2: (a) Primer gostote verjetnosti in (b) enakomerna gostota verjetnosti
(integral površine pod krivuljo je enak 1)

6.2.2 Zvezna slučajna spremenljivka

Območje zvezne slučajne spremenljivke je (bodisi končen bodisi neskončen)
interval realnih števil. V zveznem primeru velja P (X = x) = 0, ker ima zvezna
slučajna spremenljivka X neskončni prostor vzorcev. Zato je uvedena gostota
verjetnosti p(x) (angl. probability density function), ki ima omejeno območje
med 0 in 1, torej je p(x) ∈ [0, 1]. Verjetnost, da zvezna slučajna spremenljivke
X zavzame vrednost manjšo od a je

P (X < a) =
a∫

−∞

p(x) dx

Primera gostote verjetnosti sta prikazana na sliki 6.2. Podobno kot velja relacija
(6.1) za diskretno slučajno spremenljivko, je integral gostote verjetnosti celotnega
prostora vzorcev zvezne slučajne spremenljivke X enak

P (−∞ < X < +∞) =
+∞∫
−∞

p(x) dx = 1

Podobna razmerja, ki veljajo za diskretno slučajno spremenljivko (predstavljena v
poglavju 6.2.1), se lahko razširijo tudi na gostoto verjetnosti. Nekatere pomembne
relacije za diskretne in zvezne slučajne spremenljivke so vzporedno prikazane v
tabeli 6.1.

Porazdelitve slučajne spremenljivke so pogosto opisane z različnimi statističnimi
parametri. Srednja vrednost zvezne slučajne spremenljivke X je določena kot
matematično upanje

µX = E{X} =
+∞∫
−∞

xp(x) dx
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Tabela 6.1: Izbrane enačbe verjetnostnega računa za diskretno in zvezno slučajno
spremenljivko

Opis Diskretna slučajna spr. Zvezna slučajna spr.

Polna verjetnost
∑
x∈X

P (x) = 1
+∞∫
−∞

p(x) dx = 1

Teorem polne verje-
tnosti

P (x) =
∑
y∈Y

P (x, y) p(x) =
+∞∫
−∞

p(x, y) dy

P (x) =
∑
y∈Y

P (x|y)P (y) p(x) =
+∞∫
−∞

p(x|y)p(y) dy

Srednja vrednost µX =
∑
x∈X

xP (x) µX =
+∞∫
−∞

xp(x) dx

Varianca σ2
X =

∑
x∈X

(x− µX)2P (x) σ2
X =

+∞∫
−∞

(x− µX)2p(x) dx

Eden od osnovnih parametrov, ki opisujejo obliko porazdelitve, je varianca

σ2
X = var{X} = E

{
(X − E{X})2} =

+∞∫
−∞

(x− µX)2p(x) dx

Ti lastnosti je mogoče določiti tudi za diskretne slučajne spremenljivke in so
podane v tabeli 6.1.

Srednja vrednost µ in varianca σ2 sta edina parametra, ki sta potrebna za enoličen
zapis normalne porazdelitve (slika 6.3). Normalna porazdelitev je ena izmed
najpomembnejših gostot verjetnosti in je predstavljena z Gaussovo funkcijo

p(x) = 1√
2πσ2

e−
1
2

(x−µ)2

σ2

V večdimenzionalnem primeru, ko je slučajna spremenljivka vektor x, ima
normalna porazdelitev naslednjo obliko

p(x) = det (2πΣ)−
1
2 e−

1
2 (x−µ)TΣ−1(x−µ)

kjer je Σ kovariančna matrika. Primer dvodimenzionalne Gaussove funkcije je
prikazan na sliki 6.4. Kovariančna matrika je simetrična — element v vrstici i in
stolpcu j je kovarianca cov{Xi, Xj} med slučajnima spremenljivkama Xi in Xj .

Kovarianca cov{X,Y } je merilo linearnega razmerja med slučajnima spremen-
ljivkama X in Y

σ2
XY = cov{X,Y } = E{(X − µX)(Y − µY )} =

=
+∞∫
−∞

+∞∫
−∞

(X − µX)(Y − µY )p(x, y) dxdy
(6.6)



284 Nedeterminističnost v mobilnih sistemih

x

p(
x)

P(µ−σ < X < µ + σ) ≈ 0.68

µ−σ µ µ + σ
0

p(µ)

Slika 6.3: Normalna porazdelitev (gostota verjetnosti)
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Slika 6.4: Dvodimenzionalna Gaussova gostota verjetnosti

kjer p(x, y) predstavlja gostoto verjetnosti produkta X in Y . Relacijo (6.6) lahko
poenostavimo na

σ2
XY = E{XY } − µXµY (6.7)

Če sta slučajni spremenljivki X in Y neodvisni, velja E{XY } = E{X}E{Y } in
kovarianca (6.7) ima vrednost 0: σ2

XY = 0. Obratno ne velja — če je kovarianca
nič, to ne pomeni, da sta slučajni spremenljivki neodvisni. Kovarianca dveh
enakih slučajnih spremenljivk je varianca cov{X,X} = var{X} = σ2

X .
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6.2.3 Bayesovo pravilo

Bayesovo pravilo je eden od temeljnih stebrov teorije verjetnosti in ima veliko
uporabno vrednost v mobilni robotiki. V zveznem prostoru je podano kot

p(x|y) = p(y|x)p(x)
p(y) (6.8)

in za diskreten prostor kot

P (x|y) = P (y|x)P (x)
P (y) (6.9)

Bayesovo pravilo omogoča, da izračunamo težko določljivo verjetnost na podlagi
verjetnosti, ki jo je lažje določiti.

Primer 6.1

Predstavimo uvodni primer uporabe Bayesovega pravila (6.8) v mobilnih sistemih.
Naj slučajna spremenljivka X predstavlja stanje mobilnega sistema, ki ga želimo
oceniti (npr. razdalja mobilnega sistema od ovire) na podlagi meritve Y , ki
je stohastično odvisna od slučajnega stanja X. Ker je izid meritve negotov,
želimo izvedeti, kakšna je gostota verjetnosti ocenjenega stanja X = x na podlagi
meritve Y = y.

Rešitev

Zanima nas gostota verjetnosti p(x|y), ki jo lahko izračunamo iz (6.8). Gostota
verjetnosti p(x) vsebuje znanje o slučajni spremenljivki X pred opravljeno meri-
tvijo y, zato jo imenujemo napovedna ocena (angl. a-priori estimate). Pogojna
gostota verjetnosti p(x|y) podaja znanje o slučajni spremenljivki X po opravljeni
meritvi in je zato znana tudi kot trenutna ocena (angl. a posteriori estimate).
Gostota verjetnosti p(y|x) vsebuje informacijo o vplivu stanja X na meritev Y ,
zato predstavlja model senzorja (npr. porazdelitev merjenja razdalje do ovire, če
je mobilni robot na določeni razdalji od ovire). Gostota verjetnosti p(y) vsebuje
porazdelitev meritve y, torej zaupanje v opravljeno meritev, in jo lahko določimo
s teoremom popolne verjetnosti p(y) =

∫
p(y|x)p(x) dx. Zato lahko trenutno

oceno p(x|y) pridobimo s pomočjo znanega statističnega modela senzorja (p(y|x))
in napovedne ocene (gostote verjetnosti stanja p(x)).

Primer 6.2

Do ciljne lokacije vodijo tri različne poti. Mobilni sistem izbere prvo pot v sedmih
od desetih primerov, drugo pot samo v enem od desetih, tretjo pa v enem od
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petih primerov. Na prvi poti ima 5 %, na drugi 10 % in na tretji 8 % verjetnost
naleta na oviro.

1. Kakšna je verjetnost, da mobilni sistem na poti do cilja naleti na oviro?

2. Mobilni sistem je naletel na oviro. Kakšna je verjetnost, da se je to zgodilo
na prvi poti?
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Rešitev

Označimo prvo, drugo in tretjo pot z A1, A2 in A3; oviro na katerikoli poti
pa z B. Verjetnost, da izberemo določeno pot je: P (A1) = 0,7, P (A2) = 0,1,
P (A3) = 0,2. Verjetnost naleta na oviro na prvi poti je P (B|A1) = 0,05, na
drugi poti P (B|A2) = 0,1 in na tretji poti P (B|A3) = 0,08.

1. Verjetnost, da mobilni sistem naleti na oviro, je

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) =
= 0,05 · 0,7 + 0,1 · 0,1 + 0,08 · 0,2 =
= 0,061

2. Verjetnost, da mobilni sistem obtiči na prvi poti, lahko izračunamo s
pomočjo Bayesovega pravila (6.9):

P (A1|B) = P (B|A1)P (A1)
P (B) =

= P (B|A1)P (A1)
P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) =

= 0,05 · 0,7
0,05 · 0,7 + 0,1 · 0,1 + 0,08 · 0,2 =

= 0,5738

Z Matlab kodo v programu 6.1 lahko izračunamo verjetnosti, da mobilni robot
obtiči na katerikoli poti.

Program 6.1
./src/prb/example_three_paths.m

1 % Verjetnost izbire prve , druge ali tretje poti:
2 % p(A) = [P(A1), P(A2), P(A3 )]
3 p_A = [0.7 0.1 0.2]
4 % Verjetnost ovire na prvi , drugi in tretji poti:
5 % p(B|A) = [P(B|A1), P(B|A2), P(B|A3 )]
6 p_BA = [0.05 0.1 0.08]
7
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8 % Verjetnost ovire : P(B)
9 P_B = p_BA*p_A.’

10

11 % Verjetnost zastoja na prvi , drugi in tretji poti:
12 % p(A|B) = [P(A1|B), P(A2|B), P(A3|B)]
13 p_AB = (p_BA .* p_A )./ P_B

p_A =
0.7000 0.1000 0.2000

p_BA =
0.0500 0.1000 0.0800

P_B =
0.0610

p_AB =
0.5738 0.1639 0.2623

Primer 6.3

Mobilni robot za čiščenje tal je opremljen s senzorjem za zaznavanje umazanije,
ki lahko zaznava čistočo tal pod mobilnim robotom (slika 6.5).

Mobilni robot za čiščenje tal

Senzor za detekcijo umazanije

Koš za smeti

Čistilne krtače

Kolo

Sesalna enota

[pogled od spodaj navzgor]

Slika 6.5: Mobilni robot za čiščenje tal

Na podlagi odčitkov senzorja želimo ugotoviti, ali so tla pod robotom čista ali ne,
zato ima diskretna slučajna spremenljivka dve možni vrednosti. Verjetnost, da
so tla čista, je 40 %. O senzorju za zaznavanje umazanije lahko trdimo naslednje:
če so tla čista, senzor to pravilno zazna v 80 % primerov; in če so tla umazana,
senzor to pravilno zazna v 90 % primerov. V primeru čistih tal je verjetnost
nepravilne meritve majhna, saj bo senzor napačno določil stanje tal v enem od
petih primerov. V primeru umazanih tal je verjetnost nepravilne meritve še
manjša, saj bo senzor napačno zaznal samo v enem od desetih primerov. Kakšna
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je verjetnost, da so tla čista, če senzor zazna, da so le-ta čista?

Rešitev

Označimo stanje tal — čista (clean) ali umazana (dirty) — z diskretno slu-
čajno spremenljivko X ∈ {clean, dirty} in meritev senzorja s slučajno spre-
menljivko Z ∈ {clean, dirty}. Verjetnost, da so tla čista, torej zapišemo kot
P (X = clean) = 0,4 in model meritve senzorja lahko matematično predstavimo
kot

P (Z = clean|X = clean) = 0,8
P (Z = dirty|X = dirty) = 0,9

Uvedimo krajši zapis

P (x) = P (X = clean) = 0,4
P (x̄) = P (X = dirty) = 1− P (x) = 0,6

P (z|x) = P (Z = clean|X = clean) = 0,8
P (z̄|x) = P (Z = dirty|X = clean) = 1− P (z|x) = 0,2
P (z̄|x̄) = P (Z = dirty|X = dirty) = 0,9
P (z|x̄) = P (Z = clean|X = dirty) = 1− P (z̄|x̄) = 0,1

S pomočjo Bayesovega pravila (6.9) določimo P (x|z)

P (x|z) = P (z|x)P (x)
P (z)

Nadalje lahko s pomočjo teorema popolne verjetnosti izračunamo verjetnost, da
senzor zazna tla kot čista

P (z) = P (z|x)P (x) + P (z|x̄)P (x̄) =
= 0,8 · 0,4 + 0,1 · 0,6 =
= 0,38

Tako je iskana verjetnost enaka

P (x|z) = 0,8 · 0,4
0,38 = 0,8421

Dobljena verjetnost, da senzor zazna čista tla kot čista, je visoka. Vendar pa
obstaja več kot 15 % verjetnost, da so tla dejansko umazana, zato lahko mobilni
sistem napačno domneva, da čiščenje ni potrebno. Če mobilni robot v takšnem
primeru ne izvede čiščenja, ostanejo tla umazana.
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6.3 Ocenjevanje stanj

Ocenjevanje stanja je proces, v katerem so prava stanja sistema ocenjena na
podlagi izmerjenih podatkov in predhodnega znanja o sistemu. Tudi če je mo-
žno stanja sistema neposredno izmeriti, izmerjeni podatki običajno vsebujejo
šum in druge motnje. Zaradi tega so neobdelani izmerjeni podatki običajno
neprimerni za nadaljnjo uporabo brez ustreznega filtriranja (npr. neposredna
uporaba pri izračunu pogreška vodenja). V številnih primerih je možno oceniti
stanja sistema, tudi če stanja niso neposredno merljiva. To lahko izvedemo, če
je sistem spoznaven. Zato moramo pred ocenjevanjem stanj preveriti spoznav-
nost sistema. Najpomembnejši lastnosti algoritmov za ocenjevanje stanja sta:
ocena konvergence in ocenjevalna pristranskost. V tem poglavju bomo opisali
nekaj praktičnih vidikov, ki jih je potrebno upoštevati pred izvedbo določenega
algoritma za ocenjevanje stanj.

6.3.1 Motnje in šum

Vso neupoštevano sistemsko dinamiko — kot so nemerljivi signali in pogreški
modeliranja — lahko razumemo kot sistemske motnje. Pod predpostavko linear-
nosti lahko vse motnje predstavimo v enem samem členu n(t), ki ga prištejemo
pravemu signalu y0(t)

y(t) = y0(t) + n(t)

Motnje razvrstimo v več razredov: visokofrekvenčni kvazistacionarni stohastični
signali (npr. merilni šum), nizkofrekvenčni nestacionarni signali (npr. lezenje),
periodični signali ali kakšen drug tip signalov (npr. špice, osamelci). Eden od
najpomembnejših stohastičnih signalov je beli šum.

Frekvenčni spekter in porazdelitev signala sta najpomembnejši lastnosti, ki opi-
sujeta signal. Porazdelitev signala poda verjetnost, s katero amplituda zavzame
določeno vrednost. Najpogostejši porazdelitvi signalov sta enakomerna poraz-
delitev in Gaussova (normalna) porazdelitev (glejte poglavje 6.2). Frekvenčni
spekter signala predstavlja soodvisnost signala v vsakem trenutku, ki je povezan
s porazdelitvijo frekvenčnih komponent signala. V primeru belega šuma so vse
frekvenčne komponente enakomerno porazdeljene, zato je vrednost signala v
vsakem časovnem trenutku neodvisna od prejšnjih vrednosti signala.

6.3.2 Ocena konvergence in pristranskosti

Kot smo že omenili, ocenjevanje stanj podaja ocene notranjih stanj glede na
izmerjene vhodno-izhodne signale, razmerje med spremenljivkami (modela sis-
tema), nekatere statistične lastnosti signalov (npr. varianca) in druge informacije
o sistemu. Vse te podatke je treba združiti tako, da dobimo točno in natančno
oceno notranjih stanj. Na žalost so meritve, model in vnaprej znane lastnosti
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signalov same po sebi negotove zaradi šuma, motenj, parazitske dinamike, napač-
nih predpostavk o modelu sistema in drugih virov napak. Zato se ocene stanj
običajno razlikujejo od dejanskih stanj.

Vse zgoraj omenjene težave povzročajo določeno stopnjo negotovosti signalov.
Matematično lahko problem rešimo v stohastičnem okolju, kjer se signali obrav-
navajo kot slučajne spremenljivke. Signali so tako predstavljeni s pripadajočimi
gostotami verjetnosti ali pa s srednjo vrednostjo in varianco. V stohastičnem
okolju je pomembno vprašanje kakovost določene ocene stanja. Zlasti je potrebno
analizirati konvergenco ocene stanja glede na pravo vrednost. Zastaviti si moramo
dve pomembni vprašanji:

1. Ali je matematično upanje ocene enako pravi vrednosti? Če to drži, je
ocena nepristranska. Ocena je konsistentna, če se izboljša s časom
(večji interval opazovanja) in konvergira k pravi vrednosti s podaljševanjem
intervala opazovanja proti neskončnosti.

2. Ali varianca pogreška ocene konvergira proti 0, ko gre čas opazovanja proti
neskončnosti? Če to drži in je ocena konsistentna, je ocena konsistentna
v srednjekvadratični vrednosti. To pomeni, da se z naraščanjem časa
opazovanja točnost in natančnost ocen izboljšuje (vse ocene so v bližini
prave vrednosti).

Na zgornji vprašanji lahko razmeroma enostavno odgovorimo, če so predpostavke
o sistemu preproste (popoln model sistema, Gaussov šum itd.). Pri obravnavi
zahtevnejšega problema je zelo težko najti odgovore in analitične rešitve niso več
možne. Vendar se moramo zavedati, da ocenjevalniki stanj podajajo zadovoljive
rezultate, če niso kršene nekatere pomembne predpostavke. Zato je izjemno
pomembno, da pred uporabo določenega algoritma ocenjevanja stanj preberemo
drobni tisk, saj lahko v nasprotnem primeru algoritem poda ocene, ki so daleč
od dejanskih stanj. Problem je, da se tega ponavadi sploh ne zavedamo.

6.3.3 Spoznavnost

Stanja, ki jih je potrebno oceniti, so običajno skrita, saj navadno informacije o
njih niso neposredno dostopne. Stanja lahko ocenimo na podlagi meritev izhodov
sistema, ki so neposredno ali posredno odvisni od stanj. Preden izvedemo algori-
tem ocenjevanja, moramo odgovoriti na naslednje vprašanje: Ali lahko enolično
ocenimo stanja v končnem času na podlagi opazovanja izhodov sistema? Odgovor
na to vprašanje podaja spoznavnost sistema. Če je sistem spoznaven, lahko
ocenimo stanja z opazovanjem njegovih izhodov. Sistem je le delno spoznaven, če
lahko ocenimo samo podmnožico stanj sistema, pri čemer preostalih stanj morda
ne bomo ocenili. V primeru popolnoma spoznavnega sistema so vsa stanja in
izhodi povezani.
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Preden začnemo z opredelitvijo spoznavnosti, moramo vpeljati koncept neraz-
poznavnih stanj (angl. indistinguishable state). Predstavljajmo si splošen
nelinearen sistem v obliki (x ∈ Rn, u ∈ Rm in y ∈ Rl)

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t))

(6.10)

Stanji x0 in x1 sta nerazpoznavni, če za vsak dopusten vhod u(t) v končnem
časovnem intervalu t ∈ [t0, t1] dobimo enake izhode [2]

y(t,x0) ≡ y(t,x1) ∀ t ∈ [t0, t1]

Množica vseh nerazpoznavnih stanj iz stanja x0 je označena kot I(x0).
Sedaj lahko rečemo, da je sistem spoznaven pri x0, če množica nerazpoznavnih
stanj I(x0) vsebuje samo stanje x0, torej I(x0) = {x0}. Sistem je spoznaven,
če množica nerazpoznavnih stanj I(x) vsebuje samo stanje x za vsako stanje
x v definicijskem območju, torej I(x) = {x} ∀ x. Spoznavnost ne pomeni, da
je ocena stanja x opazovanega izhoda možna za vsak vhod u(t), t ∈ [t0, t1]. V
določenih primerih je za razlikovanje med stanji potreben dolg čas opazovanja.
Poznamo različne načine spoznavnosti [2]: lokalna spoznavnost ali močnejši
koncept spoznavnosti, šibka spoznavnost ali oslabljeni koncept spoznavnosti in
lokalna šibka spoznavnost. V primeru avtonomnih linearnih sistemov so vse tri
oblike spoznavnosti enakovredne.

Preverjanje spoznavnosti splošnih nelinearnih sistemov (6.10) zahteva napredno
matematično analizo. Lokalno šibko spoznavnost sistema lahko preverimo s
preprostim algebraičnim testom. V ta namen vpeljemo operator Liejev odvod
kot časovni odvod izhodne funkcije h vzdolž trajektorije sistema x

Lf [h(x)] = ∂h(x)
∂x

f(x)

Vzemimo avtonomen sistem (6.10) (u(t) = 0 za vsak t). Lokalno šibko spo-
znavnost preverimo tako, da (večkrat) odvajamo sistemski izhod y, dokler se ne
poveča rang matrike Q (definicija sledi v nadaljevanju)

y = h(x) = L0
f [h(x)]

ẏ = ∂h(x)
∂x

dx
dt = ∂h(x)

∂x
f(x) = Lf [h(x)] = L1

f [h(x)]

ÿ = ∂

∂x

(
∂h(x)
∂x

f(x)
)
f(x) = Lf [Lf [h(x)]] = L2

f [h(x)]

...
diy
dti = Lif [h(x)]

(6.11)
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Časovne odvode izhoda sistema (6.11) lahko zapišemo v matriko L(x)

L(x) =


L0
f [h(x)]

L1
f [h(x)]

L2
f [h(x)]

...
Lif [h(x)]

 (6.12)

Rang matrike Q(x0) = ∂
∂xL(x)|x0 določa lokalno šibko spoznavnost sistema pri

x0. Če je rang matrike Q(x0) enak številu stanj, torej rang(Q(x0)) = n, naj bi
sistem zadostoval spoznavnostnemu pogoju za rang pri x0, ki je zadosten,
ne pa potreben pogoj za lokalno šibko spoznavnost sistema pri x0. Če je za
vsak x iz definicijskega območja izpolnjen spoznavnostni pogoj za rang, je sistem
lokalno šibko spoznaven. Bolj podrobna študija na temo spoznavnosti je na voljo
v [2–4].

Pogoj za rang spoznavnosti se lahko poenostavi za časovno nespremenljive linearne
sisteme. Za sistem z n stanji v obliki ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) so
Liejevi odvodi (6.12)

L0
f [h(x)] = Cx(t)

L1
f [h(x)] = C(Ax(t) +Bu(t))

L2
f [h(x)] = CA(Ax(t) +Bu(t))

...

(6.13)

Delno odvajanje Liejevih odvodov (6.13) privede do Kalmanove spoznavno-
stne matrike Q

QT =
[
CT ATCT . . . (AT )n−1CT

]
Sistem je spoznaven, če ima spoznavnostna matrika n neodvisnih vrstic, torej je
rang spoznavnostne matrike enak številu stanj

rang(Q) = n

6.4 Bayesov filter

6.4.1 Markovove verige

Obravnavali bomo sisteme, za katere lahko predpostavimo, da je stanje vse-
bovano. To pomeni, da se vse informacije o sistemu v danem trenutku lahko
pridobijo iz stanj sistema. Sistem lahko opišemo na podlagi trenutnih stanj, kar
je lastnost Markovovega procesa. Na sliki 6.6 je prikazan skriti Markovov proces,
kjer stanja niso neposredno dostopna, ampak jih lahko samo ocenimo iz meritev,
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xk-1 xk

zk-1 zk

Slika 6.6: Skriti Markovov proces. Meritev zk je stohastično odvisna od trenu-
tnega stanja xk, ki ni neposredno dostopno in je odvisno od prejšnjega stanja
xk−1

xk-1 xk

zk-1 zk

uk-2 uk-1

Slika 6.7: Skriti Markovov proces z zunanjimi vhodi. Meritev zk je stohastično
odvisna od trenutnega stanja xk. Stanje xk ni neposredno dostopno ter je odvisno
od prejšnjega stanja xk−1 in trenutno aktualnega vhoda uk−1.

ki so stohastično odvisne od trenutnih vrednosti stanj. Zaradi tega je trenutno
stanje sistema odvisno le od prejšnjega stanja in ne celotne zgodovine stanj

p(xk|x0, . . . , xk−1) = p(xk|xk−1)

Podobno je tudi meritev neodvisna od celotne zgodovine stanj sistema, če je
znano le trenutno stanje

p(zk|x0, . . . , xk) = p(zk|xk)

Struktura skritega Markovovega procesa, kjer je trenutno stanje xk odvisno od
prejšnjega stanja xk−1 in vhoda sistema uk−1, je prikazana na sliki 6.7. Vhod
uk−1 je trenutno aktualen vhod, ki vpliva na notranja stanja od trenutka k − 1
do k.

6.4.2 Ocenjevanje stanj iz opazovanj

Bayesov filter predstavlja najbolj splošen algoritem za izračun porazdelitve.
Bayesov filter je močno statistično orodje, ki ga lahko uporabimo za oceno
lokacije (stanj sistema) ob prisotnosti sistemskih in merilnih negotovosti [5].

Porazdelitev stanja po merjenju p(x|z) lahko ocenimo, če sta znana statistični
model senzorja p(z|x) (porazdelitev izida meritve ob poznanem stanju) in po-
razdelitev meritve p(z). To smo predstavili v primeru 6.3 za diskretno slučajno
spremenljivko.
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Poglejmo si primer ocenjevanja stanja x, ko imamo več zaporednih meritev z.
Želimo oceniti porazdelitev p(xk|z1, . . . , zk) stanja x v trenutku k, pri čemer
upoštevamo zaporedje vseh meritev do aktualnega trenutka. Bayesovo formulo
lahko podamo v rekurzivni obliki

p(xk|z1, . . . , zk) = p(zk|xk, z1, . . . , zk−1)p(xk|z1, . . . , zk−1)
p(zk|z1, . . . , zk−1)

kar lahko krajše zapišemo kot

p(xk|z1:k) = p(zk|xk, z1:k−1)p(xk|z1:k−1)
p(zk|z1:k−1) (6.14)

Pomen posameznih členov v (6.14) je:

• p(xk|z1:k) je ocenjena porazdelitev stanja v trenutku k, posodobljenega z
merilnimi podatki,

• p(zk|xk, z1:k−1) je porazdelitev meritve v trenutku k, če poznamo trenutno
stanje xk in pretekle meritve do trenutka k − 1,

• p(xk|z1:k−1) je napovedana porazdelitev stanja na osnovi preteklih meritev,

• p(zk|z1:k−1) je porazdelitev opravljene meritve (zaupanje v opravljeno
meritev) v trenutku k.

Nadalje velja, da je trenutna meritev zk v (6.14) neodvisna od preteklih meritev
z1:k−1 (stanje je vsebovano, Markovov proces), če poznamo stanje sistema xk

p(zk|xk, z1:k−1) = p(zk|xk)

Zato se enačba (6.14) poenostavi v

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) (6.15)

Izpeljava enačbe (6.15) je podana v primeru 6.4.

Primer 6.4

Za vajo izpeljite (6.15) iz (6.14), pri čemer predpostavite vsebovano stanje
(p(zk|xk, z1:k−1) = p(zk|xk)).
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Rešitev

Izpeljava porazdelitve (6.15)

p(xk|z1:k) = p(z1:k|xk)p(xk)
p(z1:k) =

= p(zk, z1:k−1|xk)p(xk)
p(zk, z1:k−1) =

= p(zk|z1:k−1, xk)p(z1:k−1|xk)p(xk)
p(zk|z1:k−1)p(z1:k−1) =

= p(zk|z1:k−1, xk)p(xk|z1:k−1)p(z1:k−1)p(xk)
p(zk|z1:k−1)p(z1:k−1)p(xk) =

= p(zk|z1:k−1, xk)p(xk|z1:k−1)
p(zk|z1:k−1) =

= p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1)

Rekurzivna enačba (6.15) za posodobitev stanja na podlagi preteklih meritev
vsebuje tudi predikcijo p(xk|z1:k−1). Postopek ocenjevanja stanja lahko razdelimo
na predikcijski in korekcijski korak.

Predikcijski korak

Predikcijo p(xk|z1:k−1) določimo kot

p(xk|z1:k−1) =
∫
p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1) dxk−1

kar lahko poenostavimo s predpostavko, da je stanje vsebovano

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (6.16)

kjer p(xk|xk−1) predstavlja porazdelitev prehajanja med stanji in p(xk−1|z1:k−1)
je popravljena porazdelitev ocenjenega stanja iz prejšnjega časovnega trenutka.

Korekcijski korak

Ocenjena porazdelitev stanj po opravljeni meritvi v trenutku k in izračunana
napovedana porazdelitev stanj v predikcijskem koraku je

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) (6.17)

Verjetnost p(zk|z1:k−1), ki opisuje merilno zaupanje, lahko določimo s pomočjo
relacije

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1) dxk
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Najverjetnejša ocena stanj

Kako lahko ocenjeno porazdelitev p(xk|z1:k) uporabimo pri oceni najverjetnejšega
stanja xk? Najbolj verjetna ocena stanja (matematično upanje) E{xk} je podana
kot vrednost, ki minimizira povprečni kvadratni pogrešek meritve

E{xk} =
∫
xkp(xk|z1:k) dxk

Ocenimo lahko tudi vrednost xkmax , ki maksimira trenutno verjetnost p(xk|z1:k)

xkmax = max
xk

p(xk|z1:k)

Primer 6.5

Imamo senzor iz primera 6.3. Kakšna je verjetnost čistih tal, če senzor v trenutku
k = 2 ponovno zazna čista tla?

Rešitev

V primeru 6.3 so bila v trenutku k = 1 tla čista, senzor pa je tudi zaznal, da so
čista (z1 = clean). Izračunali smo pogojno verjetnost

P (x1|z1) = 0,8 · 0,4
0,38 = 0,8421

V naslednjem trenutku k = 2 senzor vrne z2 = clean z verjetnostjo pravilne
zaznave senzorja P (z2|x2) = 0,8 in z verjetnostjo napačne zaznave senzorja
P (z2|x̄2) = 0,1 (predpostavljamo časovno nespremenljivo karakteristiko senzorja).

Najprej ovrednotimo predvideno verjetnost P (x2|z1), torej da so tla umazana
glede na prejšnjo meritev. V enačbi (6.16) zamenjamo integracijo z vsoto in
dobimo

P (xk|z1:k−1) =
∑

xk−1∈X
P (xk|xk−1)P (xk−1|z1:k−1)

Za zdaj predpostavimo, da mobilni sistem lahko le zazna stanje tal in ne more
vplivati nanj, torej ne izvaja čiščenja tal in tal tudi ne more umazati. Tako je
verjetnost prehajanja stanja preprosto P (x2|x1) = 1 in P (x2|x̄1) = 0. Dobimo
torej

P (x2|z1:1) = P (x2|x1)P (x1|z1) + P (x2|x̄1)P (x̄1|z1) =
= 1 · 0,8421 + 0 · 0,1579 =
= 0,8421

kar je logičen rezultat. Če namreč nimamo meritve z2, nismo pridobili novih
informacij o sistemu. Zato ima stanje tal enako verjetnost v trenutku k = 2 kot
v prejšnjem trenutku k = 1.
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Z upoštevanjem razmerja (6.17) lahko v korekcijskem koraku združimo meritev s
trenutno oceno

P (x2|z1:2) = P (z2|x2)P (x2|z1:1)
P (z2|z1:1) =

= 0,8 · 0,8421
P (z2|z1:1)

kjer moramo izračunati vrednost normirnega člena, ki podaja verjetnost čistih
tal v trenutku k = 2. Faktor lahko določimo z vsoto vseh možnih kombinacij
stanj, ki vodijo do trenutne meritve zk ob upoštevanju izidov preteklih meritev
z1:k−1

P (zk|z1:k−1) =
∑
xk∈X

P (zk|xk)P (xk|z1:k−1)

V našem primeru zapišemo

P (z2|z1) = P (z2|x2)P (x2|z1) + P (z2|x̄2)P (x̄2|z1) =
= 0,8 · 0,8421 + 0,1 · 0,1579 =
= 0,6895

Verjetnost, da so tla čista, če je senzor dvakrat zapored zaznal čista tla, je

P (x2|z1:2) = 0,9771

Primer 6.6

Za primer 6.3 določite, kako se spremeni verjetnost stanja, če so tla čista, senzor
pa opravi tri meritve z1:3 = (clean, clean, dirty).

Rešitev

Prvi dve pogojni verjetnosti smo že izračunali v primeru 6.3 in 6.5, tretja pa je

P (x3|z1:3) = P (z3|x3)P (x3|z1:2)
P (z3|z1:2) =

= 0,2 · 0,9771
0,2 · 0,9771 + 0,9 · (1− 0,9771) =

= 0,9046

kjer je P (Z = dirty|X = clean) = 1 − P (Z = clean|X = clean). Verjetnosti
stanj v treh zaporednih meritvah, opravljenih v časovnih trenutkih i = 1, 2, 3, so

P (xk|z1:i) = (0,8421, 0,9771, 0,9046)
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Porazdelitev trenutnega stanja za trenutke k = 1, 2, 3 je prikazana na sliki 6.8.
Implementacija rešitve v programskem okolju Matlab je prikazana v programu
6.2.

