YU ISSN 0016-7789 RAZPRAVE GEOLOGIIA POROČILA YU ISSN 0016-7789 GEOLOGIJA RAZPRAVE IN POROČILA 21. KNJIGA 1. del GEOLOGIJA LETO 1978 21. KNJIGA 1. del Str. 1 do 168 LJUBLJANA GEOLOGIJA RAZPRAVE IN POROČILA Od leta 1978 dalje (21. knjiga) izhaja GEOLOGIJA dvakrat na leto, v juniju (1. del) in decembru (2. del), da bi imeli avtorji možnost hitreje objaviti svoja dela Izdajatelji: GeoloSki zavod, Inštitut za geologijo FNT in Slovensko geološko društvo, Ljubljana Glavni in odgovorni urednik: Stefan Kolenko, Yu 61000 Ljubljana, Parmova 33 Uredniški odbor: M. Drovenik, M. Iskra, S. Kolenko, D. Kuščer, A. Nosan, M. Pleničar in L. Zlebnik Tiskovni svet: S. Papler — predsednik, F. Cimerman, J. Duhovnik, S. Kolenko, I. Mlakar, A. Nosan, V. Osterc, J. Simčič in D. TurnŠek Naklada: 1000 izvodov Letna naročnina: 250 din Tisk in vezava: LJUDSKA PRAVICA, Ljubljana, Kopitarjeva 2 V letu 1978 financirata: Raziskovalna skupnost Slovenije in Geološki zavod, Ljubljana From 1978 (Volume 21), GEOLOGIJA will appear biannually, in June (Part 1) and December (Part 2), to advance our publishing activity by a more rapid printing of the submitted papers Published in Ljubljana by the Geological Survey, FNT Institute of Geology, and the Slovene Geological Society Editor in Chief: Stefan Kolenko, Yu 61000 Ljubljana, Parmova 33 Editorial Board: M. Drovenik, M. Iskra, S. Kolenko, D. Kuščer, A. Nosan, M. Pleničar and L. Zlebnik Subscription price: $ 14 per year Printed by LJUDSKA PRAVICA, Ljubljana, Kopitarjeva 2 35 VSEBINA — CONTENTS Paleontologija — Paleontology AcTa$beBa-yp6aMTtbeBa-yp6aftTMC Myaen seM/ieseflemm Mrv, Moctcea 117234 Anton Ramovš Katedra za geologijo in paleontologijo, Univerza v Ljubljani 61000 Ljubljana, Aškerčeva 12 Pe3K>Me B M3B6CTHOM MecTOHaxoacAeHWK y BOAonaAa flBOpHHK (= CnoflHfl n04H-sa/ia) b Rbophviukom poyTy 6bi/ia coCpaHa b TeMHOcepwx wnv\ nepnux toh-K0cni0AMCTbix BepxHeKap60H0Bbix (Bepxnerxe/ibCKMx) cnaHuax m t8kmx xe Mepre/iMCTbix c/iaHuax, KOTOpwe BWBeTpMBaioTCfl KOpw4H6BaTO, oneHb 6o-raian 4) ay h a h Oo/iee peAKan MWKpo4>nopa. OKaMeHenoc™ npeACTaBneHbi M3BeCTKOBblMM BOflOpOC/lRMM, M6/1KMMM M (£y3y/l MH M flHbl M M CfjOpaMMHUC^epaMU, ry6K8MM, Kopafl/iamm, racTponoflaMM, ABycTBopKaMM, pbakhmm ro/ioBOHoruMvi, muiahkamm, 6paxnonoAaMM, TpmioGmaMH, mopckmmm jiwihhmm m excaMti. flo-MMHMpyroT Cpaxnonoflbi, mumhkm m MOpCKne nnnviM. flBycTBopnaTbie Monnio-ckh M©Hee MHoroHnc/ieHHbi, ho npeACTBBneHbi MHTepecHbiM m cBoeo6pa3HWM KOMnjieKCOM. XapaKTepHo pa3Hoo6pa3Me 4>opM m o6nnne HOBbix TaKCOHOB. OnpeAe/ieHo 22 bhab ABycTBopox, OTHOcniunxcn k 17 poAaw, 11 ceMefiCTBaM: Malletiidae, Parallelodontidae (noAceMetfCTBa Parallelodontinae n Grammato-dontinae), Pterlnopectinidae, Aviculopectinidae (noAceMefiCTBa Aviculopecti-ninae w Streblochondriinae), Entollidae, Posidoniidae, Pterineidae, Myophori-idae, Edmondiidae, Allorismidae, Grammysiidae. OnucaHbi 7 hobnx bhaob m 1 noABMA: Parallelodon Javornikensis, Piychopterla (Actlnopteria) gjelica, Acan-thopecten ramovsi, Annuliconcha spinosa, Amonotis palaeozoicus, Ivanovia slovenica, Qrammysiopsis carboniferous m Cucullopsis quadrat a Jugoslavia. KoMnsietcc BKJiiOMaeT Aee rpynnw bmaob, OAna M3 kotopwx c Boft ct boh h a MHTepBany C2.8l BTopan MHTepaany C8 — Pi. MHTepecHO npMcycTBwe peAKMX bmaob, tbkmx KaK Cucullopsis quadrata Jugoslavia, Ivanovia slovenica, cBoe-o6pa3Hbix paKOBHH HeflCHoro cncT0MaTMs©cKoro nonoxeHun, BCTpeneHHbix paHee b 6auiKnpCKnx omoaceHviflx ypana. M hto oco6eH«o MHTepecHO, npucycTBwe b rxeJibCKMx omoxeHMfix npeflCTaBHTena poaa Amonotis. 3to TMnUHHblPi 3hfl©mmk, M3B6CTHblM paH66 flMUIb b TpnaCG JOrOCJiaBMM. HanConee 6/im3ok onwcbiBaeMbift KOMnneKC ABycTBopKaM ypana n floH-6acca, a TaioKe Hoamockobhom kot/iobmhw h Cob. Amophkh. Abstract A rich pelecypod fauna from the Upper Carboniferous (Gshelian) shale and marly shale of the Karavanke Alps (loc. Spodnja počivala = " Javo mi k-Fall", Javorniški rovi) is described. Among 22 species the following 8 taxons are new: Paraiielodon favor nikensis, Ptychopterla (Actinopteria) gfellca, Acan-thopecten ramovsi, Annuliconcba spinosa, Amonotls palaeozoicus, Ivanovi a slovenica, Grammysiopsls carboniferous, Cucullopsis quadrata Jugoslavia. Two pelecypod groups of different ages could be distinguished: the first indicating the Middle/Upper Carboniferous age, and the second the Upper Carboniferous/Lower Permian age. Cucullopsis quadrata fugoslavica and Iva-novia slovenica are rare and interesting; the genus Amonotis, designated as a typical endemic pelecypod in the Triassic beds of Yugoslavia, has now been found in the Gshelian layers of Slovenia. The pelecypods described can be compared as most similar to the fauna of Ural, Donbas, Podmoscowian Basin and North America. Kratka vsebina V zgornjekarbonskem (gželljskem) temno sivem in črnem sljudnem glinastem skrilavcu in laporastem skrilavcu je bila nabrana pri Spodnjih počiva-lah (= slap Javornik) v Javorniškem rovtu zelo bogata školjčna favna. Novo določenih je sedem vrst in ena podvrsta: Parallelodon favornikensis, Ptycho-pteria (Actinopteria) gielica, Acanthopecten ramovsi, Annuiioncha spnosa, Amonotis palaeozoicus, Ivanovia slovenica, Grammysiopsls carboniferous in Cucullopsis quadrata lugoslavica. Po starosti se deli školjčna favna na dve skupini; prva je značilna za čas srednji karbon/zgornji karbon, druga pa za čas zgornji karbon/spodnji perm. Redki in zanimivi sta podvrsta Cucullopsis quadrata jugoslavica in vrsta Ivanovia slovenica; obe imata svojevrstni lupini in še nejasen sistematski položaj. V gželijskih plasteh Javorniškega rovta je posebno zanimiv predstavnik rodu Amonotis, znan kot endemični triadni rod v Jugoslaviji. Opisana školjčna favna je najbližja školjčnim favnam Urala, Donbasa, Podmoskovske kotline in Severne Amerike. 1. MCTOpHHeCKHH OHOpK Anton Ramovš B eepxH©M KapCoHe KapaaaHK flo h a ct on mux cwcTeMaTMHecKnx vicc/ieAOBaHwfi m c6o-poB 0ayHw flsycTBopoK 6bmo M3BecTHO Mano. noBMflnMOMy, 6onbwee BHUMaHHe nccne-AOBaTeriM yaenn/im n/ieseHoruM h flpyrwM rpynnaM, hbm ABycTBopxaM. JI m n on b a (1859, 59) nepBbift ynoMAHy/i H3 KaMeHHoyro/ibHbix cnaHueB flonMHbi PlnaHHHbi Hafl EceHHuaMn (florannec-CTomieH) bha Avicula valenciennesl Koninck. Xe-PMH (1919, 67) npHBOAMT M3 (feMflMTHOrO M3B6CTHAK8 EC6HMU EdmOndia sp., BMflOBOG onpeAe/ieHne kotopofi 6wno hbbo3mo>kho M3-3a nnoxofl coxpaHHOcm no cicynbrnype m ApyruM ot/i mm MTe/i bH bi m npn3HaK8M 3Ta cfeopMa CnM3Ka E. acuta Hind, ho omMHa/iacb pa3MepaMM. B ochobhom najieoHTo/ioniHecKOM TpyAe no cfeayHe BepxHero tcapČoHa XepMH (1931, 34—39) onnca/1 M3 OTBana (xa/ibAbi) Cbbckmx Hm xpoMe Kopa/inoB, MUjaHOK, 6paxnonoAi opTouepaTMA m racTponoA, Taicae m ABycTBopoK: Conocardium uraficum Verneuil, Cono-cardium sp., Edmondia sulcata Phillips, Aviculopecten elegantulus Stuckenberg, Pecten (Pseudamusium) sericeus Verneuil. B tom xe rofly P a k o b e u (1931, 81—£2) W3 TeMHocepbix muHMCTbix c/iaHueB y boao-naaa Abophmk b Abophmukom poyiy onucan h n3o6pa3M/i c/ieayk>mne BHflbi: Ctenodonta (en. dp.) undulata Phillips, Aviculopecten cf. interlineatus Meek et Worthen, Aviculopecten sp. bepxhekamohhoyronbHbie (r*enbCKne) flbyctbopkh h3 Hbophhukoi-q poyia 7 Pa m o b uj (1969, 245) TO/ibKO ynoMWHaeT cpeflvi 6oraToft BepxHeKaMeHHoyroJibHofl 4>ayHbi flBopHHUKoro poyra (BOAonan Abophmk) iaiOKe m flBycTBopnaTbix mo/iji»ockob ms rnwHwcTbix c/iaHues - OTnenaTOK Schizodus ayHbi, cocTonme* M3 M3BeciKOBbix BOAopoc/iefi, (})opaMMHH(t)ep, ry6oK, xopa/i/ioB, racrponoA, flBycisopoK, peAKMX ro/ioso-Horux, MuiaHOK, 6paxnonoflT tpii/io6mtob, mopckmx /ih™* m mopckmx exefl. K HeTbipew OTnenaTKaM paxoBMH, onHcaHHb.M M. P a k o b 14 e m b 1931 rofly M xpaHflLL|MMcn b Ecre-ctb6hh0m My3ee b JlroCmiHe, npwSaBM/iocb eme oko/io era aKaeMnnnpoB paa/iHHHbix AByCTBOpOK B ochobhom b BHAe XOpOtllO COXpaHUBUJMXCfl OTnesaiKOB B rilMHMCTWX cnaH-qax. FIohtm Bee cfjopiuw cofipaHbi fl. 5 e a w 4. ynoMflHyxaa b nepso* r/raee (frayna flBycrsopoK m? MSCTOHaxojKfleHun b CaBCKHx x 6bina coCpaHa bo bp6mh ropHbix pa6oT b rcenesHOM pyAHwxe. OflHaxo, nocKo/ibxy pyflHMK AaBHO h0 pafiojaer h maxTbi sacbinaHbi, a oiBaxi (xe/ibfla) aapoc, tbm yrca Henbsn coČupaTb BepXH6KapčoHOByio cfcayHy. HHTepecHO, hto b Apyriix BepxH6Kap60H0Bbix MecTOHaxo*cAeHMflx (fiayHbi b flsop-hmmkom poyry, Ha n/iaHUHe nofl Pojim new m b OKpecrHocrnx Cbbckmx Am hb oCHapwKeHo OCTaTKOB AByCTBOpOK. B HecT0Hax0)KAeHMM y BOAonafla Abophmk (Choahh noHHsa^a) npeo6/iaflaK)T tbmho-cepbie MJ1I4 qepHb.6 TOHKOCniOAHCTbie H B OOJlblilMHCTBB C/iyHaSB TOH K036p H M CTbIG HIUHH-CTb.8 cnaHUbi M roHKoc/iKJAMCTbie necsaHbie MeprenbHbie c/iaHqw, Kojopwe npn sbiserpii-BaHMM craHOBflicfl KopMHHeeaTfaiMH. CnaHMbi HepeAyratcn co c/iohmh KpeMHesoro necna-HMKa, KOTopbiii 6onbiuefl saerb« He coflep>KMT OKaMeHejiocreM, n*6o ohm peflKM. B cnaHuax b OTAeribHbix npocnonx OKaMeHe/iocm MHoroHMCneHHu. CpeAM oKaMeHe/iocie* npeoO/iaAafor epaxnonoflb., MiuaHKii N nneHHKii creOnew mopckmx nmM (cmicoK cfrayHb. cm. P a m o b in 1971, crp. 1389). CpeflM cfrysy/mHMAHbix c|)opaMMHMep b Mepre/ibHbix c/ioflx nacxa Rugosofusulina atpina antiqua (Schellwien). OKaMene/iocrn noATBep^awi n03AH6Kap60H0Bbift B03pacT (Biopafl no/iOBMHa racenbCKoro B6Ka) oimcbiBaeMbix otjio-5k6hmm. CoxpaHHocTb 4>ayHbi k3k ripasmio xopoujaa, xoTfl b rjiMHMCTbix c/iaHuax BCTpe-MaioTcn nrnub CKy/ibnrypHbie Wa. B ornenarKax xe oChhho coxpaHmorcn fla*e caMbie TOHKMe CKynbnrypHbie aneMeHTw. CyAfl no bcb* Opayne, OHa HaxoAMrcn Ha nepBOHananb-hom MeCTe WiVt OHBHb H03HaHMT6JlbH0 nepeHeCBHa OT MeCTa oCHTaHHR. BepxHeKap60H0Bbie or/ioxeHMn oiKpwTbi ToiibKo b oO^acrM yrnyfineHHoro rpyConpo-Bofla, b ocra/ibHbix Meciax ohm saKpbiTbi m o6Ha>KaK)Tcn Jimiib HeCo/ibiuMe ynaciKM cnoea n^oTHoro necnaHHKa. HoaioMy Bocco3flaHMe Bcero paspeaa BepxneKaMeHHoyro/ibHbix 0T/i0)KeHMn b oenacTM cfiopa oKaMeHenocTew h«bo3mo3kho. tohhan momhocib c^o©b c (OayHo* ra^e Heo3BBCTHa, npm6^m3mienbh0 ona paBna 1,5 m. HaM6o/iee MHoroHHC/i©h-Hbie octbtkh cJ)ayHb. BCTpenaiOTCH b oiAenbHbix npoc/ionx enon. MomHOCTbw oxono 50 cm TAB ABycTBopKH oCbiHHb. b komn/ibkco c 6paxhonoaamm, miiiahkamh h ApyrMMH rpynnaMM Ben cpayHa npnyponeHa k OAHOMy ypoBHio. 3. XapaKrepwcTHKa m omicaHMe cfrayHbi ABycTBopwaTbix Mo/iniocKOB K. A. AcTact>b6Ba-yp6afiTMC flBycTBopMaTbie mo/ihkickm m3 rxe/ibckmx otnoxehwft rop KapasaHKw npeACTaanmor MHTepecHbift H CBoeo6pa3HW« KOMnnsKc. xapaKTepn3yiomn*cfl npesBbiwaftHbiM pa3H0-o6pa3iieM 4)opm. OnpeAeneHHbie hbmm 22 bhaa flBycTBopox othochtch k 17 poflam 11 cewehctbam: Malletiidae. Parallelodontidae (noncememctea Parallelodontinae m Gramma-todontinae), Pterinopectinidae, Aviculopectinidae (noACBM. Aviculopectininae m Streblochon- driinae), Entoliidae, Posidoniidae, Pterineidae, Myophoriidae, Edmondiidae, Allorismidae, Grammysiidae. Ha3BaTb stot KOMnneKc tmhuhho «DKeJibCKMM» HenbSfl, nocKo/ibtcy oh coagpxmt KaK cpeAHe-BepxH6Kap60H0Bbie, «nehcmjibbahckme» (18 bmaob), tak m 6onee Monoflbie c|3opMbi, bepxhekamehhoyronbho-HMXHenepMCKMe (9 bmaob). tmnmhho Bepxne-KapČOHOBbie jimlub ripeACTaBMTe/iM poAa CucuHopsis. 3to oneHb peAKne (fropMbi, M3BecT-Hbie aohbihe JimiJb b Bepxax Kap6oHa Kman, OTKyna 6bin onucaH eamhctbehhbiw bha CucuHopsis quadrats Chao. Han6o^bUiee cxoactbo onucaHHbirt KOMnneKc o6HapyxMBaeT c ABycTBopKaMM ypana (vi3 10 o6ihmx bmaob, 7 — BCTpeneHDi Ha Ypa/ie b HM>KHefl nepMM, 3 — b 6awKwpcKOM npyce) m floH6acca (9 oCiumx bmaob co cpenHe-BepxHeKaMeHHoyronbHbiMM ABycTBopKaMn). H3 C0MM o6lMHX BMAOB C flByCTBOpKaMM IlOAMOCKOBHOfi KOTJIOBMHbl TOJlbKO OflMH (EtfmOfJ-dia nebrascensis Geinitz) M3BecT€H M3 BepxHero Kap6oHa, ocianbHbie ofibiHHbi aih mo-CKOBCKOrO flpyca. HflTb BMAOB M3BeCTHbl B fieHCMJlbBaHCKMX 0TJ10X6HMflX CeBepHOfi Amqpmkh. A&a BUfla o6ium6 c 6opeanbHOM tf>ayHOfl Ceeepo-BocTOKa CCCP. To/ibKo b HM*He& nepMM KpacHOBMAOBO BCTpeneHbi 6bmn npeACTaBMTe/w pona Ivanovia nom. nov. {=Modiolodon Netsch.). CBoeo6pa3Hbie paKOBMHbi, HeacHoro cmct6-wiaTusecKoro no/ioxeHMfl, onwcaHHbie Hawin KaK Gen. et sp. indet., M3BecTHbi b 6aujKup-ckmx oTno>KeHMflx Ypana. M, hto 0C06eHH0 MHTepecHo, namvt onpeae/ieH bma Amonotis palaeozoicus sp. nov. Poa Amonotis xapaKTepeH To/ibKo aha Tpviaca lOrocjiaBMM. C/ieAyeT OTMeTMTb M o6uJ1Me HOBblX TaKCOHOB. H3 22 OflpeAeJieHHblX HaMM BMAOB (OHMCaHMe AByX He aaetcn M3-3a nnoxofi coxpaHHOc™, n0BMAMM0My, sto bmaw poaob Aviculopecten v\ Dunbarella) onwcaHO 7 HOBbix bmaob m 1 hobwm noabma. HeT hm oAnoro BUfla, 3a MCKJHOH6HMOM OH©Hb peA*nx npeACTaBMTenew poAa CucuHopsis, xapaicrepHoro TonbKo A/lfl DK6/lbCKMX HJ1M B6pXHeKaMeHHOyrOJlbHblX OTJlOXeHM«. M3yneHHaH (£ayHa npeactabjieha komfi/ibkcom (fcopM, xapaKTepHbix a/w Herny6oKMx ynacTKOB Mopn, AOCTaTOHHo xopotuo aapwpyeMbix, c mhi-kmm mjimcthm rpyHTOM. npeo6/ia-AaioT 6nccycHbie sriMcfrayHHbie 4>opwibi, MeHee MHorosMcneHHw ceMMMHcfeayHHbie, m6jiko 3apbiBaK>mviecn ABycTBopKM. rianeohtonormheckah nactb K. A. AcTa4>beBa~yp6aMTMC CeMetiCTBO M a 11 e t i i d a e Adams et Adams, 1858 Poa Palaeoneilo Hall et Whitfield, 1869 Palaeoneilo sp. Ta6. 1, nr. 2 a, 6 ronoTMn. Ho. 65. TexHi4HecKviA My3©n Xe/ie3apHe Ecennue. lOrocnaeMH, ropw Kapa* BaHKe; BepxHMft xaptioH, rxenbCKHft npyc. OnMcaHwe. PaKOBUHa cpeAHefi BerinnnHbi (fl ao 30 mm), hostm paBHOCTBOpHaian, yfl/iMHeHHo-poM6oMflaflbHafl, Bbinyicnafl (Bbin.: B cp. Ben. 0,35), flOBo/ibHo HepaBHOCTO-poHHHfl (flnn: fl cp. sen. 0.18), TOHKocTeHHaa, c ene pa3niiHMMbiM cwHycoM CpiowHoro Kpan. MaKyujeMHbm yron 100° (cp. Ben.). 3aMOHHbiM Kpaft npflMOH, ero nepeflHnn eeTBb necKonbKo 6onee % ahmhw 3aflHefl B6TBM. CoeflMHeHne co cna6o BbinyK/iwM nepeAHMM KpaeM oKpyrnonpnMoyronbHoe, co cnpflM/ieHHbiM, cKouieHHbiM 3aflHHM KpaeM 3aM04Hbifi coeAMHneTca nofl TynbiM crna->K6HHbiM yr/i0M. BpKDUJHOM xpaft noHTu napanneneH 3aM0HH0My, oneHb c/ia6o Bbinyioibitf, c HenBCTBeHHbiM CMHycHbiM M3rn6oM. M a Ky Luk a HeBbicoKan, LunpoKan, yAaneHa ot nepeAHero Kpan na paccTOflHue oicono % flflMHbi paKOBUHw. CTBopKa paBHOMepHO Bbmywia, nuuib b cpeAHefi ee nacTM HaMenaeTcn He6onbwafl ynnomeHHOCTb. K nepeAHBMy m 6pi0iiiH0My KpaflM BwnyioiocTb nocTeneHno yMeHbiuaeTCfl, 3a cna6o npunoAHHTbiM, ho aoct8tohho penbe0HbiM xuneBbiM nepern6oM — Bomyioe 3aKnneBoe none. CxynbnTypa HapyatHOfl noBepXHocTH CBoeo6pa3Ha. riepeflHHe panwa^bHbie nnocKOBbmywibie petipa (5—6) pac-LunpfltoTCH n pasflBMratoTcn c npnCniDKeHMeM k nepeflHQMy Kpaio. Cna6oeorHyTbie npo-Me)KyTKM noHTM paBHbi pe6paM. flanee cneAyiOT MHoroHMcneHHwe (18—20) tohkmb, pa3-AeneHHbie y3kmmn npoMexyTKaMM pe6pa, koto p we npw6nn3MTenbH0 Ha cepeAUHe ctbopkn bhobb cmehfliotcfl Conee lumpokmmm pacxoAHLUMMMcn pefipaMM (7—8). Ha 3axmnebom none pacnonoxeHbi 5—6 pe6ep, noAo6Hbix nepeAHMM. npn yBennneHMn yAanocb Ha6nioAaTb, hto Ka^kaoe paflnanbHoe pe6po npeactabnnet co6om napy c6nM*eHHbix, pa3AeneHHbix ysKMM np0Me>KyTK0M pe6ep. PaAwanbHan cicynbnTypa ceseTcn KOHueHTpusecKMMH CTpyfl-KaMM, MeHee flBCTBeHHWMn b ueHTpanbHow nacTM CTBOpKn. CKynbnTypa HacTonbKo pe-nbe^han, hto, cyAH no BHyTpeHHMM aApaM, Ha6nioAaeTcn m ha bhytpehheft nobepxhocth CTBopKM, XapaKTep MycKynbHbix OTnenaTKOB Heii3BBCTBH, TaK *e KaK h 3aMKa. flmub Ha neBOM CTBopxe ronoTMna yAanocb Ha6nioAaTb Tpw nnacTMHHaTbix kocwx nepeAHnx 3y6a, HanpaBneHHbix cnepeAH HasaA k BeHTpanbHOMy Kpaio 3aM0HH0fi nnacTMHbi. OHTOreHeTHHeCKMe H3MeH6HHfl M MSMttHWMBOCTb. Ha paHHMX CTaAMflX pa3BMTHfl paKO-BUHbi xapaKTepHwft npM3HaK BUfla — pa3ABoeHue paAnanbHbix pe6ep He oTMeMaeTcn. Bonbman nacTb pe6ep AMX0T0MnpyeT Ha oahom ypoBHe (npw BbicoTe paKOBHHbi 2—3 mm), xom Ha6nwAaeTCfl m 6onee noaAHee AMxoTOMnpoBaHne OTAonbHbix pe6ep. y B3pocnwx 4>opM BapHMpyeT yAnMHeHHOCTb paxosuHbi (fl: b ot 1,72 ao 2,07), HepaBHocTopOHHOCTb, ho xapaKTep cxynbmypbi m o6Lune osepTaHvin coxpaHRioTcn. CpasHeHM«, Bma HaM6onee 6hm3ok onucahhomy m. 3. ^hmlusbckum (1900) P. tenuicostatus M3 cpeAHero Kap6oHa ypana (roHMaTMTOBWM r0pM30HT, cnoft «e»), omn-Mancb ot nocneAHero xapaicrepoM cxynbnTypbi. 3aM«HaHMA. XapaicrepHan flnR onucwBaeMoro bmab CAB0eHH0CTb pannanbHbix pe6ep, no Bee« BMAMMOCTH, Ha6nioAaeTCH h y p. concetlatus (Martin), ecnw cyAMTb no M3oCpa)tce-hmhm 3thx 0opM y B. MapTHHa (1809) (I y XaftHAa (1896—1901). Oahbko otjihhuh OT HMJKHeKaMeHHoyronbHoro BHAB flocTaioHHo Be/mKH (oHepiaHiw CTBOPOK, MeHee pe3Kww K11 Jib, MBHee BblCOKMB MaKyiiJKM), HTOfibl paCCMaTpMBflTb lOrOCJiaBCKHe paKOBMHW B Ka- secTBe caMocTOflie/ibHoro BHA&- r«0rpac|>m«iecK0* pacnpocTpaHeHMe m reonorMH«CKMft BOspaCT. lOroc/iaBMH, ropbi Ka-paeaHKe; bopxhuh Kap6oH, nKeJibCKHft npyc. MaTepMan. flApo m OTnenaTOK npaBO* ctbopkm, HApa m OTnenaTKM paKOBMH c pacKpu- TblMM CTBOpKBMH. rioflC6MePiCTB0 Grammatodontinae Branson, 1942 Poa Cucullopsis Chao, 1927 Cucullopsis quadrata jugoslavica Astafieva-Urbajtis, subsp. nov. Ta6. 1, 4—6 TonoTMn. Ho 61. texhwneckmm My3eii Xene3apHe Ecbhmub. lOrocjiaBMH, ropu Kapa-b8hk6, bepxhmm kapcoh, DKe/lbCKMM flpyc. OnMcaHHO. PaKOBMH a aobonbho KpynHan (A ao 43 mm), ya/iMHBHHO-npflmoyronbhan c KpbmoBMAHOpacujMpeHHoft 3aKMneB0« nacTbto (A : B 1,11), AOBonbHO HepaBHOCTopOHHflfl (Ann : A 0,34), ToncTocTeHHan (ao 3 mm). He3Wflromafl; anMKanbHbi* yron 95°. yron 3aM04-HblX B8TB6M 145°. 3aM0HHbifi Kpafi npflMOM, ero nepeAHflfl betbb noHTM b flBa pa3a Kopone 3aAHefl, OHa coeflMHfleTcn co cnpflMneHHbiM mjim cna6o BbinywibiM bmcokhm nepeahmm KpaeM hoa npHMbiM crnaxeHHbiM yrnoM. KHH3y nepeAHM* Kpa& cnerKa ckouigh m no LuwpOKoft Ayre c/iMBaeTCfl co c/ia6o BbinyioibiM hm>khmm KpaeM. AiMHHa* 3aAH«fl 3aM0HHafl B©TBb noA yrnoM MeHbuie np*Moro coeAMHseTCH co cna6o CMHycHWM, necKoiibKo 6onee AflMHHbiM, h6m nepeAHHM, aaAHHM KpaeM, oOpaayfl KpbinoBMflHyio otthHyTocTb BepXHe-3aAHefi nacTM. CoeAMHeHne 3aAHero m epiowHoro KpaeB npaBM/ibHO 3aKpyr/ieHHoe. MaKyuiKM mnpoKvie, BbiCTynaioiUMe (B. m. : B 0,16), conpMKacaiomnecR, c/ia6o npoaorwpHbie, yaaneHW ot ne-peAMero Kpan Ha paccTonHM© % ahmhw ctbopkm. Han6o/ibUJan BbinyKJiocTb — b cpeflHePi nacTM ctbopkh, OTKyna noHTM oamhbkobo KpyTO cnaAaeT k nepeAHGMy m 3aAHeMy KpaflM, k 6pK>WHOMy Kpaio BbinytoiocTb yMOHb-ujaeTCH 6o/iee chokomho. BepxHe-3aAHflfl sacTb paKOBUHbi orrnHyTa m ynnomeHa, 6jiaro-Aapa seMy co3flaeTCfl BnesameHne OKpyrnoro KwneBviAHoro nepern6a, 3a kotopwm mhoraa Ha6/iiOAaeTCfl cna6an BorHyiocTb ctbopkm. HapyxHan noaepxHOCTb noKpbua KOHueHTpw-H8CKMMM TOHKMMM JIMHMflMM pOCTa, CpeAVi KOTOpblX H8pe3 I10HTM paBHblB np0M8*yTKM Ha6/iK)Aa»OTCfl 6onee pe3Kne, oTMeHaiomne nepepwBbi b pocTe paKOBMHbi. B Jiyny moxho BHfleTb M OHSHb TOHKwe MHoroHwcneHHbie paAwajibHbie cTpyrtKM. BHyTpeHHnn noBepxHOCTb r/iaAKan c pbakmmm kohu8htpmh8Ckwmm nepexMMaMM, cooTBBTCTByiomMMM 6o/iee rpy6biM, KOHUeHTpMHeCKMM CTpyPlKaM Hapy>kho^ nOBepXHOCTM. 3aMOHnan nnaCTMHa npflMafl, pacuiMpeHHaR nosaam h noA MaKyujKofl. henocpbactb©hho noa MaxyLukom HaxoAflTcn tpm tohkmx, CKOUieHHbix ot MaKyuiKM Ha3aA, nnacTMHMaTbix 3y6a. Eme 2—3 3y6a HaxoARTcn yaw nepeA whobmkom MaKyuiKM, ohm to/iu*6 m b sepxHeft nacTM, 3arM6ancb, HanpaBnfltOTCfl tohtm napanne^bHO 3amohhomy Kpa®. Ha nepeahe« bbtbm samomhoft nnacTHHbi pacno^o»eHbi 2 «60K0Bbix» ay6a; HanMHaiOTCn ohm y nepeAHero ciaiOHa MaKyuiKM m tflhytch k nepeAHe-BepxHBMy yrny 3aM0HH0ft nnacTMHbi. Ot makyujkm HB3BA HanpaBiieHO yTonmeHMe Ha 3aAHeii 3aM0HH0fi B6tbm, noKpbiToe napannenbHWMM 3dMOHHOMy KpaK) T0HXMMM 60p03AXaMM, HMXe XOTOpblX HaXOfiflTCfl 3 flflMHHblX n/iaCTMH-HaTbix aaflHMx «6oxoBbix» ayCa. flsa hmxhmx 6onee moimhwo, yrnyCneHMH Mexny hmmh K3aam pacujMpnioTCfl, y KpynHbix cfcopM 3tm 3yCbi Ha xoHuax paciuen/ieHbi, HaCnioAaiOTCH m xax 6bi BCTasneHHwe Conee tohkms nnacTMHXM («3y6w BTOporo nopflAKa*)- 3aAHH© u «60K0Bbie» ayCw He BnonHe napanne/ibHbi 3au0HH0My Kpaio, ohm pacnonOKOHu Beepoo6pa3Ho Ha pacuiMpmoineCicfl K3aflH 3smohhom nnacTMHe, ho He aoxoaht no 3aflHero xpan CTBopKM. CBfl3Ka HaMM He HaCntOAanacb, ho B. Sao (Chao, 1927) nmueT 06 *0HeHb y3Koft minejo« /lwraMeHTHOM apea c r0pn30HTanbH0fi 6opo3flHaiocibiop pacno-noxeHHoft HaA nepeflHeft sacTbx> 38mohho^ nnacTMHbi«. MycxyjibHbte nonn ctbopok yTO/imsHw. OmenaTOK nepeflHero a/wyKTOpa rnyCoxww, yAnwHeHHOTpeyronbHofi c|>opMbi. Bbiuie Hero Ha nepeAHBM MaxyLiiesHOM CKnoHe — omena-Tox HoxHoro Mycxyna. riepeAHee MycKy/ibHoe none OTAeneno ot nonocTM ctbopkm yToninewneM — CarrpMCcofi. Ha 3a-KM/teBOM none pacnonoxen Co/ibWMft no pa3MepaM yA/iMHeHHO — OBanbHbift omesaTOK saAHero aAAyKTopa. Oh Conee MenxMfi. Burne h Hecxonbxo nepeA hum pacnonoxeH Conee rnyCoxMM OKpyr/rwfl OTnenaTOX 3aAHero peTpaKTopa (?). Ha HApax ot MaxyujKH BAonb KMJieBMAHoro nepernCa THHercn cfpytfxa m nepeA Heft BTOpas, xotopwm Ha BHyTpeHHeM nOBepXHOCTM CTBOPOK COOTBeTCtByiOT JlHHeHHbie 60p03AKH. OHTOreHOTMHeCKMe M3MeHeHHfl M M3H6HMMBOCTb. Ha MOJIOAblX CTBAMHX paKOBHHB, n0BMA0M0My, HMe/ia Conee AJiHHeHHbiti aaMOHHbiCi xpafi, 3aAHMtf Own nwiueH cwHyCHoro M3rH6a. CpeAM Bapocnwx $opM HaCmoAaeTcn BapHHpoBaHHe onepiaHnPi paxoBMHbi, KorAa HapflAy c Conee npnMoyronbHO-BucoxMMM BCTpesaioTCn h Menee BbicoKne c HecKonbKO CKOiueHHbiM nepeAHUM xpaeiui paxoBMHbi. CpaBHOHHe. Ot HOMMHanbHoro noABMAa omMHaeTcn 6onee MaccuBHbiMM, bwcokhmh MaxyiuKaMH (B. m.: B cp. 0,16), Conee MenxMMH oTnesaTxaMM aaAHwx MycxynoB m, noBM-AMMOMy, HanmneM nepeflHwx «6okobwx» 3yCoB (ho MCxmoneHO, hto Ha XMTaflcxMx pa-xoBUHax coxpaHHodb ne no3Bonwia HaCntOAaTb saMox n0/iH0CTbi0. 3aue4aHHfl. POA CucuUopsis m eAUHCTBQHHbitt bma C. quadrata onMcaHbi Mao (1927) M3 sepxHero xapCoHa KwTaH. PaxoBMHbi, BCTpeneHHbie b nxenbcxMx omoxeHMnx JOrocna-BMW, HecoMHeHHo npMHaAnexaT poAy Cucuflopsls m oneHb CnM3xw kht8hcxmm opMaM, OAHaxo OT/iMHMn b 4>opM6 paxoBMHbi, b xapaxTope MycxynbHbix OTnenaTKOB, b ctpoohmm aaMxa 3aciaBnnx)T paccMaipwBaTb iix, no MeHbLue^ Mepe, b paMxax caMocTonienbHoro reorpa4>MH6Cxoro noABMAa. reorpa0MHecKoe pacnpocTpaHOHMe h reonomnecKMit Bospacr. tOrocnaBMn, ropw Ka-paBaHxe; BepxHMft xapCoH, nxenbCXMM npyc. MaTepHan. 4 BHyrpeHHMx nApa, 3 omenaTKa HapyjKHofl noBepxHocm m paxoBMHa co CMeiMeHHblMM, HenonHblMM CTBOpKaMM. CeMeftCTBo Pterineidae Miller, 1877 Pofl Ptychopteria Hall, 1883 noflpofl Ptychopteria (Actinopteria) Hall, 1884 Ptychopteria (Actinopteria) gjeiica Astafieva-Urbajtis, sp. nov. Ta6. 3, (J>Mr. 4 ronoTHn. Ho. 86. TexHWHecxMfl My3eii XenesapHe EceHime. lOrocnaBM«, ropw Kapa-saHxe, eepxHMM xapCoH, nxe/ibcxuft npyc. OnMcaHMe. PaxoBMHa cpeAneii eenwHHHbi (fl 32 mm), oKpyrno-KBanpaTHafl (fl : B 1,1 yMepeHHO-BbinyiaiaB, pe3xo HepaBHOCTopoHHRR. AnwxanbHbiM yron 70°. nepeflHMCi Kpafi bucokmA, cna6o Bbinyiaibiw; 3aKpymflRCb, c/iMBaeTCH c Bbinyx/ibiM, 0C06eHH0 b nepeflHefi sacTM, cnerxa noflHMMaiomnMcn wa3afl CpioiiJHbiM KpaeM; nocjieAHMfi nofl npflMbiM cmaxeHHbiM yrnoM coeflHHneicfl c kopotkmm, cnpRMneHHUM 3aflHMM KpaeM. 3aocTpeHHafl KiitoBOBWflHan MaKyiuxa pe3xo cMemeHa BnepeA m BbiciynaeT HaA 3aMOMHbiM m nepeflHMM KpanMM. MaKCMManbHan BbinywiocTb npwypoHeHa k npMMaxyujeHHOft o6nacm h k KMneBMflHOMy neperw6y ctbopkm, 3a kotopwm HaHMHaeTcn yrmomeHHoe, Oo/ibiuoe, 3aflHee ywxo (coxpaHeHHoe He noriHOCTbio). nepeflnee yiiJKO He coxpaHMnocb. HapyjKHafl cKy/ibmypa, Ha6nioflaeMafl Ha cjioxhom flflpe neBOii ctbopkm, coctomt M3 mhoi-ohmc-neHHbix, oxpyr/ibix, cCnMtfeHHbix paAnanbHbix peCep (cna6oBomyTbie npOMe*yTKM He-cxo/ibKo y>xe pefiep), nepeceneHHbix KOHuem-pMHecKMMM cTpywKaMM. OcofieHHO pe/ibetfrHbi pefipa b oC/iacTH km/ieBMAHoro nepern6a ctbopkm, rpfi HafiniOAaiOTCfl peAKVie BCTaeHbie peCpa. CTpoeHne 3aMKa m BHyTpeHHAH noBepxHocTb paxoBMHbi He M3yneHbi. 3aMeH8HMfl. CpeAM HeMHoroHMcneHHbix bmaob poAa Haw6onee 6/iM3Ka onncwBaeMOMy 4. taberi Mc Alester m3 BepxHero fleBOHa CeB. Amspmkm, Tauxe MMeciuan oTHOCMTonbHO Bbicoxyio paxoBMHy (fl:B 1,4) c BbinyxjibiM 6pioiiJHbiM KpaeM. OAHaxo m ot 3Toro BHfla rcrocnaBCKaH tfeopMa OTnunaeTcn yKoponeHHow cfeopMoCi paKoBMHbi c ujwpOKooKpyrnofi, ho ottrhytofi nepeAHe-6pi0iiJH0fi nacTbio. reorpac|)MHecKoe pacnpocTpaHeHM© m reonorMsecKMft B03pacT. lOrocnaBMR, ropbi Kapa-BaHKe; BepxHMM Kap6oH, DKenbCKMfi ppyc. Matepnan. O ah o cnoawoe Rflpo jieBofi ctbopkm. CewieMCTBO Pterinopectinidae Newell, 1938 Poa Pterinopectinella Newell, 1938 Pterinopectinella acutiptera? (Janischevsky), 1900 Ta6. 1, #mi-. 3 a, 6. Aviculopectan acutipterus: flHMiueBCKMtf, 1900, cTp. 187, Ta6. 3, 4>nr. 3. ronoTMH. MecTO xpaHeHMH H6M3BecTH0. ypan, cpeAHww Kap6oH (roHMaTMTOBbi* rop., cnofi C). OnHcaHHe. He6onbuian paxoBMHa, cna6o npo3orMpHaR, cna6o Bbinywian, cna6o He-paBHOCTopoHHflfl (Ann: fl 0,36); c AnMHHWM npnMWM 3aMOHHbiM KpaeM (fl. 3. Kp.: fl 1,2) h nonyKpyr/ibiMn onepTaHMRMM cBo6oAHbix KpaeB. riepeAHee ywKO b bwa6 ocTporo umna BbiAaeTCH Bnepefl, cMHyc OKpyrnbi*, Herny6oKMtf. WwpoKoe saAHee yuiKO cna6o oTAeneHO, saocTpeHO, ManeHbKM« KpaeBow cMHyc cpa3y noA 3aM0HHbiM KpaeM. PaAMaiibHbie pe6pa MHoroHMcneHHbi, OKpyr/iw, pasAeneHbi ujmpokmmm npoMe>KyTKaMM. Oco66hho pe/ibect>Hbi OHM b cpeflHeM HacTM paKOBMHbi, rAe Me>KAy peOpaMM nepBoro nopflAKa b k3)kaom npo-mexcytk© HaxoAMTCn 6o/iee tohkoo BCTaBHOe pe6po. Ha saAHeM yiuxe pe6pa Conee tohkmo, name pacnono)KeHHbie, ho HeoTAenMMw ot pe6ep 3aAHefi nacTM ctbopkm. MaxyujKii cnaCo CMemeHbi BnepeA, oohtm He BbiCTynawT HaA saMOMHbiM KpaeM. MaKyujesHbifi yron OKono 100°. 3am8hahmfi. Ot ypa/lbCKMX $OpM OT/lMHaeTCfl HeCKOnbKO MBHbliJMMM p83M9pBMH ii MOHbuiMM hmc/iom pe6ep. nobmflmmomy, lorocnabckm* 3k36mn/iflp — 6onee Monoflan paKOBHHa. r«orpa4>HHecitoe pacnpocipaHMHe h reonorMsecKM« soapacT. fOrocnaBun, ropw KapaBaHKe; BepXHMft KapSoH, rxenbCKMfi npyc. ypan, cpeflHHH Kap6oH, 6aujKMpcKnfi npyc. MaTepMan. CnoxHoe napo m OTnesaTOK HapyxHOfi noBepxHocm HenonHOfi neBofi CTBOpKM. CeMeficTBo Aviculopectinidae Meek et Hayden, 1864 noAceMefldBo Aviculopectininae Meek et Hayden, 1864 Pofl Aviculopecten M'Coy, 1851 Aviculopecten mutabilis Licharev, 1927 Ta6. 1, nr. 7—9 Aviculopectan mutabilis: H m x a pe b , 1927, cip. 118, Ta6. 5, 7—10, 12, 14—17; OeflOTOB, 1932, CTp. 126, Ta6. 14, 17. OflHCSHMQ. PaKOBHHa CpeflHG^ BenHHUHbl (JX AO 35 mm), T0HK8H, aiCnMHHafl, H8CM/1bH0 Bbinyiuian, BeepoBUflHan (fl:B cp. Ben. 1,1). MaKyweHHbie cioiaflKM nBCTBeHHbie, cnpflMneHHbie y M&KyujKM, cna6o HsmCancb, pac-LUHpflioTCfl ii nofl ryribiM, crnaxeHHbiM yrnoM coeAMHrnoTcn c npaBii/ibHO 3aKpyrneHHbiMw nepeflHMM m 3aflHMM, non™ paeHWMH k pa* mm. hwkhmfi Kpaft a/imhhbim onepneH Conee uiMpOKOM nyroA. MaKyiUKH BwnyKnwe, 3aocTpeHHbie, BbiCTynaiOT haa 3aM0HHbiM KpaeM. noc/ieflHM« npnMoCi, HecKonbKo 6onbwe nonoBrtHw MaKCMManbHOft fl/iHHbi ctbopkm (A. 3. Kp„ cp. Ben. 0,6). riohtm paBHbie yuiKu hbtko OTrpaHtineHbi KpyTbiM neperw6oM ctbopkm. 3aflnee CMnbno aaocTpeHO c yrnoBaTbiM cwHycoM; nepeAHee cna6o Bbinyicnoe, ero ne-peflHHH Kpaft coeAMHneTCfl c aaMOHHbiM noA npnMbiM mhm cnenca aaocipeHHbiM yrnoM, cwHyc HernyOoKMft, yrnoBaibift. CKynbnTypa cnoxHan. PaflnanbHbie pe6pa HecKonbKMx paHroB yeenMHHBaiOTCfl BCTaB/ieHweM HasMHan c caMbix paHHMx CTaAMM pocia; nepBMHHWX, 0CH0BHbix pe6ep ot 6 ao 9? kohmehtpmnockan CKynbnTypa 6onee tohkba, nepeceKan peftpa 0Ha o6pa3yeT fiyropKM, Ha KpynHbix pe6pax — 6onee rpyfibie. Ha yuiKax, 0C06eHH0 Ha nepeAHeM oHa npociynaeT 6onee pe3K0. XapaKTep paAtianbHoti CKynbrnypw yiueK — xaK Ha Tene paKOBHHbi. BnyTpeHHee CTpoeHwe H©M3BecTHO. ohtorehe-mseckme h3meh«hhn. MonoAwe paKOBHHbi 6onee BbicoKHe h ysKMe, c 6onee AJ1MHHWM SaMOHHbIM KpB6M M MBHblljMM anMKanbHbIM ymOM. Ha »HblX CT8AMHX pOCTa A : B cp. Ben. 0,85, an. yron cp. Ben. 65«. reorpacfiMHecKoe pacnpocTpaHettMe m reonorM4«cKMH soapacr. lOrocnaBwn, ropw KapaBaHKe; BepxHHH KapOoH, DKenbCKMft npyc. B CCCP: BepxHMft Kap6oH AoH6acca; ypan m TMMaH — HM3bl Pj. MaTepwan. TonbKo neebie ctbopkm. 5 cnoxHbix jiAep m 5 Hapy*Hbix omenatkob. Pofl Acanthopecten Girty, 1903 Acanthopecten carboniferous (Stevens), 1858 Ta6. 1, (feMr. 10 a, 6. Pecten carboniferous: Stevens, 1858, dp. 261 Avicuiopecten carboniferous: fl a ko bh ee , 1903 (pars), CTp. 3, Ta6. 1, K6a MnnHHOfica, CUJA. Mwimho&c, eepxHMM Kap6oH (central formation, Missouri subseries). OnHcaHHe.* PaKOBMHa He6oJibwaH, nos™ paBHocTBopnaTan, TOHKan. fleBafl CTBopKa cna6o BbinywiaB, hohtm OKpyman (fl:b y TonoTuna 1,12) co c/ienta ottrhvtom h npwnon-HflTO* 3aAHew MacTbio, cnpnMJieHHbiM 3aflHMM KpaeM, ot cepeAMHbi xoToporo HB4MH86TCH GMHyc 3aflHero yiuKa; 3aM0HHbi* Kpaii nonm npflMOM, wma ero HecKonbKo MeHbiue MaKCMMaJibHOH AHMHbi paKOBMHbi. MaxyuiKa ManeHbKan, 3aocTpeHHan, nosTM He BbiCTynaeT Haa 38M0HHbiM xpaeM. riepeAHee yiiiKO hotko OTAeneHO ot cpeAHetf naCTM ctbopkm KpyTWM yCTynoM; nepeAHn« nacTb yuixa aaKpyrneHa, hhjkhhh — Bbinyioia; CMHyc rnyGoKM*, yrnOBaTbifi. 3aAHee yuJKO /yiMHHee nepeAHero, 3aocTpeHo; CMHyc rnyOoKHfi, 06pa30BaH npaewnbHO 3aKpyr/ieHHotf Ayrofi. CKy/ibnTypa HapyxHOft nosepxHOCTw He ot/ivmaeTcn ot onucaHHOft Ann TonoTwna. Ha HawMX 3K3eMn/inpax hmcho pe6ep — 15. LUnnbi Hafinto-AaiOTCH m Ha cwHyce y 3aAHero yuiKa MexAy tohkmmm pe6pbiujKaMM (2—5) npw nepeceneHMM MX c KpaeM ctbopkm. HaM6onee KpynHwfi, M3orHyTbiM BBSpx UJMn pacnojioxeH b MecTe cjimhhmh HMJKHero h saAHero KpaeB. nepeAHee yiuKO TatoKe notcpbiTo paAManbHWMw pe6pbitiiKaMH (3?) h kohu8htpmm6ckmmm CTpy^KaMM. CKynbRTypa BHyTpeHHetf nosepxHocTM HeraTMBHo OTpaxaeT HapyxHyio cicyjibnTypy. 3aMOK xapaKTepHbii* w* poAa. OHTOraHOTMM0CKN0 h3ki8h0hhfl. no Mepe pOCTa paKOBWHW M6HflK)tcfl M OHepTaHMfl M CKyxibmypa. Mo/ioaw© (fcopMbi 6onee WMpOKO OKpyrnbi, HM*He-3aAHflfl nacTb He OTTHHyra, y hi km noHTM paBHbie, c MeHee rny6oKMM CMHycoM, ocočeHHO y 3aAnero ywKa. HapyxHan CKy/ibnTypa coctomt h3 npocTbix oxpyr/ibix, MHTepxa/iMpyiomux pe6ep, paaAeneHHwx uim-pokmmm npoMexyTKaMM m nepeceneHHbix KOHueHTpMsecKMMM ctpyvikamm. TaKMx ctpyek HacHMTWBaeTcn ao 12, 38T6M HanHHaeTCfl pacuiwpeHMe paAManbHwx pe6ep m ycnoKHeHMe Bceft CKynbnTypbi m paAMa/ibHOii m KOHueHTpMsecKOM. 3t3 Hana/ibHa« ctbamr hbctbohho pa3llMHMMa H3 BCeX neBblX CTBOpKaX, MMeBUJMXCfl B m3yhehho* koiwskumm. CpaBHOHMe. Othmhhh ot ocTanbHbix bmaob Acanfftopecten yKa3aHbi b onncaHMM no-cneAHMx. raorpa4>HM6CKoe pacnpocrpaHeime m reonornHecKM* eospacT. lOrocnaBMH, ropw Ka-paBaHKe; BepxHMfi KapfiOH, r*enb; KapTMHCKM© A/ibnw, BepxHM* KapfioH — hmjkhah nepMb; CeB. AMepMKa, eepxHMii neHCMflbeaHM^; BepxHMM Kap6oH JOxhom AMepMKM m KMTan; b CCCP: cpeahmfl — BepxHMM KapfioH floHfiacca, cpeahmft Kap6oH — hmxhah nepMb ypa/ia, cpeahmft Kap6oH floamockobhofli kothobmhw. MaiepHan. TpM nnpa m abb Hapy)KHbix oTnenaTKa neBbix ctbopok. * fleTanbHoe onwcaHMe cm. y Newell, 1937, CTp. 72. Acanthopecten elegantuius (Stuckenberg), 1899 Ta6. 1, (J>w\ 11—13 Aviculopecten elegantuius: UlTyKeHGepr, 1899. dp. 201, Tafi. 1, d>w\ 16; Xlnxa-pee, 1927, dp. 87, Ta6. 6, 14—23 (cm. noriHyio CHHOHHMUKy); OeflOTOB, 1932, dp. 120, Ta6. 14, ct>nr. 11—14 Acanthopecten carboniferous: Akob/isb, 1903 (pars), dp. 3, Ta6. 1, <$mr. 2; My-p o m u e b a, 1974, dp. 65, Ta6. 12, dpnr. 13—15 Acanthopecten stellaris: MypoMqeBa, 1974 (pars), dp. 66, Ta6. 9, cJ)Mr. 20 ronoTMn. Medo xpahehmn he m3bbctho. OnncaHMe. CpeAHwx pa3MepoB (fl ao 28 mm), yMepeHHo Bbinyioian, TOHKOdeHHan paKOBMHa, OKpyrnwx OMepiaHMii (fl : B cp. sen. 1,06), aioiMHHan nnn oneHb cnaCo npoao-lyiWHHan. Hkxhhh nacib ctsopkm npaBM/ibHO 3aKpyr/ieHa. 3aM0MHbiw xpa* pohtm npHMoii, flnMHa ero numb He3HaHHTe/ibH0 MeHbUje MaxciiMa/ibHOti a^mhu ctbopkm. Matcyum« noHTw MeHTpanbHbie, y3Kne, He BbicTynaiomne naa 3aM0HHbiM KpaeM. nepeAHee yuiico hohtm b flBa pa3a Kopone 3aAHero, hotko OTfle/ieHo ot cpeflHeii msctm ctbopkm KpyrbiM yciy-noM; nepeAHAH 4acTb yujKa 3aKpyrneHa, HWJKHfln — BbinyiaiaH. 