
ERK'2018, Portorož, 376-379 376

Quantifying uncertainty with the bootstrap: introduction and
simulation study

Greta Gašparac1, Erik Štrumbelj1
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Abstract
We introduce the reader to the bootstrap, a simple and
flexible resampling-based alternative for quantifying un-
certainty. We describe the basic characteristics of the
non-parametric bootstrap and illustrate its practical be-
haviour with simulations in the context of a typical task in
machine learning - estimating and comparing the perfor-
mance of different prediction models. We compare the
standard normal, percentile and BCa bootstrap confi-
dence intervals. As theory suggests, the BCa performs
the best over a wide range of situations.

1 Introduction
Empirical research is an integral part of science. How-
ever, we must be aware that any result that is based on
measurements has a certain degree of uncertainty. Not
accounting for this uncertainty can lead to incorrect and
possibly misleading conclusions. This is why it is very
important to quantify uncertainty and why statistics play
such an important role in modern science.

Our motivation is the common task in machine learn-
ing - estimating a model’s performance (predictive accu-
racy, speed, ...) and/or comparing it with other models
on one or more different scenarios. In many cases re-
searchers do not even attempt to quantify the uncertainty
in their estimates. When they do, they typically use either
confidence intervals (CI) based on the normal distribution
or null-hypothesis statistical testing (NHST) [3].

Performance data are typically not distributed nor-
mally, so CIs based on the normal distribution make sense
only in cases when we reason about the mean and the
sample size is not too small. The same applies to most
parametric NHST which are based on the normal distri-
bution. Using non-parametric NHST alleviates this, but
is more difficult to apply and interpret correctly. Further-
more, most standard approaches apply directly only to the
mean/median and cannot be readily used to quantify the
uncertainty of more complicated functions (for example,
the root-mean-square error or a correlation coefficient).

In this paper we advocate the use of the bootstrap for
quantifying the uncertainty in our estimates. The method
was introduced by Efron [4] and is a representative of
resampling-based methods, which also include, among
others, permutation tests and cross-validation. Most of
these methods have been known for decades, but have

been limited by their computationally-intensive nature.
Today, however, computation has become very cheap (in
particular, very cheap compared to learning how to cor-
rectly perform classical statistical analysis), and the full
potential and flexibility of resampling-based methods can
be realized. Cross-validation has already been widely
adopted by the machine learning community as a means
for estimating how the model’s performance will gen-
eralize to new and unseen data. Permutation tests and
the bootstrap are, however, in our opinion, still heavily
under-utilized. Both due to their usefulness and their ped-
agogical advantage over NHST.

Bootstrap is a resampling method used for estimating
standard errors, bias, computing CI and for constructing
NHST. Theoretically complicated methods are replaced
by computer simulation, which is much more intuitive
and easier to apply. Furthermore, it is more widely appli-
cable - the process remains the same no matter what our
statistic of interest is and number of assumptions is mini-
mized. There are many different variants of the bootstrap,
but the content of this paper applies to the most common
one - the non-parametric bootstrap. We aim to provide a
better understanding of the method, point out the advan-
tages it offers, and demonstrate its weaknesses.

The remainder of the paper is organized as follows. In
Section 2 we explain the idea behind the bootstrap. Sec-
tion 3 offers a brief overview of bootstrap CI. In Section
4 we present empirical evidence of some of the method’s
characteristics, which are relevant for practical applica-
tion. We see how changing the number of generated boot-
strap samples affects the bootstrap distribution. We also
compare coverage of different CI for mean, median and
the 95-th percentile when our data come from different
distributions and different sample sizes. With 5 we con-
clude the paper and offer some direction for further work.

2 The bootstrap
Suppose x = (x1, ..., xn) is a sample of size n from pop-
ulation F . Let θ be the population mean, our statistic of
interest, and we want to compute the 95% CI.

Assuming normality and relying on the central limit
theorem, our CI is ±1.96 · se, where se is the standard
error of the mean. But what happens if our statistic of in-
terest is the median or correlation coefficient? What hap-
pens if our data are not distributed normally? We could
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get those values from the sampling distribution of θ, but
in order to obtain such a distribution, one we would need
much more than just one sample, which is in practice typ-
ically impossible.