Program 6.2
./src/prb/example_nocleaning.m

1 % Verjetnost č istih ( clean ) in umazanih ( dirty ) tal
2 P_Xc = 0.4 % P(X= clean )
3 P_Xd = 1-P_Xc % P(X= dirty )
4 % Pogojna verjetnost merjenja čistoče
5 P_ZcXc = 0.8 % P(Z= clean |X= clean )
6 P_ZdXc = 1- P_ZcXc % P(Z= dirty |X= clean )
7 P_ZdXd = 0.9 % P(Z= dirty |X= dirty )
8 P_ZcXd = 1- P_ZdXd % P(Z= clean |X= dirty )
9

10 disp(’Korak k = 1: Z= clean ’)
11 % Verjetnost meritve v primeru , da zaznamo čista tla
12 P_Zc_k1 = P_ZcXc *P_Xc + P_ZcXd *P_Xd
13 % Verjetnost č istih tal po opravljeni meritvi ( Bayesovo pravilo )
14 P_XcZc_k1 = P_ZcXc *P_Xc/ P_Zc_k1
15 P_XdZc_k1 = 1- P_XcZc_k1 ;
16

17 disp(’Korak k = 2: Z= clean ’)
18 % Verjetnost meritve v primeru , da zaznamo čista tla
19 P_Zc_k2 = P_ZcXc * P_XcZc_k1 + P_ZcXd * P_XdZc_k1
20 % Verjetnost č istih tal po opravljeni meritvi ( Bayesovo pravilo )
21 P_XcZc_k2 = P_ZcXc * P_XcZc_k1 / P_Zc_k2
22 P_XdZc_k2 = 1- P_XcZc_k2 ;
23

24 disp(’Korak k = 3: Z= dirty ’)
25 % Verjetnost meritve v primeru , da zaznamo umazana tla
26 P_Zd_k3 = P_ZdXc * P_XcZc_k2 + P_ZdXd * P_XdZc_k2
27 % Verjetnost č istih tal po opravljeni meritvi ( Bayesovo pravilo )
28 P_XcZd_k3 = P_ZdXc * P_XcZc_k2 / P_Zd_k3
29 P_XdZd_k3 = 1- P_XcZd_k3 ;

P_Xc =
0.4000

P_Xd =
0.6000

P_ZcXc =
0.8000

P_ZdXc =
0.2000

P_ZdXd =
0.9000

P_ZcXd =
0.1000

Korak k = 1: Z= clean
P_Zc_k1 =

0.3800
P_XcZc_k1 =

0.8421
Korak k = 2: Z= clean
P_Zc_k2 =

0.6895
P_XcZc_k2 =

0.9771
Korak k = 3: Z= dirty
P_Zd_k3 =
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0.2160
P_XcZd_k3 =

0.9046

k

P
(X

=
cl

ea
n|

Z
)

Z = clean Z = clean Z = dirty

1 2 3
0

0.5
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Slika 6.8: Porazdelitev trenutnega stanja v treh trenutkih iz primera 6.6

6.4.3 Ocenjevanje stanj iz opazovanj in akcij

V poglavju 6.4.2 smo ocenjevali stanje sistema samo na podlagi opazovanja
okolice. Običajno pa akcije mobilnega sistema vplivajo na okolico, torej lahko
spreminjajo tudi stanja sistema (npr. mobilni sistem se premakne, izvaja čiščenje
itd.). Vsaka akcija mobilnega sistema ima neko lastno negotovost, zato izid akcije
ni determinističen, ampak je podan z neko verjetnostjo. Gostota verjetnosti
p(xk|xk−1, uk−1) opisuje verjetnost prehoda iz prejšnjega v naslednje stanje pri
znani akciji. Akcija uk−1 nastopi v trenutku k−1 in vpliva na sistem do trenutka
k, zato jo običajno poimenujemo kar trenutna akcija. V splošnem akcije v okolici
povečujejo stopnjo negotovosti našega znanja o okolici, meritve v okolici pa
običajno zmanjšujejo stopnjo negotovosti.

Poglejmo si, kako akcije in meritve vplivajo na naše znanje o stanjih. Želimo
ugotoviti gostoto verjetnosti p(xk|z1:k, u0:k−1), kjer so z meritve in u akcije.

Kot v poglavju 6.4.2 lahko zapišemo Bayesov teorem

p(xk|z1:k, u0:k−1) = p(zk|xk, z1:k−1, u0:k−1)p(xk|z1:k−1, u0:k−1)
p(zk|z1:k−1, u0:k−1) (6.18)

kjer so:

• p(xk|z1:k, u0:k−1) je ocena porazdelitve stanja v trenutku k, posodobljena
z znanimi meritvami in opravljenimi akcijami,

• p(zk|xk, z1:k−1, u0:k−1) je porazdelitev meritve v trenutku k, če poznamo
trenutno stanje xk, opravljene akcije in pretekle meritve do trenutka k − 1,
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• p(xk|z1:k−1, u0:k−1) je napoved porazdelitve stanja na osnovi preteklih
meritev in opravljenih akcij do trenutka k,

• p(zk|z1:k−1, u0:k−1) je porazdelitev opravljene meritve (zaupanje v opra-
vljeno meritev) v trenutku k.

Indeksi akcij so v razponu od 0 do k− 1, ker akcije v preteklih trenutkih vplivajo
na obnašanje stanja sistema v trenutku k.

Nadalje velja, da lahko trenutno meritev zk v (6.18) opišemo le z znanim stanjem
sistema xk, saj pretekle meritve in akcije ne prinašajo dodatnih informacij o
sistemu (stanje je vsebovano, Markovov proces)

p(zk|xk, z1:k−1, u0:k−1) = p(zk|xk)

Zato lahko (6.18) poenostavimo v

p(xk|z1:k, u0:k−1) = p(zk|xk)p(xk|z1:k−1, u0:k−1)
p(zk|z1:k−1, u0:k−1) (6.19)

Rekurzivno pravilo za posodobitev verjetnosti ocene stanja (6.19) na podlagi
preteklih meritev in akcij vključuje tudi predikcijo p(xk|z1:k−1, u0:k−1), kjer
porazdelitev ocene stanja napovemo na podlagi preteklih meritev z1:k−1 in vseh
akcij u0:k−1. Tako lahko postopek ocenjevanja stanj razdelimo na predikcijski in
korekcijski korak. V predikcijskem koraku še ni znana zadnja meritev, je pa znana
trenutna akcija, zato lahko na podlagi modela sistema napovemo porazdelitev
stanj. Ko je na voljo nova meritev, izvedemo še korekcijski korak.

Predikcija

Predikcijo p(xk|z1:k−1, u0:k−1) lahko ovrednotimo s teoremom popolne verjetnosti

p(xk|z1:k−1, u0:k−1) =
∫
p(xk|xk−1, z1:k−1, u0:k−1)p(xk−1|z1:k−1, u0:k−1) dxk−1

kjer zaradi vsebovanosti stanja velja

p(xk|xk−1, z1:k−1, u0:k−1) = p(xk|xk−1, uk−1)

nadalje ugotovimo, da najnovejša akcija uk−1 ni potrebna za oceno stanja v
prejšnjem trenutku

p(xk−1|z1:k−1, u0:k−1) = p(xk−1|z1:k−1, u0:k−2)

Zapišemo končni izraz za izračun predikcije

p(xk|z1:k−1, u0:k−1) =
∫
p(xk|xk−1, uk−1)p(xk−1|z1:k−1, u0:k−2) dxk−1 (6.20)

kjer je p(xk|xk−1, uk−1) porazdelitev prehajanja med stanji in p(xk−1|z1:k−1, u0:k−2)
korekcijska ocena porazdelitve stanja iz prejšnjega trenutka.
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Korekcija

Ocena stanj, ko je na voljo meritev v trenutku k in predhodno izračunana
predikcija, je

p(xk|z1:k, u0:k−1) = p(zk|xk)p(xk|z1:k−1, u0:k−1)
p(zk|z1:k−1, u0:k−1) (6.21)

Verjetnost p(zk|z1:k−1, u0:k−1), ki predstavlja zaupanje v opravljeno meritev, pa
je

p(zk|z1:k−1, u0:k−1) =
∫
p(zk|xk)p(xk|z1:k−1, u0:k−1) dxk

Splošni algoritem za Bayesov filter

Splošna oblika Bayesovega filtra je podana v psevdokodi v algoritmu 3. Pogojna
verjetnost korekcijskega koraka p(xk|z1:k, u0:k−1), ki daje oceno porazdelitve
stanja na podlagi znanih akcij in meritev, je znana kot zaupanje in jo zapišemo
kot

bel(xk) = p(xk|z1:k, u0:k−1)

pogojno verjetnost predikcije p(xk|z1:k−1, u0:k−1) pa označimo kot

belp(xk) = p(xk|z1:k−1, u0:k−1)

Bayesov filter ocenjuje porazdelitev ocene stanja. V trenutku, ko je znana
informacija o trenutni akciji uk−1, lahko izvedemo predikcijski korak in ko je na
voljo tudi nova meritev, lahko izvedemo korekcijski korak. Vpeljemo še normirni
faktor η = 1

α = 1
p(zk|z1:k−1,u0:k−1) . Algoritem za Bayesov filter (algoritem 3)

najprej izvede predikcijo, nato pa še korekcijo, ki je ustrezno normirana.

Algorithm 3 Bayesov filter
function Bayesov_filter(bel(xk−1), uk−1, zk)

α← 0
for all xk do

belp(xk)←
∫
p(xk|xk−1, uk−1)bel(xk−1) dxk−1

bel′(xk)← p(zk|xk)belp(xk)
α← α+ bel′(xk)

end for
for all xk do

bel(xk)← 1
αbel

′(xk)
end for
return bel(xk)

end function

Kot je razvidno iz algoritma 3, moramo rešiti integral, da določimo porazdelitev
v predikcijskem koraku. Izvedba algoritma je torej omejena na enostavne zvezne
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primere, kjer je možna eksplicitna rešitev integrala, in diskretne primere s končnim
številom stanj, kjer lahko integral zamenja vsota.

Primer 6.7

Mobilni robot je opremljen s senzorjem, ki lahko zazna, ali so tla čista ali ne
(Z ∈ {clean, dirty}), ter čistilnim sistemom (komplet krtač, vakuumska črpalka
in posoda za prah) za čiščenje tal. Čiščenje se izvaja samo v primeru, ko robot
meni, da je tla potrebno očistiti (U ∈ {clean, null}). Zanima nas, ali so tla čista
ali ne (X ∈ {clean, dirty}).

Začetna verjetnost (zaupanje), da so tla čista, je

bel(X0 = clean) = 0,5

Veljavnost meritev senzorja je podana s statističnim modelom senzorja

P (Zk = clean|Xk = clean) = 0,8 P (Zk = dirty|Xk = clean) = 0,2
P (Zk = dirty|Xk = dirty) = 0,9 P (Zk = clean|Xk = dirty) = 0,1

Verjetnosti izida, če se robot odloči za čiščenje tal, je

P (Xk = clean|Xk−1 = clean, Uk−1 = clean) = 1
P (Xk = dirty|Xk−1 = clean, Uk−1 = clean) = 0
P (Xk = clean|Xk−1 = dirty, Uk−1 = clean) = 0,8
P (Xk = dirty|Xk−1 = dirty, Uk−1 = clean) = 0,2

V kolikor pa čistilni sistem ni aktiviran, lahko domnevamo naslednje verjetnosti
izida

P (Xk = clean|Xk−1 = clean, Uk−1 = null) = 1
P (Xk = dirty|Xk−1 = clean, Uk−1 = null) = 0
P (Xk = clean|Xk−1 = dirty, Uk−1 = null) = 0
P (Xk = dirty|Xk−1 = dirty, Uk−1 = null) = 1

Predpostavimo, da mobilni sistem najprej opravi akcijo in šele nato prejme
meritev. Določite zaupanje belp(xk) na osnovi opravljene akcije (predikcija) in
zaupanje bel(xk) na osnovi meritve bel(xk) (korekcija) za naslednje sekvence
opravljenih akcij in zaznanih meritev

k Uk−1 Zk

1 null dirty

2 clean clean

3 clean clean
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Rešitev

Za boljšo preglednost bomo označevali Xk ∈ {clean, dirty} kot Xk ∈ {xk, x̄k},
Zk ∈ {clean, dirty} kot Zk ∈ {zk, z̄k} in Uk ∈ (clean, null) kot Uk ∈ {uk, ūk}.

Uporabimo algoritem 3. Za trenutek k = 1, ko je opravljena akcija ū0 = null,
lahko določimo predikcijo zaupanja, da so tla čista

belp(x1) =
∑
x0∈X

P (x1|x0, ū0)bel(x0) =

= P (x1|x̄0, ū0)bel(x̄0) + P (x1|x0, ū0)bel(x0) =
= 0 · 0,5 + 1 · 0,5 =
= 0,5

in predikcijo zaupanja, da so tla umazana

belp(x̄1) =
∑
x0∈X

P (x̄1|x0, ū0)bel(x0) =

= P (x̄1|x̄0, ū0)bel(x̄0) + P (x̄1|x0, ū0)bel(x0) =
= 1 · 0,5 + 0 · 0,5 =
= 0,5

Ker nismo izvedli nobene akcije, so verjetnosti stanja nespremenjene. Glede na
meritev z̄1 = dirty lahko določimo korekcijo zaupanja

bel(x1) = ηp(z̄1|x1)belp(x1) = η0,2 · 0,5 = η0,1

in
bel(x̄1) = ηp(z̄1|x̄1)belp(x̄1) = η0,9 · 0,5 = η0,45

Ocenimo še normirni faktor η

η = 1
0,1 + 0,45 = 1,82

in končne vrednosti zaupanj

bel(x1) = 0,182 bel(x̄1) = 0,818

Postopek ponovimo še za trenutek k = 2, kjer je u1 = clean in z2 = clean

belp(x2) = 0,8364 belp(x̄2) = 0,1636
bel(x2) = 0,9761 bel(x̄2) = 0,0239

in trenutek k = 3, kjer je u2 = clean in z3 = clean

belp(x3) = 0,9952 belp(x̄3) = 0,0048
bel(x3) = 0,9994 bel(x̄3) = 0,0006

Rešitev primera 6.7 v programskem okolju Matlab je podana v programu 6.3.
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Program 6.3
./src/prb/example_cleaning.m

1 % Notacija : X === X(k), X’ === X(k -1)
2 disp(’Začetno zaupanje v čista in umazana tla ’)
3 bel_Xc = 0.5; % bel(X= clean )
4 bel_X = [ bel_Xc 1- bel_Xc ] % bel(X= clean ), bel(X= dirty )
5

6 disp(’Pogojne verjetnosti meritev senzorja ’)
7 P_ZcXc = 0.8; % P(Z= clean |X= clean )
8 P_ZdXc = 1- P_ZcXc ; % P(Z= dirty |X= clean )
9 P_ZdXd = 0.9; % P(Z= dirty |X= dirty )

10 P_ZcXd = 1- P_ZdXd ; % P(Z= clean |X= dirty )
11 p_ZX = [P_ZcXc , P_ZcXd ; ...
12 P_ZdXc , P_ZdXd ]
13

14 disp(’Pogojne verjetnosti v primeru čiščenja ’)
15 P_XcXcUc = 1; % P(X= clean |X ’= clean ,U ’= clean )
16 P_XdXcUc = 1- P_XcXcUc ; % P(X= dirty |X ’= clean ,U ’= clean )
17 P_XcXdUc = 0.8; % P(X= clean |X ’= dirty ,U ’= clean )
18 P_XdXdUc = 1- P_XcXdUc ; % P(X= dirty |X ’= dirty ,U ’= clean )
19 p_ZXUc = [P_XcXcUc , P_XdXcUc ; ...
20 P_XcXdUc , P_XdXdUc ]
21

22 disp(’Pogojne verjetnosti , če ni nobene akcije ’)
23 P_XcXcUn = 1; % P(X= clean |X ’= clean ,U ’= null)
24 P_XdXcUn = 1- P_XcXcUn ; % P(X= dirty |X ’= clean ,U ’= null)
25 P_XcXdUn = 0; % P(X= clean |X ’= dirty ,U ’= null)
26 P_XdXdUn = 1- P_XcXdUn ; % P(X= dirty |X ’= dirty ,U ’= null)
27 p_ZXUn = [P_XcXcUn , P_XdXcUn ; ...
28 P_XcXdUn , P_XdXdUn ]
29

30 U = {’null ’, ’clean ’, ’clean ’};
31 Z = {’dirty ’, ’clean ’, ’clean ’};
32 for k=1: length (U)
33 fprintf (’Predikcijski korak : U(%d)=%s\n’, k-1, U{k})
34 if strcmp (U(k), ’clean ’)
35 belp_X = bel_X * p_ZXUc
36 else
37 belp_X = bel_X * p_ZXUn
38 end
39

40 fprintf (’Korekcijski korak : Z(%d)=%s\n’, k, Z{k})
41 if strcmp (Z(k), ’clean ’)
42 bel_X = p_ZX (1 ,:).* belp_X ;
43 else
44 bel_X = p_ZX (2 ,:).* belp_X ;
45 end
46 bel_X = bel_X /sum( bel_X )
47 end

Začetno zaupanje v čista in umazana tla
bel_X =

0.5000 0.5000
Pogojne verjetnosti meritev senzorja
p_ZX =

0.8000 0.1000
0.2000 0.9000

Pogojne verjetnosti v primeru čiščenja
p_ZXUc =

1.0000 0
0.8000 0.2000

Pogojne verjetnosti , če ni nobene akcije
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p_ZXUn =
1 0
0 1

Predikcijski korak : U(0)= null
belp_X =

0.5000 0.5000
Korekcijski korak : Z(1)= dirty
bel_X =

0.1818 0.8182
Predikcijski korak : U(1)= clean
belp_X =

0.8364 0.1636
Korekcijski korak : Z(2)= clean
bel_X =

0.9761 0.0239
Predikcijski korak : U(2)= clean
belp_X =

0.9952 0.0048
Korekcijski korak : Z(3)= clean
bel_X =

0.9994 0.0006

6.4.4 Primer lokalizacije

Na preprostem primeru si poglejmo princip lokalizacije, ki predstavlja osnovno
idejo algoritma za lokalizacijo Monte Carlo. Mobilni robot se premika v okolju in
zaznava svojo lego s senzorjem. Algoritem za lokalizacijo mora na podlagi meritev
senzorja in izvedenih premikov določiti lego robota v okolju. Pri tem uporabimo
teorem popolne verjetnosti in Bayesovo pravilo, ki predstavljata osnovo za izvedbo
Bayesovega filtra. V nadaljevanju je predstavljen proces zaznavanja ob prisotnosti
negotovosti senzorja, ki mu sledi proces izvajanja akcije ob prisotnosti negotovosti
aktuatorja. Mobilni robot izvaja akcije z namenom spreminjanja stanja v okolju
(lega mobilnega sistema se spreminja z njegovim premikanjem).

Primer 6.8

Mobilni robot se vozi po krožni poti v smeri naprej ali nazaj. Pot je sestavljena
iz končnega števila svetlih in temnih ploščic v naključnem vrstnem redu, kjer
širina ploščice ustreza širini poti. Mobilni sistem lahko namestimo na katerokoli
oštevilčeno ploščico. Brez izgube splošnosti predpostavimo, da je pot sestavljena
iz petih ploščic, kot je prikazano na sliki 6.9.
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x1

x2

x3x4

x5

Mobilni robot (x)

Pot

Senzor barve (z)

Akcija premik naprej
(u)

Slika 6.9: Pot v okolju je sestavljena iz petih črnih in belih ploščic. Mobilni
sistem se lahko premika med njimi in zaznava barvo trenutne ploščice.

Vsaka ploščica predstavlja celico, v katero lahko postavimo mobilni sistem, torej
imamo diskretno predstavitev okolja. Mobilni sistem pozna zemljevid okolice,
torej pozna zaporedje svetlih in temnih ploščic, vendar ne ve, v kateri celici se
nahaja. Začetno zaupanje v pozicijo mobilnega sistema je podano z enakomerno
porazdelitvijo, saj je vsaka celica enako verjetna. Mobilni sistem ima senzor
za zaznavanje svetlih in temnih ploščic, vendar so njegove meritve negotove.
Mobilni sistem se lahko premika za želeno število ploščic v smeri naprej ali nazaj,
vendar je gibanje samo po sebi negotovo (lahko se premakne premalo ali preveč).
Na omenjenem primeru bosta razložena procesa zaznavanja okolja in gibanja v
okolju.

6.4.5 Zaznavanje okolja

S pomočjo meritve, izvedene v okolici, lahko izboljšamo oceno stanja X (npr.
lokacija) v tem okolju. Predstavljajmo si, da sredi noči hodimo v spanju in
tavamo po hiši. Ko se zbudimo, lahko s svojimi čuti (vid, dotik itd.) ugotovimo,
kje se nahajamo.

Začetno znanje o okolici lahko matematično opišemo s porazdelitvijo p(x). To
porazdelitev lahko izboljšamo ob nastopu nove meritve z (z zaupanjem p(z|x)),
če je verjetnost po opravljeni meritvi p(x|z). To lahko dosežemo z Bayesovim
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pravilom p(x|z) = bel(x) = p(z|x)p(x)
p(z) . Verjetnost p(z|x) predstavlja statistični

model senzorja, bel(x) pa je zaupanje v oceno stanja po opravljeni meritvi. V
procesu zaznavanja se torej izvede korekcijski korak Bayesovega filtra.

Primer 6.9

Za primer 6.8 predpostavimo, da mobilni sistem zazna temno celico Z = dark.
Mobilni sistem pravilno zazna temno celico z verjetnostjo 0,6, napako pa naredi
z verjetnostjo 0,2, kjer svetlo celico razpozna kot temno. Tako zapišemo

p(Z = dark|X = xd) = 0,6 d ∈ {3, 4}
p(Z = dark|X = xb) = 0,2 b ∈ {1, 2, 5}

kjer indeks b označuje svetle celice, indeks d pa temne. Na začetku mobilni
sistem ne pozna svoje pozicije, kar opišemo z enakomerno porazdelitvijo P (X =
xi) = bel(xi) = 0,2, i ∈ {1, . . . , 5}. Kakšna je porazdelitev lokacije po opravljeni
meritvi?

Rešitev

Želimo določiti porazdelitev pogojne verjetnosti p(X1|Z = dark), kar je zaupanje
v oceno stanja po opravljeni meritvi. Želeno verjetnost lahko določimo s pomočjo
korekcijskega koraka Bayesovega filtra

p(X1|Z = dark) = p(Z = dark|X1) ? p(X1)
P (Z = dark) =

= [0,2, 0,2, 0,6, 0,6, 0,2]T ? [0,2, 0,2, 0,2, 0,2, 0,2]T

P (Z = dark) =

= [0,04, 0,04, 0,12, 0,12, 0,04]T

P (Z = dark)

kjer operator ? predstavlja množenje istoležnih elementov vektorja.

Izračunati moramo verjetnost zaznave temne celice P (Z = dark). Zato je po-
trebno oceniti polno verjetnost, tj. verjetnost zaznave temne celice ob upoštevanju
vseh celic

P (Z = dark) =
∑
i

P (Z = dark|X1 = xi)P (X1 = xi) =

= pT (Z = dark|X1)p(X1) =
= [0,2, 0,2, 0,6, 0,6, 0,2][0,2, 0,2, 0,2, 0,2, 0,2]T =
= 0,36

Iskana (posteriorna) porazdelitev je torej

p(X1|Z = dark) = [0,11, 0,11, 0,33, 0,33, 0,11]T
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od koder lahko sklepamo, da se mobilni robot s trikrat večjo verjetnostjo nahaja
v celici 3 ali 4, kot pa v preostalih treh. Porazdelitve so grafično prikazane na
sliki 6.10, rešitev tega primera pa je podana v programu 6.4.

Program 6.4
./src/prb/example_sensing.m

1 disp(’Porazdelitev meritev senzorja p(Z=dark|X)’)
2 p_ZdX = [0.2 0.2 0.6 0.6 0.2]
3 disp(’Porazdelitev meritev senzorja p(Z= bright |X)’)
4 p_ZbX = 1- p_ZdX
5 disp(’Začetna porazdelitev p(X)’)
6 p_X = ones (1 ,5)/5
7

8 disp(’Verjetnost detekcije temne celice P(Z=dark)’)
9 P_Zd = p_ZdX *p_X.’

10

11 disp(’Porazdelitev p(X|Z=dark)’)
12 p_XZd = p_ZdX .* p_X/P_Zd

Porazdelitev meritev senzorja p(Z=dark|X)
p_ZdX =

0.2000 0.2000 0.6000 0.6000 0.2000
Porazdelitev meritev senzorja p(Z= bright |X)
p_ZbX =

0.8000 0.8000 0.4000 0.4000 0.8000
Začetna porazdelitev p(X)
p_X =

0.2000 0.2000 0.2000 0.2000 0.2000
Verjetnost detekcije temne celice P(Z=dark)
P_Zd =

0.3600
Porazdelitev p(X|Z=dark)
p_XZd =

0.1111 0.1111 0.3333 0.3333 0.1111
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p(Z = dark)

x1 x2 x3 x4 x5
0

0.5

p(X)

x1 x2 x3 x4 x5
0

0.5

p(X |Z = dark)

x1 x2 x3 x4 x5
0

0.5

Slika 6.10: Porazdelitve iz primera 6.9

Primer 6.10

Za primer 6.9 odgovorite na naslednja vprašanja:

1. Ali lahko večkratne zaporedne meritve izboljšajo oceno pozicije mobilnega
robota (robot med meritvami miruje)?

2. Kakšna je porazdelitev pozicije mobilnega robota, če robot dvakrat zapored
zazna ploščico kot temno?

3. Kakšna je porazdelitev pozicije mobilnega robota, če robot najprej zazna
ploščico kot temno nato pa kot svetlo?

4. Kakšna je porazdelitev pozicije mobilnega robota, če robot najprej zazna
ploščico kot temno, nato kot svetlo, nato pa spet kot temno?

Rešitev
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1. Večkratne zaporedne meritve lahko izboljšajo oceno pozicije mobilnega
robota, če je verjetnost pravilne meritve večja od verjetnosti napake pri
meritvi.

2. Če senzor zazna celico kot temno dvakrat zapored, je porazdelitev

p(X2|Z1 = dark, Z2 = dark) = p(X2|z1, z2) =

= p(z2|X2) ? p(X2|z1)
P (z2|z1) =

= [0,2, 0,2, 0,6, 0,6, 0,2]T ? [0,11, 0,11, 0,33, 0,33, 0,11]T

P (z2|z1)

kjer je j-ti element v porazdelitvi p(X2|z1) podan s P (X2 = xj |z1) =
pT (X2 = xj |X1)p(X1|z1) = P (X1 = xj |z1), ker nimamo vpliva na stanja
(glejte primer 6.5), ampak jih le merimo (opazujemo). Pogojna verjetnost
v imenovalcu je

P (z2|z1) =
∑
xi

P (z2|X2 = xi)P (X2 = xi|z1)) =

= pT (z2|X2)p(X2|z1)) =
= [0,2, 0,2, 0,6, 0,6, 0,2][0,11, 0,11, 0,33, 0,33, 0,11]T =
= 0,4667

Končna rešitev je

p(X2|z1, z2) = [0,2, 0,2, 0,6, 0,6, 0,2]T ? [0,11, 0,11, 0,33, 0,33, 0,11]T

[0,2, 0,2, 0,6, 0,6, 0,2][0,11, 0,11, 0,33, 0,33, 0,11]T =

= [0,0476, 0,0476, 0,4286, 0,4286, 0,0476]T

3. Svetla celica je pravilno zaznana z verjetnostjo p(Z = bright|X = bright) =
1 − p(Z = dark|X = bright) = 0,8 in nepravilno z verjetnostjo p(Z =
bright|X = dark) = 1 − p(Z = dark|X = dark) = 0,4. Drugo meritev
lahko izvedemo na osnovi porazdelitve p(X2|Z1 = dark)

p(X2|Z1 = dark, Z2 = bright) = p(X2|z1, z2) =

= [0,8, 0,8, 0,4, 0,4, 0,8]T ? [0,11, 0,11, 0,33, 0,33, 0,11]T

P (Z2 = bright|Z1 = dark)

P (Z2 = bright|Z1 = dark) =

=
∑
xi

P (Z2 = bright|X2 = xi)P (X2 = xi|Z1 = dark) =

= pT (Z2 = bright|X2)p(X2|Z1 = dark) =
= [0,8, 0,8, 0,4, 0,4, 0,8][0,11, 0,11, 0,33, 0,33, 0,11]T = 0,533

p(X2|Z1 = dark, Z2 = bright) = [0,167, 0,167, 0,25, 0,25, 0,167]T
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4. Porazdelitev stanja po treh meritvah je

p(X3|Z1 = dark, Z2 = bright, Z3 = dark) =
= [0,083, 0,083, 0,375, 0,375, 0,083]T

V programu 6.5 je prikazana Matlab koda rešitve. Porazdelitev trenutnega
stanja za tri časovne trenutke je grafično predstavljena na sliki 6.11.

Program 6.5

./src/prb/example_sensing_ans34.m

1 p_ZdX = [0.2 0.2 0.6 0.6 0.2];
2 p_ZbX = 1- p_ZdX ;
3 p_X = ones (1 ,5)/5;
4

5 disp(’Verjetnost detekcije temne celice P(Z1=dark)’)
6 P_z1 = p_ZdX *p_X.’
7 disp(’Porazdelitev p(X1|Z1=dark)’)
8 p_Xz1 = p_ZdX .* p_X/P_z1
9

10 disp(’Verjetnost detekcije svetle celice P(Z2= bright |Z1=dark)’)
11 P_z2 = p_ZbX * p_Xz1 .’
12 disp(’Porazdelitev p(X2|Z1=dark ,Z2= bright )’)
13 p_Xz2 = p_ZbX .* p_Xz1 /P_z2
14

15 disp(’Verjetnost detekcije temne celice P(Z3=dark|Z1=dark ,Z2= bright )’)
16 P_z3 = p_ZdX * p_Xz2 .’
17 disp(’Porazdelitev p(X3|Z1=dark ,Z2=bright ,Z3=dark)’)
18 p_Xz3 = p_ZdX .* p_Xz2 /P_z3

Verjetnost detekcije temne celice P(Z1=dark)
P_z1 =

0.3600
Porazdelitev p(X1|Z1=dark)
p_Xz1 =

0.1111 0.1111 0.3333 0.3333 0.1111
Verjetnost detekcije svetle celice P(Z2= bright |Z1=dark)
P_z2 =

0.5333
Porazdelitev p(X2|Z1=dark ,Z2= bright )
p_Xz2 =

0.1667 0.1667 0.2500 0.2500 0.1667
Verjetnost detekcije temne celice P(Z3=dark|Z1=dark ,Z2= bright )
P_z3 =

0.4000
Porazdelitev p(X3|Z1=dark ,Z2=bright ,Z3=dark)
p_Xz3 =

0.0833 0.0833 0.3750 0.3750 0.0833
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p(X1|Z1 = dark)
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p(X2|Z1 = dark,Z2 = bright)
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p(X3|Z1 = dark,Z2 = bright,Z3 = dark)
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Slika 6.11: Porazdelitve trenutnega stanja v treh trenutkih iz primera 6.10

6.4.6 Gibanje v okolju

Gibanje mobilnih sistemov v okolju je izvedeno s pomočjo aktuatorjev (npr.
motorna kolesa) in regulacijskega sistema (algoritem). Pri vsakem gibanju je
prisotna manjša ali večja negotovost, zato gibanje mobilnega sistema povečuje
negotovost stanja mobilnega sistema (lege) v okolju.

Predstavljajmo si, da stojimo v znanem okolju. Z zaprtimi očmi naredimo nekaj
korakov. Približno vemo, kako velike korake smo naredili in tudi v katero smer,
zato si lahko predstavljamo, kje v okolici se nahajamo. Vendar pa dolžine naših
korakov niso natančno znane, prav tako težko ocenimo smeri korakov, zato se
naše znanje o legi v prostoru sčasoma zmanjšuje, saj naredimo vedno več korakov.

V primeru gibanja brez zaznavanja stanj preko meritev lahko enačbo (6.20)
preuredimo

p(xk|u0:k−1) =
+∞∫
−∞

p(xk|xk−1, uk−1)p(xk−1|u1:k−2) dxk−1

Zaupanje v novo stanje p(xk|u0:k−1) je odvisno od zaupanja v prejšnjem tre-
nutku p(xk−1|u0:k−2) in pogojne verjetnosti prehoda med stanji p(xk|xk−1, uk−1).
Porazdelitev p(xk|, u0:k−1) določimo z integracijo (ali seštevanjem v diskretnem
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primeru) vseh možnih verjetnosti prehodov p(xk|xk−1, uk−1) iz predhodnih stanj
xk−1 v stanje xk pri poznani akciji uk−1.

Primer 6.11

Za primer 6.8 predpostavimo, da je začetna pozicija mobilnega robota v prvi
celici (X0 = x1), torej lahko začetno stanje podamo s porazdelitvijo p(X0) =
[1, 0, 0, 0, 0]. Mobilni sistem se lahko premika med celicami, kjer je izid akcije
premika pravilen v 80 %. V 10 % se robot premakne za eno celico premalo in v
10 % za eno preveč, kot je potrebno. To lahko opišemo z naslednjimi verjetnostmi
prehoda med stanji

P (Xk = xi|Xk−1 = xj , Uk−1 = u) = 0,8 za i = j + u

P (Xk = xi|Xk−1 = xj , Uk−1 = u) = 0,1 za i = j + u− 1
P (Xk = xi|Xk−1 = xj , Uk−1 = u) = 0,1 za i = j + u+ 1

Mobilni robot se mora premakniti za dve celici v nasprotni smeri urinega kazalca
(U0 = 2). Določite zaupanje v pozicijo mobilnega sistema po premiku.

Rešitev

Porazdelitev (zaupanje) po premiku lahko določimo tako, da izračunamo ver-
jetnosti pozicije mobilnega robota v vsaki celici (popolna verjetnost). Mobilni
sistem lahko prispe v prvo celico samo iz celice 3 (premik preveč), celice 4 (pravi
premik) in celice 5 (premik premalo). Tako dobimo porazdelitev prehoda v prvo
celico p(X1 = x1|X0, U0 = 2) = [0, 0, 0,1, 0,8, 0,1]T . Po premiku se mobilni
sistem nahaja v prvi celici z verjetnostjo

P (X1 = x1|U0 = 2) =
∑
xi

P (X1 = x1|X0 = xi, U0 = 2)P (X0 = xi) =

= pT (X1 = x1|X0, U0 = 2)p(X0) =
= [0, 0, 0,1, 0,8, 0,1][1, 0, 0, 0, 0]T = 0

Verjetnost, da se mobilni sistem po premiku nahaja v drugi celici, je

P (X1 = x2|U0 = 2) =
∑
xi

P (X1 = x2|X0 = xi, U0 = 2)P (X0 = xi) =

= pT (X1 = x2|X0, U0 = 2)p(X0) =
= [0,1, 0, 0, 0,1, 0,8][1, 0, 0, 0, 0]T = 0,1

Podobno lahko izračunamo še verjetnosti za ostale celice

P (X1 = x3|U0 = 2) = [0,8, 0,1, 0, 0, 0,1][1, 0, 0, 0, 0]T = 0,8
P (X1 = x4|U0 = 2) = [0,1, 0,8, 0,1, 0, 0][1, 0, 0, 0, 0]T = 0,1
P (X1 = x5|U0 = 2) = [0, 0,1, 0,8, 0,1, 0][1, 0, 0, 0, 0]T = 0
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Zato je zaupanje v pozicijo po premiku

p(X1|U0 = 2) = [0, 0,1, 0,8, 0,1, 0]T

Porazdelitev trenutnega (a posteriori) stanja je grafično predstavljena na sliki
6.12. V programu 6.6 je prikazana Matlab koda rešitve.