3aAHee yiiJKo odpoyro/ib-Hoe, cnoicoftho cniiBaiomeecfl co cpeflHefi sacTbio ctbopkm. Ero saAHMti xpam oCpaayeT c aaMOHHbiM odpbiH yro/i, Kpyio BomyT, BbinpnMnnncb hmsko, oh nepexoflMT b npaBM/ibHO 3aKpyr^eHHbiM hmkhm* Kpa*. HapyxHan noaepxHOdb c/ioxho CKy/ibriTMpoBaHa. Pa-AHaribHbie pe6pa (18—19) no dpoenmo 6jim3Km Ac. carboniferous (Stevens), tbk xe kbk h KOHueHTpMnecKaa CKynbrnypa. B npHMaKyiiiesHOH hbctm pe3Kne KOHLieHTpusecKMe ckjibaohkm pacnojiosKeNbi name m He oOpasytOT b npoMexyTKax Me*Ay paflHanbHbiMM pefipaMM oTTflHyrocTM KHM3y. 06a ymxa HecyT flBcreeHHyio KOHueHTpunecKyK) cxynbniypy, Ha 38AH6M oTMenaiOTCfl 2—5 tohkmx pajuiajibHbix cTpyeK. Ha nepeAHeM ywite paAtia/ibHbie cTpyftKM MeHee fiBCTBeHHbi. b to BpeMR KBK KOHueHTpiiHecKan CKynbrnypa npoAO/ixaeTcn m Ha noBepxHOdM yuixa. riepeAHM* m hhjkhmm Kpa« paKOBMHbi, mhotab h HMXHe-aaAHMft Kpafi 3a ah ero yujKa odpo 3a3y6peHbi. Ctpobhmb 3aMKa kbk y TwnoBoro bmab. OHToreHeTMiecKMe HaiieHetfHfl. Ka« y Ac. carboniferous (Stevens). CpaBH«HMe. Ot TiinoBoro BHfla OTjiwnaeTcn ConbiijeM BbinyK/iocTbio v\ OHepTaHMHMM j16bom ctbopkm (0TCyCTBM6M OTTflHyTOCTH m npWIOAHflTOCTM b M6CT6 COeflHHeHMfl HIDKHOTO m 3a ah ero KpaeB), 6onbUie* a/imhom aaAHero yujKa, HenBCTBeHHbiM 0thji6h6hm6m yrnxa ot cpeAHeft nacTH ctbopkm (saAHee yujKo HawMHaeTcn ot kohub hmxhero Kpan m tahotca nohtm napannenbHo c/ia6o BbipaxeHHOMy nepern6y ctbopkm, otaenmomemy yuiKO ot cpeAHe« nacth ctbopkh), xapaKTepoM CKynbnTypu nepeAHero yiuxa, Ha kotopom othot-JTMBa KOHueHTpMHecKaa h HeflBCTBBHHa paAManbHan CTpywHaTocTb. 3aM«HaHMfi. OnwcbJBaeMbitf bma flOdaTOMHO hotko oT/rnHaeTcn ot Ac. carboniferous (Stevens), ecnw cyAMTb no TMnoBbiM 3K3eMnnnpaM na He6pacKM h ypana. Haiuw oOpaauw n0Ao6H0 onwcaHHbiM fl. M. OefloroebiM (1932) M3 cpeAHero - BepxHero KapOOHa flOHfiacca, Menbne hom THnnsHbie Ac, elegantuius (Stuckenberg) m xpynHee, sew awepn-KaHCKMe ctiopMw. Ho onepTaHiiflMM neBbix ctbopok (npaBbie He MayneHbi), xapaiaepoM yrnex, OonbiueM BbinyxnocTbio ohm Cjimskh ypanbCKOMy BMAy. xotr hmcjio pe6ep y hmx HSCKo/ibKO MBHbUjee (ao 19). no mhbhmk) fl. M. (DeflOTOBa, AoneuKwe npaACTaBMiwiM Ac. elegantuius (Stuckenberg) Moryr paccMaTpMsaTbcn k3k npoMexyroHHwe «oPMbi Me*fly 6o/iee paHHMM Ac. carboniferous (Stevens) m onMCbiBaeMbiM bmaom, H3BecTHbiM M3 BepxoB BepxHero Kap6oHa. Oah3ko hbmm 06a enAa BdpeneHbi cobmoctho b o ah o m MeCTOHaXOXaeHMM riOAMOCKOBHOM KOTJIOBMHbl (B OTJlOtteHMflX cg*), a tbiok© B 60/108 M0/10AblX DKS/lbCKHX 0TJ10>KeHMflX fOrOCJiaBMM. TaKMM 06pa30M, CTpaTurpac^MHecKafl no-cneAOBaieribHocTb b nobbjiehmm stmx bmaob He Ha6/noAa©tcfl. 06-beAMHmb 06a bmas. n0A06H0 H a o (Chao, 1927) m B. A. MypOMueBOfl (1974), mm h© CHMTaeM B03-M0>KHbiM, nocKonbicy HaM he yAa^ocb Ha6/iiOAaTb nocTeneHHWX nepexoAOB ot Ac. carboniferous (Stevens) k Ac. elegantulus (Stuckenberg). Manope6epHbie (fropMbt (14—15 pe6ep) MMetoT m Bee ocTa/ibHwe npn3HaKn (xapaKTep yuieK, cfropMy paKOBHHW m t. a), cbom-CTBBHHbie Ac. carboniferous (Stevens), b to Bpewm KaK paKOBUHbi, MMeioiuwe no 18 m fioiiee p©6ep, BnonH© onpeAeneHHO npMHaA/iexaT Ac. elegantulus (Stuckenberg). KcTaTM, m M3o6pa>KeHHbie b pa60T© B. A. MypoivmeBoB (1974, t. 12, (p. 14) paKOBvmw — sto HecoMHdHHbie Ac. elegantulus (Stuckenberg). Heo6xoAHMo TaioKe otm©TMTb (Ta6. 1, $Mr. 13) m h©kotopo© CBoeo6pa3M© cxy/ibnTypbi oahom M3 paKOBMH, 0t/1mhh0© ot onMcaHHoii b flHarH03e pOAa. 3to B3roc/lafl 4>0pMa Ac. elegantulus (Stuckenberg), y xoTopofi Ha6/iioAaioTCfl yBenMHSHM© hmc/ia pe6ep b 38ah©m nacTM neBoii ctbopkm m Ha no3AHMX CTaAMflx pocTa nyT©M 6MKypMM. Kap6oH CCCP: HoAMOCKOBHan KOTJioBiiHa (Cj*—C8); p. KaMa, A0H6acc, ypa/i, flapBa3, yccypmvlckmfi Kpafi — ioro-3anaAHbiM nafi-Xofi m BepxoflHb© — cj.s; cp©ahwft Kap6oH Ko/ibiBaHb-ToMCKoA CK/iaAHaTOti odnacTM. MaiepMan. Tpu flApa m 4©Tbip© omesaTKa Hapyxnoft nobepxhocth /i©Bbix ctbopok. Acanthopecten ramovsi Astafieva-Urbajtis, sp. nov. Ta6. 2, Mr. 1—3 ronoTMn. Ho. 94. TexHMnecKMfl My3©fi >Ken©3apH© Ec©hmu©; lOrocnaBMfl ropw Kapa-eaHK©, b©pxhmm Kap6oH, OKenbCKuvi npyc. OnucaHM©.* PaxoBMHa cpeAHMx pa3M©poB, tohkba, abctb©hho npo30KnnHHan, Tpe-yronbHO-Koco-oba^bhafl (fl : B y Tuna 1,25). n©p©ahflfl nactb ctbopkm LUMpoKooKpyrnan, 3aflHRA necKOJibKO OTTBHyTa m cna6o npMnoAHflTa. KopoTKoe nepeAHe© nneso noA yrnoM HecKO/ibKO 6onbiije 90° C0©AMHn©tcfl c npaBM/ibHO 3aKpyrneHHbiM kopotkmm nep©ahhm KpaeM, no UIMpOKOM Ayr© chmbaiommmcfl c AJIMHHbIM, BbinyKJlbtM hmjkhmm KpaeM. kopotkmm, cjiaCo BbinyioibiM aaAHMM xpati noA npaMWM yrnoM co©AMHfl©TCfl c AnMHHWM 38ahmm n/ienoM. AnMKanbHbifi yro/i ot 110° ao 125°, y TMna 112°. 3aM0HHbifi Kpafi noHTM npnMOM, A/iMHa ero paBna mhm 6onbiue makcmmaxibhom ujmpmhw ctbopkm (A. 3. Kp.: A y TMna 1,13); nepeAHflfl BeTBb 3HanMT©nbH0 Kopos© 3aA«©M. MaKyuiKM He6o/ibuine, c/ia6o BbiCTynaioiuMe HaA 3aM0HHbiM KpaeM. Yuikm xopouio pasBMTbi, HBCTBeHHO OTAeneHbi (nepeAHe© KpyTbiM ycTynoM) ot cpeAHeM hbctm ctbopkm, cna6o BbinyKnwe. Oxpyrnoe BnepeAH nepeAHea yujKO MM©€T rny6oKMfi ocTpoyro/ibHbifi sulcus (okojio 50°), 3aAHflfl yM6oHa/ibHafl cicnaAKa pa3BMTa c^a6ee, caMo yujKO noHTM b ABa pa3a AflMHHee nepeAHero, ocTpoyronbHoe, 3aAHMfi cy/ibKyc rny6oKMM, oCTpoyro^bHbifi (65—75°). CKynbnTypa Hapy>KHOM noBepxHOCTM * OnMcaHiie Aa©TCfl no neBWM CTBopxaM, npasw© b koti/i6ki4mm ocTycTByioT. 2 — Geologija 21 xapaicrepHafl Ann aKaHT0neKTeH0B. MHorosucneHHbie (19—21) pe6pa mmqiot Bbinyxnue CKnoHbi c TunwHHbiM npMMHTMBHbiM peCpwuiKOM no bepnimhe peCpa: npOMexyTKM y3KMe TpeyronbHbie; xapaKTep KOHueHTpMHecKotf CKynbnTypw TaKxe noAoOeH Tnn0B0My BiiAy. LUnnw baonb cpeAHefl sac™ Cpcmnoro Kpan pacnonaraiOTCn b Mexpe6epHbix npoMe-xyTKax, Ha nepeAHeM m sbahqm Kpanx. a TatoKe BAonb cynbKyca 38AHero yiuxa ohm nepneHAMKynnpHbi Kpaio ctbopkh (n0A06H0 onucaHHOMy a/ih Ac. elegantuius Stuckenberg). Ha yuiKax Ha6ntoflaeTCH HBCTBeHHan KOHLjeHTpMsecKan CKynbnTypa, coot BecTByio man 6onee pe3KMM KOHuempMHecKHM CTpyfiKaM Tena paKoenHbi. floBMflkiMOMy, C0xpaHH0CTb Maiepwana He no3Bonnna Ha6n»0AaTb paAnanbHyto CTpyMHaT0CTb Ha yiuxax. BHyTpeHHflfl CKynbnTypa CMnrseHHo OTpaxaeT HapyxHy©. OrpoeHwe 3aMKa nonHocTbio HafinwAaTb He yAanocb, He coxpaHnncn pe3Mnnct)ep. XapaKTep MycKynbHbix OTnenaTKOB He m3bbct6h. OHToreH«THHecKMe H3M6HSHMfi. rioAo6Ho oniicaHHUM BblLiie BMflaM Ha WBeHMnbHblX paKOBMHax Ha6nfOAaeTCn Menee cnoxHan CKynbnTypa. PaAManbHbie pe6pa cooTBeCTBywT npHMMTMBHblM peGpbiUJKaM BSpOCnWX CTaAHft. OTCyTCTByiOT pe3KMe KOHUeHTpMHeCKVie CTpyPiKM, npeactasnniolume coGom c6nMxeHHyio cepwo tohkhx CTpyeK, hot apxoBMAHbix HeujyeoCpa3Hbix M3rn6oB HaA peCpaMM, HeT m orrfmyTbix KHK3y ujmnob b MexpeCepHbix npoMe>KyTKax. CaMM npomexytkm wvieiOT 6onee oxpyrnoe ceneHMe. Ylukm m©h©© hotko OTAeneHbi ot Tena paKOBMHbi, cynbiKe no htm npflMoyronbHoe, ho ero nepeflHM^ Kpafi c/iaCo BbinyKnwfi BBepxy c Me/iKMM CMHycHbiM M3rM60M BHM3y. nepeAHee yuiKo npaBofi ctbopkm TepMMHanbHo oicpyrnoe OTfleneno ysKMM rny60KMM Bbipe30M (cynbKycoM). Ctbopkb k CMCcycHOMy Bbipe3y naornyTa noHTM non npHMbiM yrnoM k noBepxHOCTn Te/ia paxoBMHW, yM6oHanbHan CKnaflKa vrnoBaTafl (Ha o6ewx CTBopKax). 3aflHHfl yM6oHanbHan cxnaAKa Bbipa>xeHa MeHee pe-nbecpHO. PaflManbHafl cKynbnTypa HapyxHoii noBepxHOCTM coctomt ms penbetfeHbix, wm-noBaibix, pacuiMpntoiMMXCH KHM3y pe6ep; npoMe»yTKK nyTb y*e pe6ep. K nepeflHeMy m 3aflH6My nepernfiaM ctbopkm pe6pa cyxotOTcn. Ha 3aflHMX yujKax no 4 pe6pa, Ha nepeAHMX, Ha npaeoM CTBopxe 5—6 pacujwpRiomMxcfi penbecJJHbix pe6ep, Ha neBOM nepeAHeM ywxe 7 6onee y3KMX pe6ep. HMeiOTCR m seTKiie c6jiM*eHHbie KOHuem-pMMecKMe CTpyfiKM, Ha npaBOM ctbopkg y 6pioiUHoro xpafl Ha6moAaK>Tcn 6onee pe3KMe, orrRHyTbio yrnoeaTO KHH3y b Me*pe6epHbix npOMewyTKax apKOBMAHO M3orHyTbie HaA pe6paMM. Ha neBOCi CTBopxe b 3aAH6M sacTM ha6nioaaiotcfl BCTaBHbie pe6pbiiUKM Ha paHHefi cTaAHM pocTa, Ha npaBOtf — AenenMe 3aahwx pe6ep, taoce b BepxHefi nacTM ctbopkm. ohtorehethheckme h3M0h8hmii h M3HGHHHBOCTb. HapywHan noBepxHocTb HananbHofi paKOBMHKM C PC3KMMM K0HU©HTpHH6CKMMH CTpyMKaMM, pacn0n0*6HHblMM Hepe3 paBHbie MHTepBanw. PaAna/ibHan CKynbm-ypa mmobt xax 6u noAHMHeHHoe 3HaneHMe, xotr caMM paAnanbHbie peSpbiiUKu Toxe pe/ibecfeHbie, y3Kue. CpeAM BSpocnbix cpopM Ha6moAaercH BapnnpoBaHne osepTaHMft ot TpeyronbHO-OKpy-rnwx c anviKa/ibHbiM yrnoM 90° (cpopMa, onMcaHHan rpMHBanbflOM), ao 6onee ujm-p0K00BanbHbiM c anMKanbHbiM yrnoM Oonee 100°. CpaBHeHMe. Ot TMnoBoro bmab otnusaetcn BbicoKofi paxoBMHofi c npaevinbHo 3axpy-meHHbiMM KpaflMM (0TcycTByeT orrnHyTocTb 3aAHe-6pi0iiiH0M sacTM), MeHee pe3K0 Bbipa-xeHHoA 3a3y6peHH0CTbi0 KpaeB, iiohtm npnMoyronHbiM OMepTaHneM 3aA«ero yiuxa, 6onee ManeHbKMM nepeAHMM yiuKOM. Ot Ac. elegantittus (Stuckenberg) m Ac. ramovsi sp. nov. OTnMsaeTCH axnMHHOCTbio paxoBMH, Menee pe3KoCi 3a3y6peHHOCTbio KpaeB, cfcopwoM yweK. 3am«hahmn. npm yctahob/iehmm bmaa oh 6wn otheceh m. 3. ahmujcbckhm k poay Aviculopecten. tOrocnaBCKMe paKOBMHbi npaicrMHecKM heotnwhmmbi ot ypanbCKMX (fcopM, OAH3KO npn nyniijeM coxpaHHOCTM ynanocb HaCnioAaTb xapaKTepHyK) Ann Acanthopecten KM/ieBaTocTb paAvianbHbix pe6ep m MeHee pe3Ko BbipaxeHHyio, ho pa3nMHMMyio 3a3y-CpeHHOCTb Kpaee 3a cneT M3rM6a bhw3 KOHueHTpMHecKnx CTpyex. n03T0My h3mh bma otheceh k poay Acanthopecten. hmeiotcn oahbko m otammmr ot tmnmmhbix axahtonektehob: npflMoyronbHbie onepTaHMH 38Ahmx yujex, otmenehhoe b onM-caHMM AeneHMe 38ahmx pe6ep b BepXHeft nacTM npaBOM ctbopkm. OTCiOAa m 3Hax Bonpoca B HaSBBHMM pOfla. reorpactwsecKoe pacnpocTpaHeHMe h raonorwHecKHft ao3pacT. HDrocnaBMfl, ropbi Ka-paBaHKe; bspxhmm Kap6oH, r>KejibCKMM npyc. Ypan, cpeAHMv^ xapfiOH, CaniKMpcKnti Hpyc. MaTepnan. HeTbipe Hapy*Hbix oTnenaTKa m ABa BHyTpeHHMx HApa. Pofl Annuliconcha Newell, 1937 Annuticoncha spinosa Astafieva-Urbajtis, sp. nov. Ta6. 2, <3pMr. 5—7, 10 TonoTHn. Ho. 102. TexHunecKMM My36M Xe/ie3apHe EceHMue; BepxHMti KapGoH, DKenb-ckmm flpyc. TonoTunbi Ho. 103, 105, 108. OnMcaHHe. PaxoBMHa HeConbiuan (fl ao 16,5 mm), iiohtm paBHOCTBopsaTafl 3a mckjik)-MBHH6M yrneK, 7peyr0AbH0-0BanbHan (J\ : B cp. Ben. 1,20); cnaCo nposoxnMHHafl. cnaCo Bbinyxnan, TOHKOCTeHHan, ABydopoHHe 3mhx>ujafl. MaKywenHbiM yron 115° (cp. Ben.). 3aMOHHbift xpaft neBort ctbopkm npflMOM, nmub HeMHoro Kopone MaxcMManbHOM flnMHbi ctbopkm (fl. 3. xp. cp. Ben. 0,95), bbtbm nohtm paBHbie. CpeAHfln nacTb TpeyronbHO-OBanbHan, nepeAHMM, hmxchm* m 38ahmm xpan 3axpyrneHw, MHorAa HafiniOAaeTCfl Hexo-TOpafl OTTRHyTOCTb HM)KHe-3aAH6M H3CTM CTBOpKM M3-3a HeConbUJOM CKOUieHHOCTM paXO- BMHbi. nnesM nosTM paBHbie, aaflHee npflMoe, nepeflHee cnaCo Bomyio. Yron nneH ot 105« ao 126°. MaxywxM noHTM ueHTpanbHbie, npaxTMsecxM he BbiCTynaioiuMe hba 3a-MOHHbiM KpaeM. yujKM HeTKo OTrpaHmH6Hbi, nepeAHee HecKo/ibKo Kopone aaAHero (fl. n. y.; fl. 3. y. cp. Ben. 0,7). 3aAHee ocTpoyronbHoe, c rnyCoxMM CMHyooM. flepeAHMM cmnyc Taxxce rnyCoKMM, ho nepeAHMft m hmxhmm xpan yujxa Bbinyxnw. nepeAHnn ymcohanbhah cxnaaka neBOM ctbopkm y3Kan, yrnoBaTan, 3aflHHH cnaCo BbipaxceHa. CKynbnTypa HapyxHOtf no-BepxHocTM paAwanbHO-KOHMeHTpMHecKaa. PaAManbHue OKpyrnbie CTpyftXM HaCnx>AaeMbie Ha paHHHx ctaamrx pocTa oneHb tohkmo, paaAeneHbi Conee uimpoxmmm nnocKMMM npo-MexcyTKaMM. MHorAa HaCnioAaioTCfl oneHb tohkmo BCTaBHbie CTpyitXM. KoHueHTpMHecxan cxynbrnypa AByx pawroB. BucoKMe, wMpoxooxpyrnoro ceseHMA xoHUBHTpMsecxMe pe6pa nepsoro nopnAKa c CyropxaMM, xoTopwe He BcerAa cooTBeTCTByioT nepeceHeHMAM c pa-AManbHbiMM CTpyMKaMM, CyropKM OTTflHyTbi KHM3y b HeAnMHHbie lUMnw. B cpeAHOM nacTM ctbopkm LiiMnbi HanpaBneHbi bhm3, b nepeAHBM m saAHeft sactsx, cootbbctbb h ho — BnepeA m Ha3aA- UJMnMKM HaCnwAaioTCfl BAonb HapyxcHbix xpaeB ctbopkm nepeAHero, CpiouiHoro m aaAHero. MexcAy rpyCbiMM peCpaMM pacnonoxteHa cepwn tohkmx, BonHMCTbix CTpyex, nepeceKaiouiMX paAManbHyo cKynbnTypy m b MecTe nepeceneHMH cnerxa M30rHyTbix KHM3y. KoHueHTpMHecxan cxynbnTypa yiuex pe3xan, 2—3 paAManbHbie cTpyftxM 3aM6THbi numb npM CHnbHOM yBeniiMeHMM. BAonb xapAMHanbHoro xpan yuiex npoxoAMT yaxoe, tohxos peCpo, OTHeTniiBo 0TAeneHH0e ysxMMM rnyCoKMMM Copo3AxaMM. npaean CTBopxa, b oTnwsMe ot neao*, Conee ynnoiueHa, c HM3xofi Maxyujxofi, Hapyxc-Han cxynbnTypa BbipaxceHa 3HaHMTenbH0 MeHee 46txo, caoCoAHwe Kpan /lMweHu uiMnoB, ho Ha yujxax pe3K0 BbipaxeHHbie cCnMxceHHbie xoHueHTpMHecxne CTpyBxM Conee othet-nMBbie, hbm Ha Tene paKOBMHbi. M3MOHHMBOCTb. OHBpTaHMfl paKOBMHbi UJMpOKO BapMMpytOT. HapflAy CO CKOUJeHHblMM £j)opMaMM, BCTpeseHbi M UJMPOKO oBanbHbie, c Kpyro 3aKpyrneHHbiM nepeflHUM m 3BAHmm KpaflMM, cnaCo BwnyxnwM, AnMHHbiM hmxchmm (fl : B 1,26). OTMenaeTCn m M3MeHHMB0CTb b xapaKTepe paAManbHofl CKynbnTypw. MHorAa sto MHoroHMcneHHbie CTpywKM c npoMe-xcyTKaMM MexAy hmmm numb HeMHoro ujMpe caMMX cTpyeK. Ohm Conee flBCTBeHHbi b ne-peAHeii m aaAHeft sacTnx paKOBMHbi. UJunw rpyCbix KOHueHTpMsecKMX peCep pacnonoxteHbi ujMpe 3thx CTpyeK. y Apyrux 4>opM paAManbHbix CTpyeK MenbLue (17) npoMexcyTKM oneHb UJHpOXMB M UJHHbl KOHUeHTpMSeCXMX peCep flOMTM COOTBOTCTByiOT HMcny paAManbHbix CTpyex. y TpeTbMx CTpyiixM cCnwjxeHbi b cpeAHen nacTM, b to BpeMn xax b nepeAHew m aaAHeM nacTflx pacnonoxceHbi uinpe m b npoMejxyrxax cnaCo HaMeneHbi oneHb tohxmo BCTaBHbie CTpy^xM. M3M6hhmb m MaxyuiesHbiM yron. CpaBHeHMe. Ot TMnoBoro BnAa otnmhaetcn xapaxTepOM cxynbmypbi, ConbuieM cxo-UJeHHOCTbK) MeHBe BblCOXMX paKOBMH. 3aiMHaHHn. UJTyxeHCeproM (1905) M3 BepxHero xapCoHa CaMapcxoft JlyxM noA Ha3BaHM6M Astarte volgensis onncaHa, no bceti bmammoctm, paxoBMHa c oCnoMaHHWMM yuixaMM, ho oneHb xapaxTepHOM, onwcahhoft Bbiuie cxynbnTypoft. nnoxan coxpaHHocTb oCycnoBMna HenpaBMnbHoe poAOBoe onpeAeneHne stom 4>opMbi. OTnwnaeTCfl 0Ha m ot onMcaHHWx 3flecb paxoBMH 6o/iee npaBM/ibHO OKpyrnofi (feopMOM, m MBHbuiuM MaKywenHbiM yr/ioM (98°). He viciaiioheho, hto, ec/m 6w yAanocb hafttm m M3yHMTb, noMMMo stow ©awh-ctbbhhoPI HenonHofl ctbopkm, MaTepnan M3 Kap6oHa CaMapcKofl flyKM, to ero c/ieAOBano 6bl OTABJIMTb OT lOrOCJiaBCKOrO Ha nOABIiAOBOM ypOBHB. r«orpact)MsecKoe pacnpocrpaneHiie m reonorunecKMA B03pacT. lOrocnaBufl, ropu Ka-paBaHKe, b©pxhm& Kap6oH, rxenbckmti npyc, ? CaMapcxafl Jlyxa, BepxHMM xap6oH. Maiepiiaii. 2 cno>KHbix flapa, 5 Hapy>KHbix otnenatkob jibbmx ctbopok m 1 otnenatok npaBOM. (loAceMeficTBO Streblochondriinae Newell, 1938 Pofl Streblochondria Newell, 1938 Streblochondria sculptilis Newell, 1938 Ta6. 2, $mr. 8—9 Aviculopecten sculptilis: Miller, 1891, crp. 92, Ta6. 20, nr. 5 Streblopterla utensis: HepHbiuieB, 1902, dp. 345; MypoMueBa, 1974, CTp. 77, Ta6. 13, c()Mr. 1 Pecten (Pseudamusium) utaensis: JI m x a p e b , 1927, dp. 30, Ta6. 2, 4)nr. 7, 8; F r e -bolt, 1931 (pars), CTp. 53, Ta6. 1, (*>Mr. 5 Streblochondria sculptilis: Newell, 1938, CTp. 82, Ta6. 16, c|>Mr. 5, 7, 9, 11 TonoTMn. Ho. 3894. Cincinnati University. OnMcaHvie. PaxoBMHa cpeAHMx pa3MepoB, nosTM paBHOCTBopnBTBfl, npaBan CTBOpxa HecKonbKo Conee nnocxaH, mom neBan; cna6o oniicTOK/iMHHaH, BbicoTa npeBbiiuaei Anwny cTBopoK. riepeAHnn, c/ia6o BorHyTan ywifioHajibHaH cioiaAxa (nneso) HecKonbKo AflMHHee nosTM npnmoft, ho to)Ke xopoiuo Bbipa>xehhoft ymfiohanbhofl ck/iaAKM. CBo6oAHbie xpan CTBOpKM npaBMiibHO 3aKpyrneHbi. MaxyuiKa Ma/ieHbKaa, 3aocTpeHHaa (MaKyuiesHbifl yro/i oKono 90°), BbiCTynaeT HaA 3aMOHHbiM xpaeM. floc/ieAHMfl nosTM b Asa pa3a MeHbLiie MaKCHManbHofi niMpMHbi CTBOpKM. yiiiKM xopoiuo BbipaxeHbi, nepeAHee b abb pa3a A/imhhee saAHero. Okohh8hmh yuiex 6jim3km npnMoyronbHbiM, mck/iioh6hm6 — OKpyrnoe oKOHHaHne nepeAHero yuiKa npaBofl ctbopkm. HepeAHMfi cwHyc neBoii ctbopkm cna6o BorHyTbiPi. riepeAHHM yuiHOtf cynbKyc y3KM*i, rny6oKM*. CKynbnTypa HapyacHofc noBepXHOCTW AeTanbHO onMcaHa Hbioe/inoM (Newell, 1937). CTpoeHMe 3aMKa TwnMHHoe pjifi pOAa. M3M©HSMB0CTb. OopMa paKOBHHbl BapMMpyST OT BblCOKOOBanbHOfil AO npaBMnbHOOKpy-H10M, OT CMIlbHO OflMCTOIOlMHHblX AO nOHTM aiOIMHHblX. UIMPOKO BapMMpyeT M pe/ibect)HOCTb cxynbnTypbi, sacTOTa pacnonoxeHMfl paAManbHbix CTpyex. 3aMesaHM«. lOrocnaBCKne tfcopMbi OT/iMHajOTCR 3HaHMTenbno 6onbiiiefi MSMeHHMBOCTbio, H6M aMBpMKaHCKUe. B CMHOHMMMKy OHMCblBaeMOrO BMAB BH6C6H HBMM M B6pXH6KaMeHH0-yroribHbiM ypanbCKMfi bma Streblopteria ufensis Tschernyschev, nocxonbKy nocneAHMM hbotjimhmm ot aiwepmkahckmx m loroc/iabckmx npeACTaBMTe/ietf. reorpa^HsecKoe pacnpocTpaHeHM« m reononwecKM* BoapacT. KDrocnaBMH, ropbi Ka-paBaHKe; BepxHui* Kap6oH, PKe/ibCKMft npyc. Cee. AruepMKa, neHCM/ibBaHM*; hmjkhah nepMb UJnMuOepreHa. B CCCP: eepxHMfc Kap6oH — HMJKHnn nepMb ypana m TuMaHa; HM3bi Bepx-Hdro KapČona HaA-Xon m flOH6acca. CeMewcTBO Entoliidae Ko rob kov, 1960 Pofl Pernopecten Winchell, 1865 Pernopecten prosseri? (Mark), 1912 Ta6. 3, 4>nr. 10 Pecten aviculatus: Swallow, 1858, p. 213 Entoiium attenuatum: Meek et Hayden, 1872, CTp. 189, Ta6. 9, 4>vir. 11; Hkob-18B, 1903, CTp. 2, Ta6. 1, 5; OeflOTOB, 1932, CTp. 140, Ta6. 16, cfrMr. 11 Entolium prosseri: Mark, 1912, CTp. 309, Ta6. 15, cf>nr. 6—8 Pernopecten attenuatus: MypoMueBa, 1974, CTp. 80, Ta6. 15, cpwr. 9 Pernopecten sowerbyi: MypoMueBa, 1974, CTp. 79, Ta6. 15, nr. 5 Pernopecten prosseri: Newell, 1937, CTp. 111, Ta6. 20, <3pv\r. 17, 18, 12, 13; AcTa0beBa-yp6aftTMC, 1977, CTp. 38, Ta6. 3, 4>iir. 7 ileKTOTMn. Ho. 14036. XpaHMTCfl b yHMBepcMTeTe wTaTa Orafio, CLUA, BepxHuw KapfioH, npyc MMccypM. YcTaHOB/ieH H. fl. Hbioe/inoM (Newell, 1937). OiwcaHMe.* He6ojibUjafl (fl 19 mm) Heno/iHafl jieBan CTBopKa, cnafio cyaceHHaa KBepxy, cnaCo np030KJiMHHafl. riepeAHwfi m 6pK>ujHOii xpaa npaBn/ibHo oxpyrnbi; hmjkhah sacTb 3aAHero xpan 3aiHHecKoe pacnpocTpaHemie m reonorHHecKHH sospacT. lOroc/iaBMn, ropw Ka-paBaHKe; BepxHwfi KapOoH, rtte/ibCKMfi Rpyc; CeB. AMepwxa, BepxHuw «ap60H, Mnccypm; b CCCP: noAMOCKOBHan xoTnoBUHa, mockobckm« flpyc; camapckaa Jlyxa h ypan_Bepx- hmm xapCoH; cpeAHe-BepxHMii Kap6oH floHfiacca (C22 —Cs2). MaTepnan. Oaho cno>KHoe napo jiesoti ctbopkm. CeMeCicTBO Posidoniidae Freeh, 1909 Pofl Amonotis Kittl, 1904 Amonotis palaeozoicus? Astafieva-Urbajtis, sp. nov. Ta6. 3, 4>nr. 1 a, 6; 2 ronoTMn. Ho. 88. TexHMHecKMM My3eii >KeJie3apHe EceHMLje; (OrocnaBMii, ropw Kapa-BaHKe; BepxHuft Kap6oH, DKe/ibCKMM spyc. OnHcaHMe. PaKOBMHa cpeAHew Be/iwsHHbi (fl 21 mm), hohth paBHOCTBopHaTan, cna6o np030KiiMHHan, cna6o BbinyiaiaH, umpoKOOBa/ibHan (A : B 1,16). 3aM0MHbiii xpaw npnMofi. flnUHHblH, HeCKOJlbKO KOpOHe MaKCMMa/lbHOfl fl/lHHbl CTBOpKH (fl. a. Kp.: fl 0,85), c nos™ paBHbiMn BeiBflMH (nepeAHflfl He3HaHHTenbH0 xopose 3aAHeti). C/ia6o Bbinymibift nepeAHMfi * no/iHoe onwcaHMe Aano H. fl. Hioen/iOM (Newell, 1937). BepxHeKaMeHHoyrojibHbie (r*enbCKne) peycTBopKM M3 flBopHHUKoro poyra 23 11 paBHbiCt no BWC0T6 cna6o CMHycHbii* BBepxy saAHM* Kpan, c sbmohhum coeAMHHiOTCfl nofl TynbiM yrnoM (b nepeflHeM coeflmhehmm yron ueHee Tyno*). Hmxhmm cna6o BbinyicnbiM Kpafi no An vine paBeH 3aMOHHOMy. Yujkm HeoTAeneHW ot Tena paKOBMHbi m BbiAenniOTcn nMWb ynnomeHMeM ctbopkm. MaKyuiKa HeBbicoKan, cna6o BbiCTynaiowaH, pohtm ueHTpanbHan. AnnKanbHbiCt yron 110°. HapyjKHan noBepxHOCTb noKpbiTa HenpaBMnbHbiMM paAwanbHbiMM pefipaMM; khm3y hbko-Topbie m3 hiix pacmennnioTCfl, MHorAa HCOAHOKpaTHO, MMeioTcn m tohkm© BCTaBHbie peGpbiuJKM no OAHOMy, wnw no HecKonbKo b MexpefiepHbix npoMexyTKax. B o6nacTM yiueK peCpa 6onee tohkmo m hwskwe. PaAwanbHaH ckynbntypa nepeceneHa kohuehtpm-HecKMMM nMHMHMM poda, 6onee HBCTBeHHbiMM b o6nacTM MaKyuJKM. B nepeAHeM nacTM CTBopoK CKynbnTypa wieHee penbecfeHa. XapaKTep 3aMKa m BHyTpeHHee cTpoenwe paKOBHHbi Ha6nioAaTb He yAanocb. CpaBHOHMe. Ot TMnoBoro Biifia OTnMMaeTcn fionee BbiC0K0ft paKOBMHOM co cna6o HaMeneHHOft cMHycHOCTbK) b eepxHetf nacTM 3aAHero Kpan. 3aMenaHMn. Poa othocmtch k HMcny 3HACMMkob. H3BeCTeH oh 6bin nuuib M3 Tpwaca (KapHMfi) tOrocnaeMM. B naneo3oe npeACTaBMTenM pofla BCTpeneHbi BnepBbie. reorpacJiMHecKoe pacnpocTpaHeHMe m reononwecKMCi Boapacr. lOrocnaBMH, ropw Ka-paBaHKe; BepxHMft Kap6oH, rxenbCKMPi npyc. MaTepnan. J\b& rapa m otnenatok neBbix ctbopok. CeMewcTBO Myophoriidae Bronn, 1849 Pofl Schizodus Verneuil et Murchison, 1844 Schizodus meekartus? Girty, 1899 Ta6. 3, 4>wr. 9 Schizodus wheeleri: Swallow, 1872, ctP. 209, Ta6. 10, Mr. 3; Beede, 1900, CTp. 155, Ta6. 22, 0mr. 1 Schizodus meekanus: Girty, 1899, CTp. 583, Ta6. 52, nr. 25 Cardiomorpha iametlosa: W ty k e h 6 e p r, 1905, ctP. 88, Ta6. 11, 4>nr. 3 Edmondia maccoyii: OefloroB, 1932, CTp. 76, Ta6. 7, wr. 10 roiioTMn. MecTo xpaHeHMn h6m3B6ctho. OnncaHHe. PaKOBMHa cpeflneCi Be/iMHMHbi (fl 27 mm), paBHOciBopHaran, cyCKBaAparHO-OBa^bHan (fl:B 1,37), HepaBHOCTopoHHflfl (flns 0,25), omoCMTe/ibHO TOHKOCTeHHan He3HflK)mafl. MaKymeHHbiw yron 120», yron aaMOHHbix BexBetf 135«. SaMOHHbi* Kpa* ahmh-Hbifl, noHTM napa/ineneH h paeen BbinyK/iOMy HMXHeMy xpaio. Ero nepeAHan c/iaCo Hatoio-HeHHan BeiBb oKpyr/io coeAMHReicn c HanpaBxieHHbiM k »e* nofl npflMb.M yrnoM c/ia6o BbinyioibiM nepeAHMM KpaeM. Bonee Rnmnan npnMaa sbahra aaMOHHa* eexeb nofl euie e c™*eHHb.M npwTyn/ieHHbiM yrnoM coeAMHneicfl co cna6o BbmyioibiM sbahhm KpaeM. nocneAHMft noma napa/i/ie/ien nepeAHeMy, ho Bb.uje ero. Cjimahmo OpioiUHoro Kpa« c 33ahmm oKpyrnoe, c nepeahmm oh c/iMBaeTC* no 6o/iee umpoko* Ayre. BwcoKne nPM-TynneHHbie MaKyuiKM cwemeHb. BnepeA na paccroaHMe V, AnMHbi ctbopkm ot nepeAHero Kpan. HapyjKHan KOHMeHTPMHecKan CKy/ibnrypa coctomt m3 poskmx c/ierKa saocxpeHHbix Ha BepiuMHax ck/^aok m nnhmtf pocra. BHyrpeHHero cipoeHM* Hafi/uoAaib ne yAa/iocb 38 MCKSH0H6HM6M CBR30HH0M CK/13AKM, KOTOpafl H6TK0 BbipatteHB, /yiMHHaH. 3aMenaHMH. OnMcaHHbiM BMA HecK0/ibK0 OT/iM4aeTCfl ot BMAa raflHMTua 6onee ujwpo-KMMM, xoTfl M p63KMMM pefipaMw. HaMfio/iee 6/iM3Ka onMCbiBaeMbiM c*>opMaM AOHeiiKaR 3am0hama, onpeaenehhah fl. M. fceflotobwm (1932) kbk E. maccoyii Hind reorpacfwiecKoe pacnpocxpaHenHe h reonorMHecKM* eospacr. lOroc/iaBMfl, ropw Ka-paBaHKe; BepxHMM Kap6oH. OKe/ibCKM* flpyc; Gee. AMepiiKa, newcM/ibBaHMft; b CCCP-BepxHMM KapfioH noAMocKQBHoro Cacceftna, CaMapcKo* JlyKM, floH<5acca, hmxhha nepMb 3anaAHoro CK/iOHa CpeAHero ypana. CeMewcTBO Allorismidae Astafieva-Urbajtis, 1963 Pofl Allorisma King, 1844 Allorisma gravida (Tschernyschev), 1950 Ta6. 3, $Mr. 5 Edmondiella gravidus: HepHbiiueB, 1950, Ta6. 14, cj>nr. 114, 115 roiioTMn. XpaHMTca b KneBe b reo/iorMsecKOM My3ee AH YCCP. OnMcaHMe.* PaxosMHa fl0B0nbH0 Kpynnan (fl 35 mm), paBHOCTeopHaraH, va/imhohho-3/1/1 mnTMHecKafl (fl : B 1,8), BbmyKnan (Bb,n. : B - 0,3), HepaBHOCTopoHHHn (flnw II- 0 21) yMepeHHo TOHKOdeHHan, He3M*ioma*. ' * noApoOHoe onMcaHne CAe/iaHo B. M. MepHbiLuesbiM (HepHbiuieB, 1950). 3aM9HaHMii. Ot aohgukmx tfcopM OTjiMHa&TCfl jimujb HecKonbxo MeHbuieft BbinyxJiocTbio nepeAHero Kpan. r«orpa4>MHacKoe pacnpocTpaHeHMe m reonorvtsecxnM aospacr. (OrocnaBvin, ropbi Ka-paBaHxe; bepxhmci xap6oH, r*enbckmm npyc; AoH6acc, C24 (m3bbcthhk J1.2). MaTepnan. CnoxHoe «Apo pacxpbiTbix ctbopok. Poa Ivanovia nom. nov. Astafieva-Urbajtis, 1978 ivanovia siovenica Astafieva-Urbajtis, sp. nov. Ta6. 3, cpur. 8 a, 6 TonoTMn. Ho. 57. TexHMHecxwti My3evi XeneaapHe EceHMue. lOrocnaBMn, ropw Kapa-BaHKe; sepxHMfl xapGoH, rxenbCKMM npyc. OnMcaHMe. PaxoBMHa oseHb KpynHan (A 77,5 mm), cyxeHHO-OKpyrnan snepeAM m pac-ujwpeHHonpflMoyroflbHafl no3aAM (A: B 1,64), AOBonbno Bbinyioiafl, CM/ibHo HepaBHocxo-poHHAH, OTHOCnTe/ibHO TOJiCTOCTennai. AriMKanbHbifi yron 130®. 3aM0HHbiM Kpaw AJiMHHbiM (a- 3. Kp.: a 0,87), ero xopOTKan pacumpeHHan nepeAHnn BBTBb coeAMHfleTCa co cna6o BbinyKnofi, AnMHHOfc 3aAHeR B©TBbio noA npflMbiM yr/ioM 160°. CosAUHGHue KopoTKoro, Bbinyxnoro nepeAHero Kpan c 3aMOHHbiM — npflMoyronbHoe, c AnnHHWM cna6o Bbinyx/ibiM 6pioujHbiM — 3aKpyrneHHoe. BucokmA, nosTM b Tpvi pa3a npeBbiiuaiomMM nepeahkm, saAHvivi cna6o BbmyKnwfl Kpafi cxoiueH; c 3amohhbim oh coeamhjietcn noa TynwM yrnoM, 6pK)uiH0My oh b CBoefi hii>KHefi nacTM noHTM nepneH-AMKynflpeH, ho co@ahh6HM6 3aKpymeHHoe, HecxonbKo orraHyToe. Maxyiuxa HM3xafl, wm-poxan, noHTM TepMMHanbHaa. Ot MaxyujKM k nepeAHefi TpeTM GpioujHoro xpafl tahbtch cnafian babb/ibhHOCTb nohtm He OTpa3MBwaflCH Ha 6pk>uihom xpae. (loaaan cynbxyca ot MaxyuiKM k HM)KHe3aAHeMy yrny TflHeTCfl anarohanbhan BbinywiocTb ctbopkm, sa KOTOport OTMenaeTcn cnaCafl ynnomeHHOcTb. Hapy>KHan riOBepxHOCTb CKynbnTMpoBaHa KOHueHTpM-46CKMMM j1mhmhmm pOCTa, HeKOTOpbie m3 HMX 60^66 pe/lbecfrhbl, m TOHKMMM, 6/16 3aMeT-HbiMM MenKo6yropnaTbiMM paflnanbHbiMn CTpyftxaMM. Ha BHyTpeHHefl nobepxhoctm ctbopkm OTpa*aiOTCfl nnujb h a m 6 o nee rpy6bie 3hbkm pocTa. nepeAHee MycxynbHoe none pacno/iorceHo Ha yTomueHMM ctbopkm m oTAeneHo eanM-kom. MycxynbHbie snesaTneHMH rny60K0 baabnehhbie YAnMHeHHo-oBanbHbiM aAAyxTOp y nepeAHero Kpan BnepeAM MaxyiiiKM, OTAeneHHbifi ot aflAyKTOpa bb/imkom Bbiiue Haxo-AMTCfl rny6oKMfi cneA npMxpenneHMH HOtfHoro Mycxy/ia. 3aAHMft aAAyxTop HecKonbxo MeHee rny6oK, ConbuiMX pa3MepoB noMemen BBepxy y 3aM0SH0r0 xpan, ho b HexoTopoM OTAaneHMM ot 3aAHero Kpaa. Oh oxpynibifl, c B0rHyT0M nepeAHefl nacTbio, nonepesHO-LUTpMxoBaTbiM. nepeA hmm, cyxancb k MaxyujKe, TAHeTcn cneA ero nepeMemeHMn no Mepe yeenMseHMfl paxoBMHbi. MaHTMflHan nMHMH HecMHycHan, rnyCoKo BAaBneHHan. Ha nepeAHee 3amohhofi bbtbm coxpaHMnMCb Ha flApe OTnenaTKM 3-x tohkmx, napan-nenbHbix 3y6osnAHbix BannKOB. cpabhehhe. Ot oblongum (Golowkynsky) OTnwHaeTcn fionee npflMoyronbHbiMM onepTa-hmhmm, ot elongatum (Netschaev) 3hanmtenbh0 mehbwetf cyxehhoctbw nepeahe« nactm Conee Bbicoxoft paxoBMHbi. 3aM«HaHHn. OnMCbiBaeMbiti bma — npeACTaBMTenb AOCTaTOMHO peAKO BCTpenaeMbix AByCTBopoK, onMcaHHbix b 1894 roAy A. HenaeBbiM b cocTase noAPOAa Modiolodon pOAa Modiolopsis Hall. B tom xe rofly Y/ibpnxoM (Ulrlch, 1894) Ha3BaHMe Modio-lodon 6bmo flaHo mhnm 4>opMaM AaycTBOpOK, nocxonbxy pa6oia Y/ibpuxa Bbiiuna HecKonbKo paHee, HaseaHHe OKaaanocb npeoKxynMpoBaHHbiM, m HaMM (AcTa^besa-yp6a«Tnc, 1978) npeAJioxeHo hobob — Ivanovia. M3MeHeH HaMM m paHr TaKcoHa. BiaiiOHeHHbie b Ivanovia BMAbi 3 h as mtb/i bh o ornusaraTCfl ot npeactabmteneft Modiolopsis Hall xapaKTepoM 3aMKa — oahmm m3 r/iaBHbix xpMTepMes pOAa. ri03T0My h3mm Ivanovia paccMaTpMBaeTcn b xanecTBe caMocTOflTenbHoro poaa. PaccMaipHBaeMbi© c(>opMbi o6na-pyxMBaioT 3HaHHTB/ibHoe cxoactbo c Allorisma King m b CTpoemiM aaMxa, m xapaicrepe Mycxy/ibHbix nonetf, m Apyrux neTanou BHeuwero m BHyTpeHHero CTpoeHMfl paxoBMHbi. floc/ieAHM« poA HaMn paccMaTpMBaeTcn b paMKax ceMencTBa Allorismidae (AcTa$be-Ba-yp6afiTwc 1963, 1964), KyAa, no Bcefi bmammoctm, cneayet othbctm m poA Ivanovia. reorpa$HHecKoe pacnpocTpaH6HMe m reonoritHecKHft B03pacT. fOrocnaBMn, ropbi Ka-pasaHKe; BepXHMM Kap6oH, rxenbcxMM npyc. MaTepwan. CnoxHoe nApo m 0TneHaT0X HapyxHOM nosepXHocTM npaeofi ctbopxm. CeMewcTBo Grammysiidae Miller, 1877 Pofl Grammysiopsis Tschernyschev, 1950 Grammysiopsis carboniferous Astafieva-Urbajtis, sp. nov. Ta6. 3, 4)nr. 7 ronoTMn. Ho. 59. TexHunecKwfi My3efl Xene3apHe EceHMue. BepxHMM Kap6oH, nxenb-ckum npyc. OnwcaHMe. PaxoBMHa cpeAHefi BemiHMHbi, yAnnHeHHO-OBanbHa«, pacwMpniomaflcn K33AM (fl:B 1,72), HepaBHOCTOpOHHnn 0,26), TOHKOCTeHHan, 3HRioLuan no3aAM. AmiKanb- Hbift yron 120°. KopoTKan nepeAHRfl 3aM0SHan BBTBb HaxnoHeHa m noA 3axpyrneHHbiM yrnoM oxono 90° coeAMHneTCfl c 3aKpyrnBHHbiM nepeAHMM KpaeM. npRMafl (win cna6o BorHyTan?) AnMHHaa 3aAHfln 3aM0HHan BeTBb napannenbHa AnnHHOMy cna6o CMHyCHOMy fipiowHOMy Kpaio; cna6o cxoweHHbiM (?) 38ahmm xpafi nosTM b Asa pa3a Bbitue nepeAHero, c saMOHHbiM oh coeAMHneTcn noA TynwM yrnoM. Maxywxa, noBMAMMOMy, HeBwcoxafl, pacnonoxeHa Ha pacctoflhmm y± A^UHbi ctbopkm ot nepeAHero xpan. CpeAHflfl nacTb ctbopxm paBH0MepH0 BbinyKnan. Cna6o BOmyTbiM XMneBMAHbin nepern6 ctbopkm HanpaBneH ot MaxyujKM k ce-peAMHe 3aAHero Kpan, 3a hmm npoxoAMT Herny6oxaR OoposAa, nosaAM xoTopofi 3aKMneBoe none ynnoiueHHoe. HapyxHafl noBepxnocTb noKpwTa- y3KMMw, cCnMxeHHbiMM, Tpeyronb-HbiMM b nonepenHOM ceseHnn pe6paMM, b nepeAHefi naCTM ctbopxm ohm napannenbHW HapyxHOMy xpara ctbopkm, 3aTeM, no nMHMM, MAymefi ot MaKywxM k nepeAHe-6p»uiH0My yrny, HeKOTopwe pe6pa hannhaiot pa3ABaMBaTbcn, hmcjio pefiep yBenMHMBaeTCR. b Bepx-H6M nacTM paKOBMHbi ohm cnerKa BomyTbi, y fipiouiHoro Kpaa pefipa noHTM napannenbHbi eMy. no nMHMM, TRHymefiCR ot MaxyuiKM k saAHefl nacTM CpiowHoro Kpan (He aoxoaa ao 3aAHe-6pK>ujHoro yrna), OTMeMaeTCfl KpyTOM nepern6 peCep (noA BbipaxeHHbiM yrnoM OKono 90° b BepxHefi hbctm ctbopkm m noA crnaxeHHbiM yrnoM y CpioiiiHoro Kpan). 3a neperMOoM, He yMeHbiuancb b HMcne, ho HecKonbKo cyxancb (TaK, hto npoMexyTKM CTa-HOBflTcn HecKonbKo ujMpe pefiep), pe6pa KpyTO HanpaBnniOTcn BBepx, nepecexan nMHMM pocTa. Ha 3axMneBOM none peCpa Hepa3nMHMMbi. Ha cnoxHOM AApe, b saaheft nacTM ctbopkm, ene bmammbr b nyny, HaCnxjAaeTcn TOHKan, cCnHxeHHan paAuanbHan CTpy^naTOCTb. XapaKTep MycxynbHbix OTnenaTKOB m saMxa HaCnioAaTb He yAanocb. bepxhekamehhoyronbhbie (rxenbCKMe) AeycTBopKM M3 Sbophmukoi-q poyra 27 3aMesaHMn. cpeaw M3BecTHbix bhaob rpaMMM3MoncMcoB BHOBb onucaHHbift naučojiee 6nn30K Gr. artiensis (Krotov). riocneAHMM bha onMcaH n. Kpotobhm (1885) M3 apTMH-ckmx ot/io>k0hhh 3anaAHoro ck/iOHa ypa/ia (p. KocbBa). rxenbCKMM bma, hbcmotpr Ha 3HannTe/ibhoe cxoactbo, OTAnnaeicn otcyctbmsm neTKO BbipaxeHHoro cynbxyca, TflHyme-rocfl ot MaxyiuKM k nepeAHew TpeTM 6pioujHoro KpaR ypanbCKMX 4>opM, a Taxxe xapaKTe-pom cxynbHTypbi (y onMCbiBaewioro bmas b cpeahew nacTH ctbopkm Ha6nioAaeTCR pa3ABaM-BaHMe pefiep). Pa3flBanBaHne pe6ep xapaKTepHo m Am HMXHeKaMeHHoyronbHoro BMAa Gr. kazachstanensis Tschernyschev, y KOToporo npM3H3K 3tot npoRBnaeTCR naM6onee RBCTBeHHO. HaSmoAaeTCR nocTeneHHoe crnaxMBaHMe 3Toro npM3Haxa b jimhmm Gr. kazachstanensis — carboniferous — artiensis. reorpaHHecKoe pacnpocTpaHeHMe m reonomsecicMM B03pacT. iOrocnaBMR, ropbi Ka-paBaHKe; BepXHMfi Kap6oH, rxenbCKMM npyc. MaTepMan. CnoxHoe rapo m OTnenaTOK HapyxHOw nosepxHOCTM npaBofl ctbopkm. Genus et sp. indet. Ta6. 