2.1 The basic idea behind the bootstrap
If x is a set of identically distributed and independent ob-
servations from F , it should be a good estimate of the
population. Instead of sampling from the original popu-
lation F , we will sample from an estimate of the popula-
tion F̂ , which we will construct from x. That is, we will
use the so-called plug-in principle, where we substitute
an unknown variable for an estimate. Based on what type
of bootstrap we choose, F̂ can take different forms. For
non-parametric bootstrap it is the empirical distribution
function (EDF)

F̂n(x) =
1

n

n∑
i=0

I(xi = x), (1)

which assigns probability 1
n to each data point (sampling

with replacement). With sampling from F̂ we obtain
bootstrap samples. In total, there are nn different sam-
ples. Evaluating all of them is known as the theoretical
bootstrap. In practice, however, this is infeasible, so we
use the Monte Carlo implementation and draw B (usu-
ally B > 104) bootstrap samples x∗1, ..., x∗B . For each
of them we calculate the test statistic and get the boot-
strap sampling distribution θ∗1, ..., θ∗B . In order for our
results to reflect the actual data, we normally draw boot-
strap samples of size n. On account of the EDF repre-
senting the whole population, the bootstrap distribution
is usually too narrow by approximately

√
(n− 1)/n [6].

3 Bootstrap confidence intervals
Efron and Tibshirani [5] provide great insight into differ-
ent ways the bootstrap can be used to compute CI. Below,
we describe three: a normal distribution-based approach,
a first-order accurate approach, and a second-order accu-
rate approach1.

3.1 Standard normal interval
We assume normality and construct the CI using the boot-
strap standard error:

ŝeb =

√∑B
i=0(θ̂∗i − θ̂∗)

B − 1
. (2)

This symmetrical CI does poorly on skewed data.

3.2 The percentile interval
We construct the percentile interval by using percentiles
of the bootstrap distribution. If we want to calculate a 1−
2α percentile interval, we order our bootstrap estimates
θ∗1, ..., θ∗B and take the 100 · α-th and 100 · (1 − α)-th
values as limits of our interval:

1A CI is considered first-order accurate if the errors of the non-
coverage probabilities differ from the true values by O(n− 1

2 ). It is
second-order accurate if error size is of order O(n−1).

[θ̂lo, θ̂up] = [θ̂∗(α), θ̂∗(1−α)]. (3)

The percentile interval is first order accurate and transfor-
mation invariant.

3.3 The BCa interval
BCa stands for bias-corrected and accelerated. This method
also uses percentiles of the bootstrap distribution to cal-
culate interval endpoints, but the percentiles used are based
on the shape of bootstrap distribution. Two values deter-
mine this interval: the bias-correction factor ẑ0 and the
acceleration factor â:

[θ̂lo, θ̂up] = [θ̂∗(α1), θ̂∗(α2)], (4)

where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1 − â(ẑ0 + z(α))

)
(5)

and

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1 − â(ẑ0 + z(1−α))

)
. (6)

The bias correction factor measures the median bias of
θ̂∗ and is calculated by plugging the proportion of boot-
strap replications less than our observed statistic θ̂ into
the inverse function of a standard normal cumulative dis-
tribution function

ẑ0 = Φ−1

(
1

B

B∑
b=0

I(θ̂∗(b) < θ̂)

)
. (7)

The acceleration factor measures the rate of change of
the standard error of θ̂ with respect to the true parameter
value θ:

â =

∑n
i=0

(
(
∑n
i=0 θ̂(i)/n) − θ̂(i)

)3
6

[∑n
i=0

(
(
∑n
i=0 θ̂(i)/n) − θ̂(i)

)2]3/2 , (8)

where θ̂(i) is a jackknife estimate of the statistic2. Note
that if both factors equal zero, we get the percentile inter-
val.

The method seeks to correct for bias and skew. It is
second-order accurate, transformation invariant and range
preserving. In the non-parametric setting it usually proves
to be the most accurate [5].

4 Simulations
4.1 Number of bootstrap samples
Efron and Tibshirani [5] suggest that 25 bootstrap sam-
ples should be enough to get a good approximation of the
standard error and 1000 samples for CI. Hesterberg [6],
however, argues we should do at least 104 bootstrap sam-
ples to minimize sampling variability. Figure 1 illustrates
how the number of bootstrap samples affect the bootstrap
distribution.

2A jackknife estimate θ̂(i) is calculated from the original sample x
with the i-th observation removed.
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Figure 1: Changes in bootstrap distributions as the number of bootstrap samples B increases. Samples of size n = 100 are drawn
from N(0,1) [top], Exp(1) [middle], and Beta(0.5, 0.5) [bottom]. Statistic of interest is the mean. Vertical lines are sample means.

