1 Key words: casmophytic vegetation, Mediterranean, phytogeography, rock vegetation, Southern Italy, syntaxonomy. Ključne besede: hazmofitska vegetacija, sredozemski, fitogeografija, naskalna vegetacija, južna Italija, sintaksonomija. Corresponding author: Dario La Montagna E-mail: dario.lamontagna@uniroma1.it Received: 20. 3. 2024 Accepted: 15. 7. 2024 Unveiling unique endemic associations: A contribution to the knowledge of chasmophytic vegetation on the Sorrento Peninsula and Picentini Mountains Abstract Sorrento Peninsula and the Picentini Mountains are rich in local endemics and have been well studied taxonomically, but their vegetation, particularly cliff plant assemblages, remains poorly known. This paper presents phytosociological insights on cliff-dwelling communities in these areas. We conducted 28 relevés (8 previously published) and used multivariate analyses to classify them. The bioclimatic context was analyzed using Rivas-Martínez indexes and compared with other Central Mediterranean rock vegetation. We identified three clusters classified into one association and two sub-associations: Globulario neapolitanae-Loniceretum stabianae typicum; Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova; and Diantho virginei-Seselietum polyphylli ass. nova. This vegetation is referred to a new alliance, Lonicerion stabianae all. nova, characterized by an intermediate Mediterranean, temperate, and weakly continental climate. The endemic cliff vegetation in these areas suggests a distinct phytogeographical sector within the Italian Peninsula. Izvleček Polotok Sorrento in gorovje Picentini imata bogato endemično floro, ki je bila taksonomsko tudi dobro preučena, njuna vegetacija, predvsem vegetacija klifov, pa je slabo poznana. V članku predstavljamo fitocenološki pogled na rastlinske združbe klifov s teh dveh območij. Naredili smo 28 vegetacijskih popisov (8 je bilo že objavljenih) in jih klasificirali z multivariatnimi metodami. Bioklimatske značilnosti smo analizirali z indeksi po Rivas-Martínezu in primerjali z naskalno vegetacijo srednjega Sredozemlja. Ugotovili smo tri klastre in jih uvrstili v eno asociacijo in dve subasociaciji: Globulario neapolitanae-Loniceretum stabianae typicum; Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova; in Diantho virginei-Seselietum polyphylli ass. nova. To vegetacijo uvrščamo v novo zvezo Lonicerion stabianae all. nova, ki jo označuje vmesna sredozemska, zmerna in slabo kontinentalna klima. Endemična vegetacija klifov v teh območjih nakazuje poseben fitogeografski sektor na italijanskem polotoku. Dario La Montagna1, Emile Ammann1, Francesco Buttarazzi1, Vito Emanuele Cambria1, Lorenzo Caucci1, Elisa De Luca1, Michele De Sanctis1, Sara Frasca2, Fabio Attorre1 & Giuliano Fanelli1 1 Department of Environmental Biology, Sapienza University of Rome, Rome, Italy 2 Department of Biology, University of Rome Tor Vergata, Rome, Italy DOI: 10.3986/hacq-2025-000324/1 • 2025, 1–14 24/1 • 2025, 1–14 2 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Introduction Chasmophytes are plant species that grow on rocky walls, often characterised by specific adaptations to thrive in ex- treme environments with limited soil and unique climatic conditions. Moreover, the rocks create conservative habi- tats that promote the evolution and survival of paleoen- demics (Snogerup, 1971; Antonsson, 2012). Therefore, it is not surprising that a significant percentage of Medi- terranean endemism is concentrated in chasmophytic vegetation, particularly those in proximity to the sea (Thompson, 2020). Iconic examples of this chasmophytic flora include Primula palinuri Petagna, Eokochia saxicola (Guss.) Freitag et G.Kadereit, and various species of the Brassica and Centaurea genera (Pignatti et al., 2017). This notable phytogeographic interest has sparked numerous phytosociological studies (Brullo & Marcenò, 1997; Bi- ondi et al., 2000; Corbetta et al., 2000; Terzi & D’Amico, 2008; Wagensommer, 2017; Di Pietro & Wagensommer, 2008), recently synthesised for the central Mediterranean by Terzi et al. (2018). This review has highlighted the existence of several geographically localised alliances at- tributable to three orders: Asplenietalia glandulosi for the Tyrrhenian coasts, including Liguria, Sicily, and Sardinia; Centaureo-Campanuletalia (including Moltkietalia petre- ae) along the Adriatic coasts; and Onosmetalia frutescentis in the Eastern Mediterranean. In Italy, one of the most significant centre of endemic chasmophytes is in the Sorrento Peninsula, western Campania, where especially in the short mountain ranges of Monti Lattari and Monti Picentini, numerous taxa with a very restricted range, some punctiform and generally rare, can be found. Examples include Lonicera stabiana, Globularia cordifolia subsp. neapolitana, San- tolina neapolitana, Galium lucidum subsp. venustum, Centaurea tenorei, and Seseli polyphyllum. Although these species were extensively studied by different botanists (Tenore, 1823; Pasquale, 1875; Lacaita, 1922; Schwarz, 1938; Moraldo et al., 1985; Natali, 1998; Del Guacchio et al., 2020), they are often subjects of taxonomic con- troversies, partially arising from a limited knowledge of the local populations of these species. Overall, the Sor- rento Peninsula remains relatively understudied from a vegetation and ecological standpoint, with some notable exceptions (Guadagno, 1916; Salerno et al., 2007; Fanelli et al., 2020). In the Sorrento Peninsula, two zones of chasmophytic vegetation can be distinguished: one closer to the sea, where intense anthropogenic impacts have made their presence sporadic, and the other in the mountainous zone, housing the majority of endemics. The focus of this study is the latter vegetation zone. This study expands on a previous investigation that identified an association dominated by Lonicera stabiana, an exceedingly rare stenoendemic species (Salerno et al., 2007). Although the previous work was focused on the description of the associations (Fanelli et al., 2020), it allowed for some initial speculations on the mountain- ous chasmophytic vegetation of the Sorrento region. This follow-up study aims to 1) review the chasmophytic as- sociations of the Sorrento Peninsula’s mountainous area, particularly the rare association Globulario neapolitanae- Loniceretum stabianae, and 2) to contextualise these as- sociations at the level of order and alliance within the chasmophytic vegetation of the central Mediterranean. Materials and methods Study area The investigated area encompasses two mountainous ranges, one in the Gulf of Naples and the second one in the inland area between Salerno and Avellino provinces (Figure 1). The Gulf of Naples extends