3, 0nr. 6 OnMcaHMe. PaKOBMHa HeSonbiiiaH (fl 16,5), yAnMHeHHO-oeanbHan (A: B 1,74), c/ia6o BbinyK/ian, oneHb cna6o HepaBHOCTopOHHRH (fins : 0,48) He3MHK>maR? nepeAHHM M 3sahhm Kpafl paBHOBblCOKMe, oamh3kobo 3aKpyr/ieHHbie, HO COeAWHOHUe nepeAnero c fl/iMHHbiM, npnMbiM 3amohhbim KpaeM 3aKpyrneHHoe, b to Bpewm kak saahee c/ia6o TynoyronbHOe. FIohtm paBHbiM 3aM0MH0My, AnwHHbm, cjia6oBbinyKnbifl 6pk>uihom Kpafl no iiJMpOKMM AyraM cnMBaeTCR c nepeAHMM m 3aAHMM KpanwiM. MaKyuiKa ManeHbKafl, cna6o BWCTynaiomafl noHTM ueHTpanbHan. Haweonbiuan BbinyKnocTb — b npMMaKyweMHOM HacTM. Kn/ieBbix neperM6oB HeT m BbinymiocTb paBHOMepHO yMeHbuaeTCR k KpaflM ctbopkm. KoHueHTpMHecKafl CKynbnTypa HapyxHOM noBepxHOCTM coctomt m3 hm3kmx peGep, KaK-6bi pa3flBaMBai0LUMxcR b cpeflHeM hbctm ctbopkm. Ha RApe pa3/imhmma m oseHb TOHKafl paflwaJibHan CTpytfHaTocTb. XapaKTep BHyTpeHHew noeepXHOCTM, cbr3km m 3aMKa H6M3B€CTeH. 3aMenaHMn. OnMcaHHaR cpopwia 6nti3Ka Aitorisma laevis Eichwald, onpeAeneHHoCi M. 3. flHMLiieBCKMM (H h m uj 6 b c k m m , 1900, t. y. 4>Mr. 15—16) MsepeAHero Kap-60Ha boctohhoto CK/iOHa ypana, a TaKxe onwcaHHO* b to« xe pafiOTe (t. y, dp. 9) KpynHOtf paKOBMHe genus et sp. indet. nocneAHRR oT/iMHaeTCR BenMHMHoii m ToncTOCTeHHocTbio paKO-BMHbi, CHapyxu T10HTM rnaAKOfi, noKpbiToCi nvuiib nMHMRMM pocTa. Ot All. laevis oTnunaeTCR nrnub HecKonbKQ mhum xapaKTepoM cKynbrvrypbi. C othecehmem Ahhuibbckhm ypanbCKMX 4>opMy k poAy Allorisma (no Bcefi bmammoctm He k coBpeMeHHbiM Wilkingia, a k tmhhhhum Aliohsma — (AcTa4>beBa-yp6aMTMC, 1964) He/ibSH cornacMTbCR. noAofiHO Ha-ctormwm annopMCMaiui ohm nMiueHbi nyHKM m ihmtkb, oah3ko xapaKTep (3aocTpeHHue, opTorMpHbie) M nonoxeHMe (noHTM ueHTpanbHoe) MaKyiiiKM, oTcycTBMe Ha nnpax oTne-naTKa CMnbHoro, OTAeneHHoro bb/imkom nepeAHero MycKynbHoro nonfl, m oSiune onep-TaHMR CTBOpOK CBMAeTeHbCTByiOT O CB0e06pa3MM 3TOrO, HeCOMHeHHO, HGBoro poAa. Ho AaTb eMy HasBaHMe m onucaTb He no3BonHeT HeAOCTaTOK wiaTepMana. reorpac(>HHecKoe pacnpocTpaHeHMe h reonorwHecKHM B03pacT. tOrocnasHR, ropbi Ka-paeaHKe; eepxHUM KapCoH, rxenbCKMM Rpyc. MaTepMan. flapo neeoM ctbopkm. Ta6nnua 1. Our. 1. Palaeoneilo sp. Ho. 64, x 1.5. Cno*Hoe hapo neBOPi ctbopkm. OMr. 2 a-6. Paralleiodon javornikensis sp. no v. Ho. 65, x 1 5 a — cno*Hoe napo neBofl ctbopkm; 6 — Heno/ibHufl OTnenaTOK HapyxHOtf nobepxhoctm npaBofi CTBOpKM. Our. 3 a-6 Pterinopectinelta acutiptera? (Janischevsky). Ho. 76, x 1.3. a — napo neBo* ctbopkm; 6 — oTnesaTOK Hapyxcwofl nosepxHOCTM neBofi ctbopkm. ©Hr. 4—6 Cucullopsis quadrata jugoslavica subsp. nov. 4 — Ho. 61, ro/iOTnn hat boji RHyTpeHHBB Rflpo npaBoft ciBopKM, 5 — Ho. 63, x 1.5 BHyrpeHHee nflpo npaao* CTBOpKM, 6 — Ho. 107 x 1.5 npaBafl CTBopxa c oO/iOMaHHbiM nepeflHMM KpaeM. ^nr. 7—9. Aviculopecten mutabilis Licharev 7 — Ho. 84, x 2, BHyTpeHHH* noeepxNocTb neBofi ctbopkm; 8 — Ho. 68, x 15 HenonHafl neBan CTBOpKa; 9 — Ho. 71, x 1.5, neBan CTBopKa. Our. 10.a, 6. Acanthopecten carboniferous (Stevsns) Ho. 90. x 1.5, a — oTnenaTOK nebom ctbopkm; 6 — BHyTpeHHee napo neeofl ctbopkm. 11—13. Acanthopecten elegantulus (Stuckenberg) 11 — Ho. 92, x 1.5, a — aapo zieeoM ctbopkm; 6 — otnesatok HapyxHOM jiobbpxhoctm neBOM ctbopkm; 12 — Ho. 99, x 2, HapyxbeBa-yp6ariTMc K. A. Poa Ivanovia gen. nov. b BepxHeM naneo3oe lOrocnaBnn h CCCP. B nenaTM. K p o t o b n. 1885, ApTMHCKMM spyc. Tp. 06-Ba ecTecTBOwcn. Ka3aHCK, yH-Ta, t. 73, Bbin. 5, CTp. 1—314. JlHxapeB B. K. 1927, BepxHexaMeHHoyro/ibHbie neneqnnoAbi ypa/ia vi TuMana. CeM. Pectinidae, Limidae, Aviculopectinidae. Tp. Teo/i. kom., hob. cep., Bbin. 164, 1—137. MypOMueBa B. A. 1974, AaycTBOpnaTbie mowiiockm Kap6ona KaaaxcTaHa m Cn6npn. Tp. BHMTPM, Bbin. 336, CTp. 1—150. HesaeB A. B. 1894, Oayna nepMCKnx oT/ioxeHMfi boctohhom nonocbi EBponeticKoft Poccmm. Tp. O-Ba ecTecTBOMcnbiT. npM Ka3aHCK. yH-Te, t. 27, Bbin. 4, CTp. 1—503. O e a o t o b A- M. 1932, KaMeHHoyronbHbie nnacTMHHaTOxa6epHbie mojuiiockm Ao-neuKoro 6accefiHa. Tp. Bcec. reon.-pa3B6A. o6i>eA. HKTfl CCCP, Bbin. 103, CTp. 1—241. HepHbiuiee O. H. 1902, BepxHexaMeHHoyro/ibMbie Cpaxwonoflbi ypana v\ TuMaHa Tp. Teon. kom., t. 16, Ho. 2, Bbin. 1, CTp. 1—749. HepHbJiueB B. 14. 1950, CeiuiencTBO Grammysiidae na BepxHenane030tiCKMX omo-xceHnii CCCP. Tp. 1/lH-Ta reon. AH yKp. CCP, cep. CTpaT m naneoHT., Bbin. 1, CTp. 1—116. U)TyKeH6epr A. 1905, OayHa BepxneKaMeHHoyronbHOM to/iimm CaMapcKoti JlyKM. Tp. TeoJi. kom., hob. cep., Bbin. 23, CTp. 76—89. flKOBJieB H. 1903, OayHa Bepxnen nacin nane030HCKnx OTnoxeHMfi b Aohcukom ČacceftHe. 1. ri/iacTMHHaT0xa6epHbie. Tp. Peon. kom., hob. cep., Bbin. 4, CTp. 1—44. FlHviuieBCKMM W. 3. 1900, OayHa KaMeHHoyro/ibHOro M3BecTHRKa, BbiCTynaiomero no p. UlapTbiMK© Ha boctohhom CK/iOHe Ypana. Tp. 06-Ba ecTecTBOMcnbiT. npM Ka3aHCK. yH-Te, t. 34, Bbin. 5, CTp. 1—398. Chao J. T. 1927, Fauna of the Taiyuan Formation of the North China. Pelecypoda. Paleontol. Sinica, vol. 9, ser. B, fasc. 3, 1—50. Gruenewaldt M. 1860, Beitrage zur Kenntniss der sedimentaren Gebirgsforma-tionen des Ural. Mem. Acad. Sci. St. Petersbourg, 7 ser., t. 2, N 7, 1—114. Heritsch F. 1918, Versteinerungen aus dem Oberkarbon von Jauerburg-Assling in Oberkrain. Carniola 9, 60—67. Heritsch F. 1931, Versteinerungen aus dem Karbon der Karawanken und Karni-schen Alpen. Abh. Geol. Bundesanst. 23/3, 1—56, 4. Taf. Hind W. 1896—1900, A Monograph of the British Carboniferous Lamellibranches. Paleontol. Soc., vol. L1—Ly, 1—476. Lipoid M. V. 1859, Revisions-Ergebnisse in Krain. Verh. Geol. Reichsanst., 58—60. Newell N. D. 1937, Late paleozoic pelecypods: Pectinacea. State Geol. Surv. Kansas 10, 1—122. Rakovec I. 1931, Beitrage zur Fauna aus dem Oberkarbon von Javornik in den Karawanken. Prirodosl. razpr. 1, 67—88. Ramovš A. 1969, Iz geološke zgodovine zahodnih Karavank. Jeseniški zbornik Jeklo in ljudje 2, 233—250. Ramovš A. 1971, Biostratigraphische Charakteristik der Oberkarbon-Schichten in den Sudkarawanken, NW. Jugoslawien. C. R. 66me Congr. Strat. Gčol. Carbonif. Sheffield 4, 1387—1395, Maastricht. U I rich E. O. 1894, The Lower Silurian Lamellibranchiata of Minnesota. Bull. Minnesota Geol. and Natur. History Surv., vol. 3, 475—628. Proj ect | S Prevariscic and variscic UIHE 0 events of the alpine mediterranean mountain belts UDK 56.016.3(116.3)(497.12)=20 A new species of Acanthochaetetes from the Cenomanian beds of Central Slovenia Helmut W. Fliigel Institut fur Geologie und Palaontologie Universitat, Heinrichstrafie 26. A-8010 Graz Anton Ramovš Katedra za geologijo in paleontologijo Univerza v Ljubljani, 61000 Ljubljana, Aškerčeva 12 Acanthochaetetes sloveniensis n. sp. from the Cenomanian? beds of Central Slovenia is described and the question of its classification is discussed. Aus dem Cenoman? von Mittel-Sloweniens wird Acanthochaetetes sloveniensis n. sp. beschrieben und die systematische Zuordnung disku-tiert. A well rounded pebble was picked up from the Sopota alluvium west of Radeče at Zidani most. The prevailing constituent of the stone is a fossil remain embedded in a fine-grained conglomeratic mass. From the thin sections made of the pebble it is evident that it consists partly of a biosparitic calcirudite. The rest is particles of a dark sparry and micrite limestones 2—5 millimeters in diameter as well as remains of foraminifers, shell fragments, and echinoderms. Important are redeposited orbitolinas. Although there are no oriented thin sections, an Aptian-Cenomanian age of foraminifers is supposed. The conglomerate itself is derived, however, from an Upper Cretaceous rock, probably Senonian. The same calcareous conglomerates including redeposited orbitolinas are widespread in Central Slovenia. Their original deposits are also recorded from Krm el j village lying south of the locality in the Sopota Valley and south of Mirna village. Similar calcareous breccio-conglomerates occur in many localities of the Sava folds, for instance in the Ljubljana district. Everywhere they contain redeposited orbitolinas and somewhere rudistid fragments as well. The fossil-bearing clastic rocks occur in a sequence of greenish-gray marl, clayey rock, and platy limestone characterized by globotruncanas. Fig. 1. Location map of the new species of Acanthochaetetes Abb. 1. Die Lage des Fundortes der neuen Acanthochaetetes- Art Systematic part Helmut W. Fliigel Order Chaetetida Hartmann et Goreau 1972 Family Acanthochaetetidae Fischer 1970 Genus Acanthochaetetes Fischer 1970 Acanthochaetetes slouenien^is n. sp. Figs. 2 and 3 Etymology: Named for Slovenia where this species was found. Diagnosis: Species of the genus Acanthochaetetes showing four tubes/ square millimeter. The diameter of the tube is about 0.4 mm. In the measurements given the new species differs from the forms of Acanthochaetetes so far described (see table 1). Age designation of species: ? Cenomanian beds of Central Slovenia. Table 1. The measurements of Acanthochaetetes sloveniensis n. sp. compared with those of the other Acanthochaetetes forms and with the genus Tabulospongia Spacing Tubei/iquare of tub* millimeter centre* Rflhren auf Abstand 1 mm Zentr./ Zerttrvm Diomeier Thickneu Thickness Spacing of of lumens of wall« of tabula* tabulae Lumen Wand- Btfden- Beden P Dick« Dicke Abitond Age Alrer A, blovenieneis n.8p. A. foroiuliensia (ZUFF.-CoM.) A. eeuneai FISCHER 4. ramuloaue {MICH.) T. uellsi (HART, a GOR.) T. horiguchii MORI T. jap oni ca MORI 4 0.5 4-9 0.45 1-1.5 0.6-1.2 varioble variabel 0.025-0.1 0.025 0.35-0.45 0.35 2-4 0.35-0.70 variable variabel variable variabel 0.3-0.6 0.4-0.6 0.4-0.6 0.1 0.05-0.16 0.45-1.2 0.2 0.2-1.5 Cenomonion? 1 0.1-1.3 0.2-2.0 Oxford ian Oxford Albion, Cenomonion Alb, Cenoman Albion, Cenomonion Alb, Cenoman 0.06-0.07 0.02-0.1 0.05-0.5 0.05-0.06 0.01-0.03 0.5-1.5 0.02-0.09 0.02-0.05 0.1-1.2 Rexent Recent Rezvit Repository: Holotype 3861 stored in the collection of the Katedra za geologijo in paleontologijo, Ljubljana University, 61000 Ljubljana. Description: From the thin sections made of the pebble, a stock 45 X 26 mm is evident. Its true thickness could not be measured due to the one-sided polishing of the specimen. The present thickness exceeds eight mms. As to the astrorhizae, nothing could be supposed since the surface is unknown. No references are given to spicules. The cellular tubes are irregular or nearly polygonal having round or slightly elliptic lumina. The straight tubes are divided by mostly horizontal or slightly inclined tabulae. In a longitudinal section two types of the tabulae are recognized: thin flat tabulae, and thicker tabulae showing an arched top end. From the transversal section the centripetal growth of the tabulae could be supposed. Thereby a small central pore pierces the tabulae. No wall openings were seen, .spines, however, are well developed reaching up to 0.075 millimeter in length. The tubes are reproduced by intramure' offsets. The measurements of the new species are compared with those of the other Acanthochaetetes forms known till now, and with the genus of Tabulospongia. The latter is characterized by a similar structure of the calcitic skeleton (table 1). Discussion. In 1970 J.-C. Fischer established the genus of Acanthochaetetes and assigned it to the family Acanthochaetetidae together with Septa-chaetetes Rios et al. and Tiplochaetetes Weisermel, all being referred to Hydro-zoa. He believed this genus to be composed of Oxfordian and Cenomanian forms respectively. Their microstructure has been described by J.-C- Fischer & J. Lafuste in 1972. Later astrorhizae have been seen in Acanthochaetetes (J. P. Cuif et al., 1973). The question of classification then arose as both stromatoporoids and sclerosponges exhibit such a microstructure. W. D. Hart-m a n n and T. F. Goreau recommended an assignment to the sclerosponges Fig. 2. Acanthochaetetes sloveniensis n. sp., transverse section, 12 X Abb. 2. Acanthochaetetes sloveniensis n. sp., Querschliff. x 12 Fig. 3. Acanthochaetetes sloveniensis n. sp., longitudinal section, 17 X Abb. 3. Acanthochaetetes sloveniensis n. sp., Langsschliff. X 17 pointing out recent material from the Pacific region characterized by the cal-citic skeleton corresponding to Acanthochaetetes. In addition siliceous spicules were observed. Mesozoic forms, however, show no spicules. W. D. Hartmann and T. F. G o r e a u placed the family of Acanthochaetetidae in the new ordo of Tabulospongida. Additional recent forms, characterized as having a calcitic skeleton like Acanthochaetetes, led to a rediscussion of the latter. According to K. Mori (1976, 1977) spicules are a distinctive mark of recent forms in comparison with Acanthochaetetes. Therefore, they should be assigned to a new genus of Tabu-lospongia belonging to Sclerospongia. The question of the classification of Acanthochaetetes without spicules remains, however, completely open. The spicules occur within the living tissue. That is why they could hardly be found in fossil forms. Noteworthy are the observations of L. S. Land (1976) on a species of Sclerospongia named Ceratoporella nicholsoni showing free siliceous spicules. He believed that the spicules could easily be removed. Most likely they are taken away by biological processes set in already before an organism dies out. These observations render the examination of Acanthochaetetes difficult, as well as M o r i' s supposition according to which Acanthochaetetes and Tabulospongia are to be regarded as two different genera, even belonging to different classification groups. In this respect the tabulae attract attention with their centripetal growth. Such growth occurs, however, in Tabu-lata (Favosites) too. Therefore this could not be useful for a proper classification. References Cuif J.-P. et al. 1973, Presence d'astrorhizes chez les Chaetetida mesozoiques. C. R. Acad. Sc. Paris, Ser. D, 2473—2476, 1 planche, Paris. Fischer, J. C. 1970, Revision et Essai de classification des Chaetetida (Cnida-na) post-palčozoiques. Anales de Paldont., 56, (2), 151—220, 35 figures, 6 planches Paris. Fischer,J.-C. & Lafuste, J. 1972, Nouvelles observations sur la palčohi-stologie du genre Acanthochaetetes (Hydrozoa, Chaetetida). Bull. Soc Geol France (7), 14, 320—324, 9 figures. Hartmann, W. D. & Goreau, T. F. 1975, A Pacific Tabulata Sponge, Living Representative of a new order of Sclerosponges. Postilla Peabody Mus Yale Univ 167, 14 p., 7 plates. Land, L. S. 1976, Early Distribution of Sponge Spicules from Reef Sediments, North Jamaica. Journal Sediment. Petrol., 46, 967—969, 3 figs., Lawrence. Mori, K. 1976, A New Recent Sclerosponge from Ngargol, Palau Islands and Its Fossil Relatives. Sci. Rep. Tohoku University, 46, 1—9, 6 plates, Sendai. Mori, K. 1977, A Calcitic Sclerosponge from the Ishigakishima Coast, Ryukyu Islands, Japan. Sci. Rep. Tohoku University, 47, 1—5, 2 plates, Sendai. UDK 56.016.3.551.761 (497.12) = 863 Konodonti v triadnem apnencu pri Prikrnici Conodonts from the Triassic limestone at Prikrnica village Katarina Krivic in Božo Stojanovič Geološki zavod, 61000 Ljubljana, Parmova 33 Vzorčevani profil triadnih plasti pri vasi Prikrnica severozahodno od Moravč je debel 40 metrov. Od tega odpade okrog 3 m na dolomitno brečo in temno sivi dolomit, 37 m pa na ploščasti mikritni apnenec, bogat s konodonti vrste Pseudofurnishius murcianus van den Boogaard, ki jo spremljata rodova Enantiognathus in Hindeodella. Konodonti kažejo na zgornjeladinsko-spodnjekarnijsko starost apnenca. A Triassic section exposed at Prikrnica village north-west of Moravče was sampled for conodonts. Its lowermost part consisting of dolomitic breccia and dark gray dolomite is 3 meters thick. The upper part is made up of a plate-like micritic limestone some 37 meters thick. The later appears to be rich in conodont form Pseudofurnishius murcianus van den Boogaard accompanied with Enantiognathus and Hindeodella. The conodont assemblage proves Upper Ladinian-Lower Carnian age of the limestone examined. Uvod F. Kossmat (1884) je uvrstil apnenec pri Prikrnici v stopnjo školjkovite-ga apnenca. Med kartiranjem lista Ljubljana osnovne geološke karte SFR Jugoslavije smo profil apnenca večkrat vzorčevali. Po makrofosilih se ni dalo sklepati na starost apnenca. Naposled smo leta 1976 uspeli zbrati vzorce s konodonti. Opis profila Profil leži ob kolovozni poti pri vasi Prikrnica severozahodno od Moravč. Prične se s črno dolomitno brečo nad tektonskim kontaktom s srednjetriadnim dolomitom. Breča je tektonska, njeno vezivo je mikritno z glinasto primesjo. Sledi ji temno siv precej zdrobljen dolomit. Ves ostali del profila sestoji iz črnega ploščastega apnenca z belimi kalcitnimi žilicami, limonitiziranimi razpokami in s stilolitnimi šivi. S kalcimetrom določena množina CaCOs je 88,5 ®/o do 95 3 °/o. Večina vzorcev sestoji iz mikrita, manj je mikrosparita. Debelozrnati intrasparitni in intramikritni vzorci so redki. Tu in tam vsebuje apnenec ostanke moluskov, ehinodermov in foraminifer. Konvolutna laminacija apnenca kaže na okolje kalnih tokov. SI. 1. Nahajališče konodontov Prikrnica Fig. 1. Locality of conodonts at Prikrnica Spodnji del profila je brez mikrofosilnih ostankov. Sledijo vzorci z bolj ali manj številnimi konodonti, od 50 vzetih vzorcev jih je vsebovalo 27 vrsto Pseudojumishius murcianus van den Boogaard, ki jo spremljata Hindeodella (Metaprioniodus) suevica (Tatge) in Enantiognathus ziegleri (Diebel). V sredini profila se pojavi vrzel v konodontni favni. Nato zopet sledijo plasti s predstavniki istih treh konodontnih vrst kot pod vrzeljo. Poleg konodontov so pogosti ribji zobčki. Vrhnji del profila je povsem sterilen. Opis konodontov Pseudofurnishius murcianus van den Boogaard 1966 Tab. 1, si. 1—4, tab. 2, si. 1 1972 Pseudofurnishius murcianus van den Boogaard — F Hirsch P 2 Fig 3—8. ' ' ' 1972 Pseudofurnishius murcianus van den Boogaard — H Kozur Taf 2 Fig. 14—18. ' ' ' 1973 Pseudofurniskius murcianus van den Boogaard — van den Boogaard & O. J. Simon, 16, Pl. 1, figs, b, d—f, Pl. 2, figs, f, g, k, 1. 1974 Pseudofurnishius murcianus van den Boogaard — D. B. E i c h e r &L. C Mosher, 737, Pl. 1, figs. 1—14, 17, 19, 23, 26, 32, 33, 35—38, 41—44 Pl. 2, figs. 1—5. 1977 Pseudo/umisftius murcianus van den Boogaard — A. Ramovš 364 Abb. 3, Fig. 1 a—e, 2 a—c, 3, 4 b, Abb. 4, Fig. 1 a—b, 2 a—b, 3 a—4 a! 5 a—b, 6, 7, Abb. 5, Fig. 1 a—c, 2 a—c, 3, 4 a—b, Abb. 6, Fig. 1 a—b. r_i Črni ploŠČosti apnenec -Black platy limestone L Temno sivi dolomit Dark gray dolomite Dolomitna breČa Dolomitic breccia SI. 2. Razširjenost konodontov v profilu triadnih plasti pri Prikrnici Fig. 2. Distribution of conodonts in the Triassic section from Prikrnica Tabla 1 — Plate 1 SI. 1—4 — Figs. 1—4 Pseudofurnishius murcianus van den Boogaard 1, 2, 3 X 120, 4 X 300 Konodonti v triadnem apnencu pri Prikrnici Tabla 2 — Plate 2 SI. 1 — Fig. 1 Pseudofurnishius murcianus van den Boogaard X 120 SI. 2 — Fig. 2 Enantiognathus sp., X 120 SI. 3—4 — Figs. 3—4 Hindeodella sp., X 60 Material: 71 primerkov, povečini dobro ohranjenih. Levi in desni primerki so zastopani z enakim številom. V nekaj primerkih sta levi in desni element združena. Kratek opis: Primerki so popolnoma nesimetrični. Platforma je razvita le v eno stran, desno ali levo. Tu so številni zelo močno razviti zobje. Število zob je različno glede na starost in razvitost primerka, večinoma pa se giblje okoli 10. Tudi zobje lista so veliki in dobro izraženi. Nesimetričnost se kaže tudi na spodnji strani primerkov. Bazalna jamica leži na sredini razširjene platforme. Od tu poteka proti zadnjemu delu izrazita bazalna brazda, zelo neizrazita pa je brazda pod listom. Na obeh straneh brazde je močan greben, ki se ob bazalni jamici razširi na isto stran kot platforma. Razširjenost: Vrsta Pseudofurnishius murcianus je bila do sedaj najdena na Sinaju, v Izraelu in Palestini, v Kamerunu, Španiji, južni Franciji, zahodni Srbiji in Sloveniji. V Sloveniji je bila do sedaj najdena v Hudem klancu južno od Rovt, v Korenem, Setniku in na Malem vrhu — južno od Polhovega gradca, na Toškem čelu, pri Domžalah in v okolici Prikrnice pri Moravčah. Poleg primerkov vrste Pseudofurnishius murcianus je v vzorcih nekaj primerkov rodu Enantiognathus, ki so slabo ohranjeni. Le nekaj primerkov je določenih in sicer kot vrsta Enantiognathus ziegleri (Diebel). Bolj številni so primerki rodu Hindeodella. Določena je vrsta Hindeodella (Metaprioniodus) suevica (Tatge), povečini slabo ohranjena. Posebnost predstavljajo v skupinice združeni primerki te vrste. Kljub najdbi oblik Pseudofurnishius murcianus vprašanje ožje starosti apnenca le ni zanesljivo rešeno. Po primerjavi amonitne razčlenitve srednjetriad-nih in zgornje triadnih plasti na območju Tetide s konodontnimi conami na zahodnem mediteranskem prostoru ustreza oblika P. murcianus prehodu med langobardsko in cordevolsko podstopnjo (H. Kozur, 1972). Na drugi strani pa so postavili plasti s to vrsto v Izraelu, Južni Franciji (Provence), Španiji (Cataluna, Majorca, Minorca) v ladinsko stopnjo školjkovitega apnenca. Triadne plasti Betskih kordiljer v jugovzhodni Španiji sta prištela van den Boogaard in O. J. Simon (1973) zgornjeladinski-spodnjekarnijski stopnji. Podoben stratigrafski pomen sta pripisala vrsti P. murcianus D. B. E i c h er in L. Cameron Mosher (1974), ko sta obravnavala konodontno favno Sinaja in Palestine. A. Ramovš (1977) pa je uvrstil apnenec v okolici Ljubljane z oblikami P. murcianus v langobardsko podstopnjo ladinske stopnje. Literatura Boogaard M. van den & Simon O. J. 1973, Pseudofurnishius (Conodonta) in the Triassic of the Cordilleras. SE Spain. Scripta Geologica, 16, 1—23, Leiden. Eicher D. B. & Mosher L. C., 1974, Triassic conodonts from Sinai and Palestine. Jour. Paleont., Vol. 48, No. 4, 727—739, Lawrence, Kansas. Hirsch F. 1972, Middle triassic Conodonts from Israel, Southern France and Spain. Mitt. Ges. Geol. Bergbaustud., Bd. 21, Teil 2, 811—827, Innsbruck. Kossmat F. 1884, Geološka karta Ljubljana 1:75 000. Kozur H. 1972, Die Conodontengattung Metapolygnathus Hayashi 1968 und ihr stratigraphischer Wert. Geol. Palaont. Mitt. Innsbruck, Bd. 2, 11, 1—37, Innsbruck. Ramovš A. 1977, Skelettapparat von Pseudofurnishius murcianus (Conodonto-phorida) in Mitteltrias Sloweniens (NW Jugoslawien). N. Jb. Geol. PalSont. Abh., 153, 3, 361—399, Stuttgart. UDK 56.016.3 : 551.761.3 (497.12) = 863 Zgornjekarnijski in spodnjenoriškl konodonti v okolici Mirne na Dolenjskem Upper Carnian and Lower Norian conodonts from Mirna in Lower Carniola Anton Ramovš Katedra za geologijo in paleontologijo, Univerza v Ljubljani, 61000 Ljubljana, Aškerčeva 12 Kratka vsebina Za Mirno in okolico je značilen temno sivi gomoljasti biomikritni apnenec z vmesnimi lapornimi in glinenimi polarni. Lepo plastovita kamenina vsebuje konodonte: Epigondolella abneptis, E. nodosa, E. permica in Gondolella polygnathiformis. V spodnjem delu apnenca prevladuje plo-ščasti element polygnathiformis, prehodna oblika med G. polygnathifor-mis in nodosa in element E. nodosa. Ta plast ustreza zgornjemu delu cone subbullaJus in spodnjem delu anatropitnega področja. Srednji del apnenca s prevladujočim elementom E. nodosa in z elementi E. permica, G. polygnathiformis in njeno prehodno obliko v element E. nodosa se uvnšča v vrhnji del tuvalske podstopnje (= cona macrolobatus). Najtanjša vrhnja pola apnenca z elementi E. abneptis, E. nodosa in E. permica predstavlja najnižji del noriške stopnje (= cona kerri). Abstract In the Mirna valley of Lower Carniola a dark gray nodular limestone occurs interbedded with marl and claystone. The rock is well stratified and marked by the persistent occurrence of the conodonts: Epigondolella abneptis, E. nodosa, E. permica, and Gondolella polygnathiformis. By the vertical distribution of these elements the following zones were identified: The lowest limestone bed is characterized by the plate-like element of Gondolella polygnathiformis indicating the upper part of the subbullatus zone and the lower part of the anatropites zone. In the middle Epigondolella nodosa prevails associated with Epigondolella permica and Gondolella polygnathiformis. Thereby the macrolobatus zone of the late Tuvalian substage is indicated. The thin top limestone layer belongs to the kerri zone of the early Norian stage as shown by the assemblage of Epigondolella abneptis, E. nodosa, and E. permica. The plate-like conodonts mentioned above are described in detail. Uvod Po projektu Mezozoik Slovenije sem raziskal 36 konodontnih vzorcev iz temno sivega mikritnega apnenca v Mirni in okolici (si. 1). Največ vzorcev sem nabral v obeh kamnolomih na južnem koncu Mirne; med njimi je večina pozitivnih. Vzorčeval sem še na griču nad kamnolomoma; tu je le eden od vzorcev vseboval drobce ploščastih konodontov, drugi pa je bil prazen. Od treh vzorcev z griča 2apuže, vzhodno od Mirne, ni noben vseboval konodontov, uporabnih za parastratigrafsko razčlenitev plasti. Zelo pomembno pa je najdišče ob cesti Mirna—Debenec—Trebelno z značilnimi ploščastimi elementi. Fotografije je posnela Irena Hrovat na elektronskem mikroskopu stereoscan-JEOL JSM-P15. Izraze, uporabljene pri opisu konodontov, pojasnjujejo slike na tabli 1. SI. 1. Skica kaže, kje so bili vzeti konodontni vzorci apnenca pri Mirni na Dolenjskem Fig. 1. Location map of the sampling sites at Mirna in Lower Carniola Dosedanja raziskovanja C. Germovšek (1955, 121—122 in priložena geološka karta v merilu 1 :50 000) je označil na geološki karti zahodno od Mirne ozek pas kamenin kot »ladinsko-rabeljski skrilavci in apnenci-«, ki leže na srednjetriadnem in zgornje-triadnem dolomitu, oziroma na ladinskem in zgornjetriadnem dolomitu. Natančneje starosti ni mogel določiti, ker ni imel fosilnih ostankov. Ger-movškov pas apnenca zajema vsaj starejši kamnolom nad hišo Mirna 115. Južnozahodno in zahodno od tega pasu je na njegovi geološki karti označen srednjetriadni in zgornjetriadni dolomit, ki visi proti severovzhodu, to je pod apnenec. Na območju dolomita je najbrž tudi drugi, mlajši kamnolom, ki pa takrat še ni bil odprt. A. Ramovš (1975, 105—106) je določil v starem kamnolomu južno od železniške postaje Mirna na podlagi konodontov cono polygnathijormis, to je tuvalsko podstopnjo karnijske stopnje, ki jo dokazujejo tudi ostanki tropitidne favne. Na novi geološki karti SFRJ, list Novo mesto v merilu 1 :100 000 so uvrstili plasti Mirne in okolice v spodnji del ladinske stopnje; sestoje iz sivega plastna-tega dolomita, tufa in tufita, glinovca, apnenca in kremenastega apnenca, dolo-mitne breče in konglomerata. Na južni strani griča z mirenskima kamnolomoma je vrisan dolomit z gomolji roženca. Na Zapužah pa je anizični dolomit z vključ-ki apnenca (M. Pleničar, U. Premru & M. Herak, 1975). Stratigrafski pregled Zgornjekarnijske in spodnjenoriške apnenčeve in laporne plasti so najlepše odkrite v obeh kamnolomih na južnem koncu Mirne na zaletišču skakalnice okoli 100 m južnovzhodno od mlajšega kamnoloma, ki je vsekano v živo skalo. Povsod prevladuje temno siv, pogosto marogasti apnenec, ki je delno skladnat, delno ploščast. Pogosto je gomoljast, predvsem po zgornji strani plasti. Površje plasti je največkrat vegasto in pokrito z neravnimi lapornimi prevlekami. Apnenec je delno bituminozen in le redko prepreden z belimi kalcitnimi žilicami. Ponekod vsebuje gomolje in daljše nepravilne leče črnega roženca. V skladovnici je nekaj značilnih plasti debelo gomoljastega apnenca, ki kaže na razpadajočem površju videz konglomerata (gl. si. 2, vzorec 18). Vendar ne gre za mehansko usedlino; njena struktura se je razvila v zgodnji diagenezi, ko se je iz lapornega blata zgostil apnenec v različne gomoljaste oblike, ki jih je obdal laporasti ali glineni material. Med takšnimi gomolji in drugim delom kamenine so vmesni prehodi, kar so potrdile tudi preiskave zbruskov. Seveda v »vezivu« ni nikjer peščenega ali drobnega konglomeratnega materiala, ki bi ga pričakovali v grobem konglomeratu. Tudi konodontni elementi so v »gomoljih* isti kot so v plasti pod gomoljastim apnencem in nad njim. V zbrusku je apnenec homogen biomikrit s pogostnimi bioturbatnimi pojavi. Med fosilnimi ostanki so pogostne radiolarije in prekristalizirane foraminifere, posamični so juvenilni amoniti, v nekaterih plasteh pa je vse polno ostankov lebdečih krinoidov. Po površju plasti se dobe posamični slabo ohranjeni ostanki involutnih amonitnih hišic, nekatere bolje ohranjene imajo tropitidne značilnosti (A. Ramovš, 1975, 106). V obeh kamnolomih sem sistematično vzorčeval 25 plasti. Konodonti so pokazali, da so plasti v obeh kamnolomih različno stare in pripadajo dvema strukturama. V južnejšem, mlajšem kamnolomu (si. 3) in v useku zaletišča skakalnice je pokončna guba s širokim temenom, ki je v sredini prelomljeno. V zahodnem delu gube je več vzporednih prelomov in plasti so med njimi precej dislocirane (si. 4). Os gube tone proti severu; v njenem jedru so v kamnolomu 4 — Geologija 21 SI. 2. Severni del starega mirenskega kamnoloma z označenimi konodontnimi vzorci Fig. 2. Sampling points in the northern side of the old Mirna quarry SI. 3. Vzorčevani del apnenca v novem mirenskem kamnolomu z označenimi konodontnimi vzorci Fig. 3. The limestone section of the new Mirna quarry sampled for conodonts SI. 4. Teme gube v novem mirenskem kamnolomu; desno krilo je večkrat prelomljeno in dislocirano, premaknjeno Fig. 4. The fold crest as it appears in the new Mirna quarry. Its right side is faulted and displaced SI. 5. Stari mirenski kamnolom z označenimi konodontnimi vzorci Fig. 5. Sampling points in the old Mirna quarry odkrite najstarejše plasti. Vzhodno antiklinalno krilo je lepo razvito, kar je omogočilo sistematično vzorčevanje. V starem kamnolomu (si. 5) je ležeča guba z vodoravno osno ravnino in jedrom v zahodnem koncu kamnoloma. Proti vzhodu prehajajo plasti v normalno vzhodno krilo. Na zahodni strani pa plastnati apnenec konkordantno vpada pod sivi zrnati skladnati dolomit, ki vsebuje sprva malo roženčevih gomoljev, više pa čedalje več. Raziskave so zajele še grič nad kamnolomoma, ki ga na jugu omejuje dolina ZabrŠČice. Po griču je več majhnih opuščenih kamnolomov, kjer so Mirenčani lomili trde sklade apnenca za lokalne potrebe. Plasti pripadajo strukturam, ki se vlečejo iz kamnolomov proti jugu. Podoben apnenec z vložki laporja ali glinovca je tudi na zahodnem koncu hriba 2apuže (viš. kota 317) vzhodno od Mirne. Po griču mole na površje le posamične skale, nekaj plasti pa so odkrili v majhnem opuščenem kamnolomu in v krajšem jarku, kjer so bili vzeti trije vzorci. Zelo pomembno je najdišče ploščastih konodontnih elementov ob cesti Mirna—Debenec—Trebelno. Severno od Debenca je na površju nekaj plošč črnega apnenca, ki predstavljajo najvišji del mirenskega karnijskega razvoja. Konkordantno na njih leži tudi tu zrnati dolomit z roženci. Opis konodontov Ordo Conodontophorida Eichenberg, 1936 Superfamilia Gondolellacea Lindstrom, 1970 Familia Gondolellidae Lindstrom, 1970 Genus Epigondolella Mosher, 1968 Epigondolella abneptis (Huckriede) Tab. 2, si. 3 1958 Polygnathus abneptis n. sp. — R. Huckriede, 156—157, Taf. 11, Fig 33, Taf. 12, Fig. 30—36 b, Taf. 14, Fig. 1, 2, 3, 5, 12—14, 16—22, 26, 27, 47—58. 1973 Epigondolella abneptis (Huckriede). — L. Krystyn, Taf. 4, Fig. 1—3. Material : dva cela elementa. Opis: Nesimetrična platforma je krajša od polovice celotne dolžine in je podobna enakokrakemu trikotniku. Njen sprednji rob karakterizirajo na eni strani trije visoki in široki trnasti izrastki, na nasprotni strani pa dva podobna trna, od katerih je zadnji precej močnejši od sprednjega. Na razširjenem valovitem zadnjem robu platforme je na enem oglu precej močan robni trnasti izrastek, na nasprotnem oglu in približno v sredini pa sta izraziti robni odebelitvi. Prosti list je visok, značilno enakomerno izbočen in nosi deset koničastih zob- Tabla 1 Terminologija pri opisanih ploščastih konodontih Zgornjekarnijski in spodnjenoriški konodonti v okolici Mirne na Dol. 53 Pogled od strani oralna stran zobčasta letva prosti list (greben z zobčki) zobčki zadaj spredaj I \ zadnji rob sprednji rob platforme spredaj aboralna stran platforma prosti list —- . \ yr^- ■ ,— trnasti < ^ izrastki, j .,../« ^ robna odebelitev robni zobčki, trni Pogled od zgoraj robni zobčki zadaj Pogled od spodaj vt^tfflS^ Prosti list ■ „ .'