4.2 Comparing confidence intervals
We applied 3 different variants of estimating the 95% CI
to 3 distributions N(0,1), Exp(1), and Beta(0.5, 0.5) and
estimated their coverage probability at different sample
sizes n. The number of bootstrap samples was B = 104.
The perfect CI would have coverage probability 0.95. We
run the experiments with three statistics: mean, median
and the 95-th percentile. To minimize variability our re-
sults are based on 104 repetitions for each n.

Simulation results in Figure 2 are in line with expec-
tations. For n ≤ 25 the bootstrap CI underestimate the
CI. However, with increasing n, all three intervals con-
verge to the specified coverage probability at their own
rate. Overall, bootstrapped CI are biased (too narrow),
which confirms what we previously stated and it needs to
be taken into account when dealing with small n.

BCa performs the best, but percentile intervals are al-
most as good and the advantage of BCa decreases with
increasing n. The normal interval performs best when the
bootstrap distribution is roughly normal, so it does not
perform well for the median and 95-th percentile. For the
Beta distribution it even overestimates the CI, because in
that case the booststrap distribution is bounded and con-
centrated at the upper bound.

4.3 Examples that arise in practice
To illustrate how the bootstrap can be expected to per-
form in practice, we prepared several examples of dis-
tributions that are the result of measuring the predictive
performance of a machine learning model on a dataset:

• The distribution of the squared error obtained with
leave-one-out cross-validation (LOOCV) for the ran-
dom forests (RF) model on the ozone regression
dataset [2]. From this distribution we bootstrap the
mean and the rooted mean, effectively obtaining CI
for the mean squared error (MSE) and root mean
squared error (RMSE), respectively.

• The distribution of the difference in squared error
obtained for the lasso and RF model in the same
setting as above. We bootstrap the mean, effec-
tively obtaining CI for how much the lasso is bet-
ter/worse (in terms of mean squared error).
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Figure 2: Observing how coverage probability changes when
sample size n increases. The error bars denote 95% confidence
in the interval coverages.

• The distribution of the 0-1 loss and the log-loss ob-
tained with LOOCV for the RF model on the Glass
dataset from the UCI Machine learning repository.
We bootstrap the mean, effectively obtaining CI for
the accuracy (CA) and log-score (LS).

The empirical distributions are shown in Figure 3. We
pretend that these empirical distributions are the popula-
tion distributions and obtain samples by resampling with
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Figure 3: In practice, normally distributed performance data are
not very common. 0-1 loss is distributed Bernoulli. Bounded
variables, such as squared error and log-loss will often be close
to exponential (or gamma) distributed. The difference of two
such distributions will be close to a Laplace distribution.
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Figure 4: Coverage probabilities of CI when bootstrapping the
empirical distributions.

replacement. This enables us to ’know’ the true mean of
the population and estimate coverage probabilities.

Again, we drew 104 bootstrap samples and calculated
the CI based on 104 repetitions. Figure 4 shows that a
larger sample size is needed for accurate CI for heavy-
tailed distributions, such as the RF MSE. As expected, the
normal interval’s performance is relatively poor when the
data are discrete and far from normal. The binary sample
can also pose a problem when the sample size is too small
(in our case n < 40), as sampling with replacement can
result in a trivial distribution with zero variability. BCa
performs the worst for a Laplace-like distribution (LF -
RF). Similar results were observed in [8, 9].

5 Conclusion
The bootstrap has several advantages over classical ap-
proaches: it is easy to understand, implement, and apply

and it can be applied to almost any statistic of interest.
It can fail in practice with very small sample size n

and/or problematic statistics, such as extreme quantiles.
However, simulations show that this is not a serious prob-
lem as long as we have at least n ≥ 50.

BCa CI perform the best, but percentile intervals also
perform well-enough. We should avoid normal intervals
unless the bootstrap distribution is expected to be close
to normally-distributed. Today, computation is relatively
cheap, and the number of bootstrap samples B should be
as large as possible, but simulations show that even 1000
is good enough for almost all practical situations.

Recently, there has been a shift towards Bayesian meth-
ods for model comparison [1]. Bayesian methods are in
many ways more intuitive and therefore easier to interpret
than frequentist ones. We did not touch on Bayesian ap-
proaches as the problems of frequentist approaches also
apply to Bayesian approaches (distributional assumptions,
problems when we are interested in more than just the
mean). If one prefers the Bayesian view of probability,
one can always apply the Bayesian boostrap [7].
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