over 195 kilome- tres, spanning from Mount Procida to “Punta Campan- ella”. Towards the south, there is the Sorrento Peninsula, a modest mountain range jutting out into the sea, which reaches its highest point at Mount Sant’Angelo a Tre Pizzi (1444 m) and only one more notable peak exceeding 1000 meters, i.e. Mount Faito (1131 m). The geology of this mountainous region is dominated by dolomitic steep slopes and cliffs. The geological com- plexity of the area results from the Apennine orogenesis, followed by an extensional phase that led to the formation of volcanoes along the Tyrrhenian coast. These geological phases are evident in the Sorrento Peninsula, marked by an anti-Apennine thrust, and the volcanic complex of Ve- suvius and Campi Flegrei (Casciello et al., 2006). The Picentini Mountains, located eastward from the Sorrento Peninsula, exhibit a diverse geological and strati- graphic composition. Primarily consisting of folded and faulted sedimentary rocks like limestones and marls, these mountains reflect their origin in a marine environment. The Terminio-Accellica unit is of particular interest as presenting dolomitic limestones and one of the highest peaks of the area (Terminio Mountain, 1806 m a.s.l.; Pappone & Ferranti, 1995). Volcanic activities from the Campanian Volcanic Arc has also left traces of tuffs and lavas, adding one more layer to the region’s geological structure (Pescatore et al., 2022). The whole area can be referred to the Mediterranean macrobioclimate, except for the areas at higher altitudes, such as Mt. Faito and Mt. San Michele in the Sorrento Peninsula, and the whole complex of the Picentini moun- 24/1 • 2025, 1–14 3 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines tains, featured by a temperate thermotype and an upper humid ombrotype climate. The conti- nentality index shows these al- titudes as weak semicontinental (Pesaresi et al., 2017). The Picentini Mountains and Sorrento Peninsula have experi- enced significant anthropogenic impacts stemming from centu- ries of deforestation, agricultural practices and other human activi- ties that have remarkably shaped the landscape and increasingly exposed the natural and semi- natural ecosystems to soil erosion and degradation in local ecosys- tems. In more recent times, ur- banisation, unregulated tourism and infrastructure development have exacerbated habitat frag- mentation and loss of biodiver- sity (Cancellieri & Caneva, 2007; Assennato et al., 2022). Phytosociological survey and data processing Over two field campaigns in the spring and autumn of 2022, twenty phytosociological relevés were carried out in the Lattari Mountains area, surveying both the Sorrento and Amalfi coasts, as well as the peak of Mount Terminio in the Picentini Mountains. Additionally, we added eight relevés from the previous work by Fanelli et al. (2020). The relevés were carried out following the Braun-Blan- quet method (Westhoff & van der Maarel, 1980) using the modified Braun-Blanquet scale of abundance (Bark- man et al. 1964). The taxonomical nomenclature follows Bartolucci et al. (2018). The area of relevés is on average from 1 to 5 m2, oc- casionally with much larger relevés to 50 m2. Since this could represent potentially a bias, we have carried out a supplementary analysis excluding relevés with area larger than 10 m2. Different types of multivariate analysis methods were employed to process the vegetation data. An ordination analysis through cluster analysis was performed to catego- rise the relevés into distinct groups. Euclidean distance was used as a dissimilarity measure, and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method was employed for clustering. Before selecting the Euclidean distance, we conducted several preliminary tri- als, finding this measure to be the most effective for dis- tinguishing clusters. The silhouette test and cophenetic distance were used respectively to estimate the optimal number of clusters and as measures of the goodness of the cluster analysis (Kassambara, 2017). After obtaining the cluster division of the relevés, we proceeded with an Indicator Species Analysis (ISA) (De Cáceres et al., 2010), which revealed the association be- tween species patterns and the selected group combina- tions. The number of permutations used was 4999. A Non-Metric Multidimensional Scaling (NMDS) was carried out to visualise the identified groups in a two- dimensional space. Two field-collected environmental variables (Elevation and Slope) and five bioclimatic vari- ables calculated for the Mediterranean region based on Rivas-Martínez et al. (2011) (unpublished data) were overlaid to potentially explain the ordination of the rel- evés (Table 1). The same distance measure used for cluster analysis was applied to NMDS, with 1000 random starts and a seed set to “123” for analysis repeatability. The “en- vfit” function with 999 permutations was employed for this purpose. To distinguish the classes identified through multivariate analysis and to provide a statistical rather than merely descriptive value, we conducted Kruskal- Wallis tests between the groups and for each variable, represented using boxplots. All the analyses in this paper were computed with R software (R Core Team, 2021). Figure 1: Map of the study area. White points indicate the places where the relevés have been conducted. Slika 1: Zemljevid preučevanega območja. Bele točke predstavljajo lokacije vegetacijskih popisov. 24/1 • 2025, 1–14 4 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Variable Description Elevation Vertical distance from the sea level Slope Vertical change in the elevation determined over a given horizontal distance, expressed in degrees Tp Annual Positive Temperature – sum of monthly average temperatures in months where higher than 0 °C Ic Continentality index Itc Compensated thermal index Io Umbrothermic index TpIc Annual Positive Temperature and Continentality Index ratio 7239 7238 7241 7703 7730 7729 7701 7710 7705 7727 7699 7722 7731 7728 7706 7733 7734 7221 7219 7225 7723 7712 7700 7704 7719 7707 7754 7753 Figure 2: Dendrogram retrieved from the cluster analysis together with species abundances. The three groups are clearly separated by different indicator species. Slika 2: Dendrogram klastrske analize z abundancami vrst. Tri skupine so jasno ločene z različnimi indikatrorskimi vrstami. Table 1: Environmental and bioclimatic variables used for the ordination analyses and to differentiate the different groups. Tabela 1: Okoljske in bioklimatske spremenljivke, uporabljene v ordinacijski analizi in za ločevanje različnih skupin. 