-a platforma zadaj gredelj bazalna jamica bazalna brazda _ 1 čkov, ki stoje tesno drug ob drugem; peti zobček je najmočnejši in najvišji. Na zadnjem delu zobčaste letve so še trije prosto stoječi zobčki: zadnji od njih je najmočnejši in večja vrzel ga loči od zobčka pred njim. Visok in širok gredelj se za ozko ovalno bazalno jamico razširi in se s krajšima krakoma še nekoliko podaljša proti ogloma na zadnjem robu platforme. Bazalna brazda je ozka in delno zabrisana. E. abneptis močno prevladuje v najnižjem delu noriške stopnje (cona kerri) in se pojavlja skupaj z elementoma E. nodosa in E. permica, medtem ko kaže, da G. polygnathiformis zgine na meji karnijske in noriške stopnje, pojavlja pa se posamič v tipičnem razvoju z močno razširjeno platformo na zadnjem delu že tudi v najvišjem delu anatropitnega področja (L. Krystyn, 1973, 134). Pri Mirni je najdena E. abneptis samo severno od Debenca, kjer spremlja elementa E. nodosa in E. permica. Epigondolella nodosa (Hayashi) Tab. 2, si. 2 in tab. 3, si. 2, 4 in 5 1973 Epigondolella nodosa (Hayashi). — L. Krystyn, 138—139, Taf. 3, Fig. 2—4. Material: 34 primerkov in precej drobcev. Opis : Ozka ali zelo ozka in ob stranskih robovih odebeljena platforma je pokrita z drobnimi jamicami in zavzema skupaj s klinastim sprednjim delom približno 2/3 celotne dolžine. Sprednja robova platforme karakterizirajo topi vozlički, ki so zelo izraziti ali pa le nakazani in jih ločijo plitvi brazdasti za-žetki med seboj. Število niha od tri do šest. Vozlički niso na obeh straneh enako veliki in ne stoje povsem simetrično. Zadnji rob platforme je rahlo izbočen, raven ali lahno usločen, je brez vozličkov, redko lahno valovit. Prosti del lista je visok in nosi šibke ali precej močne zobčke s prostimi konicami; zobčki so zraščeni med seboj. Sprednji in srednji del zobčastega lista je v srednjem delu lahno ali precej močno izbočen in ima navadno šest do deset različno velikih zobčkov. Izjemoma ima list do 14 zobčkov, ki se po velikosti dosti manj ločijo med seboj kot se razlikujejo zobčki pri primerkih z manjšim številom zobčkov. V zadnji tretjini lista so trije, redko štirje prosto stoječi nizki stožčasti zobčki. Zadnji med njimi je nekoliko večji od drugih. Pri nekaterih primerkih doseže Tabla 2 SI. 1. Epigondolella permica (Hayashi) 1 a od strani, 1 b poševno od zgoraj SI. 2. Epigondolella nodosa (Hayashi). Poševno od zgoraj SI. 3. Epigondolella abneptis (Huckriede). 3 a poševno od strani, 3 b od zgoraj SI. 4. Epigondolella permica (Hayashi). Od spodaj SI. 5. Epigondolella n. sp. ex aff. permica (Hayashi). Od zgoraj. Ker je bil najden samo ta primerek, prilagam tu le fotografijo SI. 6. Epigondolella permica (Hayashi). Poševno od zgoraj prosti del lista največjo višino že pri prvih dveh zobčkih in se nato višina lista hitro znižuje. Razločna bazalna brazda se malenkostno razširi v ozko ovalno bazalno jamico. Obdajajoči široki, vendar nizki gredelj se značilno rogovilasto cepi in konici rogovil sta usmerjeni proti zadnjima ogloma platforme. Bazalna jamica leži precej pred rogovilasto cepitvijo. Ta vsesplošno razširjena oblika se pojavlja v višjem delu tuvalske pod-stopnje (anatropitno področje oziroma cona macrolobatus) in v nižjem delu spodnjenoriške stopnje (cona kerri) (L. K r y s t y n , 1973, 139). Verjetno seže pri Mirni Še v zgornji del cone subbullatus. B. nodosa spremlja v nižjem delu apnenčeve in laporne skladovnice plo-ščasto obliko G. polygnathiformis, v njenem višjem delu pa je skupaj s plo-ščastim elementom E. permica. V vrhnjih plasteh apnenca se pojavlja skupaj z elementoma E. abneptis in E. permica. E. nodosa se je razvila iz oblike G. polygnathiformis, sledila pa ji je strati-grafsko mlajša E. permica (cf. L. Krystyn, 1973, 139). Epigondolella permica (Hayashi) Tab. 2, si. 1, 4 in 6; tab. 3, si. 6. 1968 Gladigondolella abneptis var. permica var. nov. — Hayashi, 69, pl. 2, fig. 3 a—c. 1973 Epigondolella permica (Hayashi). — L. Krystyn, 140, Taf 3 Fig 5 Taf. 5, Fig. 1—3. ' Material: osem primerkov. Opis: Nesimetrična platforma je po kratkem sprednjem topem nastavku v grobem pravokotna ali nepravilne oblike in ima v višini bazalne jamice na vsaki strani različno velik zažetek. Redko je zažetek na eni strani le slabo nakazan. Na vsaki strani platforme so pred zažetkom nesimetrično razporejeni močni robni zobčki, na eni strani eden ali dva, na drugi pa navadno dva ali trije. Rob platforme je za zažetkom gladek in brez zobčkov. Na sprednjem delu lista je okoli devet prosto stoječih koničastih zobčkov, nasproti robnih zobčkov pa so zobčki na grebenu šibki in stoje bolj narazen; zadnji je odebeljen in raz-potegnjen proti zadnjemu robu. Tabla 3 SI. 1. Gondolella polygnathiformis Budurov & Štefanov. 1 a od strani, 1 b poševno od zgoraj SI. 2. Epigondolella nodosa (Hayashi). 2 a poševno od strani, 2 b od zgoraj SI. 3. Gondolella polygnathiformis Budurov & Štefanov. Od strani SI. 4. Epigondolella nodosa (Hayashi). Nekoliko poševno od zgoraj SI. 5. Epigondolella nodosa (Hayashi). Od spodaj SI. 6. Epigondolella permica (Hayashi). Nekoliko poševno od spodaj Pri vseh fotografijah je povečava 120-krat. Ta ploščasti element kaže v oblikovitosti in velikosti platforme precejšnjo variabilnost. Najdene so bile tudi vmesne oblike med elementoma E. nodosa in E. pernica, ki predstavljata dva člena v razvoju najmlajših karnijskih kono-aontov. Razločna bazalna brazda se malo razširi v ozko ovalno bazalno jamico, ki leži v višini robnih zažetkov. Močan in širok gredelj se za bazalno jamico nepravilno polkrožno konča ali pa se razcepi v dva kratka roglja, ki sta usmerjena proti zadnjima ogloma platforme. Pri tem elementu gredelj ni tako podaljšan navzad kot pri E. nodosa. L. Krystyn navaja filogenetske zveze med obliko E. permica, njeno predhodnico E. nodosa in elementoma E. abneptis in E. postera, ki ji sledita v razvojnem nizu. Element je znan samo z Japonske in iz Alp; L. Krystyn (1973, 140) ga navaja iz najvišjega dela karnijske stopnje (zgornje anatropitno področje) ter iz celega spodnjega in srednjega dela noriške stopnje. Pri Mirni se pojavlja skupaj z elementoma E. nodosa in E. permica v vrhnjem delu karnijske stopnje in v najnižjem delu noriške stopnje. Genus Gondolella Stauffer & Plummer, 1932 Gondolella polygnathiformis Budurov & Štefanov Tab. 3, si. 1 1965 Gondolella polygnathiformis n. sp. — K. Budurov & S. Štefanov, 118, Taf. 3, Fig. 3 a—b, 4 a—b, 5 a—b, 6 a—b, 7 a—b. 1968 Paragondolella polygnathiformis (Budurov & Štefanov) — L. Mosher, 938, pl. 118, fig. 14—16, 17, 19. 1975 Gondolella polygnathiformis Budurov & Štefanov. — E. Kristan-Tol-lmann & L. Krystyn 271—272, Taf. 1, Fig. 3—5. Material: 18 primerkov in več drobcev. Opis: Platforma zavzema nekoliko več kot polovico celotne dolžine in pri posameznih primerkih precej variira v širini; najširša je približno v sredini in se zožuje proti zadnjemu robu. Stranska robova sta različno odebeljena; med njima in zobčasto letvo potekata precej globoki brazdi, ki sta posebno izraziti pri elementih z ozko platformo. Robova sta brez robnih zobcev in posuta s številnimi jamicami, ki so največje na najbolj izbočenem delu. Prosti list je lahno izbočen, koničasti zobčki se večajo od sprednjega roba proti sredini prostega lista in so v spodnjem delu zraščeni. Velikost prostih konic je različna. Zadnji zobček je široko stožčast in močnejši od treh ali štirih zobčkov pred njim, od sosednjega pa ga loči precejšnja vrzel. Od strani kaže platforma večjo ukrivljenost kot drugi del elementa. Gredelj je ozek ali srednje širok in nizek, ozka brazda se vleče od sprednjega roba do majhne okroglaste ali različno ovalne bazalne jamice. Gredelj se za bazalno jamico konča v lahno polkrožnem ali skoraj ravnem širokem robu, ki je le malo vzdignjen. Redko je zadnji del gredlja roglasto podaljšan. Nekaj vzorcev je vsebovalo prehodno obliko med G. polygnathiformis in E. nodosa, iz katere se je slednja razvila. Pri prehodni obliki je rob platforme manj odebeljen in na njenem sprednjem delu sta običajno po dva robna zobčka, lahko pa sta na eni strani dva ali celo trije, na drugi pa en sam, ali je rob celo brez razločnega zobčka. Pri takšnih elementih se začne zadnji del gredlja rogovilasto cepiti v dva kratka podaljška proti ogloma zadnjega roba platforme. G. poly gnat hiformis sega od najvišjega dela ladinske stopnje do kraja karnijske stopnje in kaže, da ne gre čez mejo med karnijsko in noriško stopnjo (L. Krystyn, 1973, 134; 1975, 271). V Mirni ta element močno prevladuje v novem kamnolomu, zraven pa se pojavlja tudi že prehodna oblika med G. po-lygnathiformis in E. nodosa. G. pol ygna t hiformis je redka v starem mirenskem kamnolomu, kjer prevladuje E, nodosa, najdena pa je bila tudi prehodna oblika med obema elementoma. Vejnati konodontni elementi V veliki večini vzorcev tuvalskega in najstarejšega noriškega apnenca v okolici Mirne manjkajo vejnati elementi. V zgornjetuvalskem apnencu starega mirenskega kamnoloma so v enem samem vzorcu celi ali fragmentarno ohranjeni: enantiognathiformi, hinde odeli if ormi, neohindeodelliformi, ozarkodini-formi in prioniodiniformi elementi. V spodnjem apnencu noriške stopnje pa spremljajo ploščaste elemente enantiognathiformi, hindeodelliformi, ozarkodi-niformi in prioniodiniformi element. Biostratigrafske ugotovitve Raziskave ploščastih konodontnih elementov so pokazale, da je apnenec z vmesnim laporjem in glinovcem v Mirni in njeni okolici delno iz tuvalske podstopnje in delno iz spodnjega dela noriške stopnje. Plasti s skoraj samim ploščastim elementom Gondolella polygnathiformis v 12 vzorcih novega mirenskega kamnoloma spadajo v tuvalsko podstopnjo, in sicer v konodontno cono polygnathiformis. Ta element se začne sicer v zgornjem delu ladinske stopnje in sega skozi celo karnijsko stopnjo do kraja tuvalske podstopnje. V dveh vzorcih ga spremljata prehodna oblika med G. polygnathiformis in Epigondolella nodosa ter E. nodosa, kar kaže na mlajši tuval in sicer na starejši del anatro-pitnega področja. Verjetno pa se je pojavila E. nodosa pri nas že v starejšem tuvalu, to je v coni subbullatus in ne šele v anatropitnem področju, kot je določil L. Krystyn v Salzkammergutu (1973, 139). Zato uvrščam spodnji del apnenca pri Mirni v zgornji del cone subbullatus in v spodnji del anatropitnega področja. 0 V konodontnih vzorcih starega mirenskega kamnoloma (Mirna 15—23, 34—37) je najbolj pogostna E. nodosa, ki jo spremlja v nekaj vzorcih E. permica; v vzorcu Mirna 34 je prav tako najštevilnejša E. nodosa, pojavljajo pa se poleg prehodne oblike med elementoma G. polygnathiformis in E. nodosa tudi trije značilni primerki elementa G. polygnathiformis. E. nodosa ima po današnjih ugotovitvah (L. Krystyn, 1973, 139) svojo vertikalno razširjenost od zgornjega tuvala (tuval 3, = cona macrolobatus) do nižjega spodnjega dela noriške stopnje (lac 1, = cona kerri), E. permica pa sega od najvišjega dela karnijske stopnje do srednjega dela noriške stopnje (L. Krystyn, 1973, 140). Ker se pojavlja v najvišjem delu karnijske stopnje tudi G. polygnathiformis, uvrščam srednji del apnenca pri Mirni v vrhnji del tuvalske podstopnje, to je v zgornji del anatropitnega področja, oziroma v cono macrolobatus. V vrhnjih 34 metrih apnenca v Mirni vzorčevane plasti niso dale nobenega značilnega ploščastega konodontnega elementa. V apnenčevih ploščah tik pod dolomitom z roženci severno od Debenca prevladuje E. nodosa v družbi E. permica in E. abneptis. Ker je E. abneptis značilen noriški element in G. polygnathiformis ni več prisotna, uvrščam ta vrhnji del plasti v cono kerri (= najnižji del noriške stopnje). Iste starosti je tudi vrhnji del apnenca ob starem mirenskem kamnolomu. Dosedanje vzorčevanje karnijskega in noriškega apnenca pri Mirni je pokazalo, da so pl oš časti konodonti v njih sorazmerno redki, saj so le redki vzorci vsebovali več kot pet primerkov, še redkejši pa več kot deset. Zanimivo je tudi, da kaže favnistični spekter ploščastih konodontnih elementov v apnencu vrhnjega dela karnijske stopnje in spodnjega dela noriške stopnje pri Mirni precej drugačno sliko kot v Salzkammergutu (cf. L K r v -styn, 1973, 135). * Literatura Budurov K. & Štefanov, S. 1965, Gattung Gondolella aus der Trias Bulgariens. Acad. Bulg, Sci., Ser. Paleont.7, 115—127, Sofija Germovšek, C. 1955, O geoloških razmerah na prehodu Posavskih gub v Dolenjski kras med Stično in Šentrupertom. Geologija 3, 116—135, Ljubljana J* u r\id!'JV.1958' Die Con°d°nten der mediterranen Trias und ihr strati-graphischer Wert. Palaont. Z. 32, 141—175, Stuttgart. Kristan - T o 11 m a n n , E. & Krystyn, L. 1975, Die Mikrofauna der la-dinisch-karnischen Hallstatter Kalke von Saklibeli (Taurus-Gebirge, Turkei) 1 Sitzun-gsber. Oester. Akad. Wiss. Mathem.-naturw. KI., Abt. I, 184, 259—340, Wien. L' 1973' Zur Ammoniten- und Conodonten-Stratigraphie der Hallstatter Obertnas (Salzkammergut, Oesterreich). Verh. Geol. B.-A., 1973, 113—53 Wien ,. jkjj V v - ;N i ' •f* | "Z " if * iif* * > v "t j .;J ■ 'M • X* - /U1. ■" k ' ■ V ' ^ M 1 I, 'jt- *' / \ ^ 5 •f ■ m SI. 4. Apnena breča nad cesto Planina—Tominc Fig. 4. Limestone breccia along the Planina—Tominc road Najpogostejša kamenina obeh karnijskih klastičnih horizontov je lapor z značilnim školjkastim lomom in iverasto krojitvijo. V njegovem spodnjem delu prevladujejo zelenkasto sivi barvni odtenki, više pa so vedno pogostejši rdeči in vijoličasti. Barve se menjavajo neodvisno od plastovitosti. V spodnjem delu klastičnega zaporedja je pogosten sivkasto zeleni skrilavec. Tako skrilavec kot meljevec vsebujeta pooglenele rastlinske ostanke (si. 3 c). Med klastičnimi sedimenti dobimo v tem delu karnijske stopnje več leč peščenega apnenca. Več apnenca je v profilih na Planini. Tu se prične apnena skladovnica z onkosparitom, ki više preide v biomikrit. Apneno zaporedje se na tem področju konča z brečo, debelo dva metra (si. 4). Ob Zgornji Idrijci je apnenca mnogo manj in je močno peščen; poleg kremenovih zrn vsebuje drobce fosilov. Prvi klastični horizont je nad apnenim razvojem cordevolske podstopnje debel 140 m, nad dolomitnim razvojem pri Tratniku pa 340 m. Tuvalijska podstopnja Celotno laporastopeščeno serijo so po stari razdelitvi šteli med rabeljske plasti. Po novi razdelitvi pa uvrščamo njen spodnji del v julijsko podstopnjo kot prvi karnijski klastični horizont, zgornjega pa v tuvalijsko podstopnjo kot drugi karnijski klastični horizont. Vmes leži svetlo sivi pasoviti apnenec. F. Kossmat je ta apnenec označil kot megalodontidni (1898, 92). Bolj kot mega-lodontidi je zanj značilna pasovitost, ki je opazna tudi tam, kjer megalodontid-nih školj ni. Starejši geologi so ta apnenec označili le kot lečo v klastičnem zaporedju; I. Mlakar (1969, 14) pa je opozoril na njegovo pomembnost za korela-cijo oddaljenih profilov karnijske stopnje. Prvi karnijski klastični horizont se na celotnem preiskanem ozemlju konča s temno sivim laporjem. Sledi mu sivi rahlo laporasti intrasparitni apnenec tuvalijske podstopnje, ki vsebuje poleg intraklastov še drobce školjk in fora-minifer. Prehod intrasparita v više ležeči pelsparit je oster in vezan na krajšo prekinitev sedimentacije (si. 5). Večina apnenca je pelsparit. Menjavanje pel-sparitnega in pelmikritnega apnenca daje kamenini pasovito strukturo (si. 6). Posamezni pasovi so debeli tri do pet milimetrov. Med peleti so vidni še drobni intraklasti. Zrnavost sparitne osnove je odvisna od gostote alokemov v sedi-mentu. Z večanjem gostote peletov se večajo tudi sparitna zrna v vezivu. Zgornji del pasovitega apnenca ne kaže enotnega mikrofaciesa. Pelsparit in biosparit se prstasto prepletata med seboj. V biosparitu prevladujejo ostanki Školjk, med peleti pa so redki ooliti, ki jih je omenil že F. Kossmat (1898, 92) kot značilnost tega apnenca. Megalodontidne školjke so na več krajih ohranjene kot kamena jedra v življenjskem položaju. E. Vegh-Neubrandt je iz najdišča v bližini Krekovš določila novo vrsto Triadomegalodon idrianus (M. Cigale, A. Ramovš in E. Vegh-Neubrandt, 1976, 32). Sedi-mentacija apnenca se je končala z mikritnim apnencem, ki više zvezno prehaja v lapor drugega klastičnega horizonta. Debelina pasovitega apnenca se le malo spreminja, največ ga je zahodno od Tratnika, kjer ga je 62 metrov. Nad pasovitim apnencem se ponovi pisano zaporedje laporja, peščenjaka, skrilavca, apnenca in dolomita. SI. 5. Ostra meja med intrasparitom in pelsparitom. ZU/6, 50 X Fig. 5. Sharp boundary in between intrasparite and pelsparite. ZV6, 50 X SI. 6 — Fig. 6 Z medsebojnim menjavanjem pei-sparitnega (svetlo) in pelmikrit-nega (temno) apnenca se izraža pasovitost kamenine. Zli/46, 6,5 X Lamination of limestone is developed as a result of the alternation of pelsparite (light) and pel-micrite (dark). Zlj/46, 6.5 X SI. 7. Lapor z apnenimi in dolomitnimi gomolji Fig. 7. Marl including calcareous and dolomitic nodules SI. 8. Mikrosparitni apnenec z redkimi velikimi klasti. 6,5 X Fig. 8. Microsparite limestone including some larger clasts. 6.5 X Peščenjak tega horizonta se le malo razlikuje od peščenjaka pod pasovitim apnencem. Opazni sta večja količina karbonatnega veziva ter prevladujoča rdeča in vijoličasta barva. Značilna kamenina drugega karnijskega klastičnega horizonta je vijoličasto rdeči in sivi lapor z gomolji laporastega apnenca in dolomita (si. 7). Karbonatni gomolji so iz mikrosparita z redkimi intraklasti, ki jih obdaja debelozrnati sparit (si. 8). Lapor s karbonatnimi gomolji lateralno in vertikalno prehaja v apnenec ali dolomit. V zgornjem delu karnijske stopnje je zamenjala pisano klastično sedimen-tacijo monotona sedimentacija laporja ter mikritnega in sparitnega dolomita. Mikritni dolomit vsebuje številne stromatolite. Debelina horizonta, v katerem se menjavata lapor in dolomit, je več kot 50 metrov. Meja med karnijsko in noriško stopnjo ni paleontološko določena. Litološka meja med obema stopnjama je jasna in jo postavljamo tam, kjer mikrosparitni dolomit ne vsebuje več laporastih vložkov. Meja z noriško stopnjo je med Medvedjim brdom in Zidan-kom ostra. Karakterizira jo apnena breča, debela od enega do dveh metrov. Breča više zvezno prehaja v intrasparitni apnenec, ta pa v dolomit noriške stopnje. Severno od Tominca je med apnencem in dolomitom dva metra debela plast sivkasto zelenega laporja. Drugi karnijski klastični horizont je debel 140 do 170 metrov. Paleogeografija idrijskega ozemlja v karnijski stopnji Po živahni srednjetriadni tektonski in vulkanski dejavnosti se je ozemlje osrednje in zahodne Slovenije umirilo. Na plitvomorsko dno (si. 9 a) so se naselile trate apnenih alg z vodilno vrsto Diplopora annulata. Današnji predstavniki te družine žive v plitvih tropskih morjih do globine 20 metrov. Velika debelina monotonega diplopornega dolomita je lahko nastala le zato, ker se sedimenta-cijsko okolje ni spreminjalo skozi daljše obdobje. Drugi tip cordevolskih sedi-mentov je Črni ploŠČasti apnenec, ki nastopa vzhodno od Idrije. Ta apnenec je sediment globjega mirnega morja. Primerki kopenske rastline Voltzia v apne-nem skrilavcu pri idrijskem pokopališču (M. V. Lipoid, 1874, 444) kažejo, da je bilo v začetku podstopnje kopno še v neposredni bližini. Prav tako kažejo na bližino kopnega tudi bazalni sedimenti, predvsem apneni psevdoolit (B. Via j, 1969, 25). Podoben črni apnenec dobimo v spodnjem delu cordevolske podstopnje tudi na zahodnem obrobju Ljubljanskega barja. Na tem prostoru je apnenec povsod prekrit s svetlo sivim grebenskim dolomitom (A. Ramovš, 1953, 94). Na idrijskem ozemlju leži dolomit vedno pod apnencem. Stik nepla-stovitega dolomita in plastovitega apnenca lahko opazujemo le na majhnem področju. Meja dolomita in apnenca se je v času cordevolske podstopnje komaj zaznavno premaknila proti jugozahodu (si. 9a, b, c, d). Proti koncu cordevolske podstopnje se je pričelo morsko dno hitreje ugrezati; zato se je rast apnenih alg prekinila. Po umirjeni karbonatni sedimentaciji v cordevolski podstopnji so se odlagali pisani klastični in karbonatni sedimenti julijske in tuvalijske podstopnje. Meja med cordevolsko in julijsko podstopnjo je povsod na Idrijskem postopna (I. Mlakar, 1969, 34). Neplastovitemu dolomitu sledi mejni dolomit, v apnenem razvoju pa ločimo obe podstopnji le na podlagi mikroflore. Relativno redki ostanki zelene alge Clypeina besici Pantič v julijskem apnencu kažejo na globje morje in na slabše pogoje za rast te vrste. Da je bilo morje globje, potrjujejo tudi pogosti ostanki foraminifer iz rodov Trocholina in Glomospira. V julijski in tuvalijski podstopnji je bilo najbolj umirjeno ozemlje med Gorenjo Trebušo in Orehkom. Tukaj se je sedimentiral v obeh podstopnjah dolomit z redkimi skrilavimi vložki. Srednji in zgornji karnijski dolomit se makroskopsko ne loči od više ležečega noriškega. Odnos med karnijskimi plastmi idrijskega prostora in psevdoziljskim faciesom na Cerkljanskem Še ni razjasnjen. Lateralnega prehoda karnijskih plasti v dolomitni razvoj na ozemlju Šentviške gore in Polic tudi ne moremo nikjer direktno opazovati; sklepamo pa nanj po razmerju med klastičnimi kameninami in dolomitom; kjer se stanjša klastično zaporedje, se odebeli dolomit. Tudi v julijski podstopnji je ostalo morje nekoliko globje na območju Medvedjega brda. Mirno in sorazmerno globoko morje je pogojevalo nastanek mikritnih kamenin, ki na tem ozemlju močno prevladujejo. Pogoste so tudi spikule spongij. Enotni sedimentacijski bazen je razpadel v času odlaganja julijskega apnenca na več ločenih sedimentacijskih kadunj (si. 9 d). Regresija, ki je prekinila sedimentacijo julijskega apnenca, ni nastopila istočasno na celotnem ozemlju; zato je debelina tega apnenca na raznih krajih različna, spreminja pa se tudi razporeditev mikrofaciesov v njem. V zgornjem delu apnenca pri Govekarju se med plastmi apnenca pojavljajo vložki glinastega premogovega skrilavca in premoga. Kopno je torej obstajalo v neposredni bližini. Na bližino kopnega p---j Drugi konjski kloslični horizont The second Cornion clastic horizon Amfikfinskl skladi Amphiclina beds 1 Cordevolski dolomit Cordevot dolomite [ l-A. i-k;| Cordevolski apnenec LSI A1J C o rde vol limestone Lateralni prehod Supposed lateral transition Morska glodioa Sea level j / — /^j Plastovit mejni do torn it Beaded boundary dolomite Langobardske kamenine Langobardion rocks Morsko dno Sea bottom i |*>j Pasovi« apnenec Banded limestone l-fTflT^ P™' kornijski klostiČni horizont t-- - -r3 The first Carnian clastic horizon Psevdoziljske kamenine Pseudozllian rocks Predlangobardske kamenine Pre-langobardion rocks Nejasen odnos med fociesi Unclear relation between the fooe* Smer pro rila Strike of section Erozijska diskordarvca Erosional unconformity Triadni prelom ..VEHARŠE Triassic fault .VEHARSE" rn Julijski apnenec Julion limestone Merilo dolžin - Horizontal scole 0 1 2 3 L 5 10km Merilo višin - Vertical scale 0 100 200 300 400 500m SI. 9. Spremembe sedimentacijskega okolja na Idrijskem v karnijski stopnji Fig. 9. Successive changes of sedimentary conditions in the Idrija region during Carnian stage Pričetek sedimentacije cordevolskega dolomita (a), mejnega dolomita (b) julijskega apnenca (c), prvega karnijskega klastičnega horizonta (d), pasovitega apnenca (e) drugega karnijskega klastičnega horizonta (f) in noriškega dolomita (g) The beginnings of sedimentation of Cordevol dolomite (a), Boundary dolomite (b), Julian limestone (c), the 1st Carnian clastic horizon (d), banded limestone (e), the 2nd Carnian clastic horizon (f), and Norian dolomite (g) kažejo tudi številni zogleneli rastlinski ostanki v skrilavcu in meljevcu pri Tratniku. Zaradi poznejših tektonskih premikov ni ohranjena celotna skladovnica karnijskih plasti pri Govekarju in na Govekarjevem vrhu. Vpliv srednjetriadnega preloma Veharše zato lahko zasledujemo le do konca sedimentacije julijskega apnenca. Sedimentacijske razmere so se tu verjetno razlikovale vse do pričetka odlaganja zgornjetriadnega dolomita. Izenačitev sedimentacijskih razmer, kot je prikazana na sliki 9, je zato le ena izmed možnih interpretacij. Pisana sedimentacija klastitov je posledica hitrih sprememb sedimentacij-skega okolja. Na hitre spremembe kažejo tudi pogosta menjavanja litoloških členov, ki horizontalno in vertikalno prehajajo drug v drugega. Kopno je bilo podvrženo intenzivni denudaciji. Sestava prodnikov v karnijskem konglomeratu in zrn v peščenjaku pri Borovnici ter v okolici Idrije se močno razlikuje. Pri Borovnici prevladujejo zrna cordevolskega dolomita in apnenca, medtem ko je drobcev magmatskih kamenin, tufov in jaspisov manj (A. Ramovš, 1953, 96). V okolici Idrije so karbonatna zrna redka, prevladujejo pa zrna tufov in jaspisov. Redkejši so zrna vulkanskega stekla in koščki močno prepe-relih magmatskih kamenin. Izvorni material karnijskih klastitov na Idrijskem so bile langobardske magmatske kamenine in njihovi tufi. To med drugim dokazujejo tudi jasno konkor-dantne plasti čistih jaspisov, npr. Pisanice pri Oblakovem vrhu (I. Mlakar, 1976, 279-neobjavljeno poročilo). Prodniki in zrna jaspisov so zelo značilni za oba karnijska klastična horizonta. Ugrezanje v času odlaganja prvega karnijskega klastičnega horizonta je bilo najbolj intenzivno na območju Zgornje Idrijce (si. 9e). Velika debelina klastičnih sedimentov v profilih na tem področju je posledica hitrejšega ugrezanja in povečane količine prinesenega klastičnega materiala. Proti koncu julijske podstopnje se je celotno preiskano ozemlje začasno umirilo. Nad temno sivim laporjem se je sedimentiral pasoviti apnenec (si. 9f). Številni peleti so lahko nastali le v mirnem sedimentacijskem okolju. Trate megalodontidnih školjk v zgornjem delu apnenca so živele v zelo plitvem morju s povečano energijo. Na povečano energijo kažejo tudi redka oolitna zrna. Severno od Trebuše se nad pasovitim apnencem nepravilno menjava dolomit z dolomitnim laporjem (P. Krivic, 1974). Drugi karnijski klastični horizont je razvit le v okolici Idrije. Denudaciji so bili podvrženi enaki sedimenti kakor v julijski podstopnji. Razlike v sestavi peščenjaka pod pasovitim apnencem in nad njim nisem našel. Ker je bilo morje plitvo in se globina ni več bistveno spreminjala, prevladujeta lapor in mikritni apnenec, ki ju v zgornjem delu nadomešča dolomit. Konec karnijske stopnje se je klastična sedimentacija prekinila. Večji del zahodne Slovenije je ponovno zalilo plitvo morje. V vseh preiskanih profilih se menjavata lapor ter mikritni in intrasparitni dolomit. Sparitni dolomit ima številne izsušitvene pore, značilne za nadplimsko okolje sedimentacije. Morsko dno so ponovno poselile alge; na to kažejo pogosti stromatoliti v zgornjetriad-nem dolomitu. Izenačilo se je tudi sedimentacijsko okolje obeh miogeosinkli-nalnih jarkov (si. 9f); baški dolomit, ki leži na amfiklinskih skladih, je prav tako sediment plitvega morja. Literatura. C i g a 1 e, M. 1973, Razvoj julijskih in tuvalijskih plasti v okolici Idrije. Diplomsko delo, Ljubljana. Cigale, M., Ramovš, A. in Vegh-Neubrandt, E. 1976, Triadomega-lodon idrianus n. sp. aus dem Oberkarn bei Idrija. Geologija 19, Ljubljana. Kossmat, F. 1898, Die Triasbildungen der Umgebung von Idria und Gereuth. Verh. Geol. R.-A., Wien. Krivic, P. 1974, Geološke razmere med Hoten jo, Jelenkom in Trebušo. Diplomsko delo, Ljubljana. Lipoid, M. V. 1874, Erlauterungen zur geologischen Karte der Umgebung von Idria in Krain. Jb. Geol. R.-A., Wien. Mlakar, I. 1969, Krovna zgradba idrijsko žirovskega ozemlja. Geologija 12, Ljubljana. Placer, L. 1973, Rekonstrukcija krovne zgradbe idrijsko žirovskega ozemlja. Geologija 16, Ljubljana. Ramovš, A. 1953, O stratigrafskih in tektonskih razmerah v borovniški dolini in njeni okolici. Geologija 1, Ljubljana. Ramovš, 1973, Biostratigrafske značilnosti triasa v Sloveniji. Geologija 16, Ljubljana. V 1 a j, B. 1969, Razvoj cordevolskih in spodnjekarnijskih plasti v okolici Idrije. Diplomsko delo, Ljubljana. UD K 552.161 (497.12) = 863 Kontaktnometamorfne kamenine v okolici Črne pri Mežici Contact-metamorphic rocks from Črna at Mežica Ana Hinterlechner-Ravnik Geološki zavod, 61000 Ljubljana, Parmova 33 Intruzija granita pri Črni je povzročila kontaktno metamorfozo obda-jajočih pelitov in kremenovo-glinenčevih peščenjakov. Razvita sta dva faciesa: predvsem amfibolov rogovčev facies in tudi K-glinenčev cordi-eritni rogovčev facies. Pri zadnjem kaže mineralna asociacija mikro-klin + cordierit + andaluzit na njegov nižji del, na ortoamfibolov sub-facies. Prvotna laminacija sedimentov je ohranjena kot laminacija rogovčev. The intrusion of the granitic bodies at Crna produced the contact effects in the surrounding pelitic and quartzo-feldspathic rocks. Two facies are developed, namely, the hornblende hornfels facies and the higher temperature orthopyroxene hornfels facies. In the latter the mineral assemblage of microcline + cordierite + andalusite has been observed pointing to the orthoamphibole subfacies. It is noteworthy that the lamination of the original rocks is recognizable in banded texture of the hornfels. Globočnine granitnega pasu karavanške magmatske cone na širšem območju Črne na Koroškem so povzročile kontaktno metamorfozo vulkanskih in sedi-mentnih kamenin, v katere so prodrle. Vzorce kontaktnometamorfnih kamenin sedimentnega porekla sta nabrala P. Mioč in M. 2 n i d a r č i č ob poti zahodno od Lipolda proti Končniku. Granitni pas pa se stika ob samem robu tudi z izhodnim zelo šibko regionalno spremenjenim sericitno kloritnim skrilavcem štalenskogorske serije, ki vsebuje spilitizirani diabaz (J. Loeschke in K. Weber, 1973). H. V. Graber (1898) je natančno opisal genezo rogovca. Po neposrednem kontaktu prvotnih sedimentov in granita je sklepal, da se je del kontaktnometamorfnih kamenin skupaj z granitom ob prelomu ugreznil. Na južnem obrobju granitnega pasu so izhodne kamenine povsem spremenjene v blestnik in gnajs. Enako velja za številne bloke v granitu samem. Gre za sred-njezrnati in debelozrnati kremenov peščenjak z bazalno sericitno kloritno osnovo, kakršnega doslej pri nas v štalenskogorski seriji nismo poznali. Najdemo ga v karbonskih plasteh južno od Olševe, kjer se zmenjuje s pelitskimi različki in vsebuje zelo redke leče albitiziranega kremenovega porfirja. Različni odtenki vijoličasto rjavega rogovca so odvisni od količine rdečkastega biotita. Vzorci brez biotita so sivkasti. Rekristalizacija je napredovala v smeri prvotne laminacije in je zato ohranjena. Sestava mineralnih asociacij in velikost zrn sta odvisni od prvotne sestave in velikosti zrn po posameznih laminah. Vozlasti rogovec kaže transverzalno skrilavost, ki seče tudi drobne blaste cordierita, in je mlajša od kontaktne metamorfoze (si. 1). Istočasno ohranjena fina laminacija, vezana na prvotno razliko v sestavi in strukturi, izključuje nastanek kontaktnometamorfnih kamenin iz retrogradno spremenjenih regionalnometamorfnih različkov. Cordierit ima različno mikrostrukturo in je značilen mineral raziskanih me-tasedimentov. V metapelitih severnega obrobja granitnega pasu leže blasti intermediarnega cordierita v finozrnati osnovi rdečkastega biotita, muskovita, klorita in kremena. Pogosto so neizrazito dvojčični in polni finih vključkov, ki ustrezajo mineralom v osnovi skrilavca in neprosojnim mineralom. Tak cordierit je značilen za zunanje dele toplotne avreole v začetnih pogojih kristali-zacije amfibolovega rogovčevega faciesa (W. E. Troger, 1967). Možen potek reakcije je naslednji: muskovit + klorit 4- kremen ->■ cordierit + biotit + HsO V bolj raznoličnem blestniku in gnajsu na južnem obrobju granita, ki sta rekristalizirala pri višji temperaturi, in zlasti v sedimentnih blokih, zajetih v granitu, pa je cordierit prosojen, monokristalen ali izrazito dvojčičen. Ponekod vsebuje luske rdečega biotita. Pogosto je delno ali popolnoma spremenjen v pinit. V njegovi združbi so kremen, oligoklaz, rdečkasti biotit, akcesorni muskovit in gobasti andaluzit. Redki vzorci vsebujejo poleg cordierita mikroklin (si. 2), ki pomeni začetek piroksenovega rogovčevega faciesa, oziroma K-glinen-čev cordieritni rogovčev facies po H. G. F. W i n k 1 e r j u (1974). Mikroklin ima tipično mrežo. Možen potek reakcije je po H. G. F. W i n k 1 e r j u (1967, p. 72) naslednji: R muskovit 4- biotit + 15 kremen 3 cordierit + 8 K-glinenec + 8 HaO V teh vzorcih ni muskovita, niti sillimanita, nastopa pa še vedno andaluzit. Zrna so velika 1 do 3 mm. Raziskane kontaktnometamorfne kamenine izhajajo iz metamorfoziranega pelita in kremenovega peščenjaka z bazalno kloritno sericitno kremenovo osnovo. Prisotnost andaluzita in cordierita kaže na visoko vrednost razmerja AIžOs/KjO v prvotnem sedimentu. En sam laminiran vzorec, ki vsebuje poleg zelene rogovače tudi kremen, plagioklaz, sericitne agregate, epidot in zeleni biotit, izhaja verjetno iz bazičnega tufa. Kontaktnometamorfne bazične različke v okolici Schaide je opisal H. V. Graber (1930) in domneval, da izhajajo iz diabaza štalenskogorske serije. Potreben bi bil natančen pregled bazičnih vključkov v granitu, ki jih sicer prištevamo h granitni asociaciji. Stopnja metamorfoze raziskanih sedimentov ustreza celotnemu območju amfibolovega rogovčevega faciesa in prehodu v K-glinenčevo cordieritni rogovčev facies. Asociacija mikroklina, cordierita in andaluzita, vendar brez muskovita in sillimanita, dokazuje kristalizacijo v ortoamfibolovem subfaciesu, ki predstavlja nižji del K-glinenčevo cordieritnega rogovčevega faciesa. Območje pritiska in temperature kontaktnometamorfnih sprememb, ki ga kažejo meta-morfne mineralne asociacije raziskanih metapelitov, variira od cca 0,5 kb in Tabla 1 — Plate 1 SI. 1 — Fig. 1 Laminirani biotitno muskovit-ni kremenov vozlasti skrilavec z intermediarnim cordieritom. Drobni blasti cordierita vsebujejo številne fine vključke biotita in hematita, verjetno tudi klorita. Jasno izražena prečna skrilavost Vzorec 20435/1, nikola paralelna, 16 X Banded biotite-muscovite-quartz spotted slate with intermediate cordierite. Fine biotite and hematite inclusions in small cordierite blasts. Distinct transversal cleavage Sample 20435/1, nicols parallel. 