Program 6.6
./src/prb/example_motion.m

1 disp(’Začetno zaupanje p(X0)’);
2 p_X0 = [1 0 0 0 0]
3

4 P_xxu_null = 0.8; % P(X=i|X ’=j,U ’=u), i=j+u
5 P_xxu_less = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u -1
6 P_xxu_more = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u+1
7

8 disp(’Zaupanje p(X1|U0 =2) ’);
9 p_xXu = [0 0 P_xxu_more P_xxu_null P_xxu_less ]; % Za U=2

10 p_Xu = zeros (1 ,5);
11 for i=1:5
12 p_Xu(i) = p_xXu *p_X0 .’;
13 p_xXu = p_xXu ([ end 1:end -1]);
14 end
15 p_X1 = p_Xu

Začetno zaupanje p(X0)
p_X0 =

1 0 0 0 0
Zaupanje p(X1|U0 =2)
p_X1 =

0 0.1000 0.8000 0.1000 0

Zaupan je p(X0)

x1 x2 x3 x4 x5
0

0.5

1

Zaupan je p(X1|U0 = 2)

x1 x2 x3 x4 x5
0

0.5

1

Slika 6.12: Porazdelitvi trenutnega stanja v dveh trenutkih iz primera 6.11
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Primer 6.12

Kakšno je zaupanje v pozicijo mobilnega robota, če robot po premiku iz primera
6.11 izvede premik za eno celico v nasprotni smeri urinega kazalca (U1 = 1)?

Rešitev

Porazdelitev (zaupanje) po premiku ponovno določimo tako, da za vsako celico iz-
računamo verjetnost pozicije mobilnega robota v vsaki celici (popolna verjetnost).
V primeru premika za eno celico je prva celica dosegljiva iz celice 1 (premik
premalo), celice 4 (premik preveč) in celice 5 (pravi premik). Mobilni sistem
lahko prispe v drugo celico iz celic 1, 2 ter 5 in tako naprej. Po opravljenem
premiku lahko izračunamo naslednje verjetnosti

P (X2 = x1|U0 = 2, U1 = 1) = [0,1, 0, 0, 0,1, 0,8][0, 0,1, 0,8, 0,1, 0]T = 0,01
P (X2 = x2|U0 = 2, U1 = 1) = [0,8, 0,1, 0, 0, 0,1][0, 0,1, 0,8, 0,1, 0]T = 0,01
P (X2 = x3|U0 = 2, U1 = 1) = [0,1, 0,8, 0,1, 0, 0][0, 0,1, 0,8, 0,1, 0]T = 0,16
P (X2 = x4|U0 = 2, U1 = 1) = [0, 0,1, 0,8, 0,1, 0][0, 0,1, 0,8, 0,1, 0]T = 0,66
P (X2 = x5|U0 = 2, U1 = 1) = [0, 0, 0,1, 0,8, 0,1][0, 0,1, 0,8, 0,1, 0]T = 0,16

Torej je zaupanje v pozicijo po drugem premiku

p(X2|U0 = 2, U1 = 1) = [0,01, 0,01, 0,16, 0,66, 0,16]T

kar je prikazano na sliki 6.13. Opazimo, da je mobilni sistem najverjetneje v celici
4. Vendar pa porazdelitev nima tako izrazitega maksimuma, kot pred izvedbo
drugega premika (primerjajte srednjo s spodnjo porazdelitvijo na sliki 6.13). To
je v skladu z izjavo, da vsak premik poveča negotovost stanj v okolici.

Implementacija rešitve v programskem okolju Matlab je prikazana v programu
6.7.

Program 6.7
./src/prb/example_motion2.m

1 disp(’Začetno zaupanje p(X0)’)
2 p_X0 = [1 0 0 0 0]
3

4 P_xxu_null = 0.8; % P(X=i|X ’=j,U ’=u), i=j+u
5 P_xxu_less = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u -1
6 P_xxu_more = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u+1
7

8 disp(’Zaupanje p(X1|U0 =2) ’);
9 p_xXu = [0 0 P_xxu_more P_xxu_null P_xxu_less ]; % Za U=2

10 p_Xu = zeros (1 ,5);
11 for i=1:5
12 p_Xu(i) = p_xXu *p_X0 .’;
13 p_xXu = p_xXu ([ end 1:end -1]);
14 end
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15 p_X1 = p_Xu
16

17 disp(’Zaupanje p(X2|U1 =1) ’);
18 p_xXu = [ P_xxu_less 0 0 P_xxu_more P_xxu_null ]; % Za U=1
19 p_Xu = zeros (1 ,5);
20 for i=1:5
21 p_Xu(i) = p_xXu *p_X1 .’;
22 p_xXu = p_xXu ([ end 1:end -1]);
23 end
24 p_X2 = p_Xu

Začetno zaupanje p(X0)
p_X0 =

1 0 0 0 0
Zaupanje p(X1|U0 =2)
p_X1 =

0 0.1000 0.8000 0.1000 0
Zaupanje p(X2|U1 =1)
p_X2 =

0.0100 0.0100 0.1600 0.6600 0.1600

Zaupan je p(X0)

x1 x2 x3 x4 x5
0

0.5

1

Zaupan je p(X1|U0 = 2)

x1 x2 x3 x4 x5
0

0.5

1

Zaupan je p(X2|U1 = 1)
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0
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1

Slika 6.13: Porazdelitve stanj v treh časovnih trenutkih iz primera 6.12

Primer 6.13

Mobilni robot iz primera 6.11 se na začetku nahaja v prvi celici p(X0) =
[1, 0, 0, 0, 0]. Nato se v vsakem časovnem trenutku premakne za eno ce-
lico v nasprotni smeri urinega kazalca.
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1. Kakšno je zaupanje v pozicijo mobilnega sistema po desetem premiku?

2. H kateri vrednosti konvergira zaupanje po neskončnem številu premikov?

Rešitev

1. Zaupanje v stanje po desetih premikih je

p(X10|U0:9) = [0,29, 0,22, 0,13, 0,13, 0,22]T

2. Po neskončnem številu premikov dobimo enakomerno porazdelitev, kjer so
vse celico enako verjetne

p(X∞|U0:∞) = [0,2, 0,2, 0,2, 0,2, 0,2]T

Te rezultate smo potrdili tudi v programskem okolju Matlab (program 6.8).
Rezultati so grafično prikazani na sliki 6.14.

Program 6.8
./src/prb/example_motion3.m

1 disp(’Začetno zaupanje p(X0)’)
2 p_X0 = [1 0 0 0 0]
3

4 P_xxu_null = 0.8; % P(X=i|X ’=j,U ’=u), i=j+u
5 P_xxu_less = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u -1
6 P_xxu_more = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u+1
7

8 p_X = p_X0;
9 for k =1:1000

10 p_xXu = [ P_xxu_less 0 0 P_xxu_more P_xxu_null ]; % Za U=1
11 p_Xu = zeros (1 ,5);
12 for i=1:5
13 p_Xu(i) = p_xXu *p_X .’;
14 p_xXu = p_xXu ([ end 1:end -1]);
15 end
16 p_X = p_Xu;
17 if k==10
18 disp(’Zaupanje p(X10|U9 =1) ’);
19 p_X10 = p_X
20 elseif k ==1000
21 disp(’Zaupanje p( X1000 |U999 =1) ’);
22 p_X1000 = p_X
23 end
24 end

Začetno zaupanje p(X0)
p_X0 =

1 0 0 0 0
Zaupanje p(X10|U9 =1)
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p_X10 =
0.2949 0.2243 0.1283 0.1283 0.2243

Zaupanje p( X1000 |U999 =1)
p_X1000 =

0.2000 0.2000 0.2000 0.2000 0.2000

Zaupan je p(X0)

x1 x2 x3 x4 x5
0

0.5

1

Zaupan je p(X10|U9 = 1)

x1 x2 x3 x4 x5
0

0.5

1

Zaupan je p(X1000|U999 = 1)

x1 x2 x3 x4 x5
0

0.5

1

Slika 6.14: Porazdelitve trenutnega stanja v treh časovnih trenutkih iz primera
6.13

6.4.7 Lokalizacija v okolju

Ko mobilni robot pozna zemljevid okolja, lahko oceni svojo lokacijo v okolju, tudi
če ne pozna svoje začetne lokacije. Lokacijo mobilnega sistema lahko natančno
določimo s porazdelitvijo. Proces ugotavljanja lokacije v okolju imenujemo
lokalizacija. Lokalizacija združuje proces zaznavanja (meritev) in akcije (pre-
mik). Kot smo že omenili, meritve v okolju povečujejo znanje o lokaciji, gibanje
mobilnega sistema v okolju pa to znanje zmanjšuje.

Lokalizacija je postopek, pri katerem mobilni sistem stalno posodablja porazdeli-
tev, ki predstavlja njegovo znanje o svoji lokaciji v okolju. Maksimum porazdelitve
(če obstaja) predstavlja najverjetnejšo lokacijo mobilnega sistema.

Pri procesu lokalizacije v bistvu izvajamo Bayesov filter (algoritem 3), ki združuje
procesa premikanja in zaznavanja.
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Primer 6.14

Mobilni sistem se premika v okolici iz primera 6.8, kjer najprej izvede premik,
nato pa zaznava okolico. Njegova začetna lega ni znana, kar lahko opišemo z
enakomerno porazdelitvijo p(X0) = bel(X0) = [0,2, 0,2, 0,2, 0,2, 0,2].

Premik za uk celic v nasprotni smeri urinega kazalca je točen v 80 %, v 10 % pa
je za eno celico prekratek ali predolg

p(Xk = xi|Xk−1 = xj , Uk−1 = uk−1) = 0,8 za i = j + uk−1

p(Xk = xi|Xk−1 = xj , Uk−1 = uk−1) = 0,1 za i = j + uk−1 − 1
p(Xk = xi|Xk−1 = xj , Uk−1 = uk−1) = 0,1 za i = j + uk−1 + 1

Mobilni robot pravilno zazna temno celico z verjetnostjo 0,6, svetlo celico pa
pravilno zazna z verjetnostjo 0,8. To lahko v matematični obliki zapišemo kot

P (Z = dark|X = dark) = 0,6 P (Z = bright|X = dark) = 0,4
P (Z = bright|X = bright = 0,8 P (Z = dark|X = bright = 0,2

V vsakem časovnem trenutku dobi mobilni robot ukaz za premik za eno celico
v nasprotni smeri urinega kazalca (uk−1 = 1). Zaporedje prvih treh meritev je
z1:3 = [bright, dark, dark].

1. Kakšno je zaupanje v prvem trenutku k = 1?

2. Kakšno je zaupanje v drugem trenutku k = 2?

3. Kakšno je zaupanje v tretjem trenutku k = 3?

4. V kateri celici se mobilni robot nahaja z največjo verjetnostjo po tretjem
koraku?

Rešitev

Po vsakem premiku izvedemo predikcijski korak Bayesovega filtra (algoritem 3),
po meritvi (zaznavi) pa korekcijski korak.

1. Predikcijski korak izvedemo na osnovi izvedenega premika. Mali xi, i ∈
{1, . . . , 5}, označuje, da se lokacija (stanje) mobilnega sistema nahaja v
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celici i, veliki Xk pa označuje vektor vseh možnih stanj v trenutku k

belp(X1 = x1) =
∑
xi

P (X1 = x1|X0 = xi, u0)bel(X0 = xi) =

= pT (X1 = x1|X0, u0)bel(X0) =
= [0,1, 0, 0, 0,1, 0,8][0,2, 0,2, 0,2, 0,2, 0,2]T = 0,2

belp(X1 = x2) = [0,8, 0,1, 0, 0, 0,1][0,2, 0,2, 0,2, 0,2, 0,2]T = 0,2
belp(X1 = x3) = [0,1, 0,8, 0,1, 0, 0][0,2, 0,2, 0,2, 0,2, 0,2]T = 0,2
belp(X1 = x4) = [0, 0,1, 0,8, 0,1, 0][0,2, 0,2, 0,2, 0,2, 0,2]T = 0,2
belp(X1 = x5) = [0, 0, 0,1, 0,8, 0,1][0,2, 0,2, 0,2, 0,2, 0,2]T = 0,2

Torej je celotna porazdelitev (zaupanje) predikcijskega koraka

belp(X1) = [0,2, 0,2, 0,2, 0,2, 0,2]T

Na osnovi meritve se oceni korekcijski korak Bayesovega filtra

bel(X1 = x1) = η p(Z1 = bright|x1) belp(X1 = x1) = η 0,8 · 0,2 = η 0,16
bel(X1 = x2) = η p(Z1 = bright|x2) belp(X1 = x2) = η 0,8 · 0,2 = η 0,16
bel(X1 = x3) = η p(Z1 = bright|x3) belp(X1 = x3) = η 0,4 · 0,2 = η 0,08
bel(X1 = x4) = η p(Z1 = bright|x4) belp(X1 = x4) = η 0,4 · 0,2 = η 0,08
bel(X1 = x5) = η p(Z1 = bright|x5) belp(X1 = x5) = η 0,8 · 0,2 = η 0,16

Ko upoštevamo še normirni faktor

η = 1
0,16 + 0,16 + 0,08 + 0,08 + 0,16 = 1,56

dobimo posodobljeno porazdelitev (zaupanje)

bel(X1) = [0,25, 0,25, 0,125, 0,125, 0,25]T

Enak rezultat lahko dobimo iz

bel(X1) =
pT (Z1 = bright|X1) ? belTp (X1)
pT (Z1 = bright|X1)belp(X1) =

= [0,8, 0,8, 0,4, 0,4, 0,8] ? [0,2, 0,2, 0,2, 0,2, 0,2]
[0,8, 0,8, 0,4, 0,4, 0,8][0,2, 0,2, 0,2, 0,2, 0,2]T =

= [0,25, 0,25, 0,125, 0,125, 0,25]T

2. Postopek iz prvega primera ponovimo na zadnjem rezultatu, da dobimo
zaupanje v stanje v trenutku k = 1. Najprej ponovimo predikcijski korak

belp(X2 = x1) = [0,1, 0, 0, 0,1, 0,8][0,25, 0,25, 0,125, 0,125, 0,25]T = 0,237
belp(X2 = x2) = [0,8, 0,1, 0, 0, 0,1][0,25, 0,25, 0,125, 0,125, 0,25]T = 0,25
belp(X2 = x3) = [0,1, 0,8, 0,1, 0, 0][0,25, 0,25, 0,125, 0,125, 0,25]T = 0,237
belp(X2 = x4) = [0, 0,1, 0,8, 0,1, 0][0,25, 0,25, 0,125, 0,125, 0,25]T = 0,138
belp(X2 = x5) = [0, 0, 0,1, 0,8, 0,1][0,25, 0,25, 0,125, 0,125, 0,25]T = 0,138
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Celotna porazdelitev za predikcijski korak je

belp(X2) = [0,237, 0,25, 0,237, 0,138, 0,138]T

za korekcijski korak pa

bel(X2) = [0,2, 0,2, 0,6, 0,6, 0,2]T ? [0,237, 0,25, 0,237, 0,138, 0,138]T

[0,2, 0,2, 0,6, 0,6, 0,2][0,237, 0,25, 0,237, 0,138, 0,138]T =

= [0,136, 0,143, 0,407, 0,236, 0,079]T

3. Podobno kot v prejšnjih dveh primerih lahko dobimo porazdelitev oz.
zaupanje za trenutek k = 3

belp(X3) = [0,1, 0,131, 0,167, 0,363, 0,237]T

bel(X3) = [0,048, 0,063, 0,245, 0,528, 0,115]T

4. Po tretjem koraku se mobilni robot najverjetneje nahaja v četrti celici,
z verjetnostjo 52,8 %. Druga najverjetnejša celica je tretja celica, kjer se
nahaja z verjetnostjo 24,5 %.

Zaupanja stanj za vse tri časovne trenutke so grafično predstavljena na sliki 6.15.
V programu 6.9 je prikazana Matlab koda rešitve.

Program 6.9
./src/prb/example_localization.m

1 disp(’Začetno zaupanje p(X0)’)
2 bel_X0 = ones (1 ,5)/5
3

4 P_xxu_null = 0.8; % P(X=i|X ’=j,U ’=u), i=j+u
5 P_xxu_less = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u -1
6 P_xxu_more = 0.1; % P(X=i|X ’=j,U ’=u), i=j+u+1
7

8 p_ZdX = [0.2 0.2 0.6 0.6 0.2]; % p(Z=dark|X)
9 p_ZbX = 1- p_ZdX ; % p(Z= bright |X)

10

11 bel_X = bel_X0 ;
12 for k=1:3
13 % Predikcijski korak
14 p_xXu = [ P_xxu_less 0 0 P_xxu_more P_xxu_null ]; % Za U=1
15 belp_X = zeros (1 ,5);
16 for i=1:5
17 belp_X (i) = p_xXu * bel_X .’;
18 p_xXu = p_xXu ([ end 1:end -1]);
19 end
20

21 % Korekcijski korak
22 if k==1
23 bel_X = p_ZbX .* belp_X ;
24 else
25 bel_X = p_ZdX .* belp_X ;
26 end
27 bel_X = bel_X /sum( bel_X );
28
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29 if k==1
30 disp(’Zaupanji belp_X1 in bel_X1 ’)
31 belp_X1 = belp_X
32 bel_X1 = bel_X
33 elseif k==2
34 disp(’Zaupanji belp_X2 in bel_X2 ’)
35 belp_X2 = belp_X
36 bel_X2 = bel_X
37 elseif k==3
38 disp(’Zaupanji belp_X3 in bel_X3 ’)
39 belp_X3 = belp_X
40 bel_X3 = bel_X
41 disp(’Najmanj do najbolj verjeten položaj ’)
42 [m,mi] = sort( bel_X )
43 end
44 end

Začetno zaupanje p(X0)
bel_X0 =

0.2000 0.2000 0.2000 0.2000 0.2000
Zaupanji belp_X1 in bel_X1
belp_X1 =

0.2000 0.2000 0.2000 0.2000 0.2000
bel_X1 =

0.2500 0.2500 0.1250 0.1250 0.2500
Zaupanji belp_X2 in bel_X2
belp_X2 =

0.2375 0.2500 0.2375 0.1375 0.1375
bel_X2 =

0.1357 0.1429 0.4071 0.2357 0.0786
Zaupanji belp_X3 in bel_X3
belp_X3 =

0.1000 0.1307 0.1686 0.3636 0.2371
bel_X3 =

0.0484 0.0633 0.2450 0.5284 0.1149
Najmanj do najbolj verjeten položaj
m =

0.0484 0.0633 0.1149 0.2450 0.5284
mi =

1 2 5 3 4
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Slika 6.15: Porazdelitev trenutnega stanja v treh trenutkih iz primera 6.14

6.5 Kalmanov filter

Kalmanov filter [6] je eden najpomembnejših algoritmov za ocenjevanje in napo-
vedovanje stanj, ki se uporablja v številnih aplikacijah na različnih inženirskih
področjih, tudi v avtonomnih mobilnih sistemih. Zasnovan je kot ocenjevalnik
stanj linearnih sistemov, kjer lahko signali sistema vsebujejo šum. Algoritem
sestavljata dva (tipična) koraka, predikcijski in korekcijski korak, ki se izvedeta
v vsakem časovnem trenutku. V predikcijskem koraku napovemo najnovejše
stanje skupaj z njegovimi negotovostmi. Ko je nova meritev na voljo, se izvede
korekcijski korak, kjer se stohastična meritev utežno združi s napovedno oceno
stanja, pri čemer imajo manj negotove vrednosti večjo utež. Algoritem je rekur-
ziven in omogoča sprotno ocenjevanje trenutnega stanja sistema ob upoštevanju
negotovosti sistema in meritve.

Klasičen Kalmanov filter predvideva normalno porazdeljene šume, torej je poraz-
delitev šuma Gaussova funkcija

p(x) = 1√
2πσ2

e−
1
2

(x−µ)2

σ2

kjer je µ srednja vrednost (matematično upanje) in σ2 varianca. Gaussova funk-
cija je unimodalna (levo in desno od (edinega) maksimuma funkcija monotono
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Slika 6.16: Primer porazdelitve zvezne spremenljivke x (polna krivulja), aproksi-
macija z Gaussovo funkcijo (črtkana krivulja) in aproksimacija s histogramom
(pikčasta krivulja)

pada proti 0) za razliko od splošnih porazdelitev, ki so običajno večmodalne
(obstaja več lokalnih maksimumov). Pri predpostavki, da je porazdelitev zve-
znih spremenljivk unimodalna, lahko Kalmanov filter uporabimo za optimalno
ocenjevanje stanj. V kolikor pa niso vse spremenljivke unimodalne, je ocena
dobljenih stanj suboptimalna. Poleg tega je vprašljiva tudi konvergenca ocene
k pravi vrednosti. Bayesov filter nima omenjenih problemov, vendar je njegova
uporabnost omejena na enostavna zvezna ali diskretna okolja s končnim številom
stanj.

Na sliki 6.16 je prikazan primer zvezne porazdelitve, ki ni unimodalna. Zvezna
porazdelitev je aproksimirana z Gaussovo funkcijo in histogramom (prostor je
razdeljen na diskretne intervale). Aproksimacija z Gaussovo funkcijo se uporablja
pri Kalmanovem filtru, histogram pa pri Bayesovem filtru.

Bistvo korekcijskega koraka (glejte Bayesov filter (6.21)) je združevanje informacij
iz dveh neodvisnih virov, to je iz meritve senzorja in napovedi stanja na osnovi
predhodnih ocen stanja. Na primeru 6.15 si poglejmo, kako lahko optimalno
združimo dve neodvisni oceni iste spremenljivke x, če poznamo vrednost in
varianco (zaupanje) obeh virov.

Primer 6.15

Imamo dve neodvisni oceni spremenljivke x. Vrednost prve ocene je x1 z varianco
σ2

1 , vrednost druge ocene pa je x2 z varianco σ2
2 . Kakšna je optimalna linearna

kombinacija teh dveh ocen, ki predstavljata oceno stanja x̂ z minimalno varianco?

Rešitev

Ocena optimalne vrednosti spremenljivke x je linearna kombinacija dveh meritev

x̂ = ω1x1 + ω2x2
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kjer sta parametra ω1 in ω2 iskani uteži, ki izpolnjujeta pogoj ω1 + ω2 = 1.
Optimalni vrednosti uteži minimizirata varianco σ2 optimalne ocene x̂. Varianca
ocene je torej

σ2 = E
{

(x̂− E{x̂})2}
= E

{
(ω1x1 + ω2x2 − E{ω1x1 + ω2x2})2}

= E
{

(ω1x1 + ω2x2 − ω1E{x1} − ω2E{x2})2}
= E

{
(ω1 (x1 − E{x1}) + ω2 (x2 − E{x2}))2

}
= E

{
ω2

1 (x1 − E{x1})2 + ω2
2 (x2 − E{x2})2 + 2ω1ω2(x1 − E{x1})(x2 − E{x2})

}
= ω2

1E
{

(x1 − E{x1})2}+ ω2
2E
{

(x2 − E{x2})2}+ 2ω1ω2E{(x1 − E{x1})(x2 − E{x2})}
= ω2

1σ
2
1 + ω2

2σ
2
2 + 2ω1ω2E{(x1 − E{x1})(x2 − E{x2})}

Ker sta spremenljivki x1 in x2 neodvisni, sta neodvisni tudi razliki x1−E{x1} in
x2 − E{x2} ter velja E{(x1 − E{x1})(x2 − E{x2})} = 0. Torej lahko zapišemo

σ2 = ω2
1σ

2
1 + ω2

2σ
2
2

ali po uvedbi ω2 = ω in ω1 = 1− ω

σ2 = (1− ω)2σ2
1 + ω2σ2

2

Iščemo vrednost uteži ω, ki minimizira varianco, in jo lahko pridobimo s pomočjo
odvoda variance

∂

∂ω
σ2 = −2(1− ω)σ2

1 + 2ωσ2
2 = 0

kjer je rešitev

ω = σ2
1

σ2
1 + σ2

2

Končna ocena (z minimalno varianco) je

x̂ = σ2
2x1 + σ2

1x2

σ2
1 + σ2

2
(6.22)

najmanjša varianca ocene pa

σ2 = σ2
1σ

2
2

σ2
1 + σ2

2
=
(

1
σ2

1
+ 1
σ2

2

)−1
(6.23)

Dobljeni rezultati potrjujejo, da vir z manjšo varianco (večje zaupanje) bolj
prispeva h končni oceni in obratno.
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Primer 6.16

V določenem trenutku je podana začetna ocena stanja x = 2 z varianco σ2 = 4.
Nato s senzorjem izmerimo vrednost stanja z = 4 z varianco senzorja σ2

z = 1.
Gaussovi porazdelitvi stanja in meritve sta prikazani na sliki 6.17.

x, z

p(
x)
,

p(
z|x

)
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Slika 6.17: Porazdelitev stanja (črtkana krivulja) in meritve (krivulja črta-pika)

Kakšna je posodobljena optimalna ocena stanja, ki združuje informacijo pred-
hodne ocene stanja in trenutne meritve? Kakšna je porazdelitev posodobljene
optimalne ocene stanja?

Rešitev

Na podlagi slike 6.17 lahko predvidimo, da bo srednja vrednost posodoblje-
nega stanja x′ bližje srednji vrednosti meritve, ker ima le-ta manjšo varianco
(negotovost). Z upoštevanjem (6.22) dobimo posodobljeno oceno stanja

x′ = σ2
zx+ σ2z

σ2 + σ2
z

= 3,6

Varianca posodobljene ocene σ′2 je manjša od obeh predhodnih varianc, saj inte-
gracija informacij predhodne ocene in meritve zmanjšuje negotovost posodobljene
ocene. Varianca posodobljene ocene, izračunana s pomočjo (6.23), je

σ′
2 =

(
1
σ2 + 1

σ2
z

)−1
= 0,8

in standardna deviacija je

σ′ =
√
σ′2 = 0,894

Posodobljena porazdelitev p(x|z) stanja po opravljeni korekciji na osnovi meritve
je prikazana na sliki 6.18.
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Slika 6.18: Porazdelitev začetnega stanja (črtkana krivulja), meritve (krivulja
črta-pika) in posodobljenega stanja (polna krivulja)

Za izpeljavo algoritma rekurzivnega ocenjevanja stanja uporabimo ugotovitve iz
primera 6.15. V vsakem časovnem trenutku s pomočjo senzorja pridobimo novo
meritev stanja z(k) = x(k) + n(k), kjer je n(k) šum meritve. Predpostavimo,
da je varianca meritve σ2

z(k) znana. Posodobljena optimalna ocena stanja je
kombinacija prejšnje ocene stanja x̂(k) in trenutne meritve z(k)

x̂(k + 1) = (1− ω) x̂(k) + ω(k)z(k) = x̂(k) + ω(z(k)− x̂(k))

Varianca posodobljenega stanja je

σ2(k + 1) = σ2(k)σ2
z(k)

σ2(k) + σ2
z(k) = (1− ω)σ2(k)

kjer je

ω = σ2(k)
σ2(k) + σ2

z(k)

Glede na podano začetno oceno stanja x, x̂(0) in njeno varianco σ2(0) lahko opti-
malno združimo meritve z(1), z(2), . . . , z(k) tako, da ocenimo trenutno vrednost
stanja in njegovo varianco. To predstavlja osnovno idejo korekcijskega koraka
Kalmanovega filtra.

Predikcijski korak Kalmanovega filtra podaja napoved stanja ob znani vhodni
akciji. Izhodiščna ocena stanja x̂(k) ima porazdelitev z varianco σ2(k). Na enak
način ima akcija u(k), ki izvede premik iz stanja x(k) v x(k + 1), porazdelitev
(negotovost premika) σ2

u(k). Na primeru 6.17 si poglejmo vrednost stanja in
njegove variance po izvedeni akciji (premiku).
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Primer 6.17

Imamo izhodiščno oceno stanja x̂(k) z varianco σ2(k). Nato izvedemo akcijo
u(k), ki predstavlja neposreden premik stanja z negotovostjo (varianco) σ2

u(k).
Kakšna je vrednost ocene stanja in njene negotovosti po premiku?

Rešitev

Posodobljena ocena stanja po premiku je

x̂(k + 1) = x̂(k) + u(k)

in negotovost te ocene je

σ2(k + 1) = E
{

(x̂(k + 1)− E{x̂(k + 1)})2
}

= E
{

(x̂(k) + u(k)− E{x̂(k) + u(k)})2
}

= E
{

((x̂(k)− E{x̂(k)}) + (u(k)− E{u(k)}))2
}

= E
{

(x̂(k)− E{x̂(k)})2 + (u(k)− E{u(k)})2}+
+ E{2(x̂(k)− E{x̂(k)})(u(k)− E{u(k)})}

= σ2(k) + σ2
u(k)+

+ E{2 (x̂(k)− E{x̂(k)})(u(k)− E{u(k)}))}

(6.24)

Ker sta x̂ in u neodvisna, velja E{2 (x̂(k)− E{x̂(k)}) (u(k)− E{u(k)})} = 0 in
(6.24) se poenostavi v

σ2(k + 1) = σ2(k) + σ2
u(k)

Algoritem za poenostavljeno izvedbo Kalmanovega filtra

Kalmanov filter za enostaven primer z enim stanjem je podan v algoritmu 4,
kjer veličine z oznako (·)k|k−1 predstavljajo ocenjene vrednosti iz predikcijskega
koraka in veličine z oznako (·)k|k vrednosti iz korekcijskega koraka. Zavoljo boljše
preglednosti uporabimo zapis u(k − 1) = uk−1 in z(k) = zk.

Kalmanov filter je sestavljen iz dveh korakov (predikcija in korekcija), ki se
izvajata eden za drugim v zanki. V predikcijskem koraku uporabimo samo znano
akcijo in določimo (napovemo) vrednost stanja v naslednjem časovnem trenutku.
Torej iz začetnega zaupanja določimo novo zaupanje, katerega negotovost je
večja od začetne. V korekcijskem koraku pa uporabimo meritev za izboljšanje
napovedanega zaupanja tako, da ima ocena novega (popravljenega) stanja manjšo
negotovost kot prejšnje zaupanje. V obeh korakih sta potrebna samo dva vhoda:
v predikcijskem koraku morata biti znana vrednost predhodnega stanja x̂k−1|k−1
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Algorithm 4 Kalmanov filter za eno stanje
function Kalman_filter(x̂k−1|k−1, uk−1, zk, σ2

k−1|k−1, σu2
k−1, σz2

k)
Predikcijski korak:
x̂k|k−1 ← x̂k−1|k−1 + uk−1

σ2
k|k−1 ← σ2

k−1|k−1 + σu
2
k−1

Korekcijski korak:
ωk ←

σ2
k|k−1

σ2
k|k−1+σz2

k

x̂k|k ← x̂k|k−1 + ωk(zk − x̂k|k−1)
σ2
k|k ← (1− ωk)σ2

k|k−1

return x̂k|k, σ2
k|k

end function

in izvedena akcija uk−1, v predikcijskem koraku pa napovedano stanje x̂k|k−1 in
meritev zk. Podana mora biti tudi varianca premika stanja σ2

k−1|k−1, varianca
vhodne akcije σu2

k−1 in varianca meritve σz2
k.

Primer 6.18

Imamo mobilnega robota, ki se lahko premika samo v eni dimenziji. Njegova
začetna pozicija je neznana (slika 6.19). Predpostavimo začetno pozicijo x̂0 = 3
z veliko varianco σ2

0 = 100 (dejanske pozicije x0 = 0 ne poznamo).

Mobilni robot se v vsakem trenutku k = 0, . . . , 4 premakne za u0:4 =
(2, 3, 2, 1, 1) enot, nato pa izvedemo meritve pozicije robota z1:5 = (2, 5, 7, 8, 9)
v trenutkih k = 1, . . . , 5. Pomik in meritev sta motena z normalno porazdeljenim
belim šumom, kar lahko opišemo s konstantno negotovostjo pomika σ2

u = 2 in
negotovostjo meritve σ2

z = 4.

z

u

x

x=?

0 1 2 3 4 5 6 7 8 9

Slika 6.19: Lokalizacija mobilnega robota v enodimenzionalnem prostoru z
neznano začetno pozicijo

Kakšna je ocenjena pozicija robota in negotovost te ocene?
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Rešitev

Dani problem lokalizacije mobilnega robota rešimo z izvajanjem algoritma 4.
V prvem časovnem trenutku (k = 1) najprej izračunamo predikcijo stanja in
varianco

x̂1|0 = x̂0|0 + u0 = 3 + 2 = 5
σ2

1|0 = σ2
0|0 + σu

2 = 100 + 2 = 102

nato pa izvedemo korekcijski korak Kalmanovega filtra v prvem časovnem tre-
nutku k = 1 in dobimo

ω1 =
σ2

1|0

σ2
1|0 + σz2 = 102

102 + 4 = 0,962

x̂1|1 = x̂1|0 + ω1(z1 − x̂1|0) = 5 + 0,962(2− 5) = 2,113
σ2

1|1 = (1− ω1)σ2
1|0 = (1− 0,962)102 = 3,849

Predikcijo in korekcijo izvedemo še za ostale časovne trenutke. Za predikcijske
korake dobimo

x̂1:5|0:4 = (5,00, 5,11, 7,05, 8,02, 9,01)
σ2

1:5|0:4 = (102, 5,85, 4,38, 4,09, 4,02)

in za korekcijske korake

x̂1:5|1:5 = (2,11, 5,05, 7,02, 8,01, 9,01)
σ2

1:5|1:5 = (3,85, 2,38, 2,09, 2,02, 2,01)

Dobljeni rezultati kažejo, da lahko pozicijo mobilnega robota določimo po ne-
kaj korakih z negotovostjo 2, kar ustreza negotovosti predikcije in meritve(

1
σ2

5|4
+ 1

σ2
z

)−1
= 2,01. Negotovost predikcijske ocene pozicije konvergira proti

4, kar je v skladu z negotovostjo korekcije iz prejšnjega časovnega trenutka in
meritve σ2

4|4 + σ2
u = 4,02.

6.5.1 Kalmanov filter v matrični obliki

Sisteme z več vhodi, stanji in izhodi lahko za večjo preglednost podamo v matrični
obliki. Splošni linearni sistem zapišemo v prostoru stanj kot

x(k + 1) = Ax(k) +Bu(k) + Fw(k)
z(k) = Cx(k) + v(k)

(6.25)

kjer je x vektor stanj, u je vhodni vektor (akcija), z je izhodni vektor (meritev),
A je sistemska matrika, B je vhodna matrika, F je vhodna matrika šuma, C
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je izhodna matrika, w(k) je vektor procesnega šuma in v je vektor izhodnega
(merilnega) šuma. V kolikor se šum w doda vhodu sistema u, velja F = B.
Predpostavimo, da sta procesni šum w(k) in merilni šum v(k) medsebojno
neodvisna bela šuma z ničelno srednjo vrednostjo in kovariančnima matrikama
Qk = E

{
w(k)wT (k)

}
in Rk = E

{
v(k)vT (k)

}
.