24/1 • 2025, 1–14 5 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines                      Finally, we compared our findings with the chasmo- phytic vegetation of the Mediterranean through a syn- optic table, incorporating our relevés with others from the literature and highlighting the different syntaxa. We included vegetation from the Italian Peninsula and Sic- ily, as well as some associations from Croatia (Trinajstić, 1987; Brullo & Marcenò, 1997; Biondi et al., 2000; Corbetta et al., 2000; Di Pietro & Wagensommer, 2008; Terzi & D’Amico, 2008). The vegetation from the East- ern Mediterranean, Provence, and the Sardo-Corsican region, floristically distinct from the Sorrento Peninsula, was not considered. The orders Asplenietalia glandulosi, Centaureo-Campanuletalia, and Onosmetalia frutescentis were included. We also included the order Potentilleta- lia caulescentis due to the relatively high altitudes of our relevés. In structuring the table we followed Terzi et al. (2018) and Biondi et al. (2000), the latter only for Poten- tilletalia caulescentis. To further characterise the syntaxa retrieved, we over- lapped our relevés on the maps of bioclimatic indexes ac- cording to Rivas-Martínez et al. (2011) calculated by Pesa- resi et al. (2017) for the entire Italian territory to compare with our ordination results. We considered ombrotype, thermotype, continentality and bioclimate variants. Results The silhouette test (Suppl. material 1) identified three well-differentiated clusters in the dendrogram (Figure 2 and Table 2). Furthermore, a correlation test between the original distance matrix and the cophenetic distance of the dendrogram, with a value of 0.803, indicates the validity of the ordering (Suppl. material 1). To exclude potential biases to the uneven area of the relevés, a parallel analysis on relevés not larger than 10 m2 returned exactly the same three clusters (Suppl. Material 1). The relevé clusters (1, 2, 3), subjected to the analysis of indicator species, correspond with the dominance of Lonicera stabiana, Globularia cordifolia subsp. neapoli- tana and Seseli polyphyllum, for cluster 1, 2 and 3, re- spectively. For the ISA, Lonicera stabiana and Globularia cordifolia subsp. neapolitana represent the unique indica- tor species for clusters 1 and 2, while cluster 3 identifies several differential species (Suppl. material 1). NMDS clearly distinguishes the 3 clusters (Figure 3), with a stress value of 0.15. The biplot of the environmental and bioclimatic vari- ables clearly distinguishes the three clusters. On the first axis, cluster 1 (Lonicera stabiana dominant) and cluster 2 (Globularia cordifolia subsp. neapolitana dominant) are separated according to Io, Itc, Tp and TpIc. Cluster 2 and 3 are separated from cluster 1 on the positive side of Ic index. Among all these variables, Tp, Itc, Io, and TpIc are significant according to the envfit output. The range of the variables in the three different clusters, with the corresponding Kruskal-Wallis test result, is presented in the boxplots of Figure 4. This figure shows in detail the main differences between identified clusters. In particular cluster 1 (Globulario-Loniceretum typicum) and cluster 2 (Globulario-Loniceretum globularietosum neapolitanae) are clearly and significantly separated from the cluster 3 (Diantho-Seselietum), with the latter found mainly in ar- eas at low elevation, with higher temperatures and lower precipitations than the other two clusters. According to the synoptic table (Suppl. material 2), a group of species distinguishes the three clusters of vegeta- tion in the Sorrento Peninsula from all others, including Bromopsis caprina, Galium lucidum subsp. venustum, Cen- taurea tenorei and Santolina neapolitana, while the spe- cies of the Tyrrhenian alliances Dianthion rupicolae and Campanulenion fragilis are completely absent. Apart from these species, there is a number of differential species be- longing for instance, to Sedo-Scleranthetea, etc. but we did not analyse such species because in the table derived from literature are considered only true character species and not differential. At the order level, the situation is not en- tirely clear, but it is evident that the species of Asplenieta- lia glandulosi are completely missing, and there is instead a small number of species of Centaureo-Campanuletalia (Cytisus spinescens, Sesleria juncifolia). Figure 3: NMDS ordination analysis depicting separation of the three different groups and clearly separated with the environmental and bioclimatic variables. Ic=Continentality index; Io=Ombrothermic index; Itc=Compensated thermal index; Tp=Annual Positive Temperature; TpIc=Tp & Ic ratio. Slika 3: NMDS ordinacija prikazuje ločitev treh različnih skupin, ki so jasno ločene z okoljskimi in bioklimatskimi spremenljivkami. Ic=indeks kontinentalnosti; Io=ombrotermični indeks; Itc=kompenzirani termični indeks; Tp=letne pozitivne temperature; TpIc=razmerje Tp in Ic. 24/1 • 2025, 1–14 6 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Relevé n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *17 18 19 20 21 22 23 *24 25 26 27 *28 Relevé area (m2) 5,0 1,0 8,0 3,0 3,0 1,0 4,0 2,5 1,5 2,0 2,5 1,0 1,0 1,0 6,0 20,0 15,0 2,0 3,0 1,0 2,0 1,0 0,5 0,5 4,0 5,0 50,0 10,0 Altitude (m a.s.l.) 1163 1132 1153 1166 1170 1281 651 861 861 861 889 877 602 610 642 1160 1157 1163 1153 1170 1278 1342 1752 1750 649 50 668 826 Exposure W-SW SW SE E-SE SW W W-SW E E E E NE SE N W SW SW W-SW SE SW W W SW W-SW W-SW W N SE Slope (°) 90 80 90 90 90 90 80 85 90 90 90 90 80 85 90 90 90 80 90 90 80 60 90 70 70 90 90 90 Cover herb layer (%) 50 70 40 90 80 40 80 60 50 35 70 70 60 30 15 35 10 80 60 30 20 80 50 80 50 30 20 35 Char. Globulario neapolitanae-Loniceretum stabianae typicum Fanelli et al. 2020 Freq. Lonicera stabiana 2B 2B 2A 4 3 2B 3 3 3 2A 2A 3 2A 1 + 2A 1 · · · · · · · · · · · 61 Char. Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova Globularia cordifolia subsp. neapolitana · · · · · · · · · · · · · · 1 + + 4 3 3 2B 3 2A 3 · · · · 36 Char. Diantho virginei-Seselietum polyphylli ass. nova Seseli polyphyllum · · + · 2A · + 1 · · · + + · · · · · · + · + · · 3 2B 2A 2A 43 Dianthus virgineus · · · · · · + · · · · · · · · · · · · · · · · · + · r + 14 Bromopsis erecta · · · · · · · · · · · · · · · · · · · · · · · · 1 · + + 11 Stachys recta · · · · · · · · · · · · · · · · · · · · · · · · · · + + 7 Micromeria graeca subsp. graeca · · · · · · · · · · · · · + · · · · · · · · · · + · · + 11 Char. Lonicerion stabianae all. nova Bromopsis caprina · · · · · · · + + · · + + · · · + · 1 · · · · · + · · · 25 Galium lucidum subsp. venustum + · · · + · + · · + · + · + · + · 1 1 · + · · · + 2A + · 46 Centaurea tenorei · + · · · · · + 1 1 + + · · · · · · · · · · · · · · · · 21 Santolina neapolitana · · + · · · · · · · · · · · + 1 · · + · · · · · · · · · 14 Centaureo-Campanuletalia Trinajstić 1980 Cytisus spinescens · · · · + · · + · · · · + · · · · · + · · · · · · · · · 14 Sesleria juncifolia + 2B · · · · · · · 1 2A · · · 2M 1 · 2A · · + + · 2B · · · · 36 Asplenietea trichomanis Br.