16 X SI. 2 in 3 — Figs. 2 and 3 Biotitno kremenov oligoklazni skrilavec s cordieritom in mi-kroklinom. Cordierit delno pi- nitiziran Vzorec 19414 2, nikola paralelna (si. 2) in navzkrižna (si. 3), 25 X Biotite-quartz-oligoclase schist with cordierite and microcline. Cordierite partly altered to pinite Sample 19414/2, nicols parallel (fig. 2) and crossed (fig. 3), 25 X 520° C do največ 2,5 kb in cca 650° C (H. G. F. Winkler, 1967, p. 70 in 1974, p. 59). Najvišji možen pritisk ustreza približni globini 9 km. Vendar značilne mineralne asociacije niso občutljive za spremembo pritiska. Globina in ustrezni pritisk sta bila zato verjetno precej manjša. Literatura Graber, H. V. 1898, Die Aufbruchszone von Eruptiv- und Schiefergesteinen in Sud-Karnten. Jb. geoL R.-A., 47. Bd. 1897., 2. Hf., 225—294, Wien. Graber, H. V. 1930, Neue Beitrage zur Petrographie und Tektonik des Kristal-lins von Eisenkappel in Siidkarnten. Mitt. Geol. Ges. Wien, 22. Bd. 1929, 25—64, Wien. Loeschke, J. und Weber, K. 1973, Geochemie und Metamorphose palao-zoischer Tuffe und Tonschiefer aus den Karawanken (Osterreich). N. Jb. Geol. Palaont. Abh., Bd. 1, Hf. 142, 115—138, Stuttgart. Troger, W. E. 1967, Optische Bestimmung der gesteinsbildenden Minerale. Teil 2. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. Winkler, H. G. F. 1967, Die Genese der metamorphen Gesteine. 2. Aufl. Springer-Verlag, Berlin. Winkler, H. G. F. 1974, Petrogenesis of Metamorphic Rocks. Third Ed. Springer-Verlag, Berlin. X7DK 552.321.34-552.322.1(234.323.61)—£0 Plutonic Emplacement in the Eastern Karavanke Alps Granitni in tonalitni pas v Vzhodnih Karavankah Ernest Faninger Prirodoslovni muzej Slovenije, 61000 Ljubljana Ivo Strucl Rudniki svinca in topilnica Mežica In the Eastern Karavanke Alps two nearly parallel plutonic belts extend in the west-east direction. The northern belt is characterized by granite associated with gabbro and monzodiorite, in the southern, however, tonalite prevails. They are separated by a narrow phyllite stripe overprinted by contact metamorphism. Their origin, and age in particular, involved many difficulties. Since some phyllite blocks have been found in tonalite at Ravne above Šoštanj, the solution became easier. It is noteworthy that a large phyllite block is intruded and impregnated with granite. Hence follows that the granite rock association is older than tonalite. From radiometric dating it results that granite is related to the Variscan orogeny and tonalite to the Alpine magmatism, Along the northern border of the granitic belt, a clear north vergence occurs. The southern contact of the tonalitic belt, however, shows various structural features. The southern contact is considered to be a part of the great Periadriatic Lineament. Finally it should be noted, that no gene-tical relations exist between the Karavanke plutonism and lead-zinc ore deposits occuring in the Eastern Karavanke Alps as the latter appear to be of Triassic age. V Vzhodnih Karavankah potekata približno vzporedno od zahoda proti vzhodu dva pasova globočnin. Severni sestoji v glavnem iz granita, za južnega pa je značilen tonalit. Oba pasova magmatskih kamenin loči ozek pas kontaktno metamorfoziranega filita. O starosti karavanških globočnin so doslej menili prav različno; toda odkar so bili na Ravnah nad Šoštanjem v tonalitu odkriti bloki filita, od katerih je eden intrudiran in impregniran z granitom, je postalo jasno, da je granit starejši od tonalita. Radiometrične meritve so med tem že potrdile, da je granit va-riscičen, tonalit pa alpidski. Vzdolž južnega roba tonalitnega pasu poteka periadriatski lineament. Triadna svinčevo-cinkova orudenja v Vzhodnih Karavankah nimajo ničesar skupnega s karavanškim plutonizmom. 6 — Geologija 21 The Eisenkappel emplacement of the Eastern Karavanke Alps is made up of two parallel magmatic belts separated by a narrow phyllite stripe. The structure is 42,5 kms long and extends in east-west direction. In the northern belt of the breaking up zone a porphyritic granite prevails associated with gabbro, diorite and monzodiorite. This rock association appears to be genetically related (C. E x n e r , 1971, 104). The prevailing rock of the southern belt is quartz-biotite-hornblende diorite showing a distinct parallel structure; mostly it is named tonalite. Usually the northern belt is named granitic belt and the southern one tonalitic belt. In the tonalitic belt also some transitional rocks like quartz-biotite diorite and granodiorite occur. At its south-eastern end occurs a porphyritic rock showing indistinct parallel structure. All the rocks of the tonalitic belt are genetically close related. They can hardly be discerned with the naked eye (E. Faninger, 1976, 196—199). Unsolved is the question of the stratigraphic position of the phyllite in between the magmatic belts. In all probability it is to be compared with the highly phyllitized lower suite of the Magdalensberg series (F. K a h 1 e r, 1953, 14), which belongs to the Ordovician period (G. Riehl-Herwirsch, 1970). As this schistose rock exhibits a clear contact-metamorphic overprint, it is here designated as contact-metamorphic phyllite. At all times there was disagreement between the geologists about the age of the plutonic rocks. According to F. Teller (1896, 32) granite was considered to be the youngest rock. Similar suggestions have been made by H. W. Graber (1929) and C. Exner (1971). According to A. Zorc (1955, 69) the granite was assumed to be older than tonalite, and perhaps even older than Triassic rocks. The age of the tonalite was resumed after C. Germov-šek (1952) to be Upper Cretaceous to Miocene in age. I. Štrucl (1965, 161; 1970, 6; 1974, 385) supposed that granite is of Variscan, whereas tonalite of Alpine origin. His contention is supported by the field work of F. Isailovič and M. Miličevič (1964), who found phyllite blocks intruded and impregnated with granite within tonalite. L. Kober (1938, 156) wrote about the old Eisenkappel granite and about the young (Alpine) Eisenkappel tonalite. J. Duhovnik (1956, 25) supposed that both intrusions are of Tertiary age, and after B. B e r c e (1960, 246) granite appears to be younger than Lower Scythian. Finally E. Faninger (1976, 204) succeeded in proving that the granite rock association and tonalite have been derived from two magmatisms different in ages. Through his additional field work and microscopic examination it became evident that the tonalite is younger than granite. According to radiometric dating, the rocks of the granitic belt are of Variscan age (244—216 million years) and those of the tonalitic belt originated by relatively young Alpine orogenetic events during the Tertiary period (29—28 million years) (R. Cliff, H. F. Holzer & D. C. Rex, 1974; H. J. Lip-polt & R. Pidgeon, 1974: S. Scharbert, 1975). Some details observed during our field work could give us certain information about the geologic age of the Karavanke plutons. In the east, the northern belt of the breaking up zone borders on Tertiary deposits containing pebbles derived from granite and tonalite (E. Faninger, 1970, 100). F.Teller (1898) supposed that these deposits belong to the Socka beds of Oligocene age. Recently they are considered to be equivalent to Middle Miocene Eibiswald beds (P. M i o č, 1976). Therefrom it results that Karavanke plutons are of pre-Middle Miocene age. In this way the upper boundary of the intrusion interval is determined. North of the granite the early Paleozoic Magdalensberg series occurs indicating the lower limit of the granitic intrusion. H. W. G r a -ber (1929) and C. Exner (1971, 64) dealt with the contact metamorphism related to the intrusion. The contact between the granite and Magdalensberg series, as well as between granite and Triassic beds, is for the most part tecto-sequent. The section Topla-Koprivna appears to be an exception as there a contact—metamorphic schist and hornfels are joined to the granite (H. W. Graber, 1929; I. Struci, 1954, 1965). No contact effects could be found in the Triassic beds occuring at the contact with granite in the section Crna— —Topla (I. Struci, 1954). That is why a pre-Triassic age of granite was supposed (A. Zorc, 1955; I. Struci, 1965). As to the age of the tonalite, it could be supposed only that it is younger than the contact-metamorphic phyllite in which tonalite apophyses occur. The contact-metamorphic phyllite has been considered to be a schistose cover of the tonalitic intrusion (F. Teller, 1896, 22). The Triassic beds lying in the south of the magmatic emplacement can not give any information of the age of the intrusion, as the contact tonalite/Triassic rocks is of tectonic nature. It results from the above explanations that a rather wide intrusion interval is in question, involving an intrusive phasis from Variscan to Alpine igneous activity. The problem under consideration appears to be insolvable according to the geological features shown in Teller's geological map (F. Teller, 1898). The tonalitic and granitic belts there are plotted to be separated in their whole extent by contact-metamorphic phyllite (fig. 1). The solution of the age problem is somewhat advanced since S. Isailovič and M. Miličevič (1964) called our attention to the phyllite blocks enclosed within tonalite in its easternmost part. A large phyllite enclosure intruded and impregnated with granite is particulary interesting (fig. 2). Notwithstanding, the tectonic contact between phyllite and tonalite appears to be problematic. But no large displacement could be indentified there, as a remnant of a schistose cover is in question. The problem can be explained in the following way: Firstly phyllite was impregnated with granite and affected by contact-metamorphism. At a later period the tonalitic intrusion followed, and at that time the contact-metamorphic phyllite turned to the cover mass of the tonalite. Such a succession of the geologic events does agree with radiometric dating mentioned above. Finally let us make some remarks about the Alpine/Dinaric boundary (L. Kober, 1938, 156), and the "Ostalpin" and "Sudalpin" (H. Bogel, 1975, 176) respectively. The northern and the southern boundaries of the crystalline breaking-up zone are characterized by important displacements. In the north, there a clear north vergence occurs; in the south, however, the fault appears to be vertical. The north vergence of the granitic belt is evident from thrust faults and overthrusts occurring in the North Karavanke range of mountains. In the south, however, the relations are rather unclear. Therefrom both the north- and south vergence are reported: According to C. Exner (1971, 8—9) the Werfen beds of the Olševa Mt. are driven northwards over the mylonitized tonalite, whereas elsewhere in the west a perpendicular or even reversed fault occurs inclined northwards. Similar features have been found in the east where the shattered zone is some meters wide. The southern dislocation line appears to be more important compared to the northern one. This results from a well expressed mylonitization and other geological relations. A direct contact granite/Magdalensberg series is a general characteristic of the northern granite boundary. The southern contact of tonalite, however, varies more in nature and appearance. There have been brought together various lithostratigraphic sequences and different structural units as well. Moreover, Oligo-Miocene volcanic activity appears to be associated with the southern faulted structures (A. Hinterlechner-Ravnik and M. Plenifiar, 1967, 237; R. W. Bem-melen, 1970, 141; I. St rue 1, 1971, 290). Consequently the southern fault does come into consideration as a part of the Periadriatic Lineament (see C. E x n e r , 1976, 20). The breaking up zone of the Karavanke Alps belongs in its entire extent to the Eastern Alps or to the "Ostalpin". Along the magmatic zone, there occur some lead and zinc ore deposits, for instance Mežica. Their origin has been supposed to be associated with the granitic plutonism (B. Berce, I960, 248). This conception could, however, hardly be taken into consideration due to a great difference in geologic age of the plutonic intrusions and mineralization. The latter appears to be of Triassic age, whereas granite is of Paleozoic and tonalite of Tertiary age. References Bemmelen, R. W. van, 1970, Tektonische Probleme der ostlichen Sudalpen. Geologija, 13. knjiga, 113—158, Ljubljana. Berce, B. 1960, Nekateri problemi nastanka rudišča v Mežici. Geologija, 6. knjiga, 235—250, Ljubljana. Bogel, H. 1975, Zur Literatur uber die »-Periadriatische Naht«. Verh. Geol. B.-A., H. 2/3, 163— 199, Wien. Cliff, R., Holzer, H. F. & Rex, D. C. 1974, The Age of the Eisenkappel Granite and the History of the Periadriatic Lineament. Verh. Geol. B.-A., Heft 2—3, 347—350, Wien. Duhovnik, J. 1956, Pregled magmatskih in metamorfnih kamenin Slovenije. Prvi jugoslovanski geološki kongres, 24—26, Ljubljana. Exner, C. 1971, Geologie der Karawankenplutone ostlich Eisenkappel, Karnten. Mitt. Geol. Ges. in Wien 64. Band, 1—108, Wien. Exner, C. 1976, Die geologische Position der Magmatite des periadriatischen Lineamentes. Verh. Geol. B.-A., Heft 2, 3—64, Wien. Faninger, E. 1970, Pohorski tonalit in njegovi deferenciati. Geologija, 13. knjiga, 35—104, Ljubljana. Faninger, E. 1976, Karavanški tonalit Geologija, 19. knjiga, 153—210, Ljubljana, Germovšek, C. 1952, Petrografske preiskave na Pohorju v letu 1952. Geologija. 2. knjiga, 191—210, Ljubljana. G r a b e r, H. W. 1929, Neue BeitrSge zur Petrographie und Tektonik des Kristal-lins von Eisenkappel in Sudkarnten. Mitt. Geol. Ges. in Wien, XXII. Band, 25—64, Wien. Hinterlechner-Ravnik, A. in Pleničar, M. 1967, Smrekovški ande-zit in njegov tuf. Geologija, 10. knjiga, 219—237, Ljubljana. Isailovič, S. & Miličevič, M. 1964, Geološko kartiranje granita Orne na Koroškem i obodnih tvorevina. Poročilo Zavoda za nuklearne sirovine, Beograd. (Arhiv: Rudnik svinca in topilnica, Mežica). Kahler, F. 1953, Der Bau der Karawanken und des Klagenfurter Beckens. Ca-rinthia II, Sonderh. 16, 1—78, Klagenfurt. • Kober, L. 1938, Der geologische Aufbau Osterreichs. Verlag von Julius Springer i_y j_204 Wien. L i p p o 11 H. J. & P i t g e o n, R. 1974, Isotopic Mineral Ages of a Diorite from the Eisenkappel Intrusion, Austria. 7. Naturforsch. 29 a, Wiesbaden. (Loc. cit. Schar- beiM foč^R 1976, Osnovna geološka karta 1 :100 000. Tolmač za list Slovenj Gradec (v i-Herwirsch, G. 1970, Zur Altersbestimmung der Magdalensbergserie. Mittelkjirnten, Osterreich. Mitt. Ges. Geol. Eergbaustud., Bd. 19. 195—214, Wien. Scharbert, S. 1975, Radiometrische Altersdaten von Intrusivgesteinen lm Raum Eisenkappel (Karawanken, Karaten). Verh. Geol. B.-A., Jahrgang 1975, Heft 4, 301—304, Wien. .. , „ S t r u c 1 I 1954, Proučavanje kontakta sedimentne serije sa granitsko-granitpor-firskim masivom i rudnih pojava u dolini Tople. Diplomsko delo. Rudarsko geološki fakult^(TVS), Be^rad.^^_ misli 0 nastanku karavanških svinčevo-cinkovih rudišč s posebnim ozirom na rudišče Mežica. Rudarsko-metalurški zbornik, št. 2, 155—164, 1, I. 1970, Stratigrafske in tektonske razmere v vzhodnem delu severnih Karavank. Geologija, 13. knjiga, 5—34, Ljubljana. S true 1 I 1971 On the Geology of the Eastern Part of the Northern Karawanke with Special Regard to the Triassic Lead-Zinc-Deposits. Sedimentology of parts of Central Europe. Guidebook. VIII. Int. Sediment. Congress. Strucl I 1974, Nastanek karbonatnih kamenin in cmkovo svinčeve rude v anizičnih plasteh Tople. Geologija, J7. knjiga, 299-397 Ljubljana. Teller F 1896, Erlauterungen zur geologisehen Karte der ostlichen Auslauter der Karnischen und Julischen Alpen (Ostkarawanken und Steiner Alpen). Geol. R.-A., ^T^ller, F. 1898, Geologische Spezialkarte, Blatt Prassberg a. d. Sann, MaBstab 1 :75000, Geol. R.-A., Wien. , , _ __ . Teller, F. 1898, Geologische Spezialkarte, Blatt Eisenkappel und Kanker MalJ- SUZ ore5 °°A. GlT55,RRudarskon geološka karakteristika rudnika Mežica. Geologija, 3. knjiga, 24—80, Ljubljana. UDK 551.44:551.312.3:552.12:551.793 (497.12) = 863 Kras na konglomeratnih terasah ob Zgornji Savi in njenih pritokih Karstification of conglomeratic terraces along the Upper Sava River and tributaries Ljubo Zlebnik Geološki zavod, 61000 Ljubljana, Parmova 33 Med Kranjem in Radovljico se je na konglomeratnih terasah v porečju Save razvil plitvi kras. V konglomeratu prevladujejo apnene oblice, bolj redki so prodniki vulkanskih kamenin. Vezivo je apneno. Zakrase-vanje sega v mindelsko-riško medledeno dobo, ko so bile apnene terasne naplavine ugodna podlaga za razvoj krasa v toplejšem podnebju in ob obilici vode. Od takrat je minilo dvesto tisoč do tristo tisoč let. V tej dobi so se razvile različne kraške oblike od vrtač do pravih kraških jam ter do ponorov in kraških izvirov. Po vrtačah sklepamo na hitrost zakrase-vanja; na visokih terasah so dobro razvite, velike in globoke, medtem ko so na nizkih — mlajših terasah komaj v začetni stonji razvoja. Interesting karst features were identified over Pleistocene conglomeratic terraces along the Sava River and tributaries in Upper Carniola. In conglomerate calcareous pebbles prevail associated with some pebbles derived from volcanic rocks. The abundant cementing material is calcareous. Over the high terraces the sinkholes are well developed. They are larger and deep-seated compared to the sinkholes occurring over the lower terraces. Beside the sinkholes there are to be found also some other karst phenomena. At Naklo village even a true water cave is developed. On the high terraces there occur karst springs, whereas on the younger terraces ponors (swallow holes) are to be met. The karstified terraces belong to the Mindel glacial stage. The time intervals between glacial epochs were favourable to maintain of a warm climate to permit the solution and precipitation of carbonate rocks. V Sloveniji ni zakrasel samo apnenec v Dinarskem gorstvu in Alpah ampak tudi konglomerat pleistocenskih teras v porečju Save med Kranjem in Radovljico. V konglomeratu prevladujejo apneni prodniki, bolj redki so prodniki vulkanskih kamenin. Vezivo je apneno. Ta kras je še posebej zanimiv zato, ker so starejše, više ležeče pleistocenske konglomeratne terase znatno močneje zakrasele kot mlajše. To kaže predvsem razvoj vrtač, ki so večje in globlje na srednjepleistocenskih konglomeratnih terasah, medtem ko so na mlajšepleisto-censkih (riških) še povsem neizrazite. Poleg vrtač je opaziti še druge kraške pojave, predvsem kraške jame, med katerimi je najbolj znana vodna jama pri N UOEN BOR ŠT - Road S o 1000 2000 sooo m «000 SI. 1. Presek pleistocenskih konglomeratnih teras zahodno od Kranja Legenda pri si. 2 Fig. 1. Cross section of Pleistocene conglomeratic terraces west of Kranj See fig. 2 for explanation Naklem, ki ji pravijo Arneševa luknja; raziskana je v dolžino 300 m. Znani so tudi kraški izviri in ponori. Geološka raziskovanja in vrtanja so pokazala, da gre za plitvi kras; konglomerat, ki sestavlja terase, je debel 10 do 50 m, malokje več. Pod konglomeratom leži neprepustna oligocenska glina. Kraški izviri na stiku gline in konglomerata imajo nekatere posebnosti. Njihova izdatnost niha, kot pri vseh kraških izvirih, vendar znatno manj kot v dinarskem krasu, in nikoli ne presuše. Razen tega kažejo opazovanja v Arneševi luknji, da imajo večji kraški kanali, ki potekajo na stiku gline in konglomerata, vlogo drenaž; vanje enakomerno doteka podzemeljska voda z obeh strani. Na podlagi tega sklepamo, da je vodna gladina v konglomeratnih terasah zvezna, podobno kot v prodnih naplavinah, le da je na posameznih mestih v kraških kanalih pretok podzemeljske vode večji in hitrejši. Po zakraselosti pleistocenskih konglomeratnih teras sklepamo, da je za-krasevanje sorazmerno hiter proces. Popolnoma razvit kras z vrtačami, kraškimi izviri in ponori smo našli v konglomeratnih terasah domnevno mindelske starosti. Zato sklepamo, da je za nastanek tipičnega krasa dovolj 200 000 do 300 000 let. Upoštevati je namreč treba, da je obstajalo ugodno okolje za razvoj krasa v toplih medledenih dobah, ko je bila temperatura primerna tako za odlaganje kot za raztapljanje karbonatov. V teh dobah so si reke zarezale globoke struge, zato so se znašle terase visoko nad rečnimi dolinami, kar je omogočilo intenzivno pretakanje padavinskih voda v globino in raztapljanje karbonatov. Za začetek zakrasevanja mindelskih teras lahko privzamemo v najboljšem primeru sredino mindelsko-riške medledene dobe; na ta način dobimo, da je kras na tem območju star 200 000 do 300 000 let. Triiiko Bistrica H0L0CEN IN PLEISTOCENE HOLOCENE ANO PLEISTOCENE PLEISTOCEN PLEISTOCENE OLIOOCEN 0UG0CENE 3 o'? VZ& SOO Prod Gravel Rjava preperina Brown weathered material Konglomerat Conglomerate Lapornata glina Marly clay misoo . Izvir Spring o Ponor (Swallow hole) Oomnevna smer pretakanja podzemeljske vode Supposed underground water flow __Gladina podzemeljske vode Underground water level Kraške votline Karst solution holes Vrtina Borehole SI. 2. Presek pleistocenskih konglomeratnih teras pri Dolenji vasi Fig. 2. Cross section of Pleistocene conglomeratic terraces at Dolenja vas ZP, Literatura Gantar J., 1955, Arneševa luknja. Poročila SAZU, Acta carsologica, Ljubljana. Zlebnik, L., 1971, Pleistocen Kranjskega, Sorškega in Ljubljanskega polja. Geologija 14, Ljubljana. UDK 552.143 + 550.4 +628.54(285.2X497.12)=20 Lakes Bled and Bohinj Origin, Composition, and Pollution of Recent Sediments Franc Marcus Molnar Limnološka postaja Bled, Kemijski inštitut Borisa Kidriča, 61000 Ljubljana, Hajdri- hova 19, Jugoslavija Peter Roihe Abteilung fiir Geologie, Geographisches Institut der Universitat Mannheim, 6800 Mannheim 1, Schloss, B. R. Deutschland Ulrich Forstner Institut fiir Sedimentforschung der Universitat Heidelberg, 6900 Heidelberg 1, I m Neuenheimer Feld 236, B. R. Deutschland Janez Stern and Bojan Ogorelec Geološki zavod Ljubljana, 61000 Ljubljana, Parmova 33, Jugoslavija Alojz Ser cel j and Metka Culiberg Slovenska akademija znanosti in umetnosti, 61000 Ljubljana, Novi trg 3, Jugoslavija Abstract Fifteen grab samples and two shallow cores were studied from Lake Bled. Their carbonate contents are in the range 55—79 %. Calcite prevails but dolomite may occasionally amount up to 38 % of the carbonate compound. The non-carbonates seem mostly to be diatoms besides some quartz and traces of feldspar and clay minerals. Chemical analysis of the core sediments revealed a general increase of the heavy metals Zn, Cd and Pb in the uppermost layer. The highest content of Zn (up to 970 ppm) and Pb (up to 160 ppm) were found within nearshore grab samples thus indicating sewage input. The increased eutrophication of Lake Bled is evident. Eight grab samples and one core from Lake Bohinj are also carbonate rich sandy silts and clays with total carbonate contents ranging from 53—91 %. Calcite prevails especially in the western part of the lake. Dolomite content is, in the average, higher than in Lake Bled. The non-carbonates seem essentially similar to the Bled sediments. The core samples contain an increase of the heavy metals Zn, Cu, and Pb within the uppermost 10 cms. In addition, Fe-, Mn-, Cr-, and Ni-contents are unusually high compared to Bled. Kratka vsebina V poročilu so prikazani začasni podatki o sedimentoloških in geokemičnih parametrih iz raziskav sedi men tov v Blejskem in Bohinjskem jezeru. Iz Blejskega jezera smo preiskali vzorce 15 zajemov s površja jezerskega dna ter dveh jeder sedimenta do globine 45 cm. V sedimentu prevladuje karbonatni glinasti melj, ki vsebuje v zgornjih 10 cm pod površjem obilo organskih snovi. Zaradi menjavanja organskih in anorganskih sestavin je sediment laminiran. V preiskanih vzorcih je znašala celokupna količina karbonatov 55 do 79 %; bistvenih razlik med vzorci s površja in iz globine ni bilo. Prevladuje kalcit, vendar vsebuje ponekod karbonatna frakcija do 38 % dolomita. Med nekarbonatnimi sestavinami prevladujejo skeleti diatomej, v manjših količinah pa so zastopani še kremen, glinenec in minerali glin. Karbonatni sedimenti Blejskega jezera so v glavnem de-tritičnega izvora, saj sestoji tudi okolica jezera večidel iz triadnih karbonatnih kamenin. To velja predvsem za delež dolomita v sedimentu, medtem ko za kalcit ne moremo izključiti možnosti avtohtonega nastajanja ob udeležbi vodnih rastlin. Kemične analize jedrskih vzorcev kažejo splošno povečane količine cinka in kadmija, posebno pa svinca v zgornjih centimetrih profilov ponekod do 160 ppm. Najvišje koncentracije Zn in Pb smo našli v vzorcih sedimenta blizu obale, kar kaže na dotoke odpadnih voda. S tem v zvezi je postajala jezerska voda vedno bolj eutro-fična. Iz sedimenta Bohinjskega jezera smo preiskali vzorce 8 zajemov z jezerskega dna in eno jedro. Tudi v tem jezeru sestoji sediment v glavnem iz karbonatnega melja in gline. Vsebuje 53 do 91 % karbonatov; med njimi prevladuje kalcit, vendar je ponekod v karbonatni frakciji dolomita do 69 %. Količine dolomita v sedimentu Bohinjskega jezera so v celoti višje kot v Blejskem jezeru. Dolomit je nedvomno detritičnega izvora To velja tudi za glavni del kalcita, vendar domnevamo, da je tudi v Bohinjskem jezeru del kalcita avtohton. Nekarbonatne sestavine sedimenta obeh jezer se ne razlikujejo bistveno. Kemične analize jedra kažejo, da količine Zn, Cu in Pb v zgornjih centimetrih sedimenta postopno naraščajo. Pelod v jedrih sedimenta iz Blejskega in Bohinjskega jezera kaže, da so usedline v obeh profilih relativno mlade in niso starejše od 400 do 500 let. Z usammenf assung Es wird iiber vorlaufige Ergebnisse einer Untersuchung der Sedimente aus den Seen von Bled und Bohinj in Slowenien (Jugoslawien) berichtet; dabei werden sedimentologische und geochemische Parameter diskutiert. Funfzehn Greiferproben und zwei kurze Sedimentkerne mit einer max. Eindringtiefe von 45 cm wurden aus dem Bled-See untersucht. Es handelt sich um karbonatreiche Silte und Tone, in deren oberflachenna-hen 10 cm organtsches Material hSufig auftritt; ent&prechend dem Wech-sel von mineralischen und organischen Komponenten sind sie im mm-Bereich laminiert. Der Gesamtkarbonatgehalt der untersuchten Proben reicht von 55 bis 79 %, wobei keine wesentlichen Unterschiede zwischen Oberflachenproben und Kernproben bestehen. Es Uberwiegt Calcit, doch kann die Karbonatfraktion gelegentlich bis zu 38 % Dolomit enthalten. Die Nicht-Karbonate sind iiberwiegend Diatomeen-Skelette; ausserdem treten gennge Mengen an Quarz, Feldspat und Tonmineralien auf Die Karbonatsedimente in Bled-See sind im wesentlichen als detritische Bil-dungen aufzufassen, da die Umgebung des Sees aus Karbonatgesteinen von meist triassischen Alter besteht. Dies gilt insbesondere fur den Dolomitanteil, wahrend beim Calcit eine autochthon« Bildung unter Mitwirkung von Wasserpflanzen nicht ausgeschlossen werden kann. Die chemischen Analysen an den Sedi men tkernen erbrachten einen allgemeinen Anstieg der Schwermetalle Zink, Cadmium und besonders Blei, der sich in den obersten Profilzentimetern vollzieht, wobei Bleigehalte von z. T. 160 ppm erreicht werden. Die hochsten Konzentrationen fur Zink und Blei wurden in den ufernahen Proben gefunden, was auf abwasserhaltige Zuflusse hinweist Im Zusammenhang damit muss auch die beobachtete Zunahme der Eutrophierung des Sees gesehen werden. Aus dem Bohinj-See wurden acht Greiferproben und ein Sediment-kern untersucht. Auch in diesem See handelt es sich im wesentlichen um karbonatreiche Silte und Tone mit Gesamtkarbonatgehalten von 53 % bis 91 %. Dabei iiberwiegt im allgemeinen Calcit, doch wurden in Ein-zelfallen Dolomitgehalte bis 69 % der Karbonatfraktion angetroffen. Ins-gesamt sind die Dolomitgehalte des Bohinj-Sees hoher als die von Bled. Dolomit ist eindeutig detritisch und wird durch die Zuflusse in den See transportiert. Dies gilt auch fur die Hauptmenge des Calcits, obwohl auch dafiir ein geringer Anteil durch autochthone Bildung vermutet werden kann. Die Nicht-Karbonate unterscheiden sich nicht wesentlich von de-nen der Bled-Seesedimente. Die chemischen Analysen der Kernsedimente ergaben einen annahernd kontinuierlichen Anstieg der Schwermetalle Zink, Kupfer und Blei innerhalb der obersten Zentimeter zur OberflSche hin. Palynologische Untersuchungen zweier Bohrkerne von Boden der Seen von Bled und Bohinj haben gezeigt, dass die Ablagerungen, die zwei Bohrkerne erfassen, ziemlich jungen Alters sind, nicht alter als 400 bis 500 Jahre. Contents 1. Preface............................ 