Porazdelitev stanj x, ki so motena z belim Gaussovim šumom, podamo v matrični
obliki

p(x) = det (2πP )−
1
2 e−

1
2 (x−µ)TP−1(x−µ)

kjer je P kovariančna matrika napake ocene stanj.

Kalmanov filter predstavlja pristop za filtriranje in ocenjevanje zveznih stanj
linearnih sistemov, ki so motena z normalnim šumom. Porazdelitev šuma je
podana z Gaussovo funkcijo (Gaussov šum). Vhodni in merilni šum vplivata
na notranja stanja sistema, ki jih želimo oceniti. V primeru linearnega modela
sistema je tudi filtriran šum preko linearnega modela (npr. od vhodov do stanj)
Gaussov šum. Torej mora biti sistem linearen, saj to zagotavlja Gaussovo
porazdelitev šuma na stanjih, kar je izhodišče pri izpeljavi Kalmanovega filtra.
Kalmanov filter bo konvergiral k pravi oceni stanj le v primeru linearnih sistemov,
ki so moteni z Gaussovim šumom.

Kalmanov filter za linearni sistem (6.25) ima predikcijski korak

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk−1|k−1A
T + FQk−1F

T
(6.26)

in korekcijski korak

Kk = Pk|k−1C
T
(
CPk|k−1C

T +Rk

)−1

x̂k|k = x̂k|k−1 +Kk(zk −Cx̂k|k−1)
Pk|k = Pk|k−1 −KkCPk|k−1

(6.27)

V predikcijskem koraku določimo napovedno oceno x̂k|k−1, ki temelji na predho-
dni oceni x̂k−1|k−1, dobljeni iz meritev do trenutka k − 1, in vhodu u(k − 1). V
korekcijskem koraku pa izračunamo trenutno oceno x̂k|k, ki temelji na meritvah
do trenutka k. Korekcijo stanja izvedemo z izračunom razlike med dejansko
in ocenjeno meritvijo zk −Cx̂k|k−1. Ta razlika je znana tudi kot inovacija ali
residuum meritve. Celotna korekcija stanja se izračuna kot produkt Kalmanovega
ojačenja Kk in inovacije. Predikcijski korak lahko ovrednotimo vnaprej, medtem
ko čakamo na novo meritev v trenutku k. Opazimo podobnost matričnega zapisa
(6.26) in (6.27) z zapisom v algoritmu 4.

Izpeljimo izraz za kovariančno matriko napake ocene stanj v predikcijskem koraku



6.5. Kalmanov filter 333

Kalmanovega filtra

Pk|k−1 = E
{

(xk − x̂k|k−1)(xk − x̂k|k−1)T
}

= cov
{
xk − x̂k|k−1

}
= cov

{
Axk−1 +Buk−1 + Fwk−1 −Ax̂k−1|k−1 −Buk−1

}
= cov

{
Axk−1 + Fwk−1 −Ax̂k−1|k−1

}
= cov

{
A(xk−1 − x̂k−1|k−1) + Fwk−1

}
= cov

{
A(xk−1 − x̂k−1|k−1)

}
+ cov{Fwk−1}

= E
{

(A(xk−1 − x̂k−1|k−1))(A(xk−1 − x̂k−1|k−1))T
}

+
+ E

{
(Fwk−1)(Fwk−1)T

}
= E

{
(A(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)TAT

}
+

+ E
{
Fwk−1w

T
k−1F

T
}

= APk−1|k−1A
T + FQk−1F

T

kjer smo v šesti vrstici upoštevali, da je procesni (vhodni) šum wk v trenutku k
neodvisen od napake ocene stanj v prejšnjem trenutku (xk−1 − x̂k−1|k−1).

Izpeljimo še izraz za kovariančno matriko napake ocene stanj v korekcijskem delu
Kalmanovega filtra

Pk|k = E
{

(xk − x̂k|k)(xk − x̂k|k)T
}

= cov
{
xk − x̂k|k

}
= cov

{
xk − x̂k|k−1 −Kk(zk −Cx̂k|k−1)

}
= cov

{
xk − x̂k|k−1 −Kk(Cxk + vk −Cx̂k|k−1)

}
= cov

{
(I −KkC)(xk − x̂k|k−1)−Kkvk

}
= cov

{
(I −KkC)(xk − x̂k|k−1)

}
+ cov{Kkvk}

= (I −KkC)Pk|k−1(I −KkC)T +KkRkK
T
k

kjer smo v šesti vrstici upoštevali, da je merilni šum vk nekoreliran z ostalimi
členi. Dobljeni izraz za kovariančno matriko Pk|k je splošen in ga lahko upo-
rabimo za poljubno ojačenje Kk. Vendar pa izraz za Pk|k v (6.27) velja le za
optimalno ojačenje (Kalmanovo ojačenje), ki minimizira povprečni kvadratni
pogrešek korekcije E

{∣∣xk − x̂k|k∣∣2}. To je ekvivalentno minimizaciji vsote vseh
diagonalnih elementov kovariančne matrike korekcije Pk|k.

Splošni izraz za Pk|k lahko razširimo in preuredimo

Pk|k = (I −KkC)Pk|k−1(I −KkC)T +KkRkK
T
k

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k +KkCPk|k−1C
TKT

k +KkRkK
T
k

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k +Kk(CPk|k−1C
T +Rk)KT

k

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k +KkSkK
T
k

kjer Sk = CPk|k−1C
T +Rk predstavlja kovariančno matriko inovacije (Sk =

cov
{
zk −Cx̂k|k−1

}
). Vsota diagonalnih členov Pk|k je minimalna, ko je odvod
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Pk|k po Kk enak 0

∂Pk|k

∂Kk
= −2(CPk|k−1)T + 2KkSk = 0

kar vodi do optimalnega ojačenja v (6.27)

Kk = Pk|k−1C
TS−1

k = Pk|k−1C
T (CPk|k−1C

T +Rk)−1

Kovariančno matriko korekcije pri optimalnem ojačenju lahko izpeljemo, če
optimalno ojačenje z desne strani pomnožimo s SkKT

k in vstavimo v izraz za
Pk|k

Pk|k = Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k +KkSkK
T
k

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k + Pk|k−1C
TKT

k

= Pk|k−1 −KkCPk|k−1

Primer 6.19

Mobilni robot se vozi po ravnini in meri svojo pozicijo z GPS-om desetkrat v
sekundi (čas vzorčenja Ts = 0,1 s). Meritev položaja je motena z Gaussovim
šumom, ki ima varianco 10 m2. Robot se premika s hitrostjo 1 m/s v smeri x in
s hitrostjo 0 m/s v smeri y. Varianca Gaussovega šuma hitrosti je 0,1 m2/s2. Na
začetku opazovanja se mobilni robot nahaja v izhodišču x = [0, 0]T , vendar je
naša ocena začetne pozicije x̂ = [3, 3]T z začetno varianco

P0 =
[

10 0
0 10

]

Kakšen je časovni potek ocene pozicije in njene variance?

Rešitev

Do rešitve lahko pridemo s pomočjo simulacije v okolju Matlab. Določimo
model gibanja robota, kjer ocena stanja predstavlja pozicijo robota na ravnini
x̂k|k−1 = [xk, yk]T , vhod u = [vx, vy]T pa predstavlja hitrost robota v smereh
x in y. Torej je model za predikcijo stanja sistema

x̂k|k−1 =
[

1 0
0 1

]
x̂k−1|k−1 +

[
Ts 0
0 Ts

]
u

Model meritve pozicije z GPS-om pa je

ẑk =
[

1 0
0 1

]
x̂k|k−1

Matlab koda rešitve je podana v programu 6.10, rezultati simulacije pa so
grafično prikazani na slikah 6.20, 6.21 in 6.22. Rezultati simulacije potrjujejo, da
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dobljena ocena pozicije konvergira k pravi oceni pozicije robota iz napačne začetne
ocene. Rezultati so pričakovani, saj je srednja vrednost merjenega šuma nič.
Vendar se varianca ocene s časom zmanjšuje in pade veliko pod varianco meritve
(kinematičnemu modelu zaupamo bolj). Kalmanov filter omogoča optimalno
združitev podatkov iz različnih virov (notranji kinematični model in zunanji model
meritve), če so znane variance teh virov. Bralci lahko prosto eksperimentirate s
parametri sistema in opazujete potek variance ocene in stopnjo konvergence.

Program 6.10: Rešitev primera 6.19
./src/prb/example_kf1.m

1 % Linearni model sistema v prostoru stanj
2 Ts = 0.1; % Rač unski korak
3 A = [1 0; 0 1];
4 B = [Ts 0; 0 Ts ];
5 C = [1 0; 0 1];
6 F = B; % Šum je dodan na vhod.
7

8 xTrue = [0; 0]; % Prava začetna vrednost stanj
9 x = [3; 3]; % Začetna ocena stanj

10 P = diag ([10 10]); % Varianca začetne ocene stanj
11 Q = diag ([1 1]/10); % Varianca šuma modela gibanja
12 R = diag ([10 10]); % Varianca šuma meritev GPS
13

14 % Zanka
15 N = 150;
16 for k = 1:N
17 u = [1; 0]; % Ukazi za gibanje
18

19 % Simulacija pravega položaja robota in pravih meritev
20 xTrue = A* xTrue + B*u + F*sqrt(Q)* randn (2, 1);
21 zTrue = C* xTrue + sqrt(R)* randn (2, 1);
22

23 % Ocena položaja na podlagi znanih ukazov in meritev
24 %%% Predikcija
25 xPred = A*x + B*u;
26 PPred = A*P*A.’ + F*Q*F.’;
27

28 %%% Korekcija
29 K = PPred *C. ’/(C* PPred *C.’ + R);
30 x = xPred + K*( zTrue - C* xPred );
31 P = PPred - K*C* PPred ;
32 end
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Slika 6.20: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
z meritvami (pikice na pikčasti krivulji) iz primera 6.19. Končna pozicija robota
je označena s krogom.
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Slika 6.21: Prava pozicija (črtkana krivulja) in ocena pozicije (polna krivulja)
mobilnega robota na podlagi meritev (pikčasta krivulja) iz primera 6.19
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Slika 6.22: Časovni potek variance pozicije mobilnega robota iz primera 6.19
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6.5.2 Razširjeni Kalmanov filter

Kalmanov filter je razvit za linearne sisteme, vse motnje in šumi pa morajo biti
opisljivi z (normalno) Gaussovo porazdelitvijo. Šum z Gaussovo porazdelitvijo
je invarianten za linearne transformacije. Če Gaussov šum transformiramo z
linearno funkcijo, je dobljeni šum še vedno Gaussov, spremenili so se samo njegovi
parametri, ki jih lahko eksplicitno izračunamo iz znane linearne funkcije. Ravno
zaradi tega je Kalmanov filter računsko učinkovit. V primeru transformacije
vhodnega Gaussovega šuma z nelinearno funkcijo, izhodni šum ni več Gaussov,
čeprav ga lahko še vedno aproksimiramo z Gaussovim šumom.

Če je katerokoli prehajanje stanja ali izhodna enačba sistema nelinearna funkcija,
osnovni Kalmanov filter ne zagotavlja več optimalne ocene stanja. Problem neline-
arnosti lahko rešimo z uporabo razširjenega Kalmanovega filtra (EKF, angl.
extended Kalman filter), kjer nelinearnosti modela aproksimiramo z lokalnimi
linearnimi modeli. Lokalni linearni model pridobimo iz nelinearnega sistema s
pomočjo linearizacije (razvoj v Taylorjevo vrsto prvega reda) okoli trenutne ocene
stanja. Z linearizacijo dobimo občutljivostne matrike (Jacobijeve matrike) za
trenutne vrednosti ocenjenih stanj in meritev. Dobljeni linearni model omogoča
izračun približka šuma, ki ni nujno Gaussov, z Gaussovo porazdelitvijo.

Uporaba linearizacije pri modeliranju šuma omogoča računsko učinkovito izvaja-
nje razširjenega Kalmanovega filtra, kar je razlog za njegovo pogosto uporabo v
praksi. Točnost linearne aproksimacije je odvisna od variance šuma (pri velikih
negotovostih ali amplitudah šuma je linearni približek slabši, saj je signal (morda)
izven linearnega območja) in stopnje nelinearnosti. Zaradi pogreška, ki ga v
sistem vnaša linearizacija, se lahko konvergenca filtra poslabša ali pa ocena sploh
ne konvergira k pravi rešitvi.

Nelinearni sistem lahko zapišemo v splošni obliki

xk = f (xk−1,uk−1,wk−1)
zk = h (xk) + vk

(6.28)

kjer se lahko šum wk pojavi na vhodu sistema ali pa vpliva neposredno na stanja.

Razširjeni Kalmanov filter za nelinearni sistem (6.28) je podan s predikcijskim
korakom

x̂k|k−1 = f
(
x̂k−1|k−1,uk−1

)
Pk|k−1 = APk−1|k−1A

T + FQk−1F
T

(6.29)

in korekcijskim korakom

Kk = Pk|k−1C
T
(
CPk|k−1C

T +Rk

)−1

x̂k|k = x̂k|k−1 +Kk(zk − ẑk)
Pk|k = Pk|k−1 −KkCPk|k−1

(6.30)

V predikcijskem koraku (6.29) uporabimo nelinearni model prehajanja stanj
za izračun ocene predikcije stanja. Za izračun kovariančne matrike šuma iz
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modela stanj (6.28) določimo Jacobijevo matriko A, ki opisuje prehajanje šuma
iz prejšnjih na trenutna stanja, in Jacobijevo matriko F , ki opisuje širjenje šuma
od vhodov na stanja

A = ∂f

∂x̂

∣∣∣∣
(x̂k−1|k−1,uk−1)

F = ∂f

∂w

∣∣∣∣
(x̂k−1|k−1,uk−1)

V korekcijskem koraku (6.30) določimo oceno meritve na podlagi predikcijske
ocene stanja ẑk = h

(
x̂k|k−1

)
. Določimo tudi Jacobijevo matriko C, ki opisuje

širjenje šuma iz stanj na izhode (meritve)

C = ∂h

∂x

∣∣∣∣
(x̂k|k−1)

(6.31)

Kovariančni matriki šuma sta Qk = E
{
w(k)wT (k)

}
in Rk = E

{
v(k)vT (k)

}
. V

mnogih aplikacijah so uporabili razširjeni Kalmanov filter za reševanje problema
lokalizacije kolesnih mobilnih robotov [7, 8] in gradnje zemljevida [9].

Primer 6.20

Kolesni mobilni robot z diferencialnim pogonom se premika po ravnini. Vhoda
sta translatorna hitrost vk in kotna hitrost ωk, ki sta motena z Gaussovim šumom
z variancama var{vk} = 0,1 m2/s2 in var{ωk} = 0,1 rad2/s2.

Mobilni robot ima senzor, s katerim lahko izmeri razdaljo do značke, ki se nahaja
v izhodišču globalnega koordinatnega sistema. Robot je opremljen tudi s kompa-
som, ki omogoča merjenje orientacije mobilnega robota (odklon). Predstavljena
situacija je prikazana na sliki 6.23. Meritev razdalje je motena z Gaussovim
šumom z varianco 0,5 m2, meritev kota pa z Gaussovim šumom z varianco
0,3 rad2.

Na začetku opazovanja je prava lega robota x0 = [1, 2, π/6]T , ocenjena lega
robota pa je x̂0 = [3, 0, 0]T z začetno varianco

P0 =

9 0 0
0 9 0
0 0 0,6


Kakšen je časovni potek ocene lege mobilnega robota (x̂k|k−1 = [xk, yk, ϕk]T )
in varianca ocene, če ob vsakem času vzorčenja Ts = 0,1 s pošljemo robotu ukaz
u = [vk, ωk]T = [0,5, 0,5]T ?
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Slika 6.23: Postavitev, predstavljena v primeru 6.20. Mobilni robot ima senzor za
merjenje razdalje do značke M (nameščena v izhodišču globalnega koordinatnega
sistema) in kompas za določitev orientacije robota v globalnem koordinatnem
sistemu (odklon).

Rešitev

Do rešitve lahko pridemo s pomočjo simulacije v okolju Matlab. Določimo model
premikanja mobilnega robota. V tem primeru je kinematični model nelinearen

x̂k|k−1 = x̂k−1|k−1 +

Tsvk−1 cos(ϕk−1)
Tsvk−1 sin(ϕk−1)

Tsωk−1


Model meritve razdalje in kota pa je

ẑk =
[√

x2
k + y2

k

ϕk

]

Matlab koda rešitve je predstavljena v programu 6.11. Rezultati simulacije so
prikazani na slikah 6.24 – 6.28. Rezultati potrjujejo, da ocenjena lega konvergira
k pravi legi mobilnega robota, čeprav je bila prvotna ocena pristranska. Členi
inovacije se ustalijo okoli ničle.
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Program 6.11: Izvedba rešitve primera 6.20
./src/prb/example_ekf1default.m

1 Ts = 0.1; % Rač unski korak
2 xTrue = [1; 2; pi /6]; % Prava začetna lega
3 x = [3; 0; 0]; % Ocena začetne lege
4 P = diag ([9 9 0.6]); % Začetna kovarian čna matrika ocene lege
5 Q = diag ([0.1 0.1]); % Kovarian čna matrika šuma modela gibanja
6 R = diag ([0.5 0.3]); % Kovarian čna matrika šuma merjenja razdalje in
7 % kota
8 enableNoise = 1; % Omogo či šum: 0 ali 1
9 N = 300; % Š tevilo simulacijskih korakov

10

11 % Zanka
12 for k = 1:N
13 u = [0.5; 0.5]; % Ukazi ( translatorna in kotna hitrost )
14 uNoisy = u + sqrt(Q)* randn (2, 1)* enableNoise ;
15

16 % Simulacija pravih stanj (lege) robota
17 xTrue = xTrue + Ts *[ uNoisy (1)* cos( xTrue (3)); ...
18 uNoisy (1)* sin( xTrue (3)); ...
19 uNoisy (2)];
20 xTrue (3) = wrapToPi ( xTrue (3));
21

22 % Simulacija meritev s šumom
23 zTrue = [sqrt( xTrue (1)^2 + xTrue (2)^2 ); ...
24 xTrue (3)] + sqrt(R)* randn (2, 1)* enableNoise ;
25 zTrue (1) = abs( zTrue (1));
26 zTrue (2) = wrapToPi ( zTrue (2));
27

28 %%% Predikcija ( ocena lege in hitrosti glede na znane vhode )
29 xPred = x + Ts *[u(1)* cos(x (3)); ...
30 u(1)* sin(x (3)); ...
31 u (2)];
32 xPred (3) = wrapToPi ( xPred (3));
33

34 % Jacobijeve matrike
35 A = [1 0 -Ts*u(1)* sin(x (3)); ...
36 0 1 Ts*u(1)* cos(x (3)); ...
37 0 0 1];
38 F = [Ts*cos(x(3)) 0; ...
39 Ts*sin(x(3)) 0; ...
40 0 Ts ];
41 PPred = A*P*A.’ + F*Q*F.’;
42

43 % Ocenjene meritve
44 z = [sqrt( xPred (1)^2 + xPred (2)^2); ...
45 xPred (3)];
46

47 %%% Korekcija
48 d = sqrt( xPred (1)^2 + xPred (2)^2);
49 C = [ xPred (1)/d xPred (2)/d 0;...
50 0 0 1];
51 K = PPred *C. ’/(C* PPred *C.’ + R);
52 inov = zTrue - z;
53 inov (2) = wrapToPi (inov (2));
54 x = xPred + K*inov;
55 P = PPred - K*C* PPred ;
56 end
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Slika 6.24: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.20
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Slika 6.25: Ocenjena lega (polna krivulja) in pravo stanje (črtkana krivulja)
mobilnega robota z začetnim neničelnim pogreškom ocene iz primera 6.20
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Slika 6.26: Meritvi razdalje in kota iz primera 6.20
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Slika 6.27: Variance ocene lege robota iz primera 6.20
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Slika 6.28: Časovni potek inovacije iz primera 6.20

Če stanja sistema niso neposredno merljiva (kot v tem primeru), se pojavi
vprašanje spoznavnosti sistema. Analiza spoznavnosti lahko običajno zagotovi
zadostne pogoje za spoznavnost sistema. Vendar moramo analizo opraviti pred
načrtovanjem ocenjevanja stanj, saj nam to lahko pomaga pri izbiri ustrezne
množice merilnih signalov, ki omogočajo ocenjevanje. Spoznavnost sistema lahko
preverimo z uporabo naprednih matematičnih orodij ali pa izberemo preprost
grafični pristop, ki temelji na definiciji nerazpoznavnih stanj (glejte poglavje
6.3.3). Analiza spoznavnosti sistema iz tega primera je prikazana na sliki 6.29, iz
katere je razvidno, da so stanja sistema običajno razpoznavna, razen v nekaterih
posebnih primerih (slika 6.29d). Če stanja sistema opazujemo dovolj dolgo in so
regulirne veličine mobilnega robota ustrezno vzbujene, je sistem spoznaven.
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(a) Tri začetne lege robotov, ki imajo enako
smer in oddaljenost od značke
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(b) Posodobljena situacija s slike (a) po
tem, ko so roboti prepotovali enako razdaljo
v smeri naprej. Z vidika meritev so lege
robotov razpoznavne.
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(c) Tri začetne lege robotov, ki imajo enako
smer in oddaljenost od značke – poseben
primer
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(d) Posodobljena situacija s slike (c) po tem,
ko so roboti prepotovali enako razdaljo v
smeri naprej. Z vidika meritev je robot v
legi 1 nerazpoznaven od robota v legi 2,
robot v legi 3 pa je razpoznaven od ostalih
dveh.
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(e) Posodobljena situacija s slike (c) po tem, ko so roboti prepotovali isto neravno pot.
Z vidika meritev so vsi roboti razpoznavni.

Slika 6.29: Analiza spoznavnosti sistema iz primera 6.20
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Primer 6.21

Mobilni robot iz primera 6.20 naj ima malce drugačen senzor, ki meri razdaljo in
kot do značke v izhodišču globalnega koordinatnega sistema. Meritve kota so
znotraj intervala α ∈ [−π, π]. Meritev razdalje je motena z Gaussovim šumom z
varianco 0,5 m2, meritev kota pa z Gaussovim šumom z varianco 0,3 rad2.
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Slika 6.30: Postavitev iz primera 6.21. Mobilni robot ima senzor za merjenje
razdalje in kota do značke M , ki se nahaja v izhodišču globalnega koordinatnega
sistema.

Kakšen je časovni potek ocene lege robota (x̂k|k−1 = [xk, yk, ϕk]T ) in varianca
ocene, če ob vsakem času vzorčenja Ts = 0,1 s pošljemo robotu ukaz u =
[vk, ωk]T = [0,5, 0,5]T ?

Rešitev

Do rešitve lahko pridemo s pomočjo simulacije v okolju Matlab. Določimo model
gibanja mobilnega robota. Kinematični model kolesnega mobilnega robota je
enak kot v primeru 6.20

x̂k|k−1 = x̂k−1|k−1 +

Tsvk−1 cos(ϕk−1)
Tsvk−1 sin(ϕk−1)

Tsωk−1


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Model meritve razdalje in kota je

ẑk =
[ √

x2
k + y2

k

atan2 (0− yk, 0− xk)− ϕk

]
pri čemer je štirikvadratna inverzna funkcija tangens definirana v (2.11).

Matlab koda rešitve je podana v programu 6.12. Rezultati simulacije, prikazani
na slikah 6.31 – 6.35, kažejo, da ocenjena stanja konvergirajo k pravi legi robota.
Čeprav je ta primer podoben primeru 6.20, se lahko zgodi, da ocena ne konvergira
k pravi legi robota, če so okoljski pogoji nekoliko drugačni. Primer konvergence k
napačni rešitvi prikazujejo slike 6.36 – 6.40. Ker sta oba izhoda senzorja (razdalja
in kot) relativni meritvi, ocenjena stanja morda ne konvergirajo k pravi rešitvi,
čeprav je inovacija (razlika med meritvijo in predikcijo meritve) blizu ničelne
vrednosti (slika 6.40).

Program 6.12: Izvedba rešitve iz primera 6.21
./src/prb/example_ekf2default.m

1 Ts = 0.1; % Rač unski korak
2 xTrue = [1; 2; pi /6]; % Prava začetna lega
3 x = [3; 0; 0]; % Ocena začetne lege
4 P = diag ([9 9 0.6]); % Začetna kovarian čna matrika ocene lege
5 Q = diag ([0.1 0.1]); % Kovarian čna matrika šuma modela gibanja
6 R = diag ([0.5 0.3]); % Kovarian čna matrika šuma merjenja razdalje in
7 % kota
8 enableNoise = 1; % Omogo či šum: 0 ali 1
9 N = 300; % Š tevilo simulacijskih korakov

10

11 % Loop
12 for k = 1:N
13 u = [0.5; 0.5]; % Ukazi ( translatorna in kotna hitrost )
14 uNoisy = u + sqrt(Q)* randn (2, 1)* enableNoise ;
15

16 % Simulacija pravih stanj (lege) robota
17 xTrue = xTrue + Ts *[ uNoisy (1)* cos( xTrue (3)); ...
18 uNoisy (1)* sin( xTrue (3)); ...
19 uNoisy (2)];
20 xTrue (3) = wrapToPi ( xTrue (3));
21

22 % Simulacija meritev s šumom ( razdalja in kot)
23 zTrue = [sqrt( xTrue (1)^2 + xTrue (2)^2); ...
24 atan2 (0- xTrue (2) , 0- xTrue (1)) - xTrue (3)] + ...
25 sqrt(R)* randn (2, 1)* enableNoise ;
26 zTrue (1) = abs( zTrue (1));
27 zTrue (2) = wrapToPi ( zTrue (2));
28

29 %%% Predikcija ( ocena lege in hitrosti glede na znane vhode )
30 xPred = x + Ts *[u(1)* cos(x (3)); ...
31 u(1)* sin(x (3)); ...
32 u (2)];
33 xPred (3) = wrapToPi ( xPred (3));
34

35 % Jacobijeve matrike
36 A = [1 0 -Ts*u(1)* sin(x (3)); ...
37 0 1 Ts*u(1)* cos(x (3)); ...
38 0 0 1];
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39 F = [Ts*cos(x(3)) 0; ...
40 Ts*sin(x(3)) 0; ...
41 0 Ts ];
42 PPred = A*P*A.’ + F*Q*F.’;
43

44

45 % Ocenjene meritve
46 z= [sqrt( xPred (1)^2 + xPred (2)^2); ...
47 atan2 (0- xPred (2) , 0- xPred (1)) - xPred (3)];
48 z(2) = wrapToPi (z (2));
49

50 %%% Korekcija
51 d = sqrt( xPred (1)^2 + xPred (2)^2);
52 C = [ xPred (1)/d xPred (2)/d 0; ...
53 -xPred (2)/d^2 xPred (1)/d^2 -1];
54 K = PPred *C. ’/(C* PPred *C.’ + R);
55 inov = zTrue - z;
56

57 % Izbira primerne inovacije , zaradi šuma in cikli č nosti kota
58 inov (2) = wrapToPi (inov (2));
59

60 x = xPred + K*inov;
61 P = PPred - K*C* PPred ;
62 end
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Slika 6.31: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.21
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Slika 6.32: Ocena lege (polna krivulja) in pravo stanje (črtkana krivulja) mobil-
nega robota z začetnim neničelnim pogreškom ocene iz primera 6.21
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Slika 6.33: Meritvi razdalje in kota iz primera 6.21
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Slika 6.34: Variance ocene lege robota iz primera 6.21
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Slika 6.35: Časovni potek inovacije iz primera 6.21
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Slika 6.36: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.21 (reprezentativni primer)



352 Nedeterminističnost v mobilnih sistemih

t [s]

x
[m

]

0 5 10 15 20 25 30

0

1

2

3

4

t [s]

y
[m

]

0 5 10 15 20 25 30

0

1

2

3

4

t [s]

ϕ
[r

ad
]

0 5 10 15 20 25 30
−4

−2

0

2

4

Slika 6.37: Ocena lege (polna krivulja) in pravo stanje (črtkana krivulja) mobil-
nega robota z začetnim neničelnim pogreškom ocene iz primera 6.21 (reprezenta-
tivni primer)
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Slika 6.38: Meritvi razdalje in kota iz primera 6.21 (reprezentativni primer)
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Slika 6.39: Variance ocene lege robota iz primera 6.21 (reprezentativni primer)
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Slika 6.40: Časovni potek inovacije iz primera 6.21 (reprezentativni primer)

Grafični prikaz spoznavnosti na sliki 6.41 omogoča vpogled v razloge za pri-
stranskost ocene. Analiza kaže, da obstajajo stanja, ki so z vidika meritev
nerazpoznavna, ne glede na regulirne veličine. Poleg tega za vsako meritev
obstaja neskončna množica stanj, zato sistem ni spoznaven. Pristranskost ocene
lahko odpravimo s hkratnim opazovanjem več značk, saj nam to zagotovi dovolj
informacij za izbiro ustrezne rešitve, kot je prikazano v primeru 6.22.
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(a) Tri začetne lege robotov z enako odda-
ljenostjo od značke
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(b) Posodobljena situacija s slike (a) po
tem, ko so roboti prepotovali enako razdaljo
v smeri naprej. Z vidika meritev so lege
robotov razpoznavne.
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(c) Tri začetne lege robotov, ki imajo enak
kot in oddaljenost do značke — poseben
primer
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(d) Posodobljena situacija s slike (c) po tem,
ko so roboti prepotovali enako razdaljo v
smeri naprej. Z vidika meritev so vse tri
lege robotov nerazpoznavne.
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(e) Posodobljena situacija s slike (c) po tem, ko so roboti prepotovali enako neravno
pot. Z vidika meritev so vse tri lege robotov nerazpoznavne.

Slika 6.41: Analiza spoznavnosti sistema iz primera 6.21
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Primer 6.22

Nadgradimo primer 6.21 tako, da lahko robot hkrati opazuje dve prostorsko
ločeni znački, ki sta postavljeni na xM1 = 0, yM1 = 0 in xM2 = 5, yM2 = 5. Vsi
ostali podatki so enaki kot v primeru 6.21.
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Slika 6.42: Postavitev iz primera 6.22. Mobilni robot ima senzor za merjenje
kota in oddaljenosti od značk M1 in M2.

Rešitev

Prilagoditi moramo le korekcijski del algoritma. Vektor meritve sedaj vsebuje
štiri elemente

ẑk =


√

(xM1 − xk)2 + (yM1 − yk)2

atan2 (yM1 − yk, xM1 − xk)− ϕk√
(xM2 − xk)2 + (yM2 − yk)2

atan2 (yM2 − yk, xM2 − xk)− ϕk


razdaljo in kot do prve značke ter razdaljo in kot do druge značke. Določimo
izhodno matriko C (glejte (6.31)) z linearizacijo okoli trenutne predikcijske ocene
stanja (xk, yk)

C =


xk
d1

yk
d1

0
−yk
d2

1

xk
d2

1
−1

xk
d2

yk
d2

0
−yk
d2

2

xk
d2

2
−1


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kjer je d1 =
√

(xM1 − xk)2 + (yM1 − yk)2 in d2 =
√

(xM2 − xk)2 + (yM2 − yk)2.
Določimo tudi kovariančno matriko šuma meritve kot

R =


0,5 0 0 0
0 0,3 0 0
0 0 0,5 0
0 0 0 0,3


Matlab koda rešitve je podana v programu 6.13. Rezultati simulacije, predsta-
vljeni na slikah 6.43 – 6.47, potrjujejo, da ocenjena stanja konvergirajo k pravi
legi robota.

Program 6.13: Rešitev primera 6.22
./src/prb/example_ekf3default.m

1 Ts = 0.1; % Rač unski korak
2 xTrue = [1; 2; pi /6]; % Prava začetna lega
3 x = [3; 0; 0]; % Ocena začetne lege
4 P = diag ([9 9 0.6]); % Začetna kovarian čna matrika ocene lege
5 Q = diag ([0.1 0.1]); % Kovarian čna matrika šuma modela gibanja
6 R = diag ([0.5 0.3]); % Kovarian čna matrika šuma merjenja razdalje in
7 % kota
8 enableNoise = 1; % Omogo či šum: 0 ali 1
9 N = 300; % Š tevilo simulacijskih korakov

10 marker = [0 0; 5 5]; % Položaji značk
11

12 % Zanka
13 for k = 1:N
14 u = [0.5; 0.5]; % Ukazi ( translatorna in kotna hitrost )
15 uNoisy = u + sqrt(Q)* randn (2, 1)* enableNoise ;
16

17 % Simulacija pravih stanj (lege) robota
18 xTrue = xTrue + Ts *[ uNoisy (1)* cos( xTrue (3)); ...
19 uNoisy (1)* sin( xTrue (3)); ...
20 uNoisy (2)];
21 xTrue (3) = wrapToPi ( xTrue (3));
22

23 % Simulacija meritev s šumom ( razdalja in kot)
24 zTrue = [];
25 for m = 1: size(marker , 1)
26 dist = sqrt (( marker (m ,1) - xTrue (1))^2 + ( marker (m ,2) - xTrue (2))^2);
27 alpha = atan2 ( marker (m ,2) - xTrue (2) , marker (m ,1) - xTrue (1)) - xTrue (3);
28 zz = [dist; alpha ] + sqrt(R)* randn (2, 1)* enableNoise ;
29 zz (1) = abs(zz (1));
30 zz (2) = wrapToPi (zz (2));
31 zTrue = [ zTrue ; zz ];
32 end
33

34 %%% Predikcija ( ocena lege in hitrosti glede na znane vhode )
35 xPred = x + Ts *[u(1)* cos(x (3)); ...
36 u(1)* sin(x (3)); ...
37 u (2)];
38 xPred (3) = wrapToPi ( xPred (3));
39

40 % Jacobijeve matrike
41 A = [1 0 -Ts*u(1)* sin(x (3)); ...
42 0 1 Ts*u(1)* cos(x (3)); ...
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43 0 0 1];
44 F = [Ts*cos(x(3)) 0; ...
45 Ts*sin(x(3)) 0; ...
46 0 Ts ];
47 PPred = A*P*A.’ + F*Q*F.’;
48

49 %%% Korekcija
50 z = [];
51 C = [];
52 for m = 1: size(marker ,1)
53 dist = sqrt (( marker (m ,1) - xPred (1))^2 + ( marker (m ,2) - xPred (2))^2);
54 alpha = atan2 ( marker (m ,2) - xPred (2) , marker (m ,1) - xPred (1)) - xPred (3);
55 zz = [dist; alpha ];
56 zz (2) = wrapToPi (zz (2));
57 z = [z; zz ];
58

59 % Matrika C za korekcijo
60 c = [ xPred (1)/ dist xPred (2)/ dist 0; ...
61 -xPred (2)/ dist ^2 xPred (1)/ dist ^2 -1];
62 C = [C; c];
63 end
64

65 % Kovarian čna matrika meritev
66 RR = diag( repmat ([R(1 ,1) R(2 ,2)] , 1, size(marker , 1)));
67 K = PPred *C. ’/(C* PPred *C.’ + RR );
68

69 inov = zTrue - z;
70 % Izbira primerne inovacije , zaradi šuma in cikli č nosti kota
71 for m = 1: size(marker , 1)
72 inov (2*m) = wrapToPi (inov (2*m));
73 end
74

75 x = xPred + K*( inov );
76 P = PPred - K*C* PPred ;
77 end



358 Nedeterminističnost v mobilnih sistemih

x

y

−2 0 2 4 6

0

1

2

3

4

5

M1

M2

Slika 6.43: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
iz primera 6.22
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Slika 6.44: Ocena lege (polna krivulja) in pravo stanje (črtkana krivulja) mobil-
nega robota z začetnim neničelnim pogreškom ocene iz primera 6.22

t [s]

d
[m

]

0 10 20 30
0

2

4

6

8

t [s]

α
[r

ad
]

0 10 20 30
−4

−2

0

2

4

Slika 6.45: Meritve razdalje in kota iz primera 6.22
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Slika 6.46: Variance ocene lege robota iz primera 6.22
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Slika 6.47: Časovni potek inovacije iz primera 6.22

Ponovno lahko grafično preverimo spoznavnost sistema. Tudi v tem primeru
lahko najdemo posebno situacijo, kjer so vsa stanja nerazpoznavna, kar prikazuje
slika 6.48. Na prvi pogled so obravnavana stanja z vidika meritev nerazpoznavna,
ker pa predpostavljamo, da merilni podatki vsebujejo tudi oznako (ID) značk,
ima ta posebna situacija razpoznavna stanja in sistem je spoznaven.
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(b) Posodobljena situacija s slike (a) po
enakih prepotovanih relativnih poteh glede
na obe začetni legi. Z vidika meritev sta
obe legi razpoznavni, če merilni podatki
vsebujejo oznako (ID) značk.