-Bl. in Meier et Br.-Bl. 1934) Oberd. 1977 Sedum dasyphyllum · · · · + · · · · · · · · · · · · · · · · · · · + · · · 7 Arabis collina · + · · + + · · · · · · · · · · · · · + · · · · + · · · 18 Euphorbia spinosa 1 · · · · · · · 2A · · 3 · · · · · · · · · · · · · · · + 14 Petrosedum ochroleucum · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Centranthus ruber · · · · · · · · · · · · · · · · · · · · · · · · · + · · 4 Companions Campanula fragilis subsp. fragilis · · + · · · · + 1 · + · · + + · 1 · · · · · + · · 1 · · 32 Helianthemum nummularium subsp. obscurum · + · · · · · · · + · · · · · · · · · 1 · + 2B + · · · + 25 Leontodon crispus · · · · · + · + + · + · · + + · · · · · · · · · · · · · 21 Petrosedum rupestre · + · · + · + · · · · · · · · · · + · · + · · · + · · · 21 Emerus major subsp. emeroides · · · · · · 3 · · · · 1 1 + · · · + · · · · · · · · · · 18 Lomelosia crenata · · · · + · · · · · · · · · + · · · · + + + · · · · · · 18 Edraianthus graminifolius · + · + · · · · · · · · · · · + · · · · + · · · · · · · 14 Satureja montana · · · · · 1 · · · + 1 · · · · · · · · · · · · · · · · · 11 Brassica villosa · · · 1 2A · · + · · · · · · · · · · · · · · · · · · · · 11 Silene multicaulis · · · · · · · 1 + · · · · · · · · · · · · · · + · · · · 11 Cynanchica aristata subsp. scabra · · · · · · · · · · · · · · + · + · · · · · · · · · · · 7 Selaginella denticulata · · · · · · · · + · · + · · · · · · · · · · · · · · · · 7 Petrorhagia saxifraga · · · · + · · · · · · · · + · · · · · · · · · · · · · · 7 Viola cassinensis subsp. pseudogracilis · · · · · + · · · · · · · · · · · · · · 1 · · · · · · · 7 Brachypodium retusum · · · · · · · · · · · · + 1 · · · · · · · · · · · · · · 7 Carex caryophyllea · · · · + · · · · · · · · · · · · · · · + · · · · · · · 7 Anthyllis montana subsp. jacquinii · · · · · · · · · · · · · · · · · · · · · · 1 + · · · · 7 Carex kitaibeliana · · · · · · · · · · · · · · · · · · · · · · 2B 1 · · · · 7 Reichardia picroides · · · · · · · · · · · · · · · · · · · · · · · · + · · + 7 Centaurea deusta 2B · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 Anthyllis vulneraria subsp. rubriflora · · · · · · · · · · · 1 · · · · · · · · · · · · · · · · 4 Table 2: Phytosociological table of the relevés. Tabela 2: Fitocenološka tabela vegetacijskih popisov. 24/1 • 2025, 1–14 7 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Relevé n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *17 18 19 20 21 22 23 *24 25 26 27 *28 Relevé area (m2) 5,0 1,0 8,0 3,0 3,0 1,0 4,0 2,5 1,5 2,0 2,5 1,0 1,0 1,0 6,0 20,0 15,0 2,0 3,0 1,0 2,0 1,0 0,5 0,5 4,0 5,0 50,0 10,0 Altitude (m a.s.l.) 1163 1132 1153 1166 1170 1281 651 861 861 861 889 877 602 610 642 1160 1157 1163 1153 1170 1278 1342 1752 1750 649 50 668 826 Exposure W-SW SW SE E-SE SW W W-SW E E E E NE SE N W SW SW W-SW SE SW W W SW W-SW W-SW W N SE Slope (°) 90 80 90 90 90 90 80 85 90 90 90 90 80 85 90 90 90 80 90 90 80 60 90 70 70 90 90 90 Cover herb layer (%) 50 70 40 90 80 40 80 60 50 35 70 70 60 30 15 35 10 80 60 30 20 80 50 80 50 30 20 35 Char. Globulario neapolitanae-Loniceretum stabianae typicum Fanelli et al. 2020 Freq. Lonicera stabiana 2B 2B 2A 4 3 2B 3 3 3 2A 2A 3 2A 1 + 2A 1 · · · · · · · · · · · 61 Char. Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova Globularia cordifolia subsp. neapolitana · · · · · · · · · · · · · · 1 + + 4 3 3 2B 3 2A 3 · · · · 36 Char. Diantho virginei-Seselietum polyphylli ass. nova Seseli polyphyllum · · + · 2A · + 1 · · · + + · · · · · · + · + · · 3 2B 2A 2A 43 Dianthus virgineus · · · · · · + · · · · · · · · · · · · · · · · · + · r + 14 Bromopsis erecta · · · · · · · · · · · · · · · · · · · · · · · · 1 · + + 11 Stachys recta · · · · · · · · · · · · · · · · · · · · · · · · · · + + 7 Micromeria graeca subsp. graeca · · · · · · · · · · · · · + · · · · · · · · · · + · · + 11 Char. Lonicerion stabianae all. nova Bromopsis caprina · · · · · · · + + · · + + · · · + · 1 · · · · · + · · · 25 Galium lucidum subsp. venustum + · · · + · + · · + · + · + · + · 1 1 · + · · · + 2A + · 46 Centaurea tenorei · + · · · · · + 1 1 + + · · · · · · · · · · · · · · · · 21 Santolina neapolitana · · + · · · · · · · · · · · + 1 · · + · · · · · · · · · 14 Centaureo-Campanuletalia Trinajstić 1980 Cytisus spinescens · · · · + · · + · · · · + · · · · · + · · · · · · · · · 14 Sesleria juncifolia + 2B · · · · · · · 1 2A · · · 2M 1 · 2A · · + + · 2B · · · · 36 Asplenietea trichomanis Br.-Bl. in Meier et Br.-Bl. 1934) Oberd. 1977 Sedum dasyphyllum · · · · + · · · · · · · · · · · · · · · · · · · + · · · 7 Arabis collina · + · · + + · · · · · · · · · · · · · + · · · · + · · · 18 Euphorbia spinosa 1 · · · · · · · 2A · · 3 · · · · · · · · · · · · · · · + 14 Petrosedum ochroleucum · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Centranthus ruber · · · · · · · · · · · · · · · · · · · · · · · · · + · · 4 Companions Campanula fragilis subsp. fragilis · · + · · · · + 1 · + · · + + · 1 · · · · · + · · 1 · · 32 Helianthemum nummularium subsp. obscurum · + · · · · · · · + · · · · · · · · · 1 · + 2B + · · · + 25 Leontodon crispus · · · · · + · + + · + · · + + · · · · · · · · · · · · · 21 Petrosedum rupestre · + · · + · + · · · · · · · · · · + · · + · · · + · · · 21 Emerus major subsp. emeroides · · · · · · 3 · · · · 1 1 + · · · + · · · · · · · · · · 18 Lomelosia crenata · · · · + · · · · · · · · · + · · · · + + + · · · · · · 18 Edraianthus graminifolius · + · + · · · · · · · · · · · + · · · · + · · · · · · · 14 Satureja montana · · · · · 1 · · · + 1 · · · · · · · · · · · · · · · · · 11 Brassica villosa · · · 1 2A · · + · · · · · · · · · · · · · · · · · · · · 11 Silene multicaulis · · · · · · · 1 + · · · · · · · · · · · · · · + · · · · 11 Cynanchica aristata subsp. scabra · · · · · · · · · · · · · · + · + · · · · · · · · · · · 7 Selaginella denticulata · · · · · · · · + · · + · · · · · · · · · · · · · · · · 7 Petrorhagia saxifraga · · · · + · · · · · · · · + · · · · · · · · · · · · · · 7 Viola cassinensis subsp. pseudogracilis · · · · · + · · · · · · · · · · · · · · 1 · · · · · · · 7 Brachypodium retusum · · · · · · · · · · · · + 1 · · · · · · · · · · · · · · 7 Carex caryophyllea · · · · + · · · · · · · · · · · · · · · + · · · · · · · 7 Anthyllis montana subsp. jacquinii · · · · · · · · · · · · · · · · · · · · · · 1 + · · · · 7 Carex kitaibeliana · · · · · · · · · · · · · · · · · · · · · · 2B 1 · · · · 7 Reichardia picroides · · · · · · · · · · · · · · · · · · · · · · · · + · · + 7 Centaurea