2. Limnological features of Lakes Bled and Bohinj...........96 3. Geological setting of the surroundings of Lakes Bled and Bohinj.....103 3.1. Lake Bled.........................JJJI? 3.2. Lake Bohinj....................... 3.3. Pleistocene lacustrine chalk from the surroundings of Lake Bled .... 104 3.4. Sediments of the streams flowing into Lakes Bled and Bohinj.....104 4. General properties of the sediments taken from Lakes Bled and Bohinj ... 107 4.1. Sampling methods......................107 4.2. Field description......................}07 4.3. Grain size distribution....................110 5. Pollen contents in sediments from Lakes Bled and Bohinj........112 5.1. Bohinj BH-5B.......................J}* 5.2. Bled BL-15B........................114 6. Mineral association in sediments from Lakes Bled and Bohinj......1J5 6.1. Introduction........................ 6.2. Analytical procedure.....................J J* 6.3. Lake Bled........................JJ* 6.31. Grab samples......................JJj? 6.32. Core samples...................... 6.33. Origin of the Lake Bled sediment..............ijJ 6.4. Lake Bohinj........................ 6.41. Grab samples......................JjjJ 6.42. Core BH-5B......................}jj| 6.43. Origin of the Lake Bohinj sediment............J 6j5. Autochthonous formation and dissolution of calcite within Lakes Bled and Bohinj........................J 29 6.6. Sedimentation rates....................... 7. Geochemistry of recent sediments from Lakes Bled and Bohinj......145 7.1. Introduction........................J™ 7.2. Analytical methods.....................14b 7.3. Interpretation of metal data..................146 731. Mean values......................................146 7.32. Core profiles................... * * 147 7.33. Inter-element relations...............! ! 150 7.4. Human effects on the metal composition of sediments from Lake Bled . 151 7.5. Metal contents associated with the lake carbonate sediments.....151 8. Summary and conclusions....................160 9. Acknowledgements.......................161 10. References............................ 1. Preface The quality of waters in many regions has greatly suffered as a result of the increasing impact on our environment by waste materials from industries, communities and agriculture. This development is especially conspicuous in a great number of fresh water lakes, that not only serve as drinking water and nutrient sources, but have a very high value for recreation purposes. Examples from all parts of the world have shown that lakes are very sensitive ecosystems that can be destroyed within a period of mere decades, and can then be regenerated only with very strenuous efforts. Meanwhile ambitious, large-scale research programs have been introduced at several locations in order to evaluate the causes, extent and future consequences of the pollution, and to prepare appropriate counter measures. In this respect, the investigation of sediment has become increasingly important, since the distribution of pollutants that are only sparingly soluble is, both in their spatial and temporal development, relatively easy to ascertain from such sediment deposits. An example is the research program begun in 1975, for heavy metal distribution in the Sava catchment area in Slovenia, above all in the sediment in the heavily polluted Moste dam, for which the first research results have recently been published (J. Stern and U. Forstner 1976). In the scope of a long-term cooperation between the Geološki zavod Ljubljana and the Institute for Sediment Research of the University of Heidelberg/Dept. of Geology, University of Mannheim, detailed sampling of sediment from Lakes Bled and Bohinj and their affluents was carried out in late summer 1976, in order to be able to more closely examine various aspects of the sedimentologi-cal and geochemical conditions of these lakes (see figs. 1, 2 and 3). The results of the team investigations are presented in six chapters relating to the different consideration aspects. 2. Limnological features of Lakes Bled and Bohinj Franc Marcus Molnar The Alpine lakes of Bled and Bohinj in Upper Carniola are characterized by two different environmental conditions. The latter is pure enough to maintain a natural biological equilibrium as the Savica River supplies it with water and air. Conversely, the ecological relations of Lake Bled are disturbed to a degree demanding a restoration. To overcome the lack of a natural aeration, a flushing project has been accomplished introducing a part of the Radovna River water through a pipeline into the lake (M. Rejic, 1973). The water pipeline went into operation in 1965, and since then the annual inflow of fresh water has been approximately 0,5—17 mio m3. In 1973 a permanent control of the lake started with the foundation of the Limnological station Bled, which was in 1974 incorporated into the Kemijski inštitut Borisa Kidriča Ljubljana. The lake remains eutrophic in spite of the flushing. The reason could be either that the amount of exchanged water is too small, or that the loading with phosphorus and nitrogen is too high. Neither excludes the other. Figures 4 and 5 show the variations of the oxygen content as well as temperatures and Secchi disc transparency in vertical water profiles at the two deepest points BL-1B and 15B of Lake Bled (fig. 2) during the year 1976. It is evident that in the summer and fail periods the hypolimnion remains anaerobic. There are eumictic or even dimictic periods. The temperature of the cool hypolimnic layer increases due to the inflow of the slightly warmer Radovna river water. An increase of some 3 °C influences the autumn and spring turnover. The lake is becoming holomictic. This can be dangerous for the consumption of oxygen. The Secchi disc transparency is smaller in winter when Oscillatoria rubiscens rises to the upper, cooler water layers. Limnophysical and limnochemical data from Lake Bled was obtained from vertical profiles at the same points BL-1B and BL-15B on September 28 and September 30, 1976 simultaneously with sediment sampling. A concentration of 7 — Geologija 21 •1 2 03 a 4 a 5 Fig. 2. Lake Bled and surroundings. Sampling sites 1 Grab sample 1 , , sediment 3 Fluvial sediment 2 Core profile ) lalie sediment 4 Rock sample 5 Glacial lacustrine chalk • Grab sample") o Fluvial sediment A Glacial lacustric chalk > lake sediment ^ Core profile J Rock sample Fig. 3. Lake Bohinj and surroundings. Sampling sites Fig. 4. Lake Bled, vertical profile at point IB Diagram showing the oxygen saturation, temperature and transparency dependent on the artificial flushing, during 1976 LAKE BLED Vertical profile at point 15 B 19 7 6 H « nI h I inflow (mM [ flushing ) Inn300 »0*700 H HI IV VI VII VIII IX XI XII 02"Sal (mg/11 «-« El*-18 Qt-s I I 3 E X s 5 i X o CO v ! a E 0S0000000S8— 0000000000000 CNCJONCOcocomaj - r> o- C-J OOLOOOOOOOOOOO N O O «0 -O >00 — >0^. CJiCOCOfSCNfNCNCNfN'— {NCO O £ » + + + COCOflONNNNNNNNN >0 O O o O O CN V v v OOCN^-OCOCO — CNO-OCOrs. oon-ocoooio>o«-nN — — — — C*4CMO _ _ lOmD-^iOiONO^OCO NNOMNaoOOrtOOO« coc8»o>»o>i>o>oooNn S0000008SSS8S OOOOOOOOOOOOO S 3 8 S S S 8 8 3 3 S £ 3 OOOOOOOOOOOOO lomiooioiowioiftirtioioio OOOOOOOOOOOOO • 1 • • • • •• •• »It OOOOOOOO^— ,_ -O ^ , , , • ••••••••«1 i i Nr-^O-fl^OOOO a iou tflttnONNinOOMrtBN ............ , •O-OiflflOtNOOOMDCO S-6 o J £ e CN UJ > S E X E u e O -r U fi X O r> E C*J v. Ž > O E Q_ E U DO S- E O O O O O O COOOOOOOO ^(o-ocon^o-io«" 8 0000iOir)U">if>OirtQOO ODOOOors.ivrs.rs.rs.r'viN.rs.rs.rs.'O'O O fN (N 'T ^ •OCO. ' ^' .'..' p ■. ■. 1 BLEJSKO JEZERO-15B cm On 5-10-15-20-25-30-35-40 45 o ° B C 0 20 40 60 80 100% 0 20 £0 60 80 100% o-Br BOHINJSKO JEZERO-5B ABC cm o 5 tO 15 20 25 30 dGy mGy IGy GyW „ . • dGy t,' ° o . • • • dGy • 0 20 A0 60 80 )00% 0 20 40 60 80 100% A. LITH0L0GY clayey silt sandy silt abundant organic remains lamination chalk-like sediment f semiliquid soft , stiff plant rests consistency s soft b " Gy G B Br W d m I gray green black brown white dark medium light B. GRAIN SIZE < 2 |im E^l 2 - 6.3 nm 6.3 M- - 20^m 20 - 63|im >63p.m C. MINERALOGY dolomite '////A calcite noncarbonate ingredient 4.22. Core samples The sediment was cored at points BL-1B and BL-15B in Lake Bled (see fig. 2) and at the site BH-5B in Lake Bohinj (see fig. 3). The thickness of sediment penetrated is 25—45 cms. The top (0—1.5 cm) of the two Bled cores is brownish and dark greenish gray liquid and slimy sediment, having an apparent waste odor. The sample BL-1B had at first a characteristic odor, releasing bubbles of hydrogen sulfide. Subsequently a repulsive sewage smell remained. Proceeding downwards in core BL-1B a brownish shaded sediment prevails showing a semiliquid jelly consistency which passes over into a sludge with cloddy inclusions. At a depth of 15—25 cms these inclusions gradually tend to increase. Simultaneously the colour changes into reddish brown and more and more the sewage smell increases. Noteworthy is the laminar structure at a depth of 3—7 cms. As to the core BL-15B, no difference occurs in its composition and consistency compared to BL-1B. They differ in colour only. From the depth 1.5 cm the sediment of the BL-15B becomes gray and greenish gray. In the interval 10—20 cms a bluish shaded sediment occurs and at a depth from 20 to 40 cms brownish spots are observed. The laminated interval is somewhat thinner there: it occurs at a depth of 2—3 cms. The core BH-5B from Lake Bohinj differs widely from those from Bled. First of all the Bohinj sediment contains fairly more sandy and silty fractions; therefore its water content is lower. Furthermore its fine-grained organic admixture is low. It abounds, however, in leaves. On the contrary the Bled sediment contains no remains of leaved plants. In general the Bohinj sediment is medium gray. At a depth of 5—7 cms a grayish white chalk-like intercalation occurs. The samples obtained possess no particular odor. 4.3. Grain size distribution Sieve and sedimentation analysis has been undertaken to determine the particle-size distribution in the sediment from lakes Bled and Bohinj (see tables 7, 8 and 9). A total of 54 samples were examined. After the preparation of the sample with water, each sample was sieved wet through the sieve screen, 0.063 mm DIN 4188. The oversize was dried at 105 BC and the undersize at 60 °C. Subsequently a part of the undersize < 63 /zm was dried at 105° C for sedimentation analysis. The majority of the samples were examined using the Sartorius sedimentation balance. For the core samples the sedimentation vessel after An-dreasen-Borner was used (table 9). The grain size variation in bottom sediment is shown in figure 9. In comparison with Lake Bohinj the sediment from Lake Bled is more finegrained and well sorted in both vertical and lateral directions. The grab samples from the depth 5—10 cms, as well as the core samples from the same depth, contain about 95 per cent particles < 20 /« 22-y <2 9'oinsi- of£in,I- __ill®-fli- ze om ze <63 urn weigh t per ce n t la 8.75 lb 0.55 2a 6.54 2b 0.86 3a 4.63 3b 0.89 4a 5.68 4b 3.41 5a 5.68 5b 1.58 6of7a 19.30 61* 7b 3.69 8c*b 16.90 9aM0a 20.97 9b 2.34 10b 4.49 11a 17.81 lib 1.50 I2afb 13,94 13a 7.22 13b 5.13 14a 13.91 14b 4.40 15a 22.86 15b 10.86 23.75 33.50 7.90 37.09 11.05* 35.76* 4.73 30.83* 14.20 40.56 5.27 35.34 21.07 26.54 3.58 41 .61 21.56 36.58 13,09 28.23 18.04 26.60 24.58 21.48 26.60 19.50 12.64 27.31 7.59 36.01 2.53 38,09 16.17 28.38 7.33 38.27 5.96* 24,50* 14.90* 22.66* 7.27* 31.58* 11.44 29,75 5.08 33,03 12.32* 32.82* 3.04* 29.80* 13,00 21.00 21.16 33.30 20.46* 26.19* 19.54* 44.04* 21,50 19.11 17.40 41.10 21,47 25.24 28.09 23.31 21,02 15.16 24.59 32.51 14.28 21.78 18.75 31,50 14.50 22.50 17.08 22.00 25.20 28.86 30.98 23.91 16.14 21.50 31.20 21,70 7.20* 48.40* 6.69* 48.53* 21.72* 34,30* 19.41 25.49 27.29 30.20 19.26* 12.74* 16.40* 39.90* 10.0 2.46 5.2 2.50 6.0* 2.40 2.6* 2.48 9.0 1.54 4.2 2.52 7.3 2.51 5.7 2.54 9.0 2.54 4.7 2.56 10.1 2.59 5.9 2.59 12.0 2.53 9.7 2.50 5.3 2.51 4.9 2.50 12,0 2.52 5.6 2,55 2.5* 2.45' 2.5* 2.50' 4.2* 2.53' 8.8 2.55 4.5 2.47 12.1* 2,41' 3.8* 2,50' Data obtained by the sedimentation balance and by the Andrea-sen-Borner* sedimentation vessel Table 8. Grain size data of the grab samples taken from the depth (a) 0—3 cms and (b) 5—10 cms from the bottom of Lake Bohinj Sample Nr. G rai n size i n pm Medium grain size ^jm Sp.gravity of grain size <63 pm >63 20-63 6.3-20 2-6.3 <2 wei g iht percent latb 21.82 13.30 19.30 13.70 32.05 7.9 2.28 2a 10,32 8,10 24.33 20.15 37.10 3.9 2.55 2b 7,06 7.42 18.72 17,80 49.00 2.3 2.52 3a 11.42 5.66 20.24 27,68 35.00 3.8 2.51 3b 6.84 4.00 17.36 16,00 55.80 1.8 2.50 4a 7.71 15.70 18.63 17.96 40.00 3.8 2.56 4b 5.92 12.98 23.50 14.60 43,00 4.0 2.55 5 (see: core samples 5 B) 13.2 2.61 6a 16.90 22.09 22.96 17.55 20,50 6b 10.20 30.10 19.20 10.70 29.80 9.1 2.63 Data obtained by the sedimentation balance Table 9. Grain size data of sediment samples from core profiles of Lakes Bled and Bohinj Depth in cms. Groin s i ze in p m Medium groin size ym Sp. gravity of grain size <63 fjtn >63 18-63 20-63* 5-18 6.3-20* 2-5 2-6.3* <2 weight percent blejsko jezero - Core 1 I 3: 0-5 19.10 1,07* 27.05* 9.48* 43.30 4.9 1.58 5-10 11,81 2.80* 17.79* 25.65* 41.95 3.8 2.58 10-15 4.12 6.11 31.82 10.38 47.57 3.0 2.47 15-25 6.37 7.85 37.62 6.67 41,49 5.6 2.49 blejsko jezero - Core 15 b: 0-5 16.13 2.74* 26,85* 16.01* 38.27 5.3 2.54 5-10 9.83 4.24* 21.72* 22.76* 41 .45 4.1 2.54 10-15 4.68 2.46 29.38 17.76 45*72 3.1 2.54 15-20 7.42 6.50 23.92 12.55 49.61 2.0 2,51 20-25 3.23 6.89 34.05 9.42 44.41 3.1 2.52 25-30 5.06 4.95 34.54 7.73 47.72 2.8 2.50 30-45 1.88 4.94 29.18 8.19 55.81 1.8 2.51 bohinjsko jezerc 1 - Core 5 b: 0-5 24.19 9.88* 20.70* 10.00* 35.23 8.1 2.63 5-10 12.78 10.02* 21.09* 16.79* 39.32 4.8 2.61 10-15 18.31 12.00 15,50 9.02 45.17 3.6 2.53 15-20 19.26 16.02 18,40 3.22 43.10 7.0 2.61 20-25 19.26 14.45 18.50 4.78 43.01 6.0 2.63 25-30 10,00 17.97 17.35 11.52 43.16 3.7 2.58 30-35 19.08 16.52 17.43 4.02 42.95 6.4 2.61 35-40 4.24 8.31 27.07 7.00 53.38 1.9 2.58 40-45 7.64 18.61 19.22 4.71 49.82 2.0 2.54 Data obtained by the Andreasen-Borner sedimentation vessel 5. Pollen contents in sediments from Lakes Bled and Bohinj Alojz Sercelj and Metka Culiberg Samples for pollen analysis have been taken and analyzed from the cores BL-15B and BH-5B at an interval of 5 cm. The main purpose of this investigation has been to gather some information about the paleoecology of the surroundings of the lakes and about the age of the sediments on the base of well known stages of vegetational development or special plant indicators of man's activity (A. Sercelj, 1971, 1975). Complete pollen analyses reveal about 50 taxa represented in different spectra. Since it is evident that not all plant taxa have equal meaning in interpreting vegetational history and hence stratigraphy, only the characteristic ones have been picked out (figs. 10 and 11). As they are different from each other, th* explanations of each are given separately for the most important points. BOHINJ BH- 5B 5.1. Bohinj BH-5B The pollen curves of various forest trees follow different, partly opposite courses. But the most characteristic ones are those of Pinus, Fagus and Ptcea. The Pinus curve increases from an initial 15 %> to 50 °/o on the top of the diagram, meanwhile the Fagus curve decreases in the same direction from 30 Vo to 5°/o tree pollen. This peculiar change in vegetation is certainly not due to climatic events. Originally this valley had been covered by woods of Abieti-Fagetum (depth 45—35 cm), and on the mountain slopes intermixed with fairly high percentages of Picea. Then cutting of beech forests for burning charcoal, used in melting iron, started, especially during the Middle Ages. This could be the point of decline of Fagus pollen curve. On the contrary, continuous rise of the pollen curve of Pinus suggests that the destroying of deciduous forest has continued by grazing, especially in the subalpine belt. The presence of Secaie pollen, other cereals, and of Cannabis-Humulus, though in low percentages, also indicates that the radical change in vegetation is due to extensive land use for farming. Selaginella selaginoides, the subarctic small fern, is present in relatively high percentages, though it did not thrive in the valley, but on the deforested mountain plateaus. 8 — Geologija 21 BLED BL-15B 5.2. Bled BL-15B The surroundings of Bled is a more opened landscape and there are no steep mountain slopes within the immediate neighbourhood. As a result the forest picture, as shown by the pollen diagram, is a little more intricate. The pollen diagram reflects two declines of the natural forest (Abieti-Fage-tum). The curve of Fagus shows two oscillations which are not very pronounced, with a decreasing tendency. Opposite to that of Fagus, the Pinus curve rises up to 23 %. Pinus forests are to be regarded here as a pioneer vegetation on previously highly degraded soils. More indicative about the general aspect of landscape may be the unusually high percentage of Juniperus (juniper) pollen in the middle of the diagram. This indicates heavy sheep grazing, juniper being the only resistant element. Direct indicators of man's activity are: Juglans (walnuttree), present with relatively high pollen values, obviously having been much cultivated here. High pollen values of Secale and other cereals, besides Humulus and Cannabis, which theoretically could have been cultivated here since eneolithic times, suggest that this country had been densely settled. There are two more cultivated plants that yield us also a reliable dating: Fagopyrum and Zea. Buckwheat has been introduced to Europe from Asia and reached this country about 1490, and corn has been brought to Spain in 1519. There is no doubt that this profile cannot be older than 500 years, but could be younger. 6. Mineral association in sediments from Lakes Bled and Bohinj Peter Rothe 6.1. Introduction Lake sediment consists of components of detrital, chemical, or biogenic origin. Within most lakes more than one of these components are found. It has been amply shown that many factors such as climate, geographical position, geological conditions, etc. are influencing the final composition of lake sediment. Carbonates within lakes may either be of detrital origin or they are formed authigenically within the lake due to biological activity, chemical conditions, or both. The surroundings of both Lakes Bled and Bohinj (Blejsko jezero and Bohinjsko jezero) consist almost entirely of limestones and dolomites of Permian and Triassic age. The aim of this chapter is to provide a preliminary description of the sediments within both lakes. The main part of these sediments has a clearly detrital origin. Carbonate mud and silt prevail. Autochthonous formation of some of the carbonates may be suggested from the fact that abundant Ca++ is supplied by affluents from the drainage area. Precipitation of calcium carbonate by means of changing physico-chemical conditions or photosynthetic activity of macro- and microphytes within the lakes is possible. 6.2. Analytical procedure Samples already split, for chemical analysis (see chapt. 7.2.), into fractions < 2 jum, 2—6.3, 6.3—20, and 20—63 pm were used for X-ray mineralogical determinations. Powdered samples were run with a Philips PW 1310 diffractome-ter at 36 kV and 24 mA. Nickel-filtered CuKa-radiation was applied. Total carbonate content was determined by the "bomb"-method (G. M u 11 e r & M. Gastner, 1971); a smaller type of "bomb" was used where only small amounts of the samples were left. Within the tables 10—14 some data are not complete; in this case no material was available since it was entirely used for chemical analysis. 6.3. Lake Bled Fifteen grab samples taken from the lake bottom, already split into upper and lower parts on board ship, and samples of two cores were analyzed. Upper and lower parts represent a top sediment layer of 0—3 cm (a) and a deeper layer of approximately 5—10 cm (b) below the bottom surface. Results out of a total of 58 samples 15 X 2 = 30 + 9 (= core BL-1B) + 19 (= core BL-15B) are discussed below (tables 10—12). In regard to both regional sample distribution (see maps fig. 12—13, figs. 1—4) and vertical penetration of the corer (fig. 9) the results must be regarded preliminary. 6.31. Grab samples Total carbonate content. The samples taken from the lake bottom have carbonate contents averaging about 70 °/o (54.5—78°/o range). Carbonate contents are different within different grain ?ize fractions. A general increase BLED Fig. 12. Lake Bled. Total carbonate content Above: Grab samples, upper part Below: Grab samples, lower part •j«z«r« / BLED Ž.p.Bl«d •iu«re BLED Fig. 13. Lake Bled. Dolomite within carbonate fraction Above: Grab samples, upper part Below: Grab samples, lower part CO o »o t o Z sot 60 •• -1-■—I-1 I-I— < 2/tm 3—6.3 6.3-20 20-63 > 63Jim % ® 100 ■ ■ cfl C O n s— CO 70 • ■ 60 - SO - 40 • 30 - 20 * -1— 2-e.3 6.3-20 20-ea^r of total carbonate with increasing grain size is observed from the < 2 fim fraction to the 6.3—20 /im fraction whereas it decreases significantly within the 20—63 fim fraction (fig. 14). Since clay mineral analysis from the <2/*m fraction failed to give definite results it must be assumed that most of the non-carbonate is probably biogenic material. This applies also to the other grain size fractions. Carbonate mineralogy. Most of the carbonate is low magnesium calcite but dolomite is also present throughout and is abundant within some of the samples; 2—38 of the carbonate fraction was found to consist of dolomite. An obvious difference of regional distribution of dolomite was found. Dolomite contents within the carbonate fraction are highest in grab samples 4, 5, 6, 7, 8, 12 and 13. A difference in dolomite contents was found between the upper and lower parts of the grab samples. Within the lower samples dolomite seems to reach a little further towards the central parts of the lake (fig. 13). This reflects that dolomite input had changed with time. Probably due to prior sedimentation, not much of the dolomite carried into the lake can reach its deepest, or central, parts. 6.32, Core samples The two cores BL-1B and BL-15B were separated into 9 and 19 samples, respectively. 6.321. Core BL-15B Carbonate content. Core BL-I5B has an average carbonate-content of about 67 %> (56.5—77% range). Carbonate contents within single samples are extremely variable. They are lowest within the < 2^m fraction ranging from 5.5—48.5 %. Again a general increase of total carbonate with increasing grain size is observed, with the exception of the 20—63 fim and coarser fractions (fig. 15). A rather good correspondence between the mineral composition of the finest studied fraction «0.063 mm) of the Solznik affluent (40 %> carbonate, see chapt. 3.4) and the uppermost sample of the core (57.5 % carbonate) reflects more or less the present conditions. Higher carbonate contents within all grain sizes are centered at 5—10 cm depth, reflecting that the sedimentation history of the lake had changed slightly with time. Carbonate mineralogy. Different amounts of calcite and dolomite were found from core BL-15B. Within most samples, dolomite contents are low (2—6 %> or slightly more) but some layers contain more than 10 •/» dolomite (12—18%). These higher dolomite contents are paralleled by higher amounts of quartz, thus they represent phases of detrital sedimentation. 6.322. Core BL-1B Carbonate content. Similar high carbonate contents as in core BL-15B were found from core BL-1B (total samples about 75 % average. Range is 60—79 •/»). Contrary to BL-15B the composition of the sediment is much more uniform as far as the total samples are regarded. The same pattern of carbonate content versus grain size is observed with highest contents within the 6.3—20 fxta fraction (fig. 16). The difference between sediment composition of both cores may have its origin in the position of core stations. Both cores were taken from similar water depths. Core BL-1B was taken from a central part with equilibrated conditions, whereas BL-15B is more marginal and most probably reflects the influence of the Solzni k affluent. Carbonate mineralogy. Calcite and dolomite are present but within total samples dolomite is rare (about 3 range 2—4 Vo). In the 20—63//m fraction, however, dolomite may reach up to 24 °/o (see table 11). This seems to be paralleled by the amounts of quartz although quartz-peak heights can reach similar maxima from samples of the < 2 fxm fraction without higher dolomite contents. Again, the dolomite seems likely to be of detrital origin. tf.33. Origin of the Lake Bled sediment Most of the sediments within Lake Bled are muds rich in, or entirely consisting of, carbonate material. Both calcite (low magnesium calcite) and dolomite occur. An approach to regional distribution of some parameters (carbonate content, dolomite content) must be regarded very tentative since sampling sites are scarce for such a purpose. Regional distribution of total carbonate content shows highest values in the central part of the lake, decreasing towards the northern shore. The lowest values occur within samples 12, 13 and 14 which can most probably be referred to the influx of non-carbonates from the Mišca affluent in the northwestern corner of the lake (fig. 12). In the mineral association calcite and dolomite prevail; there is considerably less quartz, and scarce feldspar (see tables 10—12). Most of this material is detrital but some calcite may also be autochthonous. Dolomite, however, is apparently detrital, as can be suggested from both regional distribution and linkage between dolomite and quartz contents of the samples (figs. 13, 17). Although quartz was only determined on a semiquantitative basis by X-ray diffraction, and peak height of the main peak was taken as an arbitrary measure, it is evident that within a similar matrix this gives reliable results. The regional distribution of dolomite within Lake Bled reflects transport from the north or from the northeastern and northwestern part of the lake surroundings (fig. 13). In the case of the northwestern bay, dolomite was apparently transported by the Mišca affluent; its sand- and gravel fraction was found to contain up to 70 %> dolomite (see chapt. 3.4). Contribution from the erosion of the shore rocks, however, is not evident. Likewise, the small island situated in the western part of the lake seems not to have much influence on nearby sedimentation: the adjacent sites 11 and 15 revealed comparatively little dolomite although this island consists of Triassic dolomite. Little can be said, so far, about the non-carbonates. Beside the scarce quartz and feldspar, abundant diatoms were found, particularly within the smaller grain size fractions. They are very well preserved. Selected samples investigated by scanning electron microscopy revealed several species of circular and elongated shapes which require further studies (figs. 18, 19). 6.3-20 20-63 63/tm quartz peak height Fig. 17. Total grab samples from Lake Bled Dolomite content of the carbonate fraction versus quartz peak height Figs. 18. and 19. Sediment from Lake Bled Diatoms from the carbonate free part of the < 2 /80% Fig. 21. Lake Bohinj. Total carbonate content Above: Grab samples, upper part Below: Grab samples, lower part Abundant opaline silica was already suggested from the typical "opal bulge' at the diffractograms of carbonate-free samples. The behaviour of clay minerals within the lake remains an open question. From the contribution of B. Ogorelec (see chapt. 3.4) it is evident that illite, chlorite, and smectite are transported by the small streams. Within the lake sediment, however, very little clay minerals could be determined. Although the hydrochloric acid method to remove carbonate was replaced by using cation exchange resin (R. M. Lloyd, 1954), clay mineral peaks remained poorly developed. A tentative suggestion may be that a break-down of clay mineral structures takes place due to dissolution of silica out of these clays. No data concerning silica concentration of the lake water are available so far but apparently silica concentration must be low in such lakes situated within an area consisting essentially of carbonate rocks. The abundance of diatoms, however, requires a source for silica, and clay minerals seem the most likely material to provide silica rather rapidly according to the results of F. T. Mackenzie et al. (1967). BOHINJSKO JEZERO fsm 51 - $o % MM 61-70% Fig. 22. Lake Bohinj. Dolomite within carbonate fraction Above: Grab samples, upper part Below: Grab samples, lower part 6.4. Lake Bohinj Eight grab samples were taken from Lake Bohinj and were split into upper and lower parts as the samples from Lake Bled. Additionally, one core was taken from the western central part of the lake; the core was split into 14 samples. A total of 30 samples thus represent the sediment of Lake Bohinj discussed here (tables 13, 14 and fig. 20). 6.41. Grab samples Carbonate content. The upper part of the grab samples have carbonate contents ranging from 53 to 91 percents. Most samples from the lower part have higher carbonate content than their upper counterparts. On a regional aspect, the present bottom surface sediment (if the upper parts of the samples really represent it) is different in carbonate content: the western part of the lake contains more carbonate than does the eastern part. This regional distribution is not valid, however, for the lower part of the surface samples, wherein high contents were found from both parts of the basin. Any suggestions about regional distribution, however, must be regarded tentative sofar because of the few sampling sites. Carbonate mineralogy. Both calcite and dolomite make up the carbonates of the lake sediment investigated. Little can be said — as was the case in Lake Bled — about their regional distribution. Figs. 21 and 22 represent tentative suggestions only. They also display the distribution within upper and lower parts of the samples. Again, a different input of sediment at different limes is evident. This also must be discussed with care, however, since not even the uppermost part of the samples really represents one sedimentation event. This holds true, much less, with the »lower parts* of samples which most probably are not time-equivalent in any case. No "single grain layers" were analyzed, but a mixture of layers representing different time span, instead. The ratio of calcite/dolomite is fairly uniform throughout all grain sizes. It is, on the average, about 50 :50 although a range of 70 %> calcite: 30«/» dolomite to 31% calcite: 69 % dolomite was found within total samples. With increasing grain size this ratio seems to shift in favour of dolomite; hence dolomite is, on the average, more abundant within the coarser grain size fractions. 