Slika 6.48: Analiza spoznavnosti sistema iz primera 6.22
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6.5.3 Druge različice Kalmanovega filtra

Poleg Kalmanovega filtra za linearne sisteme in razširjenega Kalmanovega filtra
za nelinearne sisteme [10] obstaja vrsta izpeljank.

Nepristranski Kalmanov filter (UKF, angl. unscented Kalman filter) se obi-
čajno uporablja v sistemih z izrazito nelinearnostjo, kjer razširjeni Kalmanov
filter morda ne zagotavlja zadovoljivih rezultatov. V tem primeru se kovariančne
matrike statistično ocenijo na podlagi manjše množice vhodnih točk, ki se presli-
kajo preko nelinearne funkcije ter se nato uporabijo za oceno srednje vrednosti in
kovariančne matrike. Te točke, znane kot sigma točke, so razpršene okoli ocenjene
vrednosti po nekem algoritmu (običajno je 2n+ 1 točk za n dimenzij).

Informacijski filter uporablja informacijsko matriko in informacijski vektor
namesto kovariančne matrike in ocene stanj. Informacijska matrika predstavlja
inverz kovariančne matrike, informacijski vektor pa je produkt informacijske
matrike in ocene vektorja stanj. Informacijski filter je dualen Kalmanovemu
filtru, kjer je korekcijski korak računsko bistveno enostavnejši (le matrična vsota),
vendar je predikcijski korak računsko bolj zahteven.

Kalman-Bucyjev filter je oblika Kalmanovega filtra za zvezne sisteme.

6.6 Filter delcev

Do zdaj smo uporabljali Bayesov filter za sisteme z diskretnim prostorom stanj
s končnim številom vrednosti, ki jih spremenljivke stanj lahko zavzamejo. Če
želimo uporabiti Bayesov filter za zvezne spremenljivke, lahko te spremenljivke
kvantiziramo na končno število vrednosti. Tovrstna izvedba Bayesovega filtra za
zvezne spremenljivke stanj je splošno znana kot histogramski filter.

Za zvezne spremenljivke stanj in eksplicitno rešitev Bayesovega filtra (6.21)
moramo rešiti enačbo

p(xk|z1:k,u0:k−1) =
p(zk|xk)

p(zk|z1:k−1,u0:k−1)

∫
p(xk|xk−1,uk−1)p(xk−1|z1:k−1,u0:k−2) dxk−1

(6.32)

kjer smo predpostavili, da so stanja vsebovana in da obravnavamo Markovov
proces (glejte poglavje 6.2). Trenutna porazdelitev stanj (6.32) je potrebna za
izračun najverjetnejše ocene stanj (matematično upanje)

E
{
x̂k|k

}
=
∫
xk|k · p(xk|z1:k,u0:k−1) dxk|k

Eksplicitna rešitev (6.32) je možna le za omejen nabor primerov, kjer pred-
postavimo Gaussovo porazdelitev in linearnost sistema, kar vodi v Kalmanov
filter. V primeru nelinearnih sistemov lahko nelinearnost sistema (v modelu
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gibanja, aktuatorja in/ali senzorja) lineariziramo, kar nas privede do razširjenega
Kalmanovega filtra.

Filter delcev (angl. particle filter) je bolj splošen pristop, kjer nista potrebna
Gaussova porazdelitev in linearnost sistema. Osnovna ideja je, da trenutno oceno
porazdelitve stanj (6.21) po opravljeni meritvi aproksimiramo z množico N delcev.
Vsak delec v množici predstavlja vrednost ocenjenega stanja xik, ki je naključno
vzorčena iz porazdelitve (simulacija Monte Carlo). Vsak delec podaja svojo
hipotezo o dejanskem stanju sistema. Porazdelitev je opisana s pomočjo množice
naključno generiranih delcev, torej gre za neparametrični opis porazdelitve, ki
ni omejen samo na Gaussove porazdelitve. Opis porazdelitve z delci omogoča
modeliranje nelinearnih transformacij šuma (model aktuatorja in/ali senzorja).
Torej lahko z delci opišemo porazdelitev šuma, ki se iz vhodov ali izhodov sistema
prenaša preko nelinearnih funkcij na stanja sistema.

Algoritem 5 predstavlja osnoven princip filtra delcev.

Algorithm 5 Algoritem za filter delcev. Funkcijo Filter_delcev kličemo v
vsakem časovnem trenutku s trenutnimi vhodi in meritvami ter predhodno oceno
stanja.
function Filter_delcev(x̂k−1|k−1, uk−1, zk)

Inicializacija:
if k > 0 then

Inicializacija množice N delcev xik na osnovi naključnega vzorčenja
porazdelitve p(x0).

end if

Predikcija:
Transformiraj (premakni) vsak delec x̂ik−1|k−1 na osnovi modela premika

in znanega vhoda uk−1, kateremu dodaj naključno vrednost glede na lastnosti
šuma, ki je del modela premika. Model premika podaja p(xk|xk−1,uk−1).
Dobljena predikcija je množica delcev x̂ik|k−1.

Korekcija:
Za vsak delec x̂ik|k−1 oceni vrednost meritve, ki bi jo sistem izmeril, če

bi njegovo stanje ustrezalo stanju delca.
Glede na opravljeno meritev in primerjavo z ocenjenimi meritvami delcev

oceni pomembnost delcev.
Nato določi nov nabor delcev glede na njihovo pomembnost z naključnim

izborom delcev z verjetnostjo, ki je proporcionalna njihovi pomembnosti, torej
p(zk|x̂ik|k−1). Bolj verjetni delci so izbrani večkrat, manj verjetni delci pa
manjkrat.

Ocena filtriranega stanja x̂k|k je enaka povprečni vrednosti vseh delcev.
end function

V začetnem koraku moramo določiti začetno populacijo delcev, x̂i0 za i ∈ 1, . . . , N ,
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katere raztros je odvisen od zaupanja (porazdelitve) p(x0) v začetno stanje
sistema. V kolikor začetno stanje ni znano, je porazdelitev uniformna in so delci
enakomerno (enako verjetno) razporejeni po celotnem prostoru stanj.

V predikcijskem koraku izračunamo novo stanje za vsak delec glede na podan
vhod sistema. Dobljenim ocenam stanj za vsak delec dodamo naključno vrednost
šuma, ki ga pričakujemo na vhodu sistema. Tako dobimo predikcijo stanja za
vsak delec x̂ik|k−1. Dodani šum zagotavlja, da se delci razpršijo, saj to omogoča
oceno prave vrednosti ob prisotnosti različnih motenj.

V korekcijskem koraku ovrednotimo pomembnost delcev tako, da za vsak delec (iz
njegovih ocenjenih stanj) izračunamo odstopanje dejanske meritve zk od ocenjene
meritve delca ẑik. Razlika med dejansko in ocenjeno meritvijo je splošno znana
kot inovacija in se lahko oceni za vsak delec kot

innovik = zk − ẑik

katere vrednost je manjša za bolj verjetne delce.

Na podlagi inovacije lahko določimo pomembnost vsakega delca oz. verjetnost
p(zk|x̂ik|k−1), ki predstavlja utež wik od i-tega delca. Utež lahko določimo z
Gaussovo porazdelitvijo kot

wik = det (2πR)−
1
2 e−

1
2 (innovik)TR−1(innovik)

kjer je R kovariančna matrika meritve.

Zelo pomemben korak v procesu uporabe filtra delcev je vzorčenje po po-
membnosti (angl. importance sampling) glede na uteži wik. Množica N delcev
je naključno vzorčena tako, da je verjetnost izbire določenega delca iz množice
sorazmerna njegovi uteži wik. Torej so delci z večjo utežjo izbrani večkrat kot
delci z manjšo utežjo, oz. delci z najmanjšo utežjo ne smejo biti nikoli izbrani.
Pristop izbora nove množice delcev lahko izvedemo na več načinov. Enega od
njih bomo predstavili v nadaljevanju:

• Uteži delcev wik normiramo z vsoto vseh uteži
∑N
i=1 w

i
k in tako dobimo

nove uteži wnik = wik∑N

i=1
wi
k

.

• Kumulativno seštejemo normirane uteži, da dobimo kumulativne uteži
wcik =

∑i
j=1 wn

i
k, kot prikazuje slika 6.49.

• Naključno izberemo N števil med 0 in 1 (iz enakomerne porazdelitve) in
preverimo, katere uteži pripadajo izbranim številom. Torej primerjamo
kumulativne uteži wcik in naključno generirana števila. Glede na sliko
6.49 so delci z večjimi utežmi bolj verjetno izbrani (te uteži na sliki 6.49
zavzemajo več prostora).

• Izbrane delce uporabimo v korekcijskem koraku za oceno trenutne vrednosti
stanja x̂k|k =

∑N
i=1 w

i
kx̂

i
k|k−1.



6.6. Filter delcev 365

0
wn

1

wn
2

wn
3

wn
4

wn
5

wn
N

wc

1

1

N
i

i

wn
=

= å

Slika 6.49: Vzorčenje po pomembnosti v korekcijskem koraku filtra delcev. Uteži
delcev nanizamo eno za drugo in nato normiramo tako, da je vsota vseh delcev
enaka 1. Bolj verjetni delci zavzamejo več prostora na enotskem intervalu
in obratno. Novo populacijo delcev določimo tako, da naključno izberemo (z
enakomerno porazdelitvijo) N števil iz enotskega intervala in pogledamo, katerim
delcem pripadajo.

V kolikor sistem miruje (trenutno stanje je enako preteklemu), je priporočeno,
da ne vzorčimo po pomembnosti, ampak uporabimo kar stari nabor delcev in
jim le prilagodimo nove uteži, kot je predstavljeno v [11].

V primeru 6.23 je prikazan primer uporabe filtra delcev.

Primer 6.23

Uporabite filter delcev za ocenjevanje najverjetnejšega stanja v primeru 6.22.
Pri implementaciji uporabimo N = 300 delcev. Vsi drugi podatki so enaki kot v
primeru 6.22.

Rešitev

Matlab koda rešitve je podana v programu 6.14, rezultati simulacije pa so
prikazani na slikah 6.50 in 6.51.

Program 6.14: Implementacija rešitve primera 6.23
./src/prb/example_pf1default.m

1 Ts = 0.1; % Rač unski korak
2 xTrue = [1; 2; pi /6]; % Prava začetna lega
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3 x = [3; 0; 0]; % Ocena začetne lege
4 P = diag ([9 9 0.6]); % Začetna kovarian čna matrika ocene lege
5 Q = diag ([0.1 0.1]); % Kovarian čna matrika šuma modela gibanja
6 R = diag ([0.5 0.3]); % Kovarian čna matrika šuma merjenja razdalje in
7 % kota
8 enableNoise = 1; % Omogo či šum: 0 ali 1
9 N = 300; % Š tevilo simulacijskih korakov

10 marker = [0 0; 5 5]; % Položaji značk
11

12 % Inicializacija delcev
13 nParticles = 300;
14 xP = repmat (xTrue , 1, nParticles ) + diag ([4 4 1])* randn (3, nParticles );
15 W = ones( nParticles , 1)/ nParticles ; % Vsi delci so enako verjetni
16

17 % Zanka
18 for k = 1:N
19 u = [0.5; 0.5]; % Ukazi ( translatorna in kotna hitrost )
20 u_sum = u + sqrt(Q)* randn (2, 1)* enableNoise ;
21

22 % Simulacija pravih stanj (lege) robota
23 xTrue = xTrue + Ts *[ u_sum (1)* cos( xTrue (3)); ...
24 u_sum (1)* sin( xTrue (3)); ...
25 u_sum (2)];
26 xTrue (3) = wrapToPi ( xTrue (3));
27

28 % Simulacija meritev s šumom ( razdalja in kot)
29 zTrue = [];
30 for m = 1: size(marker , 1)
31 dist = sqrt (( marker (m ,1) - xTrue (1))^2 + ( marker (m ,2) - xTrue (2))^2);
32 alpha = atan2 ( marker (m ,2) - xTrue (2) , marker (m ,1) - xTrue (1)) - xTrue (3);
33 zz = [dist; alpha ] + sqrt(R)* randn (2, 1)* enableNoise ;
34 zz (1) = abs(zz (1));
35 zz (2) = wrapToPi (zz (2));
36 zTrue = [ zTrue ; zz ];
37 end
38

39 % Predikcija
40 for p = 1: nParticles
41 % Delci se premikajo glede na model šuma
42 un = u + sqrt(Q)* randn (2, 1)*1;
43 xP(:,p) = xP(:,p) + Ts *[ un (1)* cos(xP(3,p)); ...
44 un (1)* sin(xP(3,p)); ...
45 un (2)];
46 xP(3,p) = wrapToPi (xP(3,p));
47 end
48

49 % Korekcija
50 for p = 1: nParticles
51 % Ocenjena meritev za vsak delec
52 z = [];
53 for m = 1: size(marker , 1)
54 dist = sqrt (( marker (m ,1) - xP(1,p))^2 + ( marker (m ,2) - xP(2,p ))^2);
55 alpha = atan2 ( marker (m ,2) - xP(2,p), marker (m ,1) - xP(1,p))-xP(3,p);
56 zz = [dist; alpha ];
57 zz (1) = abs(zz (1));
58 zz (2) = wrapToPi (zz (2));
59 z = [z; zz ];
60 end
61

62 Innov = zTrue - z; % Izračun inovacije
63

64 % Izbira primerne inovacije ,
65 % zaradi šuma in cikli č nosti kota
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66 for m = 1: size(marker , 1)
67 iii = zTrue (2*m) - (z(2*m) + [0; 2* pi; -2*pi ]);
68 [tmp , index ] = min(abs(iii ));
69 Innov (2*m) = iii( index );
70 end
71

72 % Uteži delcev ( verjetnosti delcev )
73 % Kovarian čna matrika meritev
74 RR = diag( repmat (diag(R), size(marker , 1), 1));
75 W(p) = exp ( -0.5* Innov .’* inv(RR )* Innov ) + 0.0001;
76 end
77

78 iNextGeneration = obtainNextGenerationOfParticles (W, nParticles );
79 xP = xP(:, iNextGeneration );
80

81 % Nova ocena stanj je povpre čje vseh delcev
82 x = mean(xP , 2);
83 x(3) = wrapToPi (x (3));
84 % Usmeritev robota je določena z najbolj verjetnim delcem
85 % namesto s povpre čnim kotom vseh delcev .
86 [gg , ggi] = max(W);
87 x(3) = xP(3, ggi );
88 end

Program 6.15: Funkcija, uporabljena v programih 6.14 in 6.16
./src/prb/obtainNextGenerationOfParticles.m

1 function iNextGeneration = obtainNextGenerationOfParticles (W, nParticles )
2 % Izbira glede na uteži delcev
3 CDF = cumsum (W)/ sum(W);
4 iSelect = rand( nParticles , 1); % Naklju čne š tevilke
5 % Indeksi novih delcev
6 CDFg = [0; CDF ];
7 indg = [1; (1: nParticles ). ’];
8 iNextGeneration_float = interp1 (CDFg , indg , iSelect , ’linear ’);
9 iNextGeneration = round ( iNextGeneration_float + 0.5); % Zaokro ž evanje indeksov

10 end
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Slika 6.50: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
ter generirani delci v zadnjem koraku simulacije primera 6.23
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Slika 6.51: Ocena lege (polna krivulja) in pravo stanje (črtkana krivulja) mobil-
nega robota z začetnim neničelnim pogreškom ocene iz primera 6.23
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V primeru 6.23 merimo kote in razdalje do značk, pri čemer moramo upoštevati
omejitev kota. Primer lokalizacije, kjer merimo le razdalje do značk za oceno
lege mobilnega robota, je prikazan v primeru 6.24.

Primer 6.24

Uporabite filter delcev za oceno najverjetnejšega stanja v primeru 6.23, vendar
upoštevajte le merjenje razdalj do značk. V implementaciji uporabite N = 500
delcev. Vsi ostali podatki so enaki kot v primeru 6.23.

Rešitev

Matlab koda rešitve je prikazana v programu 6.16. Rezultati simulacije so
prikazani na slikah 6.52 in 6.53, od koder je razvidno, da ocenjena vrednost
konvergira k pravi vrednosti podobno kot v primeru 6.23.

Program 6.16: Implementacija rešitve primera 6.24
./src/prb/example_pf2default.m

1 Ts = 0.1; % Rač unski korak
2 xTrue = [1; 2; pi /6]; % Prava začetna lega
3 x = [3; 0; 0]; % Ocena začetne lege
4 P = diag ([9 9 0.6]); % Začetna kovarian čna matrika ocene lege
5 Q = diag ([0.1 0.1]); % Kovarian čna matrika šuma modela gibanja
6 R = diag ([0.5 0.3]); % Kovarian čna matrika šuma merjenja razdalje in
7 % kota
8 enableNoise = 1; % Omogo či šum: 0 ali 1
9 N = 300; % Š tevilo simulacijskih korakov

10 marker = [0 0; 5 5]; % Položaji značk
11 R = R(1 ,1); % Le merjenje razdalje
12

13 % Inicializacija delcev
14 nParticles = 500;
15 xP = repmat (xTrue , 1, nParticles ) + diag ([4 4 1])* randn (3, nParticles );
16 W = ones( nParticles , 1)/ nParticles ; % Vsi delci so enako verjetni
17

18 % Zanka
19 for k = 1:N
20 u = [0.5; 0.5]; % Ukazi ( translatorna in kotna hitrost )
21 u_sum = u + sqrt(Q)* randn (2, 1)* enableNoise ;
22

23 % Simulacija pravih stanj (lege) robota
24 xTrue = xTrue + Ts *[ u_sum (1)* cos( xTrue (3)); ...
25 u_sum (1)* sin( xTrue (3)); ...
26 u_sum (2)];
27 xTrue (3) = wrapToPi ( xTrue (3));
28

29 % Simulacija meritev s šumom ( razdalja )
30 zTrue = [];
31 for m = 1: size(marker , 1)
32 dist = sqrt (( marker (m ,1) - xTrue (1))^2 + ( marker (m ,2) - xTrue (2))^2);
33 zz = [dist] + sqrt(R)* randn (1, 1)* enableNoise ;
34 zz (1) = abs(zz (1));
35 zTrue = [ zTrue ; zz ];
36 end
37
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38 % Predikcija
39 for p = 1: nParticles
40 % Delci se premikajo glede na model šuma
41 un = u + sqrt(Q)* randn (2, 1)*1;
42 xP(:,p) = xP(:,p) + Ts *[ un (1)* cos(xP(3,p)); ...
43 un (1)* sin(xP(3,p)); ...
44 un (2)];
45 xP(3,p) = wrapToPi (xP(3,p));
46 end
47

48 % Korekcija
49 for p = 1: nParticles
50 % Ocenjena meritev za vsak delec
51 z = [];
52 for m = 1: size(marker , 1)
53 dist = sqrt (( marker (m ,1) - xP(1,p))^2 + ( marker (m ,2) - xP(2,p ))^2);
54 zz = [dist ];
55 zz (1) = abs(zz (1));
56 z = [z; zz ];
57 end
58

59 Innov = zTrue - z; % Izračun inovacije
60

61 % Uteži delcev ( verjetnosti delcev )
62 % Kovarian čna matrika meritev
63 RR = diag( repmat (diag(R), size(marker , 1), 1));
64 W(p) = exp ( -0.5* Innov .’* inv(RR )* Innov ) + 0.0001;
65 end
66

67 iNextGeneration = obtainNextGenerationOfParticles (W, nParticles );
68 xP = xP(:, iNextGeneration );
69

70 % Nova ocena stanj je povpre čje vseh delcev
71 x = mean(xP , 2);
72 x(3) = wrapToPi (x (3));
73 % Usmeritev robota je določena z najbolj verjetnim delcem
74 % namesto s povpre čnim kotom vseh delcev .
75 [gg , ggi] = max(W);
76 x(3) = xP(3, ggi );
77 end
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Slika 6.52: Dejanska (črtkana krivulja) in ocenjena (polna krivulja) trajektorija
ter generirani delci v zadnjem koraku simulacije primera 6.24
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Slika 6.53: Ocena lege (polna krivulja) in pravo stanje (črtkana krivulja) mobil-
nega robota z začetnim neničelnim pogreškom ocene iz primera 6.24

Filter delcev je implementacija Bayesovega filtra za zvezne sisteme (zvezni pro-
stor stanj), ki omogoča opis nelinearnih sistemov in lahko upošteva poljubno
porazdelitev šuma. V primeru sistemov večjih dimenzij postane računsko precej
zahteven, saj je za ustrezno konvergenco filtra potrebno veliko število delcev.
Število potrebnih delcev narašča z dimenzijo prostora stanj.

Dobra lastnost filtra delcev je robustnost ter zmožnost rešitve problema globalne
lokalizacije in ugrabitve robota. Pri problemu globalne lokalizacije je začetna lega
(vrednost stanj) neznana, zato se lahko mobilni robot nahaja kjerkoli v prostoru.
Pri problemu ugrabitve pa je robot premaknjen (ugrabljen) na poljubno novo
lokacijo. Robustni lokalizacijski algoritmi so sposobni rešiti te težave.
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7
Agenti in večagentni
sistemi

7.1 Uvod

Eden od načinov reševanja določenih nalog je vpeljava agenta ali entitete, tj.
smiselno zaključena celota, ki je zmožna sama bolj ali manj uspešno reševati
določen problem. Agenti so lahko fizični (robot) in vplivajo na stvarni svet, ali
pa virtualni (simulacije, programske komponente) in vplivajo na virtualno okolje.
Agenti, ki delujejo v nekem okolju, sestavljajo večagentni sistem. Večagentni
sistemi podajajo principe za gradnjo kompleksnih sistemov s pomočjo agentov in
mehanizmov za koordinacijo delovanja neodvisnih agentov.

Osnovno vodenje ali delovanje agenta je potrebno, ne pa tudi zadostno, za
usklajeno delovanje skupine agentov pri doseganju skupnega cilja. Vodenje
večagentnega sistema je tako vedno kombinacija učinkovitega delovanja na nivoju
osnovnih agentov in ustreznega sodelovanja med njimi.

V nadaljevanju je podanih nekaj definicij ter klasifikacij agentov in večagentnih
sistemov.

7.2 Večagentni sistemi

Večagentni sistemi so razmeroma mlada veda na področju umetne inteligence.
Pristopi večagentnih sistemov posegajo na področje porazdeljene umetne inte-
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ligence in umetnega življenja. Namen prvega je razvoj organizacije sistemov,
ki so zmožni reševati probleme z razmišljanjem, drugi pa skuša modelirati žive
organizme, zato preučuje tudi zmožnost preživetja in prilagajanja v običajno
sovražnem okolju. Porazdeljeni sistemi so v računalništvu zelo dobro uvelja-
vljeni (večprocesorski sistemi), medtem ko metode za koordinacijo več agentov v
robotiki pridobivajo na priljubljenosti.

Večagentni sistem je sestavljen iz več popolnoma ali delno avtonomnih agentov
in podaja mehanizme za koordinacijo njihovega delovanja. Agenti izkazujejo
neko obnašanje, ki ga pogosto določajo enostavna pravila in na katerega vpliva
komunikacija z drugimi agenti ter interakcije z okoljem in objekti v okolju. Izziv
večagentnih sistemov je predvsem sodelovanje več agentov, kar dosežemo z izvedbo
nekaj korakov za zagotovitev njihove sinhronizacije, komunikacije (neposredno:
sistem sporočil, skupne tabele ipd.; posredno: opazovanje ostalih, sklepanje) in
pogajanj o delitvi dela.

Večagentni sistem, prikazan na sliki 7.1, lahko torej opredelimo kot sistem, ki v
splošnem vsebuje

• okolje,

• množico pasivnih objektov,

• množico agentov (aktivni objekti v okolici) ter

• množico odnosov in metod interakcije agentov z objekti okolice.

Slika 7.1: Prikaz večagentnega sistema, kjer agent zaznava in vpliva na okolje
ter ostale agente v okolju

Večagentne sisteme, kjer so edini objekti agenti ter okolje ni definirano, imenujemo
komunikacijski večagentni sistemi. V tem primeru odnosi med agenti predstavljajo
omrežje, v katerem je vsak agent povezan z ostalimi. Taki sistemi so pogosti na
področju porazdeljene umetne inteligence (DAI), kjer so agenti tipično programski
moduli.
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V kolikor pa so agenti situirani v okolju ter komunikacija poteka le posredno
preko zaznavanja in delovanja na okolje, imamo izključno situiran večagentni
sistem. Splošni večagentni sistemi imajo lastnosti obeh omenjenih skrajnih oblik.

7.3 Agenti

Čeprav stroga, uveljavljena definicija agenta ne obstaja, lahko rečemo, da agenta
predstavlja entiteta v nekem okolju, ki lahko okolje tudi zazna in v njem deluje,
ima cilje, znanje iz določenega področja ter zmožnost odločanja. Agent ima
senzorje, s katerimi zaznava okolje (npr. senzor bližine zazna oviro), aktuatorje,
s katerimi vpliva na okolje (npr. kolesni pogon premakne robota in/ali odrine
oviro), ter znanje o okolju, v katerem deluje in mu omogoča, da s pomočjo
informacije iz senzorjev upravlja svoje aktuatorje za doseg cilja (npr. doseg
želene lokacije).

Naštejmo nekaj lastnosti, ki opisujejo fizičnega ali virtualnega agenta:

• zmožnost delovanja v okolju,

• zmožnost komunikacije z ostalimi agenti,

• ima nabor svojih teženj in ciljev,

• ima dostop do virov (napajanje, CPU, spomin, informacije),

• ima zmožnost zaznavanja svoje okolice (do določene mere),

• ima svojo (delno) predstavitev okolice, ali pa je sploh nima,

• lahko se reproducira,

• njegovo delovanje stremi k dosegu ciljev, kjer uporablja vire, svoja zna-
nja, zaznave senzorjev, svojo predstavitev okolice (oz. znanje o njej) in
komunikacijo.

Pomembna lastnost agenta je avtonomnost, kar pomeni, da agent ni upravljan
preko operaterja ali drugega agenta, ampak je sposoben samostojnega delovanja
glede na lastne cilje in situacije, v katerih se znajde. Avtonomni agent ima tudi
dostop do lastnih virov, kot so napajanje, pomnilnik, informacije, itd. Agentovo
zaznavanje je omejeno z lastnostmi lastnih senzorjev, zato ima le delno predstavi-
tev okolja, saj ne more zaznavati vsega dogajanja v okolju. Na voljo so mu samo
lokalne informacije, torej tiste v dosegu njegovih senzorjev, zato so večagentni
sistemi večinoma decentralizirani (obnašanje agentov ni centralno nadzorovano).
Agent ima svoje trenutno stanje v okolju predstavljeno s spremenljivkami, njegovo
delovanje pa je odvisno od stanja, v katerem se nahaja. Več ko ima možnih stanj,
na več različnih načinov lahko deluje. Agenti v večagentnem sistemu se lahko
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razlikujejo po lastnostih, obnašanju, virih, zmožnosti predstavitev, sposobnosti
pomnjenja dogodkov in interpretaciji razpoložljivih informacij.

Agent mora imeti sposobnost prilagajanja. Hkrati mora biti njegovo vgrajeno
znanje fleksibilno, da ga lahko dopolnjuje s spreminjanjem določenih parametrov.
Možni so tudi določeni algoritmi, ki slonijo na evoluciji živih bitij, ter ostali
algoritmi strojnega učenja (genetski algoritmi, nevronske mreže, učenje z nagra-
jevanjem). Uspeh teh metod pogojuje dejstvo, da je problem umetne inteligence
pogosto kombinacijsko preveč kompleksen, da bi bil rešljiv v realnem času. Zato
se inteligenca agenta skoraj vedno sestoji le iz dveh virov: znanja, pridobljenega
na osnovi lastnih izkušenj (učenje, adaptiranje), ter vgrajenega znanja.

Agent ima za razliko od ostalih programov in objektno orientiranega programira-
nja naslednje lastnosti:

• zaznava okolje, v katerem se nahaja,

• ima sposobnost interakcije z ostalimi agenti in (najpomembnejše)

• na poti k izpolnjevanju lastnih ciljev se odloča in deluje samoiniciativno.

Objekti so pasivni elementi, ki nimajo možnosti izbire svojega delovanja, temveč
delujejo le na zunanjo iniciativo.

7.4 Arhitektura in delovanje agentov

Klasičen in uveljavljen način vodenja v mobilni robotiki in avtomatiki (od leta
1985 dalje) temelji na načelu zaznaj-planiraj-ukrepaj (SPA, angl. sense-plan-
act). Sistem najprej s senzorji pridobi informacijo iz okolja, nato pa zgradi model
z uporabo pridobljene informacije in načrta, oz. izračuna naslednji korak. Agent
mora torej ugotoviti, kako naj se z vgrajeno strategijo odzove na zaznane podatke.
Na koncu agent ukrepa in izvede akcijo. SPA poteka v iteracijah – po zaznavanju,
planiranju in ukrepanju se celoten cikel ponovi.

SPA je osnova avtomatskega vodenja, kjer se poskuša postopno zmanjševati
pogrešek med želenim in dejanskim stanjem mobilnega (ali kateregakoli drugega)
sistema (slika 7.2).

7.4.1 Kognitivni agenti

Kognitivni agenti (angl. deliberative agents) delujejo po principu SPA. Ko agent
zazna okolico s pomočjo modela sveta (simbolična predstavitev okolice), naredi
načrt za izvedbo akcije.

Agent določi načrt reševanja problema (slika 7.3) korak za korakom (interpretacija
zaznav senzorjev, modeliranje, odločanje, planiranje, izvedba opravil, upravljanje
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Slika 7.2: Osnovni način upravljanja agenta (SPA)

aktuatorjev) na osnovi svojega zaznavanja okolja. Vsak tak agent ima običajno
bazo podatkov in znanje, potrebno za reševanje problemov. V nepredvidljivem
dinamičnem okolju agent z izključno kognitivnimi sposobnostmi ni učinkovit, saj
njegov načrt reševanja problemov ne more predvideti sprememb okolja in bi ga
moral nenehno spreminjati.
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Slika 7.3: Kognitivni agent naredi načrt reševanja problema na osnovi zaznav

Kognitivni agenti imajo nedvomno prednost v statičnih in poznanih okoljih. V
primeru nepričakovanih dogodkov, glede na njihov model sveta, pa lahko odpovejo.
Potrebujejo precej natančen model sveta (npr. zemljevid), ki ga je pogosto težko
dobiti in vzdrževati. Za svoje delovanje potrebujejo veliko procesno moč, kar se
lahko odraža v počasnem odzivu na spremembe v oklici.

7.4.2 Odzivni agenti

Odzivni agenti (slika 7.4) so zmožni povezati svoje zaznavanje okolja z akcijami
vodenja (različno vnaprej definirano obnašanje) in s tem kar najbolje izvršiti



380 Agenti in večagentni sistemi

naloge brez gradnje internega modela okolja (kar je sorodno obnašanju manjših
živali, npr. mravelj).

Delujejo torej po principu zaznaj-deluj brez uporabe simbolične predstavitve
okolja (modela sveta) in planiranja. Zanašajo se le na eno ali več enostavnih
pravil, ki neposredno povežejo zaznave senzorjev z akcijami.

V osnovi odzivni agenti nimajo stanj (ne shranjujejo nekaterih preteklih podatkov),
so brez spomina in internega modela okolice, nimajo možnosti planiranja akcij
vnaprej ter niso zmožni učenja. Njihova prednost je ravno v njihovi preprostosti,
kar jim omogoča hiter (trenuten) odziv.

okolje

senzorji aktuatorji

odziv 1

odziv 2

odziv 3

...

odziv N

odzivna pravila

Slika 7.4: Odzivni agent reagira na zaznave brez načrtovanja

7.4.3 Hibridni agenti

V nepredvidljivem dinamičnem okolju so primernejši hibridni agenti, ki združujejo
dobre lastnosti odzivnih in kognitivnih agentov. Obstajajo agenti, ki nimajo
celotne ali obsežne simbolične predstavitve sveta okoli njih, ampak si zapomnijo
le nekaj pomembnejših parametrov, kar jim lahko pomaga pri boljši asociaciji
zaznav z akcijami ali izvedbi bolj dovršene akcije (npr. agent si lahko zapomni,
da je v bližini stene).

Nadalje ima lahko agent zmožnost adaptacije. To pomeni, da spreminja vzorce
delovanja (obnašanje) in se prilagaja spreminjajočim se razmeram glede na svoje
prejšnje izkušnje. Z drugimi besedami lahko temu rečemo tudi učenje. Za učenje
na individualni ravni mora imeti agent spomin – torej pri popolnoma odzivnih
agentih to ni mogoče.