deusta 2B · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 Anthyllis vulneraria subsp. rubriflora · · · · · · · · · · · 1 · · · · · · · · · · · · · · · · 4 24/1 • 2025, 1–14 8 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Relevé n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *17 18 19 20 21 22 23 *24 25 26 27 *28 Cerastium tomentosum · · · · · · · · + · · · · · · · · · · · · · · · · · · · 4 Allium tenuiflorum · · · · · · · · + · · · · · · · · · · · · · · · · · · · 4 Thymelaea tartonraira · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Salvia rosmarinus · · · · · · · · · · · · 3 · · · · · · · · · · · · · · · 4 Thapsia meoides · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Centaurea cineraria · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Quercus ilex · · · · · · · · · · · · · 3 · · · · · · · · · · · · · · 4 Clematis vitalba · · · · · · · · · · · · · + · · · · · · · · · · · · · · 4 Micromeria juliana · · · · · · · · · · · · · · · · · · · · · · · · · · + · 4 Coronilla valentina · · · · · · · · · · · · · · · · · · · · · · · · · · 2A · 4 Crithmum maritimum · · · · · · · · · · · · · · · · · · · · · · · · · + · · 4 Sixalix atropurpurea · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Plantago lanceolata · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Crupina vulgaris · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Avena barbata · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Allium subhirsutum · · · · · · · · · · · · · · · · · · · · · · · · + · · · 4 Onobrychis alba subsp. alba · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Helianthemum oelandicum subsp. incanum · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Carex macrolepis · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Siler montanum subsp. garganicum · · · · · · · · · · · · · · · · · · · · · · · + · · · · 4 Saxifraga marginata · · · · · · · · · · · · · · · · · · · · · · + · · · · · 4 Saxifraga callosa subsp. callosa · · · · · · · · · · · · · · · · · · · · · · + · · · · · 4 Figure 4: Boxplots depicting the significative differences between the three syntaxa based on the environmental and bioclimatic variables. On top left there are the p-values. A Elevation; B Annual Positive Temperature; C Continentality index; D Compensated thermal index; E Ombrothermic index; F Tp and Ic ratio. Slika 4: Škatle z okvirji prikazujejo statistično značilne razlike med tremi sintaksoni na osnovi okoljskih in bioklimatskih spremenljivk. Levo zgoraj so prikazane p-vrednosti. A Nadmorska višina; B letne pozitivne temperature; C indeks kontinentalnosti; D kompenzirani termični indeks; E ombrotermični indeks; F TpIc=razmerje Tp in Ic. 24/1 • 2025, 1–14 9 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Relevé n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *17 18 19 20 21 22 23 *24 25 26 27 *28 Cerastium tomentosum · · · · · · · · + · · · · · · · · · · · · · · · · · · · 4 Allium tenuiflorum · · · · · · · · + · · · · · · · · · · · · · · · · · · · 4 Thymelaea tartonraira · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Salvia rosmarinus · · · · · · · · · · · · 3 · · · · · · · · · · · · · · · 4 Thapsia meoides · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Centaurea cineraria · · · · · · · · · · · · + · · · · · · · · · · · · · · · 4 Quercus ilex · · · · · · · · · · · · · 3 · · · · · · · · · · · · · · 4 Clematis vitalba · · · · · · · · · · · · · + · · · · · · · · · · · · · · 4 Micromeria juliana · · · · · · · · · · · · · · · · · · · · · · · · · · + · 4 Coronilla valentina · · · · · · · · · · · · · · · · · · · · · · · · · · 2A · 4 Crithmum maritimum · · · · · · · · · · · · · · · · · · · · · · · · · + · · 4 Sixalix atropurpurea · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Plantago lanceolata · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Crupina vulgaris · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Avena barbata · · · · · · · · · · · · · · · · · · · · · · · · · · · + 4 Allium subhirsutum · · · · · · · · · · · · · · · · · · · · · · · · + · · · 4 Onobrychis alba subsp. alba · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Helianthemum oelandicum subsp. incanum · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Carex macrolepis · · · · · · · · · · · · · · · · · · · · · + · · · · · · 4 Siler montanum subsp. garganicum · · · · · · · · · · · · · · · · · · · · · · · + · · · · 4 Saxifraga marginata · · · · · · · · · · · · · · · · · · · · · · + · · · · · 4 Saxifraga callosa subsp. callosa · · · · · · · · · · · · · · · · · · · · · · + · · · · · 4 The cluster containing Seseli polyphyllum occupies a lower humid to upper subhumid ombrotypes, predomi- nantly Mediterranean, occasionally temperate thermo- types, and exhibits a weakly euoceanic continentality type (Figure 4). The other two clusters share mainly temperate, occasionally Mediterranean thermotypes, and display a weakly semicontinental, sometimes weak euoceanic con- ditions (Figure 5 and Figure 6). The clusters differ in that the one dominated by Globularia cordifolia subsp. nea- politana ranges from lower hyperhumid to lower humid, while the cluster dominated by Lonicera stabiana is from upper humid to lower humid. Discussion The analysis identifies three clearly differentiated clusters of chasmophytic vegetation in the Sorrento Peninsula, dominated by Lonicera stabiana, Globularia cordifolia subsp. neapolitana, and Seseli polyphyllum, respectively. It seems reasonable to distinguish the investigated plant as- semblages into two associations, one with Globularia cor- difolia subsp. neapolitana and Lonicera stabiana, and one with Seseli polyphyllum. The latter association develops at slightly lower altitudes. Other researchers might view these three clusters as variants of the same association, but they are very distinct floristically and ecologically, to a degree that necessitates considering them as different syntaxa (see Figure 4). The relevés dominated by Globularia cordifolia subsp. neapolitana and Lonicera stabiana represent two subasso- ciations of the previously described association of Globu- lario neapolitanae-Loniceretum stabianae. The subasso- ciation with dominance of Globularia cordifolia subsp. neapolitana represents a new subassociation, globularieto- sum neapolitanae, whereas the subassociation with domi- nance of Lonicera stabiana represents the subassociation typicum. The subassociation globularietosum is typically found in the lower part of the slopes, suggesting a need for more soil accumulation at the base of the cliff, while the subas- sociation dominated by Lonicera stabiana (typicum) occu- pies the higher parts of the slopes and often upper parts of the cliffs, though there are significant