6.42. Core BH-5B Carbonate content. The total samples range in carbonate contents from 65.5—76.5 °/o. Sofar, no phases of extremely different sedimentation events are obvious from the core. As within the grab samples of the lake the core samples also show carbonate contents increasing with increasing grain size (see fig. 23). Carbonate mineralogy. High dolomite contents, as already observed from the grab total samples, are also obvious from the cored sediment of this lake. On the average, both calcite and dolomite are present in similar amounts, although the ratio may reach from 69 °/o calcite : 31 % dolomite up to 5°/o calcite : 85 °/o dolomite within the carbonate fraction. From the present sampling sites a certain regional distribution of dolomite within Lake Bohinj seems to be evident. The upper part of the grab samples show higher amounts within the western part, reaching from sites 6 to 4 (fig. 3) which decrease — continuously? — towards lower dolomite contents at the eastern part of the basin. Both affluents Savica and Jereka could be responsible for the transport input of dolomite into the lake. According toB. Ogorelec (see chapt. 3.4) the Jereka sediment contains more dolomite than the Savica sediment and hence the Jereka is more likely the source of dolomite within Lake Bohinj. 6.43. Origin of the Lake Bohinj sediment Since the geological surroundings and the general sedimentological conditions of Lake Bohinj are partly similar to the neighbouring Lake Bled, a comparable origin of its sediments could be assumed. Accordingly the sediments are dominated by calcite and dolomite, quartz and feldspar being not common. In contrast to Lake Bled, however, no additional water is carried into Lake Bohinj which in Lake Bled could have influenced locally the chemical conditions of the lake water. A difference exists between both lakes as far as dolomite is concerned: The Bohinj sediment contains considerably higher amount of dolomite than sediment from Lake Bled. Although a relationship between dolomite and quartz contents is generally observed, the higher dolomite concentration of the Lake Bohinj sediment is not paralleled by correspondingly high amount of quartz. Dolomite seems to be derived from the lake's surroundings which consists of Triassic carbonate rocks. At the southern shore dolomite prevails whereas the other frame rock is slightly dolomitized limestone. Calcite is present throughout and is the dominant mineral phase within most of the sediments. The detrital origin of most of the calcite is beyond any doubt, but a small part may also be autochthonous. Evidence for calcite precipitation comes particularly from the southern nearshore sites 7 and 8 where the lake floor has a whitish appearance and ma* crophytes are abundant. Since the southern shore is composed of dolomite, the calcite within the nearshore sediment may have at least partly been precipitated by biogenic activity. As within Lake Bled, the non-carbonates include abundant opaline silica of very well preserved diatoms (figs. 24, 25). 6.5, Autochthonous formation and dissolution of calcite within Lakes Bled and Bohinj Although the sediments of both lakes clearly reflect a strongly detrital regime, formation of some autochthonous carbonate is indicated by our data. It is evident that high input of Ca++ into both lakes takes place since the affluence of both surface and ground water from an area consisting mostly of carbonate rocks is likely to contain high Ca-concentrations. Several mechanisms of CaC03-precipitation are known: Inorganic chemical precipitation may occur by either evaporation-concentration of the lake water or else by a mixing of water bodies of different composition. Biogenic carbonate precipitation due to the assimilation of plants is another possible mechanism. Evaporation-concentration is unlikely to explain an eventual carbonate precipitation from the lake water in Bled and Bohinj since the climatic conditions are not favorable. Mixing of different water bodies (e. g. the lake water and the Radovna river water) may eventually cause calcite precipitation although the water chemistry of both the river and the lake may not be very different. This model is unlikely, however, for the affluents. If, nevertheless, some carbonate precipitation occurs within such mixing areas, the small amount would be "masked" by the great amounts of detrital carbonate carried by the affluents. The main, if not exclusive, source of autochthonous calcite could then remain the biogenic activity of plants releasing CO2. Some of the nearshore environments, particularly at the southern shore of Lake Bohinj, have a whitish appearance, and underwater macrophytes are abundant there. Eutrophication effects, particularly within Lake Bled, are evident from several limnological data, and are also shown from the present study by U. Forstner (chapt. 7). The uppermost layer (0—3cm) contains up to 10.4°/o organic carbon (U. Forstner, 1977a in print) whereas the lower layer 9 — Geologija 21 -i— 2/.r 2-6.3 63-20 >63 Figs. 24. and 25. Sediment from Lake Bohinj. Diatoms from the carbonate-free part of the grain size 2—6.3 fim (5—10 cm) revealed only 2.2 %> (G. S c h m o 1 1, 1977). This high organic carbon content is referred to algal "blooms" which are known worldwide from many other lakes. Such algal "blooms" may be the most probable factor for autochthonous carbonate formation within Lake Bled and also Lake Bohinj. A certain increase of Ca within the < 2 jum fraction, though not always very pronounced, in the uppermost 10 cm of the sediment of the three cores studied (see table 16), may Carbonate in < 2 p < %) O 10 20 30 40 50 Interstitial water chemistry 10 20 mg/1 mmm mmmš mmmšT ■tZSiiXii mmk mm, mmm ■L ■h Fig. 26. Sediment core BL-15B from Lake Bled Chemical composition of the interstitial water indicate such biogenic precipitation of carbonate. Whereas the deeper layers of the lake sediments have a rather homogeneous appearance, the upper 5—10 cm of almost all samples show a distinct thin lamination (fig. 8), the top few centimeters consist of a textureless soft mud of a dark gray colour. The laminated part contains very thin white laminae of calcite. It is possible that this represents episodically precipitated autochthonous carbonate. Dissolved Ca++ is abundantly supplied to the lake water, although little data from the lake water for Ca++ were available (30—50mg/l; unpublished data of the Limnological station of Bled). The uppermost samples from the interstitial water (table 15), however are likely to present slightly higher values of Ca+ + than the lake water. They range from 100 to 170 ppm and are thus still double that of the lakes of Plitvice where carbonate precipitation takes place (P. Stoffers, 1975). From chemical analyses of the Lake Bled water at sites BL-1B and BL-15B (tables 1 and 2) it is apparent that already within deeper strata of the open water column carbonate can be dissolved rather than precipitated. A continuous decrease of pH-values from 8.5 and 8.4 at the surface towards 6.9 at 24 m and 26 m, respectively, is observed, and is paralleled by an increase of CO2, H*S and HCOs (I). Similarly, the temperatures decrease bottomwards, favouring carbonate dissolution. Chemical composition of the interstitial waters is also in favour of dissolution rather than precipitation of carbonate: An almost continuous increase of Ca++ and Mg++ is observed at core BL-15B which is independent of the carbonate content of the sediment (fig. 26). Sodium and potassium remain constant although some variations occur. Within the uppermost 10 cm of the core the decrease of carbonate can be explained by two factors which most probably act together: 1. The sediment is diluted by the high amount of organic matter (up to about 25%). 2. Decomposition of organic matter provides CO2 and thus causes dissolution of carbonate. A decrease of Ca within the uppermost layer is also evident from the other cores as is indicated by the results ofU. Forstner (chapt. 7). Dissolution of carbonate at similar depths (max. 22 m) was suggested from an extremely carbonate-rich part of Lake Constance ("Gnadensee", M. S c h 61 -tie, 1969), where about ten times more carbonate is autochthonous biogenic than detrital. 6.6. Sedimentation rates Without further dating comparison with other lakes of a similar setting, and the pollution effects within the uppermost centimeters of sediments can be used for dating purposes. Comparison with dated sediment cores from other lakes can only give approximate values. For the central part of Lake Constance an average of about 1 mm/a seems now reasonably established (G. M u 11 e r , 1966, *G. Wagner, 1972). In case of a similar sedimentation rate in both lakes Bled and Bohinj the lowermost samples within core BL-15B would not be much older than 400 years (see A. Sercelj and M. Culiberg, chapt. 5.2). Mass balance of the lake sediment is still an open question since almost no data are available for the input rate of suspended matter. The small affluents, as well as the artificial input of the Radovna water, seem to carry little suspended load (D. Vrhovšek & A. Brezigar, 1976). Input of further suspended matter was not measured since most of the detrital material seems to be transported by small torrents. Analysis immediately after rainfall is necessary. Probably, a large part of the detrital sediments may also be washed in by surface runoff similar to sheet-flows. From the few analyses of the chemical composition of the outflowing water of the Jezernica, it is evident, however, that suspended material is extremely scarce (about 10mg/l, unpublished data of the Limnological station of Bled). Since the affluents of these lakes are mostly torrents a rather discontinuous influx of detrital components must be assumed. Flood layers should be expected within the sediment column although they have not yet been detected within the uppermost 45 cm studied. Further, and deeper coring is thus required to elucidate the history of Lakes Bled and Bohinj. .lil - -C 1 a W I ® e 8 t ^ a. n o ® 2 8 2 1 © N if 'Z> N = 5 0 i c -c o a SI O) 1 E8 o * v o ^ "D £ £3? Q i T g-^ -c is.? £ -C •lil o. M U U o o • jil I s s ^ • • • O (M O CO d W"> CN CO U") >o in • • •v ^ (N — CM m ooonoioflfMioininOOioOo^ioinioin^iniAirt I I I I I I I I I i I I I I I I I I I I >111111 v> m o o © o in o o o o o o o o m u-> u-» in i • • i i i i i i • • • • i • i i • • i i i i i o-c^oroo-o^omconomi-v — cokn—OOOCNOO—o—o NNNNKNrsSN-ONiO-O'O-oKrsNNNNlrtlO'O-O'O^tS CO m ^ c O" '5 fej. L8 -C if i a co SI H u .5* E i s p 8 Ji* S s S. '2-S * £ ol £ NO':? • -o e si * I 8 S _ O O © — — O o • I C«! •O CO -O . t • • • I o o o CO O N co • • • • o m o r? "i ^ ^ ^ 1 "l ^ ® -oom •O <0 'C O iflOiflOO « O O „ o o O W O .O lO O * o w o o 2 «J 2 tO ' ' o* , .^ . . I • • ■ o o o I I I I I m o d> m o* ^ O ^ O O O ^ O O o o ^ c> o^ Si U3< ■si« sijs : lii 8» I m i%u rt I itt* D -S | £ 8 ° MI Jiiri t-4! «Ul •a c 2-0» N o * V "O S I £ I H £ S S 5 S-i ta S cr £ 2 o .t* 0» O U .111 » J? a i O o y *■ -D £ ■s -S« I 8 g K l l l l i O-ON-OOOtNO rv © _ p. o rs •O CO CM C» I CN rs "DO.® Sii fiiii? "ŠS If .5 o" -^.c S o i A pO Eu u >3 o e Af1* 5 8 2 I' - .c JtSi nif E . G» I « 58 e g I £ S 8 ? lil S -S i: "5 _J_ e O I 3.0 o I in i> -- F- - cd MNNNNr-O-OOOi-^^r-NNNN NMO-co^o^cMnn i n irs^oo i • i i i i i i i i i i i i i i i 'OO'Ot'O'O OMONND<^wlDV)t • •••••I •••••••••••• O r- f- N O O MOr-^— 8888888&8:888888$S&8 i i i i i n- i i i i i i.innn i neooooooiflin flinoooooiflmm lofXN&.tflnorrjKajNcoNoo-'O'Oin . . ^ . ^ o . rs . >o ro ti • • i • • i »i « • i o o o o o o o conooo-c^'O'orx^ococsoocsrv.cN'O-o »rtoirtoomooiooooiomoomoo k s i i i s r r r r r i i i 4 i $ i 4 u> oifloi/loifloirt oio i • f iriiiiiiitifl I '^Nn^'O'ONoooinOifloifiO o o r- r- cn (s (») o ^ Ui n m i •s I! Jcx J? o o> 5 % rs g IT-JX O) o O 3 , A0» o 'S 2F ■o = »11 2 3 2 -So.? lli I Si2 .e ? tr o o-w j: O) 1-5« # OO O O 4> . ■5 -8 4 o s 2 11 3 5 Ji J: 4) iS O O) .s s C S -s * £ O) O T. i, o 2. 2 o o S5 ' -o S o •o i 2 i « 8* a - B vi 10 10 10 m o >0 O 10 o o o o o ' 4 1 4 mOOooooooooov)«">o 5 tS R <3 R R* i SJ 3 S 3 3 3 3 S* 3 S Si -oiDVNint^oes^o-ortniflf* w> ^ s r s it a d s s s s s s s s s s ic s s u-»_ ©mowtotoom • • I NOTrm-ONCOO-r-^CNMCOrt^t o in 1 1 r 1 T 1 1 i 11 1 J 1 1 ' X 2 6 O ^P-NNOrt* iii slil -š* li i g9 o " 2 ' « -tj e 8 ° „ o £ 15? u §• Ji Jc ■5 5,? ..sli •I lil t. O ■ o 0 * # £ O U ^ O • v -2 s - -S E* 1 s 2 is.? •Eli Ji! a E i p o o «• o v ° O £ 2-8'i* jit I s s i I I I t I I I I I I I II -OONfljO^O^NO-inN «© o n'.'oVo^'^V.V = U>ioooov)0 ominoo • • i • i i i i i i t i i i NNOtO COO««)- o CO — — — — ^-CMOr-OO-— — O I p- «0 CN — _ r- — r- (\J r> • • t t mm n n s v) mninoinoion • ••••»»t «0000 t • • I i o a in, in ». 85 rš -o S -o !H I lii G» iH* w> - 1 i i £ - 3 -g--i * I 8 2 S. ^ i lil S ^ i 1 § if C 0-W-C 'S 3J j* N T) E I §2 m c — £ j* B 8 o* - * * © o ^ N TJ 6 I fi-5 t £82 owcottnowNnNtwoN ,'« « » • > • « • hs-orv-^rs P-Nrtiow 8 ?> 3 So a $ 8 K 3 3 £ a * 3 5 , S , S . £38 N N (9 i » i i • « • « i i * O O O n m N • • • o o o ^v^noifl-oiortivonrt^ U->0010©©0«"» o m o o o i fc R SI 3 S R S S S S 8 S • i i i i • i i • i i i i i o o o COOO^iOiONCDr-OfflOirtiOiO ^--ONONNMNO-'-'-- SlOOO-NNCOOONCOOO-pp ■o&^^-ioiovionin-ovtNN ^irt^^ftSNONODgOj-ON ooo»o© mowtoo • 'k o!« nt • n . ~ — N ' £ s O OB -III O »-i £ o g 8-u^ « i N šlf £ 8 8 lil Ui U -L £ 8-5* « £ "O 'I £ 2 5 8 8.12 -S g.? žil 6 i £ 8-D O £ .f £ S £82 cm > • • _ o IN. 'O • • o o N^NlONfr 0> — — — — O O ttnN-i-oonotrtciN ooomooioioioiooooio •o^fs-r-po'OooioNino-o Mrt A -o o o ee ifi n • ••i «•«*•• O O O O — .— CN CM CM _ — CM ^ I I If) rr - N O (N CM — — CN (T) CM CM CM OOOOOOOOiAOiOV) • I • O o n-ooN^NomoNce-ocoN — — — — OO — — CM— OOO^. N^'OnrjrsO'ON'flio^io mioifloiflioiooiooioooo «0 , _omoo.order to reduce the grain size effects as much as possible and compare the different samples, the grain size < 2 //m (pelitic fraction) was separated, in each case with distilled water in settling tubes. The suspended solids were recovered by evaporation in porcelain bowls at 60 °C. For the metal analyses, the dry material was treated with aqua regia (conc. HNOa : HC1 = 1:3). The elements lithium, sodium, potassium, magnesium, calcium, strontium, iron, manganese, zinc, chromium and copper were determined by conventional (flame-) atomic absorption spectroscopy and the elements nickel, lead and cadmium by means of flameless AAS according to the usual setting we use in this institute (U. Forstner & G. Muller, 1974). 7.3. Interpretation of metal data The analytical data of the elements investigated are registered in tables 16, 17 and 18. Mean values, standard deviations and variation coefficients for both areas of investigation are summarized in table 19. The distribution of the major and trace elements in the three core profiles are graphically presented in figure 27. 7.31. Mean values The comparison of the mean values (table 19) and variation coefficients of the metal data from the sediments of Lake Bled and Lake Bohinj indicates characteristic differences between both areas under consideration. There is a significant higher amount of calcium (30fl/o), lithium and potassium (50 °/o) and magnesium (100 %>), in the sediment of Lake Bohinj when compared with the pelitic fractions of the Bled sediment. Even stronger enrichment (150 to 300 «/o more than in Lake Bled) of iron, chromium, manganese and nickel has been found in the sediment of Lake Bohinj. The only significant exception with regard to the metals studied here, are the values of zinc, which are on the average, approximately 50 %> higher in the sediments from Lake Bled than in those taken from Lake Bohinj. Variation coefficients are relatively low for sodium, magnesium and calcium in both test areas, as well as for copper in Lake Bled and cadmium in Lake Bohinj; in contrast, the values of cadmium, nickel and lead from the sediments of Lake Bled indicate particularly strong variations, as the manganese concentrations likewise do in Lake Bohinj. With regard to the latter effect, it can be seen from the data of the grab samples that the top layers (0—3 cm) of Lake Bohinj are characteristically enriched in manganese as compared with the analytical values obtained from subsurface sediments (5—10 cm). From the present data of average values and variation coefficients of major and trace elements it would appear that there is a predominant lithogenic influence — from basic rocks — on the sediment composition of Lake Bohinj, whereas the elevated concentrations of zinc and the higher variability of the cadmium and lead values of Lake Bled point to anthropogenic influences. According to available knowledge (see chapt. 3.2.), however, basic source rocks have not been found in the catchment area of Lake Bohinj. The extremely high variation coefficient of manganese in Lake Bohinj is probably indicative of the presence of diagenetic effects that are brought about by changes in the redox conditions. The increase of manganese in near-surface sediments has been explained by processes of diagenetic dissolution of manganese compounds in the lower reducing part of the sedimentary column, upward migration of dissolved manganese ions and subsequent precipitation at the oxidizing sediment/water interface (E. Bonatti et al., 1971). These processes are considered important mechanisms in the formation of manganese concretions in the lacustrine environment (E. M. Kindle, 1932; R. Rossmann & E. Callender, 1968). Enrichment of manganese within the top surface sediment layers have been observed in Lake Constance (U. Forstner et al., 1974) and lakes of Upper Bavaria as well (U. Forstner, 1977b). 7.32. Core profiles The metal data from core profiles (fig. 27), which were taken from the eastern basin (BL-1B, water depth 24 m) and from the western basin (BL-15B, 29.6 m) of Lake Bled and from a water depth of 35 m of Lake Bohinj, confirm the findings described above. Within the upper part of the sedimentary sequence of the eastern basin of Lake Bled, we can note a distinct increase of the concentrations of zinc, lead and cadmium. Compared to the "background" data, presented by the respective metal values from the lower parts of the core profiles (approximately 150 ppm for zinc, 15 ppm for lead and 0.8 ppm for cadmium), there is a maximum enrichment in the surface sediment layers of the eastern part of Lake Bled by factors of 3.5 for zinc, 4 for cadmium and 10 for lead. In the western basin of Lake Bled, the surface enrichment is much lower for these metals, ranging between 2 for zinc and cadmium and 3 for lead. It seems quite probable from the core data that the enrichment of zinc, cadmium and lead in the surface sediments is due to the increased input of wastes from human activities. Similar effects can also be evaluated from the sediment core taken in the central part of Lake Bohinj. Significant enrichment in the surface sediment layers occurs: for copper, with concentrations up to 110 ppm (background 55 ppm) and zinc (420 ppm — 200 ppm). In contrast to the findings from Lake Bled, there is no characteristic increase of the cadmium concentrations within the upper portion of the core profile from Lake Bohinj. Decreasing values of chromium, nickel, and to a lesser extent, iron and potassium concentrations are found in the upper layers of the sediments in the middle of the lake; since there is a simultaneaous increase of the calcium concentration, we conclude that the depletion of Cr, Ni, Fe and K is due to the dilution effect by higher carbonate contents in the near-surface sediments. 8« «£3*5 >» W ® G gS c-2 g g m o -d v Ul «M ft) O* *•* /1 SI «1 flj ^ g O rt <■> e •P4 S 7.33. Inter-element relations Further insight into the factors influencing the distribution of major and trace metals could be expected from a statistical evaluation of the analytical data. Tables 20 and 21 indicate the correlation coefficients from linear regression analysis of possible element pairs for 28 samples from Lake Bohinj and 54 samples from Lake Bled. Values of more than 95 °/o significance are simply underlined; "r"-coefficients of > 99 %> significance show double underlining. Lake Bohinj. With respect to the last-mentioned effect of depletion of Cr, Ni, Fe and K and simultaneous increase of calcium concentrations in the core profile from Lake Bohinj, the calculation of the "r" coefficients seems to confirm our interpretation of carbonate dilution: there is a significant negative correlation between calcium on the one side and the metals lithium, potassium, iron, chromium, nickel and cadmium on the other. The latter elements form a first group of metals, which are positively interrelated, each to one other, with a probability > 95 %. Particularly high correspondence of the pairs K-Ni, Li-Fe, K-Cr and Li-Cr point to a common source of these metals from basic rocks; the presence of potassium and lithium in the strongly associated element pairs suggests that clay minerals might be the dominant carriers of elements, such as chromium, nickel, iron and cadmium into the sediment of Lake Bohinj. A second group of metals is formed by the elements zinc, copper and lead, which are correlated at more than 98 °/o significance. Although a common source of these elements from Zn-Pb-Cu mineralizations cannot be excluded, it seems more likely from their distinctly simultaneous enrichment in the upper part of the core profiles, that these three metals originate from increased anthropogenic inputs into the lake. Lake Bled. Significant dilution effects by carbonate components are restricted to the elements lithium, potassium and iron. The copper contents of pelitic sediments from Lake Bled are related both to the group of lithogenic elements, such as magnesium, iron, chromium and nickel, and surface-enriched elements such as cadmium, lead and zinc, which are positively interrelated with a particularly high degree of significance (> 99.9 Enrichment of the latter elements is considered to be predominantly induced by human-activities. Particularly heavy anthropogenic enrichment of Cd, Zn, Pb and Cu has been found by U. Forstner & G. Muller (1973) in sediment from the lower Rhine, by A. L. W. Kemp et al. (1976) from sedimentary core investigation in Lake Erie and byL. H&kanson (1977) from metal studies in the four largest Swedish lakes. This group of metals fully coincides with the frequency sequence of trace elements emitted in the atmosphere from burning fossil fuels (H. Erlenkeuser et al., 1974), which subsequently forms a characteristic "coal-residue-assemblage" in aquatic sediments (E. Suess, 1977). It has already been shown by H. H e 11 m a n n (1972) that elevated zinc and lead contents are indicators of increased input of sewage. After a review of lacustrine sediment studies from highly industrialized regions, it was suggested by U. Forstner (1976) that a moderate increase of the above-mentio-ned combination of heavy metals (Cd, Zn, Pb, Cu and Hg) is typical for mixed sewage inputs from urban sources. 7.4. Human effects on the metal composition of sediments from Lake Bled The distribution of the last-considered elements zinc, lead and cadmium in top layer samples from Lake Bled is shown in fig. 28. The dotted caption on the bottom part of each graph depicts the probable background values, as represented by the minimum metal contents in the deeper parts (15—25 cm) of the core profile BL-1B from the eastern basin of Lake Bled; dashed lines indicate metal concentrations of the subsurface samples from 5—10 cm depth and the solid lines show the actual levels of zinc, lead and cadmium in the pelitic fractions of the surface sediments of 0—3 cm. According to the present graph, a major source of enriched concentrations of zinc and lead must exist at the eastern shore of the lake. Typical increases of lead and zinc strongly point to the influence of sewage, which is most probably derived from the community of Bled. In contrast to that, the distribution patterns of cadmium values do not indicate a very distinct influence from the shore, and seem to be rather more affected by diffuse sources, such as characterized by atmospheric emissions. Another explanation for the distribution of cadmium could lie in the lithogenic influences from the north-western inflow to the lake, since the subsurface samples (5—10 cm) show a distinct decrease in cadmium between that point and the eastern shore. Finally, it cannot be excluded that soluble waste materials containing elevated cadmium concentrations are dispersed in the lake water and are partly coprecipitated with carbonate minerals. 7.5. Metal contents associated with the lake carbonate sediments Sediment analyses are not only useful when evaluating local sources of pollution and selecting critical sites for routine water sampling, they can also reveal the fate of contaminants under varying environmental conditions. In connection with the problems rising from the disposal of contaminated dredge material, methods of sediment partitioning have been developed. The most advanced techniques presently include the successive extraction of the metal contents in interstitial water and of ion exchangeable, easily reducible, organic and residual sediment fractions (e. g. R. E. E n g 1 e r et al., 1974). Here we are concerned mainly with the effects of carbonate associations of trace metals, since the sediments of both Lake Bled and Lake Bohinj predominantly consist of carbonate minerals. Table 22 gives the data of carbonate-associated metal contents from Lake Bled and — for comparison — of other lakes; examples from Central and Southeastern Europe, are analyzed after selective extraction, using strongly acid cation exchange resin (R. Deurer et al., 1978). By comparing the total carbonate percentage (in table 22 increasing from top to bottom) with the corresponding carbonate-associated metal content (given as percent from the total metal concentration), it is possible to deduce the effects of either enrichment or depletion caused by the carbonate component. If the metal content associated with carbonate is lower than the total carbonate, a dilution effect results, even when — as in the case of the result for iron — the metal content increases along with the carbonate percentage of the sample. It appears that the carbonate fraction is generally capable of bonding only up to 1/3 to 1/5 of the iron associated with the other sediment BLEJSKO JEZERO 500 i 11 10 1000m (JO —' r m o 2 3 4 5 6 7 8 St. 12 13 14 T T T T T T T T T TTTTT NNW - S SE -WSW - ENE 1000 Fig. 28. Concentrations of zinc, lead and cadmium in the clay-sized fractions of sediment samples from Lake Bled (top layer 0—3 cms and subsurface 5—10 cms) The dotted areas represent the geochemical background of the elements, as determined from the deeper layers of core IB Table 16. Metal data of peli tic sediment samples from core profiles of Lakes Bled and Bohinj BLEJSKO JEZERO - IB Li Na K Mg Ca Sr Fe Mn Zn Cr Ni Cu Pb Cd 0.5 _ 1.5 16 o. 24 0. 52 0. 49 9. 2 160 0. 74 140 4 BO 30 14 40 135 2. 08 1.5 _ 3 16 0. 22 0. .52 0. 56 7. 8 160 0. 74 90 510 36 14 40 117 2. 80 3 _ 5 16 0. 26 0. 42 0. 62 10. 6 160 0. .60 120 504 20 14 40 151 3. 24 5 _ 7 32 0. 44 0. 98 1. 14 16. 6 160 1. .08 190 280 38 24 40 60 1. 18 7 _ 10 24 o. 42 0. 66 0. 88 18. 8 160 0. .74 190 238 36 14 30 <58 1 . 09 10 _ 15 32 0. 30 0. 98 0. 84 9. 6 160. 0. .90 158 160 36 20 30 24 1. .09 15 _ 20 32 0. 26 0. 94 0. 69 6. 2 lOO 0. 90 100 180 58 22 30 14 o. 85 20 - 25 32 0. 24 0. 86 0. 65 5. .9 100 0. 90 100 192 40 22 30 20 0. 85 BLEJSKO JEZERO - 15B cm Li Na K Mg Ca Sr Fe Mn Zn Cr Ni Cu Pb Cd 0. _ 0.5 20 O. 76 0. .40 0. .71 18. .0 200 0. ,60 250 230 20 16 20 41 O. .73 0.5 _ 1 13 o. .43 1, ,44 1, ,68 16. .8 132 0. .53 158 216 21 16 21 37 1. ,05 1 _ 2 20 0. .51 0. .65 0, .86 16. .4 125 O. .63 150 248 25 19 20 37 1 . .18 2 _ 3 16 0. .44 o, .50 O. .89 16. ,6 160 0. .56 158 240 22 14 30 43 1 . .38 3 _ 4 13 O. .46 0, ,32 0, .74 18. .9 250 0. .38 163 330 20 8 38 45 t. ,14 4 _ 5 n 0. 40 0, .30 0. .77 20. .5 132 0. , 39 171 242 11 12 39 36 0. ,79 5 _ 6 20 0. .48 0, ,61 1. .02 18. ,2 160 0. ,67 216 350 22 20 40 32 0. ,93 6 _ 7 16 0. .46 0, .44 0, .84 19. .4 160 0, ,48 200 198 36 14 30 26 1. .00 7 _ 8 16 0. .46 o. .46 o, .84 19. .4 160 0. .43 224 322 30 26 30 28 1. .05 8 _ 9 20 0. .48 0, .66 0. .92 19. ,1 200 0. .60 240 336 30 16 40 30 1 . 10 9 _ 10 32 0. .54 1. .01 1 .08 18. .0 160 0 .90 240 380 36 20 40 30 1 .01 io _ 15 20 0. .46 0, .67 0. .88 17. .4 160 0. .80 200 220 30 20 30 23 1 .38 15 - 20 24 0. ,42 0. .82 0, .93 14. .6 160 0 .88 216 140 36 20 16 19 1 .00 20 _ 25 40 0. .41 1 .38 1 .02 8. .0 160 1 .40 200 164 40 26 30 21 0 .91 25 _ 30 36 0. .41 1 .36 1 .02 8. .8 160 1 .27 190 160 40 22 30 13 0 .73 30 - 35 44 0. .46 1 .67 1 .18 8. ,2 160 1 .58 200 140 40 32 30 17 0 .73 35 _ 40 44 0. ,46 1 .76 1. .20 8. .2 200 1 .58 190 144 22 35 40 15 0 .71 40 - 45 36 0. .42 1 .18 0 .96 9 .2 160 1 .05 140 262 22 22 30 13 0 .63 BOHINJSKO JEZERO - 5B cm Li Na ] K Mg Ca Sr Fe Mn Zn Cr Ni Cu Pb Cd 0 _ 1 42 0 .63 O .88 2 .17 16. .5 208 2 .24 750 383 92 57 67 112 1 .71 1 _ 2 50 0 .50 0 .80 2 .10 20 .0 250 2 .40 700 420 100 30 80 10!J 2 .30 2 _ 3.5 50 0 .46 1 .20 2 .32 16 .0 125 2 .45 540 345 90 70 100 112 1 .90 3,5 _ 5 40 0 .55 1 .26 2 .48 17 .3 166 2 .15 606 260 87 88 50 90 1 .47 5 _ 7 32 0 .52 1 .00 2 .04 21 .8 160 1 .92 496 160 76 62 30 61 1 .27 7 _ 8 32 0 .58 1 .00 1 .91 21 .8 160 1 .67 476 208 76 59 40 52 1 .34 8 - 10 36 0 .66 0 .95 2 .38 20 . 1 89 2 .11 589 321 71 68 54 75 1 .58 10 _ 15 42 0 .53 1 .23 2 .20 15 .7 132 2 co 573 263 105 80 21 78 2 .03 15 _ 20 43 0 .48 1 .32 1 .99 14 .5 174 3 .06 584 228 119 99 33 55 2 .22 20 - 25 40 0 .54 1 .32 2 .12 14 .6 100 2 .94 564 180 104 94 40 56 1 .94 25 - 30 44 0 .56 1 .47 2 .20 12 .2 100 3 .18 564 340 120 110 40 66 2 .27 30 _ 35 52 0 .50 1 .44 2 .38 12 .8 160 3 .12 552 224 104 120 30 54 2 . 16 35 - 40 44 0 .54 1 .41 2 .18 14 .8 160 2 .72 390 220 lOO 110 40 58 2 .05 40 45 40 0 .59 1 .38 2 .12 15 .6 160 2 .32 390 164 104 98 30 30 1 .41 Na, K, Mg, Ca and Fe in percent dry weight; Li, Sr, Mn, Zn, Cr, Ni, Cu, Pb, Cd in ppm Table 17. Metal data of surface (a: 0—3 cms) and subsurface (b: 5—10 cms). Sediment samples of pelitic fractions from Lake Bled BLEJSKO JEZERO Nr. Li ppm Na % K % Mg % Ca % Sr ppm Fe % Mn ppm Zn ppm Cr ppm Ni ppm Cu ppm Pb ppm Cd ppm la 25 0 .23 0 .36 O .60 8 .5 125 0.85 160 520 40 19 40 99 2.50 lb 20 0 .41 0 .76 1 .04 16 .4 160 0.88 224 408 36 25 40 62 1.34 2a 20 O .25 0 .53 0 .65 7 .1 50 0.80 158 560 30 25 40 104 3.53 2b 20 0 .41 0 .76 1 .07 16 .8 100 0.76 224 220 36 22 40 64 1.16 3a 20 0 .28 0 .36 0 .87 10 .5 125 0.62 175 600 20 17 50 86 3.04 3b 20 0 .42 0 .76 1 .07 17 .4 160 0.76 240 348 36 22 40 66 1.30 4a 17 0 .30 0 .43 0 .93 11 .8 266 0.72 200 516 27 13 50 82 2.13 4b 24 0 .46 0 .76 1 .14 18 .5 200 0.80 200 230 30 22 30 57 1 .00 5a 27 0 .37 o .63 1 .27 12 .5 266 1 .27 200 646 37 27 67 93 2.48 5b 40 0 .46 1 .50 1 .56 13 .4 160 1 .96 264 472 38 51 60 56 1.00 6a 20 0. .30 0 .69 1 .20 10.8 160 1.31 140 664 30 22 40 120 2.64 6b 64 0 .56 2 .20 1 .68 1 1 .0 160 3.06 660 230 90 108 60 64 0.86 7a 35 0. .56 O .58 1 . .85 15. ,8 250 1 .21 200 860 79 32 57 127 2.28 7b 25 0.46 0. .58 1. .55 22. ,5 400 0.68 190 310 50 10 40 65 1 .28 8 40 0. ,60 1. .05 1 . ,20 16. .0 400 1.68 225 970 75 36 75 160 2.03 9a 16 0. .29 o. .48 0. .65 9. .6 160 0.74 158 592 36 22 40 92 2.82 9b 20 0. .29 0. .59 o. .88 13. .6 160 0.76 224 416 36 20 40 81 1 .77 10a 20 0. .30 0. ,32 0.82 16. .7 200 O. 50 225 425 28 13 38 65 2.30 10b 20 0. 