Obstaja tudi prilagodljivost na ravni sistema, ki je mogoča tudi pri večagentnih
sistemih, sestavljenih iz odzivnih agentov. Če se agenti v sistemu lahko reprodu-
cirajo, se lahko poveča število tistih agentov, ki so bolj primerni za novonastale
razmere.
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7.4.4 Odzivno vedenjski agenti

Njihovo delovanje je enako delovanju odzivnih agentov, le da namesto enostavnih
pravil uporabljajo vloge. Vloge predstavljajo module, ki se izvajajo paralelno
(slika 7.5), torej ima vsak modul dostop do senzorjev in lahko neposredno upravlja
z aktuatorji. Vsaka vloga vsebuje neko znanje v obliki algoritmov vodenja, ki
agentu omogočajo primerno delovanje v določeni situaciji (sledenje steni, iskanje
predmeta, izogibanje oviri, prihod v začetni položaj itd.).

Podajmo nekaj lastnosti vedenjskih agentov:

• vsebujejo različne vloge za doseg ali sledenje ciljem,

• vhodne informacije prejmejo vloge od senzorjev in drugih vlog ter posredu-
jejo ukaze aktuatorjem,

• vloge so lahko kompleksne in sestavljene iz različnih akcij (akcije: stop,
naprej, levo itd.; vloge: sledenje cilju, izogibanje oviri).

Ker se vloge izvajajo hkrati in neodvisno, so taki agenti primerni za aplikacije v
realnem času. Vloge imajo lahko stanja (si zapomnijo zgodovino), model okolice
in zmožnost planiranja vnaprej, kar omogoča izvedbo učinkovitih vlog.

okolje

senzorji aktuatorji

odzivna pravila

vloga 1

vloga 2

vloga 3

...

vloga N

Slika 7.5: Vedenjski agent se odziva na zaznave z izvajanjem vlog

Primer 7.1

Poglejmo si primer izvedbe enostavnega kognitivnega agenta in odzivnega agenta.
Agent je mobilni robot, ki želi iti skozi zaklenjena vrata.

Rešitev
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Kognitivni agent lahko planira svoje delovanje, torej bo zgradil načrt v več
zaporednih korakih v obliki:

Načrt odpiranja vrat:
Grem do mesta, kjer je spravljen ključ,
vzamem ključ,
grem do vrat,
odprem vrata s ključem.

Odzivni agent pa se brez načrtovanja ali razmišljanja odzove na situacije iz
okolja. Njegovo obnašanje omogoča skupek enostavnih pravil Pi oz. vlog:

P1: Če sem pred vrati in imam ključ, potem odprem vrata.
P2: Če sem pred vrati in nimam ključa, potem poskusim

odpreti vrata.
P3: Če se vrata ne odprejo in nimam ključa,

potem grem iskat ključ.
P4: Če iščem ključ in vidim ključ pred sabo, potem

vzamem ključ in grem proti vratom.

Vidimo, da kognitivni agent zgradi načrt, medtem ko ima odzivni agent že
predhodno vgrajena pravila. Kognitivni agent bo gotovo odprl vrata hitreje, z
manj akcijami, saj lahko predvidi zaporedje potrebnih akcij. Odzivni agent pa
bo najprej šel do vrat in nato ugotovil, da nima ključa in da ga mora iti iskat.
Vendar je odzivni agent bolj robusten: če so vrata odprta, jih bo odprl takoj, ne
da bi šel po ključ. Kognitivni agent pa bo šel najprej po ključ, saj njegov model
ne predvideva možnosti, da so vrata mogoče že odprta.

7.4.5 Osnovne vedenjske arhitekture

Možnih je več načinov izvedbe arhitekture odzivno vedenjskih agentov. Osnovni
arhitekturi sta tekmovalna in vsebovana shema.

Tekmovalna shema

Tekmovalna shema (angl. competitive architecture, motor schema architecture) je
princip, ki ga je vpeljal Arkin [1]. Vloga sestoji iz sheme percepcije, ki procesira
vhode iz senzorjev in jih posreduje motornim shemam. Tekmovalne ali motorne
sheme generirajo izhode za vodenje, ki določajo premikanje robota, da doseže
cilj. Gre za to, da več konkurenčnih vlog (shem) posreduje svoje ukaze (hitrost,
smer gibanja itd.) agentu, ukazi posameznih vlog pa so z uporabo potencialnega
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polja predstavljeni kot vektorji, ki so normirani glede na percepcijo in motorno
shemo vloge. Prispevki posameznih vlog se nato združijo v končen ukaz, ki je
posredovan aktuatorju agenta. Druga možnost pa je, da se izmed vseh vlog izbere
le najbolj uspešno (uspešnost se oceni na podlagi določenih parametrov).

V osnovi gre za privlačna in odbojna polja. Predstavljajmo si primer, kjer
agenta privlači cilj (vektor smeri vožnje je v smeri cilja), hkrati pa ga odbija
od ovire (vektor želene smeri vožnje kaže stran od ovire). Bliže je agent oviri,
bolj prevladuje odbojni vektor smeri in privlačni vektor proti cilju se zmanjšuje.
Končna usmeritev je vektorska vsota teh dveh normiranih vektorskih polj.

Primer 7.2

Poglejmo si primer vedenjskega agenta, katerega vloge so organizirane v tekmo-
valno oz. motorno shemo. Imamo preprostega raziskovalnega robota, ki raziskuje
okolje in ob zaznavi predmeta gre ponj. Ko mu zmanjka energije, gre napolnit
akumulatorje. Nabor vlog za izvedbo delovanja agenta povežemo v strukturo,
kot nakazuje slika 7.6.

okolje

senzorji
aktuatorji

Raziskuj okolje

Pojdi in primi objekt

Polni baterije

koordinator

S

agent

Slika 7.6: Tekmovalna shema



384 Agenti in večagentni sistemi

Vsebovana shema

Vsebovana shema (angl. subsumption architecture) je način dekompozicije inteli-
gentnega obnašanja agenta v več preprostih vlog, ki so organizirane po nivojih
glede na prioriteto. Posamezne nivoje lahko zgradimo z uporabo končnih av-
tomatov. Pojem je vpeljal Rodney Brooks [2]. Vse vloge se izvajajo hkrati in
prejemajo informacijo od senzorjev. Vloge z višjo prioriteto posredujejo ukaze
aktuatorjem. Tu velja opomniti, da določene vloge (opravila) lahko onemogočijo
ali spremenijo percepcijo, pa tudi povozijo akcije nižjih prioritetnih vlog.

Vloge lahko onemogočijo svoje delovanje (onemogočijo vhode ali izhode), če na
podlagi senzorjev ni izpolnjen pogoj za njihovo izvajanje. Vloga z višjo prioriteto
lahko onesposobi vloge z nižjo prioriteto. Vloga z najvišjo prioriteto, ki ostane
aktivna, določa novo akcijo.

Vloge z višjimi prioritetami (v višjih slojih) so bolj abstraktne in lahko popol-
noma dosežejo cilj. Višje vloge vključujejo funkcije nižjih vlog. Vloge z nižjimi
prioritetami (nižji sloji) pa so preprostejše in hitro odzivne (refleksi).

Primer 7.3

Poglejmo si primer vedenjskega agenta, katerega vloge so organizirane v vsebovano
shemo. Raziskovalnega robota z nekoliko nadgrajeno funkcionalnostjo primera
7.6 podaja slika 7.7. Nabor vlog za izvedbo delovanja agenta povežemo v
vsebovano strukturo, kjer so vloge razdeljene v nivoje. Vloge v višjih nivojih
lahko onemogočijo vloge v nižjih nivojih, kar nakazujejo krogci.
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okolje

senzorji aktuatorji

Izogibanje ovir
agent

Polnjenje akumulatorjev

Optimizacija poti

Gradnja zemljevida

Raziskuj

Prijemanje objekta

Naklučno tavanje

Slika 7.7: Vsebovana shema

7.4.6 Ostale delitve agentov in večagentnih sis-
temov

Večagentne sisteme lahko obravnavamo glede na štiri lastnosti agentov:

• granulacija agentov (fina ali groba),

• raznolikost znanja agentov (splošno ali specializirano),

• znanje agenta (konstruktivno ali tekmovalno, ekipno ali hierarhično, statično
ali dinamično spreminjanje vloge) in

• komunikacija agentov (oglasna deska ali sporočila, malo ali veliko komuni-
kacije, neposredna ali posredna vsebina).



386 Agenti in večagentni sistemi

Ponavadi imajo agenti grobo granulacijo in visoko stopnjo komunikacije, v ostalih
lastnostih pa se razlikujejo. Skupina sodelujočih agentov je pri reševanju komple-
ksnega problema lahko bolj prilagodljiva in ekonomična kot en sam zmogljivejši
agent, če le uspemo učinkovito rešiti oz. zagotoviti njihovo koordinacijo. Dejstvo
pa je, da ni smiselno pretiravati z večanjem števila agentov pri opravljanju nekega
opravila, ker je v tem primeru vloženo preveč energije v njihovo koordinacijo,
komunikacijo in pogajanja. Isto opravilo lahko enako ali bolj učinkovito opravi
tudi manj agentov.

7.5 Primeri uporabe večagentnih siste-
mov

Področje uporabe večagentnih sistemov je zelo široko. Tako imamo aplikacije
v avtomatizaciji proizvodnje (avtomobilska proizvodnja, avtonomni vozički v
skladiščih) in robote skavte (nevarna območja). Nekatere aplikacije pošiljajo
robote skavte v izvidnico, kjer le-ti med seboj sodelujejo, raziskujejo in kartirajo
teren. To so lahko simulacije ali pa resnične aplikacije (vojska, vesolje, nevarni
tereni: globina, vulkani, minska polja itd.). Modele večagentnih sistemov lahko
uporabljamo za simulacijo transporta in prometa, za raziskovanje potrošniških
in finančnih trgov, preučevanje razširjanja epidemij, optimizacijo proizvodnje in
logistike, simulacijo premikov bojnih enot na bojišču in simulacijo socialnih mrež.
Večagentni sistemi se uporabljajo tudi v filmski industriji za simulacijo velikih
množic ljudi. V filmih, kot so Avatar, Gospodar prstanov, King Kong ipd., je
bil uporabljen programski paket MASSIVE (angl. Multiple agent simulation
system in virtual environment). Nekateri modeli so enostavnejši in zajemajo
le bistvene lastnosti sistemov, drugi pa so kompleksnejši in preverjeni tudi za
uporabo podatkov iz realnega sveta. S pomočjo razvoja specialne programske
opreme za modeliranje večagentnih sistemov in povečevanjem računske moči
računalnikov je možno ustvarjati vedno bolj napredne večagentne aplikacije, s
katerimi pridemo do točnejših rezultatov in ugotovitev na raznovrstnih strokovnih
področjih.

7.5.1 Robotski nogomet — avtonomna igra ko-
lesnih robotov

Prikazan je primer, kako napisati program za kolesne robote, da ti lahko avto-
nomno igrajo nogomet. Vsak robot je predstavljen kot agent, ki lahko okolje
zaznava in v njem deluje v skladu s svojimi cilji in znanjem, ki ga o okolici ima.
Delovanje agentov je izvedeno s pomočjo predstavljenih arhitektur delovanja
(odzivne, kognitivne, hibridne in vedenjske). Vsak agent ima zakodirano znanje,
potrebno za izvedbo osnovnih opravil, kot so vožnja v želeno lego, streljanje žoge
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Slika 7.8: Poligon za robotski nogomet (levo) in diagram izvedbe vodenja (desno)

v želeno smer, branjenje gola in podobno. Ker pri igri nogometa sodeluje več
agentov je potrebno zagotoviti ustrezno koordinacijo njihovega delovanja. Slednje
je zagotovljeno z vsebovano shemo in s predpisanimi prioritetami izvajanja vlog
glede na želeno strategijo igre.

V nadaljevanju so prikazane osnovne izvedbe vlog (npr. vratar, napadalec,
obrambni igralec itd.), ki jih posamezni agenti lahko izvajajo. Pri tem so ključni
algoritmi, za izvedbo gibanja dvokolesnih robotskih vozil po trajektoriji, v želeno
lego in za izogibanja ovir. Te algoritme lahko nato uporabimo za izvedbo vlog
agentov (npr. vratar, napadalec). Vloge lahko na podlagi zaznanih informacij iz
senzorjev določijo ustrezne akcije. Primer je lahko vratar, ki se mora premakniti
na ustrezno pozicijo, da brani strele žoge ali napadalec, ki mora znati priti do žoge
in jo ustreliti (potisniti) v smeri nasprotnikovega gola. Vloge pa se morajo znati
tudi izogibati oviram, ki so lahko drugi igralci ali ograja igrišča. Nekatere vloge
so povsem odzivne druge ali pa vsebujejo tudi elemente planiranja (kognitivne
vloge). Primer slednjega je prediktivno delovanje za bolj učinkovito in hitrejše
prestrezanje gibajoče žoge.

Slika 7.8 prikazuje testni poligon, ki sestoji iz dvokolesnih robotov (deset robotov
za dve moštvi) kockaste oblike s stranico 7.5 cm, igrišča velikosti 2.2 × 1.8 m,
barvne kamere in osebnega računalnika. Kamera je nameščena nad igriščem in
omogoča sledenje objektov (žoge in igralcev) na podlagi barvne informacije [3].

Osnovno delovanje posameznega agenta (robota) prikazuje levi del slike 7.8.
Na podlagi trenutnih lokacij objektov in izbrane strategije delovanja program
agentom dodeli ustrezne vloge. Vloga med drugim vsebuje algoritem za določitev
želene smeri in hitrosti gibanja agenta. Algoritem vodenja nato določi referenčne
ukaze za translatorno in kotno hitrost, ki se robotu pošljejo preko brezžične
povezave. Robot nato s pomočjo internega regulatorja PID doseže želene hitrosti
vrtenja koles. Omenjeni cikel se izvaja s frekvenco 30 ali 60 Hz.
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Slika 7.9: Algoritem vodenja napadalnega robota, ki ustreli žogo proti golu

Podrobnejše delovanje sistema je opisano v treh podpoglavjih. V prvem so
opisani algoritmi za izvedbo gibanja. V drugem delu predstavimo vloge za
izvedbo odzivno vedenjske arhitekture delovanja posameznega agenta. V zadnjem
podpoglavju pa je predstavljen večagentni sistem s kooperativnim delovanjem
upoštevajoč strategijo igre.

Izvedba algoritmov za različne vloge

Za izvedbo želenega delovanja agentov je potrebno napisati ustrezne algoritme
vodenja. Ti algoritmi bodo npr. napadalcu omogočili, da se žogi približa s prave
strani in jo potisne v smeri gola. Podobno se mora vratar voziti v liniji pred
golom in prestreči strele na gol. V nadaljevanju predstavimo nekaj osnovnih vlog
uporabljenih v igri robotskega nogometa.

Vloga napadalec

Osnovni način delovanja napadalca (oz. agenta z vlogo napadalec) je, da pride
do žoge in jo potisne v smeri gola. Torej referenčna lokacija vsebuje pozicijo žoge
(xref ,yref ) in referenčno orientacijo (ϕref ), ki je v smeri želene smeri gibanja
žoge po trku (glejte sliko 7.9).

Za strel proti golu (xg, yg) definiramo referenčno orientacijo kot

ϕref = atan2 (yg − yref , xg − xref )

kjer je atan2 (y, x) štirikvadrantna razširitev funkcije arctan y
x . Za izvedbo vode-

nja lahko uporabimo enega od prikazanih algortimov v poglavju 3.2.3.

V primeru, ko se žoga premika, je vodenje proti trenutni poziciji žoge (xb, yb),
kot ga prikazuje slika 7.9, manj učinkovito. Boljše delovanje lahko dosežemo, če
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Slika 7.10: Predikcija gibanja žoge in ocena točke, kjer robot žogo lahko prestreže.
Predpostavimo premočrtno gibanje robota in konstantno hitrost v.

izračunamo prihodnjo pozicijo žoge, kjer jo prestreže. V splošnem je izračun pre-
dikcije žoge za poljubno gibanje robota zahteven problem. Zato tu predpostavimo,
da se robot lahko giblje premočrtno, kot prikazuje slika 7.10.

Relativni kot α med smerjo kotaljenja žoge in povezavo z robotom lahko ocenimo
iz skalarnega produkta

[vb cosϕb, vb sinϕb]T · [x− xb, y − yb]T

vb
√

(x− xb)2 + (y − yb)2
= cosα

Nadalje z uporabo sinusnega izreka vb
sin β = v

sinα določimo še kot β in kot γ =
π − α − β. Končno lahko z uporabo sinusnega izreka d

sin γ = vbt
sin β izračunamo

potreben čas, ki ga robot rabi, da doseže predvideno pozicijo žoge (xref , yref ).

t = d sin β
vb sin γ

Predikcija pozicija žoge oziroma referenčna pozicija je

xref = xb + vbt cosϕb
yref = yb + vbt sinϕb

Izračunana referenčna točka bo dosegljiva le, če bo robot na začetku usmerjen
proti žogi in bo hkrati želena smer strela žoge ϕref podobna začetni orientaciji
robota ϕ. Slednje je redko izpolnjeno saj je dejanska pot robota večinoma daljša
od direktne linije, ki jo pri izračunu predpostavimo. Robot v splošnem tudi ni
obrnjen proti predvideni referenčni točki in končna smer strela mora biti v smeri
gola. Upoštevajoč približno oceno dejanske razdelje vožnje l do referenčne lege
xref , yref , ϕref lahko prilagodimo hitrost vožnje robota vn = l

t , da ta doseže
izračunano predikcijo žoge v predvidenem času t.

Vloga napadalec s premočrtnim enakomerno pospešenim strelom
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Slika 7.11: Premočrtni, enakomerno pospešeni strel na gol. Robot na začetku
miruje in je usmerjen proti golu. Potrebno pospeševanje in predikcijo pozicije
žoge je potrebno izračunati.

Gibajočo žogo lahko natančno ustrelimo na gol, če je začetna orientacija robota
v smeri gola xg, yg in je gibanje robota enakomerno pospešeno. Razmere so
prikazane na sliki 7.11. Neznano referenčno pozicijo (xref , yref ) lahko izračunamo
iz trenutne znane pozicije žoge in njenega gibanja (hitrost vb in smer ϕb)

xref = xb + vbt cosϕb
yref = yb + vbt sinϕb

(7.1)

oziroma jo lahko določimo tudi iz pozicije robota

xref = x+ (xg − x)p
yref = y + (yg − y)p

(7.2)

kjer je t čas, ko robot lahko doseže žogo s predpisanim premočrtnim gibanjem
in p je ustrezen parameter. Z upoševanjem enačb (7.1) in (7.2) lahko napišemo
sledečo matrično relacijo[

xg − x −vb cosϕb
yg − y −vb sinϕb

][
p

t

]
=
[
xb − x
yb − y

]

ki je krajše predstavljena kotAu = b. Določimo njeno rešitev u = A−1b. Rešitev
je veljavna, če je 0 < p < 1, kar pomeni, da je točka prestrezanja žoge med
robotom in golom. Referenčno točko določimo kot

xref = xb + vbt cosϕb
yref = yb + vbt sinϕb
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Slika 7.12: Gibanje robota pri vlogi vratar

in potreben pospešek vožnje a(t) upoštevajoč trenutno hitrost vožnje v(t) dolo-
čimo iz

a(t) =
2
(√

(xref − x)2 + (yref − y)2 − v(t)
)

t2
.

V kolikor je vloga uspešna (0 < p < 1) robotu ukažemo novo translatorno
hitrost gibanja v ((k + 1)Ts) = v(kTs) + a(kTs)Ts, kjer je v((k + 1)Ts) hitrost
v naslednjem trenutku, v(kTs) trenutna hitrost, Ts je računski korak in k je
naravno število. Kotno hitrost robota vodimo, da se ta pelje v želeni smeri
ϕref = arctan yg−y

xg−x .

Vloga vratar

Vratar se se giblje v ravni liniji pred golom med točkama T in T kot je prikazano
na sliki 7.12. Trenutno referenčno pozicijo xref , yref je potrebno določiti glede
na pozicijo žoge xb, yb, njeno hitrostjo vb in smerjo kotaljenja ϕb. Robot se
mora prediktivno premakniti na pozicijo kjer bo žoga prečkala črtkano črto pred
golom. Iz znanih podatkov določimo čas, v katerem bo žoga prečkala linijo gola
in referenčno pozicijo

t = xg − xb
vb cosϕb

xref = xg

yref = yb + vbt sinϕb

ϕref = π

2

kjer je xg koordinata linije gola.
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Za vožnjo po liniji gola lahko uporabimo linearen algoritem vodenja za sledenje
trajektoriji predstavljen v poglavju 3.3.5. Kjer nastavimo referenčne hitrosti
(vref , ωref ) za referenčno pozicijo na nič. Regulacijski zakon se tako poenostavi
v

v = kxex

ω = kϕeϕ + sign(v)kyey

kjer so ojačenja kx, ky in kϕ lahko konstantna in določena eksperimentalno.
Lokalne pogreške ex, ey in eϕ izračunamo z izrazom (3.28), kjer poskrbimo, da
je eϕ v območju −π < eϕ ≤ π.

Delovanje vratarja lahko nadalje izboljšamo, če zagotovimo, da se vratar nikoli
ne obrača za več kot |π2 |. V primeru, ko je |eϕ| > π

2 , to dosežemo z vzvratno
vožnjo in popravljenim pogreškom orientacije

eϕ =
{
eϕ − π ; eϕ >

π
2

eϕ + π ; eϕ < −π2

Izogibanje oviram

Igrišče je obkroženo z ograjo in v igri sodeluje več igralcev, zato morajo opisane
vloge (predvsem napadalec) vsebovati tudi algoritem izogibanja oviram. Tako
obnašanje lahko učinkovito dosežemo z uporabo metode potencialnega polja, ki
je predstavljena v poglavju 4.2.4.

Arhitektura delovanja posameznega agenta

Za namen lažje razlage predpostavimo, da moštvo sestoji iz treh robotov oziroma
agentov. Vsak agent lahko v danem trenutku izbira med naborom različnih vlog
(npr. vratar, napadalec, sredinski igralec, itd.). Izbira vlog in s tem delovanje
agenta je izvedena z vsebovano shemo, kjer so vloge organizirane po prioritetah,
kot je opisano v poglavju 7.4.5. Z izbiro prioritet lahko določamo strategijo igre.
Bolj obrambno strategijo dosežemo z večjimi prioritetami obrambnih vlog in
obratno, bolj napadalno strategijo dobimo, če imajo višjo prioriteto napadalne
vloge.

V danem trenutku glede na trenutno situacijo igre (lega agenta, pozicija žoge,
pozicije soigralcev in nasprotnih igralcev) se agent odloči katero vlogo bo izvajal.
Agent najprej preverja pogoje za izvedbo bolj prioritetnih vlog, če pogoji niso
izpolnjeni, potem preverja manj prioritetne vloge. Primer pogoja za vlogo vratar
je razdalja agenta do gola, v kolikor je najbližje golu (med soigralci) je pogoj za
izvajanje vloge vratar izpolnjen. Podobno lahko definiramo pogoj za napadalne
vloge upoštevajoč razdaljo do žoge.
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Posamezne vloge lahko imajo več možnih načinov delovanja. Pri izvajanju vloge
vratar se mora agent nahajati pred golom. Če temu ni tako, se mora agent
najprej pripeljati pred gol. Če se nahaja pred golom, potem lahko brani gol,
izračuna pot žoge in se prediktivno premakne na pozicijo, kjer bo žoga prečkala
linijo gola (kot je opisano v podpoglavju 7.5.1).

Podobno lahko agent izvaja napadalne vloge, če je najbližje žogi oziroma jo
lahko najhitreje doseže (glede na ostale soigralce). Agent lahko izvaja osnovno
vlogo napadalec brez predikcije gibanja žoge, če je hitrost kotaljenja žoge nizka,
drugače pa izbere prediktivno delovanje. Če je izpolnjen pogoj za premočrtno
pospešen strel, potem izvaja to vlogo, saj je njena uspešnost večja in ima zato
nastavljeno višjo prioriteto. Dodatno napadalec preverja možnost trka z ovirami
in se jim izogiba. Izogibanje pa ni vselej zaželeno, npr. če ima napadalec žogo v
posesti, izogibanje soigralcem ali nasprotnikom ni vselej smiselno.

Tretji agent je sredinski igralec, ki se poskuša pozicionirati na strateške lokacije
(preddoločene) in se orientirati proti nasprotnikovem golu. Najprej se mora
pripeljati v želeno pozicijo, nato pa še zavrteti v želeno smer proti nasprotnemu
golu. Ta vloga je pomembna za potek igre, saj agenti lahko dinamično spremi-
njajo vloge med igro (vloge niso statično dodeljene). Igralec s to vlogo lahko
v naslednjem trenutku, če je izpolnjen pogoj, prevzame vlogo prediktivnega
napadalca in izvede pospešen strel na gol.

Večagentna igra, koordinacija in strategija igre

Izvajanje vseh predhodno definiranih vlog z razpoložljivimi agenti lahko rezultira
v avtonomno igro robotskega nogometa. Za boljšo učinkovitost moštva pa je
potrebno poskrbeti še za koordinacijo izvajanja vlog med agenti. V danem
trenutku je namreč lahko vratar le en igralec in tudi ni smiselno, da več agentov
hkrati želi prevzeti žogo, saj bi se pri tem ovirali.

Opisane vloge imajo dodeljene prioritete, kar definira želeno strategijo igre (bolj
obrambno ali napadalno). Dodatno ima vsaka vloga tudi funkcijo kriterij, s katero
lahko posamezen agent preveri njeno učinkovitost v dani situaciji. Kriteriji so
lahko enostavni kot na primer: razdalja do žoge, razdalja do gola in podobno. Vsi
agenti tako najprej preverijo njihovo učinkovitost izvajanja za najbolj prioritetno
vloge (npr. vratar) in se pogajajo za njeno izvajanje. Najbolj uspešen agent
lahko prevzame vlogo v naslednjem trenutku igre, ostali pa se potegujejo za manj
prioritetne preostale vloge (napadalec, prediktivni napadalec, sredinski igralec in
podobno) iz seznama vlog.

Za izvedbo pogajanja, kateri agent lahko v danem trenutku izvaja določeno
vlogo, je potrebno zagotoviti medagentno komunikacijo. Agenti si lahko sporočijo
kriterije učinkovitosti za posamezne vloge in se koordinirano odločijo za njihovo
izvajanje.

Vloge se med igro dinamično dodeljujejo agentom, kot je podrobneje opisano v
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[4] in prikazano tudi na dveh izsekih igre s slikama 7.13 and 7.14. V tem primeru
igra pet robotov proti petim nasprotnikom in strategija domačega moštva sestoji
iz enajstih vlog. Nekatere od njih so zelo podobne predhodno opisanim.

Sliki 7.13 prikazuje daljši prodor agenta 1. Agent se začne približevati žogi z
vlogo napadalec (indeks 0) in se nato približuje bodoči točki srečanja z žogo
(vloga prediktivni napadalec z indeksom 8). Napad se zaključi tako, da agent
preklopi v vlogo kreatorja (indeks 4), kjer robot v kontaktu z žogo pospešeno vozi
proti golu. Omeniti je potrebno, da nasprotnikove pozicije na sliki 7.13 ustrezajo
času posnetka 12.08 sekund. Zdi se, da bo nasprotnikov igralec blokiral agenta
1 in smer kotaljenja žoge, vendar se ta kasneje premakne proč in tako je imel
agent 1 prosto pot v gol. Iz diagrama potekov indeksov vlog na sliki 7.13 lahko
pri prvem agentu opazimo kratek skok iz vloge z indeksom 4 (kreator) na vlogo
z indeksom 3 (prediktivni napadalec) in nato nazaj. To se je zgodilo zato, ker se
je žoga nekoliko bolj oddaljila od agenta 1 in kriterijska funkcija za vlogo 4 ni
bila več izpolnjena. V tem primeru je postala aktivna neka druga aktivna vloga
(prediktivni napadalec). Nadalje lahko opazimo, da so ostali agenti zavzeli vloge
vratarja (agent 2 ,vloga 1) in sredinskih igralcev (agenti 3 do 5, vloga 5).

Primer dobre podaje agenta 3 z vlogo napadalec (indeks 0) preko odboja žoge od
ograje prikazuje slika 7.14. Po odboju žogo prestreže agent 5 z vlogo napadalca
s premočrtnim pospešenim strelom (indeks 6) in akcijo zaključi z vlogo kreatorja
(vloga z indeksom 4, kjer robot v kontaktu z žogo pospešeno vozi proti golu).

7.5.2 Vožnja vozil v formaciji

Bodoče inteligentne transportne sisteme si težko predstavljamo brez avtonomnih
kolesnih vozil. Pomembna tovrstna aplikacija je avtomatiziran vod (formacija)
vozil na avtocestah, ki lahko vozijo avtonomno en za drugim z minimalno varno-
stno razdaljo kot virtualni vlak. Gre za primer večagentnega sistema. Vozila v
formaciji morajo natančno in varno sledi svojemu predhodnemu vozilu z upošteva-
njem minimalne varnostne razdalje. Tak pristop bi povečal gostoto transportnih
vozil na avtocestah, izboljšal prometne zastoje, pretočnost in varnost.

Prikazan je primer izvedbe algoritma vodenja za mobilna vozila v linearni forma-
ciji. Za avtomatizirano vožnjo potrebujemo natančen senzorski sistem, ki meri
globalne informacije vozil (npr. GPS senzorji) ali relativne informacije kot je
razdalja in smer med vozili (npr. laserski pregledovalnih razdalj, LRF) oziroma
oboje.

V prikazanem primeru se bomo omejili le na relativne senzorje. Vodenje vozil bo
izvedeno decentralizirano, kjer vozila (agenti) upoštevajo le lokalno informacije,
ki jih lahko izmerijo s pomočjo laserskega pregledovalnika razdalj (LRF), kot je
prikazano v [5]. Predpostavimo, da ima vsako vozilo LRF za merjenje razdalje in
azimuta svojega predhodnega vozila. Pot vodilnega vozila se zabeleži v lokalnih
koordinatah sledilnega vozila z uporabo odometrije in LRF meritev (razdalje D
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Slika 7.13: Primer usklajenega izvajanja vlog v igri robotskega nogometa. Slika
prikazuje trajektorije robotov in diagram dinamičnega dodeljevanja vlog.
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Slika 7.14: Primer usklajenega izvajanja vlog v igri robotskega nogometa. Slika
prikazuje trajektorije robotov in diagram dinamičnega dodeljevanja vlog.
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Slika 7.15: Vožnja vozil v linearni formaciji. Vsako sledilno vozilo ocenjuje pot
svojega predhodnika in ji sledi s pomočjo algoritma sledenje po trajektoriji.

in smeri α) kot je prikazano na sliki 7.15. Sledilna vozila sledijo ocenjeni poti
svojih predhodnikov z uporabo algoritma sledenja trajektoriji, predstavljenega v
poglavju 3.3.

Znano je, da je lokalizacija vozila z uporabo odometrije podvržena akumulaciji
različnih pogreškov skozi čas (zdrs koles, šum senzorjev in aktuatorjev ter po-
dobno). Torej je uporabnost odometrije omejena le na krajša časovna obdobja,
ko je napaka zaradi akumulacije še zanemarljiva. V nadaljevanju je pokazano,
da absolutna napaka lege zaradi odometrije ni ključna pri vodenju v linearni
formaciji saj je tu pomembna le relativna informacija med vozili (D in α). Slednja
je izmerjena z natančnim senzorjem LRF, medtem ko je odometrija uporabljena
le za kratko obdobje, da ocenimo odsek poti predhodnega vozila, ki mu sledilno
vozilo mora slediti v bližnji prihodnosti.

V nadaljevanju najprej predstavimo tri podsisteme, ki jih kasneje integriramo v
končno aplikacijo linearne formacije vozil. Prvi sklop opisuje izvedbo lokalizacije
z odometrijo. Drugi sklop opiše oceno trajektorije predhodnega vozila. Tretji
sklop pa predstavi algoritem vodenja za sledenje ocenjeni trajektoriji za formacijo.
Vsako vozilo predstavlja neodvisnega agenta, ki izvaja omenjene algoritme. Vsi
agenti (razen vodilnega) imajo enako obnašanje, s senzorji zbirajo informacije
o predhodniku, ocenjujejo njegovo pot in sledijo ocenjeno pot predhodnika na
predpisani varnostni razdalji.

Lokalizacija z uporabo odometrije

Odometrija je najpreprostejša metoda za lokalizacijo, kjer lego ocenjujemo z
integracijo kinematičnega modela pri znanih hitrosti vozila. Hitrosti vozila
z diferencialnim pogonom so znane v diskretnih časovnih trenutkih t = kTS ,
k = 0, 1, 2, . . . kjer je Ts čas vzorčenja. Naslednjo lego vozila (pri (k+1)) ocenimo
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iz trenutne lege (k) in trenutnih hitrosti (glejte poglavje 2.2.1)

x(k + 1) = x(k) + v(k)Ts cos(ϕ(k))
y(k + 1) = y(k) + v(k)Ts sin(ϕ(k))
ϕ(k + 1) = ϕ(k) + ω(k)Ts

Ker za namen sledenja v linearni formaciji začetna absolutna lega vozila ni
pomembna jo lahko postavimo kar v začetno (pri k = 0) koordinatno izhodišče
sledilnega vozila.

Ocena referenčne trajektorije

Vsako sledilno vozilo pozna svojo lego v globalnih koordinatah ocenjeno z odo-
metrijo. Vozilo lahko tako tudi določi lokacijo svojega predhodnika iz poznanih
relativnih pozicij med njima. Ta relativna pozicija je izmerjena s pomočjo meri-
tev senzorja LRF in vsebuje razdaljo D(k) in kot do predhodnega vozila α(k).
Osnovna ideja je sledenje pozicije predhodnega vozila, ocena njegove trajektorije
vožnje in nato lahko sledilno vozilo uporabi to trajektorijo kot referenco in ji
sledi.