overlaps. The association dominated by Seseli polyphyllum is characterised by the prevalence of this species. Moreover, the floristic composition is different from that of Globu- lario-Loniceretum, as stressed by the cluster analysis and NMDS. Finally, the association grows at lower altitudes in a different bioclimatic context, as shown by the map (Figure 5). Dianthus virgineus is not a characteristic spe- cies but is frequently present in the association. A group of stenoendemic species characterises the chasmophytic vegetation of Sorrento Peninsula (Lonicera stabiana, Globularia cordifolia subsp. neapolitana, Seseli polyphyllum, Centaurea tenorei, Galium lucidum subsp. venustum, Bromopsis caprina). The widespread species 24/1 • 2025, 1–14 10 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Figure 5: Bioclimatic maps from Pesaresi et al. (2017) for Diantho virginei-Seselietum polyphylli ass. nova. Slika 5: Bioklimatski zemljevidi iz Pesaresi et al. (2017) za Diantho virginei-Seselietum polyphylli ass. nova. Sesleria juncifolia and Edraianthus graminifolius might be present with specific forms different from those in the Central Apennines (Fanelli et al., 2020). A study by Surina et al. (2014) has shown that populations of Ed- raianthus graminifolius from the Central Apennines are genetically distinct from those in Southern Italy. All these species allow for delineating a distinct alliance, Lonicerion stabianae, endemic to the Sorrento Peninsula and with a small exclave in the Picentini Mountains, where Globu- laria cordifolia subsp. neapolitana is present. These species represent true character species and are as such indicated in the synoptic table. We refrained from indicating dif- ferential species because a rigorous assessment of such species requires revision of the chasmophytic vegetation of the central Mediterranean, which is outside the aim of this paper, although a number of differential species are probably present, distinguishing the chasmophytic vegetation of the Sorrento Peninsula and Picentini from other chasmophytic vegetation of the Central Mediterra- nean but which are otherwise shared with dry grasslands. A possible alternative hypothesis to the description of a new alliance is that the vegetation described in this pa- per falls within the Dianthion rupicolae, but this remains implausible for ecological, floristic, and phytogeographic reasons. As evident from the synoptic table, species from Dianthion rupicolae are virtually non-existent in the rel- evés of Lonicerion stabianae. If the alliances were syn- onymous, a substantial presence of Dianthion rupicolae species would be expected, given the geographical prox- imity to areas associated with this alliance. Indeed, eco- logically, Lonicerion stabianae is distinguished through two features: it develops at relatively high altitudes (about 1000 m) with a temperate and weakly continental climate and growth on dolomitic substrates (Fanelli et al., 2020). Dianthion rupicolae develops in a thermo- to meso-mediterranean climate, with much more maritime conditions, and generally on non-dolomitic substrates (Terzi et al., 2018). The bioclimatic analysis shows that the alliance Lonicerion stabianae is characterised by a weakly continental climate and a predominantly temper- ate thermotype, which ecologically isolates this alliance within xerophytic cliff vegetation (Terzi et al., 2018). In this context, Diantho virginei-Seselietum polyphylli occu- pies a somewhat intermediate position with Dianthion 24/1 • 2025, 1–14 11 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Figure 6: Bioclimatic maps from Pesaresi et al. (2017) for Globulario neapolitanae-Loniceretum stabianae typicum. Slika 6: Bioklimatski zemljevidi iz Pesaresi et al. (2017) za Globulario neapolitanae-Loniceretum stabianae typicum. rupicolae. In fact, Seseli polyphyllum occurs sometimes with low frequencies in a few associations of Dianthion rupicolae. The synoptic table does not reveal any affinity with As- plenietalia glandulosi at the order level, while a moderate affinity with the Adriatic Centaureo-Campanuletalia ap- pears. Species from Asplenietalia glandulosi are absent, but two species of Centaureo-Campanuletalia, in particular Cytisus spinescens and Sesleria juncifolia, are present. This is somewhat surprising, since Asplenietalia glandulosi is the order of central Mediterranean chasmophytic vegeta- tion, whereas Centaureo-Campanuletalia is fundamentally distributed in the Adriatic. Only a few species of Centaureo-Campanuletalia were encountered in our surveys, but this could be explained by the very marginal position of the Sorrento Peninsula for the main area of Centaureo-Campanuletalia. This is not surprising since there is a strong disjunction between the Sorrento Peninsula and the main area of Centaureo- Campanuletalia in the Adria. In summary, the affinities of the mountainous zone of the Sorrento Peninsula seem to be eastern, while the lower zones have a distinctly more western character. Our results are based on the analysis of the synop- tic table and bioclimatic characterisation. A numerical analysis of cliff vegetation in the central Mediterranean could further support these findings, as such analyses are now relatively easy thanks to the integration of large da- tabases (Chytrý et al., 2016). However, this type of anal- ysis has already been conducted by Terzi et al. (2018), and adding relevés from the Sorrento Peninsula would likely be redundant. Moreover, the scope of our study is to describe the vegetation of the Sorrento Peninsula and align it within the framework of known vegetation as presented in the literature. This approach follows the standard method in phytosociology, which begins with a detailed description of the vegetation at the local scale and, only after a substantial amount of data has been col- lected, proceeds to numerical analysis and revision (e.g., Bonari et al., 2020). 24/1 • 2025, 1–14 12 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines In conclusion, we propose the following syntaxonomi- cal scheme: Globulario neapolitanae-Loniceretum stabianae globularieto- sum neapolitanae subass. nova hoc loco (Holotypus n. 24) Globulario neapolitanae-Loniceretum stabianae typicum Fanelli et al. 2020 Diantho virginei-Seselietum polyphylli ass. nova hoc loco (Holotypus n. 28) Notes: Lonicerion stabianae all. nova hoc loco (Holotypus Globulario neapolitanae-Loniceretum stabianae). Centaureo-Campanuletalia Trinajstić 1980 Asplenietea trichomanis Br.-Bl. in Meier et Br.-Bl. 1934) Oberd. 