41 0. ,67 0. .99 17. .4 160 0.70 224 376 36 22 40 58 1 .49 1 la 13 0. 34 0. .35 0. 95 13. 7 200 0.56 163 388 25 13 38 53 2.70 lib 20 0. 43 0. .69 1 . 10 16. 6 160 O.76 180 416 36 21 60 54 1.85 12a 40 0'. 55 1. 20 1 . 68 15. 0 400 1 .25 250 450 55 26 75 58 1.15 13a 24 0. 33 0. 76 1 .04 9. 6 200 1 .40 158 400 36 26 40 86 2.80 1 3b 24 0.34 0. 78 1. 09 13. 4 160 1 .31 240 540 36 26 60 77 1.85 14a 20 0. 27 0. 76 O. 88 9. 0 160 1.08 158 464 38 24 40 80 2.32 14b 32 0. 38 0. 87 1 . 12 15. 1 160 0.90 224 388 40 28 40 50 1 .77 15a 24 0. 30 0. 86 1.07 8. 4 160 1.14 140 430 36 21 40 71 2.43 15b 24 0. 38 0. 83 1 .08 15. 1 160 0.94 200 320 39 24 40 53 1 .63 components. In the case of manganese concentrations, it was found that most of the investigated samples revealed an enrichment by carbonate. An exception was the sample from Lake Bled, where the relative low values of manganese might be explained in terms of diagenetic effects. The zinc values associated with carbonate seem to be relatively independent of the total carbonate percentage. Low values in lakes of high salinities can possibly be accounted for by the formation of soluble zinc-chloro-complexes, which influence the distribution coefficients of zinc during co-precipitation with calcite (K. H. Wede-p o h 1, 1972). In the samples from Lake Bled and Lake Ohrid (U. Forstner, Table 18. Metal data of surface (a: 0—3 cms) and subsurface (b: 5—10 cms) samples of pelitic fractions from Lake Bohinj BOHINJSKO JEZERO Nr. Li Na % K % Mg % Ca % Sr ppm Fe % Mn ppm Zn ppm Cr ppm Ni ppm Cu ppm Pb ppm Cd ppm 1 32 0.48 0.91 1 .76 16.8 100 1 .18 158 140 76 64 30 51 2.21 2a 2b 40 24 0.55 0.37 1.15 0.78 2.12 1 .08 16.9 16.8 167 200 2.56 0.84 1665 180 233 242 67 36 85 30 50 40 73 57 2.81 1 .54 3a 3b 50 20 0.50 0.33 1 .10 0.66 2.09 1.07 17.4 18.0 400 160 2.50 0.74 1090 224 340 208 90 22 83 24 40 80 94 49 1 .70 1.08 4a 4b 60 70 0.42 0.44 1 .64 2.16 1.61 1.56 9.0 5.7 160 100 6.10 4.52 2100 630 238 292 110 136 112 178 40 60 108 47 2.25 2.48 5a 5b 40 32 0.50 0.52 0.72 1.10 2.37 1 .84 19.2 22.8 125 160 2.25 1.68 950 476 450 156 55 68 61 68 75 30 100 38 2.45 1 .30 6a 6b 31 40 0.63 0.49 0.78 1 .07 2.40 2.09 21.2 20.3 193 167 1.93 2.18 1694 633 34 7 186 58 67 49 65 58 50 87 65 1 .66 1 .80 7 40 0.55 0.73 1 .90 21 .0 250 1 .58 166 280 55 66 40 49 2.15 8 25 0.53 0.74 1.46 23.5 200 1.00 125 275 45 36 20 33 1.63 1977b) concentrations of zinc correspond to the percentages of carbonate, i.e. neither dilution nor enrichment by carbonates takes place; in Lake Constance, the zinc contents are characteristically enriched through the carbonate sediment fraction, and partly by authigenic co-precipitation processes. The copper values reveal no systematic trend; the carbonate-associated copper percentages lie between 2%> (Lake Bled) and 10 °/o (Lake Constance), indicating that a dilution of copper is brought about, in all studied cases, by the presence of carbonate. Since chromium reveals no association with carbonate, it could be expected that the dilution effect should be even more pronounced that in the case of copper. , The chemical associations of heavy metals in sediments of Lake Bled have been listed in table 23 (from data of G. S c h m o 11, Heidelberg). It is evident that a large portion of the contents of nickel and chromium, and to a lesser degree of copper and iron are fixed in relatively inert positions to organic and inorganic detritus. The latter fractions are assumed to consist mainly of resistant heavy minerals, such as silicates and oxides. A considerable amount of nickel, chromium, copper and manganese is associated with hydrous oxides, although the major carrier, the hydrous oxides of iron, contributes only 0.02 °/a to the total sediment composition. As it has been shown from other examples of lake sediments (G. Schmoll, 1977), the oxyhydrate phases — either as direct precipitates or as co-precipitates with hydrous Fe/Mn oxides — effectively accumulate certain trace elements from the aquatic environment. Enrichment of metals in humic substances seems to be particularly important for iron and zinc; for the latter metal example the contribution from sewage effluents must be taken into account. Table 19. Mean valves, standard deviation and variation coefficients of the metal data from peiitic fractions of the samples from Lakes Bled and Bohinj BLEJSKO JEZERO (n«64) Mean Standard Variotion values deviation coefficient Li 25.1 -10 ppm 40 Na 0.40 ±0.11 % 28 K 0.77 i 0.39 % 51 Mg 0.99 i 0.29 % 29 Ca 13.75 14.34 % 32 Sr 177 1 67 ppm 37 Fe 0.94 i 0.61 % 48 Mn 196 t 76 ppm 39 Zn 371 t 178 ppm 48 Cr 35.9 ± 14.1 ppm 39 Ni 22.9 t 13.9 ppm 60 Cu 40.6 ± 13.7 ppm 34 Pb 60.5 ± 36.2 ppm 60 Cd 1.57 ± 0.81 ppm 51 BOHINJSKO JEZERO (n<8) Mean Standard Variation values deviotion coefficient Li 40.4 ± 10.5 ppm 26 Na 0.51 i 0.07 % 14 K 1.12 ♦ 0.33 % 30 Mg 2.01 i 0.37 % 18 Ca 17.22 ± 4.07 % 24 Sr 168 ± 61 ppm 37 Fe 2.38 i 1.08 % 45 Mn 635 ± 486 ppm 77 Zn 265 ±81 ppm 31 Cr 83.2 t 26.9 ppm 32 Ni 77.1 t 32.6 ppm 42 Cu 47.1 i 19.2 ppm 41 Pb 68.5 ±24.1 ppm 35 Cd 1.88 ± 0.42 ppm 23 Table 20. Correlation matrix for the metal contents in the pelitic fraction of sediments from Lake Bohinj BOHINJSKO JEZERO (n = 28) Li Na K Mg Ca Sr Fe Mn Zn Cr Ni Cu Pb Cd T 95 % probability; doubly underlined > 99 % probabilitiy Table 21. Correlation matrix for the metal contents in the pelitic fraction of sediments from Lake Bled BLEJSKO JEZERO (n = 54) Li Na K Mg Ca Sr Fe Mn Zn Cr Ni Cu Pb Cd Li X 0. 331 Q^glg -0.327 0.194 0..54 7 -0.094 Q^.667 0.768 0.251 -O.167 -0.358 Na 0.331 X 0.290 2==I11 Q-.604 0.209 0..4 95 -0.151 0.218 0.276 -0.019 -0.294 -0.502 K Qa.916 0.2 90 X -0.345 0.049 0^859 Qiill -0.277 0^488 QiZSl 0.147 -0.298 -0.402 Mg Qilil Qilll 0^548 X 0.212 Qilll Q^Iii 0.190 2illž 0^4 39 0.023 -0.124 Ca -0.327 QiiQi -0.345 0.212 X 0.324 ~Qi3£2 0.229 -0.085 -0.131 -0.208 -0.091 -0.158 -0.248 Sr 0.154 Qi426 0.049 Qilli 0.324 X 0. 148 0. 142 Qilil 0.354 -0.004 Qi462 0.248 0.039 Fe QiJiS 0.209 Qilll Q&yi -QMl 0.148 X QiSll 0. 110 Qilll QillZ QiiQi 0.093 -0.114 Mil Q M$ Qiin gtSil 0.229 0.142 0.617 X -0.068 Q-.818 0.235 -0.075 -0.239 Zn -0.094 -0.159 -0.277 0.190 -0.085 QsJI! 0.1 10 -0.068 X 0.304 0.035 Qi§80 Q^lii Cr QiifeZ 0.218 Q&593 -O.131 0.354 QiiQI 0. 304 X Qii^Z 0.280 -0.032 Ni Q^Zil 0.276 QiZH -0.208 -0.004 Q&§2 I Q^.818 0.035 Q^fiSi X 0. 331 0.030 -0.151 Cu 0. 251 -0.019 0.147 Qiill -0.091 QMl Qi.404 0.239 2&ŠI9 Q&547 0. 331 X SiiZl 0^367 Pb -0.167 -0.294 -0.298 0.023 -0.158 0.248 0.093 -0.075 Qiiii 0.280 0.030 Qž571 X Cd "Q^lli -g.|ga -Qi402 -0.124 -0.248 0.039 -0.114 -0.235 -0.032 -0.151 0^267 0^95 X Once underlined > 95 % probability; doubly underUned > 99 % probability Table 22. Carbonate-associated heavy metals in Lake Bled and other lakes: examples from Europe (Cc: calcite; MgC: high-magnesium cal-cite; Dol: dolomite). From R. Deurer et al. (1978) carbo- carbonate species Fe Mn Zn Cu Cr nate (%) in carbonate association percent (%) Cc MgC Dol of total metal phases Lake Constance 28 20 - 8 7 62 43 10 0 Neusiedler See 37 - 12 25 10 34 15 4 0 Lake Ohrid 44 44 - - 10 55 43 8 <1 Lake Balaton 55 - 41 14 20 68 13 5 0 Lake Bled 72 70 - 2 26 46 67 12 0 Table 23. Metal concentrations (Fe in other metals in ppm) and percentages of metal associations <*organic and inorganic residues + sulfides) in a sediment sample from the central part of the eastern basin of Lake Bled (data from G. S c h m o 11, 1977) Metal Total metal conc. Sorption + H20-*oluble conc. % Humic Substances conc. % Hydrous oxides conc. % Carbonate fraction cortc. % Residual fraction conc. % Fe 2.54 % 0.4 % 16 0.5 % 20 0.13 % 5 0.67 % 26 0.84 % 33 Mn 176 ppm 22 ppm 12 6,5 ppm 4 40 ppm 23 80 ppm 46 27 ppm 15 Zn 162 6.0 4 17.8 U 2 J_ 108 67 30 18 Cu 17.4 4.0 23 0.4 2 4.0 23 2.0 12 7.0 40 Cr 11.0 0.8 7 0.4 3 2.3 21 0 0 6.6 6? Ni 6.0 0.2 3 0.2 _3 2.0 33 0.2 _3 4.0 67 Composi Hon of the sample: 4.7 % org»subst« 0.02 % 72 % 23 % FeOOH carbonate residues 8. Summary and conclusions The sedimentological and environmental conditions of the Alpine border lakes of Bled and Bohinj presented here are part of a general program on Recent fluviatile and lacustrine sediments of Slovenia. This program was started in 1975, and problems of the Sava-river pollution and the Moste-dam have been studied since. This time a working group was engaged to sample the lake sediments and to examine them from the mineralogical and geochemical points of view. 15 grab samples and two core profiles (25—45 cm in depth) were taken from Lake Bled, and 8 grab samples and one core from Lake Bohinj. A brief geological and palynological survey of the surroundings of the lakes was carried out to delineate the origin of the sedimentary material and its pollen contents. The Bled sediment abounds in sewage and the lake water is characterized by dissolved plant nutrients and by the seasonal deficiency of oxygen in its hypo-limnion. Thereby it becomes eutrophic. To overcome this disturbance of the natural conditions a pipeline has been constructed to convey water of the Ra-dovna river into Lake Bled. Lake Bohinj, however, owes its biological equilibrium to a natural through-flowing stream. The results of the Lake Bohinj sediments are therefore particularly helpful as natural background data for pollution problems in Slovenia. Lake Bohinj should be noted, namely, for its rather high iron, manganese, chromium and nickel contents. Their origin has not been explained as yet. In the Lake Bled sediment calcareous silt and clay prevail associated with dolomite and organic admixture. The upper most 10 cms shows a laminated structure due to the alternation of inorganic and organic matter. Total carbonate contents of 56 samples are in the range of 55—79 %>, and are essentially the same in grab samples and core samples. Calcite prevails but dolomite may occasionally amount up to 38% of the carbonate fraction. The noncarbonates appear to be mostly diatoms, besides some quartz and traces of feldspar and clay minerals. Near surface sediments from all parts of Lake Bled exhibit an apparent odor from the decay of abundant waste matter from sewers. In the Lake Bohinj sediment total carbonate content ranges from 53 to 91 percent. Calcareous silt is indeed the prevalent constituent but dolomite content is higher compared to Lake Bled; it amounts locally to 69%. Dolomite is clearly detrital and is transported to the lake by its affluents whereas a small amount of the low magnesium calcite may also be autochthonous, particularly in the very shallow southern part. The non-carbonate sediments are essentially similar to the Lake Bled sediment, including also very well preserved diatoms. The content of organic substances within Lake Bohinj is much lower than within Lake Bled. Since both lakes are shallow (maximum depth about 40 m) and their surroundings consist essentially of Triassic carbonate rocks, most of the Recent carbonate sediments are supposed to be detrital. This is apparent for dolomite, but some calcite may also be autochthonous due to activity of plants. In general the Lake Bled sediment is more fine grained in comparison to that of Lake Bohinj. Clayey matter tends to prevail in it, while silt is more widespread in Lake Bohinj. Sedimentation rates appear to be higher in Lake Bohinj than in Lake Bled. The present study has revealed distinct human effects on the metal composition of the sediments from Lake Bled. A typical increase of lead, zinc and cadmium towards the youngermost layers strongly point to the influence of major inputs of sewage materials, which are most probably derived from the community of Bled. These effluents are considered to be responsible for the increased eutrophication during the last decades. Eutrophication seems to be delayed since fresh water is conveyed from Radovna river to the lake, although it is still continuing at a lower rate. With respect to these problems, further evidence should be gained from additional studies on the contents of nutrient elements, such as phosphorus, nitrogen, and organic carbon, as well as from the distribution patterns of contaminants other than heavy metals, e. g. synthetic organic substances. Further studies of the mineralogical and geochemical aspects of the lake sediments should be based on a more closely-knit net of grab samples and on sediment cores. The latter would be particularly useful to elucidate the geological history of both lakes, e. g. by pollen chronology. 9. Acknowledgements We are particularly indebted to the Research Council of Slovenia, Jesenice Iron and Steel Works, and Geological Survey Ljubljana for supporting this research project. The financial aid for metal analyses in the program "Geochemistry of Trace Substances in the Environment" was provided by the Deutsche Forschungsgemein-schaft We are obliged to the Boris Kidrič Chemical Institute Ljubljana for the aid given during the field work and the providing of presented limnological data, and to J. Podobnik for technical help and for the analyses of the lake waters. Thanks must be extended to A. Brezigar and to S. Zakrajšek for the assistance during the sediment sampling. The sieving analyses were carried out by Z. Germovšek, and the sedimentation analyses by V. Kogovšek. Grateful thanks are to Professor Dr. G. Muller from Heidelberg University for kindly provided laboratory facilities. The chemical analyses in chapter 7 of the lake sediments were conducted by I. Krtill from Heidelberg University. Data for the section on metal associations have been provided by R. Deurer and G. Schmoll. Chemical analyses of interstitial water were carried out by D. Reinhard. M. Gastner and H. Weiss (Heidelberg), helped with the scanning electron miroscopy. Our thanks for translation and improving the English version of the manuscript go to N. Klupsch (Swansea, presently Mannheim). For the translation of the Chapter 7 we are obliged to D. Godfrey. The writers are very grateful to N. Sosič (Ljubljana) for translating from Slovene into English. 10. References Allan, R. J., 1974, Metal contents of lake sediment cores from established mining areas: an interface of exploration and environmental geochemistry. Geol. Surv. Canada Paper 74-1-B, 43—59. Anderson, T. W. 1973, Historical evidence of land use in a pollen profile from Osoyoos Lake, British Columbia. Geol. Surv. Canada Paper 73-1-A, 178—180. Bonatti, E., Fisher, D. E., Joensuu, O. & Rydell, H. S. 1971, Post-depositional mobility of some transition elements, phosphorous, uranium and thorium in deep sea sediments. Geochim. Cosmochin. Acta, 35, 189—201. Deurer, R., Fdrstner, U. & Schmoll, G. 1978, Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim. Cosmochim. Acta. 42, 425—427. 11 — Geologija 21 Duthie, H. C. & Sreenivasa, M. R. 1971, Evidence for the eutrophication of Lake Ontario from the sedimentary diatom succession. Proc. 14 th Conf. Great Lakes Res., 1—13. Engler, R. M., Brannon, J. M. & Rose, 1974, A practical selective extraction procedure for sediment characterization. Techn. Paper 168th Meeting ACS, Atlantic City. 15 pp. Erlen keuser, H., Suess, E. & Willkomm, H. 1974, Industrialization affects heavy metal and carbon isotope concentrations in recent Baltic Sea sediment. Geochim. Cosmochim. Acta, 38, 823—842. Fabiani, R., Leonardi, P., Kossmat, F., Winkler, A. 1937, Carta geologica delle tre Venezie—Tolmino, 1:100 000; Firenze. Forstner, U. 1976, Lake sediments as indicators of heavy metal pollution. Na-turwiss. 36, 465—470, Berlin. FSrstner, U., 1977a (in print), Metallgehalte in rezenten lakustren Sedimenten — naturliche background Werte und zivilisatorische Effekte. IHP-Publikation No. 2, Koblenz. Forstner, U. 1977b, Metal concentrations in recent lacustrine sediment. Arch. Hydrobiol. 80, 172—191. Forstner, U. & Muller, G. 1973, Heavy metal accumulation in river sediments: a response to environmental pollution. Geoforum 14, 53—61. Forstner, U. & Muller, G. 1974, Schwermetalle in Flussen und Seen. Springer Verlag, Berlin. Gradnik, R. 1946, Toplinski odnošaji v Blejskem in Bohinjskem jezeru. Geograf. vestnik 18, 94—125, Ljubljana. Grimšičar, A. 1955, Zapiski o geologiji Bleda (Notes on the geology of Bled). Geologija 3, 220—225, Ljubljana. Hakanson, L., 1977, Sediments as indicators of contamination — investigations on the four largest Swedish lakes. Naturvardsverkets Limnologiska Undersokning Rapport 92, 159 pp. H e 11 m a n n , H. 1972, Herkunft der Sinkstoffablagerungen in Gewassern. Deutsche Gewasserkundl. Mitt. 16, 137—141, Hutchinson, G. E. & Wo Hack, A. C. 1940, Studies on Connecticut lake sediments. II. Chemical analyses of a core from Linsley Pond. Amer. J Sci 238 493—517, New Haven. Kemp, A. L. W., Anderson, T. W., Thomas, R. L. & Mudrocho-v a, A. 1974, Sedimentation rates and recent sediment history of Lake Ontario, Erie and Huron. J. Sediment Petrol. 44, 207—218. Kemp, A. L. W., Thomas, R. L., Dell, C. I. & Jaquet, J. M. 1976, Cultural impact on the geochemistry of sediments in Lake Erie. J Fish Res Bd Canada, 33, 440—462. ' Kindle> E- M- 1&32> Lacustrine concentrations of manganese. Amer. J. Sci. 24,. 496—504, New Haven. Kuščer, D. 1955, Prispevek h glacialni geologiji radovljiške kotline (Beitrag zur Pleistozangeologie des Beckens von Radovljica). Geologija 3, 136—150, Ljubljana. Leshniowsky, W. O., Dugan, P. R.. Pfister, R. M., Frea, J. I. & ?.a,nJr ' C* 1970» Adsorption of chlorinated hydrocarbon pesticides by microbial floe and lake sediment and its ecological implications. Proc. 13 th Conf. Great Lakes Res., 611—618. Livingstone, A. & Boykin, J. C. 1962, Vertical distribution of phosphorous in Linsely Pond mud. Limnol. Oceanogr. 7, 57—66. Lloyd, R. M. 1954, A technique for separating clay minerals from limestones. J. Sedim. Petrol., 24/3, 218, Menasha (Wise). i, ^cJf.,enz.ie' F" T' Carrels, R. M, Bricker, O. P., and Bickley, I»b7, Silica in sea water: Control by silica minerals: Science. 155. 1404—1405 Washington. ' Mortimer, C. H. 1941, The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29, 280—329. M u 11 e r, G. 1966, Die Sedimentbildung im Bodensee. Naturwiss. 53, 237—247, Berlin. MUller, G. & Gastner, M 1971. The "Karbon at-Bombe", a simple device for the determination of the carbonate content in sediments, soils, and other materials. N. Jb. Miner., Mh., J. J971/H.10, 466—469, Stuttgart. Miiller, G., Irion, G. & Forstner, U. 1972, Formation and Diagenesis of Inorganic Ca-Mg Carbonates in the Lacustrine Environment. Naturwiss. 59, 158—164, Berlin. Murray, R. C. 1956, Recent sediments of three Wisconsin Lakes. Bull. Geol. Soc. Amer. 67, 833, Burlington (Vermont). Nipkow, H. F. 1920, Vorlaufige Mitteilungen iiber Untersuchungen des Schlam-mabsatzes im Ziirichsee. Ztschr. Hydrol. (Aarau), 1—23. Ohle, W. 1956, Die Seen als Opfer der Abwasserkalamitat. Ber. Abwassertechn. Ver. 1956, 268—276. Rejic, M. 1973, Radovi i efekti na sanaciji Bledskog jezera (A brief survey of reconditioning and sanating the Lake of Bled). Vodoprivreda, 5, 25, 1973, Beograd, 363—370. Rossman, R. & Callender, E. 1968, Manganese nodules in Lake Michigan. Science 162, 1123—1124, Washington. Schottle, M. 1969, Die Sedimente des Gnadensees. Ein Beitrag zur Sedimentbildung im Bodensee. Arch. Hydrobiol. Suppl. 35/3, 255—308, Stuttgart. Schmoll, G., 1977, Untersuchungen iiber die Bindungsarten der Schwermetalle Eisen, Mangan, Zink, Kupfer, Chrom, Nickel und Kobalt in rezenten karbonatreichen Seesedimenten. Diplom-Arbeit am Institut fur Sedimentforschung der Universitat Heidelberg. Solomon, A. M. & Kroener, D. F. 1971, Suburban replacement of rural land uses reflected in the pollen rain of northeastern New Jersey. Bull. New Jersey Acad. Sci. 16, 30—44. Stockner, J. G. & Benson, W. W. 1967, The succession of diatom assemblages in the recent sediment of Lake Washington. Limnol. Oceanogr. 12, 513—532, Lawrence (Kans.). Stoffers, P. 1975, Recent carbonate sedimentation in the lakes of Plitvice (Yug.). N. Jb. Miner. Mh., J. 1975, H. 9, 412—418, Stuttgart. Suess, E. 1977, How can we distinguish between natural and anthropogenic materials in sediments and can we predict the effects of man's additions? — SCOR/ UNESCO Workshop on the Biogeochemistry of Estuarine Sediment, Melreux, Nov. 29.-Dec. 3, 1976 (in press). S e r c e 1 j, A. 1970, Wurmska vegetacija in klima v Sloveniji, Razprave SAZU, 13/7, Ljubljana, 211—249. Sercelj, A. 1971, Postglacialni razvoj gorskih gozdov v severozahodni Jugoslaviji (Die postglaziale Entwicklung der Gebirgswalder im nordwestlichen Jugosla-wien). Razpr. 4. r. SAZU, 14/9. Ljubljana. Š e r c e 1 j, A. 1975, Razvoj in zgodovina gozdov v škofjeloškem hribovju (Die Entwicklungsgeschichte der Walder im Bergland von Skofja Loka). Loški razgledi 22, Ljubljana. Stern, J. & Forstner, U. 1976, Heavy metals distribution in the sediment of the Sava Basin in Slovenia Geologija 19, 259—274, Ljubljana Thomas, R. L. 1972, The distribution of mercury in the sediment of Lake Ontario. Can. J. Earth Sci. 9, 636—651. Vetters, H. 1935, Manuskriptna geološka karta Radovljice (Radmansdorf) 1 :75 000, (po podatkih F. Tellerja, F. F. Kossmata, F. Hžirtla in O. Ampfererja). Vrhovšek, D. & Brezigar, A. 1976, Ocena naplavin, ki zasipavajo Blejsko jezero. Naše okolje 1, 5, 209—213, Ljubljana. V u o r e 1 a, I. 1970, The indication of farming in pollen diagrams from southern Finland. Acta Bot. Fennica, £7, 1—140, Helsinki. Wagner, G. 1972, Stratifikation der Sedimente und Sedimentationsrate im Bo-densee. Verh. Internat. Verein Limnol. 18, 475—481. Wedepohl, K. H. 1972, Solubilities of compound which control concentrations of zinc in natural water (I); adsorption processes (II). In: Handbook of Geochemistry (Ed. By K. H. Wedepohl), 33-H, 1—14, Springer Verlag, New York. Whiteside, M. C. 1965, Paleoecological studies of Potato Lake and its environment. Ecology 46, 807—821. Z i n g g, Th. 1935, Beitrag zur Schotteranalyse, Schweiz. Min. u Petr. Mitt., Bd. 15, 39—140. Z ii 11 i g, H. 1956, Sedimente als Ausdruck des Zustandes eines Gewassers. Schweiz. Ztschr. Hydrol. IS, 7—143. NOVE KNJIGE BOOK REVIEW Otto Prokop 1 Wolf Wimmer: Wunschelrute, Erdstrahlen, Ra-difisthesie, Ferdinand Enke Verlag, Stuttgart, 1977, 188 str., 18 slik, 203 cit. lit., format 19 X 12 cm. Broširano DM 16,80. Bajaničarstvo, radiestezija, homeopatija, akupunktura in druge paraznanosti so ostanki preteklosti. Vera vanje je pri nekaterih ljudeh še močno zakoreninjena. Pa ne samo to! Njihova uporaba je povzročila in še povzroča tolikšno duhovno in materialno škodo, da ni prav nič odveč od bliže spoznati te »vede«. V tem smislu je napisana knjižica avtorjev O. Prokopa inW. Wimmer-j a. Prvi je zdravnik, drugi jurist. Ze ta kombinacija kaže na »multidiscipli-narno« naravo pojavov s področja parapsihologije in kriminalistike. Delo je predvsem zbirka materiala, na podlagi katerega si vsakdo lahko sam ustvari sodbo o bajanici, o zemeljskih žarkih in o radiesteziji sploh. Za vse te vede obstaja v literaturi in praksi nenavadno veliko imen, izposojenih iz tehnike in fizike, ki skušajo vzbuditi vtis, da gre tu za moderne in predvsem znanstveno utemeljene metode in teorije. Avtorja obravnavata v tem delu v glavnem področje zdravstva in iskanja koristnih mineralov, vode, nafte in še zlasti več primerov zakopanih zakladov. Znanost se za te paraznanosti ne zmeni dosti. Značilno zanje je, da jih strokovnjak kljub svojemu znanju ne razume in mu nikakor ni mogoče prodreti v njihovo bistvo. Namesto hudičev, zlih duhov, čarovnic in podobnih predstavnikov človeku sovražnega nevidnega sveta so iznašli geopatijo, astrologijo, koz-mične vibracije, hiromantijo in sorodne vede, ki s svojimi področji občutljivosti, z geožarčenjem in drugimi nesmisli v duhu modernega časa kar dobro nadomestijo stare nosilce zla. Za vse te pojave je bajanica zelo nazoren in izredno občutljiv instrument. Radiestezisti ali ljudje, ki so občutljivi za žarčenje, so že znanim elektromagnetnim valovom dodali še vrsto drugih valov, ki jih pa lahko odkrije edino bajanica. Ti valovi imajo zanimivo lastnost, da jih današnja fizika kljub svoji opremljenosti in raziskovalnim metodam ne more dokazati, pač pa jih zelo občutijo nekateri laiki, ki jih umejo tudi koristno uporabiti. Avtorja navajata vrsto raznih poizkusov, ki so imeli namen dokazati ali ovreči obstoj zemeljskih žarkov in uporabnost njihovih detektorjev-bajanic. Pri teh poizkusih so sodelovali tudi znani zdravniki, fiziki in geologi, in to kot pristaši ali kot neprizadeti raziskovalci. O tem je bilo veliko napisanega. Sklepi so bili ali nejasni ali pa so pokazali popolno nesmiselnost bajaničarstva. Krono bajaničarstva predstavlja ravno sledenje vode. Navedeno je nekaj uradnih statistik o »uspehih« slovitih bajaničarjev v Nemčiji. Za vrtanje njihovih negativnih vrtin so bile potrošene ogromne vsote denarja. Nadalje omenjata avtorja tudi tako imenovane aparate proti škodljivemu zemeljskemu žarčenju, ki povzroča razne bolezni, npr. raka. Tako so kriminalisti leta 1976 samo v ZR Nemčiji registrirali prek 60 raznih aparatov, ki jih prodajajo lahkovernim ljudem. Značilno za te aparate je opozorilo, da izgubijo svojo moč, če se jih odpre. Njihova vsebina je vedno nesmiselna šara brez kakršnegakoli pomena. Za izdelovalca enega takega aparata so ugotovili čisti letni dohodek okoli 1 milijon DM. Drugi del knjige obravnava stališče prava in njegove postopke proti radie-stezistom, izganjalcem hudiča, astrologom, akupunkturistom, okultistom, psiho-kinetom, bajaničarjem in še celi vrsti podobnih čarodejev v ZR Nemčiji. Veliko deliktov, ki jih zagreše omenjeni »izvedenci« pa sploh ne pride v javnost ali pred sodišče. Osebe, ki so bile opeharjene, se boje, ali pa jih je sram priznanja. Avtorja opozarjata, da je v zadnjem desetletju v ZR Nemčiji močno naraslo zanimanje za nadnaravne sile. V raznih časopisih in revijah se pojavljajo oglasi za ustrezne usluge, ki jih Jahko nudijo geobiologi, radiestezijski fiziki, gradbeni biologi ali geomedicinci. Isto velja tudi za raznovrstne zaščitne aparate proti raznim žarčenjem. Knjiga nudi zanimivo in poučno branje, ki se sicer po svoji specifični problematiki nanaša predvsem na Nemčijo in Avstrijo, vendar se jo lahko prenese tudi v naše okolje. Seveda pa je treba na tem širokem področju ločiti prizadevanja, ki imajo namen znanstveno razložiti določene pojave te vrste, od posploševanja in čistih špekulacij. Danilo Ravnik UREDNIŠKA OBVESTILA EDITORIAL NOTICES Sodelavcem GEOLOGIJE Vsebina in obseg dela GEOLOGIJA objavlja originalne razprave s področja geoloških in sorodnih ved ter poročila o geoloških raziskovanjih, kongresih, posvetovanjih in publikacijah. Rokopis naj ne bo daljši od 35 tipkanih strani ali 60 000 znakov. V to število se štejejo tudi slike. Osnova za preračunavanje slik v znake je 3500 znakov za celostransko sliko. Prosimo vse sodelavce GEOLOGIJE, da skrbno izbirajo vsebino svojih člankov, posvete ustrezno pozornost kratkemu in jasnemu načinu izražanja, uporabi posameznih besednih vrst in strokovnih geoloških izrazov ter izdelavi ilustracij. Na ta način bo reviji zagotovljena primerna znanstvena raven in oblika. Priprava rokopisa Prispevki morajo biti pisani s strojem z dvojnim presledkom in s 4 cm širokim levim robom. Pri pregledu svojih rokopisov naj avtorji zlasti pazijo na pravilno pisanje znanstvenih in lastnih imen, znakov, številk, formul in podobno. Osebna imena pri navajanju literature naj bodo podčrtana črtkano, imena fosilov (rod in vrsta) pa valovito. Tekst naj ne vsebuje neobičajnih okrajšav in nejasnih popravkov. Tabele naj bodo napisane na pisalni stroj IBM tako, da jih bo možno kliširati. Članki morajo biti pisani ali v domačih ali v tujih svetovnih jezikih. Članek v domačem jeziku mora imeti povzetek v tujem svetovnem jeziku v obsegu ene petine članka, prispevek v tujem jeziku pa naj ima kratek slovenski povzetek. Na začetku vsakega članka mora biti izvleček v obsegu 700 do 1000 tiskovnih znakov v enem od svetovnih jezikov. Ce želi avtor drugačne pogoje glede obsega in povzetka svojega članka, je to možno v sporazumu z uredništvom. Navajanje literature Literaturo navajajte po abecednem redu avtorjev in kronološko na naslednji način: priimek avtorja, začetna črka avtorjevega imena, letnica, naslov dela (pri periodičnih izdajah tudi naslov revije in zaporedna številka zvezka), založba in kraj, kjer je delo izšlo. V literaturo vključujte samo uporabljena dela, bibliografijo pa le v izjemnih primerih glede na vsebino in pomen razprave. V citatih med tekstom navedite začetno črko imena in priimek avtorja ter letnico, ko je delo izšlo, po potrebi tudi stran. Ilustracije Karte, profili, skice, diagrami in druge podobne slike morajo biti narisani na prosojnem matričnem papirju. Za fotografske, mikrografske in rentgenske slike je treba predložiti visokokontrastne originale na gladkem, svetlem papirju. Izjemoma imajo avtorji možnost objaviti tudi barvne slike. Na vsaki sliki mora biti ime avtorja in zaporedna številka slike. V glavnem naj bo slika pojasnilo teksta, zato mora biti med tekstom na ustreznem mestu navedena zaporedna številka slike. Napisi in legende k slikam naj bodo kratki, posebno še, ker morajo biti dvojezični. Pri dosedanjih izdajah naše revije se je pokazalo, da avtorji pri slikah ne upoštevajo formata knjige, kar povzroča mnogo dodatnega dela pri urejevanju in tisku. Pri vseh slikah med tekstom upoštevajte, da je zrcalo revije 12,6 X 19,2 cm. V primeru, da je potrebna večja slika, naj njena širina po možnosti ne preseže 40 cm, višina pa naj ne bo večja kot 18 cm. Risba naj bo večja kot slika, ki bo po njej izdelana; razmerje naj bo 2 :1. Pri tem je treba paziti na debelino črt ter na velikost številk, črk in drugih znakov na risbi, da bosta njihova debelina in velikost tudi po zmanjšanju ustrezala; črke in številke na tiskani sliki morajo biti visoke najmanj 1 mm. Celoten rokopis, vključno risbe, fotografije, izvleček in povzetek v tujem jeziku, mora pripraviti vsak avtor sam. Rok za predložitev rokopisov V 22. knjigi GEOLOGIJE, letnik 1979, bodo objavljena dela, ki jih bo uredništvo prejelo do konca leta 1978 za prvi del knjige in do konca junija 1979 za drugi del knjige. Korekture Uredništvo bo pošiljalo krtač ne odtise stavkov v korekturo avtorjem. Pri korekturah popravljajte samo tiskovne napake. Dopolnila so možna le na stroške avtorjev. Sodelavcem, ki živijo zunaj Ljubljane, bomo krtačne odtise pošiljali po dogovoru; njihove popravke bomo upoštevali le v primeru, da korekture vrnejo v dogovorjenem roku. Posebni odtisi Avtorji prejmejo brezplačno po 50 izvodov separatov vsakega članka. Nadaljnje izvode pa lahko dobe po ceni, ki ustreza dejanskim stroškom.