Lega predhodnega vozila (xL(k), yL(k), ϕL(k)) je ocenjena kot

xL(k) = x(k) +D(k) cos(ϕ(k) + α(k))
yL(k) = y(k) +D(k) sin(ϕ(k) + α(k))

Če potrebujemo pozicijo predhodnega vozila ob določenem času t 6= kTs jo lahko
ocenimo s pomočjo interpolacije

xL(t) = xL(kTs) + t− kTs
Ts

(xL (k + 1)Ts − xL (kTs))

yL(t) = yL(kTs) + t− kTs
Ts

(yL (k + 1)Ts − yL (kTs))

Vsako sledilno vozilo mora slediti opravljeni poti svojega predhodnika (vodilnega
vozila) na razdalji DL merjeno po opravljeni trajektoriji vodilnega vozila. Torej
moramo ob trenutnem času t0 oceniti pozicijo vodilnega pri času t = T (xL(T ),
yL(T )) tako, da je razdalja med trenutno pozicijo vodilnega robota pri t0 in
prejšnjo pozicija vodilnega robota pri t = T enaka DL. Ta pozicija predstavlja
referenco za sledilno vozilo (glejte sliko 7.16).

Da sledimo opravljeni trajektoriji vodilnega vozila mora sledilno vozilo poznati
referenčno trajektorijo in ne zgolj trenutno referenčno pozicijo. Trajektorija
vodilnega vozila je ocenjena v parametrični polinomski obliki

x̂L(t) = ax2t
2 + ax1t+ ax0

ŷL(t) = ay2t
2 + ay1t+ ay0

upoštevajoč šest pozicij vodilnega vozila, tri pred in tri za referenčno pozicijo, kot
je prikazano na sliki 7.16. Koeficienti polinoma axi in ayi (i = 0, 1, 2) so ocenjeni
z metodo najmanjših kvadratov.
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Slika 7.16: Sledilno vozilo mora slediti predhodno vozilo na razdalji DL vzdolž
trajektorije. Oblika referenčne trajektorije v okolici trenutne referenčne lege
xref (t0), yref (t0) je ocenjeno s pomočjo šestih okoliških točk okrog referenčne
točke.

Referenčna pozicija za sledilno vozilo ob trenutnem času t0 je ocenjena zxref (t0)
yref (t0)
ϕref (t0)

 =

x̂L(T )
ŷL(T )
ϕ̂L(T )

 =

 ax2T
2 + ax1T + ax0

ay2T
2 + ay1T + ay0

atan2 (2ay2T + ay1, 2ax2T + ax1)

 (7.3)

kjer je atan2 (y, x) štirikvadrantna razširitev funkcije arctan y
x .

Vodenje vozil v linearni formaciji

Vsako sledilno vozilo mora oceniti in slediti referenčno trajektorijo (7.3) z uporabo
nelinearnega regulatorja predstavljenega v poglavju 3.3.6 kot sledi

vfb = vref cos eϕ + kxex

ωfb = ωref + kyvref
sin eϕ
eϕ

ey + kϕeϕ

kjer so predkrmilni signali (glejte poglavje 3.3.2) določeni iz ocenjene referenčne
trajektorije (7.3) kot

vref (t0) =
√
ẋ2
ref + ẏ2

ref =
√

(2ax2T + ax1)2 + (2ay2T + ay1)2

in

ωref (t0) = ẋref (t)ÿref (t)− ẏref (t)ẍref (t)
ẋ2
ref (t) + ẏ2

ref (t) = (2ax2T + ax1)2ay2 − (2ay2T + ay1)2ax2
(2ax2T + ax1)2 + (2ay2T + ay1)2 .



400 Agenti in večagentni sistemi

Sledilni pogrešek pa je izračunan upoštevajoč dejansko lego sledilnega vozila
(x(t0), y(t0), ϕ(t0)) in referenčne lege (xref (t0), yref (t0), ϕref (t0)) z enačbo
(3.28).

7.5.3 Avtomatsko vodeni vozički

Večagentni sistem so tudi avtomatsko vodeni vozički (AGV, angl. automated
guided vehicle), ki jih dandanes srečamo v mnogih modernih industrijskih halah.
Gre za floto mobilnih vozil, ki se avtonomno gibljejo in opravljajo naloge, ki
so jim dodeljene. Pogosto se uporabljajo za razvoz materiala in/ali izdelkov.
V ta namen imajo AGV-ji lahko vgrajen tovorni prostor, pogosteje pa imajo
le posebne mehanizme (običajno preproste, lahko pa tudi dvižne vilice ali celo
robotske roke), ki omogočajo prijemanje in odlaganje tovora. To lahko storijo
tako, da se pripeljejo pred/pod pasivni mobilni voziček, ga zapnejo in nato
vlečejo. Ali tako, da pridejo do standardiziranega zabojnika (npr. paleta), ki
ga dvignejo, prepeljejo in nato odložijo. Lahko pa so mehanizmi ali robotske
roke za natovarjanje/raztovarjanje kar na postajah, med katerimi tovor razvažajo
AGV-ji. Gibanje AGV-jev med postajami običajno ni povsem prosto, temveč
so postaje med seboj povezane z omrežjem označenih prog, po katerih se AGV-
ji lahko gibljejo. Okolje je torej prirejeno za avtomatsko delovanje AGV-jev
tako, da so v okolju na primeren način označene proge. Pogosto se v ta namen
uporabljajo magnetni trakovi in RFID-značke, ki so vgrajeni v podlago. Lahko
se uporabljajo tudi vidne oznake (npr. kontrastne/barvne črte, QR-kode). AGV
lahko tako s primernimi senzorji sledi talnim oznakam in tudi določa svoj položaj
v omrežju prog na podlagi unikatnih značk, ki se najajajo ob progah. Lahko pa
so proge definirane tudi virtualno, če imamo na voljo globalni ali lokalni sistem,
ki omogoča lokalizacijo AGV-ja v okolju. AGV-ji imajo vgrajene še dodatne
senzorje bližine, ki jim omogočajo varno delovanje in zaustavitev v primeru ovir
na poti. Če je v okolju prisoten tudi človek, potem se pogosto zahteva, da je
AGV opremljen z varnostnim laserskih merilnikom razdalj.

V nadaljevanju je predstavljen fizični model pomanjšane industrijske hale (slika
7.17) z omrežjem poti po katerih se vozijo miniaturni avtomatsko vodeni vo-
zički. Dimenzije poligona so 2,2 m× 1,8 m, dimenzije miniaturnega AGV-ja pa
0,1 m × 0,2 m × 0,06 m. Sistem je bil izdelan za raziskave, razvoj in preizkuša-
nje algoritmov, ki omogočajo avtonomno delovanje AGV-jev, ter za pedagoške
namene. Pri izdelavi miniaturnih AGV-jev nismo zahtevali natančne preslikave
dejanske situacije iz industrijskega okolja, saj vseh sistemov (npr. laserskega me-
rilnika razdalj, pogonskega mehanizma) ni moč primerno pomanjšati. S fizičnim
modelom tako posnemamo le tiste lastnosti avtomatsko vodenih vozičkov, ki so
potrebne za učenje in razvoj algoritmov za avtonomno vožnjo. Celoten sistem
smo zasnovali tako, da je možna izvedba in študija različnih algoritmov za avtono-
mno delovanje mobilnih vozičkov: odometrija, vodenje po poti, načrtovanje poti
med poljubnimi cilji, iskanje alternativnih poti in obvozov v primeru zastojev,
lokalizacija v znanem zemljevidu okolja, večagentno vodenje in podobno. Zaradi
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AGV

Referenčna značka

Sledilna črta

RFID-značka (pod podlago)

Slika 7.17: Fizični model industrijske hale z AGV-ji

boljše povezljivost med različnimi sistemi in modularnosti smo se odločili, da
bomo uporabili okolje ROS (angl. Robot operating system).

Globalni sistem za merjenje lege s strojnim vidom

Nad poligonom z miniaturnimi AGV-ji se nahaja kamera, ki omogoča sledenje
vseh objektov, ki se gibljejo v ravnini poligona. Lega kamere glede na poligon je
poljubna, dokler so vsi objekti vidni v njenem vidnem polju. Predpostavimo, da
je lega kamere glede na globalni koordinatni sistem (glede na poligon) podana z
rotacijsko matriko R = [r1, r2, r3] in translacijskih vektorjem t. Če uporabimo
model kamere z luknjico, je povezava med homogeno točko pTW = [xW , yW , 1] v
poljubni globalni ravnini in homogeno točko na sliki pTP = [xP , yP , 1] podana z

pP ∝ S
[
r1 r2 t

]
pW = HpW (7.4)

Matrika S v (7.4) vsebuje notranje parametre kamere (glejte poglavje 5.2.4).
Matriko S lahko določimo s postopkom kalibracije kamere, npr. z uporabo dobro
znanega pristopa s šahovnico [6]. Preslikava H v (7.4) je znana kot homografija
— predstavlja preslikavo med ravninama.

Homografijo H lahko ocenimo na podlagi vsaj štirih parov točk v slikovni in
globalni ravnini. Zato vsebuje poligon štiri referenčne značke (glejte sliko 7.17) —
lokacija teh značk glede na globalni koordinatni sistem je znana. Vsak AGV (ali
drug objekt, katerega lego želimo meriti) mora tudi biti opremljen z unikatno
značko, ki ni nujno, da se nahaja v ravnini tal. Med gibanjem AGV-ja po
ravni podlagi se značka na njem giblje po virtualni ravnini, ki je vzporedna z
ravnino tal. Situacija je prikazana na sliki 7.18. zatorej lege AGV-ja ne moremo
oceniti neposredno iz znane homografije H. Ker predpostavljamo, da je višina
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Kamera

Referenčna značka
Referenčna ravnina

Virtualna ravnina

H
Hh(h)

h

Značka

Objekt

ID1

ID2

ID3

ID4

ID11

Slika 7.18: Sistem za merjenje lege s kamero

h, na kateri je nameščena značka glede na podlago, znana, je možno določiti
homografijo Hh(h) za to vzporedno ravnino iz znane homografije H.

Slika položaja pP značke, ki se nahaja v vzporedni ravnini glede na referenčno
ravnino (tla) na višini h, lahko preslikamo (z ortogonalno projekcijo) v točko pW
v ravnini tal:

pW ∝H−1
h (h)pP

Da lahko ocenimo homografijo Hh(h), moramo poznati notranje parametre
kamere S

Hh(h) = S
[
q1 q2 (q1 × q2)hn + q3

]
(7.5)

kjer lahko koeficient normiranja n določimo kot

n = (‖q1‖+ ‖q2‖)/2 (7.6)

Vektorji q1 do q3 v enačbah (7.5) in (7.6) so

S−1H =
[
q1 q2 q3

]
Če uporabljene značke niso invariantne na rotacijo, lahko določimo tudi usmer-
jenost značke in torej celotno lego (položaj in orientacijo) označenega objekta
v globalni ravnini. Predstavljen pristop merjenja lege objektov na ravnini je
mogoč za poljubno postavitev kamere, dokler so vsi objekti vidni in v vidnem
polju kamere, a točnost in natančnost meritev lahko variira. Sledenje objektov
je mogoče izvesti tudi pri premikajoči se kameri, če pri tem ne pride do okluzij
nobenih značk. Sicer pa lahko homografijo H ocenimo le kadar so vidne vse
oz. vsaj štiri referenčne značke. V kolikor se AGV-ji gibljejo le po ravni podlagi
poligona, omogoča predstavljen pristop ocenjevanja leg zelo točne meritve, saj je
omejitev gibanja na ravnino upoštevana implicitno. Če je kamera kalibrirana,
lahko globino značk ocenimo tudi na podlagi znane velikosti značk. V našem
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primeru je globina ocenjena implicitno glede na štiri referenčne značke na ravnini
tal. Te značke niso kolinearne in so relativno daleč narazen, kar omogoča, da je
ocena homografije H zelo točna.

V primeru močne popačitve slike, zaradi distorzij leč, lahko le-te opišemo z
nelinearnim modelom

pP = f(p∗P ) (7.7)

kjer p∗P predstavlja točko na popačeni sliki in pP je točka na popravljeni sliki, kjer
je popačitev odpravljena. Model distorzije (7.7) lahko ocenimo tekom postopka
kalibracije kamere (glejte npr. [7]).

Za detekcijo in sledenje unikatnih značk (s posebnimi črno-belimi vzorci) na sliki
smo uporabili knjižnico ArUco [8, 9], ki je računsko učinkovita in robustna, torej
je primerna za delovanje v realnem času, tudi ob spremenljivi osvetlitvi. Celoten
sistem za sledenje več objektov je računsko precej učinkovit in ga je mogoče izvesti
na nizkocenovni strojni opremi. V našem primeru smo izvedli celoten sistem
na vgradnem računalniku Raspberry Pi 3 B+ s kamero Raspberry Pi Camera
Board v2, ki se nahaja približno 2,5 m nad poligonom. V naši izvedbi smo dosegli
merjenje lege več objektov v globalnem koordinatnem sistemu s frekvenco 15 Hz.
Pri mirujočih objektih smo dosegli standardno deviacijo 0,0001 m pri merjenju
položaja in 0,003 rad pri merjenju orientacije (širina značk je 0,1 m). Vse meritve
se sproti objavljajo v omrežje ROS in so tako na voljo vsem AGV-jem in ostalim
sistemom. Sistem je modularen in precej enostaven za uporabo. Ko imamo na
voljo notranje parametre kamere (le-te lahko določimo s postopkom kalibracije,
npr. s šahovnico), moramo vnesti le še lokacije štirih referenčnih značk na ravnini
tal in izmeriti višine vseh značk na objektih nad ravnino tal.

Miniaturni avtomatsko vodeni vozički

Na sliki 7.19 je prikazana zgradba miniaturnega avtomatsko vodenega vozička z
glavnimi sestavnimi deli. Prednji pogonski del predstavlja voziček z diferencialnim
pogonom, ki je na šasijo pritrjen pasivno preko ležaja. Takšna oblika mehanskega
mehanizma omogoča enostavno izvedbo, pri tem pa še vedno dosežemo želeni
kinematični model trikolesnika s prednjim pogonom.

Miniaturni AGV je opremiljen z več senzorji, ki omogočajo implementacijo
algoritmov za avtonomno vožnjo. Motorja na prednjem vozičku, ki ženeta obe
kolesi, sta opremljena z inkrementalnim enkoderjem. Poleg tega imamo še
absolutni enkoder, ki omogoča merjenje kota prednjega vozička glede na šasijo.
Na dnu prednjega vozička se nahaja namensko tiskano vezje z mikrokrmilnikom,
ki skrbi za nizkonivojsko obdelavo signalov v realnem času in regulacijo hitrosti
vrtenja motorjev. Na tiskanem vezju se nahaja tudi sedem segmentni linijski
optični detektor črte. Zadnji kolesi sta pasivni in v trenutni izvedbi nista
opremljeni z enkoderji. Na spodnjem delu šasije se nahaja še RFID-bralnik. Za
obdelavo informacij s senzorjev, komunikacijo z zunanjimi sistemi in izvedbo
regulacijskih algoritmov za avtonomno vožnjo se znotraj šasije nahaja računalnik
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Slika 7.19: Zgradba miniaturnega AGV-ja v prerezu

Raspberry Pi Zero W. V šasiji se nahaja še baterija. Na vrhu šasije se nahaja
posebna unikatna značka s črnobelim vzorcem, ki omogoča, da določimo lego
AGV-ja s sistemom za globalno merjenje lege s strojnim vidom (glejte poglavje
7.5.3).
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Slika 7.20: Štirikolesni robot s kinematičnim modelom bicikla

Štirikolesni robot na sliki 7.19 ima enake kinematične omejitve kot bicikel (slika
7.20). Omejitve so posledica dejstva, da se kolesa (brez spodrsavanja) ne morejo
gibati v smeri osi rotacije

ẋ sinϕ− ẏ cosϕ = 0
ẋ sinα− ẏ cosα−Dϕ̇ cos γ = 0

(7.8)
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V enačbi (7.8) je D razdalja med osjo zadnjih koles in centrom rotacije vozička,
na katerega sta pritrjeni prednji kolesi. Vpeljimo posplošeni vektor stanj qT =
[x, y, ϕ, γ]. Kinematične omejitve lahko tako zapišemo v vrstice t. i. omejitvene
matrike A(q):

A(q)q̇ =
[

sinϕ − cosϕ 0 0
sinα − cosα −D cos γ 0

]
q̇ = 0 (7.9)

Kinematični model s hitrostnim vhodom u je

q̇ = Su (7.10)

kjer je matrika S jedro (ničelni prostor) omejitvene matrike A(q), torej zadošča
enačbi A(q)S = 0.

Za hitrosti vhodnega vektorja uT = [u1, u2] lahko izberemo različne veličine: pri
prednjem pogonu je u1 = vs, pri zadnjem pogonu pa je u1 = vs; kotna hitrost
prednjega vozička je lahko podana glede na globalni (u2 = ωα = α̇) ali lokalni
(u2 = ωγ = γ̇) koordinatni sistem. Različni zapisi kinematičnega modela, ki jih
pri tem dobimo, so zbrani v tabeli 7.1. Vsi ti modeli zadostujejo omejitvam, ki
so podane v (7.9). Ker so si kinematičnimi modeli med seboj precej podobni,
moramo biti pri uporabi pozorni, da ne pride do zmede in napačne uporabe.

Tabela 7.1: Kinematični modeli bicikla q̇ = Su glede na hitrostne vhode (qT =
[x, y, ϕ, γ])

Globalna kotna hitrost ωα Lokalna kotna hitrost ωγ

Pr
ed

nj
ip

og
on

v s

q̇ =


cos γ cosϕ 0
cos γ sinϕ 0
− sin γ

D 0
sin γ
D 1


[
vs
ωα

]
q̇ =


cos γ cosϕ 0
cos γ sinϕ 0
− sin γ

D 0
0 1


[
vs
ωγ

]

Za
dn

ji
po

go
n
v

q̇ =


cosϕ 0
sinϕ 0
− tan γ

D 0
tan γ
D 1


[
v

ωα

]
q̇ =


cosϕ 0
sinϕ 0
− tan γ

D 0
0 1


[
v

ωγ

]

V našem primeru je vhodni vektor uT = [vs, ωα] in je kinematični model (7.10)
torej (model v prvi vrstici in prvem stolpcu v tabeli 7.1)

q̇ = Su =


cos γ cosϕ 0
cos γ sinϕ 0

sin γ
D 0
− sin γ

D 1


[
vs
ωα

]

Linearna hitrost vs in kotna hitrost ωα = α̇ sta neposredno povezani s hitrostjo
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levega kolesa vL in hitrostjo desnega kolesa vR

vL = vs −
Lωα

2 vR = vs + Lωα
2 (7.11)

kjer je L razdalja med prednjima kolesoma.

Omrežje križišč in prog

Oglejmo si primer poligona, ki je prikazan na sliki 7.21. Poligon je sestavljen
iz omrežja usmerjenih prog, ki se v križiščih razdružijo v več prog ali pa se
združijo v eno progo. AGV se lahko vozi le po progah in le v označenih smereh.
Izjema je osrednji del poligona, kjer imamo področje brez prog. V tem področju
je dovoljeno poljubno gibanje, za kar mora biti robot opremljen s primernimi
sistemi za lokalizacijo. V nadaljevanju se bomo posvetili predvsem obravnavi
navigacije v delu prostora s progami.
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Slika 7.21: Omrežje oštevilčenih križišč in prog

Na sliki 7.21 so vsa križišča oštevilčena. Celoten zemljevid lahko predstavimo z
grafom, kjer vozlišča predstavljajo križišča (stik dveh ali več prog) in konce prog.
Povezave med vozlišči pa predstavljajo proge, ki povezujejo vozlišča (križišča ali
konci prog). Celoten zemljevid prog lahko tako predstavimo v obliki grafa, ki je
prikazan na sliki 7.22. Iz grafa so razvidne le povezave med sosednjimi vozlišči, ni
pa več vidna oblika poti, ki vodi med križišči. Predstavitev zemljevida z grafom
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se izkaže za koristno, saj nam omogoča uporabo različnih algoritmov iz teorije
grafov. Uporabimo lahko npr. Dijkstrov algoritem za iskanje optimalne poti —
najkrajšo pot dobimo, če povezave med vozlišči utežimo z razdaljami prog.
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Slika 7.22: Graf križišč in prog

Za prostorsko predstavitev zemljevida moramo poznati položaje vseh križišč
in koncev prog (vozlišč) ter obliko vseh prog, ki so v grafu predstavljene s
povezavami med vozlišči. Eden izmed možnih načinov zapisa posamezne proge je
s pomočjo parametričnih krivulj oz. zlepkov parametričnih krivulj. Na sliki 7.23
so prikazane tri bazične krivulje, ki jih lahko uporabimo za gradnjo zlepka: daljica
(slika 7.23a), krožni lok (slika 7.23b) in Bézierjeva krivulja (slika 7.23c). Enačbe
in parametri teh krivulj so podani v tabeli 7.2. Uporabimo lahko tudi kakšne
druge parametrične krivulje, a že z Bézierjevimi krivuljami lahko aproksimiramo
skoraj poljubno krivuljo. Ker pri Bézierjevih krivuljah visokega reda v praksi
naletimo na numerične težave, se raje poslužujemo uporabe zlepkov Bézierjevih
krivulj nižjega reda. Bézierjeva krivulja prvega reda (n = 1) je enaka daljici,
kar je razvidno tudi iz enačb v tabeli 7.2. Nikakor pa z Bézierjevo krivuljo
(neglede na red) ne moremo natančno opisati krožnega loka — z Bézierjevo
krivuljo ali zlepkom Bézierjevih krivulj lahko krožni lok le aproksimiramo s
poljubno natančnostjo. Torej bi celoten zemljevid prog lahko opisali tudi le z
zlepki Bézierjevih krivulj.

Pomembna lastnost krivulj je tudi njihova dolžina. Za ravninsko krivuljo, ki je
podana s p(λ) = [x(λ), y(λ)] in parametrom λ ∈ [0, 1], izračunamo njeno dolžino
z integralom

D =
1∫

0

√(
dx(λ)

dλ

)2
+
(

dy(λ)
dλ

)2
dλ
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Slika 7.23: Množica osnovnih krivulj za opis poti: (a) daljica, (b) krožni lok in
(c) Bézierjeva krivulja tretjega reda

Tabela 7.2: Množica osnovnih krivulj podanih v parametrični obliki za opis poti

Krivulja Enačba in parametri Omejitve

Daljica p(λ) = (1− λ)pA + λpB λ ∈ [0, 1]
začetna točka pA = [xA, yA]
končna točka pB = [xB , yB ]

Krožni lok p(λ) = pC + r[cos(α+ λβ), sin(α+ λβ)] λ ∈ [0, 1]
center pC = [xC , yC ]
radij r r ≥ 0
začetni kot α
ločni kot β |β| < 2π

Bézierjeva krivulja p(λ) =
∑n
i=0
(
n
i

)
(1− λ)n−iλipi λ ∈ [0, 1]

kontrolna točka pi = [xi, yi] i = 0, 1, . . . , n
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Definiramo lahko tudi dolžino po krivulji od začetne točke krivulje do točke p(λ)

d(λ) =
λ∫

0

√(
dx(ξ)

dξ

)2
+
(

dy(ξ)
dξ

)2
dξ (7.12)

Torej je celotna dolžina krivulje D = d(1).

Dolžina daljice je enaka evklidski razdalji d(λ) = λ‖pB − pA‖2, dolžina krožnega
loka pa je d(λ) = λβr. Medtem ko sta dolžini daljice in krožnega loka lahko
določljivi, v splošnem ne obstaja analitična rešitev integrala (7.12) za izračun
dolžine splošne Bézierjeve krivulje, razen za krivulje do tretjega reda. Dolžino
krivulje v tem primeru zato poiščemo s pomočjo primerne numerične metode.
Velja omeniti, da je parameter λ v primeru daljice in krožnega loka proporcionalen
dolžini krivulje od začetne točke do točke p(λ). To pa v splošnem ne velja za
Bézierjeve krivulje, kjer se še vedno z monotonim večanjem parametra λmonotono
veča oddaljenost (po krivulji) točke p(λ) od začetne točke, a ne linearno.

Z zlepkom, ki je sestavljen iz bazičnih krivulj, lahko aproksimiramo poljubno
krivuljo. Glede na zahteve v stičnih točkah poznamo različne načine tvorjenja
zlepka, ki je v stičnih točkah lahko le zvezen, lahko pa ima tudi zvezne prve
in/ali višje odvode. Tako lahko dosežemo želeno gladkost zlepka v stičnih točkah.
Začetna oblika vsake (razen prve) krivulje v zlepku je torej pogojena z obliko
predhodne krivulje v zlepku. Zveznost zlepka, ki je sestavljen iz krivulj pi−1(λ)
in pi(λ), v točki pi(0) dosežemo z

pi(0) = pi−1(1)

Zahtevamo lahko tudi zveznost prvega odvoda koordinat obeh krivulj v stični
točki

dpi(0)
dλ = dpi−1(1)

dλ
in/ali tudi n-tega odvoda

dnpi(0)
dλn = dnpi−1(1)

dλn

Zahtevamo lahko tudi zveznost katere druge veličine, kot je usmerjenost ali
ukrivljenost krivulje v stični točki.

Na sliki 7.24 je narisana usmerjena pot, ki vodi od vozlišča 11 preko vozlišča 12
do vozlišča 8 (glejte sliko 7.21). Pot lahko opišemo z naslednjim zlepkom bazičnih
krivulj (koordinate in razdalje so podane v milimetrih):

1. krožnim lokom s parametri pC = [1400, 1200], r = 75, α = 180° in
β = −90°;

2. daljico s parametroma pA = [1400, 1275] in pB = [1550, 1275] ter

3. Bézierjevo krivuljo s parametri n = 3, p0 = [1550, 1275], p1 = [1775, 1275],
p2 = [1775, 1575] in p3 = [2000, 1575].
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Slika 7.24: Pot od vozlišča 11 preko vozlišča 12 do vozlišča 8 (koordinate so v
milimetrih)

Vse krivulje so podane tako, da parameter λ vedno narašča v smeri usmerjenosti
poti. V danem primeru gre za zvezen zlepek krivulj, ki ima tudi zvezno ukri-
vljenost v stičnih točkah, kar je za namen vodenja robota po črti smiselno in
zaželeno, saj ne želimo, da bi kjerkoli prišlo do prehitre ali celo hipne spremembre
usmerjenosti poti. Krivulje lahko združimo tudi kako drugače — npr. tako
da so krivulje v stičnih točkah le zvezne, brez zveznih odvodov, kot je to med
vozliščema 11 in 6 na sliki 7.21.

Z omenjenimi bazičnimi krivuljami lahko opišemo celoten zemljevid na sliki 7.21.
Proga med vozliščema 12 in 8 je podana z eno Bézierjevo krivuljo, medtem ko je
proga med vozliščema 11 in 12 podana z zlepkom krožnega loka in daljice. Vsako
progo lahko torej opišemo z urejeno množico krivulj

proga = (krivulja1, krivulja2, . . . , krivuljaK)

Posamezne proge, ki se stikajo, lahko združimo tako, da tvorimo pot, ki jo zopet
lahko zapišemo v obliki urejenega seznama

pot = (proga1, proga2, . . . , progaL)

Tako lahko opišemo pot oz. poti med poljubnima vozliščema (križiščema) v
zemljevidu.

Če želimo pot, ki je opisana z urejenim seznamom osnovnih parametričnih krivulj,
razdeliti na dva ali več delov, moramo znati razdeliti vsako izmed osnovnih krivulj
na poljubnem mestu. Razdelitev daljice na mestu λ na daljici p(λ) (med točkama
pA in p(λ)) in p(λ) (med točkama p(λ) in pB) je enostavna (slika 7.25a):

p(λ) = (1− λ)pA + λp(λ) ; λ ∈ [0, 1]
p(λ) = (1− λ)p(λ) + λpB ; λ ∈ [0, 1]
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Slika 7.25: Množica osnovnih krivulj za opis poti: (a) daljica, (b) krožni lok in
(c) Bézierjeva krivulja tretjega reda

Podobno lahko enostavno razdelimo tudi krožni lok (slika 7.25b):

p(λ) = pC + r

[
cos(α+ λλβ)
sin(α+ λλβ)

]T
; λ ∈ [0, 1]

p(λ) = pC + r

[
cos(α+ λβ + λ(1− λ)β)
sin(α+ λβ + λ(1− λ)β)

]T
; λ ∈ [0, 1]

Tudi za Bézierjeve krivulje velja, da lahko krivuljo na poljubnem mestu razdelimo
na dve krivulji, ki sta zopet Bézierjevi krivulji enakega reda kot osnovna krivulja.
Kontrolne točke, ki definirajo novi Bézierjevi krivulji, lahko določimo z de
Casteljaujevim algoritmom [10] (slika 7.25c). V vseh primerih velja, da je
delitvena točka p(λ) na krivulji (daljica/krožni lok/Bézierjeva krivulja) enaka
končni točki prve krivulje in začetni točki druge krivulje: p(λ) = p(1) = p(0).
To nam omogoča, da zemljevid razširimo z novimi križišči in progami, pri čemer
moramo spremeniti le zapis prog, ki se stikajo v novih križiščih.

Omrežje postaj

Pod progami se vgrajene RFID-značke z unikatnimi oznakami, ki jih AGV lahko
zazna z RFID-bralnikom. Te RFID-značke omogočajo, da AGV ugotovi na kateri
progi in kje na progi se nahaja. Če se RFID-značka nahaja pred križiščem,
je to primeren trenutek, da se AGV odloči katero smer bo izbral v križišču.
Ta izbira je lahko določena fiksno glede na ID značke — npr. v križišču, ki
sledi znački z ID-jem 1, pojdi vedno levo. Lahko pa se izbira smeri v križišču
določa tudi dinamično glede na pot, ki jo mora AGV opraviti — da gre AGV po
želeni poti, mora v križiščih izbrati primerne smeri. Ker pred vsemi križišči ni
RFID-značk, mora AGV svojo lego ocenjevati s postopkom lokalizacije (npr. z
uporabo RFID-značk in na podlagi odometrije). Za namen planiranja poti in
vodenja zato graf križišč in prog predstavimo v nekoliko spremenjeni obliki.

Mesta na progah, kjer se nahajajo RFID-značke, obravnavamo kot postaje, kjer
se AGV lahko ustavi oz. se odloči o svoji naslednji akciji — običajno izbiramo le
med sledenjem levemu ali desnemu robu črte. Proge, ki ne vsebujejo RFID-značk,
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Slika 7.26: Zemljevid z označenimi progami in položaji RFID-značk (sinje modre
oznake) ter virtualnih značk (rumene oznake)
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opremimo s t. i. virtualnimi značkami (njihov položaj lahko določimo le na
podlagi odometrije/lokalizacije), ki jih tudi obravnavamo kot postaje. Vsaka
proga tako vsebuje vsaj eno postajo, ki je označena bodisi z RFID-značko bodisi
z virtualno značko. Na sliki 7.26 so na zemljevidu prog označene vse postaje.
Postaje z ID-jem, ki je manjši ali enak 100, so označene z RFID-značkami,
ostale postaje pa so označene z virtualnimi značkami. Vsaka RFID-značka je
na sliki 7.26 označena z dvema točkama: krogec predstavlja dejanski položaj
RFID-značke, križec pa lokacijo prednjega vozička AGV-ja, ko le-ta značko zazna.
To je posledica dejstva, da je RFID-bralnik izmaknjen glede na točko na AGV-ju,
ki potuje po črti.
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Slika 7.27: Graf postaj in prog

Graf, ki predstavlja omrežje prog, lahko preslikamo v nov graf, ki predstavlja
omrežje postaj. V novem grafu na sliki 7.27 vozlišča predstavljajo vse postaje,
ki so povezane z usmerjenimi povezavami, ki predstavljajo poti med postajami.
Uteži poleg povezav v grafu na sliki 7.27 predstavljajo razdalje (v milimetrih)
med postajami vzdolž prog. Barva usmerjene povezave iz vozlišča določa, kako
pridemo do sosednjega vozlišča: modra pomeni, da moramo v križišču izbrati levo
smer; rdeča pomeni, da moramo izbrati desno smer; zelena predstavlja poseben
način delovanja. Da v križišči izberemo levo ali desno smer, moramo sledili ali
levemu ali desnemu robu črte, s katero je označena proga. V tej predstavitvi
zemljevida se določeni deli prog med postajami torej prekrivajo. Z upoštevanjem
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pravil za delitev krivulj, ki sestavljajo proge, lahko originalni graf z omrežjem
križišč avtomatsko pretvorimo v nov graf z omrežjem postaj. Na sliki 7.28 so
predstavljene proge, ki povezujejo postaje.
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Slika 7.28: Zemljevid z označenimi potmi in položaji RFID-značk (sinje modre
oznake) ter virtualnih značk (rumene oznake)

Vodenje po poti

Na podlagi grafa postaj (slika 7.27) lahko torej s pomočjo algoritmov iskanja
optimalne poti v grafu (poglavje 4.4) poiščemo pot med poljubnima postajama.
Optimalno pot lahko opišemo kot urejen seznam postaj, ki jih moramo obiskati,
če želimo priti od začetne do končne postaje. Ta urejeni seznam postaj pa lahko
pretvorimo v urejeni seznam akcij, ki jih mora AGV izvesti, da se pelje po želeni
poti. Vsako akcijo lahko opišemo s tremi parametri:

1. tip akcije: levo, če mora AGV slediti levemu robu črte, desno, če mora
AGV slediti desnemu robu črte ali posebno za vse ostale primere;

2. ID naslednje postaje;

3. razdalja do naslednje postaje vzdolž proge.

Na podlagi tako zapisanih akcij lahko izvedemo vodenje AGV-ja. AGV se torej
avtomatsko pelje po poti tako, da sledi črtam, ki označujejo proge, in izbira
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primerne smeri v križiščih. Tip akcije vpliva na izbiro regulatorja, ki ga uporabimo
za vodenje AGV-ja. V večini primerov imamo v križiščih le dve možnosti. AGV
lahko tako gre v želeno smer, če skozi križišče sledi levemu ali desnemu robu črte.
Če je (pri trenutni akciji) ID naslednje postaje manjši ali enak 100, to pomeni, da
je naslednja postaja označena z RFID-značko. V tem primeru izvajamo trenutno
akcijo vse dokler z RFID-bralnikom ne zaznamo ID-ja naslednje postaje. Če je
ID postaje večji od 100, potem izvajamo trenutno akcijo toliko časa, dokler AGV
vzdolž proge ne prepotuje razdalje do naslednje postaja — ta podatek je vsebovan
v akciji. Prepotovano razdaljo lahko ocenjujemo s postopkom odometrije, saj je
AGV opremljen z enkoderji, ali globalne lokalizacije.

AGV ima na prednjem vozičku nameščen linijski senzor za zaznavanje črte (slika
7.29). V našem primeru gre za sedem segmentni optični senzor, ki oddaja
svetlobo v infrardečem spektru in zaznava količino odbite svetlobe od podlage.
Vsak posamezni segment senzorja na beli podlagi vrne nizko vrednost in pri
črni podlagi visoko vrednost. Če se senzor nahaja nad črto, lahko na podlagi
zaporedja vrednosti senzorja določimo levi in desni rob črte — iščemo prehod iz
nizkih k visokim vrednostim oz. obratno. Tako lahko v koordinatnem sistemu
senzorja podamo položaj levega roba xL in položaj desnega roba xR. Koordinatni
sistem smo v našem primeru definirali tako, da je koordinatno izhodišče na sredini
senzorja, skrajna robova senzorja pa sta od izhodišča oddaljena za vrednost ena.