1977 Conclusion The Sorrento Peninsula represents a significant centre of endemism, which Italian botanists have somewhat over- looked from a biogeographic perspective, with a few ex- ceptions (Guadagno, 1916; Salerno et al., 2007). Our proposal to describe an alliance for this restricted biogeo- Figure 7: Bioclimatic maps from Pesaresi et al. (2017) for Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova. Slika 7: Bioklimatski zemljevidi iz Pesaresi et al. (2017) za Globulario neapolitanae-Loniceretum stabianae globularietosum neapolitanae subass. nova. graphic sector, aimed at integrating renewed ecological and phytogeographic foundations, successfully increas- ing the number of relevés for Globulario neapolitanae- Loniceretum stabianae and identifying the subassociation globularietosum also in the Picentini Mountains. In the standard classification of the ecoregions of Italy (Blasi et al., 2018), the Sorrento Peninsula is not distin- guished from the Cilento subsection, which has a very different floristic setting, with iconic species such as Eo- kochia saxicola, Limonium remotispiculum and Primula palinuri. The main distinction between the Sorrento Pen- insula and Cilento is climatic, with the latter showing a mainly a thermo-mediterranean climate. The study’s findings contributed to drawing attention to the uniqueness of this peculiar territory. The Sorrento Pen- insula is an island of endemism comparable to other Ital- ian plant diversity hotspots (e.g. the Apuan Alps, Belluno Dolomites, Aspromonte, Etna, etc.), which, despite a very limited size, hosts a considerable number of rare species. According to our analysis, the Sorrento Peninsula should have more affinities with the Adriatic ranges than with the western Mediterranean or the Tyrrhenian do- 24/1 • 2025, 1–14 13 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Barkman, J.J., Doing, H., & Segal, S. (1964). Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica, 13, 394–419. Bartolucci, F., Peruzzi, L., Galasso, G., Albano, A., Alessandrini, A., Ardenghi, N.M.G., Astuti, G., Bacchetta, G., Ballelli, S., Banfi, E., Barberis, G., Bernardo, L., Bouvet, D., Bovio, M., Cecchi, L., Di Pietro, R., Domina,G., Fascetti, S., Fenu, G., Festi, F., Foggi, B., Gallo, L., Gottschlich, G., Gubellini, L., Iamonico, D., Iberite, M., Jiménez-Mejías, P., Lattanzi, E., Marchetti, D., Martinetto, E., Masin, R.R., Medagli, P., Passalacqua, N.G., Peccenini, S., Pennesi, R., Pierini, B., Poldini, L., Prosser, F., Raimondo, F.M., Roma-Marzio, F., Rosati, L., Santangelo, A., Scoppola, A., Scortegagna, S., Selvaggi, A., Selvi, F., Soldano, A., Stinca, A., Wagensommer, R.P., Wilhalm, T., & Conti, F. (2018). An updated checklist of the vascular flora native to Italy. Plant Biosystems, 152(2), 179–303. https://doi.org/10.1080/1126 3504.2017.1419996 Biondi, E., Casavecchia, S., & Zuccarello, V. (2000). The Potentilletalia caulescentis Br.-Bl. in Br.-Bl. & Jenny 1926 order in Italy. Colloques Phytosociologiques, 27, 105–122. Blasi, C., Capotorti, G., Copiz, R., Guida, D., Mollo, B., Smiraglia, D., & Zavattero, L. (2018). Terrestrial Ecoregions of Italy: Map and Explanatory notes. Global Map S.r.l. Bonari, G., Fernández-González, F., Çoban, S., Monteiro-Henriques, T., Bergmeier, E., Didukh, Y.P., Xystrakis, F., Angiolini, C., Chytrý, K., Acosta, A.T.R., Agrillo, E., Costa, J.C., Danihelka, J., Hennekens, S.M., Kavgacı, A., Knollová, I., Neto, C.S., Sağlam, C., Škvorc, Ž., Tichý, L., Chytrý, M., & Ewald, J. (2021). Classification of the Mediterranean lowland to submontane pine forest vegetation. Applied Vegetation Science, 24, e12544 https://doi.org/10.1111/avsc. v24.110.1111/avsc.12544. Brullo, S., & Marcenò, C. (1979). Dianthion rupicolae nouvelle alliance sud-tyrrhénienne des Asplenietalia glandulosi. Documents Phytosociologiques, 4, 131–146. Cancellieri, L., & Caneva, G. (2007). Il paesaggio vegetale della Costa d’Amalfi [The vegetation landscape of the Amalfi coast]. Ed. Gangemi, Rome, IT, 206 pp. Cancellieri, L., Caneva, G., & Cutini, M. (2017). Phytosociology and ecology of the Mediterranean forests ecosystems in the Amalfi Coast (Monti Lattari, Italy). Rendiconti Lincei, 28, 651–671. https://doi. org/10.1007/s12210-017-0635-x Capozzi, V., Annella, C., & Budillon, G. (2023). Classification of daily heavy precipitation patterns and associated synoptic types in the Campania Region (southern Italy). Atmospheric Research, 289, 106781. https://doi.org/10.1016/j.atmosres.2023.106781 Caputo, G., La Valva, V., Nazzaro, R., & Ricciardi, M. (1989). La flora della Penisola Sorrentina (Campania) [Flora of Sorrento Peninsula (Campania)]. Delpinoa, 31-32, 3–97. Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H.J., Aćić, S., Agrillo, E., Ambarlı, D., Angelini, P., Apostolova, I., Attorre, F., Berg, C., Bergmeier, E., Biurrun, I., Botta-Dukát, Z., Brisse, H., Campos, J.A., Carlón, L., Čarni, A., Casella, L., Csiky, J., Ćušterevska, R., Dajić Stevanović, Z., Danihelka, J., De Bie, E., de Ruffray, P., De Sanctis, M., Dickoré, W.B., Dimopoulos, P., Dubyna, D., Dziuba, T., Ejrnæs, R., Ermakov, N., Ewald, J., Fanelli, G., Fernández-González, F., FitzPatrick, Ú., Font, X., García-Mijangos, I., Gavilán, R.G., Golub, V., Guarino, R., Haveman, R., Indreica, A., Işık Gürsoy, D., Jandt, U., Janssen, J.A.M., Jiroušek, M., Kącki, Z., Kavgacı, A., Kleikamp, M., Kolomiychuk, V., Krstivojević Ćuk, M., Krstonošić, D., Kuzemko, A., mains. This is relatively not surprising when considering the climate of the Sorrento Peninsula. Unlike neighbour- ing regions, the highest tops of Sorrento Peninsula is more exposed to the winter currents of cold air coming from the Balkan spots, as only partially shielded by the Pi- centini Mountains (Capozzi et al., 2023). This is reflected in the weakly continental bioclimate classification of the higher altitudes of the Lattari and Picentini Mountains (Pesaresi et al., 2017). Conversely, in summer, the very close maritime currents, especially in the lower zones, ensure a milder climate enabling the plants to flourish. A more detailed study of the lower cliff zone would be interesting, although made difficult by the extensive ur- banisation of the area. Data availability All the relevés presented in this paper will be available on the EVA database and/or by request to the corresponding author. Author contributions DLM and GF conceived the research. DLM, MDS, LC, EA, FB, EDL, SF and GF collected the data. DLM, LC, and GF analysed the data. FA and GF supervised the work. All authors contributed to the writing of the manu- script with a final review by DLM, VEC, MDS, FA and GF. All authors contributed to the article and approved the submitted version. Acknowledgements We would like to thank Carlo Fratarcangeli for the help in processing the data. ORCID iDs Dario La Montagna  https://orcid.org/0000-0002-7124-493X Vito Emanuele Cambria  https://orcid.org/0009-0003-0481-6368 Lorenzo Caucci  https://orcid.org/0009-0000-9211-3587 Michele De Sanctis  https://orcid.org/0000-0002-7280-6199 Sara Frasca  https://orcid.org/0009-0007-8164-640X Fabio Attorre  https://orcid.org/0000-0002-7744-2195 Giuliano Fanelli  https://orcid.org/0000-0002-3143-1212 References Antonsson, H. (2012). Plant species composition and diversity in cliff and mountain ecosystems. Ph.D. thesis, University of Gothenburg, Gothenburg, SE. Available from: https://gupea.ub.gu.se/ handle/2077/30092 Assennato, F., Smiraglia, D., Cavalli, A., Congedo, L., Giuliani, C., Riitano, N., Strollo, A., & Munafò, M. (2022). The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land, 11(2), 236. https://doi.org/10.3390/land11020236 24/1 • 2025, 1–14 14 La Montagna et al. Chasmophytic vegetation of Campanian Anti-Apennines Lenoir, J., Lysenko, T., Marcenò, C., Martynenko, V., Michalcová, D., Moeslund, J.E., Onyshchenko, V., Pedashenko, H., Pérez-Haase, A., Peterka, T., Prokhorov, V., Rašomavičius, V., Rodríguez-Rojo, M.P., Rodwell, J.S., Rogova, T., Ruprecht, E., Rūsiņa, S., Seidler, G., Šibík, J., Šilc, U., Škvorc, Ž., Sopotlieva, D., Stančić, Z., Svenning, J.-C., Swacha, G., Tsiripidis, I., Turtureanu, P.D., Uğurlu, E., Uogintas, D., Valachovič, M., Vashenyak, Y., Vassilev, K., Venanzoni, R., Virtanen, R., Weekes, L., Willner, W., Wohlgemuth, T., & Yamalov, S. (2016). European Vegetation Archive (EVA): an integrated database of Euro- pean vegetation plots. Applied Vegetation Science, 19, 173–180. https:// doi.org/10.1111/avsc.12191 Corbetta, F., Frattaroli, A.R., Ciaschetti, G., & Pirone, G. (2000). Some aspects of the chasmophytic vegetation in the Cilento-Vallo di Diano National Park (Campania, Italy). Acta Botanica Croatica, 59(1), 43–53. De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x Del Guacchio, E., Innangi, M., Giacò, A., Peruzzi, L., & Caputo, P. (2020). Taxa endemic to Campania (southern Italy): nomenclatural and taxonomic notes. Phytotaxa, 449(3), 217–231. https://doi. org/10.11646/phytotaxa.449.3.2 Di Pietro, R., & Wagensommer, R.P. (2008). Analisi fitosociologica su alcune specie rare e/o minacciate del Parco Nazionale del Gargano (Italia centro-meridionale) e considerazioni sintassonomiche sulle comunità casmofitiche della Puglia [Phytosociological analysis on some rare species and/or threatened of Gargano National Park (Southern- Central Italy) a syntaxonomical considerations on chasmophytic communities of Puglia]. Fitosociologia, 45(1), 177–200. Fanelli, G., La Montagna, D., Attorre, F., De Sanctis, M., & Masucci, P. (2022). Phytosociology and taxonomic notes on some endemic-rich associations of the Naples Gulf. Hacquetia, 21(1), 1–14. Guadagno, M. (1916). La vegetazione della Penisola Sorrentina (Parte I, II, III) [Vegetation of Sorrento Peninsula (Part I, II, III)]. Bullettino dell’Orto Botanico di Napoli, 5, 133–178 Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine learning (Vol. 1). Sthda. Lacaita, C. (1922). Piante italiane critiche o rare [Critical or rare Italian plants]. Nuovo Giornale Botanico Italiano nuova serie, 29(1-4), 174–194. Moraldo, B., La Valva, V., Ricciardi, M., & Caputo, G. (1985). La Flora dei Monti Picentini (Campania) [Flora of Picentini Mountains (Campania)]. Delpinoa, 27-28, 59–148. Natali, A. (1998). Le groupe Galium lucidum (Rubiaceae) dans le domaine cyrno-sarde. Candollea, 53(2), 484–488. Pasquale, G.A. (1875). Su di una nuova specie di Lonicera [On a new species of Lonicera]. Rendiconto della Regia Accademia delle Scienze fisiche e matematiche, 14, 142–143. Pesaresi, S., Biondi, E., & Casavecchia, S. (2017). Bioclimates of Italy. Journal of Maps, 13(2), 955–960. https://doi.org/10.1080/17445647. 2017.1413017 Pescatore, T.S., Pinto, F., Giano, S.I., Guadagno, F.M., & Lupo, G. (2022). Note illustrative della Carta Geologica d’Italia alla scala 1: 50.000: Foglio 449 Avellino. CARG, Regione Campania. Pignatti, S., Guarino, R., & La Rosa, M. (2017). Flora d’italia (Vol. 1-4). Edagricole, Milano. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rivas-Martínez, S., Sáenz, S.R., & Penas, A. (2011). Worldwide bioclimatic classification system. Global Geobotany. 1, 1–634. https:// doi.org/10.5616/gg110001 Salerno, G., Cancellieri, L., Ceschin, S., Lucchese, F., & Caneva, G. (2007). La flora e le emergenze floristiche [Flora and floristic emergencies]. In: Caneva, Cancellieri (Eds.), Il paesaggio vegetale della costa d’Amalfi. Cangemi Editore, Roma. Schwarz, O. (1938). Die Gattung Globularia [The Genus Globularia]. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 69: 318–373. Snogerup, S. (1971). Evolutionary and plant geographical aspects of chasmophytic communities. In: Davis, Harper, Hedge, (Eds.), Plant Life of South West Asia. Royal Botanic Garden, Edinburgh. Surina, B., Schneeweiss, G.M., Glasnović, P., & Schönswetter, P. (2014). Testing the efficiency of nested barriers to dispersal in the Mediterranean high mountain plant Edraianthus graminifolius (Campanulaceae). Molecular Ecology, 23, 2861–2875. https://doi. org/10.1111/mec.12779 Tenore, M. (1823). Flora medica universale, e flore particolare della provincia di Napoli [Universal medical flora, and particular flora of the province of Naples]. Giornale Enciclopedico di Napoli, Napoli. Terzi, M. & D’Amico, F.S. (2008). Chasmophytic vegetation of the class Asplenietea trichomanis in south-eastern Italy. Acta Botanica Croatica, 67(2), 147–174. Terzi, M., Jasprica, N., Caković, D., & Di Pietro, R. (2018), Revision of the central Mediterranean xerothermic cliff vegetation. Applied Vegetation Science, 21, 514–532. https://doi.org/10.1111/avsc.12386 Thompson, J.D. (2020). Plant evolution in the Mediterranean: insights for conservation. Oxford University Press, USA. Trinajstić, I. (1987). Sintaksonomski pregled biljnih zajednica planine Biokovo [Syntaxonomic survey of the plant communities of the Mt. Biokovo]. Acta Biokovica, 4, 143–174. Wagensommer, R.P. (2017). Phytosociological investigation on the thermo-chasmophilous vegetation of the Eastern Mediterranean territories. Ph.D. thesis, University of Catania, Catania, IT. Available from: http://hdl.handle.net/10761/3718. Appendix 1 Other syntaxa quoted in the text with authors: Centaureo-Campanulenion seselietosum polyphylli Brullo & Marcenò 1979 Centaureo-Campanuletum fragilis typicum Brullo & Mar- cenò 1979 Campalunenion fragilis Terzi et al. 2018 Dianthion rupicolae S. Brullo et Marcenò 1979 Asplenietalia glandulosi Br.-Bl. in Meier et Br.-Bl. 1934 Centaureo-Campanuletalia Trinajstić 1987 Onosmetalia frutescentis Quezel 1968 Potentilletalia caulescentis Br.-Bl. in Br.-Bl. et Jenny 1926 Moltkietalia petraeae Lakušić 1968