0

xLxR

vs

ωs

−1 1

vL = vs − Lωα
2vs + Lωα

2 = vR

Slika 7.29: Sledenje črti na podlagi linijskega senzorja črte (pogled od spodaj)

Glede na želen položaj roba črte na senzorju x0, lahko definiramo pogrešek:
e(t) = x0 − xL(t) za sledenje levemu robu in e(t) = x0 − xR(t) za sledenje
desnemu robu. Če bi želeli slediti sredini črte, bi lahko pogrešek definirali tudi
kot e(t) = xL(t) + xR(t). Za sledenje levemu ali desnemu robu črte lahko nato
zasnujemo preprost regulator za kotno hitrost prednjega vozička

ωα(t) = Kωe(t)

kjer je Kω ojačenje regulatorja. Želen položaj roba črte x0 nastavimo različno za
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sledenje levemu in desnemu robu, tako da pri preklopu med načinom regulacije
ne pride do udara regulirne veličine — razlika med želenima vrednostima levega
in desnega roba bo tako ravno enaka širini črte. Maksimalna vrednost pogreška
je v našem primeru enaka dva (|e(t)| ≤ 2). Linearno hitrost lahko nastavimo kar
na konstantno vrednost (vs(t) = v0 = konst.), lahko pa jo tudi moduliramo glede
na pogrešek (npr. vs(t) = v0 cos πe(t)4 ), s čimer lahko dosežemo bolj robustno
sledenje črti v ovinkih. V kolikor s senzorjem ne moremo zaznati roba črte, ki
mu sledimo, regulacijo prekinemo in robota ustavimo.

Linearno hitrost vs(t) in kotno hitrost ωα(t) na podlagi enačbe (7.11) pretvorimo
v hitrosti levega in desnega kolesa, vL(t) in vR(t). Pri izvedbi regulacije moramo
upoštevati še, da sta hitrosti obeh koles omejeni

vMIN ≤ |vL(t)| ≤ vMAX vMIN ≤ |vR(t)| ≤ vMAX (7.13)

sicer se lahko zgodi, da se prednji voziček bodisi ne bo obračal bodisi se bo le
obračal na mestu. To lahko rešimo tako, da primerno omejimo tudi hitrosti vs(t)
in ωα(t). Lahko pa poskusimo ohraniti razmerje ωα(t)

vs(t) , ki predstavlja ukrivljenost,
pred in po upoštevanju omejitve (7.13). Kot že omenjeno, za regulacijo hitrosti
vrtenja obeh motorjev oz. koles skrbi mikrokrmilnk na prednjem vozičku.

Dodatni virtualni senzorji

Zaradi majhnosti miniaturnega AGV-ja, smo omejeni z naborom senzorjev, ki jih
lahko uporabimo, saj določenih senzorjev, ki se običajno uporabljajo na AGV-jih,
ni na voljo v tako majhni izvedbi. Takšen primer je laserski merilnik razdalj
(LMR), ki je pri sodelujočih AGV-jih običajno obvezen kot varnostni element.
AGV-ji so lahko opremljeni celo z več LMR-ji, ki omogočajo pokrivanje čim
večjega vidnega kota. LMR-ji se pogosto uporabljajo za namen lokalizacije in
gradnje zemljevida okolja [11].

Čeprav LMR-ja ne moremo primerno pomanjšati, da bi ga vgradili na miniaturni
AGV, pa lahko simuliramo meritve tega senzorja. Globalni sistem s strojnim
vidom nam omogoča merjenje leg miniaturnih AGV-jev, poznamo pa tudi njihove
oblike in obliko poligona. Oblike vseh objektov lahko opišemo z daljicami, nato
pa uporabimo algoritem za detekcijo presečišč laserskih žarkov z daljicami ovir.
Algoritem se sprehodi čez vse daljice vseh objektov, ki predstavljajo statične ali
dinamične ovire, pri čemer za vsako daljico naredimo naslednje (slika 7.30):

1. Če sta a in b robni točki daljice zapisani v homogenih koordinatah, potem je
premica skozi ti dve točki lab = a× b in enotski vektor daljice eab = b−a

‖b−a‖ .

2. Za vsak žarek LMR-ja

lψ =
[
− sinψ cosψ x0 sinψ − y0 cosψ

]
naredimo naslednje:
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Slika 7.30: Modeliranje laserskega merilnika razdalj

(a) Poiščemo presečišče

p =
[
κx κy κ

]T
= lψ × lab

žarka s premico daljice in izračunamo faktor q = eTab(
p
κ − a).

(b) Če velja 0 ≤ q ≤ 1, potem presečišče p leži na daljici. V tem primeru
izračunamo razdaljo r od objekta do izhodišča laserskega merilnika (v
smeri vektorja žarka):

r = (p
T

κ
− pT0 )

[
cosψ sinψ 0

]T
Če velja 0 ≤ r ≤ rmax in če je r tudi manjši od trenutne najkrajše
razdalje rψ, posodobimo najkrajšo razdaljo: rψ = r.

Virtualni LMR lahko namestimo glede na katerikoli koordinatni sistem (npr. na
prednji del AGV-ja). Nastavimo lahko različne parametre senzorja, kot so doseg,
natančnost, vidni kot, kotna ločljivost itd. S stališča podatkov ne moremo ločiti
med načinom uporabe realnega ali virtualnega senzorja. Virtualni senzor ne
more zaznati objektov, katerih leg ne poznamo oz. jih ne merimo z globalnim
sistemom za merjenje lege — poleg AGV-jev lahko z značkami označimo tudi
druge objekte na poligonu in tako omogočimo zaznavanje tudi teh.

Na sliki 7.31 je vizualizacija laserskih meritev (vijolične točke), kjer se laserski
merilnik razdalj nahaja na vijoličnem AGV-ju. Vidimo odboje laserskih žarkov
na zelenem, modrem in rumenem AGV-ju, ne pa tudi na sinje modrem AGV-ju,
saj je zasenčen z zelenim AGV-jem; rdeči AGV pa je izven vidnega kota senzorja.
Zaradi omejenega dosega senzor ne zaznava objektov, ki so preveč oddaljeni.
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Slika 7.31: Vizualizacija meritev LMR-ja, leg AGV-jev in načrtovanih poti

Nekoordinirano večagentno vodenje

Na podlagi algoritmov vodenja, lokalizacije in planiranja poti lahko zagotovimo,
da AGV deluje avtonomno, če je edini agent v okolju. V primeru več agentov pa
so za primerno delovanje potrebni dodatni sistemi vodenja, sicer lahko prihaja
do blokiranj poti, zastojev ali celo trkov in drugih napak, ki lahko zahtevajo
tudi ročno ukrepanje operaterja. Za usklajeno delovanje vseh AGV-jev lahko
tako skrbi centralni nadzorni sistem, lahko pa imajo AGV-ji lastne sisteme, ki
omogočajo razreševanje danih situacij v okolju. Večagentni sistemi so pogosto
zasnovani tudi hierarhično, kjer imajo AGV-ji vgrajene sisteme za varno in
predvidljivo delovanje, centralni nadzorni sistem pa bedi nad vsemi sistemi in
koordinira celotno floto AGV-jev, tako da so vse naloge opravljene optimalno.

AGV-ji lahko z LMR-senzorjem zaznavajo ovire v svoji okolici. Tako lahko AGV
določi, če se v njegovi neposredni okolici na predvideni poti nahajajo ovire. V
primeru zaznane ovire mora AGV prilagoditi svojo hitrost, da ne pride do trka.
Hitrost lahko prilagodijo proporcionalno glede na oddaljenost do najbližje točke
možnega trka. Ko se ovira sprosti, lahko nadaljujejo z vožnjo brez omejitev.
V primeru, da je zaznana ovira drug AGV, mu AGV lahko sledi na primerni
varnostni razdalji, vse dokler potujeta po isti progi. Takšen sistem preprečevanja
trkov je enostaven za izvedbo in je v praksi običajno zahtevan kot varnostni
mehanizem, ki mora biti tudi ustrezno certificiran.

Na sliki 7.31 so prikazane poti po katerih potujejo AGV-ji. Poti so bile načrtane
povsem neodvisno (za vsak AGV ločeno). Miniaturni AGV-ji imamo vgrajen
preprost sistem za preprečevanje trkov na podlagi virtualnega LMR-senzorja,
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ki je nameščen na prednjem delu AGV-ja. V situaciji na sliki 7.31 bodo rdeči,
rumeni, zeleni in sinje modri AGV predvidoma lahko dosegli zadani cilj, brez da
bi na poti naleteli na oviro. Modri AGV je že na cilju in miruje, zato vijolični
AGV ne bo mogel povsem doseči ciljne postaje, dokler modri AGV te postaje
ne zapusti. Vijolični AGV pa se cilju ne bo mogel predvsem približati, saj je na
njegovi poti pred njim tudi zeleni AGV, ki bo na svoji končni postaji blokiral še
pot vijoličnega AGV-ja.

Pri uporabi le preprostega sistema za preprečevanje trkov hitro pride do situacij,
kjer dva AGV-ja pripeljeta v križišče iz različnih smeri skoraj istočasno. Ker
AGV-ja zaznavata eden drugega kot oviro, pride do zastoja, ki bi (brez poseganja
operaterja ali višjenivojskega nadzornega sistema) trajal neskončno dolgo. Pro-
blem lahko rešimo z vpeljavo prednostnih pravil, podobno kot imamo v cestnem
prometu desno pravilo in prednostne ceste. Zastoj lahko razrešimo tudi tako,
da omogočimo komunikacijo med AGV-jema in vzpostavimo ustrezen sistem
pogajanja. Lahko pa vpeljemo v križišča (vsa ali le določena) tudi semaforje.
Sistem semaforjev, ki ureja prehode skozi določeno križišče, je tudi agent, ki
lahko deluje povsem avtonomno ali pa sodeluje z ostalimi agenti v okolju. Ti
agenti so lahko semaforji v drugih križiščih, AGV-ji ali pa tudi centralni nadzorni
sistem.

S koordiniranim vodenjem vseh agentov, lahko zagotovimo optimalno delovanje
z minimalnim številom zastojev. V kolikor optimiziramo poti za vse AGV-je
hkrati, lahko poskusimo doseči tudi, da do zastojev na poti ne prihaja in da
lahko vsi AGV-ji dosežejo svoj cilj, če le je končna postaja prosta (glejte poglavje
7.5.4). V primeru na sliki 7.31 bi želeli doseči, da je vijolični AGV pred zelenim
— vsaj na delu kjer bi sicer prišlo do zastoja.

7.5.4 Večagentno planiranje vožnje transportnih
vozil

Z vse bolj pogosto avtomatizacijo skladišč in proizvodnih obratov je postalo
tudi raziskovanje na področju avtonomnih robotskih vozil zelo popularno. Eden
bistvenih izziv avtonomnih robotskih vozil, je planiranje poti. To je lahko
rešeno centralno, kjer centralna enota, ki povezuje vsa robotska vozila hkrati
določi načrt poti za vsa vozila. Glavna prednost centralnih pristopov je večja
optimalnost načrtanih poti [12, 13]. Pri bolj obsežnih zemljevidih in večjem
številu vozil po navadi postanejo taki pristopi časovno preveč potratni, kar
omejuje uporabo v realnih sistemih. Problem računske kompleksnost bolje
naslavljajo decentralizirani pristopi, ki so v splošnem hitrejši od centraliziranih,
bolj prilagodljivi na spremembe okolja in delovnih nalogov a večinoma zagotavljajo
manj optimalne rešitve [14, 15]. V teh pristopih se naloga določanja poti iz višjega
nivoja prestavi na sama vozila, tako da avtonomno določajo vsak svojo pot, hkrati
pa sprotno rešujejo konflikte in zbirajo informacije o drugih vozilih.
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Prikazan je pristop planiranja poti za usklajeno delovanje skupine mobilnih
robotskih vozil pri transportu materiala v proizvodnih obratih. Pristop je razvit
v okviru magistrske naloge in je objavljen tudi v prispevku [16]. Predstavljen
algoritem temelji na znanem algoritmu A*, ki je nadgrajen za planiranje poti več
robotskih vozil, tako da najde kompromisno rešitev brez trkov in nepotrebnih
zastojev. Pristop upošteva prioritete transportnih nalogov, zemljevid v obliki
uteženega usmerjenega grafa ter predvidena časovna okna zasedenosti segmentov
zemljevida. Algoritem najprej poišče pot za vozila z višjimi prioritetami. Ob
vsakem planiranju poti vozila, algoritem na koncu zabeleži predvidena časovna
okna zasedenosti cest in vozlišč na zemljevidu za najdeno pot. Te zasedenosti
se nato upoštevajo pri iskanju poti za vozilo z nižjo prioriteto, tako da ne ovira
vožnje vozil z višjo prioriteto in se izogne konfliktom. Dve pomembni možnosti,
ki jih algoritem upošteva in predlaga, sta čakanje pred vozliščem, da se pot
sprosti in pa možnost umika na stransko cesto v primeru onemogočenega čakanja.
Pristop je ilustriran na simulacijskih primerih.

Planiranje z upoštevanjem prioritet in oken zasedenosti

Predlagan algoritem je nadgradnja algoritma A* in omogoča planiranje poti
za več robotskih vozil, ki se hkrati vozijo na istem zemljevidu. Algoritem se
izvaja ločeno za vsako vozilo posebej po prioritetnem sistemu. Vsakemu vozilu
določimo stopnjo prioritete. Večja kot je stopnja prioritete, bolj pomembno je,
da to vozilo doseže cilj v najkrajšem možnem času. Preden izvedemo algoritem
na kateremkoli vozilu, je zemljevid popolnoma prost. Vsa vozlišča in povezave
so brez predvidenih časovnih oken zasedenosti. Algoritem najprej izvedemo na
problemu vozila z najvišjo prioriteto. Ker je zemljevid še prost, bo algoritem
zanj našel optimalno pot. Hkrati bo določil časovna okna zasedenosti za ceste
in vozlišča v časovnih trenutkih, ki jih narekuje rezultat planiranja poti. Ko
zaženemo algoritem na robotu z nižjo prioriteto, bo z upoštevanjem zasedenosti
časovnih oken cest in vozlišč zanj našel čim hitrejšo možno pot, ki ne bo ovirala
vozil z višjo prioriteto.

Osnovni potek iskanja poti za posamezno vozilo je enak kot pri algoritmu A*.
Algoritem najprej doda začetno vozlišče na odprti seznam. Nato v zanki izvaja
iterativni postopek, dokler ni odprti seznam prazen oz. dokler iz odprtega
seznama na zaprti seznam ne prestavi ciljnega vozlišča, kar pomeni, da je pot
najdena. V iterativnem postopku najprej iz odprtega na zaprti seznam prestavi
vozlišče z najmanjšo skupno ceno. Nato za vsako sosednje vozlišče določi cene
ter preveri zasedenost vozlišča in pripadajoče ceste. Če je pot prosta, algoritem
nadaljuje z enakim potekom kot A*. Glavna razlika med algoritmoma nastopi,
kadar algoritem pri odpiranju sosednjega vozlišča in preverjanju zasedenosti
naleti na konflikt. Konflikt predstavlja zasedenost vozlišča ali ceste do sosednjega
vozlišča. Prisotnost konflikta se ugotavlja s pomočjo časovnih oken zasedenosti
vozlišča ali cest, ki jih za svojo pot definirajo vozila z višjo prioriteto. V primeru
konflikta se s poizkušanjem išče prosta mesta za čakanje in izogib konfliktu z
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vračanjem po poti, po kateri je prišel. Pseudo-algoritem z opisanim postopkom
izogibanja konfliktov je podan v algoritmu 6. S tem se začne rekurziven postopek

Algorithm 6 Planiranje poti za več vozil.
Inicializacija:
Dodelitev prioritet transportnim nalogom za N vozil.
Predstavitev prostora z grafom prehajanja stanj in okni zasedenosti.

for vozilo s prioriteto i = 1, . . . , N do
V zanki izvajaj iterativni postopek iskanja poti po algoritmu A*.

V primeru konflikta izvajaj:
while mestoKonflikta 6= zacetniPolozajV ozila do

if prosto(cesta pred mestoKonflikta ) then
Predlagaj čakanje na cesti pred mestoKonflikta.
break

end if
if prosto(stranska cesta pred mestoKonflikta) then

Predlagaj umik in čakanje na stranski cesti pred mestoKonflikta.
break

end if
Prestavi mestoKonflikta na predhodno cesto po poti nazaj.

end while

Določi okna zasedenosti za vozlišča in ceste na poti.
end for

v katerem algoritem s poizkušanjem išče primerno mesto za čakanje na sprostitev
poti in izogib konfliktu. Najprej poizkusi s čakanjem na predhodni cesti. Če tudi
ta cesta ni prosta, poizkusi s čakanjem na kateri od stranskih cest. Stranske
cesta so vse ceste povezane s predhodnim vozliščem, razen predhodne in trenutne
ceste. Če nobena od stranskih cest ni prosta za čakanje, se algoritem rekurzivno
pomakne po poti nazaj. Algoritem nadaljuje z novo iteracijo, kjer poizkusi s
čakanjem na novi predhodni cesti, če ta ni prosta na novih stranskih cestah itd.,
dokler ne najde prostega mesta ali ne pride do začetka poti.

Določitev cen povezav in oken zasedenosti povezav in voz-
lišč

Predlagan algoritem pri raziskovanju zemljevida prednostno izbira vozlišča z
najmanjšo skupno ceno. Cena povezave predstavlja čas, ki ga vozilo porabi, da
prevozi pot med dvema vozliščema. Pri tem predpostavimo konstantno hitrost
vozila med premikanjem, ki jo podamo kot vhod algoritma. Predlagan algoritem
vpeljuje možnost čakanja vozila na mestu, da se cesta ali vozlišče sprosti, vozilo
pa lahko nadaljuje pot brez konfliktov. Čas, da vozilo prevozi neko pot se tako
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lahko podaljša s pribitkom cene zaradi čakanja na tej poti. Povečana cena torej
predstavlja seštevek časa vožnje in časa čakanja med vozliščema. V splošnem
izbira take cene pomeni, da bo algoritem iskal pot, po kateri bo najhitreje prispel
do cilja. Ko algoritem najde pot za vozilo ji doda še časovna okna zasedenosti
cest in vozlišč, ki jih bo vozilo prevozilo na najdeni poti ob predvidenih časovnih
trenutkih.

Teoretično se vozilo na vozlišču nahaja zgolj časovni trenutek. A je za določitev
okna zasedenosti vozlišča potrebno upoštevati tudi dimenzije vozila in želeno
varnostno razdaljo ter njegovo hitrost vožnje, da se prepreči trk z drugim vozilom,
ki pripelje v vozlišče tik za prvim. Časovno okno zasedenosti vozlišča tako
določa interval tV S ≤ t < tV E , kjer so tV S = tV −∆tvarn, tV E = tV + ∆tvarn,
tV čas prihoda vozila v vozlišče, ∆tvarn = D

v varnostni čas, D seštevek polovične
dimenzija vozila in varnostne razdalje in v hitrost vožnje.

Časovno okno zasedenosti ceste določajo naslednji podatki: čas prihoda na
cesto (tvstop), čas vožnje (∆tcest), čas čakanja (∆tcak) na cesti (pred končnim
vozliščem) in smer vožnje. Vozilo lahko čaka le na cestah (povezavah), čakanje v
vozliščih ni dovoljeno. Ko čaka na mestu, je to vedno na cesti pred vozliščem.
Časovno okno zasedenosti ceste tako določa interval tCS ≤ t < tCE , kjer je
upoštevan varnostni čas ∆tvarn (dimenzije vozila in želena varnostna razdalja),
tCS = tvstop −∆tvarn, in morebiten čas čakanja, ki je vključen v tCE = tvstop +
∆tcest + ∆tvarn + ∆tcak.

Preverjanje zasedenosti in določitev časa čakanja

Preden algoritem doda vozlišče na odprti seznam, preveri če je vozlišče prosto.
Pri tem preveri vstopno cesto in vozlišče posebej, saj je lahko zasedena samo
cesta ali samo vozlišče. Algoritem najprej preveri zasedenost ceste in nato
zasedenost vozlišča. V kolikor algoritem zazna zasedenost ceste ali vozlišča izlušči
podatek o koncu zasedenosti ceste oz. vozlišča. Na podlagi tega podatka v
nadaljevanju določi čas čakanja vozila. Vozilo lahko čaka na trenutni cesti (cesta
pred vozliščem), ko je zasedeno vozlišče oziroma na predhodni cesti trenutne
ceste, če je zasedena trenutna cesta.

Preverjanje zasedenosti ceste in določitev časa čakanja na predhodni
cesti Algoritem pri preverjanju zasedenosti ceste za trenutno vozilo primerja
predvideno časovno okno s časovnimi okni zasedenosti, ki jih je za to cesto prej
določil vozilom z višjo prioriteto. Pri tem ločimo časovno okno vozila, ki vozi v
nasprotni smeri vožnje trenutnega vozila (z indeksom i) in časovno okno vozila,
ki vozi v smeri vožnje trenutnega vozila.

V primeru iste smeri vožnje po cesti je čas čakanja trenutnega vozila (∆tcaki) pred
cesto določen upoštevajoč okna zasedenosti vozil z višjo prioriteto (tCS ≤ t < tCE)
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ter s parametri trenutnega vozila (vstopni čas tvstopi , varnostni čas tvarni)

∆tcaki =
{

0 ; |tvstopi − tCS | ≥ ∆tvarni
|tCS − tvstopi |+ ∆tvarni ; |tvstopi − tCS | < ∆tvarni

Pri izračunu časa čakanja trenutnega vozila ∆tcaki na cesti je potrebno upoštevati
tudi morebiten čas čakanja predhodnega vozila z višjo prioriteto. Kjer trenutno
vozilo lahko na cesto vstopi brez čakanja pred ali za predhodnikom (∆tcaki = 0),
če je vsaj za varnostni čas ∆tvarni in za svoj predviden čas čakanja (brez
upoštevanja predhodnega čakanja na cesti) pred predhodnikom oziroma, če je
vsaj za varnostni čas ∆tvarni in čas čakanja predhodnika za njim. V nasprotnem
pa mora svoj čas čakanja ustrezno podaljšati.

V primeru nasprotne vožnje po cesti, pa je čas čakanja trenutnega vozila z
indeksom i določen kot

∆tcaki =


0 ;

tvstopi ≥ tCE + ∆tvarni ali
tizstopi ≤ tCs −∆tvarni

tCE − tvstopi + ∆tvarni ;
tvstopi < tCE + ∆tvarni in
tvstopi > tCS −∆tvarni

Preverjanje zasedenosti vozlišča in določitev časa čakanja na trenutni
cesti Potreben čas čakanja na cesti pred vozliščem (trenutni cesti) za vozilo i
določimo glede na okno zasedenosti, ki so ga za to vozlišče določila vozila z višjo
prioriteto. Čas čakanja lahko poenostavljeno (brez upoštevanja smeri vožnje
skozi vozlišče) določimo kot

∆tcaki =
{

0 ; |tvstopi − tV | ≥ ∆tvarni + ∆tV
∆tvarni + tV E − tvstopi ; |tvstopi − tV | < ∆tvarni + ∆tV

kjer je tV = tV S+tV E
2 trenutek prihoda (težišča) predhodnega vozila v vozlišče in

∆tV = tV E−tV S
2 je polovični interval zasedenosti vozlišča (kar je enako varnostnem

času predhodnika).

Izjema je preverjanje zasedenosti vozlišča, ki za trenutno vozilo predstavlja ciljno
vozlišče. V tem primeru mora biti vozlišče prosto od trenutka prihoda nanj
naprej.

Čakanje zaradi zasedenosti

Ko algoritem pri dodajanju vozlišč na odprti seznam naleti na vozlišče, ki je
zasedeno, ali je zasedena cesta do njega, predlaga čakanje vozila pred zasedenim
delom, da se ta sprosti. Ta čas čakanja algoritem prišteje k ceni-do-sem vozlišča,
da se v nadaljevanju upošteva pri raziskovanju in izbiri poti.

Vozlišče, ki ga algoritem dodaja na odprti seznam je sestavljeno iz dveh delov; iz
vozlišča samega in iz ceste, ki vodi do njega.
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Kadar je zasedeno zgolj vozlišče, bo vozilo čakalo na trenutni cesti pred vozliščem.
Kadar pa je zasedena trenutna cesta, vozilo ne čaka na predhodnem vozlišču,
ampak na predhodni cesti. Vozlišča povezujejo več cest in predstavljajo križišča,
čakanje na križišču pa bi zmanjšalo prehodnost zemljevida in zasedlo več poti
hkrati. Vedno, ko vozilo čaka, je to na cesti pred vozliščem. Algoritem pri
določanju cene čakanja vozila loči med čakanjem na trenutni cesti in čakanjem
na predhodni cesti. Ceno-do-sem zato razdelimo na tri dele: cena-do-sem brez
čakanja, cena čakanja na trenutni cesti in cena čakanja na predhodni cesti.

Kadar algoritem posodobi tudi ceno čakanja na predhodni cesti, s tem zakasni
prihod vozila na konec predhodne ceste, kar podaljša čas nahajanja vozila na
predhodni cesti. Potrebno je preveriti, če je v tem dodatnem času predhodna
cesta še prosta in če je ob novem času prihoda na predhodno vozlišče le to še
prosto. Če sta predhodna cesta in predhodno vozlišče prosta, se ponovi postopek
od preverjanja trenutnega vozlišča in trenutne ceste naprej.

Če predhodna cesta ali vozlišče ob dodanem čakanju na predhodni cesti nista
več prosta, trenutnega vozlišča ne moremo dodati na odprti seznam. V tem
primeru algoritem predlaga umik na stransko cesto ali čakanje na cesti, ki je
predhodna sedanji predhodni cesti. Kadar umik na stransko cesto ni možen,
algoritem predlaga pomik čakanja po poti nazaj.

Rezultat algoritma

Ko algoritem razišče ciljno vozlišče je našel najhitrejšo pot. Eksplicitno ciljno
vozlišče ne nosi informacije o celotni poti, ampak le o ceni te poti in predhodnem
vozlišču. Kočno pot je potrebno sestaviti s sledenjem predhodnikov na zaprtem
seznamu vozlišč.

S sledenjem predhodnikov pridemo do začetnega vozlišča, če si za vsako najdeno
vozlišče zapišemo še oznako pripadajoše ceste dobimo obrnjen seznam cest, ki
vodi od začetka do cilja in sestavlja najdeno pot. Algoritem poleg seznama cest
za vsako cesto vrne še podatek, če gre za umik na stransko ceste ter podatek o
času čakanja na tej cesti.

Primeri delovanja

Algoritem bo predstavljen na primeru, ki je prikazan na sliki 7.32, kjer lahko
vidimo začetne položaje treh robotskih vozil. Modro vozilo 1 z najvišjo prioriteto
pot prične na vozlišču 7 in konča na vozlišču 1. Zeleno vozilo 2, ki je naslednje
po prioriteti, prične pot na vozlišču 2 in konča na vozlišču 7. Zadnje, rdeče vozilo
3, katerega postopek iskanja poti bomo po korakih opisali, pot prične na vozlišču
1 in konča na vozlišču 6. Koordinate so predstavljene v metrih, hitrosti vseh
vozil pa so 1m/s. Poti za vozila 1 in 2 sta že načrtani. Posledično so za te poti
določena tudi časovna okna zasedenosti, ki za vsako cesto določajo čas prihoda,
odhoda in čakanja vozila na njej. Prav tako za vsako vozlišče določajo trenutek
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Slika 7.32: Zemljevid ter začetni položaji, cilji in končne poti treh robotskih vozil

Slika 7.33: Časovna okna zasedenosti cest in vozlišč za modro in zeleno vozilo na
sliki 7.32

prihoda vozila nanj. Časovna okna zasedenosti za načrtane poti vozil 1 in 2 lahko
vidimo na sliki 7.33. Vsaka črta predstavlja časovni interval oz. časovno okno, ko
vozilo zasede cesto ali vozlišče. Levo od črte je zapisana oznaka vozlišča ali ceste,
ki je zasedena. Vse ceste so usmerjene in vodijo od nekega vozlišča k drugemu.
Njihove oznake so sestavljene iz oznak vozlišč, ki jih povezujejo. Npr. cesta 502
vodi od vozlišča 5 proti vozlišču 2. Pri cestah polna črta predstavlja zasedenost z
vožnjo v smeri ceste, črtkana črta pa zasedenost z vožnjo v nasprotni smeri ceste.
Levo krajišče črte predstavlja čas prihoda na začetek ceste, desno krajišče pa čas
prihoda na konec ceste. Čakanje na cesti je določeno z dodatno označeno točko
na črti, kjer čas od srednje točke do desnega krajišča predstavlja čas čakanja.
Pri vozliščih čas prihoda na vozlišče predstavlja sredina črte, ki je razširjena z
namenom, da vozila na vozlišče prihajajo z razmakom varnostnega časa. Izjema
je poltrak oblike črta-pika, ki označuje čas od prihoda vozila na ciljno vozlišče
naprej. Ta časovna okna algoritem upošteva pri iskanju poti rdečega vozila 3.

Pri iskanju poti rdečega vozila algoritem upošteva okna zasedenosti in išče možno
pot v grafu. Začne z vozliščem 1, nadaljuje do naslednjega možnega vozlišča 4 in
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ker je v času vožnje po cesti 104 (0-2 s) in ob času prispetja v vozlišče 4 (2 s)
prosto, ga doda na odprti seznam.

V drugem koraku algoritem preišče naslednike vozlišča 4, torej vozlišči 3 in 5.
Vozlišče imata enako ceno-do-sem (4 s) a vozlišče 5 ima manjšo ceno-do-cilja (3 s,
vozlišče 3 pa ima ceno-do cilja 7 s) in posledično tudi manjšo ceno celotne poti,
zato algoritem razišče njegove naslednike in ga doda na zaprti seznam.

Nato v tretjem koraku algoritem izbere vozlišče 6, do katerega vodi cesta 506.
Cena-do-sem za vozlišče 6 znaša 7 s in predviden interval vožnje po cesti 506
je 3-6 s. Cesta je znotraj tega intervala zasedena (glejte sliko 7.33) z vožnjo
modrega vozila v nasprotni smeri do časa 6 s. To predstavlja konflikt, kateremu
se želimo izogniti.

S tem se začne rekurziven postopek v katerem algoritem s poizkušanjem išče
primerno mesto za čakanje na sprostitev poti in izogib konfliktu. Najprej poizkusi
s čakanjem na cesti, ki se na poti do zasedene ceste nahaja pred njo, torej je
njena predhodna cesta (cesta 405). Ta je v časovnem intervalu (2-6 s) (prihod na
začetek ceste in zakasnjen prihod na konec ceste) prosta, a zasedeno je vozlišče 5
do časa 8s, kar še podaljša čakanje na cesti 405 za 2s, v tem dodatnem času pa
cesta ni več prosta, torej podaljšanje čakanja ni mogoče.

Nadalje algoritem preveri, če bi lahko vozilo čakalo na sprostitev ceste 506
na stranski cesti 502 predhodnega vozlišča 5. Tudi cesta 502 v intervalu 4-6
s (vključujoč potreben čas čakanja 2s) ni prosta. Algoritem v nadaljevanju
preizkuša ostala možna mesta čakanja po poti, ki vodi do trenutnega vozlišča,
nazaj, z namenom, da najde mesto, kjer lahko brez oviranja drugih vozil čaka na
sprostitev poti do željnega vozlišča. Po nekaj iteracijah algoritem najde možno
mesto čakanja na stranski cesti 403 za časovni interval 2-9 s kot je prikazano
na sliki 7.32. Po dodanem čakanje na stranski cesti, algoritem v naslednjem
koraku razišče vozlišče 5, ki nasledi umik na stransko cesto. Vozlišče 5 je ponovno
raziskano, saj je vmes dodano čakanje in zakasnitev prihoda. V naslednjem
koraku razišče še vozlišče 6 in s tem pride do cilja. S tem je algoritem določil
optimalne poti za vsa tri vozila brez konfliktov in upoštevajoč prioritetno listo.

Na slikah 7.34 in 7.35 sta prikazana rezultata planiranja poti še na dveh drugih
zemljevidih. Prikazani so začetni položaji vozil z njihovimi oznakami ter izris
načrtanih poti. Vsa vozila vozijo s hitrostjo 1 m/s. Vozilo z oznako 1 ima
najvišjo prioriteto in vozilo z najvišjo oznako ima najnižjo prioriteto. Čakanje
je ponazorjeno z znakom ure s pripisom časa začetka in časa konca čakanja.
Zemljevid na sliki 7.34 predstavlja skladišče z mesti dolaganja tovora na vozila
(slepe ceste) ter z bolj obremenjenim osrednjim delom iz vozlišč 10 in 11. Zemljevid
na sliki 7.35 predstavlja preprost a splošno uporaben mrežast zemljevid, ki ga
lahko, s poljubno odstranitvijo posameznih cest ali vozlišč apliciramo na mnoga
skladišča ali tovarne.

Prikazan pristop planiranja več robotskih vozil nadgrajuje algoritem A*, ki je
v osnovi namenjen planiranju poti enega vozila. Algoritem upošteva prioritete



7.5. Primeri uporabe večagentnih sistemov 427

Slika 7.34: Prikaz rezultata planiranja na primeru s 5 vozili. Izrisani so začetni
položaji vozil in načrtane poti. Simbol ure s pripisom časa začetka in časa konca
čakanja označuje mesto čakanja vozila.

Slika 7.35: Prikaz rezultata planiranja na primeru mrežastega zemljevida cest.
Izrisani so začetni položaji vozil in načrtane poti. Simbol ure s pripisom časa
začetka in časa konca čakanja označuje mesto čakanja vozila.
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transportnih nalogov, kar omogoča bolj učinkovito izvajanje prioritetnih zadol-
žitev, vozila z nižjo prioriteto pa se prilagodijo prvim. Strategija določanja
časovnih oken zasedenosti omogoča zaznavo potencialnih konfliktov, ki se jim
algoritem izogne z izbiro druge poti, s čakanjem pred konfliktom ali z umikom
na stransko pot. Kompleksnost algoritma narašča s številom vozil, saj se vozila z
nižjo prioriteto večkrat znajdejo v zasedenih delih zemljevida in morajo iskati
alternativne poti brez konfliktov.
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